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A numerical method for dynamic failure analysis through the phantom nodemethod is further developed. A distinct feature of this
method is the use of the phantomnodes with a newly developed correction force scheme.Through this improved approach, fracture
energy can be smoothly dissipated during dynamic failure processes without emanating noisy artifact stress waves. This method is
implemented to the standard 4-node quadrilateral finite element; a single quadrature rule is employed with an hourglass control
scheme in order to decrease computational cost and circumvent difficulties associated with the subdomain integration schemes
for cracked elements. The effectiveness and robustness of this method are demonstrated with several numerical examples. In these
examples, we showed the effectiveness of the described correction force scheme along with the applicability of this method to an
interesting class of structural dynamic failure problems.

1. Introduction

It has been shown that the extended finite element method
(XFEM) [1, 2] can be successfully applied to several types
of internal discontinuity problems, focusing on failure prob-
lems. For example, the XFEM has been applied to arbitrary
branched and intersecting cracks [3], three dimensional crack
propagation [4, 5], cohesive crack models [6] and dynamic
shell [7], and 2D [8] fracture problems.

Although the standard XFEM has been successfully
applied to dynamic fracture problems by Belytschko et al. [8],
theymostly considered fracture problems with a single initial
notch and/or simple crack geometry. This limitation arises
from the difficulty in the representation of a complicated
crack geometry and with the numerical integration. To
circumvent this difficulty, Xu and Needleman [9], Ortiz and
Pandolfi [10], Repetto et al. [11], and Cirak et al. [12] proposed
the interelement crack model; but this interelement crack
model can have mesh sensitivity problems as pointed out in
Belytschko et al. [8] and Song et al. [13].

Our motivation in presenting this paper is to illustrate a
new method which is efficient for dynamic propagation of
multiple cracks and fragmentation problems but nevertheless
free from mesh sensitivity by using intra-element discon-
tinuities. In this method, we use an element superposition
concept to represent cracked elements which was proposed
by Song et al. [14].

In addition, we describe a method to deal with the
description of the crack tip element in terms of stiffness. It
aims at characterizing the release of the crack tip element
when the crack propagates. An additional correction force
introduced by Menouillard and Belytschko [15] takes into
account this crack tip element and makes the new addi-
tional degrees of freedom release continuously. This artificial
correction force will be used to smooth the stress near the
crack tip because no tip enrichment is used in our XFEM
discretization.

Menouillard et al. [16] developed amass lumping strategy
for the XFEM formulation and more particularly for the
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Figure 1: Representation of a discontinuity in a one-dimensional finite element: (a) problem description of a one-dimensional rod and (b)
representation of a discontinuity with the phantom node method; solid circles denote real nodes and hollow circles denote phantom nodes.

discontinuous enrichment part. They found that the enrich-
ment does not significantly decrease the stable time step.
Then, Menouillard et al. [17] used another decomposition of
the enriched shape function developed by A. Hansbo and
P. Hansbo [18] which is used in the phantom node method
developed by Song et al. [14] and Song and Belytschko [19].

The outline of this paper is as follows. The governing
equation and its weak form are given in Section 2. The
representation of a discontinuity in a cracked element with
a phantom node method is presented in Section 3. Section 4
presents a new method for smoothly releasing the newly
cracked element near the tip by taking into account the
position of the tracked crack tip in the tip element. Several
numerical examples are given in Section 5. Section 6 presents
the conclusions of this paper.

2. Governing Equations and Weak Form

For a two-dimensional dynamic problem, the strong form
of the linear momentum equation in a total Lagrangian
description is

𝜕𝑃𝑗𝑖

𝜕𝑋𝑗

+ 𝜌0𝑏𝑖 − 𝜌0𝑢̈𝑖 = 0 in Ω0, (1)

where P is the nominal stress tensor, 𝜌0 is the initial mass
density, and b is the body force vector. The boundary
conditions are

𝑛
0
𝑗𝑃𝑗𝑖 = 𝑡

0

𝑖 on Γ
0
𝑡

(2)

𝑢𝑖 = 𝑢𝑖 on Γ
0
𝑢

(3)

𝑛
0
𝑗𝑃
−
𝑗𝑖 = −𝑛

0
𝑗𝑃
+
𝑗𝑖 = 𝜏
0𝑐
𝑖 (⟦𝑢𝑖⟧) on Γ

0
𝑐 , (4)

where n0 is the unit normal vector to the boundary, 𝜏0𝑐 is the
cohesive traction across the crack surfaces, t0 is the applied

traction on the Neumann boundary Γ𝑡, and u is the applied
displacement on the Dirichlet boundary Γ0𝑢 ; Γ

0
𝑢 ∪ Γ
0
𝑡 = Γ

0,
Γ𝑢 ∩ Γ𝑡 = 0. Superscript plus and minus signs refer to the two
sides of the discontinuity. The spaces of admissible function
are

U = {u (X, 𝑡) | u (X, 𝑡) ∈ 𝐶0, u (X, 𝑡) = u (𝑡)

on Γ
0
𝑢 , u discontinuous on Γ𝑐} ,

(5)

U0 = {𝛿u (X, 𝑡) | 𝛿u (X, 𝑡) ∈ 𝐶0, 𝛿u (X, 𝑡) = 0

on Γ
0
𝑢 , 𝛿u discontinuous on Γ𝑐} .

(6)

Theweak form of themomentum equation is given by for
u(X, 𝑡) ∈ U

𝛿𝑊
kin

= 𝛿𝑊
int
− 𝛿𝑊

ext
+ 𝛿𝑊

coh
∀𝛿u (X) ∈ U0, (7)

where 𝛿𝑊
int is the internal work, 𝛿𝑊ext is the external

work performed by the applied loads, 𝛿𝑊kin is the kinetic
work performed by inertia forces, and 𝛿𝑊

coh is the work
performed by the cohesive traction on the crack surface Γ𝑐.
These quantities are defined as

𝛿𝑊
kin

= ∫
Ω0

𝛿u ⋅ 𝜌0ü 𝑑Ω0,

𝛿𝑊
int
= ∫
Ω0

𝜕𝛿u
𝜕X

: P 𝑑Ω0,

𝛿𝑊
ext

= ∫
Ω0

𝛿u ⋅ 𝜌0b 𝑑Ω0 + ∫
Γ0
𝑡

𝛿u ⋅ t0𝑑Γ0𝑡 ,

(8)

𝛿𝑊
coh

= −∫
Γ𝑐

𝛿 ⟦u⟧ ⋅ 𝜏𝑐𝑑Γ𝑐, (9)

where t is the normalized traction prescribed on Γ0𝑡 and 𝜏
𝑐 is

the cohesive traction applied on the discontinuity surface; an
updated Lagrangian form is used for the cohesive work in (9).
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Figure 2: Representation of a two-dimensional body with an internal discontinuity in the initial and the current domains.
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Figure 3: Two-dimensional discontinuity representation by two
implicit functions 𝑓(X) and 𝑔(X, 𝑡).

3. Representation of a Discontinuity with
Phantom Nodes

We first illustrate the modeling of a one-dimensional cracked
element with phantom nodes and then give the general
description for the modeling of the two-dimensional case,
subsequently. Consider a one-dimensional rod and let a crack
be located inside of element 1 at 𝑋 = 𝑎, as shown in
Figure 1(a).

The displacement field in cracked element 1 can be seen
to consist of two separated displacement fields as shown in
Figure 1(b): the displacement field of element 1a for 𝑋 < 𝑎,
and element 1b for 𝑋 > 𝑎. To construct new elements 1a and
1b from the element 1, we add new nodes which are replicas
of the original nodes; we called these nodes phantom nodes.

We define phantom nodes by the following:

𝐼 is a phantomnode in{element 1a if X𝐼 − 𝑎 > 0

element 1b if X𝐼 − 𝑎 < 0.
(10)

We can now rewrite the displacement field of element 1 as
a set of two superimposed elements with phantom nodes

u1 (X, 𝑡) = u1a (X, 𝑡) + u1b (X, 𝑡)

= [𝑢
1a
1 𝑁1 + 𝑝

1a
2 𝑁2]𝐻 (− (𝑋 − 𝑎))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1a

+ [𝑝
1b
1 𝑁1 + 𝑢

1b
2 𝑁2]𝐻 (𝑋 − 𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1b

,

(11)

where a superscript and subscript denote the element and
node number, respectively, N𝐼 are the shape functions, 𝑝 is
the nodal unknown of the phantom node, and 𝐻(𝑥) is the
Heaviside step function defined by

𝐻(𝑥) = {
1 𝑥 ≥ 0

0 𝑥 < 0.
(12)

The displacement jump across the crack is given by

⟦𝑢⟧
𝑋=𝑎

= lim
𝜀→0

[u1a (𝑋 + 𝜀) − u1b (𝑋 − 𝜀)]
𝑋=𝑎

= {𝑢
1a
1 𝑁1 (𝑎) + 𝑝

1a
2 𝑁2 (𝑎)}

− {𝑝
1b
1 𝑁1 (𝑎) + 𝑢

1b
2 𝑁2 (𝑎)}

= (u1a𝐼 − u1b𝐼 )𝑁𝐼 (𝑎) .

(13)

This procedure for cracked elements is similar to the
standard XFEM nodal enriching scheme. However, the
phantom nodes method simplifies the implementation of
cracked elements within the context of existing finite element
codes, since it is only necessary to add an extra element
with phantom nodes and modify the element connectivity
matrices.

3.1. Phantom Node Method in Two Dimensions. Consider
an initial domain Ω0 as shown in Figure 2. The motion is
described by x = Φ(X, 𝑡), whereX and x denote material and
spatial coordinates, respectively. In the current domain, the
image of the initial domain Ω0 is denoted by Ω. We allow
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this domain to contain internal discontinuities Γ𝑐 which is
enveloped by a regionΩ𝑐.

Inside of the region Ω𝑐, we define two local level set
functions𝑓(X) and𝑔(X, 𝑡), where𝑓(X) and𝑔(X, 𝑡) are signed
distance functions which describe the crack surface and tip
geometry, respectively. The isozero line of the function 𝑓(X),
that is, 𝑓(X) = 0, corresponds to the crack surface Γ𝑐, and the
function 𝑔(X, 𝑡) is defined so that 𝑔(X, 𝑡) > 0 along the crack
surface and vanishes at the crack tip; see Figure 3. By using
a set of these level set functions, we can implicitly define the
crack geometry by

X ∈ Γ
0
𝑐 if 𝑓 (X) = 0 𝑔 (X, 𝑡) > 0, X ∈ Ω

0
𝑐 . (14)

For the numerical representation, instead of employing an
implicit definition of the crack surface, generally we can
approximate the path of an internal discontinuity by

∑

𝐼

𝑓𝐼𝑁𝐼 (X) = 0, (15)

where 𝑓𝐼 = 𝑓(X) and 𝑓(X) = minX∈Γ𝑐‖X − X‖. As a
consequence of (15), the surface of discontinuity can be
represented by 𝑓(X𝐼) at the nodes of the cracked elements
[20, 21]. Note that for the element-by-element cracking
scheme which is employed in this study, we can replace the
function 𝑔(X, 𝑡) by a list of cracked elements.

For a two-dimensional element, the superposed displace-
ment fields in the cracked element can be developed in
a similar manner to the one-dimensional case. Consider
cracked element 1 and replace the element with element 1a
and 1b as shown in Figure 4.

The displacement field of this superimposed element is

u (X, 𝑡) =
𝑛𝑁

∑

𝐼=1

u1a𝐼 (𝑡)𝑁𝐼 (X)𝐻 (−𝑓 (X))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1a(X,𝑡)

+ u1b𝐼 (𝑡)𝑁𝐼 (X)𝐻 (𝑓 (X))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

u1b(X,𝑡)

.

(16)
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Figure 6: Evolution from the state (a) to (d) through the intermediate states (b) and (c) where the correction force decreases. 𝑀u denotes
the mass matrix related to the standard degrees of freedom u, 𝑀b to the existing discontinuous degree of freedoms b, and 𝑀a to the new
discontinuous degrees of freedom a. fext denotes the external force, fcoh denotes the cohesive force, and f int denotes the internal forces related
to the different kinds of degrees of freedom (i.e. u, b, and a, respectively, denoted by a cross, a continuous circle, and a dotted circle).

The explicit value of the displacement jump is given by

⟦u⟧ = lim
𝜀→0

[u1a (X + 𝜀∇𝑓) − u1b (X − 𝜀∇𝑓)]

= [𝑁𝐼𝐻(−𝑓 (X)) u1a𝐼 − 𝑁𝐼𝐻(𝑓 (X)) u1b𝐼 ]X∈Γ𝑐

= (u1a𝐼 − u1b𝐼 )𝑁𝐼 (𝑎) .

(17)

The concept of element overlapping method can be easily
extended to modeling of an arbitrary crack junction or
branching problems.When the original crack 1 branches into
a new crack 2 or a crack 1 junctions with a crack 2, as shown in
Figure 5, the element can be replaced with three overlapping

elements and the discontinuous displacement fields can be
represented by

u (X, 𝑡) = u1a (X, 𝑡) + u1b (X, 𝑡) + u1c (X, 𝑡)

= ∑

𝐼∈𝑆1

u𝐼𝑁𝐼𝐻(−𝑓
1
(X))𝐻 (−𝑓

2
(X))

+ ∑

𝐼∈𝑆2

u𝐼𝑁𝐼𝐻(−𝑓
1
(X))𝐻 (𝑓

2
(X))

+ ∑

𝐼∈𝑆3

u𝐼𝑁𝐼𝐻(𝑓
1
(X))𝐻 (−𝑓

2
(X)) ,

(18)

where 𝑓1(X) and 𝑓2(X) are level set functions for crack 1 and
2, respectively.
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If the crack branching angle between crack 1 and crack 2
is acute, that is, both cracks cut the element edge of nodes 2
and 5 in Figure 5, the phantom node method cannot resolve
this case and in this case, minimal remeshing is required to
properly model crack branching.

4. Correction Force

In this section, we aim at developing a method to deal with
the release of the crack tip element when the crack propagates
through. It is to avoid sudden element release near the crack
tip during propagation and thus avoid unphysical stress wave
propagation due to the crack propagation.

Figure 6(a) shows the crack tip element with the associ-
ated phantom nodes. When the crack tip reaches the next
element, the new crack tip element is suddenly released
(see the sudden passage from Figures 6(a) to 6(d)) because
the corresponding internal force takes a significant value
when the phantom nodes are injected (i.e, f inta is nonzero
in Figure 6(d)). Our proposed method makes a progressive
release of the crack tip element. This even happens with
the cohesive force. Figures 6(b) and 6(c) show the crack tip
element on a dotted line and the additional correction force
acting in the momentum equation, which aims at releasing
smoothly the element when the crack tip travels through
from one edge to the next one. Thus the modified discrete

Table 1: Flowchart for numerical computation procedures.

Steps Numerical computation procedures

1 Apply initial conditions including initial boundary
conditions and prestress

2 Compute initial forces: f0 = fext0 − f int0
3 Compute acceleration: a𝑛 = M−1𝑛 f𝑛
4 Time update: 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑛+(1/2)

5 First partial update for nodal velocities:
k𝑛+(1/2) = k𝑛 + (𝑡𝑛+(1/2) − 𝑡𝑛)a𝑛

6 Apply velocity boundary conditions at 𝑡𝑛+(1/2)

7 Update nodal displacements:
d𝑛+1 = d𝑛 + Δ𝑡𝑛+(1/2) × k𝑛+(1/2)

8 Compute strain and stress
9 Check fracture criterion and insert phantom nodes
10 Compute forces at time: f𝑛+1 = fext𝑛+1 − f int𝑛+1 + fcoh𝑛+1 + fcorrect𝑛+1

11 Compute acceleration: a𝑛+1 = M−1𝑛+1f𝑛+1

12 Second partial update for nodal velocities:
k𝑛+1 = k𝑛+(1/2) + (𝑡𝑛+1 − 𝑡𝑛+(1/2))a𝑛+1

13 Update counter n
14 Output: if simulation is not completed, go to Step 4

momentum equation for the newly added degrees of freedom
becomes

fkin = f int − fext + fcoh − fcorrect , (19)

where ‖fcorrect‖ tends to zero when the crack tip reaches
the new edge, and thus the element becomes completely cut
by the discontinuity (see Figure 6(d)). Note that fcoh is not
displayed in Figure 6.The initial value of the correction force
(when the crack tip is on the previous edge) is such that the
sum of the four forces in the equation above is zero as it
is shown in Figure 6(b). At this point, the correction force
is the same as the internal force, and thus no acceleration
occurs yet on the new additional degrees of freedom, denoted
by a in Figure 6. The flowchart for numerical computation
procedures is described in Table 1.

The evolution of the correction force is shown in Figure 7
which describes the magnitude of the correction force as a
function of the crack tip position in the tip element. Indeed
the correction force goes from the initial internal force to
zero when the crack tip propagates from one edge to another.
Between these two crack tip positions, the correction force
is taken to be linear in our simulation. However this is not a
restriction to use a linear law. In other words, the correction
force is only applied to the newly added degrees of freedom,
for example, the additional degrees of freedom of the crack
tip element (see Figure 7). The law is

fcorrect𝑒 (𝑡) = (1 −
𝑎 (𝑡)

𝑙𝑒

) f int𝑒 (𝑡inj) , (20)

where 𝑡inj is the time the corresponding degrees of freedom
are injected, 𝑎(𝑡) is the crack propagation speed, and 𝑙𝑒 is the
characteristic length of finite elements.

The continuity of the internal force related to the new
additional degrees of freedom gives the same property to the
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Figure 9: Stress field in the fine mesh: (a) without correction and (b) with correction force.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Analytical
With correction
Without correction

t/tc

K
1
/𝜎

0
√
h

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Analytical
With correction
Without correction

t/tc

K
1
/𝜎

0
√
h

(b)

0

5

10

15

20

25

30

35

40

45

1.6 1.8 2 2.2 2.4 2.6 2.8 3

Re
lat

iv
e e

rr
or

 (%
)

With correction
Without correction

t/tc

(c)

0

5

10

15

20

25

30

35

40

1.6 1.8 2 2.2 2.4 2.6 2.8 3

Re
lat

iv
e e

rr
or

 (%
)

With correction
Without correction

t/tc

(d)

Figure 10: Normalized stress intensity factor as a function of time computed on the (a) coarse mesh and (b) fine mesh; relative error on stress
intensity factor as a function of time on the (c) coarse mesh and (d) fine mesh.

acceleration through themomentum equation.Therefore, the
velocity and displacement remains quite continuous in time
when additional degrees of freedom are injected, and thus
the property of continuity in time remains in the strain and
stress field too, and a continuous progressive release of the tip
element occurs.

5. Numerical Examples

5.1. Moving Semi-Infinite Mode I Crack. The example consid-
ered in this section is an infinite plate with a semi-infinite
crack [22] loaded as shown in Figure 8. A theoretical solution
of this problem for a given crack velocity is given in Freund
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Figure 11: Compact tension specimen geometry (𝑊 = 0.05m) and
the thickness is𝑊/2.

[23]. According to the geometry described in Figure 8, the
analytical solution is valid until time 𝑡 ≤ 3𝑡𝑐 = 3ℎ/𝑐1
(where 𝑐1 is the dilatational wave speed). Beyond that, the
reflected stress wave reaches the crack tip and the analytical
solution is no longer valid. The dimensions of the structure
are the following: the length is 𝐿 = 10m, the initial crack
length 𝑎 = 5m, and the vertical position of the crack is
ℎ = 2m. Two regular meshes are used: 78×39 and 120×59 4-
node elements. The material properties are Young’s modulus
𝐸 = 210GPa, Poisson’s ratio ] = 0.3, and density 𝜌 =

8, 000 kg/m3. The tensile stress applied on the top surface is
𝜎0 = 500MPa. The crack velocity is imposed to be zero until
1.5 𝑡𝑐 and 1, 500 m/s after. The mode 1 stress intensity factor
is normalized by the factor 𝜎0√ℎ.

We study the effect of the correction force on the accuracy
of the stress intensity factor of a moving crack.The analytical
relation between the stress intensity factor𝐾1 and the velocity
̇𝑎 of the crack is given by [23]

𝐾1 ( ̇𝑎, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

0 if 𝑡 < 𝑡𝑐

2𝜎0

1 − ]
√
𝑐1 (𝑡 − 𝑡𝑐) (1 − 2])

𝜋
if 𝑡𝑐 ≤ 𝑡 < 1.5𝑡𝑐

2𝜎0

1 − ]
√
𝑐1 (𝑡 − 𝑡𝑐) (1 − 2])

𝜋

×
1 − ( ̇𝑎/𝑐𝑟)

1 − ( ̇𝑎/2𝑐𝑟)
if 1.5𝑡𝑐 ≤ 𝑡,

(21)

where the Rayleigh wave speed is 𝑐𝑟 = 2, 947m/s and the
dilatational wave speed is 𝑐1 = 5, 944m/s.

Figure 9 shows the stress contour at the end of the
computation for the two cases, that is, with and without the
correction force. One can notice that the correction force
makes the stress fields smoother in the structure when the
crack propagation occurs and eliminates majority of the
released stress waves due to the abrupt injection of phantom

node as shown in Figure 9(a). In contrary spurious stress
waves appear in Figure 9(a) due to the crack propagation and
the sudden release of the crack tip elements.

Figures 10(a) and 10(b), respectively, present the nor-
malized stress intensity factor as a function of time for the
coarsemesh and finemesh, respectively, with andwithout the
correction force. Both figures underline that the correction
force improves the result during propagation by decreasing
the magnitude of the oscillations due to the released crack tip
element. Indeed the number of oscillations are directly related
to the number of newly cracked elements. To evaluate the
improvement, Figures 10(c) and 10(d) show the relative error
between the computations using the correction force and not
for the coarse and fine meshes. The error is decreased from
20% to 5% by adding the correction force on the newly added
degrees of freedom during the crack propagation.

5.2. Stiffened Compact Tension Specimen. The stiffened com-
pact tension specimen is used in various experiments [24, 25].
The particularity of the stiffened test is that an additional part
of material opposite to the initial crack has the effect of a
stiffener. With such a configuration, the crack will not be able
to propagate straight toward the stiffener, but an instability
willmake the crack propagate up or down as a curve. Figure 11
presents the geometry of the specimen without showing the
stiffened part; the stiffened part is glued on the right edge of
the specimen as shown in Figure 12(b). A 𝐽2 plasticity theory
is used to model the behavior of the specimen. The material
properties are Young’s modulus 𝐸 = 69GPa, Poisson’s ratio
] = 0.3, density 𝜌 = 2, 780 kg/m3, yield stress 𝜎0 = 275MPa,
and hardening slope ℎ = 640MPa. A constant velocity of
1.8m/s is applied at the center of two steel bars located in each
hole of the specimen.

Figure 12(a) shows the final fracture pattern of the spec-
imen at the end of the computation. The numerical result
shown in Figure 12(a) agrees well with the experimental
result obtained by Galanis [24] as shown in Figure 12(b). The
computed load-deflection curve is also in good agreement
with the experiments as shown in Figure 13.

5.3. Dynamic Multiple Crack Branchings in a Square Plate.
For dynamic fracture problems, crack branching due to
a dynamic instability is a common phenomenon. Several
experimental results on crack branching have been previously
reported [26–30]. However, because of difficulties in the
representation of branched crack paths, only a few numerical
results have been reported [8, 9, 31] and so forth. Note that
Belytschko et al. [8] allowed the original crack to branch
only once; Xu and Needleman [9] used an element edge
crack model which is less complex than intraelement crack
models but has a certain mesh sensitivity; for the issues
regarding mesh sensitivity, refer to Belytschko et al. [8]. Also,
Rabczuk and Belytschko [31] discretely modeled the crack
with the meshfree cracked particle method. In the following,
we examine the performance of the proposed method in a
crack branching problem.

We consider a 0.1m by 0.04m prenotched specimen as
shown in Figure 14. Tensile traction, 𝜎 = 1MPa, is applied on
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Figure 12: (a) Deformed mesh and (b) experimental postmortem specimen [24].
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Figure 14: Plate with an initial notch under tensile stress.

both the top and bottom edges as a step function in time. We
discretized the domain with 100 × 51 uniform quadrilateral
elements and used explicit time integration with a Courant
number of 0.1. Material softening is modeled with a Lemaitre

damage law [32] and a linear cohesive law was imposed once
a discontinuity developed. To capture the crack branching
phenomena, we monitored the maximum principal stress
criterion at several additional points around the crack tip. If
the Lemaitre damage criterion is satisfied and the maximum
principal directions show relatively different crack growth
angles, we initiate crack branches.

The pattern of multiple crack branchings with damage
evolution is shown in Figure 15. The numerical simulation
is executed until one of the crack tips reaches the boundary
of the specimen: 𝑡 = 56.02 𝜇s. The maximum crack tip
speed is around 1250m/s and the Rayleigh wave speed is
2100m/s.The overall dynamic crack branching pattern agrees
with the results which were already reported by Rabczuk and
Belytschko [31].

5.4. Thick Cylinder under Internal Pressure. We consider
a thick cylinder under high internal pressure. The inner
and outer radii of the cylinder are 80mm and 150mm,
respectively. An internal pressure,𝑝 = 𝑝0𝑒

−𝑡/𝑡0 , is appliedwith
𝑝0 = 10GPa and 𝑡0 = 0.1ms. The material properties are
𝜌 = 7800 kg/m3,𝐸 = 210GPa, and ] = 0.30. Also, we induced
a ±5% perturbation to the elastic modulus to introduce some
asymmetry for initiating the cracks. We modeled the thick
cylinder with 20,000 uniform quadrilateral elements.

Because of the high internal pressure, the fragmentation
process occurs only in the first 5.0 𝜇s; then each fragments
moves outward in the radial direction with no further cracks
initiating. Figure 16 shows the magnified deformed mesh
at different time steps. In this simulation, we obtained 6
relatively big fragments and 10 strip shape fragments; for a
clear illustration of the fragments, see Figure 17.

This overall pattern of cylinder fragmentation is similar
to that already reported by Rabczuk and Belytschko [31].
However, the finite element simulation shown here does not
exhibit the small fragments seen in [31]. It is also found
that the reduced 4-node quadrilateral finite element with the
hourglass control scheme is quite sensitive tomesh distortion;
it would be desirable to use the smoothed finite elements
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Figure 15:The pattern of crack branching and damage evolution at different time steps: (a) 𝑡 = 30.14 𝜇s, (b) 𝑡 = 45.24 𝜇s, and (c) 𝑡 = 56.02 𝜇s.
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Figure 16: Deformed shape of the thick cylinder under internal pressure at different time steps: (a) 𝑡 = 1.78 𝜇s, (b) 𝑡 = 3.42 𝜇s, (c) 𝑡 = 6.40 𝜇s,
and (d) 𝑡 = 13.50 𝜇s; the long elements are cracked as indicated in (d).



Mathematical Problems in Engineering 11

(a) (b)

Figure 17: Shape of the fragments of the thick cylinder under internal pressure at different time steps: (a) 𝑡 = 3.72 𝜇s and (b) 𝑡 = 6.71 𝜇s.

[33] or the method proposed by Areias and Rabczuk [34] for
this type of simulations, that is, problems with severe mesh
distortion.

6. Conclusion

A numerical method for the simulation of the dynamic
propagation of multiple cracks is presented. The method
employs the phantom node method with a one point integra-
tion scheme. Though the phantom node method is another
form of the standard XFEM, it provides us with a simple
implementation within the framework of the standard FEM.
Also, by using one point integration with hourglass control,
we can decrease the computational cost and circumvent the
subdomain integration which is generally used for cracked
elements. Moreover a correction force can handle the pro-
gressive opening of the crack tip element due to the crack
propagation, and this improves the results in terms of stress
intensity factors. To evaluate the applicability of the proposed
method, several numerical examples which have a certain
complexity in the representation of crack geometry have
been analyzed. The smooth crack propagation obtained with
a correction force is first checked from an energy point
of view. Then the accuracy of the method is shown by
computating the stress intensity factors for a dynamic mode
1 crack propagation. The simulation of a compact tension
specimen with a stiffener is in good agreement with the
experiment observations. We simulated a dynamic multiple
crack branching problem and found that the method is
particularly successful in this type of simulations. In the
simulation of a multiple crack propagation problem, the
numerical example shows that the proposed model can
simulate the growth, interconnection and, finally, failure of
a plate containing multiple cracks. Also, the simulation of a
fragment processes is quite effectively analyzed. An attractive
feature of this method is its low computational cost and

simplicity within the context of the conventional explicit
finite element method.
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