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A simplified implementation of the conventional extended finite element method (XFEM) for dynamic fracture in thin shells is
presented. Though this implementation uses the same linear combination of the conventional XFEM, it allows for considerable
simplifications of the discontinuous displacement and velocity fields in shell finite elements.The proposed method is implemented
for the discrete Kirchhoff triangular (DKT) shell element, which is one of the most popular shell elements in engineering analysis.
Numerical examples for dynamic failure of shells under impulsive loads including implosion and explosion are presented to
demonstrate the effectiveness and robustness of the method.

1. Introduction

In this work, we describe a method for modeling fractured
discrete Kirchhoff triangular (DKT) shell elements [1] based
on the extended finite element method (XFEM) [2, 3]. One of
the underlying key concepts in the XFEM is the partition of
unity approach [4, 5]. In the partition of unity approach, the
approximation basis is spanned by the standard finite element
approximation space and extended by the products of the
standard finite element shape functions with special local
characteristic functions which are constructed from knowl-
edge about the solution.The XFEM has since been developed
for two-dimensional dynamic fracture problems [6, 7], static
shell fractures [8], and implicit dynamic shell fracture prob-
lems [9].

Even though numerous references are available for con-
tinuum shell elements, the literature on dynamic crack propa-
gation in shells is quite limited. Cirak et al. [10, 11] have devel-
oped a method for dynamic crack propagation in Kirchhoff
type shells based on interelement cohesive crack methods
[12–14]; in the interelement cohesive crackmethods, the crack
is limited to propagation along the element edges with local
remeshing.

Mehra and Chaturvedi [15] used the smooth particle
hydrodynamics (SPH) method for simulations of tearing of
thethick plates. Combescure et al. [16] and Maurel and
Combescure [17] recently developed SPH shell formulations
for explicit dynamic method and successfully applied the
method to the prediction of dynamic fractures in shell
structures.

Thedescribed implementation scheme ismainly based on
the XFEM, but its actual implementation follows the phan-
tom node method [7, 18] that has been developed by the
author of this paper. In this approach [7, 18], the element
which contains the crack is replaced by two superposed
elements with additional nodes. Though this discontinuity
representation scheme uses the same linear combination of
enrichment functions as the conventional XFEM, it allows for
considerable simplifications in fractured thin shell element
formalisms and furthermore is applicable to arbitrary large
deformations.

An elementwise progression of the crack is also employed;
that is, the crack tip is always on an element edge. The ele-
mentwise crack propagation scheme may cause some noise
during the crack propagation with coarse meshes. However,
in Song et al. [7], it is shown that suchnoise diminishes with
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Figure 1: Kinematic data of the DKT triangular element: (a) the corotational coordinates, (b) the bending degrees of freedom, (c) the in-plane
membrane degrees of freedom, and (d) the drilling degrees of freedom.

mesh refinements, and the crack propagation speeds con-
verge to the progressive crack propagation results [6, 19, 20].

2. Discrete Kirchhoff Triangular Shell Element

The main advantage of the DKT shell element is that a mesh
can easily be generated from any kind of surfaces.The geome-
try of the element is described by three linear shape functions
in the reference coordinates. The kinematic of the DKT shell
elements is described by superimposing the membrane, the
bending, and the rotational (drilling) behavior of shells with
different corresponding degrees of freedoms (DOFs) as
shown in Figure 1.

However, for further explanation on the salient features of
the DKT element, henceforth, we will use 𝛽 instead of 𝜃 for
the rotation as shown in Figure 2; note that this is only for a
clear illustration purpose. In this notation, 𝛽

𝑥
is the rotation

whose displacement is along the axis 𝑥.
The discrete Kirchhoff assumption [1] is the following: the

normal rotations must be equal to the first derivative of the
transverse displacement. These constraints are imposed at a
discrete number of points, which leads to the relation bet-
ween the normal rotations and the displacements at the ele-
ment joints. Let us consider the constraints in terms of 𝑥 and
𝑦 directions as

𝛽
𝑥
(𝜉) + 𝑤

𝑥
= 0,

𝛽
𝑦
(𝜉) + 𝑤

𝑦
= 0,

(1)

where𝛽
𝑥
= 𝜃
𝑦
and𝛽
𝑦
= −𝜃
𝑥
.This sign difference is due to the

orientation of the rotation, which will generate in-plane dis-
placements. However, with a linear discretization, these con-
ditions cannot be verified within the entire domain of the
shell finite element. One alternative approach is that they can
be only verified at some discrete parts of the shell elements,
such as a midpoint of each side of the DKT elements; this is
the implication of the discrete Kirchhoff assumption in the
DKT shell elements.

To verify the discrete Kirchhoff assumption, one has to
add additional shape functions which do not change the
nodal values of any field but only are allowed to modify the
values on the midpoint. Thus, the rotational DOFs are dis-
cretized by

𝛽
𝑥
=
3

∑
𝑖=1

𝑁
𝑖
⋅ 𝛽
𝑥𝑖
+
6

∑
𝑖=4

𝑃
𝑖
⋅ 𝐶
𝑖
⋅ 𝛼
𝑖
, (2)

𝛽
𝑦
=
3

∑
𝑖=1

𝑁
𝑖
⋅ 𝛽
𝑦𝑖
+
6

∑
𝑖=4

𝑃
𝑖
⋅ 𝑆
𝑖
⋅ 𝛼
𝑖
. (3)

As shown in Figure 3, the discrete Kirchhoff constraints along
each side 𝑖-𝑗 are introduced at the midpoint 𝑘:

𝛽
𝑠
(𝜉) + 𝑤

𝑠
= 0, (4)

where 𝑠 is the absciss along the side of the element.
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Figure 3: Geometry and local tangential-normal coordinate system of the DKT element.

The different functions 𝑃
𝑖
appearing in (2) and (3) are

given by

𝑃
4
= 4 (1 − 𝜉 − 𝜂) 𝜉, (5)

𝑃
5
= 4𝜂𝜉, (6)

𝑃
6
= 4 (1 − 𝜉 − 𝜂) 𝜂. (7)

Note that, in (2) and (3), 𝐶 and 𝑆 define cosinus and sinus
values of the current geometry in the reference coordinates as
shown in Figure 4.The particular values for the reference tri-
angular element are𝐶

4
= 1, 𝑆

4
= 0, 𝐶

5
= −√2/2, 𝑆

5
= √2/2,

𝐶
6
= 0, and 𝑆

6
= −1. These values are the cosinus and sinus

of the vector representing the side of the reference triangular
element. Thus, for example, at the node 4 in Figure 3, we can
show that 𝑥 is the same𝑠 in terms of substituting (2) and (4).
Furthermore, for this particular edge that has themidpoint at
(0, 1/2), we could further develop the following relation:

−𝑤
𝑠
= 𝛽
𝑠
(
1

2
, 0)

= 𝛽
𝑥
(
1

2
, 0) =

𝛽
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𝑥2

2
+ 𝛼
4

= −𝑤
𝑥
= −

𝑤
2
− 𝑤
1

2
.

(8)

So, the expression of 𝛼
4
is given as

𝛼
4
= 𝑤
1
− 𝑤
2
−
𝛽
𝑥1

2
−
𝛽
𝑥2

2
. (9)

Similarly, we can determine the other unknowns 𝛼
5
and 𝛼
6
as

𝛼
6
= 𝑤
1
− 𝑤
3
−
𝛽
𝑦1

2
−
𝛽
𝑦3

2
,

𝛼
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3
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2
+
√2

4
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𝑦3
) .

(10)

However, the other three unknowns 𝛼
4
, 𝛼
5
, and 𝛼

6
in the

formalism of the rotation should be determined by solving
system equations given by
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Figure 4: Representation of the crack by the XFEM and the phantom node method with DKT elements.

Throughout this procedure, that is, determining three
unknowns 𝛼

4
, 𝛼
5
, and 𝛼

6
, the Kirchhoff assumption is

enforced in the middle of each side of the shell element.
Note that the nodal value is still intact because of the shape
functions 𝑃

𝑖
which are zero at the nodes.

3. Representation of Fractured Shell Element

Based on the phantom node approach [7, 18], the DKT shell
element which contains a crack is replaced by two superposed
DKT elements with additional phantom nodes as shown in
Figure 4.

As with the standard approach to phantom nodes [7, 18],
cracks will be inserted elementwise at propagation and the
crack surface will be limited to normal to the shells midsur-
face. While the equations here will be for the phantom node
method, the equivalence between phantomnodemethod and
XFEM is shown by Song et al. [7].

The discontinuous velocity fields in the midsurface of the
fractured shell elements can be described by

kmid =
3

∑
𝑖=1

𝑁
𝑖
(𝐻 (−𝑓 (x, 𝑡))) k

𝑖

+
3

∑
𝑗=1

𝑁
𝑗
(𝐻 (𝑓 (x, 𝑡))) k

𝑗
,

(12)

where 𝑖 and 𝑗 are the first and secondhalves of the pair of over-
lapping element, respectively,𝑓(x) is an implicit function that
can describe the geometry of the crack surface in the mid-
surface of the shell with iso-zero line, that is; crack path in the
midsurface of shell can be represented by 𝑓(𝜉) = 0, and𝐻(𝑥)
is the step function given by

𝐻(𝑥) = {
1, 𝑥 ≥ 0,

0, 𝑥 < 0.
(13)

The velocity fields can also be expressed in corotational
coordinates as is common in shell, but we have omittedit for

brevity. The velocity equation for the DKT shells does not
vary from that of the other shell elements but the rotations do.
Keeping with the notation from the last section the rotations
in 𝑥 and 𝑦 can be expressed as

𝛽
𝑥
=
3

∑
𝑖=1

𝑁
𝑖
(𝐻 (−𝑓 (x, 𝑡))) 𝛽
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6
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𝑃
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𝑖
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+
3
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+
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𝑗
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(14)

𝛽
𝑦
=
3

∑
𝑖=1

𝑁
𝑖
(𝐻 (−𝑓 (x, 𝑡))) 𝛽

𝑦𝑖

+
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𝑖
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+
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∑
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𝑁
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+
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𝑃
𝑗
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,

(15)

where again an overlapping pair (elements 𝑖 and 𝑗) is used.
One advantage of using the phantomnodemethodwithDKT
shells is that the procedure for finding 𝛼’s does not need to be
varied from the standard method. This greatly simplifies the
implementation of the XFEM for DKT elements, leaving (5)–
(11) unchanged.
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4. Computation Procedures

4.1. Time Integration: Newmark Scheme. In this work, New-
mark scheme for the explicit time integration is used. The
time integration procedure is written as

𝑈
𝑡+Δ𝑡

= 𝑈
𝑡
+ Δ𝑡 ⋅ 𝑈̇

𝑡
+
Δ𝑡2

2
𝑈̈
𝑡
, (16)

𝑈̇
𝑡+Δ𝑡

= 𝑈̇
𝑡
+
1

2
Δ𝑡 (𝑈̈

𝑡
+ 𝑈̈
𝑡+Δ𝑡

) , (17)

𝑀 ⋅ 𝑈̈
𝑡+Δ𝑡

= 𝐹ext − 𝐹int, (18)

where𝑈
𝑡
(𝑈̇
𝑡
and 𝑈̈

𝑡
, resp.) denotes the displacement (velocity

and acceleration, resp.) at time 𝑡. Δ𝑡 is the time integration
step,𝑀 is the mass matrix, and 𝐹ext (𝐹int, resp.) is the external
(internal, resp.) forces at time 𝑡.

A diagonal mass matrix is frequently used in this explicit
time integration scheme because it allows us to avoid a ma-
trix inversion for solving (14); that is, no matrix inversion ap-
pears in this scheme. Consequently, themain advantage of us-
ing explicit time integration scheme is to speed up the compu-
tation and use less memory by storing only vectors instead of
matrices to the computer.

However, this explicit integration scheme is conditionally
stable, and the stability condition is defined in terms of amax-
imum time step Δ𝑡

𝑐
; we usually name it a critical time step

since it is the largest time step that can be used. The critical
time step is evaluated from the eigenvalue analysis with the
mass𝑀 and stiffness matrix𝐾 since

Δ𝑡
𝑐
=

2

𝜔max
, (19)

where𝜔max is themaximum frequency determined by solving
eigenvalue of problems in (16):

det (𝐾 − 𝜔2𝑀) = 0. (20)

The stability of explicit time integration for the XFEM is de-
fined by the same condition on the mass and the stiffness; the
computation frequency must be greater than the greatest vi-
bration frequency of the structure.

4.2. Computation of Lumped Mass Matrix for Cracked Ele-
ments. In the explicit dynamic analysis method, construc-
tions of lumped mass are essential to ensure the computation
of nodal accelerations without implicit solution procedures.
However, the mass lumping scheme for cracked elements
which employ the XFEMapproach is not obvious. To circum-
vent such difficulties, several methods have been proposed:
implicit (in cracked elements)-explicit (in continuum ele-
ments) time integration scheme [6] andmodifiedmass lump-
ing schemes [21, 22].

In this study, the lumped mass for regular DOFs is diag-
onalized by the conventional row sum mass lumping tech-
nique, but, for the cracked elements, we used the mass lump-
ing scheme that was proposed by Menouillard et al. [22].
Thus, the diagonal term 𝑖 of the mass corresponding to the

enriched DOFs also depends on the enrichment function𝐻
as follows:

𝑀
𝑖
=

𝑚

𝑛node

1
󵄩󵄩󵄩󵄩Ω𝑒

󵄩󵄩󵄩󵄩
∫
Ω

𝐻2𝑑Ω
𝑒
, (21)

where 𝑚 is the total actual mass of the element, 𝑛node is the
number of nodes of the element, and ‖Ω

𝑒
‖ is the measure of

the finite element domain Ω
𝑒
. For the particular case of dis-

continuous enriched functions such as Heaviside function,
the term of the mass matrix corresponding to an enriched
node is in fact just a fraction of the regular finite element term;
in other words, the lumped mass matrix for the enriched
nodes is written as follows:

𝑀
𝑖
=

𝑚

𝑛node

𝐴
𝑖

𝐴
, (22)

where 𝐴 is the volume or area of the regular element and 𝐴
𝑖

represents the fraction ratio of the cut element. One impera-
tive advantage of this mass lumping scheme is that this met-
hod does not significantly decrease the critical time step of the
continuum element [22].

5. Material Model and Modeling of Fracture

5.1. Damage Plasticity Model. A damage plasticity model that
can account for the effects of stress triaxiality and Lode angle
was proposed by Xue [23] and Xue and Wierzbicki [24]. In
this constitutivemodel, damage of amaterial point is accessed
by measuring the accumulation of the following damage
increment:

d𝐷 = 𝑚(
𝜀
𝑝

𝜀
𝑓

)

𝑚−1 d𝜀
𝑝

𝜀
𝑓

, (23)

where 𝐷 is damage parameter, 𝜀
𝑝
is the plastic strain, 𝜀

𝑓
is a

reference strain envelope, and 𝑚 is a material constant. The
reference strain envelope is a function of the pressure and the
Lode angle:

𝜀
𝑓
= 𝜀
𝑓0
𝜇
𝑝
(𝑝) 𝜇
𝜃
(𝜃
𝐿
) , (24)

where 𝜀
𝑓0

is the initial reference strain, 𝑝 is the pressure, and
𝜃
𝐿
is the Lode angle. The functions 𝜇

𝑝
and 𝜇

𝜃
are defined as

𝜇
𝑝
(𝑝) = 1 − 𝑞 log(1 −

𝑝

𝑝lim
) ,

𝜇
𝜃
(𝜃
𝐿
) = 𝛾 + (1 − 𝛾)(

6
󵄨󵄨󵄨󵄨𝜃𝐿
󵄨󵄨󵄨󵄨

𝜋
)

𝑘

,

(25)

where 𝑞 and 𝑝lim are material constants and 𝛾 and 𝑘 are
parameters determining the shape of the strain envelope.The
weakening effect caused by the damage was also considered
in this model:

𝜎 = 𝑤 (𝐷)𝜎
𝑀
= (1 − 𝐷𝛽)𝜎

𝑀
, (26)

where𝜎
𝑀
is the stress of the undamagedmaterial,𝑤(𝐷) is the

weakening function, and 𝛽 is another material constant.
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5.2. Fracture Criterion. A critical strain based fracture crite-
rion is used to determine the onset point of a poststrain lo-
calization behavior of a material, that is, fracture. When the
strain at a crack tip material point reaches a fracture thresh-
old, we inject a strong discontinuity ahead of the previous
crack tip according to maximum principle tensile strain di-
rection of an averaged strain 𝜀avg. For the computation of the
averaged strain, 𝜀avg, we used a pointwise weighted averaging
scheme which is given by

𝜀
avg =

∑
𝛼
𝑤 (𝑟
𝛼
) 𝜀
𝛼

∑
𝛼
𝑤 (𝑟
𝛼
)
, (27)

where 𝑤(𝑟) is the cubic spline weight function, 𝑟
𝛼
is the dis-

tance from the crack tip to the material points 𝛼, 𝑟
𝑐
(≃ 3ℎ
𝑒
) is

the size of the averaging domain, and ℎ
𝑒
is the size of the crack

tip element; see Figure 5.Note that, for the computation of the
averaged strain 𝜀avg, we only included material points which
show tension dominant states as shown in Figure 5(b).

5.3. Dissipation of Fracture Energy. In this study, a cohesive
crackmodel is prescribed along the newly injected strong dis-
continuity surfaces until the crack opening is fully developed,
that is, until cohesive traction has vanished.The roles of a pre-
scribed cohesive model can be summarized as follows.

(1) It can be a remedy to spurious mesh-dependent path-
ological behaviors by providing a bounded solution at
the crack tip. For linear elastic fracture simulations, if
the crack tip is not smoothly closed with cohesive for-
ces, finite element solutions are unbounded at the
crack tip due to the crack tip stress singularity and a
crack path is determined by the surroundingmesh re-
solution. Also, for fracture in plastic bulk materials,
the crack tip stress singularity can be slightly allevi-
ated by plasticity. However, the finite element solu-
tions still depend on the mesh resolution.

(2) If the crack opening displacement is not governed by
a cohesive model, the normal stress component to the
crack surface suddenly drops to zero due to lack of
fracture energy dissipations; note that injecting a
strong discontinuity without prescribing cohesive
force is the same as creating two free surfaces without
dissipating new surface initiation energies. In this
case, the total system suffers from an excessive accu-
mulation of elastic energy and this excessively accu-
mulated energy accelerates the crack propagation
speed; more discussions on the relationship between
crack propagation speed and dissipated fracture ener-
gy can be found in Rabczuk et al. [27].

In this study, we only prescribe the normal traction of a linear
cohesive model since the early stage of crack initiation due
to implosion or explosion is mostly due to mode 1 fracture
behavior.
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(a) (b)

(c) (d)

Figure 8: Snapshots of numerical results of IMP26 experiment: (a) initial configuration and the mesh, (b) deformed configuration at time
𝑡 = 1.48ms; the center of the cylinder begins to collapse, (c) deformed configuration at time 𝑡 = 1.78ms; buckling region enlarges toward the
two ends, and (d) final deformed configuration; the cylinder buckles in mode 2.

(a) (b) (c)

(d) (e)

Figure 9: Snapshots of numerical results of IMP25 experiment: (a) deformed configuration at time 𝑡 = 0.92ms; cylinder collapses at mode
3, (b) deformed configuration at time 𝑡 = 1.08ms; cracks initiated at the two ends, (c) the final deformed configuration, (d) local zoom view
of the crack, and (e) view from the axial direction.

(a) (b)

(c) (d)

Figure 10: Comparison of final configurations of cylinders with different imperfection magnitudes: (a) 0.05% imperfection, (b) 0.1%
imperfection, (c) 0.5% imperfection, and (d) 1.0% imperfection.
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Figure 11: Comparisons of time history of nodal velocity at the
center node with different amplitudes of imperfection.

6. Numerical Examples

6.1. Implosion Induced Dynamic Failure of Cylinder. The
cylinder is of length 𝐿with two extension parts of length 𝐿

𝑒
at

the ends; see Figure 6. Rigid plugs are perfectly bonded to the
extension parts. The thickness of the cylinder is 𝑡, and the
diameter is 𝐷. In the experiments, the specimens are loaded
with hydrostatic pressure and the pressurewas increased until
the cylinders buckled. It was observed in the experiment that
specimens will buckle in some specific modes, which have a
dependence on the geometry.

In this example, we focused on predicting final fracture
pattern of two experiments. The first specimen is denoted by
IMP26 experiment, where 𝐿 = 366.8mm, 𝐷 = 38.085mm,
and 𝑡 = 0.701mm. The length of the extension parts is
𝐿
𝑒
= 25.4mm. The material of the cylinder is aluminum

alloy (AL) 6061-T6. In the experiment, the result indicated
a mode 2 implosion, but there was no fracture observed. The
second specimen, denoted by IMP25, is 𝐿 = 143mmplus two
25.4mm extension parts at the ends, 𝐷 = 38.087mm, and
𝑡 = 0.701mm. Because it has a much shorter length than that
of IMP26, IMP25 specimen buckled in a higher mode, that
is, mode 3 buckling, and showed fracture on the interfaces of
the end plugs and the main specimen.

For numerical analysis, we modeled IMP26 and IMP25
specimens with 49200 and 24000 shell elements, respectively.
The average element size is about 1mm.Thematerial behavior
of AL6061-T6 is modeled with the damage plasticity [23, 24]
with Young’s modulus 𝐸 = 69.5GPa, the density 𝜌 = 2780

kg/m3, Poisson ratio ] = 0.3, yield stress 𝜎
𝑦0
= 276MPa, and

the hardening modulus 𝐸
𝑇
= 634MPa.

The following coordinate system was used: the 𝑥-axis is
along the axis of the cylinder, and the 𝑦- and 𝑧-axes are in
the radial direction. A uniform surface pressure loading was
applied on all the shell elements. Another set of concentrated
forces along the axis direction were applied to the nodes on
the rim of the two ends. These forces served to compress the

cylinder along its longitudinal axis. The summation of the
magnitude of these concentrated forces is equivalent to the
total force exerted on the end plug due to the pressure. All the
nodes in the two extension parts are only allowed to move
along the 𝑥-axis, and all the other DOFs of these nodes,
including the translational DOFs 𝑢

𝑦
and 𝑢
𝑧
and the rotational

DOFs 𝜃
𝑥
, 𝜃
𝑦
, and 𝜃

𝑧
, are constrained. The employment of

the applied concentrated forces and the sliding boundary
conditions is to model the effect of the plug.

A bilinear load curve for the pressure was used in both
simulations. The pressure started at zero and was increased
to 𝑝
𝑐𝑟
, that is, the experimental critical buckling pressure, in

time 𝑡
0
and then was kept constant at 𝑝

𝑐𝑟
until the end of

simulation. The schematic of time history of the pressure is
shown in Figure 7;𝑝

𝑐𝑟
= 1.15MPa for IMP26 experiment and

𝑝
𝑐𝑟
= 2.83MPa for IMP25 experiment. We used the para-

meter 𝑡
0
= 5.0 × 10−5 s in both simulations.

Geometry imperfection is introduced into the radius to
evoke circumferential buckling easily. The actual radius with
imperfection has the form 𝑟 = 𝑟

0
(1−𝑎 cos 𝑛𝜃), where 𝑟

0
is the

unperturbed radius, 𝑎 is the imperfection magnitude, and 𝜃
is the circumferential angle. 𝑛 is the number of wavelengths
in the circumferential direction, 𝑛 = 2 for IMP26 simulation,
and 𝑛 = 3 for IMP25 simulation. It should be noted that the
buckling mode in numerical results does not depend on the
imperfection mode. We also tested the IMP25 simulation
with injection ofmode 2 imperfection and obtained very sim-
ilar results.

Figures 8(a)–8(d) show four snapshots of the numerical
results for IMP26.The center of the specimen yielded first and
then buckled in mode 2. The buckling region evolved toward
the two ends, and the specimen entirely collapsed. 𝑎 = 0.1%
was used in the simulation of IMP26, which is close to 0.107%,
the maximum ovalization measured in the experimental
specimen.

In IMP25 simulation, we allowed an injection of the dis-
continuity near the interface of the main part and the ex-
tension part of the specimen. We also observed large plastic
strain, large damaged or unstable material points along the
central buckling lines. However, this may be due to the repul-
sive forces generated during the contact, so no crack was al-
lowed to initiate in these regions.

Several imperfection magnitudes 𝑎 from 0.05% to 1%
were tested in IMP25 simulation. The maximum oval imper-
fection measured in the experiment is 0.043%. It should be
noted there should not be imperfection as large as 1% in the
actual specimen, and this is only to examine the effect of the
imperfection.

Figure 9 shows four snapshots of IMP25 results of 𝑎 =
0.05% at different times. The central part of the cylinder col-
lapses first, and then the collapse region enlarges toward the
ends. Some cracks were initiated at the ends and propagated
along the circumferential direction.

The final configurations of different imperfection mag-
nitudes are compared in Figure 10. No large effect can be
observed for imperfection magnitudes though the crack
opening of 𝑎 = 1.0% looks larger than that of 𝑎 = 0.05%.The
time histories of velocity 𝑦 of finite element node 11670 (at
the center of cylinder) are plotted and compared in Figure 11.
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Figure 12: Preflawed cylinder with gaseous detonation loading.
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Figure 13: Experimental results of Shepherd experiment [25, 26]: (a) both the forward and backward tips curved and (b) backward tip curving
and forward tip bifurcation.

Let the collapse time be defined as the time to reach the peak
velocity. It can be observed that smaller imperfection leads to
longer collapse time, but the peak velocity of all the imper-
fections does not show an obvious dependence on the imper-
fection magnitude.

6.2. Explosion Induced Failure of Cylinder. Chao [25] and
Chao and Shepherd [26] performed a series of experiments
with gaseous detonation loading.The schematic setting of the
experiment is shown in Figure 12.The preflawed cylinder was
linked to a detonation tube and an extension tube.The initial
surface notch was located at the center of the cylinder. All the
tubes were filled with explosive gas. The detonation source
point is located inside the detonation tube, 1.52m away from
the left end of the preflawed tube.

The pressure wave was initiated at the source point and
then passed the specimen and the extension tube, causing the
original surface notch to form a crack cutting through the cyl-
inder wall and propagate.

Chao [25] and Chao and Shepherd [26] launched 9 shots
with the above specimen with the initial notch length 𝐿

𝑐
=

25.4mm. The length of the specimen is 𝐿 = 0.61m, the dia-
meter 𝐷 = 0.038m, and the shell thickness 𝑡 = 0.89mm.
They found two types of fracture behaviors. One was that
both the forward and the backward crack tips curved after
they were formed and went straight for a short distance, as
shown in Figure 13(a).The other type of results also showed a
backward crack curving but the forward crack tip bifurcated
and finally cut the specimen into two segments. The configu-
ration of the second fracture pattern is shown in Figure 13(b).

The specimen is modeled with 40680 shell elements. The
left and the right ends of the numerical models were fully
clamped in the simulation. The following fitted exponential-
decay curve [28] was used to represent the detonation pres-
sure:

𝑝 (𝑥, 𝑡) =
{
{
{

0, 0 < 𝑡 < 𝑡
𝑐𝑗
,

𝑝
𝑐𝑗
exp(−

𝑡 − 𝑡
𝑐𝑗

𝑇
) , 𝑡 > 𝑡

𝑐𝑗
,

(28)

where 𝑥 is the distance away from the initiation point along
the axial direction, 𝑡 is time, 𝑝

𝑐𝑗
is the peak value of the

pressure wave, 𝑡
𝑐𝑗
= 𝑥/V

𝑐𝑗
is the time for the wave to travel

from the initiation point to the evaluation point, V
𝑐𝑗
is the

velocity of the wave, and the time parameter𝑇 = 3.0𝑡
𝑐𝑗
. In the

current simulation, 𝑝
𝑐𝑗
= 6.1Mpa and V

𝑐𝑗
= 2404m/s. The

pressure was applied to all the elements from the internal
side. The material properties are Young’s modulus 𝐸 = 2780
kg/m3, Poisson ratio ] = 0.3, initial yield 𝜎

𝑦0
= 275MPa, and

hardening modulus 𝐸
𝑇
= 640MPa.

The configurations at different times of numerical results
are shown in Figures 14 and 15. The stress concentration can
be seen in front of the crack tip.The crack tips went straight at
the early stage of propagation. Both the forward and the back-
ward tips curved after around 0.3ms. The forward crack tip
shows sharper curving at about 90 degrees to the axis. The
backward crack tip shows a slanted path.

The final fracture patterns are shown in Figure 15. The
crack propagation paths are similar to the experimental re-
sults shown in Figure 13. The difference is that our results
show a little shorter crack length, whichmay be due to the dif-
ference of the loading and boundary conditions between nu-
merical modeling and real experiment.

7. Conclusion

We described a new finite element method for prediction of
dynamic fractures in thin shells. The method is incorporated
within an explicit time integration scheme and able to repre-
sent the crack paths free from initial mesh topologies. For the
representation of discontinuities due to cracks, the described
method employs a simplified version of the conventional
XFEMbased on the phantomnodemethod. In this approach,
the cracked shell element is treated by two superimposed
elements with newly added phantom nodes on the cracked
portions.

The method is implemented for the DKT shell element.
This facilitates the implementation of the method into stan-
dard finite element programs. Another attractive feature of
the method is that it provides an easy mesh generation and a
relatively low computational cost and this allows large scale
nonlinear dynamic fracture problems to be solved efficiently.
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(a) (b)

(c) (d)

Figure 14: Numerical results of Shepherd experiment at different times: deformed configurations with effective stress contour plots at
(a) time 𝑡 = 0.255ms and (b) time 𝑡 = 0.3ms and with damage plot at (c) time 𝑡 = 0.42ms and (d) time 𝑡 = 0.54ms.

(a) (b)

Figure 15: Final configurations of Shepherd experiment. (a) Top view. (b) Side view.
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