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Abstract In this paper, the extended particle derivative
approximation (EPDA) scheme is developed to solve weak
and strong discontinuity problems. In this approximation
scheme, the Taylor polynomial is extended with enrichment
functions, i.e. the step function, the wedge function, and the
scissors function, based on the moving least squares proce-
dure in terms of nodal discretization. Throughout numerical
examples, we demonstrate that the EPDA scheme reproduces
weak and strong discontinuities in a singular solution quite
well, and effectively copes with the difficulties in computing
the derivatives of the singular solution. The governing partial
differential equations, including the interface conditions, are
directly discretized in terms of the EPDA scheme, and the
total system of equations is derived from the formulation of
difference equations which is constructed at the nodes and
points representing the problem domain and the interfacial
boundary, respectively.
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1 Introduction

Singularities, such as discontinuities, in partial differential
equation (PDE) solutions give rise to difficulties in develop-
ing new numerical schemes. Discontinuities such as material
interfaces and layered singular sources generate singularities
that involve jumps in the solution and its derivative fields;
these frequently appear as interface conditions in governing
equations for the given PDE. The existence of an interface
condition can spoil the systematic construction of a numerical
scheme. For example, weak form based numerical methods
such as the finite element method (FEM), the finite volume
method (FVM), and the conventional meshfree method are
associated with serious difficulties in integrating the weak
form and in constructing the interpolation function due to an
arbitrarily placed interfacial boundary. In other words, a mesh
or grid structure for interpolation and numerical quadrature
can represent a major obstacle when attempting to solve the
PDE. Unless a mesh or grid aligned with the interface geom-
etry is used, it is difficult to avoid the aforementioned diffi-
culties. Furthermore, when the interface has topology change
physics with respect to time, the computational difficulties
can become severe. For these reasons, the development of
a numerical method which is independent of a structured
mesh or grid has drawn much attention. For instance, the
extended finite element method (XFEM) [1–3], developed in
the framework of FEM, has been a very popular numerical
method for solving discontinuity problems despite the fact
that it remains inconvenient as regards the numerical integra-
tion of a cell cut by a discontinuity line. In addition, strong
formulations that directly discretize a PDE such as the finite
difference method (FDM) have been studied for their applica-
bility to these types of cumbersome discontinuity problems.

Developing a simplex jump modeling technique based on
strong formulation is challenging. Many FDM user groups
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have suffered from deriving difference schemes in the vicin-
ity of an interface that induces a singularity in the solution
fields. The immersed boundary method (IBM) [4] was devel-
oped in the context of FDM, considering a singular source
as a Dirac’s delta function and directly discretizing the delta
function using a linear hat function. The immersed interface
method (IIM), an improved version of the IBM, was proposed
by Leveque and Li [5]. In this method [5], the interface con-
dition is strategically immersed in the difference equation.
The immersion process manipulates the truncation error to
obtain the geometrical information for interface modeling,
but this greatly complicates the difference equation. Thus, it
is difficult to say that the IIM is completely free from grid
dependency, as it involves a great deal of computation for
interface modeling. On the other hand, the meshfree method
or the particle method can offer important insight into how to
overcome the grid dependency. The merits of the meshfree
method are enhanced when it is combined with the strong for-
mulation rather than the weak formulation. Specifically, the
moving least squares method used in constructing meshfree
interpolation may be directly applied to derive the derivative
approximation, as in this study; it provides an idea regarding
how to take into account the singularity in solution fields in
the framework of the meshfree method. At the same time, the
simplicity of the high order derivative calculation should be
ensured for the direct discretization of governing equations,
as the strong formulation naturally requires high order deriva-
tives. However, the computation of the high order derivatives
of the moving least squares approximation is not easy; more-
over, the full differentiation of the approximation is quite bur-
densome. Thus, computational efficiency has been a major
concern in this class of methods. In this scenario, the diffuse
derivative technique may be of primary interest.

Two approaches are common when computing the deriv-
atives of meshfree approximation. One was introduced in
the work of Nayroles et al. [6] based on the diffuse element
method (DEM), and the other was introduced by Krongauz
and Belytschko [7,8] as in the element free Galerkin method
(EFGM) [9] based on moving least squares approximation.
Although the reproducing Kernel particle method (RKPM)
by Liu et al. [10] provided meshfree approximation based
on a more solid mathematical foundation, the final discrete
form of the approximation completely matches that of the
EFGM. In fact, the RKPM approximation is obtained by
correcting the kernel approximation of the smoothed par-
ticle hydrodynamics (SPH) [11] to enforce the reproducing
property of the polynomials up to the order of consistency.
Note that other meshfree methods can be classified into one
of the aforementioned approaches according to the method-
ology of the derivative calculation. The former adopts the
‘diffuse’ derivative technique, in which the polynomial basis
part, instead of the total approximation, is only differenti-
ated for the derivative calculation despite the fact that it can-

not be supported on a sufficient mathematical basis. On the
other hand, the latter method employs the ‘full’ derivative of
the moving least squares approximation, in which the total
approximation including the polynomial basis is differenti-
ated. Compared to the diffuse derivative, the full derivative
considerably increases the amount of computation. However,
when the diffuse derivative is incorporated into the weak for-
mulation, it decreases the accuracy because it does not yield
a mathematically exact derivative of the approximation. Kro-
ngauz and Belytschko [7,8] discussed the lack of integrabil-
ity of the test function in the Petrov–Galerkin formulation,
which uses different forms for the test function and the trial
function. Nevertheless, the diffuse derivative approximation
is consistent in the sense that it is still based on the Tay-
lor series such that it can approximate functions up to the
order of consistency. When combining it with the strong for-
mulation, one can take advantage of fast computation when
discretizing PDEs. Thus, Kim and Kim [12] and Lee and
Yoon [13] presented a meshfree point collocation method
combined with the diffuse derivative approximation, report-
ing the robustness and accuracy of the method for solving
fluid and solid problems, respectively. Oñate et al. [14,15]
and Aluru [16] proposed a collocation method with moving
least squares approximation with fixed kernel functions; in
their methods, the approximation and derivatives can be eval-
uated at the node only due to the fixity of the kernel function.
Huerta et al. [17] developed a pseudo divergence-free field
for the diffuse derivative technique in the framework of weak
formulation for an incompressible fluid flow problem. Li and
Liu [18,19] developed a hierarchical basis for the meshfree
method, in which a reproducing kernel hierarchical parti-
tion of unity is proposed in association with a class of basic
wavelet functions based on a solid mathematical foundation.

Discontinuous shape functions for the particle method
were initially presented as the visibility criterion [20,21],
which simply discards the nodes on the other side of a dis-
continuity line and cuts the support of the weight function.
Then, EFGM approximation with a discontinuous deriva-
tive was developed for the material discontinuity problem
based on wedge function enrichment [22]; the EFGM has also
been developed for discontinuity problems [23–28]. Simi-
larly, EFG approximation using the visibility criterion com-
bined with Lagrange multipliers was applied to the material
interface problem by Cordes and Moran [29]. Considering
that these methods basically involve the weak formulation,
compared to the strong formulation, they require a consider-
able amount of computation. The meshfree point collocation
methods employing the full derivative technique, as in Luo
and Häussler-Combe [30], may be slightly better than the
weak formulation, but they are still computationally inef-
ficient due to the burden from the higher order derivative
computation [16,30]. However, this study utilizes the idea of
the extrinsic interfacial formula proposed by Kim et al. [31]
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for the interface condition on the basis of the strong formu-
lation; the extrinsic interfacial formula enhances the advan-
tages of fast derivative computations for singular functions
near the interface. Note that extrinsic enrichment differs from
intrinsic enrichment that extends the polynomial basis as in
EFGM [21,22,32]. In fact, extrinsic enrichment is a superior
means of the embedment of the discontinuity function into
the approximation as compared to intrinsic enrichment.

In this study, we propose an extended particle deriva-
tive approximation (EPDA) schem to solve weak and strong
discontinuity problems. This derivative approximation uti-
lizes an extrinsic approach in the sense that the discontinuity
strengths emerge from the shape function; these strengths,
meanwhile, need to be found when solving the total sys-
tem. Although the zeroth order shape function of the EPDA
is analogous to that of conventional particle methods, the
derivative approximation is wholly different. The EPDA is
extrinsically equipped with discontinuous functions that are
well designed to capture the characteristics of singular behav-
iors in PDE solutions; it offers not only excellent efficiency
in derivative computations but also convenience in mod-
eling interfacial geometry characteristics that provoke sin-
gularities. The singularities are naturally considered in the
construction process of the derivative approximation. The
EPDA is derived based on the Taylor polynomial expanded
by the moving least squares method that effectively asso-
ciates the derivative approximation with the nodal solution
and discontinuity strengths based on the discretization using
nodes and interfacial points. In addition, numerical imple-
mentation for constructing the discrete form of the EPDA
will be explained in detail. In the second part of this study,
the EPDA is implemented in the construction of difference
equations for the given governing equations; the direct dis-
cretization yields a total system of equations for weak and
strong discontinuity problems, such as heat transfer problems
in composite materials and elasticity problems with material
discontinuity.

2 Particle derivative approximation

In this section, we first derive the particle derivative approx-
imation (PDA) scheme based on the Taylor series; the multi-
index notation is used for convenience. Let x = (x1, . . . , xn)

be the n-tuple of real numbers, i.e. the n-dimensional real
vector, and α = (α1, . . . , αn) be the n-tuple of non-negative
integers, i.e. the n-dimensional non-negative integer vector.
The αth power of x is defined by

xα = xα1
1 xα2

2 · · · xαn
n (1)

Then, the αth partial derivative operator is given by Dα
x :=

∂
α1
x1 · · · ∂αn

xn . The αth derivative of a function f (x) with respect
to x is written as

Dα
x f (x) = ∂ |α| f (x)

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(2)

where |α| is the sum of all components of α; i.e. |α| =∑n
i=1 αi . For a given differentiable function u (x) ∈ Cm(�̄),

the Taylor series is expressed as

u (x) =
∑

|α|≤m

(x − y)α

α! Dα
x u (y) + H.O.T . (3)

where the series is expanded about the local center y. The
mth order Taylor polynomial for approximating a continuous
function is then written by neglecting the high order terms as
follows

ucont (x; y) =
∑

|α|≤m

(x − y)α

α! Dα
x u (y) = pT

m (x; y) a (y)

(4)

where α! is the factorial of the n-tuple α; i.e. α! = ∏n
i=1 αi !.

As shown in Eq. (4), it is evident that the Taylor polynomial
is decomposed into the polynomial vector and the derivative
coefficient vector, and then the polynomial vector takes the
form

pT
m (x; y) =

(
(x − y)α1

α1! , . . . ,
(x − y)αL

αL !
)

(5)

where αL = (0, . . . , m); m is placed at the αK th slot in
lexicographic order, and the length of the polynomial vector
is L = (n+m)!

n!m! . Here, m denotes the order of the highest
derivative as well as the order of consistency of the Taylor
polynomial. From Eq. (4), the derivative coefficient vector is
written as

a (y) =
⎛

⎜
⎝

Dα1
x u (y)

...

DαL
x u (y)

⎞

⎟
⎠ (6)

which includes all of the derivative approximations for u (y)

up to the αL th order.
One of key ideas of the PDA is to determine a (y) by

incorporating the moving least squares method and the nodal
solution without involving the actual differentiation of the
PDA. In order to find a (y), a discrete form of the weighted
residual functional, which relates the Taylor polynomial to
the nodal solution, is defined as

J =
N∑

I=1

w

(
xI − y

ρy

) (
pT

m (xI ; y) a (y) − uI

)2
(7)

where uI is the nodal solution and N is the number of
nodes included in the support of the weight function w, of
which the center is y. The support size is determined by ρy

which practically indicates the radius of the weight function.
This was termed the dilation function in Kim and Kim [12].
Because the support size determines how many nodes are

123



1090 Comput Mech (2014) 53:1087–1103

Fig. 1 An irregular node
arrangement and the support
size (or dilation function) a an
irregular node distribution with
a concentration around the
center of the square domain, b
surface plot of the support size
(or dilation function) for the
irregular node arrangement

included in the PDA, the number of nodes is designated to
fall within a suitable range such that the resolution of the
PDA is retained regardless of the position of the local center
and node density; as a result, a variable dilation function is
implemented in this study. An algorithm presented by Kim
and Kim [33] is adopted here to determine the size. The upper
and lower bounds of the number of included nodes are asso-
ciated with the computation efficiency and the invertibility of
the moment matrix, respectively. Figure 1a, b show an exam-
ple of an irregular node distribution in which the nodes tend
to be concentrated around the center of the square domain.
From the plot of the support size (or dilation function) for this
node arrangement as shown in Fig. 1b, it is clearly seen that
the support size varies with respect to the position and node
density; it becomes smallest at the center to reflect the high
node density or to maintain the number of nodes included
in the support, while it is largest at the corner of the square
domain. On the other hand, conventional particle methods
such as EFGM [9] or RKPM [10] determine the size using
a constant radius probe regardless of the node density. This
may badly affect the resolution of the approximation due to
the irregular number of nodes participating in the approxi-
mation.

Note that uI = u (xI ) in the context of this study; specif-
ically, uI denotes the nodal solution at xI . In conventional
weak form based meshfree method such as EFGM [9], uI

does not match u (xI ) exactly; there exists a slight but non-
negligible difference between uI and u (xI ). The difference
mostly comes from the constraint to enforce the essential
boundary condition. Therefore, uI is often called a nodal
parameter instead of a nodal solution, and the approxima-
tion formula derived needs to be used to compute the nodal
solution.

Another salient feature of the PDA scheme is that any
function with a conical shape can be used for the weight func-
tion. It is worth noting that no differentiability for the weight
function is required in the PDA formulation. As long as the
function is non-negative and continuous, smoothness is not
required. On the other hand, most particle methods demand
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Fig. 2 Non-smooth weight functions

the differentiability of the weight function because the deriv-
ative of approximation includes the derivative of the weight
function. As shown below, non-differentiable functions with
a sharp peak and discontinuous derivatives are used in this
study:

w

(
x − y
ρy

)

=
(

1 −
∥
∥
∥
∥

x − y
ρy

∥
∥
∥
∥

)4

(8)

w

(
x − y
ρy

)

=
(

1 −
∥
∥
∥
∥

x − y
ρy

∥
∥
∥
∥

1
2
)2

(9)

In fact, non-smooth weight functions were used previously
by Kim and Kim [12] and by Lee and Yoon [13] in the frame-
work of the meshfree point collocation method. Figure 2
illustrates an example for non-smooth weight functions.
Although smooth weight functions have often been used in
the weakly formulated particle method, it was recognized
that non-smooth functions are preferable to smooth ones in
the strongly formulated particle method through numerical
experiments; therefore, the use of smooth weight functions
is very feasible in this study.
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As in the conventional moving least squares method, the
weighted residual functional J of Eq. (7) is minimized by
a stationary condition, i.e. ∂ J

∂a = 0, yielding the following
normal equation:

M (y) a (y) = B (y) ·
⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ (10)

In the above equation, the moment matrix and the B matrix,
respectively, are written as

M(y) =
N∑

I=1

(

pm(xI ; y)w

(
xI − y

ρy

)

pT
m(xI ; y)

)

(11)

B (y) =
(

w

(
x1 − y

ρy

)

pm (x1; y) , . . . , w

×
(

xN − y
ρy

)

pm (xN ; y)

)

(12)

where the dimensions of M (y) and B (y) are correspondingly

L
(
= (n+m)!

n!m!
)

× L and N × L . From Eq. (10), the coefficient

vector is obtained by

a (y) = M−1 (y) B (y) ·
⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ (13)

and substituting x for y yields the final form of the PDA as
follows
⎛

⎜
⎝

Dα1
x u (x)

...

DαL
x u (x)

⎞

⎟
⎠ = M−1 (x) B (x) ·

⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ (14)

Here, it is important to note that the PDA includes all of the
derivative approximations up to the order of consistency. The
substitution of x for y implies that the PDA is constructed
on the local center such that the coefficients of the Taylor
polynomial best fit the derivatives of the original function.
The PDA is always used at the position where it is constructed
regardless of whether the position is a node or not; non-
nodal point is used for the setup of the interfacial equation,
while node is used for the discretization of other governing
equations. To secure the optimal level of accuracy, it is not
used at any position other than where it is derived.

Considering the meshfree point collocation method by Lee
and Yoon [13], the derivative computation by the PDA can be
viewed equivalently. That is to say, the derivative of the Tay-
lor polynomial can be defined by differentiation with respect
to x and substitution of x = y as follows

Dα
x u (y) ≈ (

Dα
x ucont (x; y)

)∣
∣
x=y (15)

where the differentiation precedes the substitution, as in the
derivation process of the Taylor series. The derivative coef-

ficient Dα
x u (y) serves as a derivative approximation of u (x)

at y.
For convenience, the PDA of Eq. (14) can be transformed

into another form involving nodal shape functions as follows
⎛

⎜
⎝

Dα1
x u (x)

...

DαL
x u (x)

⎞

⎟
⎠ =

⎛

⎜
⎝

�
[α1]
1 (x) , . . . , �

[α1]
N (x)

...
. . .

...

�
[αL ]
1 (x) , . . . , �

[αL ]
N (x)

⎞

⎟
⎠ ·

⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠

(16)

where �
[αK ]
I (x) denotes the αK th derivative of the nodal

shape function for node I; this is referred to as the generalized
regular shape function. The nodal shape function is expressed
as

�
[α]
I (x) = α!eT

α M−1 (x) pm (xI ; x) w

(
xI − x

ρx

)

(17)

where eT
α = (0, . . . , 1, . . . 0), in which 1 is placed at the αth

slot of eT
α in lexicographic order. Then, a scalar product of the

row vector of a generalized regular shape function matrix and
the nodal solution vector generates the following expression:

Dα
x u (x) =

N∑

I=1

�
[α]
I (x) uI (18)

Note that �
[α]
I (x) does not directly indicate Dα

x �
[0]
I (x).

However, it is a very good approximation of Dα
x �

[0]
I (x) in

the sense of satisfying the consistency condition (or repro-
ducing property) of the Taylor polynomial. In other words,
Dα1

x u (x) , . . . , DαL
x u (x) can reproduce any function made

via the combination of a polynomial basis up to the order
of consistency. It should be stressed that the construction of
the PDA requires no differentiation of the shape function;
instead, some matrix operations involving moment matrix
inversion are necessary. As a result, the computation speed
for the derivative calculation is dramatically accelerated. The
concept of the PDA shares a common strategy with the dif-
fuse derivative of DEM [6]. It can also be compared with
the diffuse derivative of the meshfree approximation by Lee
and Yoon [13], which involves the moving process that takes
advantage of the fast diffuse derivative calculation.

In terms of interpolation, one may argue that the PDA is
not an interpolant because it does not interpolate a solution
between nodes. Although the PDA is capable of generating
the function value at an arbitrary position based on known
nodal values, it does not use a predefined interpolant such as
a finite element (FE) shape function. Wherever interpolation
is necessary, the PDA should be constructed at the position of
interest. However, there may be no objection to the statement
that the PDA is a derivative approximation, as it can generate
a derivative function everywhere in a numerical model.

The key feature of the PDA is that the Taylor series is
approximated by the moving least squares method based on a
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complete node-wise scheme. The PDA relates the nodal solu-
tion uI values to the derivatives of the solution via the gen-
eralized regular shape function. In most conventional mesh-
free methods such as EFGM, the derivative approximation
is obtained from a mathematically exact differentiation of
the approximation. This usually provokes the cumbersome
differentiation of the inverse of the moment matrix as well
as the weight function. Furthermore, the high order deriva-
tive computation for the strong formulation may consider-
ably deteriorate the computational efficiency. However, the
PDA successfully retains its level of efficiency regardless
of the derivative order and maintains its accuracy up to the
consistency order; as the derivative order increases, the accu-
racy naturally decreases according to the consistency order
of the Taylor polynomial, but the computational effort does
not increase at all because all derivative approximations from
zeroth to the highest order are obtained at the same time.

3 Extended particle derivative approximation for
discontinuity modeling

3.1 Finding the projection point and normal vector

In this paper, we consider the PDE solution has weak and
strong discontinuities along the interface; not only the solu-
tion itself but also the tangential and normal derivatives of
the solution have jumps. Therefore, it is crucial to develop
well-designed jump functions which are able to capture the
singular behavior. Furthermore, these jump functions should
be suitable for the framework of strong form particle methods
using complete node-wise computation.

Let us consider a projection map to �:

y� = proj�y ∈ �, y ∈ �S\� (19)

where �S denotes a singular domain that requires disconti-
nuity modeling. The above maps y to the closest point y�

on the interface; i.e. y� := arg

(

inf
x∈�

‖x − y‖
)

. The normal

vector map is then defined as

n�(y) = y − y�

‖y − y�‖ , y ∈ �S\� (20)

and it yields a unit normal vector to � for y. In addition, a unit
tangential vector is defined by rotating the unit normal vector
90◦ counterclockwise, and the following relation holds

t�(y) · n�(y) = 0 (21)

where t� (y) is a unit tangential vector. At this point, the
tangent hyperplane function is defined as shown below; for
details refer to Kim et al. [26]

Hy(x) = n�(y) · (x − y�) (22)

Fig. 3 Concept of the tangent hyperplane function

The function is readily determined using y� and n�(y).
Defining the tangent hyperplane function is based on the
projection point of the field point y and the normal vector
n� (y). The definitions of the projection point and normal
vector of this study are very natural from a mathematical
viewpoint; accordingly, they can easily be applied to a non-
smooth interface [32]. Once the tangent hyperplane function
is defined for the local center y, it is only a function of x, not
y. Figure 3 illustrates the concept of the tangent hyperplane
function. The tangent hyperplane function can have a sign of
plus or minus; in fact, it denotes the distance from x to the tan-
gential line (Hy(x) = 0) passing through y� . It will replace
the true interface during the construction of the derivative
approximation because troublesome high order differentia-
tion as regards jump functions is effectively exempted due
to its use. Given that all of the nodes in the support (or the
domain of influence) use the same normal vector, consider-
able computational effort can be saved.

In many numerical methods, the interface is modeled by
a series of line segments, but this type of interface modeling
complicates the definition of the normal vector at times. For
example, defining a normal vector is highly problematic at
the junction of two segments or at the end point of an inter-
face. However, the definition of a normal vector used in this
study can be successfully applied in a consistent manner in
both cases. As a result, discontinuous functions can be seam-
lessly constructed along the interface, and the sharpness of
the approximation is effectively preserved because the nor-
mal vector can be naturally determined with no awkwardness
at any position.

The numerical representation of the interface is fixed to a
mesh or grid structure in many numerical schemes. This fix-
ity can cause cumbersome numerical difficulties in develop-
ing new numerical schemes, especially when simulating free
or moving boundary problems involving consecutive geo-
metrical changes. However, the use of a tangent hyperplane
function can effectively ease the difficulty while preserving
the advantages of the particle method coming from the node-
wise computation. On the other hand, when the FEM is used
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Fig. 4 Two types of level set curves for the interface modeling

with level set curves, the normal vector should be defined
at the projection point for every Gauss quadrature point in
the enriched elements [34,35]; inevitably, this becomes very
troublesome and time consuming. To clarify the difference
between an approach based on the FEM and that of this study,
two types of level set curves are drawn for the true interface
shown in Fig. 4. The straight lines parallel to the tangential
hyperplane function indicate the level set curves for the deriv-
ative approximation of this study. It should be noted that the
gradients of the two types of level set curves exactly match
along the normal line passing through the projection point.
Therefore, the full derivative and diffuse derivative are equiv-
alent along the normal line. This feature is very important
because all computations regarding the interfacial singular-
ity occur along this normal line in the proposed formulation.

3.2 Step function, wedge function, and scissors function for
discontinuity modeling

The solution and its derivatives for PDEs with an interfacial
singularity exhibit discontinuities across the interface. Here,
three types of jump functions are presented for interfacial dis-
continuity modeling. First, for jump modeling in the solution
field, a step function is introduced, as shown below.

bs (x; y) = sign (n� (y) · (x − y�)) = sign
(
Hy (x)

)
(23)

Figure 5a presents a schematic drawing of the step func-
tion. When constructing the EPDA, the tangent hyperplane
function serves as an interface for all nodes included in the
domain of influence. Once y� and n� (y) are fixed, bs (x; y)

no longer depends on y but becomes a function of x instead.
Interestingly, differentiation of n�(y) or y� is not necessary
during the construction of the EPDA because this differen-
tiation always occurs with respect to x. Moreover, the step

function is a constant function. Therefore, the complicated
derivative calculations can be effectively avoided; in fact,
they are all zero.

Secondly, for normal derivative jump modeling, a wedge
function is employed as given below.

bn (x; y) = ∥
∥Hy (x)

∥
∥ (24)

Figure 5b shows a plot of the wedge function. Note that the
wedge function can be obtained by integrating the step func-
tion, while the step function is given by taking the sign value
of the tangent hyperplane function. Actually, bn (x; y) is the
distance function, indicating the minimum distance from x to
the tangent hyperplane. Since y� and n�(y) are not functions
of x in the construction stage, the derivative calculation of
the wedge function is also very simple not associated with
the differentiation of y� and n�(y).

Thirdly, the design of a scissors function demands a tacti-
cal approach. The scissors function is devised to capture the
tangential derivative jump in the solution, as follows:

bt (x; y) = sign
(
Hy (x)

)
(t (y) · (x − y�)) (25)

Here, the unit tangential vector has the property of n� (y) ·
t� (y) = 0. An illustration of the scissors function is pre-
sented in Fig. 5c, showing that the scissors function exhibits
a jump across the interface. Although the normal derivative of
the scissors function is zero, the function itself and its tangen-
tial derivative feature a jump across the tangent hyperplane.
This type of combination of step, wedge, and scissors func-
tions with the PDA can approximate various types of weak
and strong discontinuities; this enriched means of derivative
approximation is termed the EPDA.

3.3 Derivative calculation of the step function, wedge
function, and scissors function

Derivative computations of the jump functions are essen-
tial when deriving the EPDA. Although differentiation is
exempted in the PDA based on the fact that the coefficients
of the Taylor polynomial substitute for the derivative func-
tions of the original function, differentiation for the EPDA is
nonetheless required due to the existence of the jump func-
tions. Let us first consider the derivative of the step function.
The step function has constant values. Thus, all derivatives
higher than the first-order are zero reading:

Dα
x bs(x; y) = 0, y ∈ �S\�, |α| ≥ 1 (26)

The derivative computation of the wedge function is straight-
forward. Since bn (x; y) is a linear distance function, its first-
order derivatives are constant. For |α| = 1, the first-order
derivatives are readily given by

Dα
x bn(x; y)=sign

(
Hy(x)

)
(n�(y))α , x ∈ �S\�, |α| = 1

(27)
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(a) (b)

(c)

Fig. 5 Schematic drawings of jump functions: a normal line and a tangent hyperplane function are depicted with unit normal and tangent vectors,
a step function, b wedge function, and c scissors function

where sign
(
Hy(x)

)
is +1 or −1. As a result, the compo-

nents of the unit normal vector corresponding to the deriv-
ative directions appear in the first derivative. For instance,
(n�(y))(1,0) = n1 and (n�(y))(0,1) = n2 from the definition
of the multi-index notation. Also, computing the derivative
of jump functions does not involve cumbersome problems, as
the y’s of bs (x; y), bn (x; y), and bt (x; y) are immediately
replaced by x as soon as the differentiation is completed;
recall the process presented in Eq. (14).

The first-order derivative of the scissors function is similar
to that of the wedge function except that the derivative of
the tangential direction is non-zero rather than the normal
direction. Thus, the first-order derivative (|α| = 1) is written
as follows

Dα
x bt (x; y)=sign

(
Hy(x)

)
(t(y))α , x ∈ �S\�, |α|=1

(28)

Here, note that derivatives higher than the first order are all
zero because the jump functions such as step, wedge, and
scissors functions are basically constant or linear functions.
The second-order derivatives of the discontinuous function

appearing during the discretization of the PDEs naturally dis-
appear, and the strong formulation becomes easy to handle.
Furthermore, the first-order derivatives of the step and scis-
sors functions are singular on � but non-singular elsewhere;
in the proposed formulation, no differentiation is required on
�. Accordingly, no singularity or computational awkward-
ness arises in the numerical schemes under construction.

As illustrated in Fig. 5, the following relationships can be
deduced for the jump functions:

Dα
x bs,n(x, y) = Dα

x bs,n(y + τ t� (y) , y) = 0, |α| = 1

(29)

Dα
x bs,t (x, y) = Dα

x bs,t (y + τn� (y) , y) = 0, |α| = 1

(30)

where bs,n (y + τ t� (y) , y) are functions defined along the
lines of latitude perpendicular to the normal line passing
through the projection point, while bs,t (y + τn� (y) , y) are
functions defined along the lines of longitude parallel to the
normal line. Recall that the tangential hyperplane and level
set curve are equivalent along the normal line such that no
discrepancy exists in the derivative calculation. The actual
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derivative computation of the EPDA mostly occurs on the
projection point. Therefore, the derivative approximation in
this study is very efficient and accurate in this scenario.

Particle methods would be expected not to employ an ele-
ment or grid structure for any purpose, such as the integra-
tion of the weak form. Moreover, they are expected to be free
from the limitation of the topological modeling of the inter-
face. To realize this, the EPDA is designed, which contains
the geometric information of the interface. The geometric
information is immersed in the EPDA during the process of
finding the projection point. Hence, the derivative approxi-
mation, which is easy to construct, free from a mesh or grid,
and relevant to the interfacial singularity, is effectively devel-
oped.

3.4 Construction of the extended particle derivative
approximation

This section presents how to construct the EPDA for the
discretization of a PDE with discontinuous coefficients or
a singular source term across an interface. Due to the dis-
continuity or singularity, the solution and/or its derivatives
may yield discontinuities across the interface. The key idea
here is to incorporate the jump conditions given a priori in
the derivative approximation construction.

Consider a body � consisting of two different material
coefficients, i.e. an inclusion and a matrix (as in Fig. 6).
A composite material containing an inclusion with a differ-
ent material coefficient can be such a case. The boundary
between the two materials forms the interface �. As shown
in Fig. 6, the singular domain �S is defined as

�S = {x ∈ �|dist (x, �) < ρx} (31)

where dist (x, �) denotes the distance from x to � and � =
�\∂�. Recall that the dilation function ρx is the radius of
the domain of influence. The dilation function affects the
partition of the body for a numerical simulation. When the
domain of influence of x touches the interface, x is considered

Fig. 6 A body with an interface, consisting of the singular domain �S

and the regular domain �R bounded by ∂� (= ∂�u ∪ ∂�t )

to belong to the singular domain. On the other hand, the
regular domain is denoted as

�R = �\�S (32)

yielding �R ∪ �S = � and �R ∩ �S = 0.
In a regular domain involving no discontinuities or singu-

larities, ucont (x; y) is readily adopted as a regular approxi-
mation function as follows

u R(x; y) = ucont (x; y), y ∈ �R (33)

The relevant derivative approximation for the process descri-
bed above, as discussed in the previous section, will be nec-
essary here as well to yield the difference equations. On the
other hand, in the singular domain, a singular approximation
is defined by combining the continuous and discontinuous
approximation functions as follows

uS(x; y) = ucont (x; y) + udisc(x; y), y ∈ �S\� (34)

where the discontinuous part approximates the discontinuous
portion in the solution or its derivatives, while the continuous
part accounts for the smooth part of the solution. The term
‘regular’ implies that the singular term may be effectively
eliminated from the given singular function.

In this study, three types of discontinuities need to be
dealt with: the solution jump, the normal derivative jump, and
the tangential derivative jump. Therefore, all jump functions
developed are necessary. The discontinuous part is made by a
linear combination of these three jump functions as following

udisc(x; y) = βsbs(x; y) + βnbn(x; y) + βt bt (x; y) (35)

where βs, βn , and βt represent the discontinuity strength or
jump magnitude corresponding to each jump function. The
discontinuity strengths are closely related to the interface
conditions of the governing equations. They can be mani-
fested by taking the directional jump of the singular approx-
imation function. First, the jumps of the singular approxi-
mation and its derivatives across the interface is expressed
as
[
uS(x; y)

]

�
= βs

[
bs(x; y)

]
�

= 2βs (36)

where [ ]� denotes the directional difference on both sides
of �; i.e. [ f ]� = f + − f −, in which the superscript + or
− denotes the limit value toward the interface. Note that the
continuous part disappears because it has no jump. Also, the
wedge function and the scissors function have no jump across
the interface (more precisely, along the normal line pass-
ing through the projection point). As shown in Fig. 5c, the
scissors function is absolutely continuous along the normal
line. Next, taking the normal derivative jump of the singular
approximation yields
[
∂uS(x; y)

∂n�(y)

]

�

= βn

[
∂bn(x; y)

∂n�(y)

]

�

= 2βn (37)
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Similarly, the tangential derivative jump can be obtained by
[
∂uS(x; y)

∂t�(y)

]

�

= βt

[
∂bt (x; y)

∂t�(y)

]

�

= 2βt (38)

The discontinuous part can then be rewritten using Eqs. (36)–
(38) as

udisc (x; y) = 1

2

[
us (x; y)

]
�

bs (x; y)

+1

2

[
∂us (x; y)

∂n� (y)

]

�

bn (x; y)

+1

2

[
∂us (x; y)

∂t� (y)

]

�

bt (x; y) (39)

where
[
us (x; y)

]
�

,
[

∂us (x;y)
∂n�(y)

]

�
, and

[
∂us (x;y)
∂t�(y)

]

�
need to be

determined from the governing equations. In most cases, the
jump magnitudes are explicitly given from the interface con-
ditions of the governing equations. If not, they can be readily
obtained from the relevant interface condition. Here, it is
important to note that unlike the normal derivative jump, the
tangential derivative jump can be expressed in terms of the
solution jump as shown below
[
∂u

∂t

]

�

= ∂ [u]�
∂t

(40)

Thus, Eq. (39) can be rewritten as

udisc (x; y) = 1

2
[u]y�

bs (x; y) + 1

2

[
∂u

∂n

]

y�

×bn (x; y) + 1

2

∂ [u]y�

∂t
bt (x; y) (41)

where [u]y�
, 1

2

[
∂u
∂n

]
y�

, and 1
2

∂[u]y�

∂t replace the jumps of the
singular approximation, which are given directly by the gov-
erning equations or which should be determined by numeri-
cally solving the PDE. The derivatives of the discontinuous
part are expressed as
⎛

⎜
⎝

Dα1
x udisc (x; y)

...

DαL
x udisc (x; y)

⎞

⎟
⎠ = 1

2
[u]y�

⎛

⎜
⎝

Dα1
x bs (x; y)

...

DαL
x bs (x; y)

⎞

⎟
⎠

+1

2

[
∂u

∂n

]

y�

⎛

⎜
⎝

Dα1
x bn (x; y)

...

DαL
x bn (x; y)

⎞

⎟
⎠

+1

2

∂ [u]y�

∂t

⎛

⎜
⎝

Dα1
x bt (x; y)

...

DαL
x bt (x; y)

⎞

⎟
⎠ (42)

where DαK
x bs (x; x), DαK

x bn (x; x), and DαK
x bt (x; x) can

easily be calculated because bs (x; x), bn (x; x), and bt (x; x)

were constructed before this step.

The singular approximation is rewritten as

uS (x; y) = pT
m (x; y) aS (y) + 1

2
[u]y�

bs (x; y)

+1

2

[
∂u

∂n

]

y�

bn (x; y) + 1

2

∂ [u]y�

∂t
bt (x; y)

(43)

where aS (y) is the only unknown factor if the jump magni-
tudes are provided or assumed to be determined. As a result,
the continuous part is approximated by the Taylor polyno-
mial up to the order of consistency, and the singular part
is modeled by a linear combination of the jump functions.
Technically, the accuracy of the EPDA relies on the reso-
lution of the jump extraction. The resolution of extraction
is also dependent of the regularity of the jump function.
Although the jump functions in this paper take the sim-
plest form for computational efficiency, if necessary, other
jump function forms with elevated regularity can readily be
implemented.

At this point, the weighted residual functional for the sin-
gular approximation can be set as

J =
N∑

I=1

w

(
xI − y

ρy

) (
pT

m (xI ; y) aS (y) − u R
I

)2
(44)

where the Taylor polynomial serves to approximate the non-
singular part of the solution. The regular part of the nodal
solution is expressed as

u R
I = uI − 1

2
[u]y�

bs (xI ; y) − 1

2

[
∂u

∂n

]

y�

bn (xI ; y)

−1

2

∂ [u]y�

∂t
bt (xI ; y) (45)

where uI is the nodal solution for the original PDE and
bs (xI ; y), bn (xI ; y), and bt (xI ; y) are the nodal values of
the jump functions. The resolution of the extraction of the
jumps at each node level governs the resolution of u R

I . Note
that the moving least squares method successfully associates
the nodal solution of the PDE with the derivative coefficients
of the Taylor polynomial.

The procedure for determining aS (y) is identical to that
of the PDA except that the u R

I values replace the uI values.
Employing the stationary condition of the weighted residual
functional yields

aS (y) = M−1 (y) B (y) ·
⎛

⎜
⎝

u R
1
...

u R
N

⎞

⎟
⎠ (46)

where the constitutions of M (y) and B (y)are identical to
the case of the PDA. Then, substituting x for y in Eq. (46)
generates the following derivative approximation:
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aS (x) =
⎛

⎜
⎝

Dα1
x ucont (x; x)

...

DαL
x ucont (x; x)

⎞

⎟
⎠

=
⎛

⎜
⎝

�
[α1]
1 (x) , . . . , �

[α1]
N (x)

...
. . .

...

�
[αL ]
1 (x) , . . . , �

[αL ]
N (x)

⎞

⎟
⎠ ·

⎛

⎜
⎝

u R
1
...

u R
N

⎞

⎟
⎠ (47)

Therefore, the singular derivative approximation is obtained
as follows
⎛

⎜
⎝

Dα1
x uS (x; x)

...

DαL
x uS (x; x)

⎞

⎟
⎠ =

⎛

⎜
⎝

Dα1
x ucont (x; x)

...

DαL
x ucont (x; x)

⎞

⎟
⎠

+
⎛

⎜
⎝

Dα1
x udisc (x; x)

...

DαL
x udisc (x; x)

⎞

⎟
⎠ , x ∈ �S\�

(48)

Finally, the EPDA takes the following form:

Dα
x uS (x; x) =

N∑

I=1

�
[α]
I (x) uI

+1

2
[u]x�

(

Dα
x bs (x; x) −

N∑

I=1

�
[α]
I (x) bs (xI ; x)

)

+1

2

[
∂u

∂n

]

x�

(

Dα
x bn (x; x) −

N∑

I=1

�
[α]
I (x) bn (xI ; x)

)

+1

2

∂ [u]x�

∂t

(

Dα
x bt (x; x) −

N∑

I=1

�
[α]
I (x) bt (xI ; x)

)

(49)

In this equation, except for the uI values, the remaining terms
on the right hand side are wholly computable if the jump mag-
nitudes are properly provided. The uI values are obtained by
numerically solving the PDE. Because the Taylor polynomial
based on the moving least squares method approximates the
continuous (or non-singular) function only, the mathematical
clarity of the EPDA is not spoiled. Furthermore, this approach
somewhat resembles those of Benzley [36] and Gifford and
Hilton [37], which were proposed in the frame of the FEM
for an elastic crack analysis. They employed the moving least
squares method to derive the cracked displacement field that
models the near-tip field by means of interpolation with stress
intensity factors.

The EPDA generates discontinuity strengths correspond-
ing to the type of jump operation at the projection point of x.
For example, taking the jump of the singular approximation
at x� yields the following:
[
uS (x; x)

]

x�

= 1

2
[u]x�

[bs (x; x)]x�
= [u]x�

(50)

In addition,
[

∂uS(x;x)
∂n�(x)

]

x�

= [
∂u
∂n

]
x�

and
∂
[
uS(x;x)

]
x�

∂t�(x)
= ∂[u]x�

∂t

are obtained in a similar manner. In general, the discontinuity
strengths of the EPDA are directly given from the interface
conditions of the governing equations. However, when the
interface conditions are not explicitly given from the govern-
ing equations, the discontinuity strengths become unknown
and additional difference equations must be established to
identify them. This leads to an increase in the size of the
system overall but still yields an even-determined system in
which the number of equations and the number of unknowns
are identical.

To clarify the concept of the EPDA, the composition of
the singular approximation is illustrated here. The one dimen-
sional singular function shown below is tested by the EPDA:

u (x) = − 1

10
x2 + x + 2sign (x) − |x | (51)

As shown in Fig. 7a–d, the above function consists of the con-
tinuous part (− 1

10 x2 + x), the step part (2sign (x)), and the
wedge part (− |x |). Figure 8a–d shows the reproduced func-
tions of the original function using the EPDA; the reproduced
functions were computed using the exact nodal solution and
discontinuity strengths obtained by Eq. (51). For the test, a
numerical model with 40 equally spaced nodes was used.
The continuous part, step part, and wedge part are clearly
and sharply reproduced using the EPDA. Because the orig-
inal function is essentially a quadratic function except for
the step and wedge parts, it can be completely reproduced
by the EPDA based on the quadratic Taylor polynomial, the
step function, and the linear wedge function. When the reg-
ularity or reproducibility of the EPDA is insufficient for a
given singular function; the regularity of the jump function
should be elevated. It is an interesting feature of the EPDA
that the regularity of the jump function is controllable and
the consistency of the Taylor polynomial is extended without
difficulty.

One of the main concerns in this study is how accurately
the EPDA can reproduce a singular function. Kim et al.
[32] numerically verified the performance of enriched mesh-
free approximation by means of a reproducing test. The test
checked if the given function can be reproduced by plugging
the exact values for the nodal solution and jump magnitude
taken from the given function into the enriched meshfree
approximation. Error estimation was done by measuring the
difference between the reproduced and the exact values. As
performed here, the EPDA can reproduce the polynomial
space up to the order of consistency as well as the discon-
tinuous function up to the regularity of the jump functions.
When the given function is continuous, the step, wedge,
and scissors parts automatically become zero and the orig-
inal function is reproduced by the continuous part of the
EPDA.
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Fig. 7 Decomposition of a
singular function with the weak
and strong discontinuities into
the continuous, step and wedge
parts; i.e. (a) = (b) + (c) + (d),
with us (x) and uw (x)

indicating the step part and the
wedge part, respectively: a
u (x), b u (x) − us (x) − uw (x),
c us (x) and d uw (x)
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Fig. 8 Reproduced functions
for the original singular
function; the continuous, step,
and wedge parts are separately
reproduced; i.e.
(a) = (b) + (c) + (d) (in the
reproducing test, a 40 node
model is used). a

N∑

I=1
�

[α]
I (x)

(
u−

I
1
2 [u]x�

bs (xI ; x)

− 1
2

[ du
dx

]
x�

bn (xI ; x)
)

+ 1
2 [u]x�

bs (x; x)

+ 1
2

[ du
dx

]
�
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�

[α]
I (x)

(
u−

I
1
2 [u]x�
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− 1
2

[ du
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b

a

Projba

Fig. 9 The concept of a projection of one vector onto another vector

3.5 Discrete form of the extended particle derivative
approximation

When solving weak and strong discontinuity problems, both
the interior domain and the boundaries are discretized by
nodes; moreover, the interface needs to be discretized for
adequate definitions of jump functions. The interface, which
is a curve in general, is discretized by a series of line seg-
ments. The interface conditions are embedded in the EPDA
in the form of jump magnitudes. The position vector of the
projection point of a local center (or sampling point) and the
normal vector are essential to the construction of the EPDA.
Given that the jump magnitudes are defined only at the seg-
mental point and that the projection point can fall anywhere
on the segments, the jump magnitudes need to be interpo-
lated.

To find the projection point of a given point, a vectorial
operation involving a projection map is introduced. Figure 9
illustrates the concept of the projection. The first step is to
find the closest segmental point yd on � from y; i.e.

yd = arg

(

inf
x∈�̂

‖y − x‖
)

(52)

where �̂ denotes the set of interfacial segments, namely, �̂ =
l∪

j=1
� j� j+1 where l is the total number of segments and � j

is the segmental point.
A projection vector, which projects vector a onto b, is

defined as

Projba = a · (b ⊗ b)

b · b
(53)

where ⊗ denotes the tensor product operator (as in Fig. 9).
When c is the vector of the current segment connected to� j−1

and � j , of which the starting point is � j−1, the projection
point y� is determined by

y� = yd + Projc (y − yd) (54)

where y, yd , and y� are the position vectors. The unit normal
vector is then defined as

n�(y) = (y − yd) − Projc (y − yd)

‖(y − yd) − Projc (y − yd)‖ (55)

Note that all terms on the right hand side of the above equation
are computable. Figure 10 illustrates the definitions of the

Fig. 10 A schematic drawing of normal vector determination based on
vector operations

position vectors and the relevant vector operations. This pro-
cedure makes the finding of the normal vector highly strategic
and is thus suitable for a computer program. Also, this proce-
dure may work perfectly in a three dimensional case without
any modification.

After finding the projection point, it should be determined
whether y� is on the current segment. This can be easily done
by checking the sign of the scholar product (y − yd) · c. For
example, when (y − yd)·c > 0 and

∥
∥Projc (y − yd)

∥
∥ < ‖c‖,

then the projection point of y is y� . On the other hand, when
(y − yd) · c < 0; i.e. when y − yd has a different direction
from vector c, then y� falls onto the outside of the current
segment.

Let us consider the discrete form of the EPDA. Provided
that the jump magnitudes are interpolated by a linear inter-
polant, the discrete form of the EPDA is written as

Dα
x uS (x; x) =

N∑

I=1

�
[α]
I (x) uI

+1

2

(
2∑

J=1

NJ (x�) δJ

)

�[α] (x)

+1

2

(
2∑

J=1

NJ (x�) ωJ

)

�̄[α] (x)

+1

2

(
2∑

J=1

∂ NJ (x�)

∂t
δJ

)

¯̄�[α] (x) (56)

where the generalized singular shape functions for jumps in
the solution, normal derivative, and tangential derivatives are
respectively expressed as

�[α] (x) = Dα
x bs (x; x) −

N∑

I=1

�
[α]
I (x) bs (xI ; x) (57)

�̄[α] (x) = Dα
x bn (x; x) −

N∑

I=1

�
[α]
I (x) bn (xI ; x) (58)

¯̄�[α] (x) = Dα
x bt (x; x) −

N∑

I=1

�
[α]
I (x) bt (xI ; x) (59)
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Fig. 11 Discretization of the interface using line segmentation; lin-
ear interpolation is used to approximate the jump magnitudes for the
solution and normal derivative jumps

It can be seen that the generalized singular shape functions
above consist of the full derivatives of the jump functions and
the interpolation of the nodal values of the jump functions
based on the regular generalized shape function. Because lin-
ear interpolation is adopted in the description of jump func-
tions along the segmented interface, Eq. (56) was obtained
by applying the following relationships to Eq. (49):

[u]x�
=

2∑

J=1

NJ (ξ)δJ (60)

[
∂u

∂n

]

x�

=
2∑

J=1

NJ (ξ)ωJ (61)

where ξ is a local coordinate defined on the segment of inter-
est; δJ denotes the jump magnitude of the solution at seg-
mental point J ; and ωJ is the jump magnitude of the nor-
mal derivative. Additionally, NJ (x�) is the Lagrange linear
interpolant. Practically, the use of linear interpolation for the
jump magnitudes is recommended for the sake of computa-
tional efficiency. It never ruins the resolution of the numerical
solution when combined with the second-order Taylor poly-
nomial. Figure 11 depicts the numerical representation of the
interface based on linear interpolation.

When [u]x�
and

[
∂u
∂n

]
x�

are given from the governing
equations, δJ and ωJ can directly be applied to the EPDA
without generating an extra difference equation to enforce
the interface conditions. In fact, the jump related terms are
transferred to the right hand side of the difference equations
for the equilibrium equation, serving as forcing terms which
may be compared to Dirac’s delta function in the IBM for-
mulation [4]. However, when the interface conditions are not
explicitly given in terms of [u]x�

and
[

∂u
∂n

]
x�

, an additional
difference equation should be formulated from the relevant
interfacial relationship.

3.6 Comparison with other enrichment methods

There have been two approaches to enrich the approximation
function in particle or meshfree methods. One is intrinsic

enrichment [20,32,38] and the other is extrinsic enrichment
[2,20,31,39]. The major difference between the two enrich-
ment methods mostly revolves around the target of enrich-
ment. While the intrinsic enrichment approach extends the
polynomial basis with enrichment functions, the extrinsic
enrichment approach adds the enrichment function not to
the polynomial but to the local approximation in an extrin-
sic manner. Although both enrichment approaches utilize the
moving least squares method, they generate quite different
forms of approximation. For example, the strength of sin-
gularity explicitly appears in the extrinsic formula but not
in the intrinsic formula. Furthermore, in the intrinsic enrich-
ment method, a careful selection of the enrichment function is
required to preserve the invertibility of the moment matrix;
the jump function should be linearly independent of other
basis components. However, this is not necessarily required
in the extrinsic enrichment method.

Furthermore, intrinsic enrichment can produce an over-
determined system at times due to the disagreement between
the number of equations and the number of unknowns. This
feature can lead to the deterioration of the level of solution
accuracy and degrade the solvability of the total system com-
pared to the extrinsic approach. On the other hand, extrinsic
enrichment always produces an even-determined system. In
the extrinsic formulation, the physical meaning of the singu-
larity strength, such as that of the jump magnitude, is clear;
meanwhile, the singularity strength does not even emerge
from the intrinsic formulation. Compared to the intrinsic for-
mulation, the extrinsic approach does not provoke any math-
ematical ambiguities. As a result, because the EPDA belongs
to the extrinsic enrichment family, it can utilize all of these
attractive advantages of extrinsic formulation.

The XFEM [1,3,35] is a popular numerical method that
considers discontinuity problems in a tactical manner. The
computational simplicity mostly results from the fact that
discontinuity modeling is independent of a mesh structure.
When excluding crack tip enrichment, the XFEM approxi-
mation for displacement takes the form of

uh (x) =
∑

I

�F E
I (x)uI +

∑

I

�F E
I (x)H(x)dI (62)

where �F E
I (x) is the standard FE shape function and H (x)

is a step function defined along the discontinuity line; in addi-
tion, uI is the nodal displacement vector and dI is an addi-
tional nodal unknown related to the step function. The second
term on the right hand side of Eq. (62) provides discontinuity
modeling that is distinguished from the conventional FE dis-
continuity modeling method based on mesh splitting [40,41].
It should also be noted that the FE shape function serves as
a projection map that projects the distance measured from x
to the discontinuity line onto the nodal unknown dI . The key
idea of discontinuity modeling is that the jump across the dis-
continuity line is interpolated by �F E

I (x) H (x). Although
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dI does not directly indicate the jump magnitude, the jump
magnitude at any position can be determined by interpolating
the dI values. As a result, the discontinuity modeling of the
XFEM relies considerably on the sharpness of the FE shape
function.

As an improved version of Eq. (62), Zi and Belytschko [3]
proposed the following formula using a shifted nodal sign
function:

uh (x) =
∑

I

�F E
I (x)uI +

∑

I

�F E
I (x)HI (x)dI (63)

The step function is given by

HI (x) = sign (φ (x)) − sign (φI ) (64)

where φ (x) denotes the level set function, indicating the
signed distance from the crack surface line, i.e. φ (x) = 0. By
doing so, all cracked elements are enriched without the blend-
ing of the local partition of unity; i.e. the enrichment region
is connected to the standard approximation region without a
blending function. As shown in Eq. (62) or (63), the jump
enrichment of the XFEM is not intrinsic. However, the jump
magnitude does not appear to emerge such that it is diffi-
cult to define the jump magnitude explicitly at an arbitrary
position.

On the other hand, the jump magnitude extrinsically
appears in the EPDA. When considering the step function
only, the EPDA is expressed as follows

uS (x; x) =
N∑

I=1

�
[0]
I (x) uI

+1

2
[u]x�

(

bs (x; x) −
N∑

I=1

�
[0]
I (x) bs (xI ; x)

)

=
N∑

I=1

�
[0]
I (x)

(

uI − 1

2
[u]x�

bs (xI ; x)

)

+1

2
[u]x�

bs (x; x) (65)

The above approximation appears quite different from the
XFEM approximation. The physical meaning of dI in the
XFEM is different from that of 1

2 [u]x�
above. The zeroth

order generalized regular shape function �
[0]
I (x) interpolates

a regular part of the nodal solution; the regular nodal solution
means the nodal solution subtracted by the nodal value of the
step function, i.e. uI − 1

2 [u]x�
bs (xI ; x). The singular part

is treated separately via 1
2 [u]x�

bs (x; x).

4 Conclusions

The final goal of this study is to develop the extend parti-
cle difference method (EPDM) for solving weak and strong

discontinuity problems, such as heat transfer problems in
composite materials and elasticity problems with material
discontinuity. In this study, the EPDA was derived based on
the Taylor polynomial expanded by the moving least squares
method; the EPDA appropriately approximates the singu-
lar solution with weak and strong discontinuities by asso-
ciating the generalized shape function with the nodal solu-
tion and discontinuity strength. The discontinuous functions
were designated to capture jumps in the solution, the nor-
mal and tangential derivative fields, which are defined on
the basis of the concept of the tangent hyperplane function.
The use of the discontinuous functions in the framework of
the tangent hyperplane function effectively minimizes the
actual differentiation process in the derivative formula with-
out sacrificing mathematical robustness up to the order of
consistency. The EPDA facilitates a faster derivative compu-
tation and preserves the reproducing property for the polyno-
mial basis and the discontinuous functions. Unlike the FEM,
which is restricted by the element connectivity, the EPDM
can easily handle an interfacial singularity based on a regu-
lar node set. Also, the EPDM is equipped with a derivative
approximation function, which the FDM does not provide.
Furthermore, unlike conventional particle methods such as
the EFGM or RKPM, which are based on the weak formula-
tion, the proposed method considerably elevates the compu-
tational efficiency through its use of the strong formulation
with no numerical integration. Therefore, it can be referred
to as a ‘truly’ meshfree method that completely overcomes
mesh or grid dependency. This node-wise discretization plays
a salient role, even in interface problems, when used with the
EPDA. The complex relationship between the geometry of
the interface and the singularity of a given function is effec-
tively dealt with. Thus, the EPDA can be readily applied to
solving burdensome problems related to interfacial singular-
ities.

The EPDA can be classified as an extrinsic enrichment
method owing to the apparently extracted discontinuity
strengths from the shape function. In fact, it takes advan-
tage of the diffuse derivative technique [6], and it sharply
captures wedge and jump behaviors without computing the
derivative of the weight function or using the derivative of
inverted moment matrix. Also, extrinsic jump modeling does
not deteriorate the advantages of mesh-independency. The
requirement of high order derivatives in the strong formula-
tion is effectively satisfied by the EPDA; the EPDA circum-
vents the full differentiation of the approximation function.
Furthermore, it nicely overcomes the lack of accuracy found
in intrinsic enrichment methods. For example, the mesh-
free point collocation method utilizes intrinsic enrichment
to solve weak discontinuity problems [32]; this method is
associated with a lack of accuracy resulting from the intrin-
sically constructed approximation, tracing singular behaviors
in a least squares sense, as well as with a lack of efficiency
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resulting from the creation of an over-determined system,
provoking a mismatch between the number of equations and
the number of unknowns. However, the extrinsic approach
in this study yields an even-determined discrete system in
which the number of unknowns is always equal to the num-
ber of equations.

It is well known that strong form based particle meth-
ods have valuable advantages when used to solve problems
with an internal boundary, especially those with a geometri-
cally complex interface. In contrast, weak form based parti-
cle methods cannot achieve this due to their use of numerical
integration. The EPDA combined with the strong formula-
tion can form a complete node-wise discretization scheme;
this approach accelerates the computation speed not only
for calculating the derivatives of the solution but also for
building up the discrete system. Meanwhile, additional dis-
cretization for the interfacial geometry is necessary. A series
of line segments is introduced for the enforcement of the
interface condition, and the resolution of this segmentation
is required to maintain the resolution level in nodal discretiza-
tion. As a result, both the nodal solution and discontinuity
strength along the segmented interface are obtained by solv-
ing the discrete system at the same time. In a reproducing
property test of a simple singular function, it was shown
that the EPDA accurately reproduces not only the continu-
ous part of the singular function but also the step and wedge
parts.

In the second part of this paper, strong formulations are
developed for heat transfer problems in composite materi-
als, potential problems with weak and strong discontinuities,
and elasticity problems with a material discontinuity. Differ-
ence equations are constructed for the given governing equa-
tions, resulting in an even-determined discrete system. The
robustness and efficiency of the formulations are clearly pro-
vided through various numerical experiments. In addition,
numerical results show that the developed methods are very
promising in treating interfacial singularities of the types that
confound other numerical methods.
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