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Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials
due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force de-
composition required in the Hardy stress expression becomes obscure for multi-body potentials.
In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system
modeled with multi-body interatomic potentials including up to four atoms interaction, by applying
central force decomposition of the atomic force. The balance of momentum has been demonstrated
to be valid theoretically and tested under various numerical simulation conditions. The validity of
momentum conservation justifies the extension of Hardy stress expression to multi-body potential
systems. Computed Hardy stress has been observed to converge to the virial stress of the system with
increasing spatial averaging volume. This work provides a feasible and reliable linkage between
the atomistic and continuum scales for multi-body potential systems. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891606]

I. INTRODUCTION

For decades, continuum mechanics has been widely used
to predict averaged materials response and failure in the
macroscopic length scale. As the origins of macroscopic be-
haviors reside in the material behaviors at the finer scale,
there is a growing need to obtain a more fundamental un-
derstanding of the material deformation mechanism. On the
other hand, atomistic simulations allows for studying mate-
rial behaviors at the atomistic scale by using interatomic po-
tentials fitted from ab initio calculations and/or physical mea-
surements of materials properties. Atomistic simulation can
display the microscopic deformation mechanism such as dis-
location nucleation and propagation, shear bands formation,
and micro-voids nucleation and growth. However, the high
computational expense prohibits the analysis of micro-scale
systems using fully atomistic modeling even with the
rapid development of large-scale parallel computing tech-
niques. Therefore, it is natural to develop coupled atomistic-
continuum methods to combine the strength of atomistic
and continuum modeling.1–9 In the hierarchical atomistic-
continuum modeling, results from atomistic simulations can
be employed to build constitutive laws, which serve as an in-
put to the continuum mechanics modeling. Concurrent multi-
scale modeling involves problems where two or more length
and/or time scale play roles in the overall mechanical behav-
iors. Information transfer between the atomistic and contin-
uum scales is vital in the process of multi-scale modeling.
Therefore, defining continuum quantities in terms of atomistic
quantities is of both theoretical and practical significance.
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Interests in the microscopic definitions of stress tensor
dated back to the work by Clausius10 and Maxwell11, 12 in the
form of virial theorem. The virial stress resulting from this
theorem is a macroscopic average stress and has been widely
used in atomistic simulations due to its simple form and ease
of computation. Alternatively, Irving and Kirkwood13 devel-
oped stress tensor in their classical paper on the equations of
hydrodynamics; they proposed formulas for mass, momen-
tum, and energy densities in terms of atomistic quantities.
The pointwise definitions of stress tensor and heat flux vec-
tor are established through the principles of non-equilibrium
classical statistical mechanics. However, the stress definition
involves an infinite series expansion of the Dirac delta func-
tion which needs to be approximated during the computa-
tions; i.e., atomistic simulations. Moreover, Irving and Kirk-
wook formulas considered the stochastic nature of dynamic
processes and thus needs knowledge of a probability density
distribution function of the dynamic ensemble which is usu-
ally not known a priori. Therefore, these formulas are difficult
to be implemented for atomistic simulations despite their re-
markable theoretical contributions. To avoid the complexities
in Irving and Kirkwood’s work, Hardy and co-workers,14, 15

and Murdoch16–20 independently developed stress definitions
by direct spatial averaging of the atomistic equation of motion
using a normalized weighting function. As a consequence,
the so-called Hardy stress is often used in current atomistic
simulations.21–27

However, Hardy made key assumptions on the forms of
energies and forces for the atomic system to derive the ex-
pression for a symmetric stress tensor: (1) The force on atom
i can be expressed as the summation f i =

∑
j ̸=i f ij , where f ij

is the force on atom i from atom j and satisfies f ij = −f ji;
(2) The interatomic potential energies depend only on the
interatomic distance between the atom under consideration
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and all other atoms. So far, Hardy stress has been mostly used
to compute stress for atomistic systems modeled by pair and
embedded-atom method (EAM) potentials21–24 because these
assumptions have not been proved to hold for general multi-
body potentials. Chen28 discussed the possibility of extending
Hardy stress expression to systems involving three-body po-
tentials such as Tersoff29 and Stillinger-Weber potentials.30

Chen demonstrated the invariance of Hardy stress formula
for three-body systems if f ij is defined as f ij := −∂EV /∂rij ,
where EV is the total potential energy of the system and rij

= ri − rj, ri denotes the position of atom i. Admal et al.31, 32

addressed the force decomposition problem for multi-body
potentials, with the key result that the force on a particle can
always be decomposed as a sum of central forces between par-
ticles for most practical interatomic potentials. Various forms
of the force decomposition can possibly exist due to the non-
uniqueness of the interatomic potential extension for an N
particle system with N ≥ 5.31, 32 With central force decompo-
sition, the assumptions in Hardy’s derivation can be satisfied
for multi-body systems modeled by most practical interatomic
potentials.

In this study, we aim to extend the Hardy stress expres-
sion to multi-body potential systems based on the work of
Admal et al.31, 32 and Chen.28 We use a typical coarse-grained
(CG) model for polyethylene (PE) polymer system, which in-
volves up to four-body potential, as an example to demon-
strate the invariance of Hardy stress expression to multi-body
potential system both theoretically and numerically. In Sec. II,
force decomposition expression proposed by Admal et al.31, 32

is applied to the polymer system. In Sec. III, the invariance
of Hardy stress expression is demonstrated for the system in-
volving up to four body interatomic potentials. This is fol-
lowed by computing Hardy stress from a variety of molecu-
lar dynamics conditions: unstrained and strained polymer of
different chain length at glassy and melt states in Sec. IV.
Hardy’s density, velocity, and stress expressions for the poly-
mer system have also been shown to obey the balance of mo-
mentum numerically.

II. FORCE DECOMPOSITION FOR MULTI-BODY
POTENTIALS

The interatomic potentials used for coarse-grained (CG)
polymer systems typically include bond stretching between
adjacent superatoms, bending deformation in terms of a bond
angle θ , torsional deformation in terms of a dihedral angle φ,
and non-bonded interaction described by the Lennard-Jones
(LJ) potential. For example, the potentials listed in Eq. (2.1)
are widely applied to model CG polymer systems:33, 34

Vb(rij ) = kb(rij − r0)2, (2.1a)

Vθ (rij , rik, rjk) = kθ

(
rij · rkj

rij rkj
− cos θ0

)2

= kθ (cos θ ijk − cos θ0)2, (2.1b)

Vφ(rij , rik, . . . rkl) = c0 + c1 cos φijkl + c2 cos2 φijkl

+c3 cos3 φijkl + c4 cos4 φijkl,

cos φijkl = − cos θ kl,ij + cosθ kl,jkcosθ jk,ij

sin θ kl,jk sin θ jk,ij
,

cos θ ij,kl = rij · rkl

rij rkl
, (2.1c)

VLJ (rij ) = 4ε

[( σ

rij

)12
−

( σ

rij

)6
]

, (2.1d)

where Vb, Vθ , Vφ , and VLJ denotes potential energy con-
tribution from bond stretching, bending, torsional, and non-
bonded interaction, respectively. rij = ∥rij∥ is the length of
the vector rij, rij = ri − rj, ri denotes the position of atom i.
cos θ ij,kl = rij ·rkl

rij rkl denotes the angle formed by the two vec-
tors rij and rkl. kb is the constant for bond stretching potential
and r0 is the equilibrium bond length. kθ is the constant of the
bond bending potential and θ0 is the equilibrium bond angle.
cn (n = 0, 1, 2, 3, 4) are the constants of torsional potential. ε

represents the interaction strength and σ determines the min-
imum energy position of LJ potential.

The interatomic potential energy, EV , is a sum of con-
tributions from the two-body (stretching and non-bonded),
three-body (bending), and four-body (torsional) interactions:

EV = 1
2!

∑

i

∑

j ̸=i

{Vb(rij ) + VLJ (rij )}

+ 1
3!

∑

i

∑

j ̸=i

∑

k ̸=i,j

Vθ (rij , rik, rjk) . . .

+ 1
4!

∑

i

∑

j ̸=i

∑

k ̸=i,j

∑

l ̸=i,j,k

Vφ(rij , rik, rjk, . . . , rkl).

(2.2)

A more general form of the total potential energy, EV , for a
multi-body potential system is35, 36

EV = 1
2!

∑

i

∑

j ̸=i

V2(rij )

+ 1
3!

∑

i

∑

j ̸=i

∑

k ̸=i,j

V3(rij , rik, rjk) . . .

+ . . . + 1
N !

∑

i

∑

j ̸=i

∑

k ̸=i,j

. . .

∑

q ̸=i,j,k,...p

VN (rij , rik, rjk, . . . , rpq). (2.3)

As mentioned by Admal et al.,31, 32 the force on the ith
particle can always be decomposed as a sum of central forces
as long as the interatomic potential energy, EV , defined on
shape space S := {r12, r13, . . . , r1N, r23, . . . , r (N−1)N }, are
continuously differentiable, which is apparently applicable
to the interatomic potentials used here. According to the
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chain rule

f i = −∂EV

∂ri
= −

∑

j

∂EV

∂rij

rij

rij
=

∑

j

f ij , (2.4)

where f ij is defined as

f ij := −∂EV

∂rij

rij

rij
= −∂EV

∂rij
. (2.5)

It is easy to verify that f ij defined as such naturally sat-
isfies f i =

∑
j f ij from Eq. (2.4) and is parallel to rij as

required by the strong law of action and reaction, thus is
called the central force. The central force decomposition has
been justified to be the only physically meaningful way to
decompose f i.31

From Eqs. (2.3) and (2.5), the force on the ith atom due
to the presence of jth atom can be obtained as

f ij := −∂EV

∂rij

rij

rij

= −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2!

∑

k

∑

l ̸=k

∂V2(rkl)
∂rij

. . .

+ 1
3!

∑

k

∑

l ̸=k

∑

m̸=k,l

∂V3(rkl, rkm, rlm)
∂rij

. . .

+ . . . + 1
N !

∑

k

∑

l ̸=k

∑

m̸=k,l

. . .
∑

q ̸=k,l,m,..p

∂VN (rkl, rkm, rlm, . . . rpq)
∂rij

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

rij

rij

= −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2!

∑

k

∑

l ̸=k

∂V2

∂rij
(δikδj l + δilδjk) . . .

+ 1
3!

∑

k

∑

l ̸=k

∑

m̸=k,l

∂V3

∂rij

(
δikδj l + δilδjk + δikδjm + δimδjk + δilδjm + δimδj l

)
. . .

+ . . . + 1
N !

∑

k

∑

l ̸=k

∑

m̸=k,l

. . .
∑

q ̸=k,l,m,..p

∂VN

∂rij

(
δikδj l + δilδjk + . . . + δiqδjp + δipδjq

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

rij

rij

= f ij
2 +

∑

k

f ij
3 + . . . + N(N − 1)

N!

∑

k

∑

l ̸=k

∑

m̸=k,l

. . .
∑

h ̸=k,l,m,...g

f ij
N , (2.6a)

f ij
N := −∂VN

∂rij

rij

rij
= −∂VN

∂rij
(2.6b)

For the PE polymer simulated by the CG model in our study,

f ij = f ij
stretch + f ij

LJ +
∑

k

f ij
bend + . . . + 1

2

∑

k

∑

l ̸=k

f ij
torsion,

(2.7)
where the derivation of f ij

bend and f ij
torsion can be found in the

Appendix.

III. HARDY STRESS FOR POLYMER SYSTEMS
INVOLVING MULTI-BODY POTENTIALS

Hardy’s formulas define mass density, ρ(x, t), and mo-
mentum density, p(x, t), fields in the continuum spatial point,
x, and time instant, t, in terms of a localization function ψ(x),

ρ(x, t) =
∑

i

miψ(ri − x), (3.1a)

p(x, t) =
∑

i

miviψ(ri − x), (3.1b)

v(x, t) = p(x, t)
ρ(x, t)

, (3.1c)

where mi and vi denote the mass and velocity, respectively,
of atom i, and v(x, t) is the local velocity in the continuum
spatial point, x, at a time instant t.

Taking the partial time derivative of momentum density
(3.1b),

∂p(x, t)
∂t

=
∑

i

mi dvi

dt
ψ(ri − x) + mivi ∂ψ(ri − x)

∂t

=
∑

i

f iψ(ri − x) + mivi ∂ψ(ri − x)
∂ri

· vi , (3.2)

where f i = − ∂E
V

∂ri is the interatomic force on atom i, and the
body force from gravity or electromagnetic fields are assumed
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negligible. In the original Hardy’s derivation for pair potential
system, f i can be easily written as f i =

∑
j ̸=i f ij and f ij =

−f ji is satisfied. The physical meaning of f ij for the pair po-
tential system is clearly the force on atom i from atom j. Even
though it is not so straightforward to explain the meaning of
f ij for multi-body potential systems, the results from Sec. II
ensures that f i =

∑
j ̸=i f ij and f ij = −f ji are satisfied if f ij

is defined as f ij := − ∂E
V

∂rij
rij

rij = − ∂E
V

∂rij . Using f i =
∑

j ̸=i f ij ,
Eq. (3.2) becomes

∑

i

f iψ(ri − x) + mivi ∂ψ(ri − x)
∂ri

· vi

=
∑

i

∑

j ̸=i

f ijψ(ri − x) + mivi ∂ψ(ri − x)
∂ri

· vi . (3.3)

With f ij = −f ji and the identity of localization function
ψ(x),24, 28

ψ(rk − x) − ψ(rl − x)

= −rkl · ∇x

1∫

0

ψ(rkλ + rl(1 − λ) − x)dλ, (3.4)

∑

i

∑

j ̸=i

f ijψ(ri − x)

= 1
2

∑

i

∑

j ̸=i

f ij (ψ(ri − x) − ψ(rj − x))

=−div

⎧
⎨

⎩
1
2

∑

i

∑

j ̸=i

f ij ⊗ rij

1∫

0

ψ(riλ+rj (1−λ)−x)dλ

⎫
⎬

⎭ ,

(3.5)

where the symbol ⊗ represents tensor product. Using
∇ri ψ(ri − x) = −∇xψ(ri − x) we have

mivi ∂ψ(ri − x)
∂ri

· vi = −mivi ∂ψ(ri − x)
∂x

· vi

= −div

{
∑

i

mivi ⊗ viψ(ri − x)

}

.

(3.6)

The relative velocity of a particle, ṽi , with respect to the con-
tinuum velocity is defined as

ṽi := vi − v. (3.7)

Therefore Eq. (3.6) can be rewritten as

mivi ∂ψ(ri − x)
∂ri

· vi = −div

{
∑

i

mi ṽi ⊗ ṽiψ(ri − x)

}

− div {ρv ⊗ v} , (3.8)

where
∑

i m
i ṽi ⊗ vψ(ri − x) = 0 has been used. From

Eqs. (3.2), (3.5), and (3.8), the equation of motion from the

atomistic perspective is given by

∂(ρv)
∂t

+ div(ρv ⊗ v)

= div

{

−
∑

i

mi ṽi ⊗ ṽiψ(ri − x)

−1
2

∑

i

∑

j ̸=i

f ij ⊗ rij

1∫

0

ψ(riλ + rj (1 − λ) − x)dλ

⎫
⎬

⎭ .

(3.9)

On the other hand, equation of motion from continuum
mechanics37 is

∂(ρv)
∂t

+ div{ρv ⊗ v} = divσ . (3.10)

Comparing Eq. (3.9) and (3.10), it is apparent that

σ h = −
∑

i

mi ṽi ⊗ ṽiψ(ri − x)

− 1
2

∑

i

∑

j ̸=i

f ij ⊗ rij

1∫

0

ψ(riλ + rj (1 − λ) − x)dλ.

(3.11)

The superscript h indicates the pointwise stress tensor σ is
obtained through Hardy’s formulism. Because f ij := − ∂E

V

∂rij

is parallel to rij, the potential component of σ h
V is symmetric,

as is the kinetic component of σ h
K .

Substituting the expression of f ij (Eq. (2.7)) for the poly-
mer system into σ h

V , we have

σ h
V = −1

2

∑

i

∑

j ̸=i

{

f ij
stretch + f ij

LJ +
∑

k

f ij
bend + . . .

+ 1
2

∑

k

∑

l ̸=k

f ij
torsion

⎫
⎬

⎭ ⊗ rijB(x; ri , rj ), (3.12)

where B(x; ri , rj ) :=
1∫

0

ψ(riλ + rj (1 − λ) − x)dλ.

IV. STRESS CALCULATION FROM MOLECULAR
DYNAMICS SIMULATION

Hardy stress is computed for a coarse-grained (CG)
polyethylene (PE) model modeled by multi-body potentials.
Though details of the CG model has been described in other
studies,33, 34, 38 here we will briefly review some main features
for completeness. Each CH2 is treated as a superatom, hav-
ing a mass of 14 u. We use the same superatom to represent
the CH3 group at the end of the chain. The superatoms are
interacting through the potentials described in Eq. (2.1), and
the parameters for the force field of the CG PE can be found
in previous work.33, 34, 39 PE polymer systems consisting of a
single chain having 1000 superatoms per chain (Fig. 1) and
100 chains each having 10 superatoms are generated at 500
K using the excluded volume method,40 with an initial den-
sity of around 0.5 g cm−3. The excluded volume method40

ensures that the generated PE configuration is energetically
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preferable. The PE polymer samples as prepared are relaxed
under NPT condition for 500 ps at 500 K and with an applied
isotropic zero pressure using MD simulation. A Nose/Hoover
barostat and thermostat is applied to keep the pressure and
temperature constant, respectively. Configurations at lower
temperatures are generated by cooling the samples from
500 K to lower temperature in a stepwise manner with
the effective cooling rate of 50 K ns−1. A timestep size of
1 fs is employed throughout our MD simulation. All the MD

simulations are performed using LAMMPS.41 The snap-
shots for visualization are generated using VMD graphics
package.42

Hardy stress expression (Eq. (3.12)) is employed to com-
pute the stress distribution in PE polymers. Since we consider
equilibrium conditions in this section, time averaging25 is ap-
plied to investigate the convergence of the computed Hardy
stress, which is calculated every 100 timesteps. Two types of
the localization functions are considered:

ψ1(r) =

⎧
⎪⎨

⎪⎩

15
4πR3

c

{

1 − 3
(

r

Rc

)2

+ 2
(

r

Rc

)3
}

if r = |xα − x| < Rc

0 otherwise

, (4.1a)

ψ2(r) =

⎧
⎪⎪⎨

⎪⎪⎩

c if r ≤ Rc − δ
1
2
c

(
1 − cos

(
Rc − r

δ
π

))
if Rc − δ < r ≤ Rc

0 otherwise

, (4.1b)

where c = 1/4π ( 1
6R3

c + 1
6 (Rc − δ)3 − δ2

π2 (2Rc − δ)) to keep
ψ2(r) normalized. Both functions satisfy the desired charac-
teristic set by Hardy:15 (a) ψ(x − ri) has its maximum at ri

= x; (b) ψ(x − ri) → 0 as |x − ri| → ∞; (c) ψ(x − ri)
is smooth and non-negative; (d)

∫
R3 ψ(x − ri)d3x = 1. From

Fig. 2, it can be observed that the shape of ψ2(r) can be ad-

FIG. 1. Snapshots of single PE polymer chain equilibrated at 300 K at (a)
unfolded state and (b) folded state with the constraint of periodic boundary
condition.

justed by changing the value of δ; note that when r = Rc,
ψ1(r) is almost identical with ψ2(r). In this study, various
radii of the spatial averaging volume, Rc, are also considered
to test its effect on the convergence of Hardy stress. Hardy
stress expression has been demonstrated to obey the balance
of momentum (Eq. (3.10)) in Sec. III. Here we also test the
conservation of momentum numerically using the computed
Hardy’s density (Eq. (3.1a)), velocity (Eq. (3.1c)), and stress
(Eq. (3.12)) for the polymer system.26, 27 Using the finite dif-
ference method, the discretized version of (3.10) without con-
sidering body force is given by

ρ
ν

(j+1)
α − ν

(j )
α

δt
+ ρ

{
ν

(i+1)
α − ν

(i)
α

δx
νx

+ ν
(k+1)
α − ν

(k)
α

δy
νy + ν

(m+1)
α − ν

(m)
α

δz
νz

}

= σ
(i+1)
αx − σ

(i)
αx

δx
+ σ

(k+1)
αy − σ

(k)
αy

δy
+ σ

(m+1)
αz − σ

(m)
αz

δz
(α = x, y, z) (4.2)

FIG. 2. Localization function ψ1(r) and ψ2(r) with varying δ at Rc = 10 Å
(Eq. (4.1)).
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FIG. 3. Variation of stress components with averaging time window size for the polymer system at 300 K and zero pressure computed using (a) ψ1(r) and (b)
ψ2(r) with δ = 0.1 Rc at Rc = 3 Å (blue), Rc = 6 Å (red), and Rc = 6 Å (green). The Stress computed from a random point is in solid line; the averaged stress
is in dashed line.

Here, σ
(ikmj )
xx represents σ xx(xi, yk, zm, tj) and similarly for

ρ(ikmj) and v(ikmj )(v(ikmj )
α ). For simplicity, superscript is not ex-

plicitly written at (xi, yk, zm, tj) if not necessary. For example,

σ
((i+1)kmj )
xx is written as σ

(i+1)
xx . δx = xi+1 − xi, δy = yk+1 − yk,

δz = zm+1 − zm, and δt = tj+1 − tj. δt is chosen to be 0.1 fs and
δx = δy = δz = 0.05 Å. Hardy’s density, velocity, and stress
are computed in terms of atomic variables at chosen spatial
points (xi, yk, zm) and time instants, tj, using Hardy’s formu-
las. The agreement between the two sides of the balance laws
are tested by plotting the left hand side (LHS) and right hand
side (RHS) of the equations. Throughout this paper, only the
momentum conservation in x direction is considered; LHS of
the balance of momentum is presented in solid line while RHS
in dashed line.

Figure 1 shows the PE system with periodic boundary
conditions applied to all directions. The size of the system
is around 31.15 Å × 31.15 Å × 31.15 Å. The system has
been well equilibrated at 300 K and zero stress. The polymer
is in melt state at 300 K. The computed stress at a random
chosen time instant fluctuates as the continuum spatial point
moving in the x direction along the centerline of the PE poly-
mer system, and the fluctuation amplitude becomes lower as
the spatial averaging volume gets larger. Comparison between
Hardy stress with different averaging volumes and virial stress
is plotted in Fig. 3. Virial stress of the PE system is computed
using the definition of f ij in Eq. (2.7),

σ V = − 1
V

⎧
⎨

⎩
∑

i

mivi ⊗ vi + 1
2

∑

i

∑

j ̸=i

f ij ⊗ rij

⎫
⎬

⎭ , (4.3)

where V is the system volume. Hardy stress is computed at
up to 8 randomly chosen spatial points in the PE system us-
ing both types of localization function in Eq. (4.1). δ = 0.1Rc
is chosen for ψ2(r) so that ψ1(r) and ψ2(r) have distinctive

shapes and the influence of the localization function can be
further studied. It can be seen that the radius of spatial av-
eraging volume Rc can influence the convergence of Hardy
stress significantly. While stress mostly converges after aver-
aging over 500 ps at Rc = 6 Å and 9 Å, the stress computed

FIG. 4. Balance of momentum for the polymer system at 300 K and zero
pressure computed using ψ1(r) with Rc equals to (a) 3 Å, (b) 6 Å, and
(c) 9 Å (Solid curves are computed from the LHS of Eq. (4.2) and dotted
curves are from the RHS).
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FIG. 5. Variation of stress components computed using ψ1(r) (left column)
and ψ2(r) (right column) with δ = 0.1 Rc averaged over different time win-
dow size with increasing Rc for the polymer system of chain length 1000
tensile strained to 8% at 25 K.

FIG. 6. Balance of momentum for the polymer system of chain length 10
tensile strained to 8% at 25 K computed with Rc equals to (a) 3 Å, (b) 6 Å,
and (c) 9 Å.

FIG. 7. Variation of stress components computed using ψ2(r) with
(a) δ = 0.1 Rc, (b) δ = 0.5 Rc, and (c) δ = Rc averaged over various time
steps with increasing Rc for the polymer system of chain length 10 tensile
strained to 8% at 25 K.

with Rc = 3 Å still shows large fluctuations for a randomly
chosen single point. Averaged stress over 8 points (dashed
lines) demonstrates improved convergence as revealed by the
smoother and more flat curves. It can also been observed that
stress computed with different Rc converge to different val-
ues instead of the system averaged virial stress, even after av-
eraging over multiple spatial points. This is mainly because
Hardy’s expression provides an estimate of local stress at the
chosen spatial point, and the averaging time window is not
large enough for the polymer chain to move through all con-
figurations. Thus the local stress at the spatial points can di-
verge from the system average and larger spatial averaging
volume as well as averaging over more spatial points are nec-
essary because of the inhomogeneous nature of polymer sys-
tem. Stress computed with different forms of the localization
function have certain differences, but little effect of the lo-
calization function has been observed for the averaged stress
over multiple points computed at large Rc. The balance of
momentum is obeyed by the computed Hardy’s density, ve-
locity, and stress, as demonstrated by the good agreement be-
tween LHS and RHS of Eq. (4.2) using ψ1(r) (Fig. 4). The
momentum conservation holds for different spatial averaging
volume, irrespective of the specific form of the localization
function. Results from ψ2(r) with δ = 0.1Rc are not shown
here mainly due to the noise in the balance of momentum plot
resulted from reduced smoothness of ψ2(r) compared with
ψ1(r) (Fig. 2). Since Hardy’s definition of density and veloc-
ity is not as controversial as stress, the validity of balance of
momentum justifies the application of the Hardy stress ex-
pression to multi-body potential systems.The PE system is
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FIG. 8. Balance of momentum for the polymer system of chain length 10
tensile strained to 8% at 25 K computed using ψ2(r) at δ = 0.5 Rc (left
column) and δ = Rc (right column) with Rc equals to (a) 3 Å, (b) 6 Å, and
(c) 9 Å.

then deformed in the x direction by applying 8% uniaxial
tensile strain at 25 K, while the lateral dimensions (in y and
z directions) are controlled by the barostat to keep constant
zero stress. The polymer is in glassy state at 25 K. PE sys-
tems with different chain length 1000 and 10 are considered
in the tensile test, both having a total of 1000 superatoms.
Similarly, stress varies as the spatial point moves from one pe-
riodic boundary of the PE system to the other boundary along
the x direction at a random chosen time instant. The fluctua-
tion diminishes with increasing spatial averaging volume. The
stress computed with Rc = 9 Å approaches the system average
computed by virial stress (σ xx = 101.4 MPa) for the polymer
system of chain length 1000. The influence of Rc and averag-
ing time window size for the polymer chain of length 1000
is shown in Fig. 5. Since the system is equilibrated at com-
parably low temperature (25 K), the effect of averaging time
window size is not significant, as demonstrated by little dif-
ference between averaging over 1 ps and 100 ps. Computed
σ xx gradually converges to the system average with increas-
ing Rc, while σ yy and σ zz diverge a little from the virial stress
(Fig. 5). Averaging over multiple spatial points (dashed lines)
can lead to better convergence. Computed stress with ψ1(r)
varies smoothly with increasing Rc, in contrast to that com-
puted with ψ2(r), which should be ascribed to the relatively
sharpness of ψ2(r). Note that the difference between the stress
computed with different localization functions reduce at large
spatial averaging volume. The balance of momentum is also
validated by comparing two sides of Eq. (4.2) numerically,
and the good agreement again justifies the validity of Hardy
stress expression for multi-body potential system (Fig. 6).
The convergence of stress with Rc computed using ψ2(r) with
different δ for the polymer chain of length 10 is shown in
Fig. 7. The convergence curves apparently become smoother

FIG. 9. Stress distribution of the polymer system (purple spheres represent
superatoms) with a center hole tensile strained to 8% at 25 K computed with
Rc equals to 3 Å (left column) and (b) 6 Å (right column).

with increasing δ as ψ2(r) become less sharp. All of the av-
eraged stress over multiple points with different localization
functions are converged to the system averaged values as Rc
increases. A spatial averaging volume of Rc = 10 Å can lead
to relatively good approximation. Again, note that the balance
of momentum can be established with different values of δ

and various Rc (Fig. 8).
A center hole is created in the PE system and applied with

the same deformation protocol to 8% strain in the x direc-
tion at 25 K. Hardy stress at the x-y coordinate plane is com-
puted using ψ1(r) at the grid points shown in Fig. 8(a), and
the dashed circle represents the center hole estimated by the
position of polymer superatoms at inner surface. The stress
is averaged over 1 ps because thermal fluctuation is relatively
small at 25 K (Figs. 5 and 7). Stress can be non-zero even in
the hole, because the atoms outside the spatial averaging vol-
ume could also contribute to the potential part of Hardy stress
at the chosen spatial point (Eq. (3.12)). One can easily ob-
serve the non-uniform stress distribution on the center plane
while the PE system is stretched along the x direction. The
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FIG. 10. Balance of momentum for the polymer system with a center hole
tensile strained to 8% at 25 K computed with Rc equals to (a) 3 Å and
(b) 6 Å.

stress fluctuations smear out if spatial averaging volume is
increased, but the non-uniform stress distribution is still pro-
nounced (Fig. 9). Balance of momentum is tested along cen-
terline in the x direction, and can be still established in this
case, as shown in Fig. 10 where the two sides of Eq. (4.2) are
identical.

V. CONCLUSION

Stress definition for multi-body potential systems has
been a controversial topic for decades. Among the limited
attempts to address this problem, Admal et al.31, 32 demon-
strated that the force on a particle can always be decomposed
as a sum of central forces between particles for most prac-
tical interatomic potentials, and thus symmetric microscopic
stress tensors can be derived. Chen28 also demonstrated the
invariance of Hardy stress formula for three-body systems
with f ij := −∂EV /∂rij , consistent with the force decompo-
sition formula proposed by Admal et al. In this work, we
investigated the extension of Hardy stress expression to a
polymer system described by multi-body potentials includ-
ing bending angle and torsional angle, with central force de-
composition f i = − ∂E

V

∂ri = −
∑

j

∂E
V

∂rij
rij

rij =
∑

j f ij . Through
simple PE polymer systems equilibrated at finite temperature,
we found that Hardy’s density, velocity, and stress obey bal-
ance of momentum both theoretically and numerically. Since
Hardy’s density and velocity are not directly related to the
specific form of interatomic potentials of the system, the va-
lidity of momentum conservation provides justification to the
extension of Hardy stress expression to the multi-body po-
tential system. Balance of momentum has been demonstrated
to hold for the PE system of different chain length, at zero
pressure and under deformation, with and without a center
hole. Stress distribution has been found to be highly non-

uniform within the PE system even at equilibrium state, and
only converge to the system average computed by virial stress
at large spatial averaging volume. Averaging over multiple
spatial points can significantly improve the convergence. Spe-
cific choice of the localization function affects the computed
stress only at relatively small spatial volume and before av-
eraging over different spatial points. Even though we demon-
strate the validity of Hardy stress expression for simple poly-
mer systems, the conclusion should also be applied to general
multi-body potential systems. The non-uniqueness of stress
tensor caused by multiple possible force decomposition is not
included in the present study and will be addressed by the au-
thors in future.
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APPENDIX: CENTRAL FORCE EXPRESSIONS FOR
THE BENDING AND TORSIONAL POTENTIALS

In this section, we present central force expressions for
the commonly used interatomic potential energy for poly-
mers including bond stretching, bending, torsional, and non-
bonded terms (Eq. (2.1)). Since the potentials that describe
bond stretching and non-bonded terms are pairwise, we only
present the derivations for bending and torsional terms in the
interatomic potentials.

1. Central force expression due to bending
deformation

Consider sequent three atoms (atoms i, j, k) in a polymer
chain with bond angle equals θ ijk, where pairs (i, j) and (j, k)
are covalently bonded. The interatomic potential from bend-
ing deformation is

Vθ (rij , rik, rjk) = kθ (cos θ ijk − cos θ0)2

= kθ

(
(rij )2 + (rkj )2 − (rik)2

2rij rkj
− cos θ0

)2

,

(A1)

where cos θ ijk = rij ·rkj

rij rkj , kθ is the constant for bond bending
potential, θ0 is the equilibrium bond angle, rij = ri − rj,
rij = |rij|.

The interatomic force between atoms i and j is defined as
f ij := − ∂E

V

∂rij r̂ij , r̂ij is the unit vector along rij. Thus the pair
force between atoms i and j from bending potential is given
by

f ij
bend = − ∂Vθ

∂rij
r̂ij

= −2kθ

(
cos θ ijk − cos θ0

) (
1

rjk
− cos θ ijk

rij

)
r̂ij .

(A2)

Similarly, the central force between atom pairs (i, k) and (j, k)
are, respectively,
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f ik
bend = − ∂Vθ

∂rik
r̂ik = 2kθ (cos θ ijk − cos θ0)

rik

rij rkj
r̂ik, (A3)

f jk
bend = −2kθ (cos θ ijk − cos θ0)

(
1
rij

− cos θ ijk

rkj

)
r̂jk.

(A4)

2. Central force expression due to torsional
deformation

Consider sequent four atoms (atoms i, j, k, l) in a polymer
chain with dihedral angle equals φijkl, where pairs (i, j), (j, k),
(k, l) are covalently bonded. The interatomic potential from
torsional deformation is

Vφ(rij , rik, . . . rkl) = c0 + c1 cos φijkl + c2 cos2 φijkl + c3 cos3 φijkl + c4 cos4 φijkl,

cos φijkl = (rkj × rik) · (rkj × rlk)
∥rkj × rik∥∥rkj × rlk∥

= (rik · rlk)(rkj )2 − (rik · rkj )(rkj · rlk)
∥rkj × rik∥∥rkj × rlk∥

= cos θ ikl − cos θ ikj cos θ jkl

(1 − cos θ ikj )1/2(1 − cos θ jkl)1/2
, (A5)

where cn (n = 0, 1, 2, 3, 4) are the constants of torsional potential:

f ij
torsion = −

∂Vφ

∂rij
r̂ij = −

dVφ

d cos φijkl

∂ cos φijkl

∂rij
r̂ij . (A6)

The derivative of Vφ with respect to cos φijkl is given by

f
ijkl
φ =

dVφ

dcos φijkl
= c1 + 2c2 cos φijkl + 3c3 cos2 φijkl + 4c4 cos3 φijkl . (A7)

And the partial derivative of cos φijkl with respect to rij is given by

∂ cos φijkl

∂rij
= ∂ cos φijkl

∂ cos θ ikj

∂ cos θ ikj

∂rij
=

(
cos θ jkl

sin θ ikj sin θ jkl
− cos φijkl cos θ ikj

sin2 θ ikj

)
rij

rikrjk
(A8)

Substituting Eqs. (A7) and (A8) into Eq. (A6), we obtain

f ij
torsion = −f

ijkl
φ

(
cos θ jkl

sin θ ikj sin θ jkl
− cos φijkl cos θ ikj

sin2 θ ikj

)
rij

rikrjk
r̂ij (A9)

Similarly, the central force between atom pairs (i, k), (i, l), (j, k), (j, l), and (k, l) are, respectively,

f ik
torsion = −f

ijkl
φ

(
1

sin θ ikj sin θ jkl

(
1
rkl

− cos θ jkl

rjk

)
+ cos φijkl

sin2 θ ikj

(
cos θ ikj

rjk
− 1

rik

))
r̂ik, (A10)

f il
torsion = f

ijkl
φ

1
sin θ ikj sin θ jkl

r il

r ikrkl
r̂il , (A11)

f jk
torsion = −f

ijkl
φ

⎛

⎜⎜⎜⎜⎝

1
sin θ ikj sin θ jkl

(
−cos θ jkl

r ik
− cos θ ikj

rkl
+ 2 cos θ ikj cos θ jkl

rjk

)

+ cos φijkl

(
cos θ ikj

sin2 θ ikj

(
1
rik

− cos θ ikj

rjk

)
+ cos θ jkl

sin2 θ jkl

(
1
rkl

− cos θ jkl

rjk

))

⎞

⎟⎟⎟⎟⎠
r̂jk, (A12)

f j l
torsion = −f

ijkl
φ

(
cos θ ikj

sin θ ikj sin θ jkl
− cos φijkl cos θ jkl

sin2 θ jkl

)
rjl

rjkrkl
r̂j l, (A13)

f kl
torsion = −f

ijkl
φ

(
1

sin θ ikj sin θ jkl

(
1
rik

− cos θ ikj

rjk

)
+ cos φijkl

sin2 θ jkl

(
cos θ jkl

rjk
− 1

rkl

))
r̂kl . (A14)
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