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Heat flux expressions are derived for multibody potential systems by extending the 
original Hardy’s methodology and modifying Admal & Tadmor’s formulas. The continuum 
thermomechanical quantities obtained from these two approaches are easy to compute 
from molecular dynamics (MD) results, and have been tested for a constant heat flux 
model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The 
convergence criteria and affecting parameters, i.e. spatial and temporal window size, and 
specific forms of localization function are found to be different between the two systems. 
The conservation of mass, momentum, and energy are discussed and validated within this 
atomistic–continuum bridging.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The success of continuum mechanics on predicting material response and failure in the macroscopic length scale is 
undeniable. Accompanied with the development of new techniques of reducing feature size, the applicability of continuum 
mechanics to fine scale phenomena attracts increasing attention. There is a growing need to interpret continuum concepts 
and laws in terms of atomistic/molecular behaviors to extend the concepts of continuum mechanics such as stress and strain 
to nano-scale. Classical molecular dynamics (MD) simulations have been widely used to capture the microscopic behaviors 
with atomistic resolution. Even though classical MD cannot resolve the electronic degrees of freedom, which is critical for 
understanding chemical reactions, bond breaking, and some of other fundamental aspects of atomic interactions, it can 
address the interaction of up to millions of atoms with satisfying accuracy thus being well suited to investigate nano-scale 
phenomena [1–3]. In MD simulations, the trajectories of interacting atoms are computed based on Newton’s laws of motion, 
where the force on each atom is obtained from the spatial derivative of the interatomic potential energy.

The atomistic variables retrieved from MD simulations have been attempted to interpret the continuum quantities, in 
order to enable the multiscale linkage between microscopic and macroscopic scales in either hierarchical or concurrent 
modeling [4–12]. Virial stress by Clausius [13] and Maxwell [14,15] is probably the first attempt to derive microscopic 
definitions of stress tensor through the so-called virial theorem. Virial stress has been widely used in atomistic simulations 
due to its simple form and ease of computation. Irving and Kirkwood [16] developed point-wise stress tensor and heat flux 
vector as a statistical average of atomistic variables in their classical paper on the equations of hydrodynamics. However, 
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the definitions of stress and heat flux are difficult to implement in atomistic simulations because the formulation involves 
a series expansion of the Dirac delta function and the probability density distribution function of the dynamic ensemble 
which is usually not known a prior. In order to obtain the stress and heat flux fields from MD simulations of non-equilibrium 
systems, Hardy [17,18] established conservation laws in which continuum thermomechanical fields are defined in terms of 
atomistic quantities through a localization function. The so-called Hardy stress has arbitrary spatial resolution and is often 
used in atomistic simulations [19–22]. However, Hardy’s formulation has been explicitly based on the assumption of pair 
interatomic potential. Zimmerman et al. [21,22] examined the conditions under which the formulas could be valid and 
extended Hardy’s work to include embedded atom method (EAM) potentials. Chen [23] further attempted formulating the 
stress and heat flux expressions in Hardy’s framework to include three-body potentials of the Tersoff type [24,25] and the 
Stillinger–Weber type [26]. Multibody potentials have been considered by Delph [27], who discussed the applicability of 
Hardy’s approach in more general context. However, the ambiguity on how to distribute the total potential energy among 
the atoms still remains one of the difficulties to extend Hardy’s formulation to general multibody potential systems.

Murdoch [28–32] developed stress and heat flux expressions in a similar manner with Hardy by directly taking spatial 
average of the atomistic equation of motion with a normalized weighting function. Note that, in this work, Murdoch also 
considered temporal averaging besides spatial averaging to identify the computed quantities with experimentally measured 
values that are local averages of molecular behaviors in both space and time. In contrast to Hardy’s approach, Murdoch’s ap-
proach does not explicitly restrict the type of interatomic potentials for the systems under study. However, the disadvantage 
is the multiple integration involved in the resulting expressions, which makes it comparably more computationally expen-
sive to implement for MD simulations. Admal and Tadmor [33] adopted Murdoch’s methodology to avoid the ambiguities 
of energy decomposition among the atoms. By conducting combined ensemble and spatial averaging, Admal and Tadmor 
developed stress and heat flux expressions suitable for atomistic modeling.

Due to the lack of consensus on the definitions of continuum thermomechanical quantities in terms of atomistic variables 
that satisfy the conservation equations, in this study, we will discuss and compare the thermomechanical expressions devel-
oped by different approaches, with special focus on the heat flux definitions from Hardy and Admal & Tadmor. In Section 2, 
we briefly recall Hardy’s formalism and extend it to multibody potential systems in the similar manner as Delph [27]. The 
validity of the conservation of mass, momentum, and energy are examined in detail. In Section 3, the potential part of heat 
flux expression is proposed the same as Hardy’s original formulae and that in Admal & Tadmor’s work. The energy density 
expression can be derived from the conservation of energy and involves integration over time. In Section 4, constant heat 
flux MD models are established for a crystalline iron described by the EAM potential and a coarse-grained (CG) model of 
amorphous polyethylene (PE) polymer system which involves up to four-body potentials. The expressions from Hardy’s and 
Admal & Tadmor’s methodologies are employed to compute the heat flux vectors in the two systems. Balance of energy is 
also investigated numerically in Hardy’s and Admal & Tadmor’s frameworks.

2. Expressions of the thermomechanical quantities involving multibody potentials using Hardy’s approach

Hardy’s original work can be found in Refs. [17,18]. Here we apply a similar procedure to obtain the stress and heat flux 
expressions for multibody potential systems. The essence of Hardy’s approach is to link the continuum and atomistic scales 
through a localization function, ψ(x, t), which assigns weights to the atoms that contribute to the interested continuum 
quantities at the spatial point x and time t . Hardy defines mass density, ρ(x, t), momentum density, p(x, t), and energy 
density, eh(x, t), as follows:

ρ(x, t) :=
∑

i

miψ
(
ri − x

)
(2.1a)

p(x, t) :=
∑

i

miviψ
(
ri − x

)
(2.1b)

ρeh(x, t) :=
∑

i

(
1

2
mi(vi)2 + φi

)
ψ
(
ri − x

)
(2.1c)

where mi , vi , ri , and φi are the mass, velocity, position, and potential energy of atom i. Superscript ‘h’ represents the 
thermomechanical expressions of Hardy’s approach. The total potential energy of the system � = ∑

i φ
i . The continuum 

velocity, v(x, t), is given by

v(x, t) := ρ(x, t)−1p(x, t) (2.2)

The localization function, ψ(x), has the dimension of inverse volume that satisfies 
∫
R3 ψ(x)dx = 1. It can also be proved 

that

ψ
(
ri − x

)− ψ
(
r j − x

)= −ri j · ∇B
(
x; ri, r j) (2.3)
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where ri j = ri − r j and the bond function B(x; ri, r j) is defined as

B
(
x; ri, r j) :=

1∫
0

ψ
(
λri j + r j − r

)
dλ (2.4)

2.1. Conservation of mass

Taking the partial time derivative of mass density (2.1a) is given by,

∂ρ(x, t)

∂t
=
∑

i

mi ∂ψ(ri − x)

∂t
=
∑

i

mi ∂ψ(ri − x)

∂ri
· vi = −div

{∑
i

miviψ
(
ri − x

)}= −div{ρv} (2.5)

It thus can be demonstrated that Hardy’s definitions of mass density, momentum density, and velocity obey the continuum 
conservation of mass.

2.2. Conservation of momentum and stress expression

Taking the partial time derivative of momentum density (2.1b),

∂p(x, t)

∂t
=
∑

i

mi dvi

dt
ψ
(
ri − x

)+ mivi ∂ψ(ri − x)

∂t

=
∑

i

(
fi + bi)ψ(ri − x

)+ mivi ∂ψ(ri − x)

∂ri
· vi (2.6)

where fi = − ∂�

∂ri is the interatomic force on atom i, and bi represents the body force on atom i from gravity or electromag-
netic fields. In the following derivations, body force will be assumed negligible. As discussed in our previous work [34], if 
we define

fi j := − ∂�

∂ri j
(2.7)

then, fi = − ∂�

∂ri = − 
∑

j �=i
∂�

∂ri j =∑ j �=i fi j and fi j = −f ji can be established. The right hand side (RHS) of Eq. (2.6) becomes

∑
i

fiψ
(
ri − x

)+ mivi ∂ψ(ri − x)

∂ri
· vi

= 1

2

∑
i

∑
j �=i

(
fi jψ

(
ri − x

)+ f jiψ
(
r j − x

))− div

{∑
i

mivi ⊗ viψ
(
ri − x

)}
(2.8)

Using the property of localization function in Eq. (2.3),

∂p(x, t)

∂t
= −1

2

∑
i

∑
j �=i

fi j ⊗ ri j∇B
(
x; ri, r j)− div

{∑
i

mivi ⊗ viψ
(
ri − x

)}

= div

{
−1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)−∑

i

mivi ⊗ viψ
(
ri − x

)}
(2.9)

Hardy defines relative velocity ṽi(x, t) := vi(t) − v(x, t). Replacing vi with ṽi and v in Eq. (2.3) (unless otherwise noted, vi , 
ṽi , and v represent ṽi(x, t), vi(t), and v(x, t) for simplicity),

∂p(x, t)

∂t
= div

{
−1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)−∑

i

mi ṽi ⊗ ṽiψ
(
ri − x

)− ρv ⊗ v
}

(2.10)

where 
∑

i mi ṽi ⊗ vψ(ri − x) = 0 has been used. From the continuum balance of momentum, we have

∂p(x, t)

∂t
= div{σ − ρv ⊗ v} (2.11)

Thus the stress tensor can be identified as
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σ = −1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)−∑

i

mi ṽi ⊗ ṽiψ
(
ri − x

)
(2.12a)

σ v = −1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j), σ k = −

∑
i

mi ṽi ⊗ ṽiψ
(
ri − x

)
(2.12b)

The defined quantities satisfy the conservation of momentum. Note that the stress expression is not restricted to two-body 
potentials and we only use the central force assumption, i.e. fi j := − ∂�

∂ri j . A general multibody interatomic potentials can be 
decomposed into the sum of a two-body term, a three-body term, up to an N-body term [27,35]:

� = 1

2!
∑

i

∑
j �=i

φ2
(
ri j)+ 1

3!
∑

i

∑
j �=i

∑
k �=i, j

φ3
(
ri j, rik, r jk)+ . . . + 1

N!
∑

i

∑
j �=i

∑
k �=i, j

. . .
∑

q �=i, j,k,...,p

φN
(
ri j, rik, r jk, . . . , r pq)

(2.13a)

� =
∑

i

φi(ri j, rik, r jk, . . . , r pq) (2.13b)

where φN(ri j, rik, r jk, . . . , r pq) represents N-body potential term. There is still no consensus on how to distribute the total 
energy to individual atoms. A most common way is to evenly distribute the interatomic potential energy to the contributing 
atoms (Eq. (2.14)), which is reasonable for pair potential systems having the same type of atoms but doubtful for many 
multibody potentials such as those describing bending and torsional deformations.

φi = 1

2!
∑
j �=i

φ2
(
ri j)+ 1

3!
∑
j �=i

∑
k �=i, j

φ3
(
ri j, rik, r jk)+ . . . + 1

N!
∑
j �=i

∑
k �=i, j

. . .
∑

q �=i, j,k,...,p

φN
(
ri j, rik, r jk, . . . , r pq) (2.14)

From Eqs. (2.7) and (2.13),

fi j := − ∂�

∂ri j

= − 1

2!
∑

k

∑
l �=k

∂φ2(rkl)

∂ri j
− 1

3!
∑

k

∑
l �=k

∑
m �=k,l

∂φ3(rkl, rkm, rlm)

∂ri j

− . . . − 1

N!
∑

k

∑
l �=k

∑
m �=k,l

. . .
∑

q �=k,l,m,...,p

∂φN(rkl, rkm, rlm, . . . , r pq)

∂ri j

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2!
∑

k

∑
l �=k

∂φ2

∂ri j
(δikδ jl + δilδ jk)

+ 1

3!
∑

k

∑
l �=k

∑
m �=k,l

∂φ3

∂ri j
(δikδ jl + δilδ jk + δikδ jm + δimδ jk + δilδ jm + δimδ jl)

+ . . . + 1

N!
∑

k

∑
l �=k

∑
m �=k,l

. . .
∑

r �=k,l,m,..,s

∂φN

∂ri j
(δikδ jl + δilδ jk + . . . + δisδ jr + δirδ js)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ri j

ri j

= fi j
2 +

∑
k �=i, j

fi j
3 + . . . + N(N − 1)

N!
∑

k �=i, j

∑
l �=i, j,k

∑
m �=i, j,k,l

. . .
∑

p �=k,l,m,...,q

fi j
N (2.15)

where fi j
N := − ∂φN

∂ri j
ri j

ri j = − ∂φN
∂ri j represents the N-body contribution to the central force fi j . Substituting Eq. (2.15) into the 

expression of σ v in Eq. (2.12b),

σ v = −1

2

∑
i

∑
j �=i

{
fi j
2 +

∑
k �=i, j

fi j
3 + . . . + N(N − 1)

N!
∑

k �=i, j

∑
l �=i, j,k

∑
m �=i, j,k,l

. . .
∑

p �=k,l,m,...,q

fi j
N

}
⊗ ri j B

(
x; ri, r j) (2.16)

2.3. Conservation of energy and heat flux expression

We continue the derivation of heat flux expression through the conservation of energy. Taking the partial time derivative 
of Eq. (2.1c),

∂(ρeh(x, t))

∂t
=
∑(

mivi · dvi

dt
+ ∂φi

∂t

)
ψ
(
ri − x

)+∑
(

1

2
mi(vi)2 + φi

)
∂ψ(ri − x)

∂t
(2.17)
i i
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Similar to the derivation of stress expression, we aim to identify heat flux expression by comparing the balance of energy 
equations at the atomistic and continuum scales. Therefore, we rewrite the RHS of Eq. (2.17) in a divergence form similar 
to the continuum energy conservation equation. The second term of the RHS of Eq. (2.17) is

∑
i

(
1

2
mi(vi)2 + φi

)
∂ψ(ri − x)

∂t
= −

∑
i

(
1

2
mi(vi)2 + φi

)
∂ψ(ri − x)

∂x
· vi

= −div

{∑
i

(
1

2
mi(vi)2 + φi

)
viψ

(
ri − x

)}
(2.18)

Replacing vi by ṽi and v in Eq. (2.18),

∑
i

(
1

2
mi(vi)2 + φi

)
∂ψ(ri − x)

∂t

= div

{
−
∑

i

mi(ṽi ⊗ ṽi)ψ(ri − x
)
v −

∑
i

(
1

2
mi(ṽi)2 + φi

)
ṽiψ

(
ri − x

)−∑
i

(
1

2
mi(vi)2 + φi

)
ψ
(
ri − x

)
v
}

= div
{
σ kv − qh

k − ρehv
}

(2.19)

qh
k :=

∑
i

(
1

2
mi(ṽi)2 + φi

)
ṽiψ

(
ri − x

)
(2.20a)

qh
k1 :=

∑
i

1

2
mi(ṽi)2

ṽiψ
(
ri − x

)
(2.20b)

qh
k2 :=

∑
i

φi ṽiψ
(
ri − x

)
(2.20c)

The first term of the RHS of Eq. (2.17) can also be arranged in a divergence form as:

∑
i

(
mivi · dvi

dt
+ ∂φi

∂t

)
ψ
(
ri − x

)=
∑

i

(
fi · vi + 1

2

∑
j

∑
k �= j

∂φi

∂r jk
· (v j − vk))ψ

(
ri − x

)

=
∑

i

(
−
∑
j �=i

∑
k

∂φk

∂ri j
· vi + 1

2

∑
j

∑
k �= j

∂φi

∂r jk
· (v j − vk))ψ

(
ri − x

)

=
∑

i

∑
j �=i

∑
k �=i

(
∂φk

∂ri j
· vi
)

rik · ∇B
(
x; ri, rk)

= div

{∑
i

∑
j �=i

∑
k �=i

(
∂φ j

∂rik
· vi
)

ri j B
(
x; ri, r j)} (2.21)

Replacing vi by ṽi and v in Eq. (2.21),

∑
i

(
mivi · dvi

dt
+ ∂φi

∂t

)
ψ
(
ri − x

)= div

{∑
i

∑
j �=i

∑
k �=i

∂φ j

∂rik
· (ṽi + v

)
ri j B

(
x; ri, r j)}

= div

{∑
i

∑
j �=i

∑
k �=i

∂φ j

∂rik
⊗ ri j B

(
x; ri, r j)v − qh

v

}
(2.22)

qh
v := −

∑
i

∑
j �=i

∑
k �=i

(
∂φ j

∂rik
· ṽi
)

ri j B
(
x; ri, r j) (2.23)

In order for the continuum conservation of energy satisfied by the defined thermomechanical quantities, 
∑

i

∑
j �=i

∑
k �=i

∂φ j

∂rik

⊗ ri j B(x; ri, r j) = σ v needs to be established. Note that for pair potentials,

∑∑∑ ∂φ j

∂rik
⊗ ri j B

(
x; ri, r j)=

∑∑ ∂φ j

∂ri j
⊗ ri j B

(
x; ri, r j)
i j �=i k �=i i j �=i
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= 1

2

∑
i

∑
j �=i

φ′
2

(
ri j)r̂i j ⊗ ri j B

(
x; ri, r j)

= −1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)= σ v (2.24)

where r̂i j is the unit vector in the direction of ri j . For embedded-atom method, we have φi = Fi(
∑

j �=i ρ j(ri j)) +
1
2

∑
j �=i ϕ(ri j),

∑
i

∑
j �=i

∑
k �=i

∂φ j

∂rik
⊗ ri j B

(
x; ri, r j)=

∑
i

∑
j �=i

(
F ′

jρ
′
i

(
ri j)+ 1

2
ϕ′(ri j))r̂i j ⊗ ri j B

(
x; ri, r j)

= 1

2

∑
i

∑
j �=i

(
F ′

iρ
′
j

(
ri j)+ F ′

jρ
′
i

(
ri j)+ ϕ′(ri j))r̂i j ⊗ ri j B

(
x; ri, r j)

= −1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)= σ v (2.25)

However, for general multibody potentials,

∑
i

∑
j �=i

∑
k �=i

∂φ j

∂rik
⊗ ri j B

(
x; ri, r j) �= −1

2

∑
i

∑
j �=i

fi j ⊗ ri j B
(
x; ri, r j)= σ v (2.26)

Therefore, from Eqs. (2.17)–(2.23) and (2.26), it can be shown that

∂(ρeh(x, t))

∂t
�= div

{
σv − qh − ehv

}
(2.27)

Thus the derived thermomechanical expressions for multibody potential do not necessarily satisfy the continuum conserva-
tion laws. This may arise from the manner in which the total potential energy is distributed among the atoms. Intuitively, 
total interatomic energy describing bending and torsional deformation should not be distributed evenly among the atoms, 
neither should the distribution factor be constant with time. However, we will demonstrate in Section 4 that the conserva-
tion of energy is not significantly violated by such derived Hardy’s thermomechanical quantities for multibody potentials. 
Using Eq. (2.15), the heat flux expression obtained from Hardy’s approach is

qh =
∑

i

(
1

2
mi(ṽi)2 + φi

)
ṽiψ

(
ri − x

)

+
∑

i

∑
j �=i

(
1

2
fi j
2 + 1

3

∑
k �=i, j

(
fi j
3 + fik

3

)+ N − 1

N!
∑

k �=i, j

. . .
∑

q �=i, j,k,...,p

(
fi j

N + (N − 2)fik
N

)) · ṽiri j B
(
x; ri, r j) (2.28)

where we have used

∑
k �=i

∂φ j

∂rik
= 1

2!
∑
k �=i

∑
l �= j

∂φ2(r jl)

∂rik
δilδ jk + 1

3!
∑
k �=i

∑
l �= j

∑
m �= j,l

∂φ3(r jl, r jm, rlm)

∂rik
(δilδ jk + δimδ jk + δilδkm + δimδkl) + . . .

+ 1

N!
∑
k �=i

∑
l �= j

∑
m �= j,l

. . .
∑

r �= j,k,...,s

∂φN(r jl, r jm, rlm, . . . , rrs)

∂rik
(δilδ jk + δimδ jk + . . . + δiqδ jk + . . .

+ δirδks + δisδkr)

= 1

2!
∂φ2(ri j)

∂ri j
+ 2

3!
∑

k �=i, j

(
∂φ3(r ji, r jk, rik)

∂ri j
+ ∂φ3(r ji, r jk, rik)

∂rik

)
+ . . .

+ N − 1

N!
∑

k �=i, j

∑
l �=i, j,k

∑
m �=i, j,k,l

. . .
∑

p �=i, j,k,l,...,q

(
∂φN(r ji, r jk, rik, . . . , r pq)

∂ri j

+ (N − 2)
∂φN(r ji, r jk, rik, . . . , r pq)

∂rik

)
(2.29)
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3. Admal & Tadmor’s heat flux expression

An alternative way is to avoid defining energy density directly but to propose heat flux expression applicable to multi-
body potentials and deriving the energy density expression that satisfies the conservation of energy. The resulting expression 
of heat flux does not have the terms involving individual atomic potential thus avoids the ambiguities of distributing to-
tal interatomic potential among the atoms. Admal and Tadmor [33] adopted Murdoch’s approach [30] and developed the 
expressions of heat flux vector and energy density convenient to compute from MD results.

We review the derivation of heat flux vector in the original Admal & Tadmor’s methodology [33] briefly. In their work, 
Irving–Kirkwood procedure was reformatted by incorporating Murdoch’s methodology so that the resulting expressions for 
the internal energy density and heat flux are no longer restricted to pair potential systems. Rather than defining mass and 
momentum density in terms of the localization function, the densities are defined based on the probability density function 
W (r1, . . . , rN ; v1, . . . , vN ) in the original Admal & Tadmor’s approach:

ρ(x, t) :=
∑

i

mi
∫

R3N×R3N

W δ
(
ri − x

)
dr1dr2 . . . drN dv1dv2 . . . dvN (3.1)

With the property of the Dirac delta distribution function,

ρ(x, t) =
∑

i

mi
∫

R3N×R3N

W dr1 . . . dri−1dri+1 . . . drN dv1dv2 . . . dvN

:=
∑

i

mi 〈W |ri = x
〉

(3.2)

where 〈W |ri = x〉 denotes that ri is substituted with x in W , and the integral of W is taken over all its arguments but ri . 
Similarly, the momentum and kinetic energy density are defined as:

p(x, t) :=
∑

i

mi 〈vi W
∣∣ri = x

〉
(3.3)

ρek(x, t) := 1

2

∑
i

mi 〈(vi)2
W
∣∣ri = x

〉
(3.4)

Taking partial time derivative of Eq. (3.4),

∂(ρek)

∂t
=
∑

i

mi
〈(

vi)2 ∂W

∂t

∣∣∣∣ri = x
〉

= 1

2

∑
i

mi
〈(

vi)2∑
j=1

(
−v j · ∇r j W + ∇r j �

m j
· ∇v j W

)∣∣∣∣ri = x
〉

(3.5)

where Liouville’s theorem that describes the evolution of the probability density function is applied:

∂W

∂t
+
∑
i=1

(
vi · ∇ri W − ∇ri �

mi
· ∇vi W

)
= 0 (3.6)

With the identity 
∫
R3 G · ∇ri W dri = − 

∫
R3 W divri Gdri , where G is any continuously differentiable vector or tensor-valued 

function defined on the phase space and satisfies certain additional decay conditions described in Admal and Tadmor [36], 
one can find that 〈(vi)2v j ·∇r j W |ri = x〉 = 0 for i �= j; from another identity 

∫
R3 G ·∇vi W dvi = − 

∫
R3 W divvi Gdvi , 〈(vi)2 ∇r j �

m j ·
∇v j W |ri = x〉 = 0 for i �= j. Therefore Eq. (3.5) becomes

∂(ρek)

∂t
= −1

2

∑
i

mi 〈(vi)2
vi · ∇ri W

∣∣ri = x
〉− 1

2

∑
i

〈(
vi)2

fi · ∇vi W
∣∣ri = x

〉
(3.7)

Replacing vi by ṽi and v in Eq. (3.7), the first term becomes

−1

2

∑
i

mi 〈(vi)2
vi · ∇r j W

∣∣ri = x
〉

= − div

{∑
i

mi 〈(ṽi ⊗ ṽi)W ∣∣ri = x
〉
v +

∑
i

1

2
mi 〈(ṽi)2

ṽi W
∣∣ri = x

〉+∑
i

1

2
mi 〈(vi)2

W
∣∣ri = x

〉
v
}

(3.8)

With



198 Y. Fu, J.-H. Song / Journal of Computational Physics 294 (2015) 191–207
σ k := −
∑

i

mi 〈(ṽi ⊗ ṽi)W ∣∣ri = x
〉

(3.9)

qk :=
∑

i

1

2
mi 〈(ṽi)2

ṽi W
∣∣ri = x

〉
(3.10)

Eq. (3.8) becomes

−1

2

∑
i

mi 〈(vi)2
vi · ∇r j W

∣∣ri = x
〉= div{σ kv − qk − ρekv} (3.11)

Applying 
∫
R3 G · ∇vi W dvi = − 

∫
R3 W divvi Gdvi to the second term of Eq. (3.7)

−1

2

∑
i

〈(
vi)2

fi · ∇vi W
∣∣ri = x

〉= 1

2

∑
i

〈
divvi

{
fi(vi)2}

W
∣∣ri = x

〉=∑
i

〈
fi · vi W

∣∣ri = x
〉

=
∑

i

〈
fi · ṽi W

∣∣ri = x
〉+∑

i

〈
fi W

∣∣ri = x
〉 · v

=
∑

i

〈
fi · ṽi W

∣∣ri = x
〉+ divσ v · v (3.12)

where vi = ṽi + v and divσ v =∑i〈fi W |ri = x〉 · v is applied.
Now the key step is to decompose 

∑
i〈fi · ṽi W |ri = x〉 into − div qv and ḡs(x, t). For further details, interested reader is 

referred to Admal and Tadmor [33].

qv := 1

2

∑
i �= j

∫

z∈R3

z

1∫
s=0

〈
fi j ·

(
vi + v j

2
− v

)
W

∣∣∣∣ri = x + sz, r j = x − (1 − s)z
〉
dsdz (3.13)

ḡs := 1

2

∑
i �= j

〈
fi j · (vi − v j)W ∣∣ri = x

〉
(3.14)

q is defined as

q := qk + qv (3.15)

To satisfy the energy conservation, ev can be obtained as

ev =
t∫

0

1

ρ

(
σ : ∇xv − ḡs(x, t)

)
dt + c (3.16)

Further spatial averaging is applied to the thermomechanical expressions when calculation is made on MD simulation 
results. The probability density function, W , is taken as W MD(r1, . . . , rN ; v1, . . . , vN ) =∏

i δ(ri − ri
MD(t))δ(vi − vi

MD(t)) due 
to the deterministic nature of typical MD simulations. The spatial averaged thermomechanical field, fψ(x, t), from the 
Irving–Kirkwood point-wise field, f (y, t; W ), is given by

fψ(x, t) =
∫

R3

ψ(y − x) f (y, t; W )dy (3.17)

where f (y, t; W ) is obtained from the previous procedures. Applying Eq. (3.17) to Eqs. (3.10), (3.13) and (3.16),

qψ,k :=
∑

i

1

2
mi(ṽi

ψ,MD

)2
ṽi
ψ,MDψ

(
ri

MD − x
)

(3.18)

qψ,v = 1

2

∑
i �= j

∫

R3×R3

〈
fi j ·

(
vi + v j

2
− v

)
W MD

∣∣∣ri = u, r j = v
〉
(u − v)B(x;u,v)dudv

= 1

2

∑
i �= j

fi j
MD ·

(
vi

MD + v j
MD

2
− vψ

)(
xi

MD − x j
MD

)
B
(
x;xi

MD,x j
MD

)
(3.19)

eAT
ψ,v =

t∫
1

ρ

(
ψ :∇xvψ − ḡψ,s(x, t)

)
dt + c (3.20)
0
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σψ = −
∑

i

mi(ṽi
ψ,MD ⊗ ṽi

ψ,MD

)
ψ
(
ri

MD − x
)− 1

2

∑
i �= j

fi j
MD ⊗ (xi

MD − x j
MD

)
B
(
x;xi

MD,x j
MD

)
(3.21)

ḡψ,s(x, t) = 1

2

∑
i �= j

fi j
MD · (vi

MD − v j
MD

)
ψ
(
ri

MD − x
)

(3.22)

where ṽi
ψ,MD := vi

MD − vψ .
The most significant difference of Admal & Tadmor’s methodology from Hardy’s is that the potential part of energy 

density is not explicitly defined, apart from the ensemble averaging employed in Admal & Tadmor’s expressions. We here 
use similar methodology in Admal & Tadmor’s work. However, we apply spatial averaging directly through the localization 
function, ψ(x, t), instead of ensemble averaging through the probability density function followed by spatial averaging. 
Besides the mass density and momentum density, only the kinetic energy density is defined as follows,

ρeAT
k (x, t) :=

∑
i

1

2
mi(vi)2

ψ
(
ri − x

)
(3.23)

Superscript ‘AT ’ represents the thermomechanical expressions of Admal & Tadmor’s approach. Since the derivation of stress 
tensor from the conservation of momentum is identical to that from Hardy’s approach, we only focus on the derivation of 
heat flux vector and potential energy density.

Taking the partial time derivative of kinetic energy density Eq. (3.23),

∂(ρeAT
k (x, t))

∂t
=
∑

i

mivi · dvi

dt
ψ
(
ri − x

)+∑
i

1

2
mi(vi)2 ∂ψ(ri − x)

∂t
(3.24)

The second term of the RHS of Eq. (3.24) is

∑
i

1

2
mi(vi)2 ∂ψ(ri − x)

∂t
= −

∑
i

1

2
mi(vi)2 ∂ψ(ri − x)

∂x
· vi

= −div

{∑
i

1

2
mi(vi)2

viψ
(
ri − x

)}
(3.25)

Replacing vi by ṽi and v in Eq. (3.25),

∑
i

1

2
mi(vi)2 ∂ψ(ri − x)

∂t

= div

{
−
∑

i

mi(ṽi ⊗ ṽi)ψ(ri − x
)
v −

∑
i

1

2
mi(ṽi)2

ṽiψ
(
ri − x

)−∑
i

1

2
mi(vi)2

ψ
(
ri − x

)
v
}

= div
{
σ kv − qAT

k − ρeAT
k v
}

(3.26)

qAT
k :=

∑
i

1

2
mi(ṽi)2

ṽiψ
(
ri − x

)
(3.27)

Note that the qAT
k is the same with qh

k1 from Eq. (2.20b), and the term involving the atomic potential energy (Eq. (2.20c)) in 
Hardy’s heat flux expression does not appear here. The first term of the RHS of Eq. (3.24) is

∑
i

mivi · dvi

dt
ψ
(
ri − x

)=
∑

i

∑
j �=i

fi j · viψ
(
ri − x

)

=
∑

i

∑
j �=i

fi j · ṽiψ
(
ri − x

)+∑
i

∑
j �=i

fi jψ
(
ri − x

) · v

=
∑

i

∑
j �=i

fi j · ṽiψ
(
ri − x

)+ divσ v · v (3.28)

From Eqs. (3.24), (3.26), and (3.28), we have

∂(ρeAT
k (x, t))

∂t
= div

{
σ kv − qAT

k − ρeAT
k v
}+

∑
i

∑
j �=i

fi j · ṽiψ
(
ri − x

)+ divσ v · v (3.29)

We now propose the potential part of heat flux expression the same with Hardy’s original expression for pair potentials 
[17] and that in Admal & Tadmor’s work [33].
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qAT
v := 1

2

∑
i

∑
j �=i

fi j · ṽi B
(
x; ri, r j)= 1

2

∑
i

∑
j �=i

fi j ·
(

vi + v j

2
− v

)
B
(
x; ri, r j) (3.30)

To satisfy the conservation of energy, the expression of the potential part of energy density can be derived as below. 
Eq. (3.29) can be reformatted as

∂ρ

∂t
eAT

k + ρ
∂eAT

k

∂t
= − div qAT

k + divσ · v + σ k : ∇v − ρ∇eAT
k · v − eAT

k div{ρv} +
∑

i

∑
j �=i

fi j · ṽiψ
(
ri − x

)
(3.31)

Applying the conservation of mass ∂ρ
∂t = −div{ρv} and the conservation of momentum ρ dv

dt = divσ to Eq. (3.31),

ρ
dẽAT

k

∂t
= − div qAT

k + σ k : ∇v +
∑

i

∑
j �=i

fi j · ṽiψ
(
ri − x

)
(3.32)

where

ẽAT
k := eAT

k − 1

2
v2 (3.33)

The balance of energy requires

ρ
dẽ

∂t
= σ : ∇xv − div q (3.34)

where

ẽ := e − 1

2
v2 (3.35)

Subtracting Eq. (3.32) from Eq. (3.34),

ρ
deAT

v

∂t
= σ v : ∇xv − div qAT

v −
∑

i

∑
j �=i

fi j · ṽiψ
(
ri − x

)

= −1

2

∑
i

∑
j �=i

fi j · (vi − v j)ψ(ri − x
)

(3.36)

eAT
v = −

t∫
0

1

2ρ

∑
i

∑
j �=i

fi j · (vi − v j)ψ(ri − x
)
dt + c (3.37)

Comparing Eqs. (3.18), (3.19) and (3.20) with Eqs. (3.27), (3.30) and (3.37), it is easy to see that the potential energy 
density expressions are different from the direct spatial averaging expressions in our modified approach, but the heat flux 
expressions remain the same. It is worth mentioning that another heat flux expression derived in a similar manner can be 
found in Murdoch’s work, where qM is defined as

qM(x) :=
∑

i

1

2
mi(ṽi)2

ṽiψ
(
ri − x

)

+ 1

2

∫

R3

z

1∫
0

∑
i

∑
j �=i

(
fi j · ṽi(x + sz) + fi j ṽ j(x − (1 − s)z

))
ψ
(
x + sz − ri)ψ(x − (1 − s)z − r j)dsdz (3.38)

However, this expression is more difficult to implement in MD simulations. Using Eq. (2.15), the heat flux expression ob-
tained from this alternative approach is

qAT =
∑

i

1

2
mi(ṽi)2

ṽiψ
(
ri − x

)

+ 1

2

∑
i

∑
j �=i

(
fi j
2 +

∑
k �=i, j

fi j
3 + . . . + N(N − 1)

N!
∑

k �=i, j

∑
l �=i, j,k

∑
m �=i, j,k,l

. . .
∑

p �=k,l,m,...,q

fi j
N

)
· ṽiri j B

(
x; ri, r j) (3.39)



Y. Fu, J.-H. Song / Journal of Computational Physics 294 (2015) 191–207 201
Fig. 1. (a) Nonequilibrium molecular dynamics (NEMD) model to impose the constant heat flux along the x direction, and (b) temperature profile within 
the iron crystal after heat transfer is switched on for 1000 ps.

4. Molecular dynamic simulations

In this section, we compare the two expressions of the heat flux vector (Eqs. (2.28) and (3.39)) using constant heat flux 
MD simulations of two distinctive systems: crystalline iron and amorphous PE polymer. The constant heat flux is imposed 
along the x direction of both systems by adding a constant amount of kinetic energy, 
Ek , per time step to the source 
region and subtracting from the sink region (Fig. 1(a)) [37,38]. Total momentum of the source or sink region are conserved 
during the addition or subtraction of energy. With the prescribed 
Ek/δt , where δt is the time interval, the magnitude of 
the heat flux in the x direction is given by:

qx = 
Ek

2Aδt
(4.1)

where A is the cross sectional area. Since we consider steady non-equilibrium conditions here, time averaging [39] is applied 
to investigate the convergence of the heat flux, which is computed every 100 time steps (0.1 ps). All the MD simulations 
are performed using LAMMPS [40] with a timestep size of 1 fs. The localization function ψ (Eq. (4.2)) is chosen to be

ψ(r) =
⎧⎨
⎩

c if r ≤ Rc − δ
1
2 c
(
1 − cos

( Rc−r
δ

π
))

if Rc − δ < r ≤ Rc

0 otherwise
(4.2)

where c = 1/4π( 1
6 R3

c + 1
6 (Rc − δ)3 − δ2

π2 (2Rc − δ)) is used to keep ψ(r) normalized. It is easy to verify that ψ(Rc − δ) = c, 
ψ(Rc) = 0, and ψ ′(Rc − δ) = ψ ′(Rc) = 0, so that the C1 nature of ψ(r) is satisfied, i.e., ψ(r) is continuously differentiable. 
The value of δ can be varied to control the fraction of the spatial averaging volume that has the constant value c. The 
change of the localization function with δ can be found in Fig. 2. We test the conservation of energy numerically using the 
computed mass density (Eq. (2.1a)), energy density (Eqs. (2.1c), (3.23), (3.37)), velocity (Eq. (2.2)), stress (Eq. (2.12)), and 
heat flux (Eqs. (2.28) and (3.39)) [41,42]. Discretized version of Eq. (3.34) is given by

ρ
ẽ( j+1) − ẽ( j)

δt
+ ρ

{
ẽ(i+1) − ẽ(i)

δx
vx + ẽ(k+1) − ẽ(k)

δy
v y + ẽ(m+1) − ẽ(m)

δz
vz

}

=
⎡
⎣ σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎤
⎦ :

⎡
⎢⎢⎢⎣

v(i+1)
x −v(i)

x
δx

v(k+1)
x −v(k)

x
δy

v(m+1)
x −v(m)

x
δz

v(i+1)
y −v(i)

y
δx

v(k+1)
y −v(k)

y
δy

v(m+1)
y −v(m)

y
δz

v(i+1)
z −v(i)

z v(k+1)
z −v(k)

z v(m+1)
z −v(m)

z

⎤
⎥⎥⎥⎦
δx δy δz
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Fig. 2. Spatial averaging function ψ(r) (Eq. (4.2)) with varying δ at Rc = 10 Å.

−
(

q(i+1)
x − q(i)

x

δx
+ q(k+1)

y − q(k)
y

δy
+ q(m+1)

z − q(m)
z

δz

)
(4.3)

Here, σ (ikmj)
xx represents σ xx(xi, yk, zm, t j) and similarly for ρ(ikmj) and v(ikmj)(v(ikmj)

α ). For simplicity, superscripts are not 
explicitly written at (xi, yk, zm, t j) if not necessary. For example, σ ((i+1)kmj)

xx is written as σ (i+1)
xx . δx = xi+1 − xi , δy = yk+1 −

yk , δz = zm+1 − zm , and δt = t j+1 − t j . δt is chosen to be 0.1 fs and δx = δy = δz = 0.05 Å. The mass density, energy 
density, velocity, stress, and heat flux are computed in terms of atomic variables at chosen spatial points (xi , yk, zm) and 
time instance, t j . The agreement between the two sides of the balance laws is tested by plotting the left hand side (LHS) 
and right hand side (RHS) of the equations. Throughout this paper, LHS of the balance of energy is presented in solid line 
while RHS in dashed line.

4.1. Calculation of heat flux in the crystalline iron

The iron crystal has the dimension of Lx = 40[100], L y = 5[010], and Lz = 5[001] in the x, y, and z directions (Fig. 1(a)). 
Periodic boundary conditions are applied to all directions and EAM potential is used to describe the atomic interaction. The 
system is first equilibrated at around 300 K for 1000 ps under NPT condition with P = 0 GPa and T = 300 K, followed by 
a further equilibration as an NVE ensemble for 100 ps. A constant amount of kinetic energy per time step is then added 
to/subtracted from the heat control regions which have the length of 3 lattice in the x direction. 
Ek/δt is specified to be 
3 eV ps−1, so qx is 29.6 nW nm−2 from Eq. (4.1). After equilibration under NqV condition for 1000 ps, a steady temperature 
field (Fig. 1(b)) can be established and the data of atomic position and velocity is collected afterwards. Since the tempera-
ture distribution generally follows a linear manner (Fig. 1(b)), the temperature gradient can be estimated through a linear 
fitting (δT /δx ≈ 0.56 K Å

−1
). With the prescribed heat flux qx , thermal conductivity can be calculated by Fourier’s law as 

5.29 W m−1 K−1. The estimated thermal conductivity is much lower than experimental reported values (70–80 W m−1 K−1) 
[43], resulted from the missing electronic degree of freedom in classical MD simulations.

Fig. 3 shows the validity of energy balance of the computed thermomechanical quantities by plotting the LHS and RHS 
of Eq. (4.3). δ is chosen as Rc. Both Hardy’s and Admal & Tadmor’s approaches show good agreements between two sides of 
Eq. (4.3) regardless of the spatial averaging size Rc. We choose 5 continuum spatial points on the cross section locating at 
the negative x away from the heat control region to investigate the convergence of computed heat flux, so qx have positive 
values due to the symmetric temperature gradient with respect to x.

The effects of time averaging window size and spatial window size are shown in Fig. 4. Hardy’s and Admal & Tadmor’s 
heat flux almost overlap with each other. Even though the difference between Hardy’s and Admal & Tadmor’s heat flux is not 
significant in this specific example, it cannot be generalized to all EAM potential systems. It is also worth mentioning that 
the main contribution to the total heat flux is the potential part in both Hardy’s and Admal & Tadmor’s heat flux expressions. 
When the spatial averaging radius Rc is small, significant discrepancies can be found between the values of single spatial 
point and averaged values from 5 spatial points. Heat fluxes in three directions get close to but not exactly converged 
to the expected values. Heat flux curves become smooth after averaging over 200 ps. At Rc = 4 Å, qx fluctuates around 
21.1 nW nm−2 for the randomly chosen single point and 25.4 nW nm−2 after averaging over 5 points at δ = 0.1Rc, obviously 
lower than the expected value 29.6 nW nm−2. In comparison, δ = Rc gives better estimation, with qx fluctuating around 
24.2 nW nm−2 for the randomly chosen single point and 28.8 nW nm−2 after averaging over 5 points, which falls within 
3% from the expected value. The influence of the specific form of localization function by varying δ cannot be observed at 
larger spatial averaging volume (Rc = 7 and 10 Å). At Rc = 7 Å, the averaged values from 5 points are 31.0 (30.6) and 29.8 
(29.8) nW nm−2 using Hardy’s and Admal & Tadmor’s heat flux expressions, respectively (the values computed with δ = Rc
are in parentheses). At Rc = 10 Å, the averaged values from 5 points are 31.5 (31.7) and 30.4 (30.7) nW nm−2 using Hardy’s 
and Admal & Tadmor’s heat flux expressions, respectively. The largest discrepancy 31.7 nW nm−2 is 7% from the expected 
values. It seems that Admal & Tadmor’s heat flux expression gives slightly better predictions in this case.



Y. Fu, J.-H. Song / Journal of Computational Physics 294 (2015) 191–207 203
Fig. 3. Balance of energy using Hardy’s (left column) and Admal & Tadmor’s (right column) approaches with varying spatial averaging volume Rc for the 
iron crystal modeled by EAM potential, where the LHS of the balance of energy is presented in solid line while RHS in dashed line.

Fig. 4. Convergence of qx with respect to averaging time window at (a) Rc = 4 Å, (b) Rc = 7 Å and (c) Rc = 10 Å in the iron crystal with δ = 0.1Rc (left 
column) and δ = Rc (right column).

4.2. Calculation of heat flux in the PE polymer

We proceed to compute the heat flux in the PE polymer. A CG PE model described by multibody potentials [44,45]
(Table 1) is established. The interatomic potential of the CG PE polymer employed here is composed of two-body terms 
(stretching and non-bonded interaction), three-body term (bending interaction), and four-body term (torsional interaction). 
The specific form of the central force for the CG PE model involving four-body potentials to compute the stress (Eq. (2.16)) 
and heat flux (Eqs. (2.28) and (3.39)) can be found in our previous studies [34]. Details of the CG model have been de-
scribed in other studies [44–47], thus only some main features are mentioned here for completeness. Each CH2 is treated 
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Table 1
Functional form and parameters of the force field for the CG PE.

Type of interaction Potential form and parameters

Stretching φstretch = kb(r − r0)2 (4.4a)

kb = 2000 kJ mol−1 Å
−2

, leq = 1.53 Å

Bending φbend = kθ (cos θ − cos θ0)2 (4.4b)
kθ = 520 kJ mol−1, θ0 = 112.813◦

Torsional φtorsion = c0 + c1 cosϕ + c2 cos2 ϕ + c3 cos3 ϕ + c4 cos4 ϕ (4.4c)
c0 = 8.832 kJ mol−1, c1 = 18.087 kJ mol−1, c2 = 4.88 kJ mol−1, c3 = −31.8 kJ mol−1

Non-bonded φL J = 4ε
[(

σ
r

)12 − ( σ
r )6
]

(4.4d)
ε/kB = 57 K, σ = 4.28 Å, kB is Boltzmann constant

Fig. 5. Balance of energy using Hardy’s (left column) and Admal & Tadmor’s (right column) approaches with varying spatial averaging volume Rc for the PE 
polymer, where the LHS of the balance of energy is presented in solid line while RHS in dashed line.

as a superatom, having a mass of 14 u. The CH3 group at the end of the chain is represented by the same superatom. 
100 PE polymer chain each having 100 superatoms is generated at 500 K using the excluded volume method [48], with an 
initial density of around 0.5 g cm−3. The excluded volume method [48] guarantees that the generated PE configuration is 
energetically preferable. The PE polymer samples as prepared are relaxed under NPT condition for 500 ps at 300 K and with 
an applied isotropic zero pressure using MD simulation. The PE system has the dimension of Lx = 288.2 Å, L y = 33.6 Å, and 
Lz = 33.6 Å at 300 K. In order to establish a constant heat flux condition within the system, kinetic energy is added to/sub-
tracted from heat control regions which have the length of 100 Å in the x direction. 
Ek/δt is specified to be 4.34 eV ps−1, 
so qx is 26.7 nW nm−2 from Eq. (4.1). After an equilibration under the NqV condition for 1000 ps, a steady temperature 
field can be established and the data of atomic position and velocity is collected afterwards. The temperature gradient is ap-
proximately 15.2 K Å−1. The thermal conductivity can be calculated by Fourier’s law as 0.17 W m−1 K−1 with the prescribed 
heat flux qx , falling in the range of the reported values (0.1–0.4 W m−1 K−1) [49–51].

Fig. 5 shows the validity of energy conservation of the computed thermomechanical quantities by plotting the LHS and 
RHS of Eq. (4.3). δ is chosen as Rc. Even though Hardy’s approach has been proved not to strictly obey the conservation of 
energy theoretically in Section 2, the discrepancy between the two sides of Eq. (4.3) is not significant. Thus the balance of 
energy is not much violated, especially at large spatial averaging volume. Again, the main contribution to the total heat flux 
is the potential part in both Hardy’s and Admal & Tadmor’s heat flux expressions.

The convergence of heat flux is demonstrated in Fig. 6. Up to 5 continuum spatial points are chosen on the cross section 
locating at the positive x away from the heat control region, so qx have negative values due to the symmetric temperature 
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Fig. 6. Convergence of qx with respect to averaging time window at (a) Rc = 4 Å, (b) Rc = 7 Å and (c) Rc = 10 Å in the PE polymer with δ = 0.1Rc (left 
column) and δ = Rc (right column).

Fig. 7. Relative error of the averaged heat flux in the PE system with the averaging number of spatial points at Rc = 10 Å and δ = 0.1Rc (averaged values 
with 500 ps and 200 ps time window size are represented in solid lines and dashed lines, respectively).

gradient with respect to x. In contrast to the iron crystal simulated by EAM potential, we observe obviously different results 
from Hardy’s and Admal & Tadmor’s heat flux expressions. Averaging over multiple spatial points is essential to provide more 
accurate predictions of the expected values at Rc = 4 and 7 Å. The influence of the specific form of localization function is 
more pronounced for the PE polymer compared with the iron crystal. At small and moderate averaging volume, δ = 0.1Rc
tends to give better estimation of the averaged values over 5 points. When Rc = 4 Å, averaged heat flux converges to −17.8 
(−21.2) and −12.6 (−5.3) nW nm−2 using Hardy’s and Admal & Tadmor’s heat flux approaches, respectively (the values 
computed with δ = Rc are in parentheses). At Rc = 7 Å, heat flux converges to −21.0 (−17.8) and −27.0 (−16.5) nW nm−2

using Hardy’s and Admal & Tadmor’s heat flux approaches, respectively. The approximations at Rc = 10 Å are improved on 
average, and the discrepancies between the two approaches also reduce noticeably. However, largest divergence from the 
expected values can still be as much as 38%.

More spatial points are chosen on the same cross section in order to investigate the convergence of the computed heat 
flux with averaging number of points (Fig. 7). The computed heat flux for the PE polymer slowly converges to the system 
averaged value with increasing number of spatial points. As the number of points reaches 30, the relative error of the heat 
flux computed from Hardy’s and Admal & Tadmor’s expressions fluctuates around 3%. Even though a smaller time averaging 
window size (200 ps) can provide a satisfying estimation with Admal & Tadmor’s approach in this case, larger time averaging 
window size (up to 500 ps) is recommended given that the convergence using both approaches can be improved.

5. Conclusions

In this study, we derive continuum heat flux expressions from atomistic quantities for the systems modeled by multi-
body potentials, based on existent theories on calculating continuum thermomechanical quantities from the atomistic scale. 
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The original Hardy’s expressions for pair potential systems are extended by defining the central force between two atoms 
for most practical multibody potentials and distributing the total interatomic potential energy evenly among the contribut-
ing atoms. We also modify Admal & Tadmor’s approach by implementing only spatial averaging through the localization 
function. In the theoretical derivation, Hardy’s thermomechanical quantities have not been found to obey the conservation 
of energy exactly for general multibody systems. On the other hand, an integration over time appears in the definition of 
energy density to satisfy the continuum conservation law in Admal & Tadmor’s approach.

The derived heat flux expressions are applied to a crystalline iron modeled by EAM potential and an amorphous PE 
polymer modeled by stretching, bending, torsional, and non-bonded potentials. The computed heat fluxes are compared with 
the expected system averaged values in constant heat flux MD simulations. Proper size of the spatial and temporal averaging 
window as well as the specific forms of the localization function are investigated. For the non-equilibrium systems at steady 
state considered here, lower thresholds of both the spatial and temporal window size are recommended for computing the 
continuum heat flux fields but may be different for various systems [20]. At smaller spatial averaging volume, the computed 
heat flux can vary significantly with the specific forms of localization function, and also need longer time to converge (up 
to 500 ps). With relatively large averaging volume, a time window size of 200–300 ps enables convergence. Hardy’s and 
Admal & Tadmor’s approaches give comparable averaged values with respect to the expected system values in most cases. 
However, the predictions for the PE polymer using the same number of spatial averaging points are worse than that for iron 
crystal, which should be ascribed to the distinctive atomistic structures of the two systems: the crystalline iron has much 
more uniform lattice structure compared with the amorphous PE polymer. A further study of the heat flux fields in the PE 
polymer reveals that over 30 spatial points as well as a large time averaging window size (500 ps) is necessary for a good 
estimation of the system averaged value.
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