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A B S T R A C T

A modified extended finite element method (XFEM) for dynamic fracture is presented with a new methodology
to construct the XFEM basis for discontinuities. In this method, the enrichment bases are defined to capture the
characteristic discontinuities across the interface. The enrichments are vanished outside the element domain so
that no blending of the local partition unity is required. The enrichment parameters effectively represent the
physics of the discontinuity and are assigned to non-nodal points, which helps to impose Dirichlet boundary
conditions on the interface. This feature successfully dissociates the finite element nodes from the extended finite
element approximation; it facilitates the treatment of arbitrary crack propagation in explicit methods. The ap-
proach is applied to linear three-node triangular elements for element-by-element crack propagation modeling.
The proposed method combined with explicit time integration and a cohesive law can successfully predict the
dynamic fracture of ductile and brittle materials. Dynamic simulation results in terms of crack path and speed
were effectively computed and match the experimental results. Through these numerical examples, the ro-
bustness and performance of the method were successfully demonstrated.

1. Introduction

The extended finite element method (XFEM) [1,2] can be viewed as
a variation of the generalized finite element method (GFEM) introduced
by Melenk and Babuška [3] whereby arbitrary discontinuities such as
cracks and shear bands can be modeled without remeshing. One ad-
vantage of the XFEM over the GFEM is that it permits the use of local
enrichment bases in the finite element (FE) approximation. For the FE
convergence, completeness is a necessary condition, i.e. the local ap-
proximation must be capable of reproducing given smooth functions,
which for elasticity are rigid body motions and constant strain states.
However, the local approximation in conventional XFEM focuses only
on reproducing the discontinuous functions along with satisfying
compatibility condition among enriched and its contiguous elements.
Therefore, in many instances, it is not apparent how to be the XFEM
convergence rates.

The XFEM exploits the partition of unity framework to adopt var-
ious functions as a basis for reproducing the discontinuous fields; step
enrichment functions for strong discontinuity [4], asymptotic crack-tip
functions for crack tip modeling [1], distance enrichment functions for
weak discontinuities [5,6] and hyperbolic tangent enrichment functions

for discontinuities in derivatives [7]. Furthermore, The XFEM has
successfully been applied to many other applications; cohesive crack
models [8,9], evolution of dislocations [10,11] and modeling of grain
boundaries [12]. In addition, the XFEM and GFEM provided a crucial
insight for meshless methods [13,14] involving the dynamic fracture
simulations. Although in these approaches, the extended approximation
effectively captures the discontinuity, it may not be able to reproduce
the polynomial functions required for completeness.

One of the main challenges arisen in using XFEM is the im-
plementation; to circumvent such difficulties, several alternative ap-
proaches have been developed [15–20] to enable robust and efficient
failure modeling. In conventional XFEM, the enrichment part generally
spreads over the elements contiguous to the enriched element. These
element are often called blending elements and should be treated ap-
propriately [21]. For step enrichment functions, the blending regions
can be avoided by shifting enrichment techniques introduced by Zi and
Belytschko [9]. Furthermore, in conventional XFEM, the enrichment
parameters are assigned to element nodes which are often in common
among several elements. This feature violates the local description of
enrichment part which dramatically facilitates the XFEM implementa-
tion. Therefore, it is desirable to have a technique that can define an
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enrichment independent from element nodes.
The main objective of the proposed method is to develop a highly

efficient XFEM basis but nevertheless quite accurate formulation for
discontinuity modeling. The proposed method considers a set of non-
nodal points on the interface whereby it can capture the discontinuities
in a function and its derivatives across the interface. In this method, the
enrichment parameters are selected as physically-based quantities asso-
ciated to the discontinuity of the problem whereby the Dirichlet
boundary conditions can be simply imposed on element edges and the
surfaces of discontinuity. Moreover, the associated enrichment func-
tions are constructed so that they vanish on element edges. This feature
leads to an enrichment fully defined in a local domain, which drama-
tically simplifies the XFEM implementation. Hence, it is conceivable to
think that the proposed method can be an effective scheme for re-
producing discontinuities in an XFEM framework.

An outline of the paper is as follows. In Section 2, we shall first
review the conventional XFEM, and then describe the new methodology
for constructing enrichment functions where the discontinuous dis-
placement field is modeled by non-nodal enrichment parameters. In
Section 3, we set up the governing equations and present the weak form
and the discretization for the dynamic fracture simulation. Section 4
describes the cohesive law and cohesive crack model. Finally, in
Sections 5 and 6, numerical studies and concluding remarks are pre-
sented.

2. Enriched displacement fields for discontinuity

Let us consider a two-dimensional domain Ω0∈ R2 with its
boundary Γ0 in the reference configuration as shown in Fig. 1. The
material and spatial coordinates are respectively denoted by X and x
with the motion described by = tx u X( , ). The current images of Ω0 and
Γ0 are denoted by Ω and Γ, respectively. The entire boundary Γ0 is
partitioned into either the essential boundary Γu

0 or the natural
boundary Γt

0 such that ∩ = ∅Γ Γu
0

t
0 and ∪ =Γ Γ Γ .u

0
t
0 0

To construct enrichment functions in the XFEM framework, an ac-
curate description of the interface is often useful. The interface, i.e. the
crack surface in this study, can be implicitly defined by a set of level set
functions as

∈ = >f g tX X XΓ if ( ) 0 and ( , ) 0c
0 (1)

As shown in Fig. 2, the signed distance function f(X) can be de-
scribed by

⎜ ⎜= − ⎛
⎝

⎛
⎝

−
∈

+f X X X n X X( ) min sign . ))
X Γc (2)

where X is the closest point on the interface to X and ∥.∥ denotes the
Euclidean norm. g(X, t) is defined such that the crack is enclosed within
the subdomain g(X, t)≥ 0 whereas the crack tip is located by

=g tX( , ) 0. For discretized domains, the evaluation of the implicit
function f(X) can be simplified by finite element discretizations and is
then defined by

∑=f f NX X( ) ( )
I

I I
(3)

Furthermore, the derivatives of the level set functions which are
useful in the cohesive force computations can be simply computed by
finite element approximations as

∑=f f NX X( ) ( )i
I

I I i, ,
(4)

A strong discontinuity in a function, i.e. a displacement jump in
crack modeling, can be represented by the Heaviside step function. The
Heaviside step function can be also defined in terms of the level set
function f given by

= ⎧
⎨⎩

<
>

H f
f
f

X
X
X

( ( ))
0 ( ) 0
1 ( ) 0 (5)

In conventional XFEM, the discontinuous function itself is used as
the enrichment function and the partition of unity enables the ap-
proximation to reproduce the discontinuous function exactly by sa-
tisfying

∑ =
=

N X X X( )Φ( ) Φ( )
I

n

I
1

e

(6)

where Φ can be any discontinuous functions. However, in the presented
method, the enrichment functions are associated to the non-nodal
points and are defined so that they can reproduce the discontinuity
without local partition of unity, i.e. the enrichment functions are not
multiplied by standard shape functions NI, and consequently the ele-
ment nodes are not enriched. In a vector form, the displacement field
can then be defined as following:

= +
= ∑ + ∑= ∈

t t t
N t t

u X u X u X
X u X a

( , ) ( , ) ( , )
( ) ( ) Ψ ( ) ( )I

n
I I J δ J J

FEM ENRICHED

1
e

en (7)

where δen is the set of non-nodal enriched points (usually on crack path
in two dimensions) and aJ are the additional degrees of freedom asso-
ciated with their enrichment function ΨJ. In the following, first we will
describe the crack modeling procedure in two dimensions for a constant
strain triangular element, then we will briefly illustrate extending the
formulation to both a general discontinuous function and a multi-di-
mensional multi-node finite element.

2.1. Representation of a crack with non-nodal enrichment parameters for 3-
node triangular elements

In this section, we will describe the crack modeling procedure in
two dimensions for a constant strain triangular element. We only con-
sider the elements that are completely cut by a crack, i.e., a crack
propagates one complete element at a time so that the crack tip is al-
ways placed on element edges. Let us consider a finite element with the
local node numbers as shown in Fig. 3(a). The crack is assumed to be
straight within the element; it has advanced from the surface S3 to the
surface S1 so that X1

c and X2
c are the first and second intersection points

between the crack and element edges, respectively.
The enrichment variables in crack modeling are considered as jumpsFig. 1. A two-dimensional domain and its current configuration with a crack.

Fig. 2. Crack representation by two level set functions f and g.
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in the functions at the non-nodal points; in Fig. 3(a), the jump in dis-
placement at X1

c and X2
c are denoted by u[[ ]]1 and u[[ ]]2, respectively.

Thus, the approximation is

= ∑ + ∑

= ∑ + +
= =

=

t N t t

N t t t

u X X u X u

X u X u X u

( , ) ( ) ( ) Ψ ( )[[ ( )]]

( ) ( ) Ψ ( )[[ ( )]] Ψ ( )[[ ( )]]
I
n

I I J J J

I
n

I I

1 1
2

1 1 1 2 2

e

e
(8)

where the enrichment variables u[[ ]]1 and u[[ ]]2 for a scalar component
are illustrated in Fig. 4(a).

We construct the enrichment functions so that the approximation in
Eq. (8) can reproduce the characteristic function, i.e. the Heaviside step
function in Eq. (5). Thus, by substituting the displacement field u with
the vectorized H, Eq. (8) can be rewritten as

∑= + +
=

t N t t tH X X H X H X H( , ) ( ) ( ) Ψ ( )[[ ( )]] Ψ ( )[[ ( )]]
I

n

I I
1

1 1 2 2

e

(9)

For the assumed direction of the crack illustrated in Fig. 3, =H 11 ,
= =H H 02 3 and =∈H[[ ]] 1.X Γc Considering ∑ == N 1I

n
I1

e and by parti-
tioning Eq. (9) for each side of the interface, we have

+ = +
+ = −

+ +

− −
N N

N
X X
X X

Ψ ( ) Ψ ( )
Ψ ( ) Ψ ( )

1 2 2 3

1 2 1 (10)

It is important to note that finding any sets of enrichment functions
that satisfies Eq. (10) enables the extended approximation to reproduce
the discontinuous function. However, Eq. (10) does not satisfy the C0

continuity condition among enriched element and its contiguous ele-
ments. Therefore, the enrichment functions are defined to be vanished
along specific element edges. For instance, in the first equation, +Ψ1 and

+Ψ2 must vanish along surfaces +S1 and +S3 as shown in Fig. 3(a), re-
spectively. Thus, we simply assign =+ NΨ1 3 and =+ NΨ .2 2 However in
the second equation −Ψ1 must vanish along both surfaces −S1 and S2, and
also −Ψ2 must vanish along surfaces −S3 and S2. To facilitate the con-
struction of such enrichment functions, the Duffy transformation which
is a mapping from a square to a triangle can be used; the Duffy trans-
formation can be viewed as a mapping from a square in parent co-
ordinates to a triangle in material coordinate as illustrated in Fig. 3. A
detailed description of the Duffy transformation can be found in
[22–24].

In this transformation, one vertex in the triangle is mapped to an
edge in the square. This vertex is chosen such that the crack passes
through non-adjacent edges in parent domain. Therefore, this node
should be the node opposite to the edge that is not intersected by the
crack, which is node 1 here (See Fig. 3(a)). Then, the FE approximation
is given by

∑= ′
=

t N tu X X u( , ) ( ) ( )
I

n

I I
1

e

(11)

where the Duffy isoparametric shape functions can be expressed in
terms of standard bilinear shape functions as

′ = +
′ =
′ =

N N N
N N
N N

1 1
4Q

2
4Q

2 3
4Q

3 4
4Q (12)

where

= + +N ξ η ξ ξ η η( , ) 1
4

(1 )(1 )I I I
4Q

(13)

Here, (ξI, ηI) are nodal coordinates of bi-unit square shown in
Fig. 3(b). By substituting the shape functions in Eq. (12) into Eq. (10),
we can obtain

Fig. 3. Duffy's mapping between (a) a triangular element in material co-
ordinates and (b) a biunit square in parent coordinates
− ≤ ≤ − ≤ ≤ξ η1 1; 1 1.

Fig. 4. The enrichment parameters and their associated enrichment functions: (a) the representation of a discontinuity in a two-dimensional model; +nS and −nS are
normal to the interpolation surfaces; (b) the enrichment function Ψ1 associated to the non-nodal point X1

c; and (c) the enrichment function Ψ2 associated to the non-
nodal point X2

c.
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+ = +
+ = − −

+ +

− −

N N
N N
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Q Q

Q Q
1 2 3

4
4
4

1 2 1
4

2
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Thus, the C0 continuity condition is simply satisfied by assigning the
enrichment functions as follows

= ⎧
⎨⎩

− <
>

= ⎧
⎨⎩

− <
>

N f
N f

N f
N f

Ψ
0
0

Ψ
0
0

1
1
4Q

4
4Q

2
2
4Q

3
4Q

(15)

It is important to note that the enrichment functions obtained by the
Duffy transformation are in terms of well-known bilinear shape func-
tions. So, one can extensively make use of existing codes for the cal-
culation of the enrichment functions and their derivatives. However,
some more code implementation is required to implement the Duffy
interpolation.

The enrichment functions in Eq. (15) are shown in Fig. 4(b) and (c).
As it can be seen, the enrichment functions have a jump equal to the
unity at their associated non-nodal point. The interpolation given in Eq.
(8), in addition to the Heaviside step function, can reproduce two
planes shown in Fig. 4(a) that their unit normal to the surface of the
interpolation are parallel, i.e.

× =− +n n 0S S (16)

The detailed proof has been provided in Appendix A. However, such
a discontinuity modeling is sufficient for failure modeling in homo-
geneous linear elastic materials since the stresses and strains at both
sides of the crack are equal during the failure process due to the fact
that both sides of the crack should satisfy traction free condition (or be
subjected to equal but in opposite normal cohesive traction). Modeling
discontinuity in derivative fields will remain as a future work.

The relations between the bilinear Duffy shape functions and the
standard triangle shape functions are obtained in Appendix B. Thus, the
enrichment functions can be also expressed in terms of standard shape
functions as

= ⎧
⎨
⎩

− <

>
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− <

>

×
+

×
+
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N f

f
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0
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2
2

1 3
2 3

1 2
2 3

(17)

2.2. General formulations of the non-nodal enrichment XFEM

In this section, we briefly describe the extension of the method for a
multi-dimensional multi-node finite element with a general dis-
continuous function Φ(X). The discontinuous function is defined as a
function of level set function as

= F fX XΦ( ) ( ( )) (18)

As discussed in previous section, Eq. (7) can reproduce the dis-
continuous function Φ, if it holds for =u Φ. Thus, Eq. (7) gives

∑ ∑= +
= ∈

NX X X X aΦ( ) ( )Φ( ) Ψ ( )
I

n

I I
J δ

J J
1

e

en (19)

By rewriting Eq. (19) for either side of the interface separately we
have

= ∑ + ∑

= ∑ + ∑

+
= ∈

+

−
= ∈

−

N

N

X X X X a

X X X X a

Φ ( ) ( )Φ( ) Ψ ( )

Φ ( ) ( )Φ( ) Ψ ( )
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n
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I
n

I I J δ J J

1

1

e

e
en

en (20)

The first terms on the right-hand side of Eq. (20) can also be par-
titioned for sides of the interface as

∑ ∑ ∑= +
= ∈

−

∈

+

− +
N N NX X X X X X( )Φ( ) ( )Φ ( ) ( )Φ ( )

I

n

I I
I δ

I I
I δ

I I
1

e

n n (21)

where +δn and −δn are the sets of element nodes that are on the sub-
domains where f>0 and f<0, respectively.

In this study, we assume that the discontinuous functions at either
side of the interface, i.e. +Φ and −Φ are as sufficiently smooth as to be
interpolated by standard shape functions. For example, the strong and
weak discontinuities are often captured with the Heaviside and distance
functions, respectively. This indicates that the enrichment functions are
constant or linear on both sides of the interface and therefore, can be
exactly interpolated by linear shape functions. So, +Φ and −Φ can be
reproduced by finite element shape functions

= ∑

= ∑

+
=

+

−
=

−

N

N

X X X

X X X

Φ ( ) ( )Φ ( )

Φ ( ) ( )Φ ( )
I
n

I I

I
n

I I

1

1

e

e
(22)

Substituting Eqs. (21) and (22) into (20), we will have

∑ = ∑

∑ − = ∑
∈ = ∈

+

∈ = ∈
−

−

+

N

N

X X a

X X a

( )[[Φ]] Ψ ( )

( )[[Φ]] Ψ ( )
I δ I J δ J J

I δ I J δ J J

X X

X X

n I

n I

en

en (23)

where = −+ −X X[[Φ]] Φ ( ) Φ ( )X is the jump in the left and right sides of
the enrichment function at X. Note that Eqs. (23) are the key equations
used to construct the enrichment functions. It must be stressed that
these equations do not suffice to provide closure to the definition of the
enrichment functions. In other words, there are no unique enrichment
functions and enrichment parameters that satisfy Eqs. (23). The overall
procedure to define the enrichments can be organized using the fol-
lowing main steps:

1. Identifying the characteristic function (denoted by Φ here) using a-
priori knowledge about the discontinuity in the problem.

2. Introducing the enrichment parameters which are best able to re-
present the identified discontinuity.

3. Defining the enrichment parameters and their associated enrich-
ment functions so that they satisfy the following conditions:
(a) Eq. (23).
(b) The C0 continuity condition between the enriched element and

its contiguous elements.

Note that the enrichment functions for triangular elements obtained
in previous section can be simply attained using the aforementioned
procedure. As an example, crack modeling in one dimension has been
demonstrated in Appendix C.

2.3. Comparison to conventional XFEM

Some methodological issues of the conventional XFEM addressed by
the non-nodal enrichment method are briefly described:

• The local partition of unity given in Eq. (6) only builds a partition of
unity over reproducing elements for which all element nodes are
enriched; see References [21,25–27] for more details. Due to mesh
constrains, some of the element nodes may not be enriched for an
element completely cut by a crack; these elements are often called
blending elements. An example has been depicted in Fig. 5, where a
crack has advanced through several elements and the crack tip is on
the intersection of elements e4 and e5. To satisfy C0 continuity
condition, the nodes placed on the crack tip edge are selected not to
be enriched as follows in Fig. 5, which leads to an unenriched node
I. Thus, although the crack has crossed over the elements e1 through
e4, these elements are not still reproducing elements. In contrast to
conventional XFEM, in non-nodal enrichment method, the element
becomes a reproducing element as soon as the crack passes through
it.
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• The conventional XFEM approximations do not, in general, satisfy
the Kronecker-δ property that leads to difficulties in imposition of
Dirichlet boundary conditions on enriched nodes. As proposed in
References [5,9], the Kronecker-δ property can be achieved by
shifting enrichment functions with respect to element nodes. How-
ever, shifting enrichment functions renders the construction of
lumped mass matrix difficult which is crucial for efficient dynamic
analysis. In the proposed method, the enrichment functions are
vanished on element edges and consequently the Kronecker-δ
property is essentially satisfied.

• Although the shifted enrichment functions hold Kronecker-δ prop-
erty, they may not vanish on parts of element boundaries, and
consequently spread over contiguous elements. This may influence
the imposition of Dirichlet boundary conditions on element edges.
Moreover, to preclude the parasitic terms added to the approxima-
tion, the contiguous elements which are often called blending ele-
ments are required to be treated appropriately. However, in the
proposed method, the enrichment functions are vanished outside the
element domains and consequently no blending elements appear.

• In conventional XFEM, the interpretation of the enrichment para-
meters is difficult so that the non-smooth Dirichlet boundary con-
ditions and interface conditions may not be easily imposed on en-
richment parameters. One of the main Dirichlet boundary
conditions imposed on the contact interface is impenetrability

condition. In non-nodal enrichment method, the impenetrability
condition can be easily applied as a Dirichlet boundary condition in
the strong form as

= ≥u u nif[[ ]] 0, [[ ˙ ]]. 0 (24)

• In the conventional XFEM, the enriched nodes are chosen based on
both the direction of the crack growth and whether it is contiguous
to an existing crack or not. As shown in Fig. 6(a) and (b), the set of
enriched nodes is dependent on the crack directions. However, in
the presented method, enriching procedure depends on neither the
crack direction nor the elements contiguous to the enriched element
which indeed facilitates the crack modeling in an object-oriented
program. As shown in Fig. 6(c) and (d), wherever a crack passes
over an edge, one enrichment variable assigned to the intersection
point is added to the enrichment variable set.

3. Governing equations, weak formulation and discretization

3.1. Governing equations

Considering dynamic form of a two-dimensional problem, the gov-
erning equation is

Fig. 5. A crack path on several elements which are not still reproducing ele-
ments because the enrichment is not added to node I..

Fig. 6. Selection of enriched nodes: (a)-(b) in the conventional XFEM where
enriched nodes are dependent on the direction of crack; and (c)-(d) in the
proposed method where the FE nodes are not enriched but an enrichment
variable is assigned to each intersection point.

Fig. 7. The variation of normalized critical time step size according to the
normalized location of the discontinuity.

Fig. 8. Cohesive law; the area under the cohesive law curve is the same as the
fracture energy (a) a general cohesive law; and (b) a linear cohesive law.
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∂
∂

+ − =
P
X

ρ b ρ ü 0 in Ωji

j
i i0 0 0

(25)

where P is the nominal stress tensor, ρ0is the initial density and bis the
body force vector per unit mass. The boundary conditions are

=
=

=

=± ±

u u
u u

n P t

n P τ u

on Γ
[[ ]] [[ ]] on Γ

on Γ

([[ ]]) on Γ

i i

j j

j ji i

j ji i i

u
0

uc
0

0 0
t
0

0 0 0c
c
0

(26)

where u is the applied displacement on the Dirichlet boundary Γu
0 , u[[ ]]

is the prescribed displacement jump on a set of non-nodal points Γuc
0 , t0

is the applied traction on the Neumann boundary Γt
0 and τ0c is the

cohesive traction across the crack boundary Γc
0. Indicial notation is used

for lower case indices. It must be stressed out that a crack tip can be
simply modeled by imposing a homogenous boundary condition as

=u[[ ]] 0 atcracktipj (27)

3.2. Weak formulation

The admissible space for the trial and test functions is defined as
follows:

Fig. 9. Experimental set-up and simulation model (a) Kalthoff experimental set-up for crack propagation under impulsive loading (b) Upper half of the plate used in
the analysis.

Fig. 10. The computed crack paths on the 40×40 deformed mesh with a
maximum principle stress at different time steps: (a) =t μ29.89 s; (b)

=t μ37.43 s; (c) =t μ58.48 s; and (d) =t μ81.28 s.

Fig. 11. The computed crack paths on the 80× 80 deformed mesh with a
maximum principle stress at different time steps: (a) =t μ28.83 s; (b)

=t μ38.09 s; (c) =t μ57.0 s;and (d) =t μ79.98 s.
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A

A

= ∈ = =

= ∈ = =δ δ δ δ

δ

u u u u u u

u

u u u u

u

{ C , on Γ , [[ ]] [[ ]] on Γ ,

discontinuous on Γ }

{ C , 0 on Γ , [[ ]] 0 on Γ ,

discontinuous on Γ }

0
u
0

uc
0

c

0
0

u
0

uc
0

c (28)

The weak form is expressed as an integral form of the momentum
equation so that for A A∈ ∀ ∈δu uand 0

= − +δW δW δW δWkin ext int coh (29)

where δWkin is the kinetic work, δWext the external work, δWint the
internal work and δWcoh the cohesive work achieved by the cohesive
traction on the crack surface. The Eq. (29) can be expanded as follows

∫ ∫ ∫
∫ ∫

= +

− − ∂

δ ρ δ ρ δ

δ τ

u u u b u t

u F P

. ¨ dΩ . dΩ . dΓ

[[ ]]. dΓ : dΩ

Ω 0 0 Ω 0 0 Γ
0

0

Γ
c

0 Ω
T

0

0 0 t
0

c 0 (30)

where F is the deformation gradient.

3.3. Discretization

The finite element discretization relates each of the virtual work
terms in Eq. (29) to a discretized nodal force as follows:

= − +f f f fkin ext int coh (31)

where fkin, fext, f int and fcoh are the kinematic, external, internal and
cohesive forces, respectively. These forces are constructed by assem-
bling the local element force vectors:

∫= ρf N N ddΩ ¨e e e
e

e
kin

Ω
gT g g

e (32)

∫ ∫= +ρf N b N tdΩ dΓe e e
e

e
eext

Ω
T

Γ
T

te e
t (33)

∫=f B S dΩe e e
eint

Ω
gT g

e (34)

∫= − τf n[[Ψ]] dΓe
ecoh

Γ
T c

ce
c (35)

Here the superscript e is the element number, S is the second
Piola–Kirchhoff stress in Voigt form, =d u u[ , [[ ]] ]e e J

g is the generalized
nodal coefficient vector consisting of nodal displacements and enrich-
ment variables, Ne

g is the union of regular shape functions and enrich-
ment functions and Be

g is generalized strain-displacement matrix. The
Ne

g matrix is given by

=N N[ , Ψ ]e e J
g 0 (36)

The Be
g is also given by

=B B B[ , ]e e e
g 0 c (37)
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Fig. 12. The computed crack paths on the 120× 120 deformed mesh with a
maximum principle stress at different time steps: (a) =t μ28.96 s; (b)

=t μ38.45 s; (c) =t μ56.49 s; and (d) =t μ77.4 s.

Fig. 13. Comparison of crack propagation trajectories at final simulation step using triangular linear elements (a) 40× 40 mesh; (b) 80× 80 mesh; and (c)
120× 120 mesh.

Table 1
Crack propagation angles and timing data for the Kalthoff's experiment simu-
lations.

Mesh Angles (°) Time (μs)

Initial Overall Propagation Simulation

40×40 60.16 62.45 25.61 81.28
80×80 61.87 64.74 22.59 79.98
120×120 63.34 67.1 19.79 77.4
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Fig. 14. Crack speeds for the Kolthoff's experiment simulation: (a) the crack speed of this method and (b) the crack speed of the standard XFEM.

Fig. 15. The geometry and boundary condi-
tions of three-point-bend specimens and finite
element meshes used in numerical simulations
for the offset notch at the transition point; (a)
experiment set-up; (b) a coarse mesh of
around 1000 elements; (c) a medium mesh of
around 4000 elements and (d) a fine mesh of
around 15,000 elements.

Fig. 16. The computed crack paths for =γ 0.75 on the fine deformed mesh with a maximum principal stress at different time steps (a) =t μ1142 s; (b) =t μ1180 s; (c)
=t μ1227 s; and (d) =t μ1305 s.
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Fig. 17. The computed crack paths for =γ 0.78 on the fine deformed mesh with a maximum principal stress at different time steps (a) =t μ1329 s; (b) =t μ1350 s; (c)
=t μ1364 s; (d) =t μ1385 s; (e) =t μ1423 s; and (f) =t μ1456 s.

Fig. 18. The computed crack paths for =γ 0.785 on the fine deformed mesh with a maximum principal stress at different time steps (a) =t μ1316 s; (b) =t μ1330 s; (c)
=t μ1361 s; and (d) =t μ1429 s.

Fig. 19. Fine mesh crack patterns for different offset parameter γ: (a) =γ 0.75; (b) =γ 0.78;and (c) =γ 0.785.
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where (.), i indicates the partial derivative along ith coordinate direc-
tion.

3.4. Time integration scheme and critical time step

In this study, the explicit time integration with the consistent mass
matrix was used. The explicit time integration is conditionally stable,
i.e. it is stable when

< =t t
ω

Δ Δ 2
c

max (40)

By studying the frequencies ωi of the one-dimensional discrete
system =ω Md Kdi i i

2 , the variation of the critical time step according to
the normalized location of the crack was pre-determined to ensure the
stability in the explicit time integrator. Fig. 7 compares the normalized
critical time step size of the non-nodal XFEM to the standard XFEM.

For the standard XFEM, the peak value of the critical time step size
occurs when the crack is at element midspan in contrast to the non-
nodal XFEM for which the minimum of the critical time step occurs at
the middle. This implies that the non-nodal XFEM is more efficient than

Fig. 20. The geometry and boundary conditions of Guo experiment and finite element meshes used in numerical simulations; (a) experiment set-up; (b) a coarse mesh
of around 1100 elements; (c) a medium mesh of around 7700 elements and (d) a fine mesh of around 17,200 elements.

Fig. 21. The crack patterns for different meshes: (a) coarse mesh (b) medium mesh and (c) fine mesh.

Fig. 22. The crack evolution for the coarse mesh: (a) =t μ370.43 s; (b) =t μ531.64 s; (c) =t μ607.73 s; (d) =t μ742 s.
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the standard XFEM. Furthermore, for standard XFEM, the critical time
step drops linearly to zero as the crack location approaches to the
element nodes which leads to numerical difficulties in explicit time
integration schemes. However, the critical time steps of the non-nodal
XFEM are approached to those obtained for a regular finite element

with a consistent mass matrix, when the discontinuity approaches to
element nodes. Therefore, the proposed method can be directly used for
arbitrary cracks modeling.

4. Cohesive law

The cohesive model is applied to the damage evolution created by
the crack. In a cohesive model, a surface traction determined by a co-
hesive law is applied onto the crack surfaces Γc such that the energy
dissipated due to the crack evolution matches the critical fracture en-
ergy. In this study, we considered only the normal component of the
traction. The normal displacement jump δN is defined by

∑= =
∈

δ n u n u. [[ ]] . [[Ψ]] [[ ]]N
J δ

J J
en (41)

Fig. 23. The crack evolution for the medium mesh: (a) =t μ370.43 s; (b) =t μ531.64 s; (c) =t μ607.73 s; and (d) =t μ742 s.

Fig. 24. The crack evolution for the fine mesh: (a) =t μ346.43 s; (b) =t μ513 s; (c) =t μ616 s; and (d) =t μ688 s.

Table 2
Crack propagation angles and timing data for the Guo's experiment simulations.

Mesh Angles (°) Propagation time μ(s)

Initial (θ1) Final (θ2)

Coarse mesh 9.5 11.85 360
Medium mesh 9.0 13.1 319
Fine mesh 10.0 14.0 305

Fig. 25. Crack length history and crack speeds obtained in numerical simulations for different meshes compared to the Guo's experiment: (a) the crack length
histories; and (b) the crack speeds.
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In general, the cohesive traction can be computed incrementally
with radial return algorithm as follows:
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where δN and δN
i are the normal displacement and incremental dis-

placement, respectively. In the radial return algorithm, the loop in-
variant is =E τ δ/N N

i
N
i while δN

i and τN
i are underneath the traction law

illustrated in Fig. 8.
For the linear cohesive model, we have

=δ G
τ
2

max
F

max (43)

In this study, normal cohesive traction is considered only since
mode I failure is a dominant failure mode of the subsequently described
failure problems.

5. Numerical examples

In this section, we examine the performance of non-nodal XFEM
through three benchmark problems for which the experimental results
are available. We compare the method with conventional XFEM to ef-
fectively demonstrate merits and demerits of the method. We now de-
fine notable features that will be used in the numerical simulations that
follow. All simulations were modeled with linear triangular elements in
plane strain and the thickness was chosen to be unity. The central
difference method for time integration is used with a Courant number
of 0.1. To advance the crack, the maximum tensile stress computed at
the crack tip was considered as fracture criterion along with an ele-
ment-by-element propagation of the crack. For the crack propagation
direction, we used the normal to the maximum tensile stress direction.
To eliminate the awkward oscillations in stress computation, once an
element failed, a nodal smoothing is performed for the stresses around
the crack tip.

5.1. Edge-cracked plate under impulsive loading

The first numerical example deals with an experiment carried out by
Kalthoff and Winkler [28] in which a plate with two initial edge notches
impacted by a projectile. Numerical results for this problem have been
given by Belytschko et al. [29] and Song et al. [30]. Kalthoff observed
two different failure modes by modifying the projectile speed V0; at
lower impact velocities, a brittle fracture with a crack propagation at an
angle of about 70° was observed while at higher impact velocities, a
strain localization, i.e. a shear band was observed at a negative angle of
about− ∘10 with respect to the notch. In this work, we consider only the
brittle fracture mode.

Due to twofold symmetry, only the upper half of the plate is mod-
eled. A schematic description of the original problem and the upper part
to be solved are shown in Fig. 9(a) and (b), respectively. The symmetry
condition =u 0y was imposed at the bottom edge of the model. The
initial velocity is applied as a step function on the left edge on
0≤ y≤ 25mm. Assuming that the projectile and the plate have iden-
tical elastic impedance, an applied velocity of 16.5m/s is chosen, which

is one-half of the projectile speed in the experiment.
The plate is a maraging steel 18Ni1900 with the following material

parameters: =E 190 GPa, =ρ 8000kg/m3 and =ν 0.3; so, the Rayleigh
wave speed is roughly =c 2800m/sR . The critical stress intensity factor
is taken as =K 68 MPa mIc which leads to a fracture energy

= ×G 2.217 10 J/m .F
4 2 We used a linear cohesive crack model with a

tensile strength of =τ 844 MPamax which corresponds to a critical crack
opening displacement = × −δ 5.245 10 m.max

5 To observe the mesh sen-
sitivity, we have analyzed the model with three different uniform me-
shes: a 40×40 coarse mesh, a 80×80 medium mesh and a 120×120
fine mesh. The crack evolutions for each mesh are shown in
Figs. 10–12.

The finite element meshes and their crack growth trajectories are
shown in Fig. 13. The simulations terminated when the crack tip passed
the upper boundary; all simulations yielded quite similar crack propa-
gation trajectories which agree quite well with those obtained by the
conventional XFEM [29,30]. The numerical results for each simulation
are listed in Table 1. The data in Table 1 show that the crack begins to
propagate at earlier times with mesh refinement, which leads to a
shorter simulation time. For all simulations, the crack first grows pri-
marily along an initial angle, then near the end of the simulation moves
a little bit upward.

The initial and the average overall crack propagation angles are
increasing with mesh refinement; the overall angle is approaching to
the experimental value with mesh refinement as the overall angle of
67.1° in fine mesh compares well with the experimental value of 70°.

The crack tip propagation speeds for 40×40 and 80×80 meshes
computed by both the proposed method and the conventional XFEM are
shown in Fig. 14. As it is demonstrated in Fig. 14(a), for both meshes,
the proposed method yields very similar crack speeds. When the crack
begins to propagate, its speed oscillates around 2000m/s and after
around 50 μs, the crack speed slowly decreases up to the end of the
simulation. However, for the conventional XFEM, the crack speeds for
the fine mesh are obtained significantly higher than for the coarse
mesh. These results confirm the previous results in Reference [29].
Therefore, we can conclude that the proposed method demonstrates less
mesh dependency than the conventional XFEM.

5.2. Crack pattern in three-point bending specimens with variable offset
notch

Experiments concerning mixed mode dynamic crack propagation in
three point bending specimens subjected to impact loading were con-
ducted by John and Shah [31]. The numerical solutions for this ex-
ample can be found in [30,32–35]. The experimental setup is shown in
Fig. 15(a). To induce mixed-mode condition, a notch was located at a
variable offset from the midspan. In these series of experiments, the
crack patterns and crack initiation angles of specimens are examined for
the offset notch at various locations. Finally, for several experiments,
three crack propagation patterns were reported depending on the lo-
cation of the notch which can be described by a normalized parameter
γ.

=γ d
L/2
notch

(44)

where dnotch denotes the distance between the midspan and the notch,
and L is the distance between the supports. A transition point was ob-
served in the notch location γt, where failure changes from a crack
growth at the offset notch (γ< γt) to a crack growth at the midspan
(γ> γt). For a narrow transition region where offset parameter is close
to γt, both notch and midspan cracks initiate and propagate. The ex-
perimentally obtained value of γt is 0.77.

Material properties are density =ρ 2400kg/m3, Young's modulus
=E 31.37 GPa, Poisson's ratio =ν 0.2 and tensile strength of

=τ 10.45 MPa.max A linear cohesive crack model was used with a frac-
ture energy of =G 19.58J/mF

2 and its corresponding critical crack
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opening displacement = × −δ 3.75 10 mmax
6 . To model the rubber pad

between the beam and impact hammer, the velocity boundary condi-
tion at the loading point is applied as a ramp function defined by

= ⎧
⎨⎩

≤
≥

V t
V t t t t
V t t

( )
/0 ramp ramp

0 ramp (45)

where =V 0.06m/s0 and =t μ196 s.ramp The imposed velocity was cali-
brated to result in a strain rate of −0.3 s 1 at the midspan which was
reported in the experiments (see Reference [32]).

Numerical simulations with three different meshes were carried out:
a coarse mesh of around 1000 elements, a medium mesh of around
4000 elements and a fine mesh of around 15,000 elements. The finite
element meshes are shown in Fig. 15(b)–(d). The numerical experi-
ments were conducted with various offset parameters to capture ob-
served failure patterns. The numerical simulations show that the initial
notch location for the transition stage approaches to the experimentally
determined value with mesh refinement. As shown in Fig. 15(b)–(d),
the γt for the fine mesh was obtained as 0.78, which agrees quite well
with experimental result of 0.77. The crack propagation paths for each
mesh are shown in Figs. 16–18.

The observed three numerical crack patterns for the fine mesh are
shown in Fig. 19. As it is shown for =γ 0.75 the crack propagates only
from the offset notch with an angle of 59° which is very close to the
experimental value of 60°. At the final stage of crack growth, the crack
rotates a little bit toward the loading point which was also reported in
experiments. For =γ 0.78 where the offset notch is in transition zone,
two cracks are initiated both at the midspan and the notch and pro-
pagate simultaneously, but the final failure occurs at the midspan. Fi-
nally, for =γ 0.785, only one main crack is initiated at the midspan and
propagates toward the loading point.

5.3. Crack extension and velocity in three-point bending specimens

In order to compare the crack speeds of the proposed method with
those reported in experiments of three-point-bend specimens, we ex-
amined an experiment reported by Guo et al. [36]. This experiment has
been also numerically modeled by Ruiz et al. [33] in three dimensions.
The experimental set-up is shown in Fig. 20(a). The offset notch is lo-
cated at 25.4 mm from midspan and extended by approximately 13mm.

The material used in the simulation has the following properties:
density =ρ 2400kg/m3, Young's modulus =ρ 32.3 GPa and Poisson's
ratio =ν 0.2. Since the load-line displacements were reported in ex-
periments, the impact loading can be applied as a prescribed dis-
placement (for more details, refer to References [33,36]). The dynamic
tensile strength of 7.75MPa (2.5 times of tensile strength) is taken as
the maximum tensile stress. A linear cohesive crack model was used
with fracture energy of =G 120 J/m .F

2 To examine the mesh sensitivity,
three different triangular meshes were used in the numerical simula-
tions as illustrated in Fig. 20(b)–(d).

Fig. 21(a) shows the averaged crack path obtained in experiments.
The experiments show that, the crack first grows primarily along an
initial angle θ1 measured from vertical line, then after passing half
width of the beam, it rotates θ2 degrees with respect to initial angle
toward the loading point. As shown in Fig. 21(a), the experimentally
computed values of θ1 and θ2 are 10° and 16°, respectively.

The crack patterns and the crack evolutions for three different
meshes are shown in Fig. 21(b)–(d) and Figs. 22–24, respectively. The
simulation results are listed in Table 2. The outcomes show that the
crack starts propagating in an earlier time with mesh refinement. All
simulations have similar crack propagation paths. In these simulations,
the crack propagation angles θ1 and θ2 are in excellent agreement with
the experimentally observed value of 10° and 16°, respectively.

The crack length histories and speeds for different meshes are illu-
strated in Fig. 25. As it can be seen, the crack speed for the coarse mesh
was obtained substantially higher than the experimental speed. For the

medium and fine meshes, the crack speeds compare well with observed
values. This example demonstrates that for the proposed method, a fine
mesh may improve the accuracy of the results.

6. Conclusions

A new XFEM-based method, which we referred as a non-nodal
XFEM, within an explicit time integration scheme has been developed
for modeling strong discontinuities in two-dimensional planes. In this
method, the discontinuities across an interface are assigned to a set of
non-nodal points on the interface. The enrichment variables are defined
as physically-based quantities and the enrichment functions are defined
to be completely vanished outside the element domain. In the proposed
method, a local partition of unity is not constructed that excludes the
element nodes from the construction of enrichment functions. This
feature dramatically simplifies the implementation of the non-nodal

Fig. B1. Mapping among different coordinate systems: (a) physical coordinates;
(b) parent coordinate; and (c) Duffy's coordinate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. C1. A strong discontinuity in one dimension: (a) the representation of a
discontinuity in a one-dimensional crack model; and (b) one-dimensional crack
enrichment function.
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XFEM, unlike the conventional XFEM and its variants including the
phantom node method [30,37].

It was demonstrated through three examples that the proposed
method can be successfully used in dynamic crack modeling. In the
Kalthoff's experiment, this method resulted very similar crack patterns
independent of the mesh size. Furthermore, the crack tip speed dis-
crepancy was negligible with mesh refinement, in contrast to conven-
tional XFEM. For mixed-mode crack propagation in three-point-bend
specimens, we analyzed the experiments conducted by John and Shah
[31] and Guo et al. [36]. In these sequence of numerical experiments,
the overall crack propagation paths agreed quite well with those values
determined in the experiments. However, in some cases, the crack
propagation angles and the crack tip speeds approached to the experi-
ments by mesh refinement. The numerical examples demonstrate that
the method can be used for modeling strong discontinuities with the
added advantage of excluding the element nodes from extended inter-
polation.

Finally, we would like to point out that the proposed methodology
may be used to model discontinuities in derivatives of a function.
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