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A B S T R A C T

A linear complete extended finite element method for arbitrary dynamic crack is presented. In this method,
strong and weak discontinuities are assigned to a set of non-nodal points on the interface, whereby the discon-
tinuous functions across the interface are reproduced by extended interpolation. The enrichments are described
to reproduce both the constants and linear functions on sides of the interface, which are critical for finite element
convergence. A key feature of this method is that the enrichment descriptions and the finite element mesh are
optimally uncoupled; the element nodes are not enriched facilitating the treatment of crack modeling in object-
oriented programs. The enrichment variables are physically-based quantities which lead to a strong imposition
of both the Dirichlet boundary conditions and the interface conditions. The convergence of the method is vali-
dated through static simulations from linear elastic fracture mechanics. The efficacy of the method for modeling
dynamic crack propagation is demonstrated through two benchmark problems.

1. Introduction

The extended finite element method (XFEM) [1,2] exploits a local
partition of unity [3] to enhance the approximation space by non-
polynomial bases. One advantage of the XFEM over the finite element
method (FEM) is that it can model the discontinuities in the solution to a
given PDE in a local domain without remeshing. However, in a standard
XFEM, finite element mesh is locally incorporated in the description of
enrichments, i.e., the finite element nodes which belong to mesh, but
not to the interface, are enriched to describe a discontinuity across an
interface. This will arise many difficulties in XFEM reproducing capa-
bilities, or even the programming implementation [4].

Some remedies have been provided in early XFEM studies to address
the difficulties arisen due to dependency between the mesh and the
enrichments. Examples include shifting the approximation to hold
the Kronecker-𝛿 property introduced by Belytschko et al. [5], treat-
ing blending elements to correct reproducing conditions addressed by
Chessa et al. [6] and Fries [7], and enriching a subset of element nodes
to satisfy C0-continuity conditions between the enriched element and
its contiguous elements discussed by Belytschko et al. [8] and Zi et al.
[9]. Moreover, Song et al. [10] introduced the phantom node method to
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model the discontinuities independently of the mesh. This approach was
further investigated for shell elements in Refs. [11,12]. As alternative
classes of methods, the cracking-particle method [13] and dual-horizon
peridynamics [14,15] in meshfree methods have been successfully used
in crack modeling. In these approaches, the crack is modeled by split-
ting particles on sides of the interface whereby the strong discontinuity
is captured independent of the mesh.

One of the main difficulties in enriching finite element nodes is the
imposition of Dirichlet boundary conditions. Since the interpretation of
enrichment variables is difficult, the non-smooth boundary constraints
[16] and interface constraints [17,18] are weakly enforced, i.e., they
are imposed in the weak form using Lagrange multiplier techniques.
Moreover, some treatments introduced for the XFEM cannot be applied
together. For instance, as lumped mass matrices are crucial for the effi-
ciency of the explicit time stepping, Menouillard et al. [19] introduced
a mass lumping strategy which is applicable to unshifted enrichment
functions. To circumvent such difficulties, it is desirable to have a tech-
nique that can describe discontinuities across the interfaces indepen-
dent of finite element mesh.

Another main difficulty in the standard XFEM is the programming
implementation. Since the finite element nodes in a local element are
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used to construct the enrichments, the element object and the enrich-
ment object in an object-oriented program (OOP) become dependent.
This feature clearly violates the OOP principle of abstraction as the dis-
continuities in a continuum are independent from the mesh. As a con-
sequence, several difficulties arise in both XFEM implementation and
post-processing steps [20,21].

To overcome these difficulties, a non-nodal enrichment technique
[22] was introduced to describe the discontinuities across an inter-
face with minimal incorporating of finite element mesh into enrichment
descriptions. In this approach, a partition of unity is not constructed, so
the element nodes are not enriched. Instead, discontinuities are defined
for a set of non-nodal points on the interface to reproduce discontinu-
ous fields across the interface. The enrichments in Ref. [22] reproduce
strong discontinuities in displacement fields, which can well reflect the
nature of a crack. Furthermore, since the enrichment parameters were
selected to be the displacement jumps which are, in fact, physically-
based variables related to the crack, the interface boundary conditions
can be easily treated in the strong form as Dirichlet boundary condi-
tions.

The main objective of this study is to enhance the interpolation in
Ref. [22] to reproduce not only the strong discontinuities in displace-
ment fields but also the discontinuities in their first derivatives. To this
end, a new set of enrichment bases is introduced to non-nodal points
on the interface to reproduce the jumps in the first derivatives. This
leads to a completely local enrichment without shifting techniques and
a linear complete approximation, i.e., the interpolation can reproduce
both rigid body motion and constant strain state on both sides of the
interface.

The remainder of the paper is as follows. In section 2, we provide
the non-nodal enrichment displacement for a linear complete approxi-
mation in one- and two-dimensional problems. Section 3 presents the
strong form, the weak form and the discretizations for dynamic analysis.
It also introduce a quadrature rule developed for non-nodal enrichment
methods. Finally, section 4 provides several numerical studies analyzed
by the method for static and dynamic simulations.

2. Enriched displacement fields for discontinuity

We consider a two-dimensional body Ω with its boundary Γ in the
initial configuration, as shown in Fig. 1. The body includes a crack with
a surface discontinuity denoted by Γc. Two sides of this discontinuity
are signed by a continuous level set function f(X) so that f(X) =0 gives
the discontinuity surface. The level set function f can be described by
the signed distance function as

f (X) = min
X∈Γc

‖X − X‖ sign(n+ · (X − X)) (1)

where X is the closest point on the interface to X and ∥ · ∥ denotes
the Euclidean norm. The unit normal vector n+ is perpendicular to the
discontinuity surface where the level set is positive, i.e., f>0.

We extend the interpolation so that it can capture two discontinu-
ities: a strong discontinuity across the crack surface which can be rep-
resented with a jump in displacements and a weak discontinuity which
can be considered as a jump in strains. It can be shown that when
the interpolation reproduces independent linear functions on sides of
the interface, then such discontinuities can be captured. Therefore, the
interpolation is enriched to reproduce two discontinuous displacement
fields: a displacement field with a strong discontinuity denoted by Φu

which is defined using the Heaviside function, i.e.,

Φu = H(f (X)) =
{

0 if f < 0,
1 if f > 0,

(2)

and another displacement field with a weak discontinuity, i.e., a dis-
continuity in its first derivative denoted by Φ∇u which is defined as

Fig. 1. A two-dimensional body with a crack in material coordinates.

Φ∇u = H(f (X)) × f (X) =
{

0 if f < 0,
f (X) if f > 0.

(3)

For each discontinuity, a physically−based variable which can best
reflect the nature of the discontinuity is defined as an enrichment
parameter and assigned to non-nodal points on the surface of disconti-
nuity. In the following, we first construct the enrichments for a linear
element in one dimension and then for a linear triangular element in
two dimensions.

2.1. Representation of a crack with non-nodal enrichment parameters for
2-node linear elements

We consider a one-dimensional bar with a discontinuity, i.e., a crack
at X=Xc as shown in Fig. 2. The level set function f is considered neg-
ative and positive on the left and right sides of the crack, respectively.
Fig. 2(a) illustrates an arbitrary displacement field consisting of two
independent linear fields on each side of the crack. Such displacements
can be reproduced by superimposing three independent parts: (i) a con-
tinuous displacement represented by the finite element interpolation
shown in Fig. 2(b); (ii) a strong discontinuity represented by a jump
in the displacement ⟦u⟧ at the non-nodal point at Xc as illustrated in
Fig. 2(c); and (iii) a weak discontinuity represented by a jump in the
strain ⟦Le∇u⟧ at Xc as described in Fig. 2(d). Here, the element length
Le is consciously multiplied to make the units of nodal values consistent
with other terms in (4). This results in significant reduction of the condi-
tion number of the stiffness matrix. Notice that four unknown variables
are employed to approximate a displacement field in this bar, i.e., {u1,

u2, ⟦u⟧, ⟦Le∇u⟧}.
Using these variables, the approximation of the displacement field

in a one-dimensional bar can be defined by

u (X, t) = ucont (X, t) + udisc (X, t)

=
2∑

I=1
NI (X) uI (t) + Ψu (X) ⟦u (t)⟧ +Ψ∇u (X) ⟦Le∇u (t)⟧. (4)

The non-nodal enrichment functions Ψu and Ψ∇u are constructed so
that (4) can reproduce the discontinuous displacement fields Φu and
Φ∇u given in (2) and (3), respectively. These discontinuous fields are
illustrated in Fig. 3.

Let us first consider the displacement field with a strong disconti-
nuity, i.e., u=Φu. Then, the nodal values consisting of the regular and
enriched degrees of freedom (DOFs) can be calculated as

Regular DOFs ∶
{

u1 = 0
u2 = 1

, Enriched DOFs ∶
{⟦u⟧ = 1⟦Le∇u⟧ = 0.
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Fig. 2. One-dimensional enrichment displacement fields: (a) an arbitrary linear displacement field on both sides of the crack; (b) the finite-element displacement
field uFEM; (c) the enrichment displacement field produced by displacement jump enrichment Ψu × ⟦u⟧; and (d) the enrichment displacement field for gradient jump
enrichment Ψ∇u × ⟦Le∇u⟧. Note that in one dimension for small derivatives ⟦∇u⟧= ⟦𝜖⟧= ⟦𝜃⟧= 𝜃+ − 𝜃−.

Fig. 3. Representation of the discontinuity in: (a) a function denoted by Φu; and (b) a derivative of a function denoted by Φ∇u.

Substituting above values into (4), the enrichment function Ψu can be
obtained as

Ψu =
{
−N2 f < 0,

N1 f > 0. (5)

Notice that since Φu introduces no discontinuity in strains, the enrich-
ment parameter ⟦Le∇u⟧ vanishes and consequently, the enrichment
function Ψu is obtained identical to that in our previous study [22].

Similarly, considering a displacement field with a weak discontinu-
ity, i.e., u=Φ∇u, the nodal values can be obtained as

Regular DOFs ∶
{

u1 = 0

u2 = X2 − Xc
, Enriched DOFs ∶

{⟦u⟧ = 0

⟦Le∇u⟧ = Le.

Using these values, (4) can be expressed for each side of the crack as
follows:

0 = N2(X2 − Xc) + LeΨ∇u−(X) if f < 0,

X − Xc = N2(X2 − Xc) + LeΨ∇u+(X) if f > 0.
(6)

The linear term X−Xc can be interpolated exactly by the standard shape
functions as X − Xc = ∑2

I=1 NI(XI − Xc), so (6) gives rise to the second
enrichment function as follows:

Ψ∇u =
{
−s+N2 f < 0,
−s−N1 f > 0,

(7)
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Fig. 4. One-dimensional crack enrichment functions: (a) Ψu; and (b) Ψ∇u.

Fig. 5. A strong and weak discontinuity in two dimensions: (a) a triangular element with a crack; (b) Φu; and (c) Φ∇u.

in which s+ and s− are two normalized parameters indicating the ratios
of the lengths of the left and right sides of the crack to the element
length defined as

s− = (Xc − X1)∕Le, s+ = (X2 − Xc)∕Le.

These enrichment functions are illustrated in Fig. 4. Using these enrich-
ment functions, the extended interpolation can reproduce two indepen-
dent linear functions at both sides of the crack. The detailed proof is
provided in Appendix A.

2.2. Representation of a crack with non-nodal enrichment parameters for
three-node triangular elements

We consider a triangular element that is completely cut by a crack
as shown in Fig. 5(a). For such a crack position, the strong and weak
discontinuities given in (2) and (3) are illustrated in panels (b) and (c)
of Fig. 5. The enrichment variables for capturing the strong discontinu-
ity are chosen to be the displacement jumps at the intersection points
of the crack and element edges, i.e., the displacement jumps at Xc

1 and

Xc
2 denoted by ⟦u⟧1 and ⟦u⟧2, respectively.

The enrichment variables for capturing the weak discontinuity are
selected to be the jumps in directional derivatives of the displacement
at the intersection points. The ideal direction at a point on the interface
could be the normal to the surface of the discontinuity. However, as in
element-wise crack propagation, the crack direction changes at element
edges, there are more than one normal to the crack surface at the inter-
section points. As a consequence, to satisfy the C0-continuity condition,
the directions of element edges, which are in common between adjacent
elements, are chosen as the directions of derivatives. These directions
are denoted by ec

1 and ec
2 and illustrated in Fig. 6. Notice that incorpo-

rating a finite element mesh into the definition of weak discontinuity
enrichments can be attributed here to the element-wise crack propaga-
tion scheme.

The approximation of the displacement field u(X) in a three-node
triangular element can be given by

u(X) = ucons(X) + udisc(X)

=
3∑

I=1
NI (X)uI +

∑
J∈𝛿u

Ψu
J (X)⟦u⟧J +

∑
K∈𝛿∇u

Ψ∇u
K (X)⟦Lc

K∇u · ec
K⟧K ,

(8)
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Fig. 6. Illustration of nomenclature for a linear complete non-nodal enrichment
in two dimension.

in which 𝛿u and 𝛿∇u are sets of non-nodal points on the interface,
Lc

K is the length of an element edge that contains the points Xc
K, and⟦∇u · ec

K⟧K is the jump in the directional derivative along ec
K at Xc

K . In
the following, we consider a general case where the element is com-
pletely cut by a crack, i.e. 𝛿u = 𝛿∇u ={1,2}.

Following the steps of the previous section, we first consider a dis-
placement field including a strong discontinuity, i.e., u=Φu. For such
a displacement field, the weak enrichment variables ⟦Lc

K∇u · ec
K⟧K are

vanished. This reduces to the interpolation in (8) to that in Ref. [22]
and results in the identical enrichment functions as

Ψu
1 =

⎧⎪⎨⎪⎩
−N1 × N3

N2 + N3
f < 0,

N3 f > 0,
Ψu

2 =
⎧⎪⎨⎪⎩
−N1 × N2

N2 + N3
f < 0,

N2 f > 0.
(9)

Notice that the enrichment functions are defined to satisfy the C0-
continuity conditions between the enriched element and its contiguous
elements (see Ref. [22] for more details). They can be also expressed in
terms of four-node quadrilateral shape functions N4Q as

Ψu
1 =

⎧⎪⎨⎪⎩
−N4Q

1 f < 0,

N4Q
4 f > 0,

and Ψu
2 =

⎧⎪⎨⎪⎩
−N4Q

2 f < 0,

N4Q
3 f > 0.

(10)

Next, considering a displacement field with a weak discontinuity, i.e.,
u=Φ∇u, the nodal values are determined as follows:

Regular DOFs ∶

⎧⎪⎪⎨⎪⎪⎩
u1 = f (X1),

u2 = 0,

u3 = 0,

and

Enriched DOFs ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟦u⟧1 = 0,

⟦Lc
1∇u.ec

1⟧1 = Lc
1
|f (X3)|

Lc−
1

,

⟦u⟧2 = 0,

⟦Lc
2∇u.ec

2⟧2 = Lc
2
|f (X2)|

Lc−
2

,

in which, for such a displacement, ∇u=n+ + t, as depicted in Fig. 5(c).
By substituting above nodal values into the approximation (8) and
rewriting it for each side of the interface, we have

f (X) = N1f (X1) + Ψ∇u+
1 Lc

1
|f (X3)|

Lc−
1

+Ψ∇u+
2 Lc

2
|f (X2)|

Lc−
2

,

0 = N1f (X1) + Ψ∇u−
1 Lc

1
|f (X3)|

Lc−
1

+Ψ∇u−
2 Lc

2
|f (X2)|

Lc−
2

.

Since the function f is a linear function, it can be exactly interpolated by
standard shape functions as f =∑3

I=1 NIfI . So, the enrichment functions
Ψ∇u

1 and Ψ∇u
2 are obtained as

Ψ∇u
1 =

⎧⎪⎨⎪⎩
−s+1

N1 × N3
N2 + N3

f < 0,

−s−1 N3 f > 0,
Ψ∇u

2 =
⎧⎪⎨⎪⎩
−s+2

N1 × N2
N2 + N3

f < 0,

−s−2 N2 f > 0.
(11)

Here, we use the side-splitter theorem and define the normalized
parameters s−I = Lc−

I ∕Lc
I and s+I = Lc+

I ∕Lc
I . They can also be expressed

according to bilinear shape functions as

Ψ∇u
1 =

⎧⎪⎨⎪⎩
−s+1 N4Q

1 f < 0,

−s−1 N4Q
4 f > 0,

and Ψ∇u
2 =

⎧⎪⎨⎪⎩
−s+2 N4Q

2 f < 0,

−s−2 N4Q
3 f > 0.

(12)

The strong and weak enrichment functions are illustrated in
Fig. 7(a)–(d). Notice that, for a general crack position, the weak enrich-
ment functions Ψ∇u may introduce discontinuities across the interface.
For an arbitrary discontinuity across the interface, the construction
of non-nodal enrichment functions has been generalized for a multi-
dimensional multi-node element in Ref. [22].

Enriching with Ψu and Ψ∇u enables the approximation to reproduce
two independent linear functions at either side of the crack shown in
Fig. 7(e). The detailed proof has been provided in Appendix B.

3. Governing equations and discretization

3.1. Governing equations

The linear momentum equation in a total Lagrangian description is
given by

𝜕Pji
𝜕Xj

+ 𝜌bi − 𝜌üi = 0 in Ω (13)

where P is the nominal stress tensor, 𝜌 is the initial density, and b is
the body force vector per unit mass. The boundary conditions can be
written as

ui = ui on Γu,⟦u⟧i = ⟦u⟧i on Γuc,⟦∇u⟧i = ⟦∇u⟧i on Γ∇uc,

njPji = ti on Γt,

n±j P±ji = 𝜏c
i (⟦u⟧i) on Γc,

(14)

in which u is the prescribed displacement on the Dirichlet boundary
Γu, ⟦u⟧ and ⟦∇u⟧ are the prescribed jumps in the displacement and its
gradient on sets of non-nodal points located on Γuc and Γ∇uc, respec-
tively. Here, 𝜏c is the cohesive traction on the crack surface, and t is the
prescribed traction on the Neumann boundary Γt. Superscripts plus and
minus signs indicate two sides of the interface. The crack edge can be
defined by imposing homogeneous prescribed displacement jumps as

⟦u⟧i = ⟦∇u⟧i = 0 at crack edge. (15)
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Fig. 7. The enrichment functions and their interpolated field: (a) Ψu
1; (b) Ψu

2; (c) Ψ∇u
1 ; (d) Ψ∇u

2 ; and (e) the representation of a discontinuity in a two-dimensional
model. nS+ and nS− are normal to the interpolation surfaces.

It is important to note that the essential boundary conditions on ∇u can
be effectively adopted in modeling bi-material problems.

We define the spaces for the admissible displacement field u and the
test field 𝛿u as

U = {u ∈ C0|u = u on Γu, ⟦u⟧ = ⟦u⟧ on Γuc,u discontiniuous on Γc},

U0 = {𝛿u ∈ C|𝛿u = 0 on Γu, ⟦𝛿u⟧ = 0 on Γuc, 𝛿u discontiniuous on Γc}.

The weak form of (13) can be stated as: Find u ∈ U, for 𝛿u∈ U0,

∫Ω𝛿u · 𝜌üdΩ = ∫Ω𝛿u · 𝜌bdΩ+ ∫Γt

𝛿u · tdΓt

− ∫Ω𝛿FT ∶ PdΩ− ∫Γc

⟦𝛿u⟧ · 𝝉cdΓc (16)

where F is the deformation gradient.

3.2. Discretization

The weak form (16) is discretized by finite element discretization
techniques yielding to

∫Ωe
𝜌NTNdΩed̈e = ∫Ωe

𝜌NTbdΩe + ∫Γe
t

NTtdΓe
t

− ∫Ωe
BTSdΩe − ∫Γe

c

⟦𝚿⟧T
e 𝝉

cndΓe
c (17)

where S is the second Piola-Kirchhoff stress in Voigt form and de is
the generalized nodal coefficient matrix consisting of the nodal dis-
placements and the enrichment parameters. It can be expanded for a
triangular element as

de = [u1, u2, u3, ⟦u⟧1, Lc
1⟦∇u.ec

1⟧1, ⟦u⟧2, Lc
2⟦∇u.ec

2⟧2]T. (18)

The generalized shape function vector N is defined as

N = [N1, N2, N3, 𝚿u
1, 𝚿

∇u
1 , 𝚿u

2, 𝚿
∇u
2 ]. (19)

Similar to the steps in Ref. [23], the shape function derivative matrix
associated to the node I is denoted by BI and constructed as

BI = [B0
I , Bu

I , B∇u
I ] (20)

where

B0
I =

⎡⎢⎢⎢⎣
NI,X x,X NI,X y,X
NI,Y x,Y NI,Y y,Y

NI,X x,Y + NI,Y x,X NI,X y,Y + NI,Y y,X

⎤⎥⎥⎥⎦ ,

Bu
I =

⎡⎢⎢⎢⎣
Ψu

I ,X x,X Ψu
I ,X y,X

Ψu
I ,Y x,Y Ψu

I ,Y y,Y
Ψu

I ,X x,Y +Ψu
I ,Y x,X Ψu

I ,X y,Y +Ψu
I ,Y y,X

⎤⎥⎥⎥⎦ ,
32
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Fig. 8. Numerical integration with the subdomain integration schemes; (a) a cracked element in physical coordinates; (b) Duffy’s parent domain; and (c) regular
parent coordinates.

B∇u
I =

⎡⎢⎢⎢⎣
Ψ∇u

I ,X x,X Ψ∇u
I ,X y,X

Ψ∇u
I ,Y x,Y Ψ∇u

I ,Y y,Y
Ψ∇u

I ,X x,Y +Ψ∇u
I ,Y x,X Ψ∇u

I ,X y,Y +Ψ∇u
I ,Y y,X

⎤⎥⎥⎥⎦ .
Here, (·), i represents the partial derivative along the ith coordinate
direction.

For the computation of the integrals in (17) within an enriched ele-
ment where the integrands are discontinuous, a modified numerical
quadrature scheme such as subdomain integration is used. In subdo-
main integration, the element domain is partitioned into several subdo-
mains where the Gauss points are positioned as shown in Fig. 8(b)–(c).
Here, we adopt two different subdomain integration schemes depending
on the parent domains where the enrichment functions are defined. For
the Duffy’s parent domain, the enrichment functions are simply given
in terms of bilinear shape functions as in (10) and (12). However, as
a straight interface shown in Fig. 8(a) is mapped to a high curvature
interface shown in Fig. 8(b), to maintain the accuracy of the integra-
tion, the interface is discretized, which leads to increased number of
subdomains. For the standard parent domain shown in Fig. 8(c), the
enrichment functions are given in (9) and (11). Since these enrichment
functions are non-polynomial functions, higher number of Gauss points
are required to maintain the integration accuracy.

3.3. Time stepping algorithm

We employ the explicit central difference time-stepping algorithm
[23] which is conditionally stable, i.e., it is stable when

Δt ≤ Δtc =
2

𝜔max
. (21)

By studying the frequencies 𝜔i of the one-dimensional discrete system
𝜔2

i Mdi = Kdi, the variation of the critical time step size according to

Fig. 9. The variation of the normalized critical time step size according to the
normalized location of the discontinuity.

the normalized location of the crack is pre-determined. Fig. 9 compares
the normalized critical time step size of three methods: (a) a standard
XFEM; (b) a non-nodal XFEM with only strong enrichment functions
Ψu introduced in Ref. [22]; and (c) the proposed method, i.e., the non-
nodal XFEM with both strong and weak enrichment functions.
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Fig. 10. A square patch for the near-tip crack problem: (a) geometry; and (b) boundary conditions.

Fig. 11. Convergence study for the near-tip crack problem: (a) Energy-norm errors; and (b) L2-norm errors.

As it can be seen from Fig. 9, the critical time size for the proposed
method is identical to that of the standard XFEM; its peak occurs when
the crack is in the middle of the element and it drops linearly to zero as
the crack location approaches to the element nodes. This implies that
the zero critical time step sizes can be attributed to capturing discon-
tinuities in strains because it would not occur for the non-nodal XFEM
with only strong enrichment functions. To avoid the zero critical time
step sizes, we do not allow the ratio of the area of the smaller side of the
crack Amin to the area of the element A to be less than 0.1, i.e., Amin∕A
> 0.1 (see Ref. [4] for more details).

3.4. Cohesive law

In this study, a linear cohesive model is used for the damage evo-
lution created by the crack. A cohesive model is usually applied to the
crack surfaces to balance the energy dissipated due to the crack evo-
lution and the critical fracture energy. Since the mode I is a dominant
failure mode of the subsequently described failure problems, we con-
sider only the normal component of the cohesive traction, which can
be written in terms of the normal displacement jump 𝛿N defined by

𝛿N = n · ⟦u⟧ = n ·
(∑

J∈𝛿u
⟦𝚿u

J⟧⟦u⟧J +
∑

K∈𝛿∇u

⟦𝚿∇u
K ⟧⟦Lc

K∇u · ec
K⟧K

)
. (22)

It must be stressed out that the derivative enrichment functions Ψ∇u

are not in general continuous across the interface. So, they contribute to
cohesive force computations. The cohesive traction is computed using

a radial-return algorithm in Ref. [22].

4. Numerical study

The capability of the proposed method is tested for both static and
dynamic problems. In the first two examples, the convergence of the
proposed method is verified through static problems from linear elastic
fracture mechanics. Moreover, we consider two benchmark problems
with experimental results to validate the method for modeling dynamic
crack propagation.

To effectively demonstrate the benefits of the method, we solve the
problems using three approaches: (i) a standard XFEM, (ii) a non-nodal
XFEM considering only strong enrichment functions Ψu as in Ref. [22],
and (iii) the proposed linear complete non-nodal XFEM. We denote by
NXFEM in the figure legends for a non-nodal XFEM. The central dif-
ference method for time integration is used with a Courant number of
0.1. All simulations are solved using constant strain triangular elements,
plane strain, and thicknesses of unity. The fracture criterion used in this
study is the maximum tensile stress computed at the crack front. The
direction of the crack is selected to be normal to the maximum ten-
sile stress direction. To eliminate awkward oscillations in stress com-
putation, once an element failed, the stresses about the crack edge are
averaged using nodal smoothing techniques.
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Fig. 12. Comparison of rates of convergence in L2-norm errors of the near-
tip crack problem for non-nodal XFEM with and without Dirichlet boundary
conditions on the interface.

The relative errors in the energy norm denoted by R.Een and L2-norm
denoted by R.Ed used in the analysis are defined as

(R.Een)2 =
∫Ω(𝜺− 𝜺

h)TC(𝜺− 𝜺
h)dΩ

∫Ω𝜺TC𝜺 dΩ , (R.Ed)2 =
∫Ω(u − uh)2 dΩ

∫Ωu2 dΩ .

4.1. Near-tip crack field

To demonstrate the capability of the proposed method for repro-
ducing non-smooth solutions, a square patch with the same length and
height L=H=2 and a crack length a=H∕2=1 is considered as shown
in Fig. 10.

Tractions are prescribed along the boundary and the rigid body
motions are avoided by prescribing displacements at nodes B and C
as shown in Fig. 10(b). The closed-form stress fields ahead of a crack
tip for the mode I in polar coordinates (r, 𝜃) are given by

𝜎11(r, 𝜃) =
KI√
2𝜋r

cos 𝜃

2

(
1 − sin 𝜃

2
sin 3𝜃

2

)
,

𝜎22(r, 𝜃) =
KI√
2𝜋r

cos 𝜃

2

(
1 + sin 𝜃

2
sin 3𝜃

2

)
,

𝜎12(r, 𝜃) =
KI√
2𝜋r

cos 𝜃

2
sin 𝜃

2
cos 3𝜃

2
.

The closed-form displacement fields are also given by

u1(r, 𝜃) =
KI
2𝜇

√
r

2𝜋
cos 𝜃

2

(
k − 1 + 2 sin2 𝜃

2

)
,

u2(r, 𝜃) =
KI
2𝜇

√
r

2𝜋
sin 𝜃

2

(
k + 1 − 2 cos2 𝜃

2

)
,

where 𝜇 is the shear modulus and k is the Kolosov constant defined as

k =
⎧⎪⎨⎪⎩

3 − 4 𝜈 (plane strain),
3 − 𝜈

1 + 𝜈
(plane stress).

The material properties selected are: Young’s modulus E=105 and Pois-
son’s ratio 𝜈=0.3. The stress intensity factor is prescribed as KI =1.0.

A convergence study is carried out using structured linear triangular
elements. Plots of errors in both energy norm and L2-norm are provided
in Fig. 11. The rates of convergence in the energy norm for the regular
FEM, the standard XFEM, and the proposed method are around 0.49
which is very close to the optimal value of 0.5. Notice that the conver-
gence rate in the energy norm for the non-smooth crack-tip problem is
O(h1/2) as indicated in Refs. [24,25].

Moreover, the results demonstrate that the proposed method out-
performs the standard XFEM as the graph shows a constant shift toward
lower error. Also, the non-nodal XFEM (NXFEM) with only Ψu enrich-
ment as in Ref. [22] underperforms the other XFEM schemes but its con-
vergence rate improves with mesh refinement as it is illustrated from
L2-norm results in Fig. 11(b).

One advantage of the proposed method is to improve accuracy by
imposing Dirichlet boundary conditions on the interface. In doing so,
closed-form displacement jumps are imposed at the non-nodal point on
the left edge, i.e., point A in Fig. 10. These constraints can be expressed
as

⟦uA⟧X = 0, ⟦uA⟧Y = −2 u2(1, 𝜋).

The convergence results in L2-norm are displayed in Fig. 12. With
Dirichlet boundary conditions imposed on the interface, relatively
lower errors are observed for both non-nodal XFEM schemes, indicating
the improvement of accuracy of our method. Moreover, these bound-
ary conditions lead to the rate of convergence of R=0.881 which is
a slightly better convergence rate of the proposed method than the

Fig. 13. Mesh models used for the stress convergence of the near-tip crack problem: (a) an 80×80 structured mesh; and (b) a refined mesh with around 13000
elements.
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Fig. 14. Stresses of the near-tip crack problem for the 80×80 structured mesh: (a–c) ahead of the crack tip; (d–f) angular variation along constant radius (r=0.1a).
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Fig. 15. Stresses of the near-tip crack problem for the refined mesh: (a–c) ahead of the crack tip; (d–f) angular variation along constant radius (r=0.1a).
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Fig. 16. (a) Infinite plate with a circular hole subjected to uniform tension; and (b) upper right quadrant of a square of edge length 2b centered at (0,0) is modeled
due to symmetry.

Fig. 17. Convergence study for the plate with a circular hole at the center for four enrichment schemes: (a) Energy-norm errors; and (b) L2-norm errors.

one (i.e., R=0.864) obtained from the previous study without imposing
Dirichlet boundary conditions.

The stresses are compared with exact solutions using both an 80×80
structured mesh and a refined mesh near the crack tip as shown in
Fig. 13. The stresses computed along 𝜃=0 from the crack tip are shown
in Fig. 14(a)–(c) for the structured mesh and Fig. 15(a)–(c) for the

refined mesh. Also, the angular variation of stresses at r=0.1a from
the crack edge are shown in Fig. 14(d)–(f) for the structure mesh and
Fig. 15(d)–(f) for the refined mesh. As shown in the figures, the stresses
oscillate near the crack tip for both mesh types. The singularity at the
crack tip also has not been captured. This is expected because we have
not introduced any enrichment functions to capture the near-tip singu-

Fig. 18. Contour plots of the normal stress 𝜎11 in deformed configuration (×1000): (a) the proposed method and the standard XFEM; and (b) the proposed method
with interface constrains.
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Fig. 19. (a) Kalthoff experimental set-up under impulsive loading; and (b) upper half of the plate analyzed dye to twofold symmetry.

lar fields. However, with mesh refinement, the computed stresses con-
verge to the closed-form solutions.

4.2. Stress concentration in an infinite plate with a circular hole

To demonstrate the performance of the proposed method for mod-
eling of discontinuities in strains, an infinite plate with a small circular
hole of radius a subjected to uniform tension 𝜎 along X direction is
considered (see Fig. 16(a)). Since the exact solution is given for the
region close to the circle [26], we consider a square domain of edge
length 2b with the circular hole at its center as in Ref. [27]. To take
advantage of symmetry, only the upper right quadrant is considered as
shown in Fig. 16(b). The symmetric constraints are imposed on bottom
and left edges; the exact tractions are imposed on top and right edges.
The closed-form solutions for the stress distribution in polar coordinates
(r, 𝜃) are given by

𝜎11(r, 𝜃) = 𝜎

[
1 − a2

r2

(3
2

cos 2𝜃 + cos 4𝜃
)
+ 3

2
a4

r4 cos 4𝜃
]
,

𝜎22(r, 𝜃) = 𝜎

[
−a2

r2

(1
2

cos 2𝜃 − cos 4𝜃
)
− 3

2
a4

r4 cos 4𝜃
]
,

𝜎12(r, 𝜃) = 𝜎

[
−a2

r2

(1
2

sin 2𝜃 + sin 4𝜃
)
+ 3

2
a4

r4 sin 4𝜃
]
.

The closed-form displacements are given by

u1(r, 𝜃) =
a𝜎
8𝜇

[
r
a
(k + 1) cos 𝜃 + 2 a

r
((1 + k) cos 𝜃 + cos 3𝜃)

− 2 a3

r3 cos 3𝜃
]
,

u2(r, 𝜃) =
a𝜎
8𝜇

[ r
a
(k − 3) sin 𝜃 + 2 a

r
((1 − k) sin 𝜃 + sin 3𝜃)

− 2 a3

r3 sin 3𝜃
]
.

We take Young’s modulus E=105 and Poisson’s ratio 𝜈=0.3. The
analyses are performed considering the following parameters: 𝜎 =1,

a=0.3, and b=1. In Fig. 17, a convergence study is conducted using
linear triangular elements. The convergence rates were resulted slightly
sub-optimal for both the standard XFEM and the proposed method.
Notice that the optimal convergence rates for energy norm and L2-
norm are 1.0 and 2.0, respectively [27]. The proposed method obtains
convergence rates of 0.9 and 1.813 in the energy norm and L2-norm,
respectively. However, the method presented in Ref. [22] gives the con-
vergence rates of 0.498 and 0.885. This is expected because the enrich-
ment function Ψu can only capture strong discontinuities while there is
a weak discontinuity inside elements in this problem.

Contour plots for the normal stress 𝜎11 are shown in Fig. 18.
Fig. 18(a) shows that the maximum normal stress for both standard
XFEM and the proposed method is 3.3 which is more than the theoret-
ical value of 3.0. To improve the accuracy of the results, two Dirichlet
boundary conditions on left and bottom edges are imposed to the dis-
placement jumps on the intersection points of the circular hole and
square edges, i.e., points A and B in Fig. 16. These constraints can be
expressed as

⟦uA⟧X = 0, ⟦uB⟧Y = 0

The resulted normal stresses are shown in Fig. 18(b). As it can be seen,
the maximum normal stress is 3.1, which is very closed to the theoreti-
cal value.

4.3. Edge-cracked plate under impulsive loading

This numerical example concerns a plate with two initial edge
notches whose experiment carried out by Kalthoff and Winkler [28].
The plate is subjected to a projectile with different impact velocities
which can be modeled as prescribed boundary conditions. Based on
numerical observations, the impact velocity directly determines the fail-
ure pattern so that at lower velocities a brittle fracture with a crack
propagation at an angle of about 70◦ was observed while a shear band
was detected at higher velocities.

In this work, we consider only the brittle fracture mode. Numerical
results for this problem can be found in Refs. [8,10]. The experimental
set-up and the upper half of the plate which is analyzed due to two-fold
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Fig. 20. The computed crack paths using linear complete formulations on the 120×120 deformed mesh with a maximum principle stress at different time steps: (a)
t=25.72 μs; (b) t=38.22 μs; (c) t=56.54 μs; and (d) t=78.68 μs.

Fig. 21. Comparison of crack propagation trajectories using linear complete formulation at final simulation step using triangular linear elements (a) 40×40 mesh;
(b) 80×80 mesh; and (c) 120×120 mesh.

symmetry are shown in Fig. 19. Considering the same elastic impedance
for the projectile and the plate material, a velocity of 16.5 m∕s is cho-
sen.

The material parameters are: 𝜌=8000 kg∕m3, E=190 GPa, and
𝜈=0.3; they lead to a Rayleigh wave speed of about CR =2800 m∕s. A
linear cohesive crack model with fracture energy GF =2.213×104 N∕m
and a critical crack opening displacement 𝛿max =5.245×10−5 m with a
tensile strength of 𝜏max =844 MPa are used.

To observe the mesh sensitivity, we study the crack evolutions for
40×40, 80×80 and 120×120 meshes. In Fig. 20, the crack paths on
different crack-tip speeds are displayed for only 120×120 mesh. Notice
that similar results are observed for both 40×40 and 80×80 meshes.

Plots of the crack propagation trajectories obtained from all three mesh
types are presented in Fig. 21. All simulation results show similar crack

Table 1
Crack propagation angles and timing data using linear complete
formulation for the Kalthoff’s experiment.

Mesh Angles(◦) Time(𝜇s)

Initial Overall Propagation Simulation

40× 40 61.63 64.63 25.55 82.85
80× 80 63.02 65.88 22.50 78.43
120× 120 65.18 68.77 19.7 77.4
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Fig. 22. Crack speeds for the Kolthoff’s experiment simulation: (a) the crack speed of linear complete formulation and (b) the crack speed of the standard XFEM.

Fig. 23. A three-point bend test: (a) the geometry and boundary conditions; and (b) the experimentally obtained crack path.

paths which agree well with those reported by experiments [28] and the
other XFEM schemes [8,10]. More details for each simulation are listed
in Table 1. The data in Table 1 shows that the overall crack propaga-
tion angle approaches to the experimentally obtained value of 70◦ with
mesh refinement. This angle is slightly bigger than the angle reported in
Ref. [22]. The difference may be resulted from capturing the indepen-
dent linear displacements in the presented work which yields to predict
the strains more accurately.

The crack tip propagation speeds for 40×40 and 80×80 meshes are
shown in Fig. 22. For the proposed method, Fig. 22(a) displays slightly
faster speed for 80×80 mesh than 40×40 mesh. The crack speed

increases up to 2000m∕s and 2500 m∕s for 40×40 and 80×80, respec-
tively. For both simulations, after 45 μs, the crack tip speed decreases
up to the end of the simulation. However, for the conventional XFEM
result shown in Fig. 22(b), there is a significant difference in the crack
speeds for different meshes. These results indicate that the proposed
method is less sensitive to the mesh than the conventional XFEM.

4.4. Crack extension and velocity in three-point bending specimens

In this section, we apply our method to a three-point bend speci-
men problem reported by Guo et al. [29]. Ruiz et al. [30] modeled this

Fig. 24. The crack evolution resulted from linear complete enriched formulation for fine mesh: (a) t=327.57 μs; (b) t=499 μs; (c) t=612.02 μs; and (d) t=773.68 μs.
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Fig. 25. The crack patterns for different meshes: (a) coarse mesh (b) medium mesh and (c) fine mesh.

experiment in three dimensions. The experimental set-up and the crack
path are shown in Fig. 23. A 19 mm offset notch is located at 25.4 mm
from beam midspan and then extended by approximately an additional
13 mm depth. Fig. 23(b) shows the averaged crack path obtained in
experiments. The crack first grows primarily along an initial angle of
𝜃1 =10◦ measured from the vertical line, and then it rotates 𝜃2 =16◦

toward the loading point.
The material properties are: density 𝜌=2400 kg∕m3, Young’s mod-

ulus E=32.3 GPa, and Poisson’s ratio 𝜈=0.2. The impact loading is
applied as a prescribed displacement (for more details, refer to [29,30]).
The dynamic tensile strength is taken as 7.75 MPa. A linear cohesive
crack model is used with the fracture energy of GF =120 Jm−2.

To examine mesh sensitivity, three different triangular meshes
were used: (a) a coarse mesh of around 1100 elements; (b) a
medium mesh of around 7700 elements; and (c) a fine mesh of
around 17200 elements. The crack evolution for only fine mesh
is shown in Fig. 24. Similar results are observed for coarse and
medium meshes. The final crack paths for these three meshes are
illustrated in Fig. 25. The simulation results are listed in Table 2.
The results show that the first angle 𝜃1 has been captured quite
accurately with mesh refinement. However, the second angle 𝜃2 was

Table 2
Crack propagation angles and timing data resulted from linear complete
enriched formulation for the Guo’s experiment.

Mesh Angles(◦) Propagation Time(𝜇s)

Initial(𝜃1) Final(𝜃2)

Coarse mesh 14.5 9.0 331.6
Medium mesh 11.5 13.2 309.7
Fine mesh 10.8 12.5 295.4

obtained slightly less than the experimentally obtained value 16◦.
These results demonstrate that the proposed method can predict
the mixed-mode crack propagation paths in three-point bend speci-
mens.

The crack length history and speed for different meshes are shown
in Fig. 26. The crack speeds for the linear complete formulation show
less mesh dependency than those obtained in [22]. However, the crack
speed for the coarse mesh is still higher than the experimental speed.
For the medium and fine meshes, the crack speeds compare very well
with observed values.

Fig. 26. Crack length history and crack speeds obtained from linear complete enriched formulation for different meshes compared to the Guo’s experiment: (a) the
crack length histories; and (b) the crack speeds.
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5. Conclusion

A linear complete XFEM method with non-nodal enrichment
approach was presented. In this method, by appropriately defining
two sets of enrichment functions and their associated physically-based
enrichment variables, the interpolation can reproduce independent lin-
ear functions at sides of the interface; linear completeness is a nec-
essary condition for the convergence of finite element based method.
Moreover, the enrichments are vanished outside the element domain so
that no blending elements appear. The proposed method as a non-nodal
XFEM variant facilitates the XFEM implementation in existing finite ele-
ment programs by dissociating the enrichment definitions from element
nodes.

With two static examples from linear elastic fracture mechanics,
the convergence of the proposed method was validated. The Dirich-
let boundary conditions were simply imposed on the interface, which

significantly reduced the error in L2-norm. To verify the method for
modeling dynamic crack propagation, two dynamic examples for which
experimental results are available were simulated. In the Kalthoff’s
experiment, the new method gave negligible mesh dependency on crack
speed, in contrast to the conventional XFEM. Moreover, the method
resulted very similar crack patterns independent of the mesh. For Guo’s
experiment, the method successfully reproduced the crack paths and
speeds reported from experiments.

An attractive feature of this method is that it can effectively cap-
ture the discontinuities in the strains, while leading to a linear com-
plete XFEM. In the future, the proposed technique will be applied to
model bi-material problems by imposing appropriate Dirichlet bound-
ary conditions on the physically-based enrichment parameters associated
to the jumps in derivatives. In addition, a variational formulation based
technique to impose discontinuities on the interfaces can be developed
based on the idea of Nitsche’s method [31–33].

Appendix A. Reproducing independent linear fields on sides of the crack in one dimension

We show that the extended approximation in (4) can reproduce independent linear fields at both sides of the crack. In doing so, we consider

𝜃(X) =
{
𝛼0 + 𝛼1X f < 0,
𝛽0 + 𝛽1X f > 0,

in which 𝜃 is an arbitrary function including both strong and weak discontinuities at X=Xc as shown in Fig. 2(a). The nodal values for such a
displacement field are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜃1 = 𝛼0 + 𝛼1X1,

𝜃2 = 𝛽0 + 𝛽1X2,⟦𝜃⟧ = 𝛽0 + 𝛽1Xc − 𝛼0 − 𝛼1Xc,

⟦Le∇𝜃⟧ = Le(𝛽1 − 𝛼1).

(A.1)

In a matrix form, (A.1) can be rewritten as

⎡⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2⟦𝜃⟧⟦Le∇𝜃⟧

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1 X1 0 0

0 0 1 X2

−1 −Xc 1 Xc

0 −Le 0 Le

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛽0

𝛽1

⎤⎥⎥⎥⎥⎥⎦
. (A.2)

Applying (5) and (7) to (4) yields the XFEM approximation

[
𝜃−

𝜃+

]
=
[

N1 N2 −N2 −s+N2

N1 N2 N1 −s−N1

] ⎡⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2⟦𝜃⟧⟦Le∇𝜃⟧

⎤⎥⎥⎥⎥⎥⎦
. (A.3)

Substituting nodal values in (A.2) into (A.3) results in

[
𝜃−

𝜃+

]
=
[

N1 N2 −N2 −s+N2

N1 N2 N1 −s−N1

] ⎡⎢⎢⎢⎢⎢⎣

1 X1 0 0

0 0 1 X2

−1 −Xc 1 Xc

0 −Le 0 Le

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛽0

𝛽1

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

2∑
I=1

NI

2∑
I=1

NIXI 0 0

0 0
2∑

I=1
NI

2∑
I=1

NIXI

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛽0

𝛽1

⎤⎥⎥⎥⎥⎥⎦
=
[
𝛼0 + 𝛼1X

𝛽0 + 𝛽1X

]
.

In the above, we used the properties of isoparameteric shape functions given by
∑2

I=1 NI = 1 and
∑2

I=1 NIXI = X.
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Appendix B. Reproducing independent linear fields on sides of the crack in two dimensions

Following the same procedure in Appendix A, we consider the following two independent linear fields on sides of the crack as graphically shown
in Fig. 5(a).

𝜃(X,Y) =
{

𝛼0 + 𝛼1X + 𝛼2Y f < 0,
𝛽0 + 𝛽1X + 𝛽2Y f > 0.

The nodal values for such a displacement field are given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜃1 = 𝛽0 + 𝛽1X1 + 𝛽2Y1,

𝜃2 = 𝛼0 + 𝛼1X2 + 𝛼2Y2,

𝜃3 = 𝛼0 + 𝛼1X3 + 𝛼2Y3,⟦𝜃⟧1 = 𝛽0 + 𝛽1Xc
1 + 𝛽2Yc

1 − 𝛼0 − 𝛼1Xc
1 − 𝛼2Yc

1,⟦Lc
1∇𝜃 · e

c
1⟧1 = (𝛽1 − 𝛼1)(X3 − X1) + (𝛽2 − 𝛼2)(Y3 − Y1),⟦𝜃⟧2 = 𝛽0 + 𝛽1Xc

2 + 𝛽2Yc
2 − 𝛼0 − 𝛼1Xc

2 − 𝛼2Yc
2,⟦Lc

2∇𝜃 · e
c
2⟧2 = (𝛽1 − 𝛼1)(X2 − X1) + (𝛽2 − 𝛼2)(Y2 − Y1).

(B.1)

where ec
J ’s are calculated as

ec
1 = 1

Lc
1

[
X3 − X1

Y3 − Y1

]
and ec

2 = 1
Lc

2

[
X2 − X1

Y2 − Y1

]
.

In a matrix form, (B.1) can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2

𝜃3⟦𝜃⟧1⟦Lc
1∇𝜃 · e

c
1⟧1⟦𝜃⟧2⟦Lc

2∇𝜃 · e
c
2⟧2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 X1 Y1

1 X2 Y2 0 0 0

1 X3 Y3 0 0 0

−1 −Xc
1 −Yc

1 1 Xc
1 Yc

1

0 X1 − X3 Y1 − Y3 0 X3 − X1 Y3 − Y1

−1 −Xc
2 −Yc

2 1 Xc
2 Yc

2

0 X1 − X2 Y1 − Y2 0 X2 − X1 Y2 − Y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛼2

𝛽0

𝛽1

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.2)

Then, the XFEM approximation can be also written in matrix format as follows:

[
𝜃−

𝜃+

]
=
[

N1 N2 N3 Ψu−
1 Ψ∇u−

1 Ψu−
2 Ψ∇u−

2

N1 N2 N3 Ψu+
1 Ψ∇u+

1 Ψu+
2 Ψ∇u+

2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2

𝜃3⟦𝜃⟧1⟦Lc
1∇𝜃 · e

c
1⟧1⟦𝜃⟧2⟦Lc

2∇𝜃 · e
c
2⟧2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.3)

Substituting the unknowns in (B.2) into (B.3) gives rise to

[
𝜃−

𝜃+

]
=
[

N1 N2 N3 Ψu−
1 Ψ∇u−

1 Ψu−
2 Ψ∇u−

2

N1 N2 N3 Ψu+
1 Ψ∇u+

1 Ψu+
2 Ψ∇u+

2

]
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 X1 Y1

1 X2 Y2 0 0 0

1 X3 Y3 0 0 0

−1 −Xc
1 −Yc

1 1 Xc
1 Yc

1

0 X1 − X3 Y1 − Y3 0 X3 − X1 Y3 − Y1

−1 −Xc
2 −Yc

2 1 Xc
2 Yc

2

0 X1 − X2 Y1 − Y2 0 X2 − X1 Y2 − Y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛼2

𝛽0

𝛽1

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
3∑

I=1

[
NI NIXI NIYI 0 0 0

0 0 0 NI NIXI NIYI

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼0

𝛼1

𝛼2

𝛽0

𝛽1

𝛽2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=
[
𝛼0 + 𝛼1X + 𝛼2Y

𝛽0 + 𝛽1X + 𝛽2Y

]
.

Furthermore, we have extensively used the side-splitter theorem to substitute the parameters s±K . Fig B.27 illustrates two different triangles for the
computation of s−1 that leads to two different equations.

Fig. B.27. Application of side-splitter theorem for the computations of s−1 ; the red triangle gives s−1 = (Yc
1 − Y3)∕(Y1 − Y3) and the blue triangle gives s−1 = (Xc

1 − X3)∕(X1 − X3).

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.finel.2018.09.002.
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