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Thesis directed by Profs. Zoya Popović and Edward F. Kuester

Abstract

This thesis presents a general method for the analysis of transmission and

reflection of electromagnetic waves from complex thick/thin metallic frequency

selective surfaces (FSS’s), gratings and corrugated surfaces. The method is based

on mode-matching using surface impedance boundary conditions and accounts for

arbitrary profiles, lossy dielectric fillings/coatings for compound unit cells with

multiple apertures. Perturbation theory is applied to include metal losses. In or-

der to represent a complex thick FSS in terms of a network model that facilitates

design, the Extended Generalized Scattering Matrix (EGSM) formulation is de-

veloped and criteria for resonance, Q and computation reduction are established.

With minor modifications, the formulation also allows extension to the aperiodic

case. The method is validated against both experiment and models from the lit-

erature. Specifically, analysis of simple and compound thick-metal transmission

gratings, corrugated surfaces and thin-metal FSS’s in the 30-300 THz frequency

range is compared with several other methods and new compound thick-metal

FSS results are reported. Agreement with experiment is obtained for a K-band

thick FSS with tapered circular holes having similar TE and TM characteristics

for scan angles up to ±45◦.
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Chapter 1

Introduction

The greatest good you can do for another is not just to share your riches but to

reveal to him his own.

— Benjamin Disraeli, 1804 - 1881

1.1 Gratings and FSS’s

Gratings (GT’s) and frequency selective surfaces (FSS’s) are an important class

of periodic structures that scatter electromagnetic (EM) radiation by changing its

amplitude, phase, direction and polarization. Planar GT’s and FSS’s surfaces can

be categorized in terms of material content into two general classes:

1. Dielectric/Metal(DM) -

Primarily dielectric with embedded metal/dielectric objects;

2. Metal/Dielectric(MD) -

Primarily metal with dielectric layers, fillings or coatings.

The primary focus of this thesis is on the second class of GT’s and FSS’s, those

that are Metal/Dielectric (see Fig. 1.1(b)), although the method presented can



be extended vigorously to cover the Dielectric/Metal case (Fig. 1.1(a)). The

dominant use of MD types of surfaces in the millimeter to centimeter regime are

in applications related to multi-band antennas and low-observable radomes which

are covered in detail in Chapter 4.1.

(a) Dielectric/Metal Surface (b) Metal/Dielectric Surface

Figure 1.1: Examples of Dielectric/Metal and Metal/Dielectric surfaces. (a) is a
thick dielectric plate embedded with metal/dielectric cylindrical posts. (b) is (a)’s
complement with dielectric posts perforating the thick-metal plate. The arrows
represent the usual direction of excitation.

The MD class of GT’s and FSS’s can be further divided into surfaces that

are metallically thin or thick. Both types can be free-standing or embedded in

multi-layer dielectrics. The results of a simple keyword search using IEEE Xplore

are given in Table 1.1. Clearly it is impractical to provide even a remote account

of all work related to gratings and frequency selective surfaces. However, a large

amount of references for FSS work are covered in books [1–3]. Likewise, gratings

are discussed in [4, 5]. Because GT’s are usually periodic in one dimension and

FSS’s in two, past results for the more general case are briefly summarized next.

1.1.1 Thin Metal

The majority of analyzed and manufactured FSS’s are metallically thin and sup-

ported by thick-dielectric substrates. This is because metal patterns are relatively

2
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Table 1.1: Literature search from 1348795 documents using IEEE Xplore

Keyword Hit

FSS or Frequency Selective Surface 845

FSS or Frequency Selective Surface and Loss 74

Finite FSS or Finite Frequency Selective Surface 16

Dichroic and Plate 15

Thick FSS or Thick Frequency Selective Surface 4

Compound FSS or Compound Frequency Selective Surface 0

Grating 7718

Metal Grating 60

Gratings and Metal and Loss 24

Thick Gratings 3

Thick Metal Gratings 1

Compound Grating 1

straight forward to produce using conventional printed-circuit-board (PCB) pro-

cess by either etching or surface milling. The most common design parameters are

the element shape, the dielectric substrate and the number of layers. Performance

evaluations are usually based on stability of resonant frequency, bandwidth and

polarization response with respect to angle of incidence. Munk [3] showed that the

complementary structure made up of patch islands inside periodically perforated

apertures and sandwiched symmetrically by dielectric matching layers produces

the best over-all response in terms of performance criteria stated above. By lon-

gitudinally cascading multiple layers, sharper band-edge roll-off can be achieved

at the expense of angle sensitivity. Recently, Ma and Mittra [6] provided addi-

tional freedom in the design of thin multi-layer structures by allowing each layer

to have a different periodicity; however results in terms of angle stability were

not reported. Finally, it is interesting to quote Munk on his viewpoint of thick-

metal FSS’s: “Again, the fact is simply that no matter what fancy stuff you may

put inside the waveguides (thick apertures), they are inherently scan independent

3
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while the outside is scan dependent unless compensated (by dielectric layers). No

amount of mindless computations can ever make up for that.”

1.1.2 Thick Metal

In addition to providing sharp band-edge roll-off and improving band-separation,

thick-metal FSS’s find applications where mechanical strength and power handling

are important [7]. However, their analysis is more complicated and cumbersome

as can be seen by the fewer number of references given in Table 1.1. The earliest

known thick-metal FSS investigation was done by Chen [8]. Schmier [1] has pro-

vided an extensive chapter on the design of band-pass radomes using thick-metal

FSS’s. A comparison between thick and thin-metal surfaces is provided in terms

of Q and scan performance suggesting thick-metal FSS’s are superior.

Performance degradation due to surface wave propagation inside multi-layer

thin-metal FSS’s was discussed and intriguingly Schmier proposes the following:

“If the potential problems associated with the internal surface waves in a multiple-

layer thin-screen FSS cannot be tolerated, then a single-thick-screen FSS with

multiple irises is required. The multiple irises in the thick-screen FSS give equiv-

alent performance to the multiple-layer thin-screen FSS, but because the irises

all exist within the thick conducive screen no internal surface waves or the prob-

lems associated with them are possible.” The irises he is referring to are multiple

thin patches placed longitudinally in sequence inside each thick perforation. Al-

though no experimental or numerical curves for this case is given, it certainly raise

questions to Munk’s comments above.

Table 1.1 shows that over the past 50 years, many researchers have studied

the scattering of electromagnetic (EM) waves from one- and two-dimensionally

periodic thin-metal gratings and frequency selective surfaces. Of those, some

have worked on thick perforations or corrugations filled with or covered by multi-

4



layered dielectrics. There has been less work done on modelling finite structures

and inclusion of metal/dielectric losses. Successful behavior prediction of a mul-

titude of gratings, FSS’s and most recently photonic/electromagnetic bandgap

(PBG/EBG) media and metamaterials has been demonstrated. A representative,

but far from complete, bibliography is given by the selection [1–3, 8–20].Due to

the geometrical differences between various structures, different analytical and

numerical methods are often used to analyze these structures. The advantages

and limitations of each method are reviewed next.

1.2 Analysis Methods

A number of numerical techniques [21, 22] have been applied in the past to ana-

lyze periodic [1–3] and aperiodic scattering problems of the type to be considered

here. These include: Circuit Equivalent Analysis (CEA), Electromotive Force

Method (EMF), Method of Moments (MoM), Mode Matching (MM), Finite Ele-

ment Method (FEM), Transmission Line Method (TLM) and the Finite Difference

Time Domain (FDTD) method.

1.2.1 Circuit Equivalent Analysis

CEA is best suited for thin-metal free-standing periodic surfaces where the peri-

odicity, thickness and dimensions of the inductive strips and/or capacitive gaps

are much less than the excitation wavelength [23]. Although oblique incidences

less than 45◦ from normal have been treated [24], cross-polarization and wide-

angle responses cannot be predicted. Rather than using lumped equivalents, the

EMF method [25] bases its analysis on assumed current distributions over the

thin metallic strips. While successful at predicting the driving-point impedances

of embedded active devices in a periodic grid above a dielectric substrate [26],

5



excitation is restricted to normal incidence because of the use of PEC and PMC

symmetry planes. Other approaches based on mutual impedances and antenna

theory [3] are more successful at solving multi-layered thin-metal planar FSS’s for

arbitrary incidence angles.

1.2.2 Method of Moments

MoM is applied [27] for thin-metal arrays having arbitrarily-shaped elements with

unknown currents. The convergence properties are determined by the choice of

basis functions used to expand the quasi-periodic form of the surface current

density [9]. MoM solutions are electric or magnetic surface currents, requiring

post-processing in order to obtain reflection and transmission responses. The

complexity of the method increases for stratified media, as do extensions to thick-

metal surfaces [10]. Further, Green’s functions for arbitrary three-dimensional

structures are difficult to formulate.

1.2.3 Mode Matching

MM was originally developed for waveguide bifurcation problems [28], where fields

on each side of the discontinuity are expanded in terms of waveguide modes (an

entire-domain basis). The mode matching procedure involves equating the ex-

pansions according to boundary conditions over the appropriate regions of the

discontinuity. In the case of scattering from periodic structures, the fields above

and below a unit cell are expanded into Floquet modes [29]. Like MoM, MM

uses basis and test functions to reduce an integral equation to matrix form. The

unknowns in this case are primarily field amplitudes and the basis and test func-

tions used are essentially the eigenvectors of the structure. The orthogonality of

the basis and test functions results in a smaller and easier to solve set of linear

equations. Because transmission and reflection are defined in terms of field am-

6



plitudes, it is straightforward to cast the solution in matrix formats suitable for

network analysis. This in turn enables the modeling of multi-layered geometries.

Although MM avoids the determination of structure-dependent Green’s func-

tions, it does so at the cost of finding eigenvectors in the various propagation

regions. For simple canonical geometries, readily available closed-form eigenvec-

tors can be used in analytical preprocessing to increase the algorithm’s efficiency.

Complex cross-sections with imperfect conductors and arbitrary dielectrics require

other methods such as FEM to find the needed eigenvectors.

1.2.4 Finite Element Method

Originally introduced to solve closed domain problems, FEM is well suited to

determine the eigenvectors of an arbitrary structure. For open problems, imple-

mentation of absorbing boundary conditions increases its complexity and reduces

accuracy at high incidence angles. To handle open problems involving arbitrary

three-dimensional periodic scatterers, hybrids of FEM with Boundary Element

(FE/BE) [30] or Boundary Integral (FE/BI) [31] methods have been introduced.

The generality of these algorithms requires significant computational resources

and long run times in solving fields iteratively over frequency.

1.2.5 Finite Difference Time Domain

For obtaining broadband responses, time domain methods can be effective. A

detailed discussion of FDTD in solving FSS problems is given in [32]. Oblique

excitation is difficult for time-domain methods in the case of periodic scatterers

due to the required phase shift between relevant periodic boundaries. The phase

shift in the frequency domain translates to time retardation, requiring data storage

for all time instances along every periodic boundary. Harms et al. [33] excited

the FDTD mesh by the phasor equivalent of sinusoid and cosinusoid sources, thus

7



allowing the enforcement of phase delay at the periodic boundaries. This method

for oblique incidence requires a separate FDTD run per frequency point. This and

the addition of curvilinear meshes require significant computation time and code

complexity. Other time domain methods such as TLM also have similar problems

as FDTD at oblique incidence. The use of perfect PEC and PMC walls in the

TLM method [34] is similar to the EMF case restricting the angle of incidence to

normal.

1.2.6 Network Approaches

Plane-wave scattering from multi-layered dielectrics without metal has been tra-

ditionally studied using the network approach where each layer is modeled as a

section of transmission line with a different characteristic impedance. Extensions

of the traditional network representations such as admittance, impedance, transfer

and scattering matrices to their generalized multi-terminal form [35] enable inter-

connections of multi-mode passive structures. The multi-terminal/multi-mode

form of generalized network formulation [36] has been applied in guiding struc-

tures, i.e. N-Furcation problems [37]. Use of the generalized admittance matrix

(GAM), generalized impedance matrix (GIM), generalized transfer matrix (GTM)

and generalized scattering matrix (GSM) for various types of discontinuities ap-

pearing in multi-layered periodic structures has been discussed in [38]. Compar-

isons between R-Matrix, GSM and GTM as applied to gratings are given in [39],

indicating that GSM is superior from the viewpoint of numerical stability. The

algebraic equations resulting from GAM and GIM are more complicated, leading

to longer computing times. Because GTM requires an equal number of modes

on both sides of an abrupt junction, it has difficulty converging to the correct

solution for problems involving infinitely thin structures [40].

Network approaches in combination with other methods can analyze a large va-
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riety of metal-dielectric thin-thick planar scatterers without sacrificing efficiency.

The MM-FE-GSM hybrid combines the speed of MM, the generality of FE and

the flexibility of GSM and has already been utilized on a large class of scattering

problems [11, 41, 42]. Oblique excitations of both thick and thin FSS’s [43] with

arbitrary aperture cross-sections and on-axis longitudinal perforations have been

successfully analyzed. In many instances, approximate solutions and observable

trends can be quickly obtained using a fewer number of modes. This in turn en-

ables design by iterations on a standard personal computer (PC). Because there

are various ways to obtain the eigen solutions of a structure, it is not necessary to

restrict a hybrid method to the use of FE. By extending the MM-GSM parts of

existing hybrid methods, novel metal GT’s and FSS’s can be efficiently analyzed.

A further motivation for this extension is made evident upon closer examination

of Table 1.1. Although our search was not all encompassing, we find that the

following properties of GT’s and FSS’s are in need of research attention due to

the relative small number of publications. They are compound, thick, finite and

with loss.

1.3 Thesis Purpose

The purpose of this thesis is to extend the capabilities of the Mode Matching-

Generalized Scattering Matrix (MM-GSM) method such that compound periodic

(multiple apertures per unit cell) and aperiodic scattering problems involving

metal losses can be efficiently solved and computationally implemented. The

resulting matrix formulations for both periodic and aperiodic scattering problems

are similar and further simplify to the simple periodic case when the number of

apertures per unit cell reduces to unity. This means that the same code used

to study simple periodic surfaces can be modified with little effort to handle
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compound periodic and aperiodic surfaces. The method presented in this paper

is capable of efficiently analyzing the reflection and transmission properties of

TE- and TM-polarized plane waves incident at arbitrary angles onto the following

types of scatterers:

1. Thin or thick arbitrarily shaped FSS’s;

2. Gratings with generalized profiles;

3. Metal structures with multiple layers of dielectric fillings and/or coatings;

4. Thick-metal structures with arbitrary internal connections.

In addition, the above geometries can be:

a. Periodic or aperiodic;

b. Lossless or low-loss;

c. Transmitting and/or reflecting.

Arbitrarily incident waves can be treated by the superposition of plane waves

incident at multiple angles. Finally, internal excitations can be included for radia-

tion analysis. In order to describe the problem at hand, we refer to the generalized

geometry as a compound structure. As an example, we define a compound periodic

surface as an assembly of identical unit cells each consisting of possibly dissim-

ilar elements as illustrated in Fig. 1.2(b) arranged in a one- or two-dimensional

infinite array. An example of this definition in one dimension is a compound grat-

ing with N closely spaced corrugations or perforations per unit cell, discussed in

Chapter 4.3. In the case where a unit cell is made up of only one element, the

surface reduces to that of a simple periodic surface. An example of a simple unit

cell analyzable by the current state-of-the-art MM-GSM algorithm is shown in

Fig. 1.2(a). If the unit-cell is not repeated periodically but rather situated within

10



(a)

(b)

Figure 1.2: (a) A simple periodic unit cell. (b) A compound periodic unit cell
consisting of a number of waveguides having various cross-sections.

an infinite domain, then the surface is called an aperiodic surface. Examples of

aperiodic surfaces are a finite number of apertures located in an infinite ground

plane or a finite number of planar metal patches situated in infinite free space or

attached to an infinite dielectric substrate.
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1.4 Thesis Organization

The outline of the thesis is as follows:

• Chapter 2 describes the main approach for analyzing plane-wave scattering

from a generalized thick compound surface. In order to represent a complex

scatter in terms of a network model that facilitates design, the Extended

Generalized Scattering Matrix (EGSM) formulation is developed. Detailed

mathematical derivations for both the periodic and aperiodic problems are

given and similarities between them are highlighted.

• Chapter 3 compares the results from our theory with results for various

examples found in the literature for GT’s, corrugated surfaces (CS’s) and

FSS’s in the 30-300THz range. Additionally, criteria for resonance, Q and

an identity relevant for computation reduction are established using the

EGSM formalism presented in Chapter 2.

• Chapter 4 introduces various applications of GT’s and FSS’s. Specifically,

the applicability of thick-metal FSS for use in airborne applications is dis-

cussed and relevant design issues are identified. Based on the criteria devel-

oped in Chapter 3, a K-band thick FSS with linear-tapered circular holes

having similar TE and TM characteristics for scan angles up to ±45◦ is de-

signed. A special taper is introduced and shown to improve angle stability

and transmission bandwidth. This chapter also provides detailed informa-

tion on the measurement setup used to characterize the manufactured FSS’s.

• Chapter 5 summarizes the research findings of this thesis and lists the major

contributions made. Future work in the areas of loss, convergence and ac-

tive compound structures are also discussed. Relevant factors affecting the

measured results are identified and a new measurement setup is proposed.
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Chapter 2

Theory

Lack of will power has caused more failure than lack of intelligence or ability.

— Flower A. Newhouse, 1909 - 1994

2.1 Analysis Approach

We start at the highest level of abstraction with a complicated geometry shown

in Fig. 2.1 (longitudinal cross section) and Fig. 2.2 (transverse cross section). The

geometry is then divided in the longitudinal and transverse dimensions into slices

and sub-domains respectively. The power of an incident wave is coupled longitudi-

nally in Fig. 2.1 in two ways: directly through the perforation and by complicated

coupling between different perforations. Imposing the boundary conditions, the

standard MM approach is extended to take into account all coupling mechanisms,

thus giving a solution to the original complex geometry. In the remainder of

this section, the higher-level formulation of the problem is given, separated into

longitudinal and transverse dimensions.



(a) Abrupt longitudinal transitions

(b) Smooth longitudinal transitions

(c) Corrugations and feedback

Figure 2.1: Various longitudinal discontinuities. White regions are metal and
shaded regions are waveguides filled with different dielectrics.
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2.1.1 Longitudinal Dimension

Fig. 2.1 shows the longitudinal cross section of various geometries, where we

distinguish between three-dimensional waveguide sections, and two-dimensional

junctions and transitions. A junction is the discontinuity between two waveg-

uides inside the metal plate, while a transition is a collection of junctions due

to possible waveguide bifurcations and/or interconnections. These guided-wave

sections and transitions are represented by their equivalent extended-generalized-

scattering-matrices (EGSM) SG and ST , respectively. The notation is as follows:

the subscript of each EGSM denotes the number of a transition (T ) or guiding

section (G), while the superscripts (a,c) and (b) specify multi-layer dielectrics, and

metal plate layers, respectively. The combined superscripts (ab) and (bc) indi-

cate boundaries between different types of layers. In addition, the various metal

profiles are described by a number in the superscript, e.g., (b1).

Unlike the standard scattering matrix which contains only reflection and trans-

mission coefficients of propagating modes, the generalized-scattering-matrix (GSM)

also contains coefficients for evanescent modes at a junction. Because a transition

can contain multiple junctions, the matrix ST is an extended GSM, or EGSM,

relating amplitudes of forward and reverse modes between all junctions at a tran-

sition. For example, in Fig. 2.1(a), sections of different waveguides are joined by

abrupt transitions inside a thick-metal plate where transitions Sb1T1
and Sb1T2

both

contain multiple junctions. Similarly, because a slice can contain multiple waveg-

uide sections, the EGSM SG relates amplitudes of forward and reverse modes at

the ends of all waveguide sections between two transitions.

The number of junctions at different transitions can vary and the dielectric

fillings, lengths, types and cross-sectional shapes of the waveguides are arbitrary.

As an example, both a single conductor waveguide and a coaxial type waveguide

are connected at the transition Sb1Tn1
; they are coupled by the waveguide to the left
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of Sb1Tn1
and in dielectric layers to the right of the aperture plane. It is important

to point out that aperture openings in Fig. 2.1(a) on both sides of a thick-metal

plate need not have the same cross section, be of the same type or be aligned

along the same axis. Furthermore, the number of aperture openings on either side

of the metal plate is arbitrary.

It is possible to obtain a single EGSM inside the plate of Fig. 2.1(a) by way

of the EGSM cascade operator ? (defined in Appendix A):

Sb1 = Sb1G0
? Sb1T1

? Sb1G1
? . . . Sb1Tn1

? Sb1Gn1
, (2.1)

where n1 is the number of transitions in sub-domain b1. The ability to model

abrupt transitions also allows us to model an arbitrary longitudinal profile by

approximating it with many short waveguide sections connected by small abrupt

transitions as shown in Fig. 2.1(b).

In the case of a uniformly filled waveguide sub-domain b3 (also shown in

Fig. 2.1(b)), where reflections from the gradual bends are negligible, it is sufficient

to consider it as a straight section of the same waveguide having the length of the

bent waveguide [44,45]. This reduces the amount of computation involved because

the EGSM is simply

Sb3 = Sb3G0
. (2.2)

Fig. 2.1(b) also emphasizes that aperture connections are allowed to cross inside

the plate; this is because an EGSM once determined for a transition or section

is coordinate shift invariant. Furthermore, the apertures on either side of the

plate are not required to penetrate the plate completely, as in the case of reflec-

tion only surfaces shown in Fig. 2.1(c) where an arbitrary corrugation filled with

multilayered dielectrics is broken down into sections and transitions, where

Sb4 = Sb4
11 = Sb4G0

? Sb4T1
? Sb4G1

? . . . Sb4Tn4
? Sb4Gn4

? Sb4Tn4+1
. (2.3)
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The additional transition Sb4Tn4+1
at the end represents the short. In fact, an

aperture is allowed to connect to other apertures on the same side of the plate;

this kind of co-connection is also shown in Fig. 2.1(c), where

Sb5 = Sb5
22 = Sb5T0

? Sb5G0
? Sb5T1

? Sb5G1
? . . . Sb5Tn5

? Sb5Gn5
, (2.4)

with Sb5T0
representing the short on the left. In general

Sbq = (SbqT0
?)︸ ︷︷ ︸

reflect

SbqG0
? SbqT1

? SbqG1
? . . . SbqTnq

? SbqGnq︸ ︷︷ ︸
through

(?SbqTnq+1
)︸ ︷︷ ︸

reflect

. (2.5)

Because EGSMs Sb4 and Sb5 are decoupled inside the plate, it is convenient

mathematically to combine sub-domains b5 and b4 into a single sub-domain b6

such that,

Sb6 =

Sb4
11 0

0 Sb5
22

 . (2.6)

We chose the labeling scheme of Sb4 and Sb5 to emphasize the fact that the

numbers of corrugations on the left and right-hand side of the plate are in general

different. In the case where there are n and p corrugations on the left- and right-

hand sides of the plate respectively, it is always possible to assemble them in a

single large EGSM, where

Sbk = diag{SbL1
11 . . .SbLn

11 ,SbR1
22 . . .S

bRp

22 }. (2.7)

In actual implementation, we use (2.7) because it encapsulates all of the corruga-

tions into a single EGSM.

Having shown various types of longitudinal discontinuities, each of the rela-

tively complex metal profiles in Fig. 2.1(a)-2.1(c) can now be stacked to form a

generalized compound unit-cell. The EGSMs of the multi-layer dielectrics outside

the metal plate are:

Sa = SaG0
? SaT1

? SaG1
? . . . SaTna

? SaGna
, (2.8)

Sc = ScG0
? ScT1

? ScG1
? . . . ScTnc

? ScGnc
. (2.9)
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where na and nc are the numbers of transitions on the left-hand and right-hand

side of the metal plate respectively. In order to calculate the overall EGSM, the

EGSMs outside of the metal plate Sa and Sc are cascaded through the transitions

Sab and Sbc with the EGSM Sb inside of the metal plate:

S = Sa ? Sab ? Sb ? Sbc ? Sc, (2.10)

where,

Sb = {Sb1 . . .Sbq}, (2.11)

and {} is the EGSM assembly operator defined in Appendix A.2.

In summary, by breaking a complex structure into sections and transitions and

representing them by equivalent EGSMs, we are able to reduce the overall problem

of scattering to the determination of the individual EGSMs. One advantage of

this approach is that the individual EGSMs can be calculated separately and often

a priori in a coordinate system best suited for an analytical solution. Because

the resulting EGSMs operate on mode amplitudes, they are easily cascaded via

standard operators. This abstraction alleviates tedious coordinate notation and

facilitates parallel computing.

Although not shown in Fig. 2.1(a), the vertical combination of Fig. 2.1(a)-

2.1(c) can also be repeated horizontally to include structures that contain di-

electric layers sandwiched between multiple thick-metal plates, each with its own

corrugations and perforations. In this general case, the equation describing the

overall EGSM is

S = S1 ? S12 ? S2 ? S23 ? . . .S2j ? S(2j)(2j+1) ? S2j+1, (2.12)

where we have replaced a and ab in (2.10) with 1 and 12, b and bc with 2 and 23

etc., to show the general process of EGSM cascade for j metal plates alternated

with j + 1 regions of multi-layer dielectrics (including the outer air regions). For
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the common case where a metal layer j0 can be regarded as vanishingly thin, we

handle that in the present method by setting:

Sj0 =

0 I

I 0

 , (2.13)

for such a layer, where I is the identity matrix.

2.1.2 Transverse Dimension

Figure 2.2: Transition classifications where shaded areas represent waveguide
apertures and white spaces are metal. (a) is a simple unit-cell having a single-
conductor waveguide at the interface. (b) is another simple unit-cell but with a
multi-conductor waveguide at the junction. (c) is a compound unit-cell filled with
q waveguides of type (a) and (b). (d) is a nested compound unit-cell where (a) is
nested inside a metal island of (b).

Fig. 2.2 and its caption describe the classification of possible transverse cross-

sections that correspond to the longitudinal slices in Fig. 2.1. For a periodic

scatterer the largest domain Ωa, shown as a parallelogram, represents the unit

cell. The parallelogram angle α and periods d and b define a lattice whose field

can be described by Floquet modes. Within each Ωa, the q smaller aperiodic
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sub-domains Ωb ⊆ Ωa are described by Ωb = {Ωb1, . . . Ωbq}, each with its own set

of eigenmodes. In the case of an aperiodic scatterer where there is no meaningful

unit cell, the domain Ωa extends to infinity, and Floquet modes are replaced by a

continuum of plane waves. In the case of a waveguide-to-waveguide transition, the

domain Ωa is the larger waveguide, and its shape defines the boundary which is

no longer restricted to a parallelogram. The fields on both sides of the transverse

transition are expanded in terms of waveguide modes in this case. In summary,

the transverse boundary ∂Ωa can have an arbitrary shape and the fields inside

can be expanded in terms of waveguide, Floquet or planewave modes depending

on the problem.

2.2 Compound Periodic Formulation

To setup notation and illustrate the mathematical procedure, let us assume ini-

tially Ωb ⊆ Ωa and expand the fields in Ωa and Ωb as follows:

~Ea
T (~ρ, z) =

∑
m

(a+
m(z) + a−m(z)) ~Ea

Tm
(~ρ), (2.14)

~Ha
T (~ρ, z) =

∑
m

(a+
m(z)− a−m(z)) ~Ha

Tm
(~ρ), (2.15)

~Eb
T (~ρ, z) =

∑
q

∑
pq

(bq+pq
(z) + bq−pq

(z)) ~Ebq
Tpq

(~ρ), (2.16)

~Hb
T (~ρ, z) =

∑
q

∑
pq

(bq+pq
(z)− bq−pq

(z)) ~Hbq
Tpq

(~ρ), (2.17)

where a±m(z) = A±
me∓γ

a
mz and bq±pq

(z) = Bq±
pq

e∓γ
bq
pq z. The transverse position vector

is ~ρ = xx̂ + yŷ, q is the sub-domain identifier in Ωb and subscripts m and pq

are mode designations in Ωa and Ωbq, respectively. In practice, these subscripts

expand to contain multiple indices in order to capture specific mode-types such

as TE, TM, TEM, etc. The magnitude and phase dependence on the longitudinal

coordinate z is captured in a±m(z) and bq±pq
(z), where the + and − superscripts
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are used to designate forward and reverse modes respectively. A±
m and γam are the

amplitude and propagation constant of the mth mode of Ωa. Similarly, Bq±
pq

and

γbqpq
are the amplitude and propagation constant of the pqth mode of Ωbq. The

transverse modal field distributions ~Ea
Tm

, ~Ha
Tm

, ~Ebq
Tpq

and ~Hbq
Tpq

are vector functions

of the cross-sectional coordinates only and depend on the waveguide type in Ωbq.

The mode fields are assumed to be normalized in some convenient way (see, e.g.,

(2.23) below). Without loss of generality, we choose the junction between Ωa and

Ωb to be at z = 0, and enforce the continuity of tangential electric fields (including

metal losses) through the following set of equations:

∑
m

(A+
m + A−

m) ~Ea
Tm

(~ρ) =
∑
q

∑
pq

(Bq+
pq

+ Bq−
pq

) ~Ebq
Tpq

(~ρ), ~ρ ∈ Ωbq,

± Zsẑ ×
∑
m

(A+
m − A−

m) ~Ha
Tm

(~ρ), ~ρ ∈ Ωa − Ωb;

(2.18)

where ẑ is the unit vector along the z-axis. The choice of the + or − sign de-

pends on whether the outward normal from the conductor Ωa − Ωb is +ẑ or −ẑ,

respectively. The first statement of (2.18) ensures that the tangential electric field

is continuous across each Ωbq. The second statement of (2.18) enforces a surface

impedance boundary condition on the tangential fields over the metal surfaces

inside Ωa but outside of all Ωbq. The parameter

Zs =

√
µc(x, y, ω)

εc(x, y, ω)− jσc(x, y, ω)/ω
(2.19)

is the equivalent surface impedance given by the complex wave impedance for

a plane wave in a non-PEC medium. The parameters µc(x, y, ω), εc(x, y, ω),

σc(x, y, ω) are the permeability, permittivity, and conductivity of the metal as

functions of transverse coordinates and angular frequency, respectively. For read-

ability, we hereafter suppress the notation of transverse coordinate dependence.
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We first take the cross product of both sides of (2.18) by ~Ha∗
Tn

, n = 1, 2 . . . m, then

take the dot product with ẑ and integrate over Ωa to obtain:

∑
m

(A+
m + A−

m)

∫
Ωa

~Ea
Tm
× ~Ha∗

Tn
· ẑ dS︸ ︷︷ ︸

Y a∗
mn

=

∑
q

∑
pq

(Bq+
pq

+ Bq−
pq

)

∫
Ωbq

~Ebq
Tpq
× ~Ha∗

Tn
· ẑ dS︸ ︷︷ ︸

Cq
pqn

+
∑
m

(A+
m − A−

m)

∫
Ωa−Ωb

(∓ Zs) ~Ha
Tm
· ~Ha∗

Tn
dS︸ ︷︷ ︸

Y s
mn

. (2.20)

Equation (2.20) although general, often produces matrices that are full for

sub-domains having hybrid-modes. However, in the case where Ωa is filled with a

homogeneous medium, the transverse fields ~Ea∗
Tn

and ~Ha∗
Tn

are related by

~Ha∗
Tn

= Y a∗
n ẑ × ~Ea∗

Tn
, (2.21)

where Y a
n is the admittance of mode n given by

Y a
n =


γa
1n

jωµa , TE,

jωεa

γa
2n

, TM.

(2.22)

The additional subscripts 1 and 2 in γa designate TE and TM modes, respectively.

Utilizing (2.21) and the orthonormal condition∫
Ωa

~Ea
Tm
· ~Ea∗

Tn
dS = δmn, (2.23)

the overlap integrals in (2.20) reduce to:

Y a∗
mn = Y a∗

n

∫
Ωa

~Ea
Tm
· ~Ea∗

Tn
dS = Y a∗

n δmn, (2.24)

Cq
pqn = Y a∗

n

∫
Ωbq

~Ebq
Tpq
· ~Ea∗

Tn
dS, (2.25)

Y s
mn = ∓ Y a

mY a∗
n

∫
Ωa−Ωb

Zs
~Ea
Tm
· ~Ea∗

Tn
dS. (2.26)
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If Zs is not a function of the transverse coordinates, (2.26) reduces to:

Y s
mn = ∓ZsY

a
mY a∗

n

(
δmn −

∫
Ωb

~Ea
Tm
· ~Ea∗

Tn
dS

)
. (2.27)

Further reductions of the overlap integrals in (2.25) and (2.27) are possible through

the use of identities provided in [46, 47]. Specifically, the conversion of (2.25)

and (2.27) to contour integrals can significantly improve the speed of the MM

procedure when numerical methods such as FEM is used to determine ~Ea
Tm

(~ρ) or

~Ebq
Tpq

(~ρ). Let

A± =


A±

1

...

A±
m

 , Ya∗ =


Y a∗

1 0 0

0
. . . 0

0 0 Y a∗
m

 , (2.28)

B±
q =


Bq±

1

...

Bq±
pq

 , Cq =


Cq

11 · · · Cq
1m

...
. . .

...

Cq
pq1 · · · Cq

pqm

 , (2.29)

and

Ys =


Y s

11 · · · Y s
1m

...
. . .

...

Y s
m1 · · · Y s

mm

 . (2.30)

Equation (2.20) becomes a matrix equation of the form:

(
Ya∗ −Yst

)
A++

(
Ya∗ + Yst

)
A−

=[Ct
1 · · ·Ct

q]



B+

1

...

B+
q

+


B−

1

...

B−
q




≡[Ct]
(
[B+] + [B−]

)
, (2.31)

where t indicates the matrix transpose and ∗ the matrix complex conjugate.
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Having enforced the continuity of the tangential electric field, we now enforce

the continuity of the tangential magnetic field at the transition between Ωa and

Ωb through the following set of equations:

∑
m

(A+
m − A−

m) ~Ha
Tm

(~ρ) =



∑
p1

(B1+
p1
−B1−

p1
) ~Hb1

Tp1
(~ρ), ~ρ ∈ Ωb1,

...
...∑

pq

(B1+
pq
−B1−

pq
) ~Hbq

Tpq
(~ρ), ~ρ ∈ Ωbq.

(2.32)

For each sub-domain q, we first take the cross product of both sides of (2.32) with

~Ebq∗
Tnq

, nq = 1, 2 . . . pq, then take the dot product with ẑ and integrate over Ωbq to

obtain:

∑
m

(A+
m − A−

m)

∫
Ωbq

~Ebq∗
Tnq

× ~Ha
Tm
· ẑ dS︸ ︷︷ ︸

Cq∗
nqm

=
∑
pq

(Bq+
pq
−Bq−

pq
)

∫
Ωbq

~Ebq∗
Tnq

× ~Hbq
Tpq
· ẑ dS︸ ︷︷ ︸

Y bq
nqpq

. (2.33)

In the case where Ωbq is filled with a homogeneous medium, the transverse

fields ~Ebq
Tpq

and ~Hbq
Tpq

are related by

~Hbq
Tpq

= Y bq
pq

ẑ × ~Ebq
Tpq

, (2.34)

where Y bq
pq

is the admittance of mode pq in sub-domain Ωbq given by

Y bq
pq

=


γbq
1pq

jωµbq , TE,

jωεbq

γbq
2pq

, TM.

(2.35)

The additional subscripts 1 and 2 in γbq designate TE and TM modes, respectively.

Utilizing (2.34) and the orthonormal condition∫
Ωbq

~Ebq∗
Tnq

· ~Ebq
Tpq

dS = δnqpq , (2.36)
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the integrals in (2.33) reduce to the complex conjugate of (2.25) and

Y bq
nqpq

= Y bq
nq

∫
Ωbq

~Ebq∗
Tnq

· ~Ebq
Tpq

dS = Y bq
nq

δnqpq . (2.37)

Let

Ybq =


Y bq

1 0 0

0
. . . 0

0 0 Y bq
pq

 , (2.38)

and making use of (2.28) and (2.29), the combined equations of (2.33) for all q

sub-domains form a matrix equation:
C∗

1

...

C∗
q

(A+ −A−) ≡ [C∗]
(
A+ −A−)

=


Yb1 0 0

0
. . . 0

0 0 Ybq




B+

1

...

B+
q

−

B−

1

...

B−
q




≡[Yb]([B+]− [B−]). (2.39)

It is seen from the above that overlap integrals are necessary for the MM proce-

dure; they are calculated either analytically (see Appendix B.2) or numerically

using FEM.

2.2.1 Transition EGSM Formulations

Collecting the two most important equations (2.31) and (2.39) from the previous

section, we obtain two matrix equations which relate the field amplitudes of all

the modes on either side of the transition:(
Ya∗ −Yst

)
A+ +

(
Ya∗ + Yst

)
A− = Ct

(
B+ + B−) , (2.40)

C∗ (A+ −A−) = Yb(B+ −B−). (2.41)
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Equations (2.40) and (2.41) are rearranged according to the standard S-matrix

convention to give, A−

B+


︸ ︷︷ ︸

away from the transition

=

Sab
11 Sab

12

Sab
21 Sab

22


A+

B−

 .

︸ ︷︷ ︸
towards the transition

(2.42)

We obtain Sab
11 and Sab

12 by solving for B+ in (2.41) and substituting the results

into (2.40); similarly, Sab
21 and Sab

22 are obtained by solving for A+ in (2.40) and

substituting the results into (2.41). Collectively the blocks of the resulting EGSM

for the transition are given by:

Sab
11 = −DR

[
Ya∗ −Yst −CtYb−1

C∗
]
, (2.43)

Sab
12 = 2DRCt, (2.44)

Sab
21 = DTC∗

[
I + (Ya∗ + Yst)−1(Ya∗ −Yst)

]
, (2.45)

Sab
22 = DT

[
Yb −C∗(Ya∗ + Yst)−1Ct

]
, (2.46)

and

DR =
[
Ya∗ + Yst + CtYb−1

C∗
]−1

, (2.47)

DT =
[
Yb + C∗(Ya∗ + Yst)−1Ct

]−1

. (2.48)

In the case where Zs = 0 (PEC) and Ωb = {Ωb1} (simple periodic), (2.43)-(2.46)

reduce to eq. (6.12) of [41] with Qa ∝ Ya∗ and Qb∗ ∝ Yb. In the beginning of

this section, we had assumed Ωb ⊆ Ωa. If Ωa ⊆ Ωb, Sba is found by Sba
11 = Sab

22,

Sba
12 = Sab

21, Sba
21 = Sab

12 and Sba
22 = Sab

11. However, at the transition between Ωa and

Ωb, there is a possibility where the overlapping space Ωcq = Ωa ∩ Ωbq is a proper

subset of both domains. In this case the fields in each Ωcq are expanded and Ωc is

first mode-matched to Ωa then separately to Ωb. The resulting EGSM scattering

matrices Sac and Scb are subsequently cascaded by the ? operator to obtain Sab.
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2.2.2 Section EGSM Formulations

The section EGSM of a waveguide q having pq modes and length z is SGq , where

SGq
11

= SGq
22

= 0 and SGq
12

= SGq
21

= diag{e−γq1z, . . . , e−γqpq
z}. Let a guided-

section SG be a collection of q such waveguides sharing a pair of adjacent transition

planes located z apart, then the section EGSM SG = diag{SG1 , . . . , SGq}.

2.3 Aperiodic Extension

Suppose that Ωa is infinite in extent and is the domain of excitation. The rep-

resentation of the fields as a sum of discrete modes in (2.14) and (2.15) has to

be replaced by a superposition of continuous modes whose variation with x and

y is proportional to e−j(αx+βy), where α = k sin θ cos φ, β = k sin θ sin φ and k is

the propagation constant. Because Ωbq is no longer periodic, the transverse field

expansions of (2.14) and (2.15) at z = 0 now take the form

~Ea
T (~ρ, 0) =

∫∫ +∞

−∞
(A+

α,β + A−
α,β)

~Ea
T (α, β)dαdβ, (2.49)

~Ha
T (~ρ, 0) =

∫∫ +∞

−∞
(A+

α,β − A−
α,β)

~Ha
T (α, β)dαdβ, (2.50)

and are essentially the two-dimensional Inverse Fourier Transform (IFT) repre-

sentation of the continuous spatial vector functions ~Ea
T (~ρ) and ~Ha

T (~ρ). Instead of

discretizing the above integrals right away, we first expand A±
α,β into the following:

A±
α,β =

∑
d

A±
d δ(α− αd)δ(β − βd) + A′±

α,β, (2.51)

where (αd, βd) correspond to directions of plane waves of amplitudes A±
d , while

A′±
α,β contain no delta-function singularities. Substituting (2.51) into (2.49) and
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(2.50) and using the sifting property of the delta functions we obtain:

~Ea
T (~ρ) =

∑
d

(A+
d + A−

d ) ~Ea
T (αd, βd)

+

∫∫ +∞

−∞
(A′+

α,β + A′−
α,β)

~Ea
T (α, β)dαdβ, (2.52)

~Ha
T (~ρ) =

∑
d

(A+
d − A−

d ) ~Ha
T (αd, βd)

+

∫∫ +∞

−∞
(A′+

α,β − A′−
α,β)

~Ha
T (α, β)dαdβ. (2.53)

Enforcing the continuity of tangential electric fields (including metal losses) at the

transition between Ωa and Ωb:

~Ea
T (~ρ) =


∑
q

∑
pq

(Bq+
pq

+ Bq−
pq

) ~Ebq
Tpq

(~ρ), ~ρ ∈ Ωbq,

± Zsẑ × ~Ha
T (~ρ), ~ρ ∈ Ωa − Ωb.

(2.54)

Substituting (2.52) and (2.53) into (2.54), we first take the cross-product of both

sides with ~Ha∗
T (α′, β′), and then take the dot product with ẑ and integrate over

Ωa to obtain:

∑
d

(A+
d + A−

d )

∫
Ωa

~Ea
T (αd, βd)× ~Ha∗

T (α′, β′) · ẑ dS︸ ︷︷ ︸
Y a∗

d

+

∫∫ +∞

−∞
(A′+

α,β + A′−
α,β)Y

′a∗dαdβ

=
∑
q

∑
pq

(Bq+
pq

+ Bq−
pq

)

∫
Ωbq

~Ebq
Tpq

(~ρ)× ~Ha∗
T (α′, β′) · ẑ dS︸ ︷︷ ︸

C′q
pq,α′,β′

+

∫
Ωa−Ωb

(∓Zs) ~Ha
T (~ρ) · ~Ha∗

T (α′, β′) dS︸ ︷︷ ︸
Q

, (2.55)

where

Y ′a∗ =

∫
Ωa

~Ea
T (α, β)× ~Ha∗

T (α′, β′) · ẑ dS. (2.56)
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Although Y a∗

d and Y ′a∗ depend on (αd, βd) and (α′, β′), this dependence has been

suppressed to simplify notation.

In the case where Ωa is filled with a homogeneous medium, the transverse

fields ~Ea∗
T and ~Ha∗

T are related by

~Ha∗
T (α′, β′) = Y a∗

α′,β′ ẑ × ~Ea∗
T (α′, β′), (2.57)

where Y a
α′,β′ is the wave admittance. Utilizing (2.57), the integrals in (2.55) reduce

to:

Y a∗
d = 4π2Y a∗

α′,β′δ(αd − α′)δ(βd − β′), (2.58)

Y ′a∗ = 4π2Y a∗
α′,β′δ(α− α′)δ(β − β′), (2.59)

C ′q
pq ,α′,β′

= Y a∗
α′,β′

∫
Ωbq

~Ebq
Tpq

(~ρ) · ~Ea∗
T (α′, β′) dS, (2.60)

Q =
∑
d

(A+
d − A−

d )Qs
d +

∫∫ +∞

−∞
(A′+

α,β − A′−
α,β)Q

sdαdβ, (2.61)

where, for ∆Ω = Ωa − Ωb,

Qs
d =Y a

αd,βd
Y a∗
α′,β′

∫
∆Ω

(∓Zs) ~Ea
T (αd, βd) · ~Ea∗

T (α′, β′) dS, (2.62)

Qs =Y a
α,βY

a∗
α′,β′

∫
∆Ω

(∓Zs) ~Ea
T (α, β) · ~Ea∗

T (α′, β′) dS. (2.63)

In the case where Zs is independent of transverse coordinates,

Qs
d = (∓Zs)Y

a
αd,βd

Y a∗
α′,β′4π

2δ(αd − α′)δ(βd − β′) (2.64)

−(∓Zs)Y
a
αd,βd

Y a∗
α′,β′

∫
Ωb

~Ea
T (αd, βd) · ~Ea∗

T (α′, β′) dS︸ ︷︷ ︸
Y ′s

d

,

Qs = (∓Zs)Y
a
α,βY

a∗
α′,β′4π

2δ(α− α′)δ(β − β′) (2.65)

−(∓Zs)Y
a
α,βY

a∗
α′,β′

∫
Ωb

~Ea
T (α, β) · ~Ea∗

T (α′, β′) dS︸ ︷︷ ︸
Y ′s

.

Matching coefficients of δ(αd − α′)δ(βd − β′) on both sides of (2.55) results in:

A−
d =

(∓Zs)Y
a
αd,βd

− 1

(∓Zs)Y a
αd,βd

+ 1
A+
d ≡ Γαd,βd

A+
d . (2.66)
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The part of equation (2.55) not involving delta functions is:

Y ′a∗ (A′+
α′,β′ + A′−

α′,β′

)
=∑

q

∑
pq

(Bq+
pq

+ Bq−
pq

)C ′q
pq ,α′,β′

+
∑
d

(A+
d − A−

d )Y ′s
d

+

∫∫ +∞

−∞
(A′+

α,β − A′−
α,β)Y

′sdαdβ. (2.67)

Having enforced the continuity of the tangential electric field, we now enforce the

continuity of the tangential magnetic field at the transition between Ωa and Ωb

through the following set of equations:

~Ha
T (~ρ) =



∑
p1

(B1+
p1
−B1−

p1
) ~Hb1

Tp1
(~ρ), ~ρ ∈ Ωb1,

...
...∑

pq

(B1+
pq
−B1−

pq
) ~Hbq

Tpq
(~ρ), ~ρ ∈ Ωbq.

(2.68)

For each sub-domain q, we first take the cross product of both sides of (2.68) with

~Ebq∗
Tnq

, nq = 1, 2 . . . pq, then take the dot product with ẑ and integrate over Ωbq to

obtain:

∑
m

(A+
d − A−

d )

∫
Ωbq

~Ebq∗
Tnq

× ~Ha
T (αd, βd) · ẑ dS︸ ︷︷ ︸
Cq∗

d

+

∫∫ +∞

−∞
(A′+

α,β − A′−
α,β)

∫
Ωbq

~Ebq∗
Tnq

× ~Ha
T (α, β) · ẑ dS︸ ︷︷ ︸

Cq∗
nq,α,β

dαdβ

=
∑
pq

(Bq+
pq
−Bq−

pq
)

∫
Ωbq

~Ebq∗
Tnq

× ~Hbq
Tpq
· ẑ dS︸ ︷︷ ︸

Y bq
nqpq

. (2.69)

In the case where Ωbq is filled with a homogeneous medium, the transverse fields

~Ebq
T and ~Hbq

T are related by (2.34) and the integrals in (2.69) reduce to (2.37), the

complex conjugate of (2.60) and

Cq∗
nq ,αd,βd

=Y a
αd,βd

∫
Ωbq

~Ebq∗
Tnq

· ~Ea
T (αd, βd) dS. (2.70)
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We now apply discretization to α, β and α′, β′ such that the indices (m, n)

represent pairs of the discretized α, β and α′, β′, respectively. This results in

~Ea
T (α, β) ⇒ ~Ea

Tm
and ~Ea

T (α′, β′) ⇒ ~Ea
Tn

. We replace the continuum of α by

Nα discrete values, chosen so as to best approximate the original integral by a

Riemann sum. Similarly the range of β is discretized by Nβ selected values. An

appropriate choice of the largest value of discretized |α| and |β| depends on the

minimum scatter cross-section; small scatterers require large spectral content. The

EGSM representation of (2.66), (2.67) and (2.69) is

A−
d = ΓdA

+
d , (2.71)

(Y′a∗ −Y′st)A′++(Y′a∗ + Y′st)A′− (2.72)

= C′t(B+ + B−) + Y′st
d (A+

d −A−
d ),

C′∗(A′+ −A′−) = Yb(B+ −B−)−C∗
d(A+

d −A−
d ). (2.73)

Equations (2.71)-(2.73) are rearranged according to the standard S-matrix con-

vention to give, 
A−

d

A′−

B+

 ≡

Γd 0 0

R S′ab11 S′ab12

T S′ab21 S′ab22


︸ ︷︷ ︸

Sab


A+

d

A′+

B−

 , (2.74)

where

Sab
21 ≡ R = D′

R

[
C′tYb−1

C∗
d + Y′st

d

]
[I− Γd], (2.75)

Sab
22 = −D′

R

[
Y′a∗ −Y′st −C′tYb−1

C′∗
]
, (2.76)

Sab
23 = 2D′

RC′t, (2.77)

Sab
31 ≡ T = D′

T

[
C∗

d −C′∗(Y′a∗ + Y′st)−1Y′st
d

]
[I− Γd], (2.78)

Sab
32 = D′

TC′∗
[
I + (Y′a∗ + Y′st)−1(Y′a∗ −Y′st)

]
, (2.79)

Sab
33 = D′

T

[
Yb −C′∗(Y′a∗ + Y′st)−1C′t

]
, (2.80)
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and

D′
R =

[
Y′a∗ + Y′st + C′tYb−1

C′∗
]−1

, (2.81)

D′
T =

[
Yb + C′∗(Y′a∗ + Y′st)−1C′t

]−1

. (2.82)

The close resemblance in form of (2.76), (2.77), (2.79) and (2.80) to (2.43)-(2.46)

is the key that allows us to utilize the same computation code with little alteration

for both periodic and aperiodic surfaces. We have stressed this fact by utilizing

the ′ designations for variables with common names, e.g. Sab
11 in the periodic

case vs. S′ab11 in the aperiodic case, where additional assembly of Γd, R and T is

required because of the separate treatment of discrete plane-wave terms.
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Chapter 3

Results

It’s not that I’am so smart, it’s just that I stay with problems longer.

— Albert Einstein, 1879 - 1955

3.1 Grating Comparisons

In this section we illustrate a few features of our method while providing numerical

validations with existing literature. Although the discussion is about gratings, the

criteria to be discussed are applicable to all aforementioned surfaces.

3.1.1 Simple Transmission Gratings

Since the discovery of extraordinary optical transmission through periodically per-

forated silver films with hole diameters much smaller than the wavelength of exci-

tation [48], there has been renewed interest in the study of similar phenomena in

one-dimensional periodic gratings [49]. In this section we compare our scattering

results with [49] for the case of a simple N = 1 transmissive thick grating in the

terahertz regime (28.6 − 342.9 THz). The geometry of the problem is given in

Fig. 3.1(a), where the slit width a = 0.3 µm is ∼ 17% of the period d = 1.75 µm



(a) A compound transmission grating with N slits per
unit-cell

(b) A compound corrugated surface with N grooves
per unit-cell

Figure 3.1: One-dimensional periodic (a) transmissive and (b) reflective surfaces
where d is the period, a is the slit width, c is the slit spacing and N the number
of perforations or corrugations.

and the excitation wavelength varies from 0.5d ≈ 2.9a to 6d ≈ 35a.

Rather than repeating the observations by Garcia-Vidal et al., we present a

more general discussion using the EGSM methodology regarding the origin of the

transmittance peak locations. Let us represent the grating problem by its equiva-

lent EGSM representation where the first air-slit transition and the subsequent slit

section are represented by Sab and Sb, respectively. To keep the discussion gen-

eral, we allow Sbc 6= Sba for non-symmetrical connections. In the case where b is a

simple slit section having Sb
11 = Sb

22 = 0 and Sb
12 = Sb

21 = diag{e−γb1h, . . . e−γ
b
nh},

the overall EGSM Sac is,

Sac = Sab ? Sb ? Sbc. (3.1)
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(a) TM transmittance comparisons

(b) Magnitude and phase of ∆F,R

Figure 3.2: Comparisons of simulated (a) zero-order TM transmittance at normal
incidence with Garćıa-Vidal et al. [49] as a function of λ/d for a simple (N = 1),
thick transmission PEC grating with d = 1.75 µm, a = 0.3 µm at thickness
h = {2.0, 2.5, 3.0}µm. The magnitude and phase of ∆F,R for the fundamental
slit-mode is displayed together showing that jumps of 2π in the phase of ∆F,R

correspond to the transmittance peaks whenever |∆F,R| ≥ 0.5 for a/d ≈ 1/6. (b)
shows that the Q of the resonances decreases for large a/d and resonance peak
locations are insensitive to a/d for h = 2.5 µm.

Application of (A.2)-(A.5) from Appendix A results in:

Sac
11 =Sab

11 + Sab
12S

b
12 [I−∆R]−1 Sbc

11S
b
21S

ab
21, (3.2)

Sac
12 =Sab

12S
b
12 [I−∆R]−1 Sbc

12, (3.3)

Sac
21 =Sbc

21 [I−∆F]−1 Sb
21S

ab
21, (3.4)

Sac
22 =Sbc

22 + Sbc
21 [I−∆F]−1 Sb

21S
ab
22S

b
12S

bc
12, (3.5)
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where

∆R =Sbc
11S

b
21S

ab
22S

b
12, (3.6)

∆F =Sb
21S

ab
22S

b
12S

bc
11, (3.7)

and subscripts R and F are used to designate reverse and forward scattering chan-

nels, respectively. In the case where only the fundamental mode of the slit section

is considered, i.e. λ � a, and the grating is symmetrical and lossless, Sbc = Sba,

and γ1 = jk1, (3.2)-(3.5) reduce to equations (3) and (4) of [49].

By inspecting (3.3), (3.4), (3.6) and (3.7) one can conclude that the forward

and reverse transmission resonances in the specular and non-specular directions

occur when

6 ∆F,R = 2π diag{n1, . . . ,nm}, (3.8)

where nm is an integer and m is the total number of modes in Ωb. The magnitudes

of the transmission resonances depend on the relative magnitudes of the numer-

ator (non-inverse part) as compared to the denominator (inverse part) in matrix

equations (3.3)-(3.4); unity transmission peaks occur when their magnitudes are

equal which occur for the specular order at normal incidence when λ/d > 1, i.e.

there are no grating lobes. The Q of these resonances depend on |∆F,R|. For

example, in the case where h = 2.0 µm, there is a sharp resonance at λ/d ≈ 1.011

where |∆F,R| → 1 and a broad resonance at λ/d ≈ 2.62 where |∆F,R| ≈ 0.5.

Fig. 3.2(b) shows the dependence of |∆F,R| on the slit-width to period ratio a/d

for the case h = 2.5 µm; large a/d leads to smaller |∆F,R| and lowers the Q of

the transmittance resonances. The quasi-static limit of |∆F,R| approaches unity

for small a/d leading to sharp resonance peaks in transmittance at wavelengths

comparable to the period d. By increasing the a/d ratio, broad-band resonances

can be achieved; we use this idea in Chapter 4 to reduce undesired nulls between

transmittance peaks.

36



(a) Ex field intensity at resonance λ/d ' 1.011

(b) Ex field intensity at resonance λ/d ' 2.62

Figure 3.3: Plot of the Ex field intensity over three periods of transmission gratings
with geometrical parameters d = 1.75 µm, a = 0.3 µm, and h = 2.0 µm. The
magnitude displayed in color scale is the square root of the intensity of the total
Ex field normalized to the incoming Ex field. The two figures correspond to the
two resonances appearing in the transmittance spectrum (see Fig. 3.2(a)) at (a)
λ = 1.769 µm or f = 169.56 THz and (b) λ = 4.585 µm or f = 65.43 THz.

Fig. 3.3 shows plots of the field intensity at two of the resonances where (3.8)

are satisfied for the case of a thick-metal grating with h = 2 µm ≈ 1.14d. The

high-Q resonance in Fig. 3.3(a) at λ/d ' 1.011 shows a 13-fold field intensity

enhancement inside the slit section and field focusing above and below the metal

plate in comparison to the cavity resonance at λ/d ' 2.62 in Fig. 3.3(b). As

the grating gets thicker, more resonant peaks appear at higher frequencies while
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existing peaks shift to lower frequencies (Fig. 3.2(a)) as required by the condition

that the phases of the diagonal elements in (3.6)-(3.7) remain at n2π.

3.1.2 Compound Transmission Gratings

(a) Zero-order TM Transmittance

(b) Relative magnitude and phase differences between slits

Figure 3.4: Comparisons of (a) simulated zero-order TM transmittance at normal
incidence with Skigin et al. as a function of λ/d for a compound (N = 3), thick
transmission PEC grating with a/d = c/d = 0.08 and h/d = 1.14. N = 1 and
N = 2 are included for comparison. (b) Relative magnitudes of the dominant
slit modes and their phase differences in the center and outer slits at resonant
anomalies near λ/d = 1.242 and 2.472.
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A transmission anomaly in thick compound periodic gratings was first reported

by Skigin et al. using the R-Matrix method [50]. In Fig. 3.4(a), we show a com-

parison of the transmitted intensity vs. wavelength, for a compound grating with

three slits in a period [50]. The geometry of the problem is shown in Fig. 3.1(a)

where a/d = c/d = 0.08, N = 3 and h/d = 1.14. Broad maxima at λ/d ≈ 1.25

and 2.5 appear with a sharp dip in each peak. At normal incidence, symmetry

dictates that the phases of the fundamental modes in the outer two slits must be

equal, while that of the center slit can be different. At λ/d ≈ 1.242 and 2.472,

the mutual coupling between the three closely spaced slits has caused the field in

the central slit to have twice the magnitude and be 180◦ out of phase with respect

to the fields in the outer slits (Fig. 3.4(b)); the transmitted wave is then largely

canceled, leading to a so-called π resonance similar to that observed in [15]. The

broadening of transmission maxima (lowering of the Q) as more slits are added

per period (Fig. 3.4(a)) is attributed to the increased effective a/d ratio.

3.1.3 Simple and Compound Corrugated Surfaces

Figure 3.5: Comparisons of simulated specular efficiencies defined as |Sac
11|2 at

normal incidence with Fantino et al. [51] as a function of kh for N = 1 (simple)
and N = 3 (compound) corrugated PEC surface where a/h = 0.3, d/h = 6 and
c/h = 0.2.
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Corrugated surfaces are essentially shorted transmission gratings. Using the

EGSM methodology similar to the previous section; let Sbc = Sbc
11 = −I represent

a PEC short, then

Sac
11 =Sab

11 − Sab
12S

b
12 [I−∆R]−1 Sb

21S
ab
21, (3.9)

∆R =−Sb
21S

ab
22S

b
12. (3.10)

Resonance condition (3.8) requires the phases of Sb
21S

ab
22S

b
12 to be odd multiples

of π. In the case where phase contributions from Sab
22 are negligible, this phase

requirement translates to a h ≈ λ/4 slit section. In Fig. 3.5, we compare simulated

specular efficiency vs. the slit’s electrical length kh with [51]. The geometry of

the problem is shown in Fig. 3.1(b) with a/h = 0.3, d/h = 6 and c/h = 0.2. As

predicted, the dip in reflection for the case with N = 1 slit per unit cell occurs

at kh ≈ 1.354 = π/2 − 0.217. The deviation from kh = π/2 is attributed to the

phase of Sab
22. Perfect reflection occurs at kh ≈ 1.354 in the case of N = 3 slits;

this is because at this frequency the field magnitude of the center slit is about

twice as large and 180◦ out of phase with respect to the fields in the outer slits

(see Fig. 3 of [51]).

One interesting result follows from (3.9): in the limit where the length of the

guided-section Sb is zero, i.e. Sb
12 = Sb

21 = I, the PEC short originally located at

transition bc is now moved to transition ab and as a consequence

Sac
11 = −I = Sab

11 − Sab
12

[
I + Sab

22

]−1
Sab

21, (3.11)

which can be shown directly from equations (2.43)-(2.46). In the case of PEC

transitions, identity (3.11) provides time reduction in computing the full EGSM

matrix Sab since only three out of four sub-EGSM matrices are independent.
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Figure 3.6: Comparisons of scattered field intensity in the normal direction
|R(α0)|2 with Skigin et. al. [15] as a function of kh for N = 3 (compound)
corrugated PEC aperiodic surface where a/h = 0.2, c/h = 0.1 and d = ∞.

3.1.4 Aperiodic Gratings

Scattering calculations from aperiodic surfaces are much more computationally

intensive than the periodic case because large EGSM matrices form as a result of

fine spectral-variable discretization. Our initial simulations show promise when

compared with [15] for the case of a N = 3 compound aperiodic corrugated PEC

surface (Fig. 3.6). The high-Q resonance at kh = 1.56936 is attributed to the

excitation of the π mode where the phase difference between the fields of the

central and outer slits is π, a condition similar to that depicted in Fig. 3.2(b) for

the compound periodic case where zero-transmittance occurs.

3.2 FSS Comparisons

3.2.1 Simple FSS

Design, simulation and measurement of simple thick-metal FSS’s perforated by

2D periodic array of holes are covered in detail in Chapter 4.2. Due to the large

amount of available literature on simple thin-metal FSS’s (see for example [1]);
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loss, convergence and singularity studies of simple thick-metal FSS’s are discussed

next.

3.2.2 Loss

Losses are important in the design of metal GT’s and FSS’s beyond terahertz

frequencies [16]. For the purpose of validation with existing literature, the exam-

ples thus far were all simulated using PEC and loss-free dielectrics. In the EGSM

formulation, metal loss at the air to metal transition is computed by enforcing the

impedance boundary condition on the tangential fields (2.18) over surfaces of finite

conductivity using (2.26). Wall losses inside guided sections are computed as a

perturbation of the propagation constant γ for all modes using standard methods

[52] (See also Appendix B.3). Dielectric losses are accounted for by a complex ε.

To study how each of the aforementioned loss mechanisms affects transmittance,

simulations of a thick FSS [53] with an unit cell shown in Fig. 3.7 are carried out

next.

Dielectric Loss

To isolate the effect of dielectric loss (tan δ 6= 0), PEC is assumed for all metal

parts of the unit cell shown in Fig. 3.7. Fig. 3.8(a) shows that the simulated

attenuation in TE and TM transmittance is less than 10% for low-loss microwave

dielectrics with tan δ ≤ 0.0020 in the simulated frequency range. Attenuation can

be as high as ∼ 50% for a dielectric loss tangent of tan δ = 0.0200 and is observed

to increase near resonances and decrease away from waveguide cutoff. Inspection

of the TE11 mode attenuation constant due to dielectric loss αd inside the circular

perforation (Fig. 3.8(b)) reveals that it is higher near cutoff. Due to the relative

small difference between βd (tan δ = 0.0200) and β0, the shift in resonant frequency

of the transmittance peaks is barely noticeable. Because transmittance change or
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Figure 3.7: Various loss mechanisms of a thick (h0 = 9.24mm) FSS with its unit
cell consists of a cylindrical perforation filled by Parafin wax (εr = 2.33). The hole
radius r0 = 3.2639mm. The lattice parameters are T = 8.24mm and α = 60◦.

(a) (b)

Figure 3.8: (a) Simulated zero-order TE and TM transmittances at φ = 90◦ and
θ = 45◦ for tan δ = 0, 0.0002, 0.0020 and 0.0200. (b) Comparison of TE11 mode
attenuation constant αd and the change in propagation constant βd − β0 due to
dielectric loss.

attenuation for tan δ ≤ 0.0020 is difficult to discern from Fig. 3.8(a), Fig. 3.9(a)

shows it as |Sideal
21 |2 − |Sloss

21 |2. The maximum transmittance change in the case
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(a) (b)

Figure 3.9: (a) Simulated zero-order TE and TM transmittance change at φ = 90◦

and θ = 45◦ for tan δ = 0.0002, 0.0004, 0.0006, 0.0008 and 0.0010. (b) Comparison
of TE11 mode attenuation constant αd and the change in propagation constant
βd − β0 due to dielectric loss.

of tan δ = 0.0010 is less than 5% for TE and 3% for TM polarized excitations,

respectively. The corresponding TE11 mode attenuation and propagation constant

changes for each variation of tan δ are shown in Fig. 3.9(b).

Metal Loss

As a result of finite metal conductivity, loss occurs at the perforation walls (wall

loss) and metal-dielectric transitions (surface loss) Ωa − Ωb within the unit cell

shown in Fig. 3.7. To isolate transmittance change due to metal loss, dielectric

loss tangent of the filling material is set to zero. For the case of wall loss without

surface loss, Fig. 3.10(a) shows that the maximum TE and TM transmittance

change for silver, copper, gold and aluminum is less than 1.2%. Other than

lead, transmittance changes due to finite conductivity of the perforation walls are

comparable to results from low-loss dielectric fillings where tan δ ≤ 0.0002 (see

Fig. 3.9(a)). For lossy-dielectrics with tan δ > 0.0002, transmittance change due

to dielectric loss is several times larger than those due to finite conductivity of the
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perforation walls and therefore is the primary contributor to the overall loss. This

is also made apparent by comparing the attenuation constant of the fundamental

TE11 propagating mode αd in Fig. 3.9(b) to αc in Fig. 3.10(b). Similar to the lossy-

dielectric case, the dispersion curve of the attenuation constant is responsible for

the larger transmittance change near cut-off. Although the change in propagation

constant βc − β0 due to finite conductivity of the perforation wall is two orders

of magnitude larger than βd − β0 due to lossy dielectric fillings, its effects on

the transmittance resonance location is difficult to discern because (βc − β0)/β0

is small. Transmittance attenuation is larger in the case of TE than TM due

to hz 6= 0 which induces flow of axial directed conduction currents along the

perforation walls. As the perforation wall area increases with increasing plate

(a) (b)

Figure 3.10: (a) Simulated zero-order TE and TM transmittance change due to
wall loss at φ = 90◦ and θ = 45◦ for silver, copper, gold, aluminum and lead. (b)
Comparison of TE11 mode attenuation constant αc and the change in propagation
constant βc − β0 due to metal loss.

thickness (Fig. 3.11(a)), attenuation due to wall loss also increases (Fig. 3.11(b)).

Although thickness variations does not affect propagation constant βc, resonance

frequency red-shifts as a result of the larger round-trip phase difference between

aperture openings (discontinuities) on both sides of the plate (3.8).

For the case of surface loss without wall loss (i.e. the walls of the perforations
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(a) (b)

Figure 3.11: (a) Geometry of a unit cell with varying thickness. (b) Simulated
zero-order TE and TM transmittance change due to wall loss at φ = 90◦ and
θ = 45◦ for h = {0.9, 1.0, 1.1}h0.

are assumed to be PEC), Fig. 3.12(a) shows that the maximum TE and TM trans-

mittance attenuation for silver, copper, gold and aluminum is 0.06% which is 5%

of the attenuation due to wall loss alone (see Fig. 3.10(a)). In the case of lead with

a much lower conductivity, transmittance change due to surface loss is 5 times less

than the attenuation due to low-loss dielectrics (see Fig. 3.9(a), tan δ = 0.0002).

These results suggest that finite metal conductivity at transition interfaces do not

contribute significantly to the overall loss at GHz frequencies in agreement with

observations made by Luebbers and Munk [54]. If the unit-cell size and thickness

are kept the same but the perforation radius is varied (see Fig. 3.12(b)), the reso-

nance frequency blue-shifts and attenuation due to surface loss increases as radius

decreases (Fig. 3.12(c)). Although resonance-frequency shift from radius varia-

tions is large compared to that of thickness variations (Fig. 3.11(b)), the increase

in surface area as a result of a 10% decrease in radius contributes less than 0.1%

to the over all attenuation.

Because time-domain spectroscopy measurements of FSS’s below 0.5 THz do

not show significant attenuation due to metal loss [55], simulation from 1.8 to 2.4
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(a)

(b) (c)

Figure 3.12: (a) Simulated zero-order TE and TM transmittance change due to
surface loss at φ = 90◦ and θ = 45◦ for silver, copper, gold, aluminum and lead.
(b) Geometry of a unit cell with varying radius. (c) Simulated zero-order TE and
TM transmittance change due to aluminum surface loss at φ = 90◦ and θ = 45◦

for r = {0.90, 0.95, 1.00} r0.

THz is performed by reducing the dimensions of the unit cell shown in Fig. 3.7 by

a factor of 100. In order to isolate the effect of metal loss, dielectric loss tangent

is kept low at tan δ = 0.0002. Fig. 3.13 shows that attenuation due to finite

conductivity of aluminum at THz frequencies is 10 times larger than attenuation

at GHz frequencies.

In order to validate the theoretical formulation and the numerical implementa-

tion of the EGSM algorithm involving loss, simulation results are next compared
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Figure 3.13: Transmittance comparison to that of a frequency scaled unit cell
from 1.8− 2.4 THz.

with experiment. Fig. 3.14 shows that simulated transmittance including metal

losses is comparable in magnitude to transmittance measured by Siegel et al. [56]

for the case of a copper plate perforated periodically by square holes. Minor dif-

ferences in spectral resonance location and curve shape are attributed to the lack

of surface roughness estimation in the simulation.

3.2.3 Convergence

Convergence of modal methods in the analysis of the junction discontinuity be-

tween waveguides of arbitrary transverse cross section is known to depend on the

truncation of modes used in each waveguide to represent the fields [57]. Based

on the phase-synchronism principle, Veselov et al. [58] showed that a necessary

condition for convergence requires the ratio between the number of modes used in

each waveguide be comparable to the ratio between the corresponding waveguide

transversal areas. Besides mode-number ratio, Il’inskii et al. [59] and Fa Dai

[40] suggested that mode selection should be based on the closeness of the cut-off

wave-numbers of the highest order modes in the two waveguides. Recently, Bhat-

tacharrya [60] additionally pointed out that the MoM solution using the same

48



Figure 3.14: Comparison with measurements by Siegel et al. [56] for a thick
h = 0.0083 in copper plate perforated periodically by square holes of width w =
0.0071 in in a square lattice Tx = 0.0090 in at normal incidence.

number of identical basis and expansion functions in the analysis of infinitely-thin

strip gratings produces erroneous results.

The general consensus for acceptable MM convergence is that the mode with

the highest spatial frequency content on one side of the junction determines the

highest-order mode used on the other side of the junction with a comparable

spatial frequency content. Because the spatial frequency content of modes in

most cases is proportional to the transverse cut-off wave-number kc, plots of the

TE and TM convergence of a thick FSS at a mid-range angle of incidence of 45◦,

along with the maximum Floquet/waveguide max(kcfq)/max(kcwg) mode ratio,

are shown in Fig. 3.15. The difference in TM convergence behavior for N > 2 is

due to the inclusion of the propagating TM11 mode in the simulation. In all cases,

convergence is observed for a kc ratio larger than 1. Only the rate of convergence
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is affected (see [61]).

Figure 3.15: TE and TM convergence at 23 GHz for a thick (h = 9.24 mm)
FSS with straight holes filled by parafin wax (εr = 2.33). The hole radius is
r0 = 3.2639 mm and the lattice parameters are b = d = 8.24 mm and α = 60◦.

3.2.4 Singularity

Singularities can occur in simulations where zero-thickness layers are used to study

infinitely-thin metal FSS’s or iris discontinuities. A detailed mathematical discus-

sion of their origin and corresponding solution is given in Appendix A.4. Example

geometries where singularity is of concern are shown in Fig. 3.16. By using more

modes in the field expansion of the outer waveguides than the center section,

matrix singularity is avoided. Simulation results in Fig. 3.17 successfully show

that scattering coefficients for Fig. 3.16(a) and Fig. 3.16(b) converge to different

values in their respective geometrical limits. Because Fig. 3.16(b) reduces to a

smooth waveguide in the limit, results in Fig. 3.17(b) agree with intuition. Sim-

ulations of the small iris case (Fig. 3.17(a)) are verified with circuit models using

formulas given by Marcuvitz [62]. Because the circuit-equivalent model is limited

in both frequency range and iris size, normalized shunt susceptance for different
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frequencies over the full range of iris radii is computed from simulated S11 using

− B

Y0

=
2jS11

1 + S + 11
, (3.12)

where Y0 is the TE11 mode admittance.

(a) (b)

Figure 3.16: (a) Infinitely-thin iris occurs as the length of the center waveguide
approaches zero. (b) A smooth waveguide results as the length of the center
waveguide approaches zero.

Fig. 3.18 shows that the calculated normalized shunt susceptance for each fre-

quency using EGSM cascade compares favorably to result obtained by Scharstein

et al. [63] using direct boundary MoM formulation. Comparisons with pertur-

bation results by Marcuvitz [62] shows that the approximation formulas for the

normalized susceptance is valid only for b/a ≤ 0.45 and ka ≤ 2.5. Predicted re-

sults for shunt-susceptance zero at b/a ' 0.68 and phase conjugation at b/a ' 0.74

are incorrect.
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(a) (b)

Figure 3.17: (a) TE11 transmission and reflection coefficient comparisons with
circuit approximations [62] for a cylindrical waveguide of radius a = 3.264mm
having an infinitely-thin iris of radius b = 0.35 a. (b) Simulated transmission and
reflection coefficients of the same cylindrical waveguide with an infinitely-thin iris
of radius b = 1.5 a.

Figure 3.18: Normalized shunt-susceptance comparisons between this work
(EGSM cascade (markers)), Scharstein et al. (direct boundary MoM [63]) and
Marcuvitz (circuit equivalent via perturbation theory [62]) for infinitely-thin irises
of different radii inside a cylindrical waveguide. a and b are cylindrical radii of
the waveguide and iris, respectively.

3.2.5 Compound FSS

The earliest known free-space scattering analysis of the multiple aperture per unit-

cell problem was done by Reed and Byrne [64] based on extensions to the method

of Chen [65]. Their analysis focused on the idealized case of a perfectly-conducting,
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infinitely-thin metal plate perforated with identical groups of N dissimilar rect-

angular apertures excited by a normally incident TE-polarized plane wave. They

showed that by varying the rectangular aperture length in alternating columns,

it was possible to produce narrow-band resonance peaks at longer wavelengths in

addition to the expected resonance for the simple periodic case. Furthermore, the

spectral location and bandwidth of the narrow-band resonances are observed to

depend on relative length variations of the apertures. Fig. 3.19 shows excellent

agreement between the two methods for alternating row/column configurations

(see insets of Fig. 3.19(a) and Fig. 3.19(b)) of the infinitely-thin compound pe-

riodic case. In our case, equation (2.13) is applied with care so that the ratio

of the number of modes in air to that of the aperture regions is suitable [60].

Good convergence was observed using 1058 Floquet modes in air and 19 waveg-

uide modes in each aperture; the mode number ratio of ∼ 55 is somewhat larger

than the unit-cell to aperture area ratio ∼ 36. Also included are the case where

the apertures are 0.5 µm thick for each variation of a2; results in Fig. 3.19 show

increased attenuation and frequency shift for a1 6= a2.

Closer examination of field amplitudes inside adjacent apertures of the com-

pound unit cell shown in Fig. 3.19(a) reveals that sharp resonance peaks occur

whenever large differences in mode magnitudes exist out of phase with respect to

each other (see Fig. 3.20). The transmittance zeros at λ/d = 13.4 (a2 = 4.0 µm)

and λ/d = 13.9 (a2 = 4.5 µm) occur because the dominant mode magnitudes of

the two adjacent apertures are the same except 180◦ out of phase.
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(a) (b)

Figure 3.19: Comparison between this work (markers) and Reed et al. (dashed
lines) for alternating (a) column and (b) row unit-cell configurations of an infinitely
thin compound periodic FSS. The 12 µm×6 µm rectangular unit-cell is filled with
two rectangular apertures having the same width 0.5 µm but of different length
a1 = 5.0 µm and a2. The thick solid lines correspond to predicted results for the
case where the PEC plate is 0.5 µm thick.

Figure 3.20: Field amplitude comparisons near sharp resonance peaks for the case
a2 = 4.0 µm (left) and a2 = 4.5 µm (right) shown in Fig. 3.19(a).
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Chapter 4

Application

In science the credit goes to the man who convinces the world, not to the man to

whom the idea first occurs.

— Sir William Osler 1849-1919

FSS’s and GT’s of various shapes and sizes integrate into our modern lifestyle

with such ease that their utility can sometimes be overlooked. A common example

of FSS usage is in the door of a modern microwave oven where a periodically perfo-

rated thin-metal sheet embedded in dielectric passes light (high frequency) to the

eye but confines the microwave (low frequency) used for cooking. These seemingly

ordinary surfaces have extraordinary properties and are currently still under inves-

tigation [66]. Standard utilization of FSS’s in the millimeter and sub-millimeter

regimes occurs in applications related to radome engineering [67], dichroic sub-

reflectors [3] and compact antennas [68].

Applications of GT’s and FSS’s at quasi-optical frequencies are discussed in

detail in [69]. At these frequencies, FSS’s are commonly used as a beam splitting

element that spatially demultiplexes the received broadband signal from a single

broadband aperture antenna and redirect it to multiple detectors according to

frequency content [70]. Other applications of FSS’s such as photovoltaic research



extend well into the infrared range of the spectrum [71]. Recently, the most

exciting investigations has been in the area of extraordinary optical transmission

[48]. A FSS lens made from stacked periodic wire arrays interconnected through

phase-conjugating circuitry also produces negative refraction and sub-wavelength

focusing [72].

4.1 Metal Radomes

Unlike conventional circuit filters, the transmission and reflection frequency re-

sponses of FSSs are functions of incident excitation profile, polarization and direc-

tion. Fig. 4.2(a) and Fig. 4.2(b) show simulated plane-wave excitation responses

for a thick-metal FSS perforated with straight holes and filled by dielectrics; as

the incidence excitation direction is varied from 0◦ to 75◦, transmission responses

shift and change shape for transverse electric (TE, E-field perpendicular to the

plane of incidence) and transverse magnetic (TM, H-field perpendicular to the

plane of incidence) polarized excitations. This is highly undesirable in many ap-

plications. One especially problematic situation is in sending a high-power EM

beam through a thick-metal nose cone shown in Fig. 4.1.

(a) Futuristic Metal Radome (b) Antenna beam passing through the radome

Figure 4.1: (a) Conceptual drawing of a futuristic metal radome allowing in-band
signals to pass-through while deflecting out-of-band signals for missile or aircraft
high-G nose cones. (b) The same metal radome allowing ideal transmission of a
high-power spatial-scanning beam.
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A thick-metal FSS surface is an appropriate choice for this application due

to its superior power handling and structural strength. In addition, its filtering

characteristics allow in-band signals to pass while deflecting out-of-band signals

away from the observer (Fig.4.1(a)). The angle requirement of such a surface in

a radome application is made evident by studying various radome cross-sections

in relation to the radiator positions using the superquadric equation [73].

(a) TE transmittance (b) TM transmittance

(c) Array factor at 19 GHz

Figure 4.2: Estimated effect (c) on the transmitted beam by a thick-metal FSS
radome at 19GHz. (a) and (b) are TE and TM plane-wave transmittance of a
planar straight-hole thick-FSS plate as a function of incidence angle.

Geometric-optics approximation of how a thick-metal radome affects transmit-

ted beam is shown in Fig. 4.2(c) for a Von-Karman metal nose-cone (Fig. 4.1(a))

57



perforated with straight holes and filled by dielectrics. The approximation uses the

transmittance curves of Fig. 4.2(a) and Fig. 4.2(b) by assuming that the radome

is locally planar for each incident ray. Therefore, a planar modeling tool is worth

while to develop as it can be applied to conformal surfaces. Fig. 4.2(c) shows that

at 19GHz, the array factor (beam) for TE polarization is significantly different

than the TM response in the presence of the radome; this is attributed to the more

sensitive angle dependence of the TE response at 19GHz (Fig.4.2(a)) as compared

to the TM response (Fig.4.2(b)). Furthermore, there is an apparent change in the

direction (boresight error) of the beam with respect to the case where no radome

is present.

Thick surfaces with angle-stable but narrow-band responses can be achieved

by adding complementary metal patches to the aperture openings [1]; however, a

nominal patch radius change of ∼ 0.5 mil resulted in frequency shift of more than

half the transmission bandwidth. Transmission degradation due to manufacturing

tolerance is a common problem in traditional multi-layered FSSs using thin-metal

patterns and thick dielectrics. It is very difficult to maintain thermal coefficients

between the various layers in extreme environments and to find suitable bonding

materials. Since preventing metal expansion < 0.5 mil under heating is difficult,

more robust designs are needed to handle high-power applications that require

broad bandwidth. Initial work on thick-metal plates with special perforations

having broad-band, angle and polarization stable response is shown in Section

4.3. Before going on to the design of these surfaces, it is necessary to establish a

measurement technique for characterizing them.
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4.2 Measurement

Due to large beam-width and far-field distance, measurements of FSS’s using

standard horns require the construction of large FSS panels to avoid strong edge

diffractions. Precision lens and horn measurement setups can be very expensive.

To save cost, a measurement technique using open-ended waveguide probes is used.

A typical setup for measuring transmission responses of thick-metal FSS is shown

in Fig. 4.3, where the sample under-test is mounted on a rotating platform placed

in-between two open-ended waveguide probes. Because the aperture dimensions

of the probes are small, their far field radius is short; this allows the probes to be

placed closer to the FSS at high incidence angles and still maintain good plane-

wave excitation.

Figure 4.3: Transmission measurement setup using waveguide probes.

A simple thick K-band FSS (Fig. 4.4) is designed and constructed next so
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that simulation and measurement can be compared. Circular waveguide dimen-

sions and lattice spacing of the perforated plate are determined initially based on

waveguide and array theory. Using ε = 2.24 for paraffin wax, the diameter of the

cylindrical element is calculated to be 6.5mm by setting the cutoff frequency of

the fundamental TE11 mode at the lower K-band band edge (18GHz). Lattice

spacing is chosen to avoid grating lobes for all scan angles (±90◦); for a hexagonal

lattice this corresponds to (8.24mm at 21GHz). The thickness of the FSS is se-

lected to be half the guided wavelength, which at f = 21GHz and for fc = 18GHz

is 9.24mm. Using these dimensions, an aluminum plate was milled with periodic

cylindrical holes and the holes were filled with melted paraffin wax. Once the

plate cooled, excess wax was scraped off to produce the FSS shown in Fig. 4.4.

Figure 4.4: A K-band metallic FSS. 6.5mm holes were milled in the aluminum
plate in a hexagonal lattice, and filled with paraffin wax. The lattice spacing is
8.24mm; the width and thickness of the aluminum plate are 20.32 cm and 9.24 cm,
respectively.

Simulation of the structure over all scan angles for both TE and TM inci-

dence show satisfactory convergence when mode matching 242 Floquet modes in
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air to 59 waveguide modes is performed. Results in Fig. 4.2(a) and Fig. 4.2(b)

show that peak transmission near normal incidence for both TE and TM cases

occur at 19GHz and 22.6GHz, corresponding to λg/3 and 2λg/3, where λg is the

guided wavelength of the cylindrical waveguide. The TM response shifts less with

frequency for incidence angles up to 60◦ compared to the TE response, whose

transmission bandwidth narrows with increasing incidence angles.

Measurements of the FSS’s K-band frequency response and scan characteristics

were performed using open-ended WR-42 waveguides with added E-plane flanges

(circled in Fig. 4.3) by an HP-8510C vector network analyzer. The added flanges

aid in back radiation reduction by choking backward traveling currents. Measured

probe radiation patterns are shown in Fig. 4.5(a). The back-radiation is at around

-15 dB. More sophisticated probes can be constructed to have even lower back-

radiation levels while preserving their aperture dimensions to reduce the far-field

distance. Shorter far-field distance allows smaller panels to be measured with

minimum diffraction effects. The optimum position of the waveguide probe is

located where the surface of the FSS is tangential to the far-field sphere of the

probe:

Ropt =
2D2

λ
+ t

2

cos(θinc
max)

(4.1)

where D is the largest dimension of the probe, t is the plate thickness and θinc
max

is the maximum incidence angle measured from the normal of the FSS. Substitut-

ing the near field distance into 4.1, minimal distance of the probe is determined.

At a maximum incidence of 90◦ , the maximum position can be obtained by adding

half of the FSS plate width (w/2) to the probe’s far-field radius. In practice in-

cidence angles close to 90◦ cannot be measured, therefore, positions calculated

using the 90◦ incidence angle serve as indicators of the maximum distance relative

to the origin of the probe placement. Beyond this distance, a large portion of
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(a) Probe pattern

(b) Diagram of the measurement setup

Figure 4.5: (a) Measured normalized-gain radiation pattern of a WR-42 open-
ended waveguide probe with λ/4 E-plane flange at 21GHz. E and H-plane HPBW
are about 30◦ and cross-polarization level is below -22 dB. (b) Diagram (top view)
of the experimental setup at the maximum incidence angle of 75◦. The circles
represent the far-field and near-field boundaries of the transmitter and receiver
probes at 21GHz.

the probe’s main lobe will see the near-edge of the FSS resulting in significant

scattering at large incidence angles. The accuracy and simplicity of this measure-

ment is a result of the low back-radiation of the waveguide probe. By observing

the measured probe radiation pattern from Fig. 4.5(a), it can be concluded from
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Fig. 4.5(b) that the diffraction from the FSS near edge is reduced as compared to

its far edge due to the reduced back radiation of the probe.

(a) Measured TE transmittance (b) Measured TM transmittance

Figure 4.6: (a) Measured vs. simulated transmission response for TE incidence
at 30◦, 45◦ , 60◦ and 75◦. (b) Measured vs. simulated transmission response for
TM incidence at 30◦ and 75◦.

One of the published permittivity values of paraffin at X-band, εr = 2.24, was

used for the initial design, but in addition to the operating frequency difference,

the effects of melting are unknown. It was found that a value of εr = 2.33 in

the simulation agrees best with measured results shown in Fig. 4.6. Because the

optimum probe location is inversely proportional to wavelength (4.1), at frequen-

cies above 24GHz, the probe location becomes significantly less than specified by

(4.1); this causes the FSS to protrude into the far-field sphere of the probe at

moderate incidence angles thus producing erroneous results. At incidence angles

near 75◦, the measured TE response (Fig. 4.6(a)) matches better with simulation

than the TM case (Fig. 4.6(b)); this could be due to the rectangular nature of the

probe. Edge absorbers and time-gating measurement techniques can be used to

remove some of the ripples and overshoots in the response.
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4.3 Tapered FSS

Thick-metal plates perforated by a periodic array of straight holes have multi-

ple sharp resonances in both TE and TM transmittances at moderate angles of

incidence [53]. The sharpness of these resonances limits the usable bandwidth be-

cause the transmittance peaks shift in frequency with increasing angle. In order

to stabilize transmission for both polarizations and to increase the desired band-

width, the Q of each of the resonances must be reduced. This is accomplished by

increasing the ratio of the radius r0 to the periods b and d following observations

made in chapter . For thick FSSs, the dominant factors affecting the phase of

∆F,R in (3.8) are Sb
21 and Sb

12 which depend on plate thickness. Other factors in

∆F,R, Sab
22 and Sbc

11 model internal slit reflections at the aperture-air boundaries

and contribute additional phase and amplitude scaling to ∆F,R; this scaling de-

creases with increasing ratio a/d and lowers the Q of the resonances for the case

of simple thick gratings.

In the unit cell shown in Fig. 4.7, the aperture-air boundaries of a thick,

straight-hole FSS is modified by enlarging the radius of its perforation at the sur-

face for the reason stated above. Because transmittance is dependent on metal

Figure 4.7: A thick (h = 9.24mm) FSS with tapered holes filled with parafin
wax (εr = 2.33). The hole radius tapers linearly from the outer surface where
r1 = 3.9116mm to the plate center where r0 = 3.2639mm with a taper angle
ξ ≈ 8◦. The lattice parameters are b = d = 8.24mm and α = 60◦.
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content (zero metal content equals perfect transmission), enlarging the aperture

should provide better transmittance. In order to do this and still obtain structural

integrity, the hole radius is tapered from the outer surface towards the center sym-

metrically from both sides of the plate. A total of 21 straight waveguide sections,

each 0.44mm thick, are used to represent the taper. Simulation is performed

using 32 waveguide-modes in each section and 98 Floquet-modes in air. Com-

parison with measurement data is shown in Fig. 4.8. Due to the larger effective

aperture, cutoff frequencies of the guided sections shifted lower in frequency and

as a consequence the overall transmission response shifted down as well. However,

as expected the included taper has reduced the pass-band ripple between the two

dominant resonance peaks in the TE and TM responses of Fig. 4.8 by as much as

3 dB.

Because the EGSM implementation accepts a vector input of layer radii, lon-

gitudinal profiles other than the simple linear taper can be investigated. One such

profile studied is given by the equation:

r(z) = r1

(
0.7 + 0.3

∣∣∣cos
(π

2
+

π

h
z
)∣∣∣) , −h

2
≤ z ≤ h

2
. (4.2)

A total of 31 straight waveguide sections, each 0.298mm thick with r1 = 3.2639mm

and h = 9.24mm, are used to represent the taper shown in Fig. 4.9(a). Simulation

is performed using 18 waveguide-modes in each section and 242 Floquet-modes

in air. Geometry comparisons with linear taper r0 = 0.7 r1 and straight hole

r2 = 0.9 r1 are shown in Fig. 4.9(b). Before comparing transmittance results for

these three cases, it is interesting to point out that the profile described by (4.2)

bares a close resemblance to the compound parabolic profiles used by Winston et

al. [74] in the design of non-imaging solar concentrators. Because the wavelength

of operation in their case is significantly less than the dimensions of the perfora-

tions, ray-tracing method was used in their analysis. The basic idea is illustrated

in Fig. 4.10(a) where extreme rays at angle θinc are deflected by the linear ta-
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per but are passed by the compound parabolic taper. Fig. 4.10(b) illustrates the

closeness of the cosine taper to that of a truncated compound parabolic taper

with a maximum transmission angle θmax = 45◦. Fig. 4.11 shows that in addition

to reducing the pass-band ripple when compared to the straight hole, the cosine

taper also produces a wider transmittance band width than the straight taper.

The extension of the lower pass-band edge is due to the gradual change of cut-off

frequencies of waveguide layers near the metal-air interface.

To illustrate the correctness of our implementation and the speed of the mode-

matching algorithm, comparison with commercial Ansoft-HFSS FEM simulation

software for the analysis of junction discontinuity between two on-axis cylindrical

waveguides is performed. This analysis is representative of a single junction dis-

continuity in the cascade of 21 and 31 waveguide sections in the respective case of

linear and cosine tapered perforations. Results in Fig. 4.12 demonstrate that good

agreement between the two method is reached in the case where 120-sided polyhe-

drons are used to represent the cylinders in HFSS. The default straight-cylinder

model in HFSS produces reflection coefficients that are frequency shifted. Our

formulation is 489 and 4369 times faster in comparison to results using straight-

cylinder and 120-sided polyhedron models in HFSS, respectively.
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(a) Zero-order TE transmittance vs. frequency

(b) Zero-order TM transmittance vs. frequency

Figure 4.8: Zero-order (a) TE and (b) TM transmittance as a function of frequency
for the thick FSS shown in Fig. 4.7. The plane of incidence is φ = 90◦, where
θ = {0.01◦, 15◦, 30◦, 45◦, 60◦, 75◦}. Simulations of an FSS with identical center
radius r0 = 3.264mm and no taper are included for comparison.
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(a) (b)

Figure 4.9: (a) Cosine profile showing 31 layers of straight waveguide sections each
0.298mm thick with radius given by (4.2) where r1 = 3.2639mm. (b) Geometry
comparisons to that of a linear taper with r0 = 0.7 r1 and a straight perforation
with r2 = 0.9 r1.

(a) (b)

Figure 4.10: (a) Ray tracing analysis of compound parabolic concentrator as
compared to a linear taper. (b) Profile comparison between the cosine taper (4.2)
and the compound parabolic taper with θmax = 45◦ and r′ = r0.

68



(a) Zero-order TE transmittance vs. frequency

(b) Zero-order TM transmittance vs. frequency

Figure 4.11: Zero-order (a) TE and (b) TM transmittance as a function of
frequency for thick FSSs (h = 9.24mm) with unit cell perforations shown in
Fig. 4.9(b). The perforations are filled with parafin wax (εr = 2.33). The plane
of incidence is φ = 90◦, where θ = {0.001◦, 15◦, 30◦, 45◦, 60◦, 75◦}. The lattice
parameters are b = d = 8.24mm and α = 60◦.
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(a) (b)

(c) (d)

Figure 4.12: Comparison of (a) |S11| and |S22|, (b) 6 S11 and 6 S22, (c) |S21| and
|S12|, and (d) 6 S21 and 6 S12 with Ansoft HFSS analysis of the junction disconti-
nuity between two on-axis cylindrical waveguides where ρb = 0.9ρa = 2.9376mm.
Solution data are compared with both cylinder and 120-sided polyhedron repre-
sentations of the cylindrical waveguides in HFSS.
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Chapter 5

Conclusion

No matter who you are, what you do or how you live, treat others as your equal;

for given the same life circumstances that you are so privileged to have, there is

at least the possibility that they could achieve far more good.

— Hung Loui

This thesis demonstrates successful implementation and verification of the

MM-EGSM method for analyzing EM scattering from various periodic and aperi-

odic surfaces. We have retained the advantages of published MM-GSM methods,

added new formulations to enable efficient implementation of compound unit cells

and unified the theoretical approach for one/two-dimensional periodic and aperi-

odic surfaces.

5.1 Contributions

5.1.1 Theoretical Contributions

Utilizing the EGSM terminology, the general expressions (3.2)-(3.10) for the res-

onances of both transmission and reflection surfaces are developed. In addition,

we provide a simple EGSM property (3.11) for reducing the computational load



at PEC transitions. Some of the contributions of the Mode Matching-Extended

Generalized Scattering Matrix (MM-EGSM) analysis method presented here in-

clude:

- The inclusion of the compound unit cell concept into the MM procedure

as applied to EM wave scattering from one- and two-dimensional planar,

thick-metal, multi-layered, periodic and aperiodic surfaces;

- The extension of GSM network analysis to handle arbitrary internal connec-

tions between apertures on both sides of a compound unit cell;

- The utilization of impedance boundary conditions and perturbation the-

ory during the MM procedure to handle external and internal metal losses,

respectively.

One of the conclusions of the theoretical formulation presented here is that in-

creasing the aperture-to-period ratio in gratings and FSSs can lead to lowering of

the Q of various resonances, thus producing a less polarization-sensitive yet broad-

band transmission response for wide incidence angles. Recognizing that a large

aperture-to-period ratio is equivalent to increasing the level of cross-coupling be-

tween adjacent apertures, direct internal connections between adjacent apertures

(Fig. 1.2) become a potential design parameter for obtaining desired transmittance

and reflectance behavior.

5.1.2 Numerical Contributions

Numerical implementation and algorithm development of the proposed MM-EGSM

method were performed using the MATLAB’s matrix-friendly scripting language.

Although a large amount of coding effort has been devoted to software develop-

ment, we will only list a few here due to length considerations:
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- Transition EGSM redundancy checking to speed up multi-transition simu-

lations.

- EGSM auto assembly, cascade and data extraction.

- 3D modeling with internal/external field computation and visualization.

The largest contribution from this numerical effort is the prediction of new

scattering responses of novel compound thick FSS’s.

5.2 Future Work

The method presented in this paper can be applied to a number of problems across

the EM spectrum. Examples are radomes and dichroic plates for spatial demul-

tiplexing applications [70]. In addition, low-loss components such as filters and

polarizers can be designed for millimeter-wave and terahertz imaging and spec-

troscopy. We are also motivated by applications in the higher microwave through

optical regions of the spectrum. For example, the field enhancements shown in

Fig. 3.3(a) can be further exploited by filling the perforations with nonlinear ma-

terials for spatial modulation of beams in the microwave and optical regimes. An-

other motivation is the analysis and design of broadband, wide-angle, polarization-

insensitive, structurally strong thick-metal surfaces for stealthy radomes covering

high-power electronically-steerable antennas. Such a radome can replace the tradi-

tional approach which requires lamination of multiple layers of thin-metal patterns

sandwiched between dielectrics. Due to thermal expansion when operated under

harsh conditions [67], laminations can result in misalignment causing performance

degradation [1]. Besides studying various passive structures allowed by the de-

veloped theory, rigid and compact tunable surfaces are also subjects of future

work. By embedding active devices in the space provided by the thickness of the
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FSS plate, scattering characteristics can be altered in a controlled manner. To

facilitate optimization and interfacing with electronic circuitry, equivalent circuit

models should be developed at junction discontinuities.

Although the current measurement setup is adequate for general transmission

comparisons with simulation, it is not accurate for loss and phase characteriza-

tions. Future work include the development of a state-of-the-art measurement

apparatus (Fig. 5.1) for the purpose of accurate characterization of EM transmis-

sion through FSS samples.

Figure 5.1: A Gaussian beam measurement setup for the characterization of pas-
sive and active FSSs.

The proposed measurement setup is similar in design to those deployed in

the field of optics. However, due to the relatively large wavelength of operation

(millimeter vs. nanometer), lenses, fixtures, tables, and sources in the millimeter-

wavelength regime are much larger than in optics. This means accurate position-

ing devices are not readily available to handle the added weight. To maximize

usability and mobility, the proposed apparatus is modular in design and scalable

in size. The primary components of the system are sets of large lenses, transmit-

ter/receiver horn antennas and sample holders. The translation stages associated

with each component allow for flexible calibration. The proposed measurement

system is necessary because EM radiation from an antenna spreads quickly. This
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fact complicates EM measurement of materials using only antennas because their

radiation will scatter off of anything and everything in its path, including the

material sample. Measurement of this type therefore requires a specialized room

where expansive absorbers lining the inside walls are used to minimize unwanted

reflections so that only scattering from the sample under test is measured. Even

with an anechoic chamber, due to finite sample size, it is very difficult to separate

signal transmission through the FSS plate from transmission around the FSS plate

even with time-gating. A focused Gaussian-beam system does not suffer from the

above fact and the scattering process can be analyzed by the theory provided

using the principle of superposition.
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Appendix A

EGSM

The greatest good you can do for another is not just to share your riches but to

reveal to him his own.

— Benjamin Disraeli, 1804 - 1881

A.1 EGSM Operator

The EGSM operator ? used to cascade two EGSMs is defined by the operation

Sc = Sa ? Sb, (A.1)

where

Sc
11 = Sa

11 + Sa
12

(
I− Sb

11S
a
22

)−1
Sb

11S
a
21, (A.2)

Sc
12 = Sa

12

(
I− Sb

11S
a
22

)−1
Sb

12, (A.3)

Sc
21 = Sb

21

(
I− Sa

22S
b
11

)−1
Sa

21, (A.4)

Sc
22 = Sb

22 + Sb
21

(
I− Sa

22S
b
11

)−1
Sa

22S
b
12. (A.5)



Figure A.1: EGSM equivalent representation of the structure shown in Fig. 2.1.

A.2 EGSM Assembly

Fig. A.1 is an EGSM matrix representation of the structure shown in Fig. 2.1.

Each EGSM Sbq is allowed to contain multiple sub-EGSMs which relate field am-

plitudes at the ends of various junctions between two transitions; this is especially

true when the waveguides connecting multiple apertures couple to each other in-

ternally. They are always presented in the form of a large 2 × 2 block EGSM

regardless of the number of junctions at each transition; this is to emphasis the

transition rather than the junction concept. For example:

BL±
1 =



BL±
11

BL±
12

...

BL±
1nL


, BR±

1 =



BR±
11

BR±
12

...

BR±
1nR


, (A.6)

where nL and nR are the number of apertures at the left and right-ends of Sb1,

respectively. Similarly,

BR+
4 =

BR+
41

BR+
42

 , BR−
4 =

BR−
41

BR−
42

 . (A.7)
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In general Bbq±
qnL,R

is a column vector containing the amplitudes of all modes inside

its aperture. Using Fig. A.1 as a guide, we can write down the following set of

equations: BL−
1

BR+
1

 =

Sb1
11 Sb1

12

Sb1
21 Sb1

22


BL+

1

BR−
1

 , (A.8)

BL−
2

BR+
3

 =

Sb2
11 Sb2

12

Sb2
21 Sb2

22


BL+

2

BR−
3

 , (A.9)

BL−
3

BR+
2

 =

Sb3
11 Sb3

12

Sb3
21 Sb3

22


BL+

3

BR−
2

 , (A.10)

[
BL−

4

]
=

[
Sb4

11

] [
BL+

4

]
, (A.11)[

BR+
4

]
=

[
Sb5

22

] [
BR−

4

]
, (A.12)BL−

qL

BR+
qL

 =

Sbq
11 Sbq

12

Sbq
21 Sbq

22


BL+

qR

BR−
qR

 . (A.13)

Notice, we have deliberately switched the junction field amplitude labels in Sb2

and Sb3 to match the junction crossing shown in Fig. 2.1(b). In order to utilize the

EGSM cascade operator ? it is necessary to rearrange or assemble the above set

of equations such that field amplitudes away from a section are grouped together

and related by an assembled EGSM to field amplitudes toward a section. Let

BL± =



BL±
1

BL±
2

...

BL+
qL


, BR± =



BR±
1

BR±
2

...

BR±
qR


, (A.14)

then BL−

BR+

 =

Sb
11 Sb

12

Sb
21 Sb

22


BL+

BR−

 . (A.15)
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For example,

Sb
12 =



Sb1
12 0 0 0 0 0

0 0 Sb2
12 0 0 0

0 Sb3
12 0 0 0 0

0 0 0 Sb4
12 0 0

0 0 0 0
. . . 0

0 0 0 0 0 Sbq
12


. (A.16)

The sub-EGSM matrices Sb
ij for i, j ∈ {1,2} are usually sparse when there are no

additional couplings among any predefined Sbq; under this condition, it is possible

to relabel the transitions so that they are purely diagonal. The current labeling

scheme is chosen to illustrate the effect of junction crossings on EGSM assembly.

A.3 Operator Property

It can be shown using (A.2)-(A.5) that the ? operator is associative:

(Sa ? Sb) ? Sc = Sa ? (Sb ? Sc). (A.17)

This means that cascading multiple transitions or sections need not proceed in

the same order as dictated by excitation relative to the geometry.

A.4 Singularity Analysis

Analysis of EM scattering from infinitely thin screens using the MM/()/EGSM

method often leads to matrix singularities during the EGSM cascade process. This

phenomenon also occurs in waveguide discontinuity problems where two guides

are connected such that a common cross section of zero thickness intersect both

partially. Let

Sc = Sab ? Sb ? Sbc (A.18)
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represent the cascade of transition ab, section b and transition bc where

Sab =

Sab
11 Sab

12

Sab
21 Sab

22

 , Sb =

 0 Sb
12

Sb
21 0

 , Sbc =

Sbc
11 Sbc

12

Sbc
21 Sbc

22

 , (A.19)

and Pb = Sb
12 = Sb

21 be a reciprocal exponential propagator of b, then

Sc
11 = Sab

11 + Sab
12

(
I−PbSbc

11P
bSab

22

)−1
PbSbc

11P
bSab

21, (A.20)

Sc
12 = Sab

12

(
I−PbSbc

11P
bSab

22

)−1
PbSbc

12, (A.21)

Sc
21 = Sbc

21P
b
(
I− Sab

22P
bSbc

11P
b
)−1

Sab
21, (A.22)

Sc
22 = Sbc

22 + Sbc
21P

b
(
I− Sab

22P
bSbc

11P
b
)−1

Sab
22P

bSbc
12. (A.23)

In practice when transitions ab and bc are mirrors of one another, programmers

often reuse computed results of Sab for Sbc assuming the same number of modes

in c as in a or Sbc
11 = Sab

22, Sbc
12 = Sab

21, Sbc
21 = Sab

12 and Sbc
22 = Sab

11. As a result,

Sc
11 = Sab

11 + Sab
12

(
I−PbSab

22P
bSab

22

)−1
PbSab

22P
bSab

21, (A.24)

Sc
12 = Sab

12

(
I−PbSab

22P
bSab

22

)−1
PbSab

21, (A.25)

Sc
21 = Sab

12P
b
(
I− Sab

22P
bSab

22P
b
)−1

Sab
21, (A.26)

Sc
22 = Sab

11 + Sab
12P

b
(
I− Sab

22P
bSab

22P
b
)−1

Sab
22P

bSab
21. (A.27)

Let,

A = I−PbSab
22P

bSab
22 = (I + PbSab

22)(I−PbSab
22), (A.28)

then if the determinant of A, |A| = 0, matrix singularities will occur in the above

equations. To show that this is indeed the case, recall

Sab
22 =

[
Yb + C∗(Ya∗ + Yas)−1Ct

]−1 [
Yb −C∗(Ya∗ + Yas)−1Ct

]
, (A.29)

where admittance matrixes Yb, Ya and Yas are square diagonal and the mode

coupling matrix (usually not square) C is computed from field overlapping inte-
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grals. Let Yc
F = C∗(Ya∗ + Yas)−1Ct,

I±PbSab
22 = I±Pb

[
Yb + Yc

F

]−1 [
Yb −Yc

F

]
(A.30)

= Pb
[
Yb + Yc

F

]−1
[
Yb(Pb−1 ± I) + Yc

F(Pb−1 ∓ I)
]
, (A.31)

then the determinant of

∣∣I±PbSab
22

∣∣ =

∣∣Pb
∣∣ ∣∣∣Yb(Pb−1 ± I) + Yc

F(Pb−1 ∓ I)
∣∣∣

|Yb + Yc
F|

. (A.32)

Taking the limit

lim
Pb→I

|A| =
∣∣I + PbSab

22

∣∣ ∣∣I−PbSab
22

∣∣ =
|Yc

F|
∣∣Yb

∣∣ |2I|2

|Yb + Yc
F|

2 . (A.33)

Unless a matrix element on the main diagonal of Yb is zero,
∣∣Yb

∣∣ 6= 0. Because

|2I| 6= 0, if |Yc
F| = 0 then |A| = 0. Let a contain ma modes and b contain nb

modes then C is a nb×ma matrix and Ya is a ma×ma matrix; in the case where

nb > ma it can be shown analytically |Yc
F| = 0 by pending zero-columns to C and

making it square. Therefore, in order to avoid the occurrence of singularities for

the infinitely-thin case where the length of b → 0, it is necessary that ma ≥ nb.
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Appendix B

Integrals

B.1 Normalization Integrals

An excellent discussion of normalization related to matrix description of waveguide

discontinuities in the presence of evanescent modes are given in [75].

B.1.1 Floquet Modes

Figure B.1: Lattice geometry.
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Longitudinal Floquet Modes

ẑ directed Floquet modes [29] in an uniformly filled dielectric unit cell are given

by:

Hzmn =
[
H0mnejψmn

]
e−jkxmnxe−jkymny (B.1)

Ezmn =
[
E0mnejξmn

]
e−jkxmnxe−jkymny (B.2)

where
[
H0mnejψmn

]
and

[
E0mnejξmn

]
represent the arbitrary magnitude and phase

of the corresponding Hzmn and Ezmn mode. The parameters kxmn and kymn

depend on lattice parameters α, b, d (see Fig. B.1) and incident angles θ, φ:

kxmn =
√

εrk0 sin θ cos φ− m2π

b
(B.3)

kymn =
√

εrk0 sin θ sin φ−
(

n2π

d sin α
− m2π

b tan α

)
(B.4)

k2
rmn

= k2
xmn

+ k2
ymn

(B.5)

where k0 = 2π/λ0 and µr of the dielectric is assumed to be unity.

Transverse Floquet Modes

The transverse fields relate to the longitudinal fields by way of Maxwell’s equa-

tions.

TE (Ezmn = 0):

~ETmn =
jωµ

k2
rmn

ẑ ×∇THzmn = − ωµ

k2
rmn

[kymnx̂− kxmn ŷ] Hzmn =
ωµ

βmn
~HTmn × ẑ

(B.6)

~HTmn = −jβmn
k2
rmn

∇THzmn = − βmn
k2
rmn

[kxmnx̂ + kymn ŷ] Hzmn =
βmn
ωµ

ẑ × ~ETmn (B.7)
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TM (Hzmn = 0):

~ETmn = −jβmn
k2
rmn

∇TEzmn = − βmn
k2
rmn

[kxmnx̂ + kymn ŷ] Ezmn =
βmn
ωε

~HTmn × z (B.8)

~HTmn = − jωε

k2
rmn

ẑ ×∇TEzmn =
ωε

k2
rmn

[kymnx̂− kxmn ŷ] Ezmn =
ωε

βmn
ẑ × ~ETmn

(B.9)

where βmn =
√

εrk2
0 − k2

rmn
is positive real for εrk

2
0 ≥ k2

rmn
and negative imaginary

for εrk
2
0 < k2

rmn
.

Field Normalization Factor Nνmn

For a Floquet mode of type ν, (ν = 1 = TE, ν = 2 = TM) and number mn, let

the fields at the longitudinal location z be represented by:

~Eνmn(x, y, z) =
(
aνmne

−jβmnz + bνmne
jβmnz

)
~ETνmn(x, y)Nνmn (B.10)

~Hνmn(x, y, z) =
(
aνmne

−jβmnz − bνmne
jβmnz

)
~HTνmn(x, y)Nνmn (B.11)

then the complex power at z by definition is

Pνmn(z) =
∫∫

ẑ ·
[
~Eνmn(x, y, z)× ~H∗

νmn(x, y, z)
]
dxdy

= |Nνmn|2P̄νmn(z)
∫∫

~ETνmn(x, y) ·
[
~H∗
Tνmn

(x, y)× ẑ
]
dxdy

= |Nνmn|2P̄νmn(z)PTνmn

(B.12)

where

PTνmn =

∫∫
~ETνmn(x, y) · ~E∗Tνmn

(x, y)dxdy
Z∗νmn

, (B.13)

P̄νmn(z) =


|aνmn|2 − |bνmn|2 + 2j=(bνmna∗νmne

j2βmnz), βmn ∈ {<+};

|aνmn|2 − |bνmn|2 − aνmnb
∗
νmne

−2|βmn|z + bνmna
∗
νmne

2|βmn|z, βmn ∈ {=−};
(B.14)

and

Zνmn =


ωµ
βmn

, if ν = 1;

βmn

ωε , if ν = 2.
(B.15)
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The time averaged power flow for βmn ∈ {<+} is

P avνmn(z) = <[Pνmn(z)]

= |Nνmn|2
∫∫

~ETνmn(x, y) · ~E∗Tνmn
(x, y)dxdy

Zνmn
(|aνmn|2 − |bνmn|2)

= |Nνmn|2|PTνmn |(|aνmn|2 − |bνmn|2)

(B.16)

and for βmn ∈ {=−}

P avνmn(z) = ∓|Nνmn|2|PTνmn |<
[
j(aνmnb∗νmne

−2|βmn|z − bνmna
∗
νmne

2|βmn|z)
]

(B.17)

where − is for ν = 1 and + for ν = 2.

From the above derivations, if

|Nνmn| =
1√
PTνmn

=

√
Z∗νmn√∫∫

~ETνmn(x, y) · ~E∗Tνmn
(x, y)dxdy

(B.18)

then Pνmn(z) = P̄νmn(z).

Normalized Transverse Floquet Modes

Let the field norm be:√∫∫
~ET1mn(x, y) · ~E∗T1mn

(x, y)dxdy =
ωµ

krmn

H0mn

√
S (B.19)√∫∫

~ET2mn(x, y) · ~E∗T2mn
(x, y)dxdy =

|βmn|
krmn

E0mn

√
S (B.20)

then the normalized Transverse Floquet modes are:

ÊT1mn =
~ET1mn√∫∫

~ET1mn(x, y) · ~E∗T1mn
(x, y)dxdy

=
− ωµ
k2

rmn
[kymn x̂− kxmn ŷ]Hzmn
ωµ
krmn

H0mn

√
S

= ejψmn
1√
S

(
−kymn x̂+ kxmn ŷ

krmn

)
e−jkxmnxe−jkymny

(B.21)
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ĤT1mn =
~HT1mn√∫∫

~ET1mn(x, y) · ~E∗T1mn
(x, y)dxdy

=
− βmn

k2
rmn

[kxmn x̂+ kymn ŷ]Hzmn
ωµ
krmn

H0mn

√
S

= ejψmn
βmn
ωµ

1√
S

(
−kxmn x̂− kymn ŷ

krmn

)
e−jkxmnxe−jkymny

(B.22)

ÊT2mn =
~ET2mn√∫∫

~ET2mn(x, y) · ~E∗T2mn
(x, y)dxdy

=
− βmn

k2
rmn

[kxmn x̂+ kymn ŷ]Ezmn
|βmn|
krmn

E0mn

√
S

= ejξmn
βmn
|βmn|

1√
S

(
−kxmn x̂− kymn ŷ

krmn

)
e−jkxmnxe−jkymny

(B.23)

ĤT2mn =
~HT2mn√∫∫

~ET2mn(x, y) · ~E∗T2mn
(x, y)dxdy

=
ωε
k2

rmn
[kymn x̂− kxmn ŷ]Ezmn
|βmn|
krmn

E0mn

√
S

= ejξmn
ωε

|βmn|
1√
S

(
kymn x̂− kxmn ŷ

krmn

)
e−jkxmnxe−jkymny

(B.24)

If we choose the arbitrary phases of the longitudinal Floquet modes in the following

way:

ψmn = 0 for βmn positive real or negative imaginary (B.25)

ξmn = 0 if βmn is positive real (B.26)

ξmn =
π

2
if βmn is negative imaginary (B.27)

then the normalized transverse Floquet modes become:

ÊT1mn =
1√
S

(
−kymn x̂+ kxmn ŷ

krmn

)
e−jkxmnxe−jkymny =

ωµ

βmn
ĤT1mn × ẑ (B.28)

ĤT1mn =
βmn
ωµ

1√
S

(
−kxmn x̂− kymn ŷ

krmn

)
e−jkxmnxe−jkymny =

βmn
ωµ

ẑ × ÊT1mn (B.29)

ÊT2mn =
1√
S

(
−kxmn x̂− kymn ŷ

krmn

)
e−jkxmnxe−jkymny =

βmn
ωε

ĤT2mn × z (B.30)

ĤT2mn =
ωε

βmn

1√
S

(
kymn x̂− kxmn ŷ

krmn

)
e−jkxmnxe−jkymny =

ωε

βmn
ẑ × ÊT2mn (B.31)
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B.1.2 Waveguide Modes

The procedure for normalizing waveguide modes are similar to the above. Normaliza-

tion integrals for cylindrical, rectangular and parallel-plate waveguides are embedded

in perturbation calculations of Appendix B.3. For the purpose of establishing notation,

the un-normalized longitudinal modes of a cylindrical waveguide [76] are:

For TE(Ez = 0),Hz = ψ1 modes:

ψ1nm1 = A1nm1 sinnφJn(kc1nm1ρ), (B.32)

ψ1nm2 = A1nm2 cosnφJn(kc1nm2ρ). (B.33)

For TM (Hz = 0), Ez = ψ2 modes:

ψ2nm1 = A2nm1 sinnφJn(kc2nm1ρ), (B.34)

ψ2nm2 = A2nm2 cosnφJn(kc2nm2ρ). (B.35)

The first subscript, usually ν, denotes the mode type, 1 = TE and 2 = TM; additional

subscripts n and m represent Bessel order and its zero indexes respectively; the last

subscript separates the degenerate orthogonal modes.

B.2 Reaction Integrals

Let ψνn represent a longitudinal mode satisfying the wave equation

(
∇2
T + k2

cνn

)
ψνn = 0 (B.36)

for a homogeneously-filled waveguide of arbitrary cross section C under boundary con-

ditions: 
∂Hzn
∂ρ = ∂ψ1n

∂ρ

∣∣∣
C

= 0 Neumann,

Ezn = ψ2n|C = 0 Dirichlet.
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It is possible to manipulate Maxwell’s equations so that the transverse fields are ex-

pressed in terms of the longitudinal field components in a lossless medium [77]:

~ET = − 1
k2 − β2

[−jwµẑ ×∇THz + jβ∇TEz], (B.37)

~HT = − 1
k2 − β2

[jwεẑ ×∇TEz + jβ∇THz], (B.38)

the term
√
k2 − β2 = kc is usually referred to as the cut-off wave number and β is the

propagation constant. Let ψ1 = Hz and ψ2 = Ez with subscripts 1 and 2 identifying

TE and TM modes respectively, (B.37)-(B.38) separate into the following:

For TE modes, Ez = 0, Hz = ψ1,

~ET1 =
jwµ

k2
c1

ẑ ×∇Tψ1, (B.39)

~HT1 =
−jβ1

k2
c1

∇Tψ1. (B.40)

For TM modes, Hz = 0, Ez = ψ2,

~ET2 =
−jβ2

k2
c2

∇Tψ2, (B.41)

~HT2 =
−jwε
k2
c2

ẑ ×∇Tψ2. (B.42)

The transverse fields relate to each other via the following:

~HT1 = Y1ẑ × ~ET1 , (B.43)

~HT2 = Y2ẑ × ~ET2 , (B.44)

where,

Y1 =
β1

ωµ
, (B.45)

Y2 =
wε

β2
. (B.46)

Suppose that two sets of fields ~EbTvn
and ~Ha

Tv′n′
are valid over Ωb and Ωa, respectively
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where Ωb ⊆ Ωa and we wish to evaluate

Svn,v′n′ =
∫
Ωb

(
~EbTvn

× ~Ha∗
Tv′n′

)
· ẑ ds =

∫
Ωb

~EbTvn
·
(
~Ha∗
v′n′ × ẑ

)
︸ ︷︷ ︸
Y a∗

v′n′
~Ea∗

Tv′n′

ds

= Y a∗
v′n′

∫
Ωb

~EbTvn
· ~Ea∗Tv′n′

ds.

(B.47)

Define the inner product between two transverse vectors ~AT and ~BT as

〈 ~AT | ~BT 〉Ω =
∫
Ω

~AT · ~B∗T ds, (B.48)

where ∗ denotes complex conjugate.

TE-TE

〈 ~EbT1n
| ~EaT1n′

〉Ωb =

(
jwµb

kb2c1n

)(
jwµa

ka2

c1n′

)∗ ∫
Ωb

ẑ ×∇Tψ
b
1n · ẑ ×∇Tψ

a∗
1n′ ds

=

(
wµb

kb2c1n

)(
wµa

ka2

c1n′

)∫
Ωb

∇Tψ
b
1n · ∇Tψ

a∗
1n′ ds

(B.49)

Using the directional derivative of a scalar (C.1), two-dimensional divergence theorem

(C.6), Helmholtz wave equation and the Neumann boundary condition:

〈∇Tψ
b
1n|∇Tψ

a
1n′〉Ωb =

∫
Ωb

∇T · (ψa∗1n′∇Tψ
b
1n) ds−

∫
Ωb

ψa∗1n′ ∇2
Tψ

b
1n︸ ︷︷ ︸

−kb2
c1n

ψb
1n

ds

=
∮
dΩb

ψa∗1n′ ∇Tψ
b
1n · n̂︸ ︷︷ ︸

=0, on dΩb

dl + kb
2

c1n

∫
Ωb

ψa∗1n′ψ
b
1n ds

= kb
2

c1n

∫
Ωb

ψb1nψ
a∗
1n′ ds

(B.50)

〈 ~EbT1n
| ~EaT1n′

〉Ωb =
ω2µbµa

ka2

c1n′

∫
Ωb

ψb1nψ
a∗
1n′ ds (B.51)

TE-TM

〈 ~EbT1n
| ~EaT2n′

〉Ωb =

(
jwµb

kb2c1n

)(
−jβa2n′
ka2

c2n′

)∗ ∫
Ωb

ẑ ×∇Tψ
b
1n · ∇Tψ

a∗
2n′ ds (B.52)
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Using vector identities (C.3), (C.4) and two-dimensional divergence theorem (C.6):

〈ẑ ×∇Tψ
b
1n|∇Tψ

a
2n′〉Ωb =

∫
Ωb

∇T · [ψa∗2n′(ẑ ×∇Tψ
b
1n)]− ψa∗2n′ ∇T · (ẑ ×∇Tψ

b
1n)︸ ︷︷ ︸

=0

 ds
=
∮
dΩb

ψa∗2n′(ẑ ×∇Tψ
b
1n) · n̂ dl

= −
∮
dΩb

ψa∗2n′∇Tψ
b
1n · (ẑ × n̂) dl︸ ︷︷ ︸

~dl

Alternatively, if we had started with

〈 ~EbT1n
| ~EaT2n′

〉Ωb =

(
jwµb

kb2c1n

)(
−jβa2n′
ka2

c2n′

)∗ ∫
Ωb

−ẑ ×∇Tψ
a∗
2n′ · ∇Tψ

b
2n ds (B.53)

then

〈∇Tψ
b
2n|∇Tψ

a∗
2n′ × ẑ〉Ωb = 〈ẑ ×∇Tψ

b
1n|∇Tψ

a
2n′〉Ωb =

∮
dΩb

ψb1n∇Tψ
a∗
2n · ~dl (B.54)

Another way of obtaining the same results is to use (C.3) and write

〈 ~EbT1n
| ~EaT2n′

〉Ωb =

(
jwµb

kb2c1n

)(
−jβ2n′

ka2

c2n′

)∗ ∫
Ωb

∇Tψ
b
1n ×∇Tψ

a∗
2n′ · ẑ ds (B.55)

then apply identity (C.5) followed by the two-dimensional Stokes theorem (C.7).

〈 ~EbT1n
| ~EaT2n′

〉Ωb = −

(
wµb

kb2c1n

)(
βa∗2n′

ka2

c2n′

) ∮
dΩb

ψb1n∇Tψ
a∗
2n · ~dl (B.56)

TM-TE

〈 ~EbT2n
| ~EaT1n′

〉Ωb =

(
−jβb2n
kb2c2n

)(
jωµa

ka2

c1n′

)∗ ∫
Ωb

∇Tψ
b
2n · ẑ ×∇Tψ

a∗
1n′ ds (B.57)

Following similar procedure as for the TE-TM case,

〈 ~EbT2n
| ~EaT1n′

〉Ωb =

(
βb2n
kb2c2n

)(
ωµa

ka2

c1n′

) ∮
dΩb

ψb2n∇Tψ
a∗
1n′ · ~dl = 0 (B.58)
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TM-TM

〈 ~EbT2n
| ~EaT2n′

〉Ωb =

(
−jβb2n
kb2c2n

)(
−jβa2n′
ka2

c2n′

)∗ ∫
Ωb

∇Tψ
b
2n · ∇Tψ

a∗
2n′ ds (B.59)

Using the directional derivative of a scalar (C.1), two-dimensional divergence theorem

(C.6), Helmholtz wave equation and the Dirichlet boundary condition:

〈∇Tψ
b
2n|∇Tψ

a
2n′〉Ωb =

∫
Ωb

∇T · (ψb2n∇Tψ
a∗
2n′) ds−

∫
Ωb

ψb2n ∇2
Tψ

a∗
2n′︸ ︷︷ ︸

−ka2
c2n′

ψa∗
2n′

ds

=
∮
dΩb

ψb2n︸︷︷︸
=0, on dΩb

∇Tψ
a∗
2n′ · n̂ dl + ka

2

c2n′

∫
Ωb

ψb2nψ
a∗
2n′ ds

= ka
2

c2n′

∫
Ωb

ψb2nψ
a∗
2n′ ds

(B.60)

〈 ~EbT2n
| ~EaT2n′

〉Ωb =
βb2nβ

a∗
2n′

kb2c1n

∫
Ωb

ψb2nψ
a∗
2n′ ds (B.61)

Because field normalization procedure can differ by preference and implementation,

the more general (un-normalized) reaction integrals are given below for various transi-

tions.

B.2.1 Floquet - Cylindrical Waveguide Transition

Define

θam′n′ = tan−1

(
kaym′n′

kaxm′n′

)
. (B.62)

Integrals of type 〈TEb|TEa〉

〈 ~EbT1nm1
| ~EaT1m′n′

〉 =
jn2πρb sin(nθam′n′)A

b
1nm1A

a∗
1m′n′w

2µbµaJn(kbc1nm
ρb)J ′n(k

a
rm′n′

ρb)

karm′n′
(kb2c1nm

− ka2

rm′n′
)

,

(B.63)

〈 ~EbT1nm2
| ~EaT1m′n′

〉 =
jn2πρb cos(nθam′n′)A

b
1nm2A

a∗
1m′n′w

2µbµaJn(kbc1nm
ρb)J ′n(k

a
rm′n′

ρb)

karm′n′
(kb2c1nm

− ka2

rm′n′
)

;

(B.64)
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Integrals of type 〈TEb|TMa〉

〈 ~EbT1nm1
| ~EaT2m′n′

〉 =
njn2π cos(nθam′n′)A

b
1nm1A

a∗
2m′n′wµ

bβa
∗
m′n′Jn(k

b
c1nm

ρb)Jn(karm′n′
ρb)

kb2c1nm
ka2

rm′n′

,

(B.65)

〈 ~EbT1nm2
| ~EaT2m′n′

〉 =
−njn2π sin(nθam′n′)A

b
1nm2A

a∗
2m′n′wµ

bβa
∗
m′n′Jn(k

b
c1nm

ρb)Jn(karm′n′
ρb)

kb2c1nm
ka2

rm′n′

;

(B.66)

Integrals of type 〈TMb|TEa〉

〈 ~EbT2nm1
| ~EaT1m′n′

〉 = 0, (B.67)

〈 ~EbT2nm2
| ~EaT1m′n′

〉 = 0; (B.68)

Integrals of type 〈TMb|TMa〉

〈 ~EbT2nm1
| ~EaT2m′n′

〉 =
jn2πρb sin(nθam′n′)A

b
2nm1A

a∗
2m′n′β

b
2nmβ

a∗
m′n′J

′
n(k

b
c2nm

ρb)Jn(karm′n′
ρb)

kbc2nm
(ka2

rm′n′
− kb2c2nm

)
,

(B.69)

〈 ~EbT2nm2
| ~EaT2m′n′

〉 =
jn2πρb cos(nθam′n′)A

b
2nm2A

a∗
2m′n′β

b
2nmβ

a∗
m′n′J

′
n(k

b
c2nm

ρb)Jn(karm′n′
ρb)

kbc2nm
(ka2

rm′n′
− kb2c2nm

)
.

(B.70)

B.2.2 Cylindrical - Cylindrical Waveguide Transition

Define

∆s =



π, n = p 6= 0;

0, n 6= p, n = 0 or p = 0;

0, n = p = 0.

(B.71)

∆c =



π, n = p 6= 0;

0, n 6= p, n = 0 or p = 0;

2π, n = p = 0.

(B.72)
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Integrals of type 〈TEb|TEa〉

〈 ~EbT1nm1
| ~EaT1pq1

〉 =
∆sρbA

b
1nm1A

a∗
1pq1w

2µbµaJn(kbc1nm
ρb)J ′n(k

a
c1pq

ρb)

kac1pq
(kb2c1nm

− ka2

c1pq
)

, (B.73)

〈 ~EbT1nm1
| ~EaT1pq2

〉 = 0, (B.74)

〈 ~EbT1nm2
| ~EaT1pq1

〉 = 0, (B.75)

〈 ~EbT1nm2
| ~EaT1pq2

〉 =
∆cρbA

b
1nm2A

a∗
1pq2w

2µbµaJn(kbc1nm
ρb)J ′n(k

a
c1pq

ρb)

kac1pq
(kb2c1nm

− ka2

c1pq
)

; (B.76)

Integrals of type 〈TEb|TMa〉

〈 ~EbT1nm1
| ~EaT2pq1

〉 = 0, (B.77)

〈 ~EbT1nm1
| ~EaT2pq2

〉 =
n∆cAb1nm1A

a∗
2pq2wµ

bβa
∗

2pqJn(k
b
c1nm

ρb)Jp(kac2pq
ρb)

kb2c1nm
ka2

c2pq

, (B.78)

〈 ~EbT1nm2
| ~EaT2pq1

〉 =
−n∆sAb1nm2A

a∗
2pq1wµ

bβa
∗

2pqJn(k
b
c1nm

ρb)Jp(kac2pq
ρb)

kb2c1nm
ka2

c2pq

, (B.79)

〈 ~EbT1nm2
| ~EaT2pq2

〉 = 0; (B.80)

Integrals of type 〈TMb|TEa〉

〈 ~EbT2nm1
| ~EaT1pq1

〉 = 0, (B.81)

〈 ~EbT2nm1
| ~EaT1pq2

〉 = 0, (B.82)

〈 ~EbT2nm2
| ~EaT1pq1

〉 = 0, (B.83)

〈 ~EbT2nm2
| ~EaT1pq2

〉 = 0; (B.84)

Integrals of type 〈TMb|TMa〉

〈 ~EbT2nm1
| ~EaT2pq1

〉 =
∆sρbA

b
2nm1A

a∗
2pq1β

b
2nmβ

a∗
2pqJ

′
n(k

b
c2nm

ρb)Jn(kac2pq
ρb)

kbc2nm
(ka2

c2pq
− kb2c2nm

)
, (B.85)

〈 ~EbT2nm1
| ~EaT2pq2

〉 = 0, (B.86)

〈 ~EbT2nm2
| ~EaT2pq1

〉 = 0, (B.87)

〈 ~EbT2nm2
| ~EaT2pq2

〉 =
∆cρbA

b
2nm2A

a∗
2pq2β

b
2nmβ

a∗
2pqJ

′
n(k

b
c2nm

ρb)Jn(kac2pq
ρb)

kbc2nm
(ka2

c2pq
− kb2c2nm

)
. (B.88)
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B.2.3 Floquet - Rectangular Waveguide Transition

Define

φapq = kaxpq
∆x+ kaypq

∆y. (B.89)

Integrals of type 〈TEb|TEa〉

〈 ~EbT1mn
| ~EaT1pq

〉 =
ejφ

a
pqAb1mnA

a∗
1pqw

2µbµa

ka2

rpq

∆cx∆cy, (B.90)

∆cx =



jka
xpq

[1−ejka
xpq

lbcos(mπ)]

m2π2

l2
b

−ka2
xpq

, kaxpq
6= mπ

lb
;

lb
2 , kaxpq

= mπ
lb

;

lb, kaxpq
= mπ

lb
= 0.

(B.91)

∆cy =



jka
ypq [1−ejka

ypq wbcos(nπ)]

n2π2

w2
b

−ka2
ypq

, kaypq
6= nπ

wb
;

wb
2 , kaypq

= nπ
wb

;

wb, kaypq
= nπ

wb
= 0.

(B.92)

Integrals of type 〈TEb|TMa〉

〈 ~EbT1mn
| ~EaT2pq

〉 =
ejφ

a
pqAb1mnA

a∗
2pqwµ

bβa
∗
pq

kb2c1mn
ka2

rpq

∆, (B.93)

∆ =
mπ

lb

[
1− ejk

a
ypqwb cos(nπ)

]
∆sx − nπ

wb

[
1− ejk

a
xpq lb cos(mπ)

]
∆sy,

(B.94)

∆sx =



mπ
lb

[1−ejka
xpq lbcos(mπ)]

m2π2

l2
b

−ka2
xpq

, kaxpq
6= mπ

lb
;

jlb
2 , kaxpq

= mπ
lb

;

0, kaxpq
= mπ

lb
= 0.

(B.95)

∆sy =



nπ
wb

[1−ejka
ypq wbcos(nπ)]

n2π2

w2
b

−ka2
ypq

, kaypq
6= nπ

wb
;

jwb
2 , kaypq

= nπ
wb

;

0, kaypq
= nπ

wb
= 0.

(B.96)
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Integrals of type 〈TMb|TEa〉

〈 ~EbT2mn
| ~EaT1pq

〉 = 0. (B.97)

Integrals of type 〈TMb|TMa〉

〈 ~EbT2mn
| ~EaT2pq

〉 =
ejφ

a
pqAb2mnA

a∗
2pqβ

b
2mnβ

a∗
pq

kb2c2mn

∆sx∆sy. (B.98)

B.2.4 Floquet - Parallel-Plate Waveguide Transition

Define

φapq = kaypq
∆y. (B.99)

Integrals of type 〈TEb|TEa〉

〈 ~EbT10n
| ~EaT1pq

〉 =
ejφ

a
pqAb10nA

a∗
1pqw

2µbµa

ka2

rpq

∆cy. (B.100)

Integrals of type 〈TEb|TMa〉

〈 ~EbT10n
| ~EaT2pq

〉 = 0. (B.101)

Integrals of type 〈TMb|TEa〉

〈 ~EbT20n
| ~EaT1pq

〉 = 0. (B.102)

Integrals of type 〈TMb|TMa〉

〈 ~EbT20n
| ~EaT2pq

〉 =
ejφ

a
pqAb20nA

a∗
2pqβ

b
20nβ

a∗
pq

kb2c20n

∆sy. (B.103)

The above equations are degenerate forms of the Floquet - Rectangular Waveguide

Transition integrals. Equations for the Floquet - Parallel-Plate Waveguide Transition

in the vertical configuration should be obvious by comparison.
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B.3 Perturbation Integrals

Perturbation integrals are necessary when exact solutions of the modes inside a thick

aperture is not available. Small changes in material properties, geometrical variations,

and conductor losses are taking into account analytically to help designers quickly per-

form trend analysis. Although a comprehensive treatment of perturbational and varia-

tion techniques is given in [52], detailed derivations of the perturbation expressions for

propagating and evanescent modes in lossy waveguides are not given. These derivations

are given in this section for various waveguide geometries.

B.3.1 Wall Perturbations

Suppose that a waveguide is filled with lossy material, and consider a perturbation of its

perfectly conducting walls. Let the unperturbed fields (subscript 0) and the perturbed

fields (no subscript) be

~E0 = Ê+
0 e

−γ0z, ~E = Ê−e+γz, (B.104)

~H0 = Ĥ+
0 e

−γ0z, ~H = Ĥ−e+γz. (B.105)

These field equations must satisfy Maxwell’s equations

∇× ~E0 = −jωµ ~H0, ∇× ~E = −jωµ ~H, (B.106)

∇× ~H0 = jωε ~E0, ∇× ~H = jωε ~E; (B.107)

or

∇T × Ê+
0 − γ0ẑ × Ê+

0 = −jωµĤ+
0 , ∇T × Ê− + γẑ × Ê− = −jωµĤ−, (B.108)

∇T × Ĥ+
0 − γ0ẑ × Ĥ+

0 = jωεÊ+
0 , ∇T × Ĥ− + γẑ × Ĥ− = jωεÊ−. (B.109)

Scalar multiply the last equation by Ê0 and the first equation by Ĥ and apply the

identity

~A · ~B × ~C = ~A× ~B · ~C = ~C × ~A · ~B = − ~A× ~C · ~B, (B.110)
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the results are

Ê+
0 · ∇T × Ĥ− − γÊ+

0 × Ĥ− · ẑ = jωε ~E− · Ê+
0 , (B.111)

Ĥ− · ∇T × Ê+
0 − γ0Ê

+
0 × Ĥ− · ẑ = −jωµĤ+

0 · Ĥ−. (B.112)

Subtract the above two equation and apply the identity

∇T · ( ~A× ~B) = ~B · ∇T × ~A− ~A · ∇T × ~B, (B.113)

the result is

∇T ·
(
Ê+

0 × Ĥ−
)

+ (γ − γ0)
(
Ê+

0 × Ĥ− · ẑ
)

=

− jω
(
µĤ+

0 · Ĥ− + εÊ− · Ê+
0

)
. (B.114)

A similar procedure is carried out using the same set of vector identities for the second

and third equation and the result is

∇T ·
(
Ê− × Ĥ+

0

)
+ (γ − γ0)

(
Ê− × Ĥ+

0 · ẑ
)
= −jω

(
µĤ− · Ĥ+

0 + εÊ+
0 · Ê

−
)
. (B.115)

Subtract the last two equations

∇T ·
(
Ê+

0 × Ĥ−
)
−∇T ·

(
Ê− × Ĥ+

0

)
= − (γ − γ0)

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑ. (B.116)

Geometry Variations

For geometric perturbation of the waveguide PEC walls, the general equation is inte-

grated over the perturbed waveguide cross section S−,∮
C−

Ê+
0 × Ĥ− · ~dl = − (γ − γ0)

∫
S−

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑ ds, (B.117)

where the divergence theorem is applied to the left-hand terms, one of which vanishes

because ~dl × Ê− = 0 on C−. The unknown

γ =
−
∮
C− Ê

+
0 × Ĥ− · ~dl∫

S−

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑds

+ γ0. (B.118)
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Suppose that the unperturbed cross section boundary C+ > C− then because ~dl×Ê+
0 =

0 on C+,∮
C+

Ê+
0 × Ĥ− · ~dl =

∮
C−

Ê+
0 × Ĥ− · ~dl +

∮
∆C

Ê+
0 × Ĥ− · ~dl = 0, (B.119)

and

γ =

∮
∆C Ê

+
0 × Ĥ− · ~dl∫

S−

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑds

+ γ0. (B.120)

Finite Conductivity

If there is no geometric change of the waveguide cross section, S = S+ = S−, C =

C+ = C− then the general equation integrated over the cross section S is∮
C
Ê− × Ĥ+

0 · n̂ dl = (γ − γ0)
∫
S

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑ ds, (B.121)

where the divergence theorem is applied to the left-hand terms, one of which vanishes

because n̂× Ê+
0 = 0 on C. Consider now the perturbation of the walls of a waveguide

from a perfect conductor to an impedance sheet Zs such that

n̂× ~E = Zs ~Htan −→ n̂× Ê− = ZsĤ
−
tan, (B.122)

where n̂ points into the metal and Ĥ−
tan the magnetic field tangential to the boundary

C, then upon substitution

γ =

∮
C ZsĤ

−
tan · Ĥ

+
0 dl∫

S

(
Ê+

0 × Ĥ− − Ê− × Ĥ+
0

)
· ẑ ds

+ γ0. (B.123)

Let the unperturbed guide be homogenously filled with isotropic lossy material and its

walls PEC, so that γ0 = α0 + jβ0. For the perturbed guide, let γ = α+ jβ and

Zs = R+ jX =
√

µc
εc − jσc/ω

(B.124)

be the equivalent surface impedance given by the complex wave impedance for a plane

wave in a non-PEC medium. The parameters µc, εc, σc are the permeability, per-

mittivity, conductivity of the metal, respectively. If the perturbation approximation,
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Ê− ≈ Ê−0 and Ĥ− ≈ Ĥ−
0 are valid then γ can be obtained. To find Ê−0 and Ĥ−

0 , recall

that if

Ê+
0 = ~E+

T + ẑE+
z , Ĥ+

0 = ~H+
T + ẑH+

z , (B.125)

then Maxwell’s equations are consistent for

Ê−0 = ~E+
T − ẑE+

z , Ĥ−
0 = − ~H+

T + ẑH+
z . (B.126)

Using the above definitions,

γ =

∮
C ZsĤ

−
tan · Ĥ

+
0 dl

−2
∫
S
~E+
T × ~H+

T · ẑ ds
+ γ0 =

∮
C ZsĤ

−
tan · Ĥ

+
0 dl

−2Y +
∫
S
~E+
T · ~E

+
T ds

+ γ0, (B.127)

where Y + is the forward wave admittance.

B.3.2 Cylindrical Waveguide

In the case of a cylindrical waveguide with radius ρ = a,

Ê− ≈ Ê−0 = ~E+
T − ẑE+

z = E+
ρ ρ̂+ E+

φ φ̂− E+
z ẑ, (B.128)

Ĥ− ≈ Ĥ−
0 = − ~H+

T + ẑH+
z = −H+

ρ ρ̂−H+
φ φ̂+H+

z ẑ, (B.129)

and

Ĥ−
tan = −H+

φ φ̂+H+
z ẑ, n̂ = ρ̂. (B.130)

If Zs is not a function of the contour C, then

γ =
Zs
∮
C

(
H2
z −H2

φ

)
dl

−2Y
∫
S
~ET · ~ET ds

+ γ0, (B.131)

where the + superscripts are suppressed to simplify notation. Without loss of generality,

the following derivations assume z = 0.

TE Modes (Y1nm =
γ01nm

jωµ
)

Hz1nm1 = A1nm1 sin(nφ)Jn(kc1nmρ), (B.132)

Hφ1nm1 =
−γ01nmn

k2
c1nm

ρ
A1nm1 cos(nφ)Jn(kc1nmρ), (B.133)
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∮
C

(
H2
z1nm1

−H2
φ1nm1

)
dl =

∫ 2π

0

(
H2
z1nm1

−H2
φ1nm1

)∣∣
ρ=a

a dφ (B.134)

=


πaA2

1nm1J
2
n(kc1nma)

(
1−

γ2
01nm

n2

k4
c1nm

a2

)
, n 6= 0;

0 (do not exist), n = 0.

Eρ1nm1 =
−jωµn
k2
c1nm

ρ
A1nm1 cos(nφ)Jn(kc1nmρ), (B.135)

Eφ1nm1 =
jωµ

kc1nm

A1nm1 sin(nφ)J ′n(kc1nmρ), (B.136)

∫
S

~ET1nm1 · ~ET1nm1 ds =
∫ 2π

0

∫ a

0

(
E2
ρ1nm1

+ E2
φ1nm1

)
ρ dρ dφ (B.137)

=


−π ω2µ2

k2
c1nm

A2
1nm1

a2

2

(
1− n2

k2
c1nm

a2

)
J2
n(kc1nma), n 6= 0;

0 (do not exist), n = 0.

γ1nm1 =
Zs
∫ 2π
0

(
H2
z1nm1

−H2
φ1nm1

)∣∣∣
ρ=a

a dφ

−2Y1nm

∫ 2π
0

∫ a
0

(
E2
ρ1nm1

+ E2
φ1nm1

)
ρ dρ dφ

+ γ01nm (B.138)

=



 
1−

γ2
01nm

n2

k4
c1nm

a2

!
Zs

Y1nma
ω2µ2

k2
c1nm

�
1− n2

k2
c1nm

a2

� + γ01nm , n 6= 0;

do not exist, n = 0.

Hz1nm2 = A1nm2 cos(nφ)Jn(kc1nmρ), (B.139)

Hφ1nm2 =
γ01nmn

k2
c1nm

ρ
A1nm2 sin(nφ)Jn(kc1nmρ), (B.140)

∮
C

(
H2
z1nm2

−H2
φ1nm2

)
dl =

∫ 2π

0

(
H2
z1nm2

−H2
φ1nm2

)∣∣
ρ=a

a dφ (B.141)

=


πaA2

1nm2J
2
n(kc1nma)

(
1−

γ2
01nm

n2

k4
c1nm

a2

)
, n 6= 0;

2πaA2
10m2J

2
0 (kc10ma), n = 0.

Eρ1nm2 =
jωµn

k2
c1nm

ρ
A1nm2 sin(nφ)Jn(kc1nmρ), (B.142)

Eφ1nm2 =
jωµ

kc1nm

A1nm2 cos(nφ)J ′n(kc1nmρ), (B.143)
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∫
S

~ET1nm2 · ~ET1nm2 ds =
∫ 2π

0

∫ a

0

(
E2
ρ1nm2

+ E2
φ1nm2

)
ρ dρ dφ (B.144)

=


−π ω2µ2

k2
c1nm

A2
1nm2

a2

2

(
1− n2

k2
c1nm

a2

)
J2
n(kc1nma), n 6= 0;

−2π ω2µ2

k2
c10m

A2
10m2

a2

2 J
2
0 (kc10ma), n = 0.

γ1nm2 =
Zs
∫ 2π
0

(
H2
z1nm2

−H2
φ1nm2

)∣∣∣
ρ=a

a dφ

−2Y1nm

∫ 2π
0

∫ a
0

(
E2
ρ1nm2

+ E2
φ1nm2

)
ρ dρ dφ

+ γ01nm (B.145)

=

(
1−

γ2
01nm

n2

k4
c1nm

a2

)
Zs

Y1nma
ω2µ2

k2
c1nm

(
1− n2

k2
c1nm

a2

) + γ01nm , n ≥ 0.

TM Modes (Y2nm = jωε
γ02nm

)

Hz2nm1 = 0, (B.146)

Hφ2nm1 =
−jωε
kc2nm

A2nm1 sin(nφ)J ′n(kc2nmρ), (B.147)

∮
C

(
H2
z2nm1

−H2
φ2nm1

)
dl =

∫ 2π

0

(
H2
z2nm1

−H2
φ2nm1

)∣∣
ρ=a

a dφ (B.148)

=


πa ω2ε2

k2
c2nm

A2
2nm1J

′
n
2(kc2nma), n 6= 0;

0 (do not exist), n = 0.

Eρ2nm1 =
−γ02nm

kc2nm

A2nm1 sin(nφ)J ′n(kc2nmρ), (B.149)

Eφ2nm1 =
−γ02nmn

k2
c2nm

ρ
A2nm1 cos(nφ)Jn(kc2nmρ), (B.150)

∫
S

~ET2nm1 · ~ET2nm1 ds =
∫ 2π

0

∫ a

0

(
E2
ρ2nm1

+ E2
φ2nm1

)
ρ dρ dφ (B.151)

=


π
γ2
02nm
k2

c2nm

A2
2nm1

a2

2 J
′
n
2(kc2nma), n 6= 0;

0 (do not exist), n = 0.
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γ2nm1 =
Zs
∫ 2π
0

(
H2
z2nm1

−H2
φ2nm1

)∣∣∣
ρ=a

a dφ

−2Y2nm

∫ 2π
0

∫ a
0

(
E2
ρ2nm1

+ E2
φ2nm1

)
ρ dρ dφ

+ γ02nm (B.152)

=


Y2nmZs

a + γ02nm , n 6= 0;

do not exist, n = 0.

Hz2nm2 = 0, (B.153)

Hφ2nm2 =
−jωε
kc2nm

A2nm2 cos(nφ)J ′n(kc2nmρ), (B.154)

∮
C

(
H2
z2nm2

−H2
φ2nm2

)
dl =

∫ 2π

0

(
H2
z2nm2

−H2
φ2nm2

)∣∣
ρ=a

a dφ (B.155)

=


πa ω2ε2

k2
c2nm

A2
2nm2J

′
n
2(kc2nma), n 6= 0;

2πa ω2ε2

k2
c20m

A2
20m2J

′
0
2(kc20ma), n = 0.

Eρ2nm2 =
−γ02nm

kc2nm

A2nm2 cos(nφ)J ′n(kc2nmρ), (B.156)

Eφ2nm2 =
γ02nmn

k2
c2nm

ρ
A2nm2 sin(nφ)Jn(kc2nmρ), (B.157)

∫
S

~ET2nm2 · ~ET2nm2 ds =
∫ 2π

0

∫ a

0

(
E2
ρ2nm2

+ E2
φ2nm2

)
ρ dρ dφ (B.158)

=


π
γ2
02nm
k2

c2nm

A2
2nm1

a2

2 J
′
n
2(kc2nma), n 6= 0;

2π
γ2
020m
k2

c20m

A2
20m1

a2

2 J
′
0
2(kc20ma) n = 0.

γ2nm2 =
Zs
∫ 2π
0

(
H2
z2nm2

−H2
φ2nm2

)∣∣∣
ρ=a

a dφ

−2Y2nm

∫ 2π
0

∫ a
0

(
E2
ρ2nm2

+ E2
φ2nm2

)
ρ dρ dφ

+ γ02nm (B.159)

=
Y2nmZs

a
+ γ02nm , n ≥ 0.
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B.3.3 Rectangular Waveguide

In the case of a rectangular waveguide with length a, width b,

Ê− ≈ Ê−0 = ~E+
T − ẑE+

z = E+
x x̂+ E+

y ŷ − E+
z ẑ, (B.160)

Ĥ− ≈ Ĥ−
0 = − ~H+

T + ẑH+
z = −H+

x x̂−H+
y ŷ +H+

z ẑ, (B.161)

and

Ĥ−
tan =


−H+

x x̂+H+
z ẑ, n̂ = ±ŷ;

−H+
y ŷ +H+

z ẑ, n̂ = ±x̂.
(B.162)

If Zs is not a function of the contour C, then

γ =
Zs
∮
C Ĥ

−
tan · Ĥ

+
0 dl

−2Y +
∫
S
~E+
T · ~E

+
T ds

+ γ0, (B.163)

where ∮
C
Ĥ−
tan · Ĥ

+
0 dl =

∫ a

0
H2
z −H2

x

∣∣
y=0

dx+
∫ b

0
H2
z −H2

y

∣∣
x=a

dy∫ 0

a
H2
z −H2

x

∣∣
y=b

(−dx) +
∫ 0

b
H2
z −H2

y

∣∣
x=0

(−dy),

and the + superscripts are suppressed to simplify notation. Without loss of generality,

the following derivations assume z = 0.

TE Modes (Y1mn =
γ01mn

jωµ
)

Hz1mn = A1mn cos
(mπx

a

)
cos
(nπy

b

)
, (B.164)

Hx1mn =
γ01mn

k2
c1mn

mπ

a
A1mn sin

(mπx
a

)
cos
(nπy

b

)
, (B.165)

Hy1mn =
γ01mn

k2
c1mn

nπ

b
A1mn cos

(mπx
a

)
sin
(nπy

b

)
, (B.166)
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∮
C
Ĥ−
tan1mn

· Ĥ+
1mn dl (B.167)

=



A2
1mn

[
a

(
1−

γ2
01mn

m2π2

k4
c1mn

a2

)
+ b

(
1−

γ2
01mn

n2π2

k4
c1mn

b2

)]
, m 6= 0, n 6= 0;

A2
10n

[
2a+ b

(
1−

γ2
010n

n2π2

k4
c10n

b2

)]
, m = 0, n 6= 0;

A2
1m0

[
a

(
1−

γ2
01m0

m2π2

k4
c1m0

a2

)
+ 2b

]
, m 6= 0, n = 0;

A2
100 [2a+ 2b] (do not exist), m = 0, n = 0.

Ex1mn =
jωµ

k2
c1mn

nπ

b
A1mn cos

(mπx
a

)
sin
(nπy

b

)
, (B.168)

Ey1mn =
−jωµ
k2
c1mn

mπ

a
A1mn sin

(mπx
a

)
cos
(nπy

b

)
, (B.169)

∫
S

~ET1mn · ~ET1mn ds =
∫ a

0

∫ b

0

(
E2
x1mn

+ E2
y1mn

)
dx dy (B.170)

=



− ω2µ2

k4
c1mn

A2
1mn

ab
4

[(
mπ
a

)2 +
(
nπ
b

)2]
, m 6= 0, n 6= 0;

− ω2µ2

k4
c10n

A2
10n

ab
2

(
nπ
b

)2
, m = 0, n 6= 0;

− ω2µ2

k4
c1m0

A2
1m0

ab
2

(
mπ
a

)2
, m 6= 0, n = 0;

0 (do not exist), m = 0, n = 0.

γ1mn =
Zs
∮
C Ĥ

−
tan1mn

· Ĥ+
1mn dl

−2Y1mn

∫ a
0

∫ b
0

(
E2
x1mn

+ E2
y1mn

)
dx dy

+ γ01mn (B.171)

=



"
a

 
1−

γ2
01mn

m2π2

k4
c1mn

a2

!
+b

 
1−

γ2
01mn

n2π2

k4
c1mn

b2

!#
Zs

Y1mn
ω2µ2

k4
c1mn

A2
1mn

ab
2

h
(mπ

a )2
+(nπ

b )2
i + γ01mn , m 6= 0, n 6= 0;

"
2a+b

 
1−

γ2
010n

n2π2

k4
c10n

b2

!#
Zs

Y10n
ω2µ2

k4
c10n

A2
10nab(nπ

b )2 + γ010n , m = 0, n 6= 0;
"
a

 
1−

γ2
01m0

m2π2

k4
c1m0

a2

!
+2b

#
Zs

Y1m0
ω2µ2

k4
c1m0

A2
1m0ab(mπ

a )2 + γ01m0 , m 6= 0, n = 0;

do not exist, m = 0, n = 0.
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TM Modes (Y2mn = jωε
γ02mn

)

Hz2mn = 0, (B.172)

Hx2mn =
jωε

k2
c2mn

nπ

b
A2mn sin

(mπx
a

)
cos
(nπy

b

)
, (B.173)

Hy2mn =
−jωε
k2
c2mn

mπ

a
A1mn cos

(mπx
a

)
sin
(nπy

b

)
, (B.174)

∮
C
Ĥ−
tan2mn

· Ĥ+
2mn dl (B.175)

=


A2

2mn
ω2ε2

k4
c2mn

[
a
(
nπ
b

)2 + b
(
mπ
a

)2]
, m 6= 0, n 6= 0;

0 (do not exist), m orn = 0.

Ex2mn =
−γ02mn

k2
c2mn

mπ

a
A2mn cos

(mπx
a

)
sin
(nπy

b

)
, (B.176)

Ey2mn =
−γ02mn

k2
c2mn

nπ

b
A2mn sin

(mπx
a

)
cos
(nπy

b

)
, (B.177)

∫
S

~ET2mn · ~ET2mn ds =
∫ a

0

∫ b

0

(
E2
x2mn

+ E2
y2mn

)
dx dy (B.178)

=


γ2
02mn
k4

c2mn

A2
2mn

ab
4

[(
mπ
a

)2 +
(
nπ
b

)2]
, m 6= 0, n 6= 0;

0 (do not exist), m orn = 0.

γ2mn =
Zs
∮
C Ĥ

−
tan2mn

· Ĥ+
2mn dl

−2Y2mn

∫ a
0

∫ b
0

(
E2
x2mn

+ E2
y2mn

)
dx dy

+ γ02mn (B.179)

=


Y2mn

h
a(nπ

b )2
+b(mπ

a )2
i
Zs

ab
2

h
(mπ

a )2
+(nπ

b )2
i + γ02mn , m 6= 0, n 6= 0;

do not exist, m orn = 0.

B.3.4 Parallel-Plate Waveguide

In the case of a parallel-plate waveguide with separation d,

Ê− ≈ Ê−0 = ~E+
T − ẑE+

z = E+
x x̂+ E+

y ŷ − E+
z ẑ, (B.180)

Ĥ− ≈ Ĥ−
0 = − ~H+

T + ẑH+
z = −H+

x x̂−H+
y ŷ +H+

z ẑ, (B.181)
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and

Ĥ−
tan =


−H+

x x̂+H+
z ẑ, n̂ = ±ŷ (horizontal);

−H+
y ŷ +H+

z ẑ, n̂ = ±x̂ (vertical).
(B.182)

If Zs is not a function of the contour C, then

γ =
Zs
∮
C Ĥ

−
tan · Ĥ

+
0 dl

−2Y +
∫
S
~E+
T · ~E

+
T ds

+ γ0, (B.183)

where ∮
C
Ĥ−
tan · Ĥ

+
0 dl = (B.184)

∫ l
0 H

2
z −H2

x

∣∣
y=0

dx+
∫ 0
l H

2
z −H2

x

∣∣
y=d

(−dx), n̂ = ±ŷ,∫ l
0 H

2
z −H2

y

∣∣
x=0

dy +
∫ 0
l H

2
z −H2

y

∣∣
x=0

(−dy), n̂ = ±x̂,

where l is an arbitrary length of the plate and + superscripts are suppressed to simplify

notation. Without loss of generality, the following derivations assume z = 0.

TE Modes

For the horizontal case (Y1n = γ01n
jωµ ):

Hz1n = A1n cos
(nπy

d

)
, (B.185)

Hx1n = 0, (B.186)

Ex1n =
jωµ

kc1n

A1n sin
(nπy

d

)
, (B.187)

Ey1n = 0. (B.188)∮
C
Ĥ−
tan1n

· Ĥ+
01n

dl = 2lA2
1n. (B.189)

∫
S

~E+
T1n

· ~E+
T1n ds

=
∫ l

0

∫ d

0
E2
x1n

dx dy =


−ω2µ2

k2
c1n

A2
1n

ld
2 , n 6= 0;

0 (do not exist), n = 0.
(B.190)

γ1n =
Zs
∮
C Ĥ

−
tan1n

· Ĥ+
01n

dl

−2Y1n

∫ l
0

∫ d
0 E

2
x1n

dx dy
+ γ01n =


Zs

Y1n
ω2µ2

k2
c1n

d
2

+ γ01n , n 6= 0;

do not exist, n = 0.

(B.191)
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For the vertical case (Y1m = γ01m
jωµ ):

Hz1m = A1m cos
(mπx

d

)
, (B.192)

Hy1m = 0, (B.193)

Ex1m = 0, (B.194)

Ey1m =
−jωµ
kc1m

A1m sin
(mπx

d

)
. (B.195)

∮
C
Ĥ−
tan1m

· Ĥ+
01m

dl = 2lA2
1m. (B.196)

∫
S

~E+
T1m

· ~E+
T1m ds =

∫ l

0

∫ d

0
E2
y1m

dy dx =


−ω2µ2

k2
c1m

A2
1m

ld
2 , m 6= 0;

0 do not exist, m = 0.
(B.197)

γ1m =
Zs
∮
C Ĥ

−
tan1m

· Ĥ+
01m

dl

−2Y1m

∫ l
0

∫ d
0 E

2
y1m

dy dx
+ γ01m =


Zs

Y1m
ω2µ2

k2
c1m

d
2

+ γ01m , m 6= 0;

do not exist, m = 0.

(B.198)

TM Modes

For the horizontal case (Y2n = jωε
γ02n

):

Hz2n = 0, (B.199)

Hx2n =
jωε

kc2n

A2n cos
(nπy

d

)
, (B.200)

Ex2n = 0, (B.201)

Ey2n =
−γ02n

kc2n

A2n cos
(nπy

d

)
. (B.202)

∮
C
Ĥ−
tan2n

· Ĥ+
02n

dl = 2l
ω2ε2

k2
c2n

A2
2n. (B.203)

∫
S

~E+
T2n

· ~E+
T2n ds

=
∫ l

0

∫ d

0
E2
y2n

dy dx =


γ2
02n
k2

c2n

A2
2n

ld
2 , n 6= 0;

γ2
020
k2

c20

A2
20ld, n = 0.

(B.204)

γ2n =
Zs
∮
C Ĥ

−
tan2n

· Ĥ+
02n

dl

−2Y2n

∫ l
0

∫ d
0 E

2
y2n

dy dx
+ γ02n =


2Y2nZs

d + γ02n , n 6= 0;

Y20Zs
d + γ020 , n = 0.

(B.205)
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For the vertical case (Y2n = jωε
γ02m

):

Hz2m = 0, (B.206)

Hy2m =
−jωε
kc2m

A2m cos
(mπx

d

)
, (B.207)

Ex2m =
−γ02m

kc2m

A2m cos
(mπx

d

)
, (B.208)

Ey2m = 0. (B.209)∮
C
Ĥ−
tan2m

· Ĥ+
02m

dl = 2l
ω2ε2

k2
c2m

A2
2m. (B.210)

∫
S

~E+
T2m

· ~E+
T2m ds =

∫ l

0

∫ d

0
E2
x2m

dx dy =


γ2
02m
k2

c2m

A2
2m

ld
2 , m 6= 0;

γ2
020
k2

c20

A2
20ld, m = 0.

(B.211)

γ2m =
Zs
∮
C Ĥ

−
tan2m

· Ĥ+
02m

dl

−2Y2m

∫ l
0

∫ d
0 E

2
x2m

dx dy
+ γ02m =


2Y2mZs

d + γ02m , m 6= 0;

Y20Zs
d + γ020 , m = 0.

(B.212)

B.4 Transition Integrals

At an air-metal or waveguide-waveguide transition, finite conductance of the metal at

the interface contributes to loss. This is taking into account in the mode-matching

procedure using the impedance boundary condition over the support of Ωa − Ωb by

evaluating the surface admittance matrix Ys, where

Y s
mn = ∓ZsY a

mY
a∗
n

(
δmn −

∫
Ωb

~EaTm
· ~Ea∗Tn

dS

)
. (B.213)

To illustrate this process, we evaluate∫
Ωb

~EaTm
· ~Ea∗Tn

dS (B.214)

for an air/metal transition where Ωa is a Floquet unit cell and the metal of finite

conductivity σ is perforated by a circular aperture of radius ρb.
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Floquet Modes in Cylindrical Coordinates

The longitudinal Floquet modes in cylindrical coordinates are given by:

ψaνmn = Ãaνmne
−jkrmnρ cos(φ−θmn), (B.215)

where θmn = tan−1(kymn/kxmn),

Ãa1mn =
krmn

ωµ

1√
S
ejζ1mn , (B.216)

Ãa2mn =
krmn

|βmn|
1√
S
ejζ2mn , (B.217)

are the orthonormalized field amplitudes, ν = 1 ≡ TE, ν = 2 ≡ TM and S is the

surface area of Ωa. To evaluate for the transverse fields, it is necessary to first find the

transverse gradient of the longitudinal potentials in the cylindrical coordinate system,

∇Tψ
a
νmn =− jkrmn cos(φ− θmn)Ãaνmne

−jkrmnρ cos(φ−θmn)ρ̂ (B.218)

+ jkrmn sin(φ− θmn)Ãaνmne
−jkrmnρ cos(φ−θmn)φ̂;

the transverse electric fields are

~EaT1mn
=
jωµ

k2
rmn

ẑ ×∇Tψ
a
1mn, (B.219)

~EaT2mn
=
−jβmn
k2
rmn

∇Tψ
a
2mn. (B.220)

Define

A = krm′n′ cos(θm′n′)− krmn cos(θmn) = kxm′n′ − kxmn , (B.221)

B = krm′n′ sin(θm′n′)− krmn sin(θmn) = kym′n′ − kymn . (B.222)

TE-TE

∫
Ωb

~EaT1mn
· ~Ea∗T1m′n′

dS =
ωµ

k2
rmn

ωµ

k2
rm′n′

∫
Ωb

ẑ ×∇Tψ
a
1mn · ẑ ×∇Tψ

a∗
1m′n′ dS (B.223)

=
ωµ

k2
rmn

ωµ

k2
rm′n′

∫ ρb

0

∫ 2π

0
∇Tψ

a
1mn · ∇Tψ

a∗
1m′n′ ρ dρ dφ

=


cos(θmn−θm′n′ )2πρbJ1(ρb

√
A2+B2)

S
√
A2+B2

, A 6= 0, B 6= 0;

πρ2b
S , A = 0, B = 0.
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TE-TM

∫
Ωb

~EaT1mn
· ~Ea∗T2m′n′

dS = − ωµ

k2
rmn

β∗m′n′

k2
rm′n′

∫
Ωb

ẑ ×∇Tψ
a
1mn · ∇Tψ

a∗
2m′n′ dS (B.224)

=


sin(θmn−θm′n′ )2πρbJ1(ρb

√
A2+B2)

S
√
A2+B2

, A 6= 0, B 6= 0;

0, A = 0, B = 0.

TM-TE

∫
Ωb

~EaT2mn
· ~Ea∗T1m′n′

dS = − βmn
k2
rmn

ωµ

k2
rm′n′

∫
Ωb

∇Tψ
a
2mn · ẑ ×∇Tψ

a∗
1m′n′ dS (B.225)

=


sin(θmn−θm′n′ )2πρbJ1(ρb

√
A2+B2)

S
√
A2+B2

, A 6= 0, B 6= 0;

0, A = 0, B = 0.

TM-TM

∫
Ωb

~EaT2mn
· ~Ea∗T2m′n′

dS =
βmn
k2
rmn

β∗m′n′

k2
rm′n′

∫
Ωb

∇Tψ
a
2mn · ∇Tψ

a∗
2m′n′ dS (B.226)

=


cos(θmn−θm′n′ )2πρbJ1(ρb

√
A2+B2)

S
√
A2+B2

, A 6= 0, B 6= 0;

πρ2b
S , A = 0, B = 0.
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Appendix C

Identities

C.1 Vector Identities

∇T f · ∇T g = ∇T · (f∇T g)− g∇2
T f (C.1)

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C (C.2)

~A× ~B · ~C = ~A · ~B × ~C = ~C × ~A · ~B (C.3)

~A · ∇Tψ = ∇T · (ψ ~A)− ψ∇T · ~A (C.4)

∇T f ×∇T g = ∇T × (f∇T g) (C.5)

C.2 Integral Identities

∫
Ω
∇T · ~Ads =

∮
dΩ

~A · n̂ dl (C.6)∫
Ω
(∇T × ~A) · n̂ dS =

∮
dΩ

~A · ~dl, (C.7)
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Appendix D

Sample Code

A sample software implementation of the scattering analysis for thick FSS’s having

cylindrical perforations of arbitrary longitudinal profile and on-axis symmetry using the

MATLAB programming language is outlined by the code below.

% Author: Hung Loui (Copyright)
% Date: July 21, 2006
% This code outlines multi-layer mode-matching analysis for thick FSS’s
% having cylindrical perforations of arbitrary longitudinal profile and
% on-axis symmetry.

clear all; close all; clc;

% Fundamental Constants
ep0=8.854e-12; mu0=4*pi*1e-7;

% Flags
SAVE_FLAG=0; SHOW_GEOM=1;

% Scaling factor
scal=1;

% Straight Hole
r0=6.528e-3/2*0.9; r0=r0/scal;
r=r0;

% % Linear Taper 1
% dr=(0.308-0.257)/10;
% r=in2m([0.308:-dr:0.257,0.257+dr:dr:0.308]/2);

% % Linear Taper 2
% r0=6.528e-3/2; r0=r0/scal;
% r=r0*linspace(1,0.7,16);
% r=[r(1:end-1),fliplr(r)];

% % Modulated Cos Taper
% r0=6.528e-3/2; r=r0*(0.7+0.3*abs(cos(0:pi/30:pi/2)));
% r=[r(1:end-1),fliplr(r)];

t=ones(1,length(r))*9.24e-3/length(r); t=t/scal;
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ep=ep0*ones(1,length(r))*2.33; mu=mu0*ones(1,length(r));
wN=ones(1,length(r))*2; wM=ones(1,length(r))*2;

[ord,ori]=jreduce(r,ep,mu,wN,wM);

% Enter lattice parameters
db=8.24e-3;dd=db; db=db/scal; dd=dd/scal; alpha=60*pi/180; fM=3;fN=3;

% Show geometry
if SHOW_GEOM == 1,

geom_plot(r*1e3,t*1e3);
xlabel(’(mm)’);ylabel(’(mm)’),zlabel(’(mm)’);
title([’Unit-Cell Geometry - Thickness = ’,num2str(sum(t)*1000,3),’(mm)’]);

end

% Create waveguide structure
for n=1:length(r),

wg{n}=waveguide(r(n),t(n),ep(n),mu(n),wN(n),wM(n));
end

F00_TE=fM*(2*fN+1)+(fN+1); F00_TM=(2*fM+1)*(2*fN+1)+F00_TE;

freq=16.5e9:0.1e9:30e9; freq=freq*scal;
% theta=[0.001,15,30,45,60,75]*pi/180;
theta=45*pi/180;
phi=90*pi/180;

tic;
h = waitbar(0,’Sweep Theta and Frequency’);
for theta_n=1:length(theta),

for freq_n=1:length(freq),
a=floquet(db,dd,alpha,0,ep0,mu0,fM,fN,theta(theta_n),phi,freq(freq_n));
disp(’Junction #1’);
[wg{1},Sj{1}]=fq2wg(a,wg{1},freq(freq_n));
Sp{1}=wgprop(wg{1});
S=cascade(Sj{1},Sp{1});

for wg_n=1:(length(wg)-1),
disp([’Junction #’,num2str(wg_n+1)]);
if ord(wg_n)==wg_n, % if the current junction has not been done
if wg{wg_n}.r > wg{wg_n+1}.r,
[wg{wg_n},wg{wg_n+1},Sj{wg_n+1}]=...
wg2wg(wg{wg_n},wg{wg_n+1},freq(freq_n));

Sp{wg_n+1}=wgprop(wg{wg_n+1});
else
[wg{wg_n+1},wg{wg_n},Sj{wg_n+1}]=...
wg2wg(wg{wg_n+1},wg{wg_n},freq(freq_n));

Sp{wg_n+1}=wgprop(wg{wg_n+1});
Sj{wg_n+1}=rot90(Sj{wg_n+1},2);

end
S=cascade(S,Sj{wg_n+1},Sp{wg_n+1});

else % if the current junction has been analyzed
wg{wg_n+1}=wgupdt(wg{wg_n+1},freq(freq_n));
Sp{wg_n+1}=wgprop(wg{wg_n+1});
S=cascade(S,rot90(Sj{ord(wg_n)+1},ori(wg_n)),Sp{wg_n+1});

end
end

disp([’Junction #’,num2str(length(wg)+1)]);
S=cascade(S,rot90(Sj{1},2));
FSS_S11_TE(freq_n)=S{1,1}(F00_TE,F00_TE);
FSS_S12_TE(freq_n)=S{1,2}(F00_TE,F00_TE);
FSS_S21_TE(freq_n)=S{2,1}(F00_TE,F00_TE);
FSS_S22_TE(freq_n)=S{2,2}(F00_TE,F00_TE);
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FSS_S11_TM(freq_n)=S{1,1}(F00_TM,F00_TM);
FSS_S12_TM(freq_n)=S{1,2}(F00_TM,F00_TM);
FSS_S21_TM(freq_n)=S{2,1}(F00_TM,F00_TM);
FSS_S22_TM(freq_n)=S{2,2}(F00_TM,F00_TM);

waitbar(freq_n/length(freq),h,...
[’\Theta = ’,num2str(theta(theta_n)*180/pi,-1),’\circ, ’,...
’Frequency = ’, num2str(freq(freq_n)/1e9,3),’GHz’])

end
% keep S21_TE and S21_TM as a function of theta and frequency
T_TE(theta_n,:)=FSS_S21_TE;
T_TM(theta_n,:)=FSS_S21_TM;

end
close(h);
toc

if SAVE_FLAG==1,
save(’simdata.mat’,’T_TE’,’T_TM’,’theta’,’phi’,’freq’,...

’r’,’t’,’ep’,’mu’,’wN’,’wM’,’db’,’dd’,’alpha’,’fM’,’fN’);
end;

% Plot S-parameters for the last theta
figure; set(gcf,’color’,’w’);
subplot(2,2,1); hold on; grid on;
plot(freq/1e9,20*log10(abs(FSS_S21_TE)),’b’,...

freq/1e9,20*log10(abs(FSS_S12_TE)),’b.’);
plot(freq/1e9,20*log10(abs(FSS_S21_TM)),’r’,...

freq/1e9,20*log10(abs(FSS_S12_TM)),’r.’);
set(gca,’Xlim’,[freq(1),freq(end)]/1e9,’Ylim’,[-30,0],’box’,’on’);
legend(’|S21-TE|’,’|S12-TE|’,’|S21-TM|’,’|S12-TM|’,0);
subplot(2,2,2); hold on; grid on;
plot(freq/1e9,angle(FSS_S21_TE)*180/pi,’b’,...

freq/1e9,angle(FSS_S12_TE)*180/pi,’b.’);
plot(freq/1e9,angle(FSS_S21_TM)*180/pi,’r’,...

freq/1e9,angle(FSS_S12_TM)*180/pi,’r.’);
set(gca,’Xlim’,[freq(1),freq(end)]/1e9,’box’,’on’);
legend(’\angle S21-TE’,’\angle S12-TE’,’\angle S21-TE’,’\angle S12-TE’,0);
subplot(2,2,3); hold on; grid on;
plot(freq/1e9,20*log10(abs(FSS_S11_TE)),’b’,...

freq/1e9,20*log10(abs(FSS_S22_TE)),’b.’);
plot(freq/1e9,20*log10(abs(FSS_S11_TM)),’r’,...

freq/1e9,20*log10(abs(FSS_S22_TM)),’r.’);
set(gca,’Xlim’,[freq(1),freq(end)]/1e9,’Ylim’,[-30,0],’box’,’on’);
legend(’|S11-TE|’,’|S22-TE|’,’|S11-TM|’,’|S22-TM|’,’Location’,’Best’);
subplot(2,2,4); hold on; grid on;
plot(freq/1e9,angle(FSS_S11_TE)*180/pi,’b’,...

freq/1e9,angle(FSS_S22_TE)*180/pi,’b.’);
plot(freq/1e9,angle(FSS_S11_TM)*180/pi,’r’,...

freq/1e9,angle(FSS_S22_TM)*180/pi,’r.’);
set(gca,’Xlim’,[freq(1),freq(end)]/1e9,’box’,’on’);
legend(’\angle S11-TE’,’\angle S22-TE’,’\angle S11-TM’,’\angle S22-TM’,0);

function geom_plot(r,t)
% Author: Hung Loui (Copyright)
% Date: July 21, 2006

figure; axis equal; Vcolor=[132 132 193]; temp_z=-sum(t)/2;
for n=1:length(r),

[x,y,z]=cylinder(r(n),100);
[face,vert]=surf2patch(x,y,t(n)*z+temp_z);
patch(surf2patch(x,y,t(n)*z+temp_z),...

’FaceVertexCData’,Vcolor,’FaceColor’,’flat’);
temp_z=temp_z+t(n);
if n<length(r),
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theta=linspace(0,2*pi,101);
x=[vert(1:2:length(vert),1)’;r(n+1)*cos(theta)];
y=[vert(1:2:length(vert),2)’;r(n+1)*sin(theta)];
patch(surf2patch(x,y,temp_z*ones(size(x))),...

’FaceVertexCData’,Vcolor,...
’FaceColor’,’flat’,’EdgeColor’,’k’);

end
end;

view(0,0); cameratoolbar(’Show’); grid on;
set(gca,’visible’,’on’,’box’,’on’); set(gcf,’color’,’w’);
cameratoolbar(’SetCoordSys’,’none’,’SetMode’,’orbit’);
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