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Smith, Paul Carson (Ph.D., Electrical Engineering)

Broadband analog opto-electronic blind source separation

Thesis directed by Professor Zoya Popović

This thesis addresses the problem of high bandwidth blind source separa-

tion and demonstrates an analog opto-electronic implementation of a proces-

sor capable of solving this problem for two linearly mixed signals. Using only

the assumption of signal independence, real-time separation exceeding 20 dB

is demonstrated. The opto-electronic circuit is capable of processing signals

with 100 kHz bandwidth. The theory presented here show that the dynamics

of the core portion of the system depend on statistical characteristics of the

signals. If at least one of the signals is sub-Gaussian, the dynamical prop-

erties of the system are such that one of the original signals obtains all the

system gain and is extracted from the mixture.

A dynamic feedback loop containing an electro-optic phase modulator

operating in the nonlinear regime provides processing functions analogous

to higher-order statistical correlation of the signals. The correlation portion

of the processor is based on photorefractive two-beam coupling in BaTiO3

at an optical wavelength of 532 nm. The behavior of the feedback loop is

described by an open-loop gain analysis and a steady-state stability analysis.

The system demonstrates “winner-takes-all” competition between the two

input signals.

iii

mailto:paul.smith@Colorado.EDU
mailto:paul.smith@Colorado.EDU
mailto:Zoya.Popovic@Colorado.EDU


The bandwidth of the processor presented here is limited by electronic

amplifiers and can exceed 100 MHz with the higher bandwidth off-the-shelf

components. The high bandwidth makes this processor applicable to com-

munication blind source separation scenarios that are difficult to solve using

traditional digital signal processing. In addition, this processor can be used

directly at the microwave carrier frequency of tens of gigahertz.
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Chapter 1

Introduction

1.1 Overview

The signal processing power of independent component analysis (ICA) is well

established through a variety of demonstrations in audio processing, medical

signal processing, image processing, and many other fields [1]. The ICA

algorithm has been implemented in software or, in some cases, by a powerful

digital signal processor [2], [3]. The signals separated are generally either

stored data or have bandwidths of less than 50 kHz. This thesis describes

an opto-electronic system designed to perform ICA on radio frequency (RF)

bandwidth signals at the carrier frequency.

Our goal is to apply the system demonstrated in this thesis to multiple

signals modulated onto multiple radio-frequency carriers that are incident

on an antenna array from unknown directions. Figure 1.1 shows a sketch of



the envisioned scenario, where N transmitted signals, si (t), i = 1 . . . M , are

incident on M antennas, each of which receives a different linear combination

(mixture) of the N signals, s̃j (t), i = 1 . . . N , due to the fact that the an-

tennas are spatially separated. The classical formulation of the blind signal

separation problem assumes that the number of receiving antennas is equal

to or greater than the number of sources, M ≥ N [4]. In this case, there

are N unknown signals, and M ×N unknown mixture coefficients, resulting

in a total of N (M + 1) time-varying unknowns that need to be determined

from M measured mixtures. Therefore, some assumptions need to be made

in order to obtain the unknown original signals.

Figure 1.1: The generalized communications environment, with N transmit-
ted signals. Each of the transmitted signals is incident upon a receiving array
of M antennas. The signals are linearly mixed during propagation and de-
tection. The observed signal mixtures are the only information available to
the blind-source-separation system. The separation system uses statistics to
recover the original signals from the mixtures.

The primary assumption that is made in every ICA algorithm or system

2



is that the original signals are statistically independent. Although inde-

pendence, in the strictest sense, is defined as the joint probability density

function of two random variables being equal to the product of the proba-

bility density functions of each variable, in this thesis, independence will be

defined as signals that are uncorrelated to every order:

〈
sa
1s

b
2

〉
= 〈sa

1〉
〈
sb
2

〉
(1.1)

where a and b are integers. The assumption of independence is usually

satisfied in a communication environment where each transmitting source

has a different oscillator or clock. The independence assumption also leads

to a second stipulation: only one of the original signals may have a Gaussian

distribution. This criterion comes from the fact that all Gaussian signals

are correlated at higher orders (a + b ≥ 4). There is enough information to

determine both the original signals (up to a scaling constant) if the original

signals are uncorrelated up to fourth order. This means that a + b ≤ 4 for

all a and b.

ICA is used in a diverse range of applications [5]: separation of multiple

audio signals in hearing aids [6], [7], [8], [9]; isolating the fetal heartbeat

from the mother’s heartbeat [10]; functional magnetic resonance imaging

(fMRI) analysis [11]; reduction of noise in image enhancement techniques

[12]; analyzing astronomical data [13], [14]; facial recognition [15], [16], [17];

machine malfunction tracking in an environment with high vibration levels

[18]; and observing stock market trends [19].

3



In all the listed applications, either the signal bandwidth is narrow, lim-

ited to tens of kHz, or real-time processing is not necessary (e.g. in astron-

omy). The attempts to use ICA in communications scenarios all require

more information about the transmitted signals, such as the CDMA code

[20], [21], [22], [23]. There are relatively few systems that attempt real-

time ICA processing [24], [25], [26]. For wireless communications and radar

scenarios that could benefit from real-time ICA, state-of-the-art digital sig-

nal processing does not have sufficient computational power to process the

necessary signal bandwidths, which are typically above a few MHz. This

problem arises from the fact that higher-order statistical component estima-

tion, described in appendix 2, requires large processing power. For example,

in [27], 60 MHz DSP electronics was required for ICA of 2 signals with 22

kHz bandwidth. Therefore, in order to separate signals with bandwidths of

hundreds of MHz, scaling indicates that 4 orders of magnitude improvement

in DSP electronic bandwidth is required. In the communication scenario

outlined in figure 1, the carrier signals may have any common microwave

communication frequency, from hundreds of megahertz to tens of gigahertz.

The signals may be downconverted into the kilohertz range or remain in the

gigahertz regime depending on the application. The type of modulation used

is transparent to the operation of the system, provided that it creates signal

with a sub-Gaussian distribution function, as will be discussed in chapter

2. This difference between signal bandwidths is a primary motivation for an

opto-electronic ICA system.

4



Although the ICA system presented in this thesis relies on the same as-

sumption as the ICA algorithms, it is fundamentally different in operation.

Instead of following an algorithmic procedure, it is based on the nonlinear,

dynamic operation of a partly optical, partly electronic feedback loop. The

primary nonlinearity in the feedback loop is an over-driven electro-optic phase

modulator (EOM), used to generate harmonics of the modulated signal.

The second essential component of the feedback loop is a photorefrac-

tive crystal [28]. This crystal acts like a coherent amplifier for the phase-

modulated laser beam. The amplification process can be used to provide a

correlation between the harmonics generated by the EOM and the signals

themselves. While it is not intuitively obvious, this correlation makes it pos-

sible for signals with different statistical distributions to experience different

amplification within the feedback loop. The dynamics of the system are

hidden within the combination of the electro-optic modulator and the pho-

torefractive crystal. We have theoretically and experimentally demonstrated

that the feedback loop actually prefers to allow the oscillation of only one

independent signal present within a mixture of input signals.

The primary reason for opto-electronic processing is signal bandwidth,

which is limited by the bandwidth of the operating components and the

physical size of the feedback loop. With high-speed components and a small

loop, the bandwidth of the system can be pushed to hundreds of megahertz,

approaching a gigahertz. The second motivating factor is the inherent paral-

lelism of optics, which allows linear scaling with the number of input signals.

5



To separate N signals, N-1 feedback loops are required. In contrast, comput-

erized ICA algorithms become highly inefficient with only a modest number

of inputs such as eight [1].

1.2 Problem Definition

ICA is applicable to a large variety of problems because it makes very few

assumptions about the input signals or mixture. A mathematical description

of the problem is:

s̃ (t) = A (t) s (t) (1.2)

where s (t) = [s1 (t) . . . sN (t)] is a vector of the unknown original signals,

s̃ (t) = [s̃1 (t) . . . s̃M (t)] is a vector of the signal mixtures, and A (t) is the

unknown and in general time-varying linear M ×N mixing matrix. For the

case of a two-signal system, Equation 1.2 becomes:s̃1 (t)

s̃2 (t)

 =

a11 a12

a21 a22


s1 (t)

s2 (t)

 . (1.3)

Only s̃1 (t) and s̃2 (t) are measured as the signals received by two antennas

in the communications scenario highlighted in Figure 1.1. The two original

signals, s1 (t) and s1 (t), and all four mixing coefficients, amn (t), are unknown.

The problem of obtaining the original signals, s1 and s2, reduces to inverting

an unknown matrix. As previously stated, ICA algorithms approach this

matrix inversion by using signal statistics.

6



All ICA algorithms must somehow measure the independence, at least up

to fourth order, of the signal mixtures [29]. Like most problems in science,

this one has many possible strategies, which have been expressed in different

ICA algorithms, for arriving at the solution [30]. Among these algorithms,

independence measures such as signal kurtosis [31], negentropy [32], mini-

mization of mutual information [33], and maximum likelihood [34] have been

tried, as described in appendix A (see [35] for comparison).

To increase the speed of the ICA algorithms, additional assumptions

about the input signals can be made. For example, the input signals can be

assumed to have zero mean. This assumption does not affect the generality

of ICA [1]. In addition, the signals are usually assumed to have symmetrical

probability density functions. This means that there are no odd order cor-

relations in Equation 1.1. However, the ICA framework can be modified to

include asymmetric signals.

These added assumptions imply that there are only two orders of indepen-

dence to investigate: second order, a+b = 2, and fourth order, a+b = 4. The

procedure of ICA is usually to split the problem into two sections, correspond-

ing to a second-order decorrelation and a fourth-order decorrelation [33], [36],

as shown in Figure 1.2. The second-order decorrelation is known as Principal

Component Analysis (PCA) [37]. Although PCA technically is part of find-

ing the independence of the signals, it is usually considered a preprocessing

step to the actual ICA algorithm. After the second-order decorrelation, the

signal mixtures are orthogonal, i.e., s̃1 (t) · s̃2 (t) = 0. Immediately following

7



PCA, the signal mixtures are normalized to have the same power. Applying

PCA and normalization together is known as “whitening” the signals.

Figure 1.2: A high-level description of the ICA procedure. The ICA algo-
rithms usually divide the problem into two parts: a second-order decorrela-
tion of the signals followed by normalization (together called whitening) and
a final fourth-order decorrelation.

1.3 Opto-electronic ICA

Like many ICA algorithms, the opto-electronic ICA processor performs the

signal separation by first whitening the mixtures and then decorrelating them

to higher orders. The PCA processor (shown in Figure 1.3) is an important

initial step in the ICA and was primarily developed by Dr. Edeline Fother-

ingham, as described in detail in [38] and her thesis [39]. This thesis will just

address the conceptual points of her work necessary for the understanding of

the ICA processor design.

8



PCA requires that a second-order correlation is performed on the input

signals. This is a computationally intensive process when implemented in the

digital domain. There are, however, physical domains in which a correlation

between signals is computed both quickly and in parallel with other correla-

tions. This rapid correlation is one of the strengths of dynamic holography.

Dynamic holography, also known as two-beam coupling, is exploited for its

correlation feature in the optoelectronic PCA system. Two-beam coupling

in a photorefractive crystal is a method of amplifying one signal by using

another stronger signal. The amplification only occurs when the two signals

are correlated. Through two-beam coupling, an all-optical feedback loop

gives gain to only one of the principal components present in the component

mixture. The other components that do not receive gain from the two-beam

coupling process are unable to oscillate within the feedback loop. Although

the PCA processor described in [38] is designed to output only one of the

principal components, it is possible to modify it to output all of the principal

components that will later be used as the inputs to an optoelectronic ICA

system.

This PCA system highlights a principle that is fundamentally different

between an opto-electronic system and a computer algorithm. The system

relies on the analog principle of two-beam coupling to provide the necessary

decorrelation rather than on digitizing the signals so that they can be stored

and decorrelated by a digital signal processor.

Since these systems are based on such a different concept as compared to
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Figure 1.3: The optical Principal Component Analysis (PCA) system. This
optical system has been reduced in size to fit into a common briefcase and uses
two electrical input signal mixtures at a 10 GHz carrier frequency. The two
cables located on the right hand side are inputs from the two-element antenna
array. The output, also electrical, is one of the principal components of the
input signals. This system can be expanded to output both of the principal
mixtures as well, making it compatible with the ICA system analyzed in this
thesis.

the step-by-step method of a computer algorithm, they must have a different

infrastructure built around them. The essential components of the infras-

tructure used both in the PCA system (shown in Figure 1.4) and in the ICA

system described in this thesis, are shown in Figure 1.5. The input signals

10



can be generated via nearly any means of signal generation, including arbi-

trary waveform generators, computer outputs, synthesizers, CD players, etc.

The signals are then mixed using an electronic mixing circuit. As described

in Equation 1.2, this combines the signals into two linear mixtures that will

be input into the system. The signals are modulated onto an optical carrier

(laser beam) using either electro-optic modulation or acousto-optic modu-

lation. The usual, unsurpressed carrier, electro-optic modulation presents a

problem, however, because it introduces a false correlation between the input

signals. This false correlation can be removed through carrier suppression,

described in [40], and the carrier suppressed signals can now be processed

using opto-electronic ICA (Figure 1.5). The final step is to convert the sig-

nals back into electrical signals which can then be demodulated as required

by their communications scheme. This is generally done using simple pho-

todetectors. These generalized steps are shown in Figure 1.4.

The ICA system block diagram in Figure 1.5 generates the input signals

and mixes them with a computer. The computer output comprises both

the original signals and the mixtures. The original signals are used only to

evaluate the performance of the ICA system. The mixtures are modulated on

the laser beams in two identical input channels. The brain of the system is an

optoelectronic feedback loop that performs the signal separation and will be

described thoroughly in subsequent chapters. Like its PCA counterpart, it is

designed to output only one of the two signals, although it can be modified

to output both of the signals. Because it is difficult to directly detect phase

11



Figure 1.4: A two-channel optoelectronic blind-source-separation system.
The electrical inputs are converted to optical signals through optical phase
modulation, separated by the ICA system, and outputted as electrical sig-
nals.

Figure 1.5: Generalized block diagram of the optoelectronic ICA system.
The input mixtures and the original signals are created by a computer. The
four principal subsystems are the input channels, the optoelectronic feedback
loop, the homodyne detection, and the output.

modulated signals, they must be first converted to amplitude modulated

signals by interfering them with a homodyne beam.
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1.4 Thesis Outline

This thesis presents the first demonstration of an opto-electronic ICA system

to the best of our knowledge. The thesis is organized as follows: chapter 2

gives a detailed description of the feedback loop and the theoretical behavior

of the loop, chapter 3 gives a description of the 100 kHz bandwidth ICA

system, chapter 4 gives the experimental results of the system. The prospect

of future work, increasing the sytem bandwidth, and a complete blind source

separation system are described in chapter 5. Also included is appendix A,

which describes ICA theory.
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Chapter 2

Opto-electronic ICA Theory

2.1 Introduction

Computer algorithms that implement ICA have been thoroughly analyzed

[30], [41], [31]. This chapter is meant to lay out a theoretical foundation for

the new opto-electronic ICA processor.

The problem that is being addressed here is not the complete blind sep-

aration of an arbitrary number of signals, but rather the separation of one

signal from an orthogonal mixture of signals (Figure 2.1). It is assumed that

the usual PCA and normalization preprocessing of the signals has already

been performed. The system is designed to allow one (and only one) of the

signals to oscillate within the opto-electronic feedback loop described in the

next section. In applications that require both the signals to be recovered,

the second signal can be retrieved by suppressing the first signal from one of



the input mixtures. This procedure is discussed in chapter 5.

This chapter is organized in the following way. It first describes in detail

the opto-electronic feedback loop and each of the components that are instru-

mental in the actual separation process. A brief description of the method

used to analyze the feedback loop is also given. The feedback loop is ana-

lyzed in two scenarios. The first is the specific case of exactly two sinusoidal

input signals. This analysis shows that in steady state operation, only one

of the two signals is able to oscillate in the loop. The second is the more

general case of an arbitrary number of input signals with random probability

distributions. This analysis shows that in steady state operation, only one

of the signals oscillates in the loop provided that at least one of the signals

has a sub-Gaussian distribution.

Figure 2.1: Schematic representation of ICA. The system described in this
paper is designed to take orthogonal, normalized (whitened) input mixtures
(two shown here) and separate out one of the original signals. θ is any angle
and s̃1 and s̃2 represent the orthogonal signals.
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2.2 The opto-electronic feedback loop

A schematic of the heart of the opto-electronic ICA processor, a feedback

loop first described in [42], is shown in Figure 2.2.

Figure 2.2: Schematic of the dynamic ICA feedback loop. The loop and input
beams come from the same laser source. The input beams are modulated
with the whitened input mixtures. The electrooptic feedback loop serves to
saturate the phase modulator, producing higher order harmonics that will
be correlated with the input signals in the photorefractive crystal.

The feedback loop is half optical, as it utilizes a loop laser beam, input

laser beams, and a homodyne beam (all at a 532 nm wavelength and from the

same source), and half electronic, as demonstrated by the photodetector and

the electronic amplifier. The signal mixtures, which have been uncorrelated

and have normalized power levels, are modulated on the input beams as

shown at the bottom of Figure 2.2. The procedure for modulating these

beams is discussed in chapter 3. There is the same number of input beams

as there are signal mixtures (four in Figure 2.2). The feedback loop signal

is the output and can be extracted from the loop anywhere, but is most
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conveniently tapped just after the electronic amplification. The tapped signal

contains -50 dB of the oscillating signal power.

The input beams provide gain to the loop beam through two-beam cou-

pling in the photorefractive crystal. In two-beam coupling, holographic am-

plification can only occur between beams that are temporally correlated.

This process is described more thoroughly in the next section. The signal

that is amplified on the loop beam is a phase modulated signal, which cannot

be detected by an intensity photodetector. The phase modulated signal is

converted to an amplitude modulated signal by adding a homodyne beam

just before detection. The homodyne beam is merely a laser beam with the

same frequency as the original laser carrier. The homodyne beam in equiva-

lent to the local oscillator in a coherent detection radio. In order to produce

an amplitude modulation, the homodyne beam must be phase shifted by 90

degrees from the original loop beam laser carrier. After detection, electronic

amplification increases the signal voltage on the electro-optic phase modu-

lator. The phase modulator, which is inherently nonlinear, modulates the

signal on the loop laser beam, completing one round trip of the loop.

Recall from chapter 1 that ICA can only be performed if the signals are

independent. The definition of independence, Equation 1.1, implies that

the signals are de-correlated to all orders. The dynamical behavior of the

feedback loop is a result of the combination of the nonlinear electro-optic

modulator with photorefractive two-beam amplification. Nonlinear phase

modulation generates signal harmonics on the loop laser beam. Holographic
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amplification then ensures that the correlated portions of these harmonics

are amplified in the feedback loop.

A mathematical analysis of the feedback loop begins by describing the

gain of each of the components of the loop, which determine the open-loop

system gain, used to generate equations for the time-evolution of the input

signal slowly-varying amplitudes. The stability of the steady state solutions

is found using perturbation theory. The analysis theoretically predicts the

amplitudes of each of the signals oscillating in the feedback loop when the

system is stable.

2.3 Sinusoidal signal analysis

2.3.1 Behavior of two input signals

The analysis procedure described above is carried out in this section on two

sinusoidal signals, s1 and s2, of frequencies ω1 and ω2, and slowly-varying

amplitudes v1 (t) and v2 (t):

s1 = v1 (t) sin (ω1t)

s2 = v2 (t) sin (ω2t)
. (2.1)

The amplitudes of the signals, v1 (t) and v2 (t) evolve on a time scale deter-

mined by the photorefractive time constant, which is on the order of seconds.

The signals vary much faster, on the order of ten microseconds, for signals

with a 100 kHz bandwidth.
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The goal of this analysis is to find the evolution of the slowly-varying am-

plitudes. It is a simple calculation to show that these signals are independent,

as required by ICA, if pω1 6= qω2 where p and q are integers:

〈sinm (pω1t) sinn (qω2t)〉 = 〈sinm (pω1t)〉 〈sinn (qω2t)〉 (2.2)

and where 〈〉 denotes the statistical expectation value.

Let us now assume that some combination of these signals is present in

the feedback loop just before the phase modulator. The signals modulate

the laser beam electric field, E, as:

E = E0exp (−i (v1sin (ω1t) + v2sin (ω2t))) (2.3)

where E0 is the loop beam amplitude and is normalized to 1. Here, the ex-

plicit time dependence on the slowly varying amplitudes, v1 and v2, has been

omitted. The loop amplitude signal can be rewritten as a Bessel expansion:

E =
∞∑

m=−∞

Jm (v1) exp (−imω1t)
∞∑

n=−∞

Jn (v2) exp (−imω2t) (2.4)

where Jm is the mth order Bessel function of the first kind.

The loop signal and the input signals will interfere in the photorefractive

to produce a holographic grating. The photorefractive time constant is on

the order of milliseconds to seconds. Such a slow time constant implies that

a grating can only be generated by the crystal between two beams that are

the exact same frequency (within 1 to 10 Hz) since the interference pattern

between two beams with different frequencies will be moving.
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In addition to the correlation, the photorefractive crystal provides a sec-

ond advantage when placed in the feedback loop. As seen in Figure 2.2,

there are multiple input beams that are coupled with the loop beam within

the holographic medium. If now a second input beam is added, the same

power transfer will occur provided the total power in the two input beams

is the same as in the single-input beam case. This implies that the feedback

loop gives the same gain to signals of any orthogonal mixture (a mixture

that has the same power in both inputs). Since the system input mixtures

are already whitened, the system will behave the same way for any input

mixture. This implies that the actual signal mixture is irrelevant, provided

that it is orthogonal, and the analysis can proceed assuming that the signals

always receive the same gain as they would if they were present on separate

beams.

The correlation requirement implies that the only two components of E (t)

that will be amplified in the feedback loop are those that are present at ω1

and ω2:

Eω1 = J0 (v2) J1 (v1) exp (−iω1t)

Eω2 = J0 (v1) J1 (v2) exp (−iω2t)
. (2.5)

The signal output from the photorefractive crystal will have only a field

proportional to these two terms, when m = 1 and n = 0 or m = 0 and n = 1.

Since the input signals are already assumed to be normalized to the same

power, the power in each of the two components of Equation 2.5 are also of
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the same power, and the amplitudes are also normalized to 1.

2.3.2 Sinusoidal dynamic evolution

At this point in the analysis, it becomes instructive to expand the Bessel

functions to the first three terms. This simplifying assumption is not made

in the following section with a more general analysis. The Bessel functions

expand as:

J0 (v) = 1− v2

4
+ · · ·

J1 (v) = v
2
− v3

16
+ · · ·

. (2.6)

The homodyne detection is set up so that the received signal is directly

proportional to the phase modulation on the loop beam. The detected signal

is also linearly amplified by the electronic amplifier. The resulting round trip

signal amplitudes, v1return and v2return are:

v1return = G
(
1− v2

2

4

)(
v1

2
− v3

1

16

)
v2return = G

(
1− v2

1

4

)(
v2

2
− v3

2

16

) (2.7)

where the linear loop gain is G. The two equations shown here represent the

amount that the amplitude of each signal, s1 and s2, changes in one round

trip of the feedback loop. A set of gain equations, based on the initial and

final signal amplitudes can be found with the assumption that one round

trip of the feedback loop takes one unit of time, where ∆v1 and ∆v2 are the
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amplitude differences in v1 and v2:

∆v1 = G
(
1− v2

2

4

)(
v1

2
− v3

1

16

)
− v1

∆v2 = G
(
1− v2

1

4

)(
v2

2
− v3

2

16

)
− v2

. (2.8)

The difference gain equations can be turned into differential equations:

∂v1

∂t
=
(

G
2
− 1
)
−G1

8
v1v

2
2 −G 1

16
v3

1

∂v2

∂t
=
(

G
2
− 1
)
−G1

8
v2v

2
1 −G 1

16
v3

2

. (2.9)

We now have a set of two coupled differential equations showing the time

evolution of the signal amplitudes.

2.3.3 System steady state behavior

Next in the analysis, Equation 2.9 is used to predict how the feedback loop

will behave given the two inputs. The evolution of Equation 2.9 will eventu-

ally reach a steady state solution, when amplitudes v1 and v2 are stationary.

This steady state solution can be found by setting both differentials to zero.

We find that there are three possible solutions:

v1 = v2 = 0, (2.10)

v1 = v2 =

((
G
2
− 1
)

3
16

G

) 1
2

, (2.11)
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v1 = 0, v2 =

((
G
2
− 1
)

1
16

G

) 1
2

or v2 = 0, v1 =

((
G
2
− 1
)

1
16

G

) 1
2

.

(2.12)

The first solution is the trivial case where neither of the signals is oscillat-

ing in the feedback loop. The second solution is the case where both signals

are oscillating with equal amplitudes within the loop. The third solution is

the case where only one of the two signals is oscillating in the loop, and the

other is not present.

It is of interest to find out which of these solutions is stable, and what

the conditions of stability are on each. To accomplish this task, we turn back

to the initial dynamic Equation 2.9. The amplitudes will be perturbed by

small amounts, ε1 and ε2, (also dependent on time, t) for the two signals,

respectively. In the case of a stable solution, the signals decay back to the

steady state solution after this perturbation. If the solution is unstable, the

signals will deviate from the steady state solution.

The initial equations are:

∂(v1+ε1)
∂t

=
(

G
2
− 1
)
−G1

8
(v1 + ε1) (v2 + ε2)

2 −G 1
16

(v1 + ε1)
3

∂(v2+ε2)
∂t

=
(

G
2
− 1
)
−G1

8
(v2 + ε2) (v1 + ε1)

2 −G 1
16

(v2 + ε2)
3
. (2.13)

These can be rearranged as:

∂v1

∂t
+ ∂ε1

∂t
=
[(

G
2
− 1
)
−G1

8
v1v

2
2 −G 1

16
v3

1

]
+
(

G
2
− 1
)
ε1 − G

8
(2v1v2ε2 + v2ε1)− G

16
(3v2

1ε1)

∂v2

∂t
+ ∂ε2

∂t
=
[(

G
2
− 1
)
−G1

8
v2v

2
1 −G 1

16
v3

2

]
+
(

G
2
− 1
)
ε2 − G

8
(2v2v1ε1 + v1ε2)− G

16
(3v2

2ε2)

(2.14)
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where all higher orders of the perturbation terms, εn, n ≥ 2, have been omit-

ted.

Since the analysis is occurring at the steady state value, the ∂v
∂t

terms are

equal to 0, and the components of Equation 2.14 that are in brackets will drop

out (see Equation 2.9), leaving only a set of coupled differential equations for

the perturbations. If these perturbations decay to zero amplitude over time,

then the steady state is stable. The perturbation differential equations can

be represented as:

∂ε

∂t
=

(G
2
− 1
)
−G1

8
v2

2 −G 3
16

v2
1 −G1

4
v1v2

−G1
4
v1v2

(
G
2
− 1
)
−G1

8
v2

1 −G 3
16

v2
2

 ε. (2.15)

The solution to this system of equations takes the form:

ε (t) = C1

ξ
(1)
1

ξ
(1)
2

 exp (λ1t) + C2

ξ
(2)
1

ξ
(2)
2

 exp (λ2t) (2.16)

where C1 and C2 are constants, λ1 and λ2 represent the eigenvalues of the

matrix in Equation 2.16, and ξ(1) and ξ(2) are the eigenvectors. From this

solution, it is clear that the perturbations will decay if both eigenvalues are

negative.

Now that we have a definition of the stability, we can solve for the original

three cases. The first trivial case of neither signal oscillating in the loop is

stable for G < 2. This implies that there must be enough gain within the

feedback loop to make the signals oscillate. For the second case of both signals
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oscillating in the feedback loop with equal amplitudes, one eigenvalue is

negative while the other is positive. This implies that this case is never stable

for two sinusoidal signals. The third case, with only one signal oscillating in

the system, has two negative eigenvalues. This case is therefore stable for

two sinusoidal signals.

2.3.4 Steady state amplitude

To determine the amplitude of the oscillating signal will be in terms of phys-

ical parameters in the feedback loop, the open-loop gain is found from Equa-

tion 2.5. From this equation, the gain is proportional to the first order Bessel

function, J1. This implies that the gain is zero when J1 (v1) = 0, at v1 = 3.83

volts/V .

The feedback loop will oscillate at steady state when the gain is unity,

assuming that there is no loss in the loop. The curve determining the open-

loop gain is shown in Figure 2.3. The y-axis shows the initial gain of the

feedback loop to be G, or the linear loop gain. This parameter can be

adjusted by the gain of the electronic amplifiers, Ge, the linear gain of the

photorefractive crystal, Gp, and the loss of the loop, L, where G = Ge +Gp−

L.

If the photorefractive crystal gain is removed from the system, and the

total gain is still greater than unity, the loop will break into spontaneous

oscillation. This is undesirable behavior of the system, so we will assume

that the electronic gain is set so that the total gain is just below unity. In
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Figure 2.3: Open-loop gain of the opto-electronic feedback loop (Figure 2.2)
as a function of input signal amplitude. The gain that a sinusoidal signal
receives in the feedback loop is determined by its amplitude according to the
Bessel relationship found in Equation 2.5.

essence, the electronic gain almost completely compensates for the loss in the

loop. The amount by which G is larger than unity is therefore dependent

solely on the photorefractive gain. If the photorefractive gain is 300, then

the initial gain on this curve will be approximately 300.

Figure 2.3 shows that the gain of the feedback loop decreases as the input

signal amplitude increases. The gain reaches a value of zero when the input

amplitude is ±1.22 V or 3.83/π. The gain is unity just below this voltage,

but ±1.22 V is a close approximation. We now know that the signal in

the feedback loop will be stable when it is oscillating with a drive voltage
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of ±1.22 V . The signal amplitude is therefore dependent on the electro-

optic modulator and is much higher than the common drive voltages that

are used with electro-optic modulators. Recall that higher order correlations

perform the independent component analysis, and harmonics of the signals

are produced by overdriving the modulator.

If the total system gain is decreased by lowering G in Figure 2.3, the

steady state input voltage will also be decreased. The amount of decrease is

shown by Figure 2.4. The oscillation voltage is shown by the intersection of

the loss curve with the gain curve. In a real system, we will most likely not

be able to operate at the voltage of ±1.22 V because this will require the

gain to be right on the verge of making the system spontaneously oscillate.

Instead, it is more likely that the gain will have to be lowered purposefully

to stabilize the system. This means that the actual oscillating voltage will

be slightly less than the ideal ±1.22 V.

The analysis of two sinusoidal input signals shows that the steady state

behavior of the feedback loop is such that it allows only one of the signals

to exist in the loop. The amplitude of the signal is determined by the total

loop gain and the half-wave voltage of the modulator.
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Figure 2.4: Open-loop gain as a function of input signal amplitude with
feedback loop loss. As the feedback loop loss increases or the photorefractive
gain decreases, the steady state voltage of the oscillating signal decreases.

2.4 Arbitrary probability density function anal-

ysis

2.4.1 Behavior of two input signals

While the two sinusoidal input case provides intuition into the behavior of the

nonlinear feedback loop, it does not address the important issue of multiple

unknown signals with arbitrary probability density functions. Similarly to

the sinusoidal case, we will first assume a drive voltage, V (t), on the electro-

28



optic modulator that consists of a superposition of N signals:

V (t′) =
N∑

n=1

vn (t′) sn (t) . (2.17)

Here, the slowly varying envelopes of the signals are given by vn (t′), and

the signals themselves are sn (t). t′ is used to represent the slowly varying

time frame, while t represents the quickly varying signals, which vary more

than three orders of magnitude more quickly. Without loss of generality, the

signals are again assumed to be normalized to the same power.

The loop laser beam is phase modulated by the signal V (t):

E (t, t′) = E0e
iV (t)e−iωct +

[
E0e

iV (t)e−iωct
]∗

(2.18)

where E0 is the amplitude of the loop beam and ωc is the laser frequency.

As in the sinusoidal case, the signal writes a grating with the correlated

terms of the input beams in the photorefractive crystal and is amplified by

that correlation. Mathematically, this type of gain is represented by:

Gphotorefractive ∝
〈
eiV (t)sn (t)

〉
τ

(2.19)

where τ is the photorefractive time constant (milliseconds to seconds) and

represents the integration time over which the signals are correlated [43]. As

in the two-signal sinusoidal case, the actual mixture of the signals on the two

input beams is irrelevant provided that it is an orthogonal mixture.

Continuing along the feedback loop, the signals is detected through the

homodyne detection scheme and amplified by the electronic amplifiers. This
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new signal is represented as:

ṽn = −<
{
i
〈
eiV (t)sn (t)

〉
τ

}
κvn. (2.20)

where κ is the linear gain in the feedback loop, and ṽn is the return signal

amplitudes. The real part of the complex function and the negative sign are

a consequence of the homodyne detection method. The gain can be split into

two terms: the linear κ term, and the nonlinear term, An:

An (~v) = −Re

{
i

vn

〈
eiV (t)sn (t)

〉
τ

}
(2.21)

where An is dependent on all the signal amplitudes, v1, v2,. . ., vN , since it

contains V (t). The amplitudes v1, v2,. . ., vN are expressed as a multidimen-

sional vector, ~v.

Up to this point, the gain of the system has been represented using the

time-averaged correlation due to the photorefractive gain. Instead of a time-

varying signal, the input signals can be viewed as stochastic variables with

probability density function pn (sn). This implies that the time-averaged

correlation can be expressed as a function of the signal probability density

function: 〈
eiV (t)sn (t)

〉
τ
→

∞∫
−∞

eiV (t)snpn (sn) dsn (2.22)

and the nonlinear gain term becomes:

An (~v) = −Re

 i

vn

∞∫
−∞

eiV (t)snpn (sn) dsn

 . (2.23)
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While this function seems more complex, it can actually be expressed

very compactly using the characteristic function, φ (v), which is the Fourier

transform of the probability density function:

φ (v) =

∞∫
−∞

eivsp (s) ds (2.24)

where s is a random variable with probability density p [44]. The character-

istic function of a multidimensional set of random variables, Φ (~v) is simply

the multidimensional Fourier transform, which reduces to the product of the

individual characteristic functions when the variables are independent:

Φ (~v) = φ (v1) φ (v2) . . . φ (vN) . (2.25)

Now the nonlinear gain term reduces to:

An (~v) = − 1

vn

Re {∂nΦ (~v)} . (2.26)

This is the open-loop gain of the feedback loop for the signal amplitudes

vn (t). Equation 2.26 shows that the gain of each signal is dependent on both

the amplitude of that signal itself, and the derivative of the multidimen-

sional characteristic function. In more general terms, the gain in the loop is

determined by the probability density function of the input signals.

2.4.2 Gain of various probability density functions

As an example of how the gain in the feedback loop depends on the char-

acteristic function, let us take four different probability distributions, and
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plot their gains. The four distributions are: harmonic, uniform, Gaussian,

and Laplace, shown in Figure 2.5. These functions are represented by the

probability distributions:

pL (v) =
1

2
exp (− |v|) Laplace (2.27)

pG (v) =
1√
2π

exp

(
− |v|2

2

)
Gaussian (2.28)

pU (v) =
1

2A

0

if − A ≤ v ≤ A

otherwise
Uniform (2.29)

pH (v) =
1

π
√

1− v2
Harmonic. (2.30)

Figure 2.5: Four probability density functions that are analyzed in the feed-
back loop.

While Laplace, Gaussian, and uniform distributions are common in lit-

erature on statistics, a harmonic distribution is not often seen. This is the

distribution of a sinusoidal signal, common for communications signals, and
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is therefore of practical importance. The distribution type does not change

is the sinusoidal carrier is modulated by frequency modulation (FM), phase

modulation (PM), and any phase-shift keying scheme (BPSK, QPSK).

The characteristic function of each of the distributions in Equation 2.27

- Equation 2.30 is:

φL (v) =

(
1 +

v2

2

)−1

Laplace (2.31)

φG (v) = exp

(
−v2

2

)
Gaussian (2.32)

φU (v) =
sin
(
v
√

3
)

v
√

3
Uniform (2.33)

φH (v) = J0

(
v
√

2
)

harmonic (2.34)

where J0 is the zeroth order Bessel function.

The gains for each of these probability distributions in the feedback loop

is shown in Figure 2.6. This figure shows that the distribution that has the

highest gain within the feedback loop is the harmonic distribution, followed

by the uniform, Gaussian, and Laplace. The figure is normalized to the

maximum gain of each probability density function, which is equal for all the

functions.
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Figure 2.6: The open-loop gains of harmonic, uniform, Gaussian, and Laplace
density functions. Each of these functions has the same maximum gain and
is normalized to unity.

2.4.3 Dynamic evolution of arbirtary PDF signals

In a similar method as was used in the two-signal sinusoidal case, the open-

loop gain can be turned into a time-evolution equation for the input signal

amplitudes:

τ
∂~v

∂t
= − (~v + κRe {∇Φ}) (2.35)

where ∇ is the multidimensional gradient operator.
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2.4.4 Lotka-Volterra simplifications and Kurtosis

By itself, Equation 2.35 is not intuitive. It represents a particle moving

in a plane and subject to a restoring force given by the derivative of the

characteristic function. We can make some assumptions to simplify this

equation and provide insight into the underlying dynamics. First, let us

assume that there are only two input signals. This assumption again gives

us two coupled differential equations. Second, the characteristic function

can be expanded in terms of the moments of the signal probability density

function:

φ (v) = 1 + iv 〈s〉 − 1

2
v2
〈
s2
〉
− 1

3!
iv3
〈
s3
〉

+
1

4!
v4
〈
s4
〉

+ · · · . (2.36)

Third, we will transform the equation from an amplitude evolution equa-

tion to a power evolution equation. Lastly, we will assume that the two

input signals have the same probability distribution functions. This implies

that they will have the same fourth moments,
〈
s4
1,2

〉
. With these added as-

sumptions, we find that the coupled equations become the Lotka-Volterra

equations [45]:

τ
2κ

∂P1

∂t
=
(
α− 1

3

〈
s4
1,2

〉
P1 − P2

)
P1

τ
2κ

∂P2

∂t
=
(
α− 1

3

〈
s4
1,2

〉
P2 − P1

)
P2

. (2.37)

where P1 and P2 are the signal powers, and α = 1 − 1
κ

is a measure of the

linear gain. The dynamic equations have one pivotal coefficient: the fourth

order expectation value.
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Another statistical measure, known as the signal kurtosis, γ, also uses

the fourth-order expectation value. Kurtosis is generally used as a measure

of the Gaussianity of a signal, and is defined as:

γ =
〈s4〉
〈s2〉2

. (2.38)

Figure 2.7 shows a comparison of several different probability densities,

each with normalized variance, and their kurtosis. The Gaussian distribu-

tion always has a kurtosis of 3. Signals that have a kurtosis between 0 and

3 are known as sub-Gaussian because they have a kurtosis lower than that

of a Gaussian. These signals have probability densities that are flatter in

the middle and have higher amplitudes at edge voltages. These include the

binary distribution (the distribution of a binary, ±1, signal), the harmonic

distribution, the uniform distribution, and the exp
(
− |s|3

)
. Likewise, signals

that have a kurtosis that is greater than 3 are known as super-Gaussian sig-

nals. These signals have distributions that are more peaked than a Gaussian

and have less energy in the wings of the distribution. Examples of these

signals include a Laplace and a voice signal, as shown in Figure 2.7.

2.4.5 Lotka-Volterra steady state solutions

Equation 2.37 have three possible steady-state solutions, depending on the

〈s4
1,2〉
3

term: a monostable solution if the term is greater than unity, a metastable

solution if the term is equal to unity, and a bistable solution if the term is
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Figure 2.7: Illustration of kurtoses. The kurtosis, a measure of a signal’s
Gaussianity, increases for each PDF shown from left to right. (The PDFs
are shown for descriptive purposes only- they are not to scale on the kurtosis
ruler.)

less than unity. Since this term is based on a fourth-order expectation, it is

also directly related to the kurtosis of the input signals. This implies that

the dynamics of the system can be cast in terms of the Gaussianity of the

input signals:

• If the system inputs are both super-Gaussian, the stable signal that exists

in the loop will be an equal combination of both inputs.

• Gaussian inputs will result in a random orthogonal combination of the

signal.

• If both signals are sub-Gaussian, only one of the two signals, chosen with

equal probability, can occur.
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The sub-Gaussian winner-takes-all solution is the desired steady-state

operation of the loop because only one signal is present in the loop, and

therefore the signals are separated out of the mixture.

2.4.6 Complete system dynamics

The dynamics of the system when two signals with different probability den-

sity functions are competing can be found directly from the original evolution,

Equation 2.35. Here, we will make state-space vector diagrams representing

the force on an input vector of signal amplitudes. To make a state-space di-

agram, two input signal probability density functions are first chosen. Next,

input amplitudes, ~v = v1s1 + v2s2, are inserted into Equation 2.35, resulting

in the differential change in amplitudes. A vector corresponding to the di-

rection and magnitude of the differential change is placed on the diagram at

position (v1, v2).

The diagrams have two axes, representing the voltage amplitude of each

of the input signals. All points along the horizontal axis represent finite

voltage amplitude for s1, and zero amplitude for s2. Similarly, all points

along the vertical axis represent zero amplitude for s1, and finite amplitude

for s2. A point off either axis means that both signals have finite amplitudes.

The arrows spaced throughout the diagram represent the direction in which

the amplitudes will change given some starting position. All arrows on the

plot are reduced to a unity length, but color coated to represent their actual

length. The light gray arrows represent shorter vectors, and the dark gray
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and black arrows represent long vectors. Steady states are present where all

vectors point either into or away from a point on the diagram. If the vectors

are pointing away from a location, it is an unstable steady state solution. If

the vectors are pointing toward a location, it is a stable steady state solution.

Figure 2.8 shows the state-space diagram for two harmonic distribution

(sub-Gaussian) signals. There are stable steady state solutions along both

the horizontal and vertical axes. Like in the sinusoidal two-input analysis,

this means that either signal oscillating in the feedback loop is stable, but

both cannot coexist at the same time. Again, this is the desired operation

of the system and it corresponds to solution found by looking at the Lotka-

Volterra simplification.

The competition between two uniform distribution signals is shown in

Figure 2.9. This competition also shows stable steady states when either one

of the signals is oscillating.

A competition between two Gaussian distribution signals results in a

metastable solution, as shown in Figure 2.10. In this case, there is a ring

of states that the system can “fall” into. There is no truly stable solution,

however, and the system will randomly shift through the signal amplitudes

represented by the ring.

A competition between two super-Gaussian distributions, both Laplace,

is shown in Figure 2.11. A monostable solution with both signals oscillating

with equal amplitudes is the only stable solution in this case. This again

corresponds to the result found from the Lotka-Volterra simplification.
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Figure 2.8: Harmonic vs. harmonic system dynamics. The evolution of two
harmonic signals moves from the unstable equilibrium at point v1 = 0, v2 = 0
to a stable equilibrium where either signal 1 or signal 2 exists.

It is interesting to investigate what happens to the system when one

of the inputs is sub-Gaussian (harmonic) while the other is super-Gaussian

(Laplace). In this case, represented by the state space diagram in Figure 2.12,

the system has only one stable solution: the sub-Gaussian signal oscillates

in the feedback loop.

In the case of a Gaussian signal competing with a sub-Gaussian (har-

40



Figure 2.9: Uniform vs. uniform system dynamics. The evolution of two
uniform signals moves from the unstable equilibrium at point v1 = 0, v2 = 0
to a stable equilibrium where either signal 1 or signal 2 exists.

monic) signal, the sub-Gaussian signal wins, as shown in Figure 2.13.

In the case of a Gaussian competing with a super-Gaussian (Laplace)

signal, the Gaussian signal wins, as seen in Figure 2.14. This is an interesting

case that shows how the system behaves at the boundary between one of the

signals moving from sub to super-Gaussian.
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Figure 2.10: Gaussian vs. Gaussian system dynamics. There is no stable
solution for two competing Gaussian signals. Rather, there is a metastable
ring where both signals coexist.

2.4.7 High gain system dynamics

There is the possibility of the system oscillating at different steady state

values as well, as can be seen in Figure 2.15. This figure is a reproduction

of the open-loop gain curve found in Figure 2.6 for a harmonic signal. If the

gain of the feedback loop is sufficiently high, it can be seen that the gain curve

can be made to cross the loss curve multiple times. This is also demonstrated
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Figure 2.11: Laplace vs. Laplace system dynamics. The stable solution in
the two Laplace signals corresponds to an equal amplitude of both signals
coexisting in the feedback loop.

by the state space diagram in Figure 2.16, which allows the signals to have

higher voltages in the feedback loop. This curve shows multiple stable steady

states with both signals oscillating in the loop at higher voltages.

These steady state solutions are not desired since the signals are not

separated, which can be seen from the stable solutions that do not lie on

either signal axis. To prevent the system from oscillating at these points,
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Figure 2.12: Harmonic vs. Laplace system dynamics. The only stable solu-
tion in this case is the harmonic signal existing alone.

it is necessary to stay out of the high-gain regime. We can estimate what

the boundary between these two regimes is by picking the initial gain (G

in Figure 2.15) so that the open-loop gain will only cross the loss curve in

one place. As can be seen from Figure 2.16, the first unwanted steady state

occurs at s1 = 4.8Vπ , and s2 = 2.4Vπ .
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Figure 2.13: Harmonic vs. Gaussian system dynamics. The only stable
solution in this case is the harmonic signal existing alone.

2.5 Summary

In summary, the analysis presented in this chapter shows that the proposed

opto-electronic system is capable of selecting one signal from a mixture of

input signals. This signal will oscillate in the feedback loop without crosstalk

from the other signals. At least one of the input signals must be sub-Gaussian

for this desired behavior.
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Figure 2.14: Gaussian vs. Laplace system dynamics. The Gaussian signal
dominates in the case of a Gaussian vs. super-Gaussian competition.
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Figure 2.15: Harmonic signal open-loop gain curve. If the gain, G, is high
enough, there are multiple steady state solutions for the amplitude of the
oscillating signal.
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Figure 2.16: High gain harmonic vs. harmonic system dynamics.
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Chapter 3

100 kHz bandwidth opto-

electronic ICA implementation

3.1 Overview

The focus of this chapter is on the design and implementation of a 100 kHz

opto-electronic ICA system. While the ultimate goal of our opto-electronic

processor is to perform ICA on RF signals, it was more appropriate in terms

of cost to design the first system for kilohertz bandwidth signals. These

signals can be generated and manipulated by computer, which provides fine

control over the signal probability density functions. All components of the

feedback loop in this design (electronic amplifiers, electro-optic modulators,

and photodetector) must have a signal bandwidth of 100 kHz or greater.

The proof of concept system described is designed to separate one signal



from two mixtures of two signals and justify the mathematical framework

in chapter 2. It has two input channels that each carry one of the input

mixtures that are orthogonalized and normalized to have the same power.

The system presented here is therefore only able to carry out the fourth order

decorrelation portion of ICA (see Figure 1.2) The remainder of this chapter

is dedicated to describing the design of a real electro-optical implementation

of a narrow band analog ICA processor. Chapter 4 describes experimental

characterization of the system.

3.2 System description

Figure 3.1 shows a block diagram of the ICA system. There are four pri-

mary subsystems to be considered: the signal generation and input circuit,

the opto-electronic feedback loop, the homodyne detection circuit, and the

output and performance evaluation circuitry. In order to properly evaluate

the performance of the system, there are four signals output by the com-

puter: the signal mixtures (inputs to the system), and the original signals

themselves, for comparison at the output. There are two identical input

channels that modulate the electrical signal onto an optical carrier and pre-

process it for input into the feedback loop. The feedback loop is the heart

of the analog ICA processing system. It is this portion of the system that

was analyzed in chapter 2. The feedback loop signal is phase modulated,

and is converted to a detectable amplitude modulation by combination with
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a homodyne beam. The homodyne beam phase must be kept at a 90 degree

offset from the original carrier phase. To compensate for environmental drift,

the phase of the homodyne beam is controlled using a piezoelectric movable

mirror. The single output of the system is compared with both original sig-

nals in order to evaluate the amount of crosstalk in the feedback loop. Each

of these subsystems will be described in the next sections.

Figure 3.1: Generalized block diagram of the opto-electronic ICA system.
The input mixtures and the original signals are created by a computer (not
shown). The four principle subsystems are the input channel opto-electronics,
the opto-electronic feedback loop, the homodyne detection circuit, and the
output circuit.

3.3 Input channels

A schematic diagram of one of the two identical input channels is shown

in Figure 3.2. The computer-generated signal mixtures are electronically
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amplified in order to drive an electro-optic phase modulator of a 532 nm

laser beam common to both channels. As a result, there are five optical

signals in the system: the optical carrier, and the upper and lower sidebands

for both of the input signals. The carrier is unwanted in the processor as

it introduces correlation between the signals. To remove this correlation,

an optical carrier suppression circuit has been added to each of the input

channels. Two-beam coupling in a photorefractive crystal has been shown to

be a very effective way to remove the carrier from the two input channels, as

detailed in [40].

Figure 3.2: One input channel. The 100 kHz amplifier has a nominal gain of
200 and a ±200 V output, which provides the high voltage required to drive
the electro-optic phase modulator. The double-sideband modulated laser
beam (Coherent Verdi, 532 nm) is carrier suppressed by a photorefractive
carrier suppression circuit to eliminate unwanted false correlation between
the two input channels. While the schematic shown here uses two sinusoidal
signals for ease of representation, any signal type can be used in the actual
implementation.
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3.3.1 Signal generation

The signals are digitally created in Matlab, and output as a .wav file to the

sound card, a four channel Soundblaster Audigy. It has 44.1 kHz digital-to-

analog conversion, with 24 bits of resolution. The signal mixtures are output

to the left and right speaker outputs. When played as an audio sound file, the

signal amplitude is approximately 8 volts zero-to-peak at maximum volume.

The signals, s1 and s2, are generated in Matlab as vectors with individual

element amplitudes between -1 and +1 and length 44100 · T , where T is

the signal length in seconds. These signals are normalized to have the same

variance, or: 〈
s2
1

〉
=
〈
s2
2

〉
(3.1)

This condition ensures that both signals have the same power.

Once two signals in question have been created, they are mixed together

using an orthogonal mixing matrix:

M =

 cos (θ) sin (θ)

− sin (θ) cos (θ)

 (3.2)

The two signal mixtures, s̃1 and s̃2, are given by: s̃1(t)

s̃2(t)

 =

 cos (θ) sin (θ)

− sin (θ) cos (θ)


 s1 (t)

s2 (t)

 (3.3)

The matrix M is a simple rotation matrix that has only one coefficient: the

amount of rotation, θ. As seen in the signal space diagrams in Figure 3.3, if

θ is 0 degrees, or any integer multiple of 90 degrees, then each input mixture
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carries one signal without contamination from the other signal. If θ is 45

degrees, or any odd integer multiple, then there is an equal amount of each

signal present in both mixtures. In other words, one mixture is given by

s̃1 = 1√
2
(s1 + s2), and the second mixture is given by s̃2 = 1√

2
(−s1 + s2).

There is the same power in each signal in both the 0 degree mixture and in

the 45 degree mixture.

Figure 3.3: Signal space diagrams of whitened signals. In signal space, or-
thogonal signals are defined by the parameter θ. If θ is an integer multiple
of 90 degrees, then there is only one signal present in each mixture. If θ is
an odd integer multiple of 45 degrees, then there is an even amount of each
signal present in the mixtures.

The original signals, s1 and s2, generated in Matlab can be either sinu-

soidal signals with any frequency up to 22.05 kHz (Nyquist sampling crite-

rion) or completely random signals with arbitrary probability density func-

tions. The random number generator in Matlab generates a number, R,

between 0 and 1 which must be mapped to an arbitrary probability density,

parbitrary (x). The new random number, r, with the desired probabilty density
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is found by solving the following equation for r:

R =

r∫
−∞

parbitrary (x) dx (3.4)

The solution to Equation 3.4 is found numerically in Matlab. The accuracy of

the probability density resulting from this mapping is verified by generating

a histogram from several thousand random numbers.

3.3.2 Input electronics

Once the signals have been generated, they are input into the system through

a series of electronic amplifiers represented by the variable amplifier in Fig-

ure 3.2. The first amplifier is an Ithaco 1201 preamp. These devices have

a variable gain from 1 to 1000. They have an output voltage of 20 volts

peak-to-peak. In addition, they have a high pass and low pass filter on the

output signal. These filters are set to DC and max ( 500 kHz) respectively

in order to maintain the original signal structure.

The 20 volt output of the preamplifiers is not high enough to drive the

electro-optic modulators (made by Gsanger) that have a half wave voltage of

900 volts. A second stage of amplification is therefore used. There have been

two different high-voltage amplifiers used to drive the electro-optic modula-

tor. Both of these amplifiers are described here since they have both been

used during data collection. The first is the Trek Model 601b-3 amplifier

with an output voltage of 1000 volts peak-to-peak and a gain of 100. This

high-voltage amplifier has a bandwidth of 8 kHz. While the amplified signal
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easily has a high enough voltage to drive the phase modulators, the band-

width is still smaller than the desired 100 kHz, prompting the acquisition

of the second FLC 400D amplifier. This amplifier has a gain of 20 and an

output of 400 volts peak-to-peak with a signal bandwidth of 100 kHz.

It is crucial that the two input channels be very well matched in both gain

and phase. If there is either a gain or phase mismatch, the input mixtures will

not be orthogonal, and will violate the basic assumption made in the analysis

in chapter 2. Mismatches are manifested as reduced signal separation in the

output of the system. The Ithaco variable gain preamplifiers adjust the input

channels to compensate for gain mismatch in the high-voltage amplifiers.

The phase mismatch was measured to be 14 degrees between the two

Trek amplifiers at 1.5 kHz. The first method to compensate for this phase

mismatch is to digitally delay one input mixture with respect to the other in

Matlab. The smallest increment that one signal can be shifted by, however,

is determined by the sampling frequency of the computer sound card. This

smallest shift is 1
44.1 kHz

, or 22.6 µs corresponding to a 12 degree phase shift

at 1.5 kHz. This means that the smallest possible step size is the same order

of magnitude as the required phase compensation.

The second method for phase mismatch compensation is to output one of

the signal mixtures twice from the computer. One of the outputs will have

a 0 degree phase shift, and the other will have a 90 degree phase shift. By

changing the amplitude of these two signals and summing them together, it
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is possible to create an arbitrary phase shift, as seen from:

cos (ωt + φ) = cos φ cos ωt + sin φ cos
(
ωt− π

2

)
(3.5)

Using this method, the required phase shift is obtained using amplitude vari-

ations from the computer, given by cos φ and sin φ, which is very accurate

due to the 24-bit resolution of the sound card.

The drawbacks to this method of phase shifting are twofold. First, each

time a different phase shift is required, we must generate a completely new

set of signals. While the phase mismatch between the two amplifiers tends

to remain relatively stable, it varies while the amplifiers are warming up.

Second, this method requires the use of three of the four output channels of

the sound card: one channel for s̃1, and two channels for the in-phase and

quadrature components of s̃2. This method cannot be used when all four

channels are required for evaluation of the system performance, described in

section 3.6.

The third method of compensating the phase mismatch between the two

high voltage amplifiers is to include a filter in one of the channels [46]. A

first-order, low-pass filter was chosen for this task. The filter has the affect

of decreasing the signal amplitude at higher frequencies and also shifting the

phase by some amount at higher frequencies. This is illustrated in Figure 3.4.

The low-pass filter, shown in Figure 3.5, uses a potentiometer to accurately

control the exact phase shift at 1.5 kHz. To compensate for the decrease in

signal amplitude at 1.5 kHz, the input preamp gain is increased. This gives
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a precise, analog control over the phase mismatch between the two channels.

Figure 3.4: Low pass filter magnitude and phase characteristics. A low pass
filter both attenuates signals at high frequencies and provides a phase shift.
At a phase shift of approximately -14 degrees, there is very little amplitude
attenuation.
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Figure 3.5: Low pass filter used for input channel phase correction.

3.3.3 Input optics

As seen in Figure 3.2, the electronic signal mixtures phase-modulate an opti-

cal carrier. The electro-optic modulator is a Gsanger LM24P lumped element

phase modulator with Brewster windows. Using the travel-time limitation

[47], the electro-optic modulators have a bandwidth of 550 MHz (assuming

a 6 cm LiNbO3 crystal length). This bandwidth is substantially higher than

the bandwidth of the driving amplifiers, and therefore not a limitation for

the 100 kHz system. The measured capacitance of the modulators is approx-

imately 70 pF, which is a very large impedance (approximately 20 kΩ) at

100 kHz. This capacitance is low enough to have negligible effect on 100 kHz

signals and does not limit the bandwidth of the system.

It is important that the input phase modulation is linear as this is the

assumption used in Equation 2.19. The FLC amplifiers drive the electro-

optic modulators at 400 volts peak-to-peak. Therefore, at maximum drive

voltage, J1

(
400π
900

)
, or 54% of the power is in the first signal harmonic, while

only J3

(
400π
900

)
, or 5% of the power is in the third harmonic.

The carrier suppression circuit is also included in the optical portion of
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the input channels. This circuit is discussed in detail in [40] and [48], and only

a brief overview will be presented here. The carrier suppression scheme is

shown in Figure 3.6. In this setup, two beams are mixed in a photorefractive

crystal. One of the two beams is phase modulated, while the other is the

optical carrier. The carrier signal in each of the two beams will write a

grating within the crystal. If the intensities of the two beams is set properly

(so that the total intensity in both paths is the same) all of the carrier in

the phase modulated beam will be transferred to the other beam, resulting

in -70 dB of carrier suppression [40] using this method. 3 dB of the sideband

power will also be transferred to the other beam and is lost. This beam,

which contains the carrier signal from both inputs to the photorefractive, is

not needed in the system, and blocked. The carrier suppression in the ICA

system has been measured to be over -30 dB suppression.

The design of the optical portion of the input channels is shown in Fig-

ure 3.7. The initial half-wave plate in Figure 3.7 is used to control the

relative power between the two arms of the carrier suppression circuit. Since

balanced power in the two arms is vital to the carrier suppression, precise

analog control over this power ratio is required. The photorefractive crystal

is specifically cut to be used with horizontally polarized light. Therefore,

in order to minimize the number of half-wave plates, the electro-optic mod-

ulator in each input channel is rotated by 90 degrees so that it modulates

horizontally polarized light. The Brewster windows are designed to reflect

all unwanted vertical polarization in this configuration. The lenses are used
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Figure 3.6: Carrier suppression schematic. Carrier suppression is accom-
plished through two-beam coupling in a photorefractive crystal of BaTiO3.
One of the input beams contains both the carrier and the modulation side-
bands, while the other contains only the carrier. A photorefractive grating is
written between the two carrier signals, and the carrier energy is transferred
from the carrier suppressed beam to the other beam.

to focus the both the signal beam and the carrier beam to approximately a

0.5 mm waist located in the photorefractive crystal.

After all of the input channel preprocessing, the signals input to the

processor feedback loop are double-sideband, carrier suppressed signals.

3.4 ICA feedback loop

The central processing portion of the opto-electronic ICA system is the feed-

back loop shown in Figure 3.8 (a reproduction of Figure 2.2). The primary
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Figure 3.7: Input channel optical setup.

components of the feedback loop have been described in section 2.2. The in-

put signals shown at the bottom of the figure are modulated with the input

mixtures, as described in section 3.3. The next several sections describe the

components of the feedback loop.

Figure 3.8: Opto-electronic feedback loop.
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3.4.1 Electro-optic modulator

The electro-optic modulator in the feedback loop is a Quantum Technology,

Inc. bulk electro-optic modulator with no Brewster windows. Its length of

approximately 10 cm gives a travel-time bandwidth limitation of 330 MHz

and a measured capacitance of 110 pF.

The modulator (Figure 3.9) does not have the bottom electrode connected

directly to ground. It uses four crystals oriented at 90 degrees with respect

to each other to compensate for birefringence due to temperature variation.

The double electrode structure means that the modulator is used differently

for the two amplifiers that have been used in the system, the Trek 601C

and the FLC A400DI. When used with the Trek, the second electrode of the

modulator is shorted directly to ground. The FLC amplifier has two outputs

that are 180 degrees out of phase with each other, but each with 20 times

amplification. The voltage across the electro-optic crystal can therefore be

doubled to 800 volts peak-to-peak by plugging each output into one of the

electrodes.

The modulation setup used in the opto-electronic feedback loop is shown

in Figure 3.10. The half wave voltage of this modulator was measured in

this setup by placing a DC voltage on the electrode with the half-wave and

quarter-wave plate removed. As the voltage is increased, the modulator

changes the output polarization of the laser beam. The polarization modu-

lation is changed into an amplitude modulation with a horizontally-oriented
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Figure 3.9: Feedback loop electro-optic modulator structure. The four
electro-optic modulator crystals and electrodes are rotated by 90 degrees
with respect to each other to compensate for temperature induced birefrin-
gence.

polarizer. The output intensity versus input voltage curve is shown in Fig-

ure 3.11. The amount of voltage that is required to get a π radian phase

shift is 290 V peak-to-peak. As described in chapter 2, the modulator must

be driven at ±1.22Vπ in order to achieve the modulation depth necessary for

the steady state, winner-takes-all ICA solution. This means that the output

amplifiers must have an output voltage of at least 700 volts peak-to-peak.

As is the case with the input channels, the photorefractive crystal in the

feedback loop is cut to be used with horizontally polarized light. In addition,

the modulated output signal from the electro-optic modulator should have

the same structure as the input beams in order to be able to write gratings

with the input beams in the photorefractive crystal. In other words, the

output of the modulator should be horizontally polarized, double-sideband,

carrier-suppressed signals. This requirement dictates the modulator setup

shown in Figure 3.10.
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Figure 3.10: Feedback loop electro-optic modulator and wave plate setup.
A half-wave plate and a quarter-wave plate pair are used to compensate for
the natural birefringence of the modulator. The feedback loop electro-optic
modulator is rotated by 45 degrees to phase modulate only one polariza-
tion component of the input beam. The output intensity of this circuit is
minimized when there is a 0 volt DC signal present on the modulator.

The electro-optical phase modulator is designed to modulate only one

of the two polarizations traveling through the modulator. For example, if

+45 degree linearly polarized light travels through the modulator, only the

vertical component will be phase modulated. This will change the output

polarization of the modulator as shown in Figure 3.12, from +45 degree lin-

ear to right circular to -45 degree linear to left circular as the phase shift goes

from 0 to 2π radians. If a polarizer is placed in the polarization modulated

beam, it will be converted to an intensity modulation. If the polarizer is

placed at -45 degrees, then there will be zero intensity output when there

is zero volts across the crystal, and the +45 degree linearly polarized beam

is unmodulated. There will be 50% intensity transmitted at both right and
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Figure 3.11: Feedback loop electro-optic modulator half-wave voltage mea-
surement. The half-wave voltage of the loop modulator is made without the
half-wave and quarter-wave plates shown in Figure 3.10. A DC voltage is
applied to the EOM electrode, and the resulting intensity output from the
polarizer is measured. This plot shows a half-wave voltage of 290 V.

left circular polarizations, and 100% transmission at +45 degree linear po-

larization. This intensity modulation can be mapped as shown in the plot

in Figure 3.13a. As the input voltage (on the horizontal axis) increases, the

polarizer intensity output follows a sinusoidal profile.

The position on the sinusoidal intensity output modulation is imposed by

the position of the output polarizer. If the polarizer is placed at a -45 degree

rotation, then zero volts (no phase shift) will result in 0% intensity output.

A sinusoidal change in applied voltage will produce an intensity output as
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Figure 3.12: Electro-optic modulator output polarizations. By phase shifting
only the vertical polarization component of an input electric field, the electro-
optic modulator polarization can be changed to (a) +45 degree linear, (b)
left hand circular, (c) -45 degree linear, and (d) right hand circular.

shown in Figure 3.13b. When biased at the point of 0% intensity with zero

volts, the output intensity is a double-sideband, carrier-suppressed signal as

desired.

The second stipulation, that the output must be horizontally polarized,

is easily achieved simply by rotating the whole setup by 45 degrees so that

the output polarizer is horizontally polarized.

In a real electro-optic modulator, the crystal usually has some birefrin-

gence, which actually rotates the output polarization to some unknown ellip-
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Figure 3.13: Loop modulator output intensity. (a) The output intensity
of the loop modulator and polarizer follows a sinusoidal profile. (b) If the
modulator is biased so that 0 applied volts results in 0% intensity output, a
sinusiodal input will result in a double-sideband, carrier-suppressed output
intensity signal.

tical polarization. The output intensity transmitted by the polarizer is there-

fore not exactly 0%, as required by the double-sideband, carrier-suppressed

condition. To achieve this, the beam polarization must be vertical after the

birefringent effects of the modulator. To compensate for the unwanted mod-

ulator birefringence, a half-wave plate and a quarter-wave plate are placed

in front of the electro-optic modulator, as shown in Figure 3.10. Using this

combination, it is possible to change any unknown elliptical polarization to

a known linear polarization (vertical in this case). This wave plate pair can
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be placed either in front of or behind the modulator.

The alignment procedure for the electro-optic setup in Figure 3.10 is

straight forward. First, the output polarizer is set horizontal and the mod-

ulator is rotated by 45 degrees. The wave plate pair is rotated until there

is zero intensity transmission from the polarizer when there is no signal on

the modulator. This procedure insures that the modulator is biased at the

bottom of the sinusoidal curve, as depicted in Figure 3.13b so that it pro-

duces the proper carrier-suppressed, double-sideband signal, and still has the

required horizontal polarization.

3.4.2 Photorefractive medium and loop beam power

It is the combination of the electro-optical modulator and the photorefractive

crystal that makes the dynamics discussed in chapter 2 possible. As discussed

in chapter 2, the nonlinearity of the feedback loop is provided by the electro-

optical modulator while the correlation is produced by the photorefractive

crystal. The system described here uses barium titanate (BaTiO3) as the

photorefractive material. It is 0 degree cut with respect to the optical axis.

The maximum gain occurs when the input beams are at an angle of 18 degrees

in free space.

It has already been stated in section 2.3.1 that the photorefractive crystal

provides coupling between two beams and allows energy transfer between

the coherent portions of the two beams. The increased signal due to the

power transfer from one beam (the pump beam) to the other (the signal
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beam) is defined to be photorefractive gain. For BaTiO3, it is not uncommon

to see gain numbers on the order of 10,000, or 40 dB (power gain). The

only possible way to see this much gain, however, is if the pump beam has

enough power to give to the signal beam (see Figure 3.14). In order to

maximize the photorefractive gain, therefore, the ratio of the powers between

the pump beam and the signal beam must be greater than the gain of the

photorefractive. If the ratio of powers in the two beams is less than the

possible photorefractive gain, then the pump beam will be depleted, causing

a nonlinear saturation in the amplification of the signal beam.

The analysis of opto-electronic ICA in chapter 2 assumes that the loop

beam will be amplified by the correlated portions of the input beam and the

amplification is linear. In other words, the photorefractive gain must not

be saturated because this introduces a second nonlinearity to the feedback

loop. The unsaturated regime can be reached in two different ways. First, a

photorefractive crystal with low gain is chosen. A low gain crystal is relatively

thin. The crystal that is used in the low-bandwidth system is approximately

3 mm wide. Second, the power ratio between the loop beam and the input

beams should be much higher than the gain of the crystal. This is more

easily achieved with a low gain crystal. These two approaches to having a

linear gain due to the photorefractive crystal have been followed. The loop

beam power is set to approximately 130 nW, and the input beam powers

are each set to approximately 3 mW, a ratio of 23,000. This means that if

the gain is significantly less than 23,000, the crystal should be in the linear
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Figure 3.14: Photorefractive crystal gain saturation. (a) The pump-to-signal
ratio is smaller than the photorefractive gain, limiting the actual observed
gain and saturating the crystal. (b) The pump-to-signal ratio is larger than
the photorefractive gain, allowing the maximum increase in the signal beam.

regime.

To measure the gain of the photorefractive crystal, the ratio of the input

beam power versus the output beam power can be measured. The gain ratio

will stay constant as the input power is varied if the gain is in the linear

regime. The gain measurement of the photorefractive crystal used in the

system is shown in Figure 3.15. The constant slope of the curve shows that

the gain is indeed in the linear regime, and that the gain is approximately

330. This gain value is, as required, less than the beam power ratio of 23,000.
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Figure 3.15: Measured photorefractive gain. This plot shows a gain of 330.
The gain is linear if the input beam power is kept below 130 nW.

3.4.3 Photodetector

The signal in the feedback loop is converted from an optical signal to an

electronic one via the photodetector. There have been two primary photode-

tectors that have been used in the low-bandwidth ICA setup. The first of

these is a single photodiode FFD-100 EG&G detector with a bandwidth of

approximately 3 MHz. The second photodetector is a differencing photode-

tector that uses two PIN-5DI photodiodes and has a bandwidth of approx-

imately 100 kHz. The signal from these photodiodes is differenced. This

scheme is used to remove the laser amplitude noise from the signal. One of
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the diodes sees only the laser beam, along with its noise, while the other

sees both the feedback loop signal and the laser noise. When the two are

differenced, the laser amplitude noise cancels between the two diodes.

3.4.4 Electronic Amplifiers

Once the loop signal has been detected, it must be electronically amplified

before it is reimposed on the beam by the electro-optic modulator. The

amplification is accomplished by a set of two amplifiers. The first amplifier

is an Ithaco 1201 preamp, which is discussed in section 3.3.2. Two high-

voltage amplifiers have been used as well, the Trek 603b-3 amplifier, also

discussed in section 3.3.2, and the FLC 400DI. The FLC amplifier is very

similar to the ones used on the input channels, except that there is an inverter

placed between two of the original FLC 400D amplifiers. These amplifiers

can therefore be used to double the amount of voltage (to 800 V peak-to-

peak) if they are used as a floating voltage. They have the same bandwidth

as the input FLC amplifiers as well (100 kHz).

3.5 Homodyne detection circuitry

3.5.1 Homodyne theory

In order to change the loop phase modulated signal into a detectable ampli-

tude modulation, a homodyne detection scheme is used. Homodyne detection
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is a reintroduction of the laser carrier (shifted by 90 degrees from the origi-

nal carrier) to the loop beam. Mathematically, a phase modulated signal is

represented as:

fc (t) = A cos [ωct + ∆θ cos (ωmt)] (3.6)

where ωc is the carrier frequency, ωm is the modulation frequency, A is the

carrier amplitude, and ∆θ is the modulation depth. The modulated signal

in this case is cos (ωmt). Note that there is no amplitude modulation present

in Equation 3.6.

The modulation depth, ∆θ, is assumed to be very small, or ∆θ << 1.

With this simplification and some algebraic manipulation, Equation 3.6 can

be written as:

fc (t) = A cos (ωct)− A∆θ sin (ωct) cos (ωmt) (3.7)

The carrier suppressed signal is represented as:

fc−C.S. (t) = −A∆θ sin (ωct) cos (ωmt) (3.8)

where the term containing ωc is removed.

The reintroduction of the carrier (the homodyne beam) at the photodiode

is represented as:

fdetected (t) = [−A∆θ sin (ωct) cos (ωmt)] cos (ωct + ϕ) (3.9)

where the reintroduced carrier has a phase of ϕ from the original carrier.

With a bit of manipulation, this can be rewritten as:

fdetected (t) =
A∆θ

2
cos (ωmt) sin ϕ +

A∆θ

2
cos (ωmt) sin (2ωct− ϕ) (3.10)
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The second term in this detected signal has a frequency of 2ωc, which is

filtered out. The first term of Equation 3.10 is a reproduction of the original

modulation signal, cos (ωmt), except that it is multiplied by some amplitude

coefficients. In particular, the amplitude of the detected signal is maximized

if the phase of the reintroduced carrier is 90 degrees from the original carrier.

Notice that as the phase shift of the carrier goes from 90 degrees back to 0

degrees, the amplitude modulation disappears. The system will therefore

be required to maintain a 90 degree phase shift on the homodyne beam

throughout the system operation.

3.5.2 Homodyne circuit

The homodyne detection circuit that maintains the 90 degree phase shift on

the carrier against environmental drift (including temperature changes, air

currents, and even dust) is shown in Figure 3.16. The loop beam is split (at

point 2 in Figure 3.16) just before modulation into the loop beam and the

homodyne beam. The homodyne beam is recombined with the loop beam

at point 3. The other components are necessary to actively maintain the 90

degree carrier shift.

The 90 degree phase shift is generated by the second mirror in the in-

terferometer arm, which sits on a piezo-electric crystal. There is a position

translation in the mirror if a voltage is placed across the piezo-electric crys-

tal. The mirror provides a 2π radian phase shift for 532 nm laser light for

every 2.5 volt increase in the piezo voltage.
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Figure 3.16: Homodyne detection circuitry. This circuit utilizes a feedback
loop to provide the proper carrier phase to one of the interferometer arms.
The phase is set with a piezoelectric mirror controlled by the lock-in ampli-
fier’s error signal.

Figure 3.16 shows a control feedback loop to maintain the proper voltage

on the piezo-controlled mirror to maintain the 90 degree phase shift. The

objective is to maximize the signal reaching the loop photodetector. Likewise,

this implies a minimization, or ideally the complete disappearance, of a signal

that has a carrier 90 degrees off from the carrier in the loop beam, as described

in Equation 3.10. It is actually the minimized signal that will be observed and

tracked. The signal used for stabilizing the piezo-controlled mirror feedback

loop is a 90 kHz signal modulated onto the loop beam. This ensures that

there is always a known signal present on the loop beam to track.

Several polarization techniques are used to track the minimum of the 90

kHz signal that are highlighted in Figure 3.17. A quarter wave plate is placed
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in the homodyne arm to provide a 90 degree shift between the two polariza-

tions of the homodyne beam. One of these polarizations is be used in the ICA

feedback loop detection, and one is be used in the piezo-controller feedback

loop. The horizontally polarized homodyne beam mixes with a portion of the

loop beam and is detected by photodetector 2 in Figure 3.17. The vertically

polarized portion of the homodyne beam mixes with the loop beam and is de-

tected at photodetector 1, the ICA feedback loop photodetector. Similarly,

a half wave plate is placed in the loop beam arm of the interferometer to

provide a 180 degree phase shift between the two polarizations of the signal

beam. The half wave plate is used so that the vertical polarization of the

loop signal will be mixed with the horizontal polarization of the homodyne

beam.

The phase of the homodyne beam is adjusted by changing the voltage on

the piezo-controlled mirror. If the voltage is set so that the 90 kHz signal

detected on photodetector 2 disappears, then the signal on photodetector 1

is maximized.

The signal from photodetector 2 is fed into a lock-in amplifier that is

phase-locked to the 90 kHz signal. This allows very precise detection of just

the 90 kHz signal, and filters out all noise sources that may also be present

on the laser beam. The output of the lock-in amplifier is governed by the

equation:

Vo = ViA cos (φ) (3.11)

where Vi is the amplitude of the detected 90 kHz signal, A is a linear gain
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Figure 3.17: Homodyne detection circuitry beam phase shifts. The quarter-
wave plate creates a 90 degree phase shift between the horizontal and vertical
components of the homodyne arm. Similarly, a 180 degree phase shift is
created by the half-wave plate in the loop arm beam. When the signal
detected on photodetector 2 is minimized, the signal on photodetector 1 is
maximized.

setting, and φ is the phase difference between the reference 90 kHz signal and

the detected 90 kHz signal. The phase difference between the two signals

is 0 degrees, which maximizes the cosine term. The output of the lock-in

amplifier is therefore directly proportional to the amplitude of the 90 kHz

detected signal, Vi. If the amplitude drops to 0 volts, then the output of the

lock-in is also 0 volts, at the exact voltage when the carrier phase has the

correct shift. The lock-in output can therefore be used as an error signal to

maintain the 90 degree phase shift on the carrier. This signal is used directly
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as the voltage on the piezo-controlled mirror.

If the piezo-controller feedback loop is operating properly, a stable 90

kHz signal can be observed on the ICA feedback loop photodetector, and no

signal is present on the piezo-controller loop photodetector.

3.6 Measurement circuitry

The opto-electronic ICA system output is the same as the signal in the feed-

back loop after it reaches a steady state. In order to evaluate the system

performance, the output signal is compared to the original unmixed input

signals. The unmixed signals are output on the third and fourth channels of

the computer sound card. These original, unmixed signals are used as shown

in Figure 3.18. The evaluation circuitry is connected to the feedback loop at

point 4 in Figure 3.1.

The signal that exists in the feedback loop, L (t), consists of some com-

bination of the initial signals, s1 (t) and s2 (t). The proportion of each signal

present in the loop is measured using an analog correlation of the loop output

with both the initial signals, s1 correlation voltage and s2 correlation voltage. Each

correlator is an analog 50 kHz multiplier followed by a low pass filter with a

cutoff frequency of 1 Hz allowing a 1 second integration time. This filter time

constant is on the same order as that of the photorefractive crystal, ensuring

that the observed correlation changes with the slowly varying signal ampli-

tudes. If the DC level at the filter output is at zero volts, then the initial
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Figure 3.18: Output performance and evaluation circuitry. This subsystem
performs correlation of the system output with the original signals. The
separation performance is calculated as a ratio of these two correlations.

signal and the loop signal are uncorrelated. The achieved signal separation

is determined by the ratio of the output DC voltage for both initial signals

as given by the formula:

Signal separation =

∣∣∣∣20 log

(
s1 correlation voltage

s2 correlation voltage

)∣∣∣∣ (3.12)

The signal separation parameter is used in chapter 4 as an evaluation of the

system performance.
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3.7 Summary

In summary, the implementation of the 100 kHz bandwidth opto-electronic

ICA system uses several sub-systems in order to achieve a physical realiza-

tion of the theory described in chapter 2. The input channels are designed to

linearly modulate the computer-generated orthogonal signal mixtures onto

laser beams before they are input into the feedback loop. The optical carrier

is suppressed from from the phase modulated spectrum to eliminate false cor-

relation between the signals using photorefractive carrier suppression. The

feedback loop photorefractive crystal is set so that its gain is linear by de-

creasing the loop signal intensity. The ICA feedback loop signal is detected

using a homodyne detection scheme. A second feedback control loop main-

tains the proper carrier phase against environmental variations. In order

to evaluate the system performance, the output is compared to the original

signals using two analog correlators.
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Chapter 4

100 kHz ICA experimental

results

4.1 Introduction

The theory described in chapter 2 can be used to verify the system described

in chapter 3 through experiment. This chapter details the experimental data

generated by the opto-electronic ICA system, in particular the open-loop

gain for sinusoidal and Gaussian signals. The sinusoidal steady-state signal

separation performance as described in section 2.3.4 is measured. In addition,

signals of arbitrary probability densities, as described in section 2.4.6 are

separated. The verification of the system dynamics includes experiments

with super-Gaussian and Gaussian signals (section 2.4.6). This chapter also

describes experiments with time-varying mixtures, and with different types



of communication signals, including frequency modulated signals competing

against Gaussian noise and two ones-density bitstreams competing against

each other.

4.2 Open-loop gain measurements

The experimental setup for measuring the open-loop gain is shown in Fig-

ure 4.1. The feedback loop has been opened between the loop photodetector

and loop preamplifier. The input signal, vin is a small amplitude signal that

can be input into the loop preamplifier. The signal is detected by the loop

photodetector after traversing the feedback loop. The feedback loop gain, A,

is defined as

A =
vout

vin

. (4.1)

As stated in chapter 2, there are two types of gain present in the feedback

loop: linear electronic gain, generated by the electronic amplifiers, and non-

linear gain generated by the combination of the electro-optic modulator and

the two-beam coupling in the photorefractive crystal. Two-beam coupling

gain requires a second input beam into the photorefractive crystal. Ideally,

both input channels are identical and either can be used. The input channel

driving voltage is set to the level that it will be at when the system is oper-

ating with a closed feedback loop: ±200 volts driving the input modulator.

The output signal can be measured in one of two ways, depending on

the type of input signal that is selected. If a sinusoidal signal is used, then
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Figure 4.1: Open-loop system setup. The feedback loop in the open-loop
gain measurement is broken between the loop photodetector and the loop
preamplifier. The input signal is input directly into the feedback loop and
on one of the two input channels. Both the input signal amplitude and
probability density function can be varied.

the output signal amplitude can be measured on a digital signal analyzer,

Figure 4.2. In this case, the digital signal analyzer is used to both generate

the input signal and to compute the gain from Equation 4.1.

If a random signal with an arbitrary probability distribution function is

used, the output signal amplitude can no longer be read off the digital signal

analyzer. In this case, an analog correlator must be used to compute the

gain. This correlator is identical to the ones that are described in section
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Figure 4.2: Open-loop gain measurement using digital signal analyzer. The
digital signal analyzer is used to generate both the input sinusoidal signal
and perform the input to output signal ratio.

3.6, and consists of an analog multiplier followed by a low pass filter. This

measurement setup is shown in Figure 4.3. In this case, two correlations

are preformed: on the input signal and on the output signal. The input

signal correlation with itself gives Vin, and acts as a calibration voltage for

the correlator. The output correlation measurement gives Vout. The gain is

found by taking the ratio of the two DC correlation voltages.
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Figure 4.3: Open-loop gain measurement using analog correlator. An analog
multiplier and 1 Hz cutoff low pass filter are used to make an output corre-
lator, which enables open-loop gain testing on random signals with arbitrary
probability distribution functions.

4.2.1 Sinusoidal signal measurement

Using the digital signal analyzer setup described in Figure 4.2, the gain

curve shown in Figure 4.4 has been measured by sweeping the input signal

amplitude from 0 to 42 mV. The horizontal axis has three sets of labels:

the measured voltage after the photodetector, the computed voltage after

electronic amplification, and normalized to Vπ. The solid line shows the gain

computed from Equation 2.26 assuming an initial gain, G0, of 160 and fitted
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to the proper Vπ axis. The parameter G0 is linearly dependent on the preamp

gain, which cannot be set to the proper value until the loop is closed (see

section 4.3.3). As a result, G0 varies somewhat in the plots shown in this

section, but always stays within a reasonable range, from approximately 100

to 300.

Figure 4.4: Sinusoidal open-loop gain: measured (x) and theoretical (solid
line).

The gain of the two input channels must be closely matched. Figure 4.5

shows a gain measurement using both channel 1 and channel 2. By varying

the position of the beams in the loop photorefractive crystal, the gain of

each channel can be changed until they are precisely matched. Once this

gain match is accomplished, the position of the input beams and loop beams
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are fixed, and gain variations in the two channels are compensated by the

variable preamplifiers.
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Figure 4.5: Two-channel sinusoidal open-loop gain results. This plot shows
the measured and theoretical open-loop gain for both input channels. The
gains in each channel must be adjusted until they are closely matched.

If the gain provided by the photorefractive crystal is saturated, as dis-

cussed in section 3.4.2, the total gain of the feedback loop drops for lower

input voltages, as shown in the curve in Figure 4.6. Also shown in Figure 4.6

is a comparison of the data taken by the digital signal analyzer setup (Fig-
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ure 4.2) and the correlator setup (Figure 4.3). The dots are DSA data, and

the crosses are correlator data. These two methods show good agreement

with each other. This comparison indicates that the correlation measure-

ment method is as accurate as the digital signal analyzer measurement and

that all scaling factor differences between the two measurements have been

accounted for properly.
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Figure 4.6: Open-loop gain with saturated photorefractive gain. This plot
shows decreased gain at lower input voltages when the photorefractive gain is
beginning to saturate. The crosses and dots demonstrate the match between
the digital signal analyzer and analog correlator measurement techniques.
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4.2.2 Gaussian signal measurement

One of the most important conclusions from the chapter 2 theory is that the

gain of the feedback loop is dependent on the probability density function of

the input signal. The gain of a completely random signal with a Gaussian

PDF, measured using the setup of Figure 4.3, is shown in Figure 4.7. The

data points are the measured data, and the solid line is a theoretical fit using

the gain curve from Equation 2.26 given a Gaussian input. The maximum

gain on this plot is shown to be approximately 8, which is lower than all values

found in the sinusoidal case. The reason for this is that the input signal,

generated by the Agilent 33250A arbitrary function generator, needs to have

an amplitude of 6.1 volts zero-to-peak in order to have the same variance

as the sinusoidal signals. However, the highest voltage that the function

generator is capable of achieving is 1.56 volts, almost 4 times too small.

This severely limits the gain of the photorefractive because the input beams

are less intense, causing saturation more easily than in the sinusoidal case.

However, despite this limitation, the measured data follows the theoretical

data very well.

The data in this section comfirm that the open-loop gain of the system is

dependent on the probability density function of the input signal. In addition,

the measured gain closely represents the theoretical gain of Equation 2.26.
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Figure 4.7: Gaussian signal open-loop gain. This plot shows the measured
and theoretical open-loop gain of a random signal with Gaussian distribution.

4.3 Sinusoidal signal separation

The ultimate goal of the opto-electronic ICA feedback loop is to perform

signal separation on two input signals. The sinusoidal input signals used in

this section are always generated and mixed by computer. The output is

observed in two possible places in the feedback loop: either taken directly

from the photodetector, or after amplification by the loop preamp.
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4.3.1 Experimental setup

The setup used to perform the sinusoidal signal separation is shown in Fig-

ure 4.8. This is almost exactly the same setup as is described in the previous

section except that the loop is now closed. The photodetector output is fed

to the digital signal analyzer to determine the signal separation value, and

the preamp output is observed on an oscilloscope to determine the qualitative

separation. The oscilloscope measurement proves to be necessary during the

initial tuning stages despite the fact that it not used to record data because

the signal on the oscilloscope changes in real time as the system is tuned. In

contrast, the signal viewed on the digital signal analyzer has approximately

one second of delay. The delay makes swift tuning of the input channel gain

and phase difficult when using only the DSA.

The resulting data is represented on plots of signal separation versus

mixture rotation angle. Recall from section 3.3.1 that an orthogonal signal

mixture can be given by one parameter, θ. To show that the system behaves

the same for all input mixtures, the separation is measured for input mixtures

that range from -45 degrees to + 45 degrees.

4.3.2 Sinusoidal signal separation measurement

Using two sinusoidal signals, with frequencies of 1.5 and 1.6 kHz, and equal

powers, the signal separation shown in Figure 4.9 is measured. To gather this

data, all signal mixtures are prepared and stored on computer. The signal
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Figure 4.8: Closed-loop sinusoidal signal measurement setup. The closed-
loop experimental setup for sinusoidal signals requires only the digital signal
analyzer to determine the signal separation value. The pre-amplified signal
is also observed on the oscilloscope for ease of adjustment.

mixture is rotated from +45 to -45 degrees in 5 degree steps. Figure 4.9

shows 20 dB signal separation for all mixtures.

Upon further investigation of this data, it appears that the system achieves

higher signal separation for mixture rotations with a positive θ. The reason

for this is that the system is tuned to achieve the best separation possible

at the beginning of the rotation measurements and not changed throughout

the remainder of the measurement. The decreased system performance at

negative mixture angles is due to environmental drift changing the relative
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Figure 4.9: Sinusoidal signal separation. This plot shows the measured signal
separation for mixtures between -45 and 45 degrees on two sinusoidal signals,
measured with the digital signal analyzer.

photorefractive gain in the two input channels.

The best signal separation that has been observed for two sinusoidal sig-

nals is on the order of 30 dB, although this high separation value is difficult

to achieve for more than a minute or two before it drifts to a more consistent

value of 20 dB. At a separation value of 30 dB, the measurement is limited

by the system noise, which is described in more detail in section 4.6.4.

To quantify the high sensitivity environmental drift has on signal sepa-

ration, particularly at high separation values, the following experiment was

performed on a 45 degree mixture of signals. First, the input channel gains
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are set to provide the maximum signal separation. This is measured at 20

dB. Next, in less than 2 seconds, (shorter than the change due to environ-

mental drift) the gain on preamp 2 is varied by 6.5%, from 18.2 to 17.0.

This change, the smallest that can be accurately reproduced by hand on the

preamps, causes 12 dB decrease in signal separation. The new signal sepa-

ration value is approximately 8 dB. This experiment shows that extremely

small changes in the gain can cause high signal separation variations.

4.3.3 Loop loss measurement

The proper way to set the loop preamplifier gain is by using the loop elec-

tronic gain to completely compensate for the loop loss. In order to accomplish

this, the loop loss must be measured. To measure the loss, the photorefrac-

tive two beam coupling is turned off by blocking the input beams. At this

point, the gain and the loss in the feedback loop are both linear. If the elec-

tronic gain in the loop is increased, eventually the total loop gain will rise

above unity, and the loop will break into spontaneous oscillation. It is at the

threshold between no oscillation and spontaneous oscillation that the gain

and the loss in the loop are equal. Ideally, the gain in the loop is set to just

below this point.

We have measured the gain at the point when the loop breaks into sponta-

neous oscillation to be approximately 50 dB. The gain is therefore be reduced

to around 40 dB during system operation, less than the point that it breaks

into spontaneous oscillation. The gain provided by the photorefractive is
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high enough to overcome the loss. In other words, the addition of the pho-

torefractive gain makes the total gain higher than the oscillation threshold.

4.3.4 Phase error results

In section 3.3.2, the different methods for varying the phase of the input sig-

nals is described. However, it is convenient to know how the system behaves

when there is a phase mismatch between the two channels. If the input mix-

ture angle is at 0 degrees, then a phase error in one of the channels merely

phase delays one of the two signals, making it a new signal. In this case, a

phase error should have no affect on the signal separation. The phase error

between the two channels should affect the system the most when the sig-

nal mixture is at ±45 degrees. In this case, each signal is present on each

channel. Signal 1 on channel 1 will therefore be phase delayed with respect

to signal 1 on channel 2. As these two portions of signal 1 become more out

of phase with each other, they also become more uncorrelated, resulting in a

reduced signal separation.

Based on the heuristic model of phase error between the two channels,

undiminished signal separation is expected at 0 degrees mixture rotation,

while reduced signal separation is expected at ±45 degrees. A signal separa-

tion graph, presented in Figure 4.10, was made with phase error of approxi-

mately 14 degrees due to the Trek 601b phase error discussed in 3.3.2. This

plot shows exactly the pattern expected for a phase error.

It is possible to use the difference in signal separation at 0 degrees and
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Figure 4.10: Sinusoidal signal separation with phase error. This plot shows
the measured signal separation for mixtures between -45 and 45 degrees on
two sinusoidal signals with a 14 degree phase error between the two input
channels. The signal separation at 0 degrees is still near 20 dB, but it de-
creases at ±45 degrees.

45 degrees to calibrate out phase error in the channels. Two signal mixtures,

at 0 degrees and at 45 degrees, are generated. The phase on one channel is

tuned while the 45-degree mixture is input into the system. Once the signal

separation at 45 degrees reaches the signal separation at 0 degrees, the phase

is properly set.

This method for setting the phase of the input channels is also useful

for setting the gain. Again, using the same logic as for phase, the gain

error between the channels is the worst for an input mixture of 45 degrees.

Therefore, when the 45-degree mixture has the same separation as the 0-
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degree mixture, both gain and phase are properly set.

4.3.5 Signal winner measurements

A gain error between the two channels also appears in a different way for a 0

degree mixture. In this mixture, a gain error will increase the power present

in one signal with respect to the other. Recall from section 2.4.1 that the gain

in the photorefractive crystal is independent of the signal mixture rotation

angle provided that the signals are orthogonally mixed. The power mismatch

between the signals invalidates this assumption. The signal with more power

will receive more gain within the photorefractive medium. As a result, with

a 0-degree mixture, the signal that has more power will be more likely to win

the competition.

Section 2.3.3 demonstrated that the system should randomly choose one

of the two input signals with equal probability. If there is a gain mismatch

between the two channels, the system will preferentially choose one signal

over the other.

In an attempt to measure the randomness of the signal selection, the fol-

lowing experiment is performed. First two signals with a zero degree mixture

are input into the system and the system selects one of the signals. Then, the

inputs are turned off, the photorefractive gratings are given time to dissipate

with the help of some bright white light that is shined on the photorefractive

crystal. Next, the inputs are turned back on and the system re-selects one of

the signals. Ideally, the probability of selecting one signal after several mea-
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surements is 50%. After 11 tests, we have shown that the system selected

signal 1 six times, and signal 2 five times.

4.4 Arbitrary PDF signal separation

After the completion of the sinusoidal signal separation experiments, it is

necessary to test the system with completely random signals that have arbi-

trary probability density functions, as described in section 2.4. These random

signals are generated by computer, as described in section 3.3.1, and detected

using the correlation scheme in section 3.6. The accuracy of the correlation

scheme is verified using sinusoidal signals, as shown in section 4.2.2. Ideally,

the two signals output from the computer must be completely uncorrelated.

Using the analog correlators, the correlation of the two generated signals is

below the measurement noise floor.

The probability density functions used in the arbitrary PDF measure-

ments are:

pL (x) =
1

2
exp (− |x|) Laplace (4.2)

pG (x) =
1√
2π

exp

(
− |x|2

2

)
Gaussian (4.3)

pE (x) = Aexp

(
− |x|3

2

)
Exponential 3 (4.4)
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pH (x) =
1

π
√

1− x2
Harmonic (4.5)

These four density functions represent super-Gaussian, Gaussian, and two

sub-Gaussian densities respectively, as described in section 2.4.6. The differ-

ence between the functions used in section 2.4.6 and in these measurements is

that the uniform density has been replaced by the exp
(
− |x|3

)
density. The

reason for this difference is that the densities from Equation 4.2 to Equa-

tion 4.4 can all be represented by the function:

p (x) = Aexp

(
− |x|λ

B

)
(4.6)

by changing λ from 1 to 3, and choosing A and B to maintain a unity area

integral of a PDF.

4.4.1 At least one sub-Gaussian signal separation mea-

surements

Figure 4.11 shows signal separation plots for eight combinations of the sig-

nals represented by Equation 4.2 through Equation 4.5. In Figure 4.11, the

winning signal is always the signal with the lowest kurtosis, as expected from

the theory in section 2.4.6. This implies that the sub-Gaussian signals, the

harmonic and the exp
(
− |x|3

)
, will always win over the Gaussian and super-

Gaussian signals. If two sub-Gaussian signals compete either one can win,

although the system shows a preference for the signal with harmonic PDF,

which has slightly lower kurtosis.
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The large variations in the signal separation, from 20 dB to over 25 dB

arise from the high sensitivity of the system to small differences in channel

gains, as described in section 4.3.2.

Figure 4.11: Random signal separation with arbitrary PDFs. Computer
generated random noise signals with super-Gaussian, Gaussian, and sub-
Gaussian densities have been tested. In every case, the winning signal
has lower kurtosis. Line number: 1. Laplace vs. Harmonic 2. Harmonic
vs. Harmonic 3. Gaussian vs. Harmonic 4. Harmonic vs. exp

(
− |x|3

)
5. exp

(
− |x|3

)
vs. exp

(
− |x|3

)
6. Laplace vs. Gaussian 7. Laplace vs.

exp
(
− |x|3

)
8. Gaussian vs. exp

(
− |x|3

)
.
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4.4.2 Gaussian signal separation measurements

The theory in section 2.4.6 predicts that the system will not be able to ade-

quately separate two purely Gaussian signals. The Gaussian signal separation

experiment results in the separation plot shown in Figure 4.12.

This plot shows that the signal separation is not constant for any input

mixture rotation. The separation values range from nearly 0 dB to 10 dB. In

addition, this data changes as it is recorded, making data collection difficult

for these signals. This data is consistent with the prediction that the system

is unable to separate two Gaussian signals.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

Mixture Rotation, degrees

Si
gn

al
 S

ep
ar

at
io

n,
 d

B

Figure 4.12: Random signal separation with Gaussian signals. The signal
separation for random signals with Gaussian probability densities varies be-
tween 0 and 10 dB. The separation for each of these points also changes with
time.
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4.4.3 Laplace signal separation measurements

Section 2.4.6 theory predicts that the system is unable to separate two super-

Gaussian signals as well. However, unlike the purely Gaussian case, the

super-Gaussian signals have equal amplitudes at the system output. A 0

dB signal separation has been measured with both a 0-degree mixture and a

45-degree mixture.

4.5 Time-varying measurements

All of the separation data thus far has been presented as signal separation

versus input mixture angle. The signal separation value is only one data

point for every input mixture. While the system is designed to operate at

steady state, when the output should only contain one signal, it is important

to observe the system behavior as it varies in time.

4.5.1 Time-varying system setup

In order to track the signal separation as a function of time, it is necessary

to read the correlation measurement voltages more rapidly than the system

adapts to the signals. This rapid reading of the multimeters is accomplished

by a GPIB link to a computer. The two multimeters can be probed at

approximately 2.8 times per second. This rate is slightly faster than the

1-Hz correlation filters and is fast enough to measure the signal separation.
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4.5.2 Time-varying signal separation

Figure 4.13a shows the correlation voltage of the two signals (1.5 and 1.6

kHz sine waves) over a period of 33 seconds. The signals are turned on

at approximately 4 seconds. In this experiment, the correlation voltage for

both signals is negative. This is due to the random permutation ambiguity

described in appendix 1. If this same experiment is run at a later time, one

or both of the correlation voltages could be positive.
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Figure 4.13: Correlation voltage as a function of time. The correlation volt-
age and signal separation in this plot are measured in time. The signals are
turned on at 4 seconds and have achieved 10 dB separation by 8 seconds.

Both signals grow at approximately the same rate for the first 2 seconds,

from a correlation voltage of 0 volts to -200 mV. After two seconds, one of

the signals begins to be suppressed. Figure 4.13b shows the signal separation

computed from this data. The data is inaccurate when both signals are
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turned off, resulting in noise for the first 4 seconds of the plot. The separation

drops to 0 dB after the signals have been turned on but before they are

separated. During the next two seconds, the separation increases to 11 dB.

The separation then slowly increases from 11 to approximately 15 dB during

the rest of the measurement. In this experiment, the system does not perform

as well as it did during the signal separation measurements described in

section 4.3.2, likely due to a misalignment of the interferometer.

4.5.3 Time-varying mixtures

The mixing matrix will be time varying if the signals are moving or if the

propagation environment changes in time [49], [50]. The time required to

separate two signals in the system is dictated by the photorefractive time

constant. Essentially, it takes around one second to set up a grating within

the photorefractive crystal. This time period is convenient for long inte-

gration times of the signals, but limits how quickly the signal mixture can

change.

To measure how easily the system can track one signal with a changing

mixture, the following experiment is performed. The input signal mixture

rotation angle is increased at different rates from 1 degree per second to 60

degrees per second. The correlation voltages are recorded, and the signal

separation is computed from the data.

Figure 4.14 shows signal 1 or signal 2 winning for a 1-degree per second

rotation angle increase. As can be seen from the output correlation voltages,
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the system tracks one signal through a mixture that varies at this rate.

Figure 4.14: 1-degree per second rotating mixture. Plots (a) and (b) show
signal 1 winning with a rotating mixture. (c) and (d) likewise show signal 2
winning.

Figure 4.15 shows a 20-degrees per second rotation. Here, the system still

tracks a single signal, but the signal separation periodically varies between

5 dB and 20 dB. Figure 4.16 shows an increase in the rotation rate to 30-
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degrees per second. In this case, the system is unable to keep up with the

mixture variation, and the winning signal alters periodically between signal

1 and signal 2.

Figure 4.15: 20-degrees per second rotating mixture. (a) The correlation
voltage and (b) signal separation as a function of time. A mixture that
changes at the rate of 20-degrees per second shows an average signal separa-
tion of approximately 10 dB. However, the system is still able to track one of
the signals. The peaks in the signal separation value correspond to mixture
angles that are multiples of 90 degrees, when the signals are not mixed on
the channels.

These plots show experimentally that the system is able to track a sig-

nal mixture that is changing at 20-degrees per second, but not at 30-degrees

per second. While this experiment highlights the system’s ability to track

through time varying mixtures, it is difficult to give physical insight into a

moving orthogonal mixture. If two signals are transmitted from two mov-

ing sources, and the received mixture is whitened, then it is this whitened
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Figure 4.16: 30-degrees per second rotating mixture. (a) The correlation
voltage and (b) signal separation as a function of time. A mixture that
changes at the rate of 30 degrees per second shows an average signal separa-
tion of approximately 10 dB. In this case, the system is unable to track one
of the signals. The winning signal changes from signal 1 to signal 2 as the
mixture rotates.

mixture that can change at 20-degrees per second and still be separated.

However, there are many variables that could cause the original mixture to

vary extremely rapidly, including the source distance from the receiver, time-

varying transmitted power, and the propagation environment. It is outside

the scope of this thesis to quantify the rate of change in signal mixtures for

all these variables.
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4.6 FM signal and Gaussian noise separation

The opto-electronic ICA system can also be used with data carrying signals

to make an audio demonstration of its separation ability. The first example

is a frequency-modulated (FM) carrier that is mixed with Gaussian noise.

The modulating signal is an arbitrarily chosen music signal. Ideally, when

the output of the system is demodulated, the music will be heard and the

noise suppressed by 20 dB.

4.6.1 Frequency modulation probability density func-

tion

As described in section 2.4.6, if at least one of the input signals is sub-

Gaussian, the opto-electronic ICA system will separate the two signals. In a

mixture of a Gaussian signal with a sub-Gaussian signal, the Gaussian signal

will be suppressed.

It is interesting to find what the kurtosis of a music signal is. To answer

this question, the kurtosis of nine different music signals (with normalized

variance) is computed based on Equation 2.38, and the results are shown in

Table 4.1.

Table 4.1 illustrates different aspects of the probability densities of music

signals. First of all, they are all super-Gaussian (kurtosis >3). This generally

occurs because there is a substantial amount of low-amplitude time in a

song. Low amplitude time, as seen in Figure 4.17, is the time when the

109



Table 4.1: Comparison of kurtoses of music signals

Title Kurtosis

Ave Maria, (Bach) 4.2554
Pachelbel’s Canon, (Pachelbel) 5.8162
Can’t Buy Me Love, (The Beetles) 3.3499
Fur Elise, (Beethoven) 8.9962
Hallelujah Chorus, (Handel) 5.8620
Moonlight Sonata, (Beethoven) 11.3876
Midnight Train to Georgia, (Gladys Knight) 4.6341
Help!, (The Beetles) 4.7747
Johnny B. Goode, (Chuck Berry) 3.2629
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signal amplitude is close to zero. By concentrating the energy near zero,

the PDF becomes more peaked, and therefore is more super-Gaussian, as

seen in Figure 2.7. This table also illustrates that music signals that have

more dynamic range (more amplitude levels), such as the Moonlight Sonata,

generally are more super-Gaussian than songs with less dynamic range, such

as Johnny B. Goode.

Figure 4.17: Generic super-Gaussian music signal. In this common music
signal (from Ray Lynch, Deep Breakfast), the amount of time that the signal
spends with low amplitude outweighs the high-amplitude time. This tends
to make music signals super-Gaussian.

It is clear, however, that if these raw, super-Gaussian music signals are

input in the system, they will have less gain than a competing sub-Gaussian
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signal and will be suppressed. Since we would like to have the music signal

win the competition, suppressing them is not desirable. It is therefore neces-

sary to alter the probability density function of the music signals from super

to sub-Gaussian.

A frequency modulated signal is always sub-Gaussian. An FM signal,

fc (t), is described by the function [51]:

fc (t) = A cos

ωct + B

t∫
0

fm(τ)dτ

 (4.7)

where A is the carrier amplitude, ωc is the carrier frequency, fm (t) is the

modulating signal, and B is proportional to the modulation depth. This

equation shows that the amplitude of the carrier never is changed, but the

frequency varies according to the modulation signal. As a result, the proba-

bility density function is exactly the same as the probability density function

of the carrier itself:

pHarmonic (x) =
1

π
√

1− x2
. (4.8)

This probability density function is the probability density function of a

sinusoidal, and has a kurtosis of 1.5 (or an excess kurtosis of -1.5). Thus,

all signals, whether super-Gaussian, Gaussian, or sub-Gaussian, will be con-

verted to a sub-Gaussian signal if they are frequency modulated.
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4.6.2 Digital modulation and demodulation of an FM

signal

FM signals can be generated in two different ways: digitally (in Matlab and

output as a sound signal as described in section 3.3.1); and using a voltage

controlled oscillator (VCO), which will be described in the following section.

The digital generation of an FM signal exactly follows Equation 4.7. The

signal to be modulated is chosen. It is then digitally integrated by a cumu-

lative summation. The resulting signal is then simply added to the phase of

the carrier signal. Experimentally, the modulation depth, B is less than 0.3

in order to get non-distorted demodulation. The carrier frequency, ωc must

be chosen to be smaller than the Nyquist frequency of the output sampler.

For the Audigy sound card, with an output of 44.1 kHz, this means that the

carrier frequency must be smaller than 22.05 kHz. However, there is a second

concern when generating FM signals. The frequency of the sidebands must

also be lower than the Nyquist frequency. This implies that the bandwidth

of the modulated signal plus the carrier frequency should ideally be lower

than 22.05 kHz. If this is not the case, then there will be aliasing in the

demodulated signal. The carrier frequency is chosen to be 15 kHz, and the

sound signal bandwidth is limited to 7 kHz.

The second signal, a Gaussian noise source, is also generated in Matlab to

have the same variance as the FM voice signal. This determines the amount

of power in the Gaussian signal. We choose the noise spectrum and the FM
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spectrum to overlap, and furthermore the noise to be bandlimited to about

6 kHz centered at the FM carrier. A measurement of the spectrum of the

signal mixture is shown in Figure 4.18.

Figure 4.18: Spectrum of FM signal and Gaussian noise mixture. The ban-
dlimitted Gaussian noise, centered on the FM carrier, completely overlaps
the signal spectrum.

The output of the system is recorded and digitally demodulated. The

recording is made on the Audigy sound card at the same time as the signal

mixtures are input into the system. The record sampling frequency can be

set at either 44.1 kHz or 48 kHz. While either frequency is high enough to
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prevent signal aliasing, the 48 kHz recording frequency generates a 3.9 kHz

beat tone with the 44.1 kHz output frequency, and is therefore not used.

The recorded and saved signal is demodulated after the recording is made.

The drawback to this method is that the music is not played in real time as

the system separates the signals. The signal demodulation follows a common

FM demodulation scheme. First, the signal is multiplied by a copy of the

carrier. This carrier must have the same phase as the recorded carrier. The

proper phase is found by searching through all possible phases (from 0 to

180 degrees) in 1-degree increments until the output signal is maximized.

The resulting signal is low-pass filtered to remove the frequency doubled

components after multiplication with the carrier. A tenth order Butterworth

filter with a cutoff frequency of 8 kHz (programmed in Matlab) is used for

this task. Both the music and the noise can be heard simultaneously when

the signal is demodulated. The ICA system then suppresses the noise at the

time constant of the photorefractive.

4.6.3 Analog modulation and demodulation of an FM

signal

The frequency modulation can also be done in the analog domain. In this

case, the music signal is output from the computer and fed into a voltage

controlled oscillator. To demodulate the signal, the carrier is multiplied with

the FM signal, the output is low pass filtered, and the correct carrier phase
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is found with a phase locked loop.

The advantage of this method is that it can be done in real time. In

other words, the signal separation can directly be heard without having to

record the output signal first. The disadvantage to an analog modulation

and demodulation is that the signals cannot be mixed by computer, and a

special mixing circuit is required.

4.6.4 System noise measurements

In making signal recordings of demodulated music signals, it was found that

the system added noise. In an effort to remove the noise from the recordings

the added noise from each component in the system is characterized.

The measurements of each component (made with a digital signal ana-

lyzer), using a 15 kHz input sine wave, are shown in Table 4.2. There are two

ways to improve the systen SNR: either by lowering the noise or increasing

the signal strength. By careful alignment of the interferometer, the signal

strength is increased. The signal apparent on the loop photodetector is at

-32 dBVrms and the noise floor is at -85 dbVrms. This implies that the best

signal separation that can be measured above the noise floor is about 25 dB,

approximately equal to the the measured SNR of the worst components from

Table 4.2. This is above the average 20 dB signal separation, which implies

that the limiting noise is the suppressed Gaussian noise.
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Table 4.2: Measured Signal-to-Noise Ratio of System Components

System component SNR (dB)

Photodetector 25
Microphone 25
Function Generator 40
Channel 1 HV Amp 39
Channel 2 HV Amp 39
Loop HV Amp 1 39
Loop HV Amp 2 and Inverter 39
Loop Adder 39
Ithaco Preamps 40
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4.6.5 FM signal separation results

The experimental music recordings of signal separation convey independent

component analysis to the person listening. The signal separation is mea-

sured at 17 to 20 dB. Qualitatively, this means that if the music and noise

sound equally loud when mixed, after ICA, the noise is approximately 100

times quieter and cannot be heard. The recording time is generally under

1 minute before drift of the input channel gains causes reduced signal sepa-

ration. The drift problem can be compensated for with a dynamic feedback

gain control and is not a limiting factor.

4.7 Ones density binary signal separation

A second example of independent component analysis is separation of two

digitally modulated voice signals. The modulation scheme that is chosen

is a ones density modulation, the output of a sigma-delta analog-to-digital

converter (ADC). Figure 4.19 shows a sinusoidal signal before and after ones

density modulation. In this type of modulation, the signal is highly over-

sampled at many times the Nyquist frequency. The ones density bitstream

contains more ones to represent a high voltage input, and more zeros to rep-

resent a low voltage input. The time average across many periods of a ones

density bitstream is a representation of the original signal.

There are two types of sigma-delta ADCs that are commonly used: a

time sampling version [52], and a free-running version [53], and both use a
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Figure 4.19: Ones density modulation. These plots represent a sinusoidal
signal (upper plot) that is ones density modulated (lower plot). The average
number of ones and zeros in the digital signal corresponds to the voltage of
the original signal. The high-amplitude portions of the original signal are
represented by more ones.

feedback loop to produce the output modulation. The time sampling version

uses sample-and-hold circuits to generate a periodic bitstream. The effective

number of bits in this version of ADC is determined by its order (feedback

loop filter) and its oversampling rate [52]. The free-running sigma-delta ADC

does not use a sample-and-hold circuit, and generates the output bitstream
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at as high a frequency as allowed by the feedback loop. The actual output

of this free-running version is a periodic square wave with duty cycle that is

modulated by the analog input signal. Again, in this version, the free-running

average of the bitstream represents the modulated signal.

The experimental setup for binary signal separation is shown in Fig-

ure 4.20. The music signals are generated and output by the computer.

These signals are input into two identical free-running sigma-delta modula-

tors. The resulting pair of ones density bitstreams are mixed via an analog

mixing circuit which consists of a single adder and subtracter. The only sig-

nal mixture that is achievable using this circuit is a 45 degree mixture of the

two inputs. It is these two mixtures that are input into the opto-electronic

ICA system. It should also be possible to generate and mix these signals

entirely in the computer, although this experiment was not attempted.

4.7.1 Binary data probability density function

Like most modulation techniques, a ones density modulation changes the

probability density function of the modulated signal. In order to be used

in the system, the resulting density must be sub-Gaussian, as described in

section 2.4.5. If the input signal has a zero mean, then its ones density mod-

ulation is composed of 50% ones and 50% zeros. In this case, the probabilty

density is represented by two delta functions located at +1 and -1, each with

an area of 1
2

(see binary pdf in Figure 2.7). Using Equation 2.38, the resulting

kurtosis is 1 (or an excess kutrosis of -2), implying that it is a sub-Gaussian
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Figure 4.20: Ones density modulation setup. (a) The music signals are gener-
ated via computer, but they are encoded and mixed with analog sigma-delta
converters and mixing circuitry. The resulting 45-degree signal mixture is in-
put into the ICA system. (b) The generalized sigma-delta analog-to-digital
converter to generate ones density bitstream. The free-running modulator
does not use the initial sample and hold circuit or clock input.

density.
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4.7.2 Ones density demodulation

The demodulation of a ones density bitstream is just the time average of

the bitstream itself. While this computation can be done in many ways, the

simplest is to filter the bitstream with a low pass filter. The filter cutoff

frequency must be set above the bandwidth of the modulated signal, but

below the sampling frequency. For the sigma-delta ADCs used in the system,

the sampling frequency was chosen to be anywhere between 20 kHz and

approximately 70 kHz. The filter cutoff is chosen to be at approximately 8

kHz.

The low pass filter, design in ADS, is a 5th order elliptic filter, shown in

Figure 4.21. The response of this type of filter is -40 dB/decade at the cutoff.

A filter with such a sharp cutoff is desirable in the 100 kHz opto-electronic

system simply because the sampling frequencies and signal bandwidths are

very similar.

4.7.3 System noise measurements for binary signal sep-

aration

As in the FM signal experiments, the binary signal separation measurements

contain background noise that is not added by the input signals. In a simi-

lar manner to the FM signal separation experiments, the input and output

signal-to-noise ratio must be checked for each component of the system. In

these experiments, it is found that there is a substantial amount of laser noise
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Figure 4.21: Circuit of fifth-order elliptic filter for ones density demodulation.

present. This noise is generally reduced by adding a differencing photode-

tector to the system. The differencing photodetector is described in section

3.4.3. The final signal-to-noise ratio of the system is on the order of 20-25

dB, a reasonable number assuming 20 dB signal separation.

4.7.4 Binary signal separation results

The final recorded music using the binary ones density modulation scheme

has between 15 and 20 dB signal separation. Again, there is a minor fluc-

tuation in the separation value due to environmental drift, but recordings of

approximately 1 minute can be made. There is a low 400 Hz noise that can

be heard in the background of the output that has not been tracked down

yet.
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4.8 Summary of experimental results

This chapter has shown that the 100 kHz bandwidth opto-electronic ICA

system follows the theory set out in chapter 2. The system achieves 20

dB signal separation for two signals provided one of them is sub-Gaussian.

The feedback loop gain is dependent on the probability density function of

the input signals, and the signal with the highest gain is the winner. If both

signals have the same densities, and therefore the same gain, then the system

randomly selects one of the two signals. Nearly constant signal separation for

all input mixtures is observed, with variations due mainly to environmental

drift. The system adaptation time is on the order of 1 to 2 seconds, and

it is able to track one signal in a time-varying mixture of signals, provided

the mixture does not change too rapidly. Communications signals, including

frequency modulated signals and binary encoded signals have also been used

for audio demonstrations of independent component analysis.
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Chapter 5

Related and Future Work

5.1 Thesis contributions

The primary contributions of this thesis are as follows.

• Design and integration of the opto-electronic independent component

analysis system (chapter 3). This design includes the layout of all optical

components and supporting electronics.

• Design of input channels, including carrier suppression circuitry.

• Design of homodyne feedback loop to maintain the 90 degree phase

shifted carrier and produce detectable amplitude modulation. The ICA

feedback loop design is also my work.

• Design of ICA feedback loop.



• While the theory was pioneered by Dr. Dana Anderson, the complete

system testing in order to verify the opto-electronic theory is a contribu-

tion of this thesis. This includes the open-loop gain measurements, and

both sinusoidal and arbitrary probability density function signal compe-

tition. The testing work includes design of all of the supporting software,

and the design of all the experiments.

5.2 Future work

Many communications signals, including television signals, cell phone CDMA

signals, and radar signals, require a bandwidth of several megahertz. It is

in this high bandwidth domain that the opto-electronic ICA processor has

a true advantage over digital signal processors. This chapter investigates

the next version of the system, which will be able to separate signals with a

bandwidth of 20 MHz and a carrier of 200 MHz. Although the high-frequency

version of the ICA system is not yet complete, the initial stages of the design

have begun, but will not be examined in detail in this thesis. The limitation

from the previous 100 kHz design were the electro-optic modulators and high

voltage amplifiers. This chapter will discuss the design and implementation of

electro-optic modulators for the high-frequency system. Not discussed is the

initial designs for modularized sub-systems, including the carrier suppression

sub-system and the homodyne detection sub-system.

Among the items that are also going to be implememted in the future of



the opto-electronic ICA project is the addition of an opto-electronic principal

component analysis (PCA) system that performs the whitening preprocess-

ing step. It is also important in the communications environment that both

signals are recovered from the ICA system, instead of just the one that oscil-

lates in the feedback loop. A multi-channel scheme is necessary to increase

the number of signals from two to four. The multi-channel system requires

that each signal be separated out of the initial input mixtures.

Future students must also examine the theory behind opto-electronic

blind signal separation in greater depth. With the combination of PCA

and ICA, it is possible to trace added noise through the system. This will

provide a base noise floor estimate for signal separation. In addition, it may

be possible to evaluate how rapidly the signals and mixtures can change in

time, and the degradation of the signal separation. In addition, the theory

behind an under-constrained system, with more signals than mixtures, may

be evaluated.

5.3 20-MHz bandwidth electro-optic modu-

lator

5.3.1 EOM crystal design

The bandwidth limitation in the 100-kHz opto-electronic ICA processor is

due to the electro-optic modulators and the high-voltage amplifiers. The
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modulator used in the main loop has a half-wave voltage of 280 volts, and

a required drive voltage of approximately 700 volts (see section 3.4.1). It

is this high drive voltage that is difficult to achieve with a wide bandwidth

amplifier and it is necessary to lower the required EOM drive voltage.

The half-wave voltage of an electro-optic modulator is given by the equa-

tion [47]:

Vπ =
λd

`n3
0r33

(5.1)

where d is the thickness of the electro-optic crystal, ` is its length (Figure 5.1),

n0 is its index of refraction, r33 is the electro-optic coefficient, and λ is the

free-space wavelength of the light. For magnesium doped lithium niobate,

n0 = 2.28, and r33 = 30.9 × 10−12. Equation 5.1 shows that the required

voltage is directly proportional to the thickness of the crystal and inversely

proportional to the length of the crystal. Ideally, for a lumped element

modulator, the thinnest, longest crystal possible should be used to reduce

the half-wave voltage.

The chosen crystal dimensions are d = 300 µm and ` = 30 mm. These

dimensions lead to a half-wave voltage of 14.5 volts. From section 2.3.4,

the drive voltage required for a harmonic signal on the loop modulator is

therefore ±17.7 volts. In addition, to save material, the crystal width is only

1 mm.

In optical considerations, a 532 nm Gaussian laser beam must be focused

into the crystal without clipping the edges of the beam on either the input or

output face. This can be done with a beam waist of 0.25 mm, and a Rayleigh
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Figure 5.1: Electro-optic crystal dimensions. The electro-optic crystal of
LiNbO3 is 30×1×0.3 mm. The input and output faces are anti-reflection
coated at 532 nm. The electrodes are located on the top and bottom faces
as depicted. The input light must be vertically polarized if the crystal is in
illustrated orientation.

range of 84 cm in LiNbO3 (see [54] for Gaussian beam parameters).

It is interesting to note that the half-wave voltage is linearly proportional

to the thickness of the crystal. Therefore, if the crystal is polished to 0.33 mm,

or 10% thicker than expected, then the half-wave voltage also increases by

10%. Because power is proportional to the voltage squared, this implies that

the driving amplifier needs to have nearly 21% higher power. If we specify

that the crystal thickness tolerance will be within 10%, then an amplifier that

can drive least 21% higher power than required for the ideal design should

be chosen.
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5.3.2 EOM matching circuit design

Most amplifiers that are designed to work with a center frequency of 200

MHz and a bandwidth of 20 MHz have an output impedance of 50 Ω. The

EOM electrode is mainly capacitive with a small amount of series resistance

due to the dielectric loss and input wire resistance.

The capacitance and resistance are found using Agilent’s Advanced De-

sign System (ADS) software. Using the geometry of the electrode from Fig-

ure 5.1, a loss tangent, tan δ, for LiNbO3 of 0.0013 [55], and the conductivity,

σ, for copper of 5.81×107 S/m, the series resistance is simulated to be 0.036 Ω.

The simulation also accounts for field fringing at the edges of the electrode,

giving a capacitance value of 56 pF. The series combination of capacitance

and resistance can also be turned into a parallel combination of 56 pF and

5.5 kΩ, which is used in the following analysis.

When designing a matching network for this load, the objective is to get

as much voltage as possible across the electro-optic crystal with the small-

est amount of input power. One method to increase the voltage across a

component over a narrow bandwidth is to place it in a resonant circuit. The-

oretically, with a completely lossless network, it is possible to increase the

voltage by any factor desired. However, the trade off is that if the voltage

amplification is higher, then the insertion loss is also higher and a lower

voltage is applied to the resonator. Because the electrode impedance is also

capacitive, the impedance match is narrow band.
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Ideally, the reflection coefficient should be as small as possible to allow

most of the signal to be transmitted over the desired bandwidth. The Bode-

Fano criterion [56], [57], can be used to find the reflection coefficient for an

arbitrary lossless matching network:∫ ∞

0

ln
1

|Γ (ω)|
dω <

π

RC
(5.2)

where R and C are the resistance and capacitance respectively, and Γ (ω)

is the frequency dependent reflection coefficient. The minimum reflection

coefficient, Γm can be found using the formula [58]:

∆ω ln
1

Γm

≤ π

RC
. (5.3)

where ∆ω is the bandwidth. Equation 5.3 implies that there is a trade

off between a wider bandwidth and the minimum reflection coefficient. For

the electrode impedance described above, with a bandwidth of 20 MHz, the

minimum reflection coefficient that is achievable is Γm = 0.92. In other

words, with a perfect matching network, 92% of the voltage will be reflected

in order to achieve a constant match across 20 MHz.

The method for designing the a matching network is found in [59]. A 20

MHz bandpass filter is designed that contains the impedance of the electrode

as part of its structure. One approximation that must be made is that the

filter cannot have an infinite number of segments. Instead, a Chebychev

bandpass filter with an order n = 2 is used. Off-the-shelf components with

values as close as possible to the actual design values are also used. In
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the Chebychev filter design, if the load resistance is fixed (5.5 kΩ in this

case) and the first capacitor of the filter is also fixed (56 pF for the EOM),

then all other components of the network are also already defined, including

the source resistance (see Figure 5.2). The final filter design is shown in

Figure 5.3a. The filter response is shown in Figure 5.3b. This filter has a

3-dB bandwidth of 49 MHz. The source resistance, Rs, is actually 50 Ω,

not the required 103 Ω required by the filter design, and therefore must be

transformed. The impedance transform is also non-ideal, and consists of a

two-stage ladder network of capacitors and inductors, shown in Figure 5.4.

The bandwidth of this segment is over 400 MHz, which is larger than the

filter bandwidth.

Figure 5.2: Fourth order low pass Chebychev filter. In a Chebychev filter,
two parameters can be chosen. In this case, R0 and C1 are given by the
electro-optic modulator impedance. All other parameters are then set by the
Chebychev design.

The final lossless matching network is shown in Figure 5.5. As can be

seen in Figure 5.5b and c, this filter response is not perfectly flat, or per-

fectly sharp. The voltage gain of this circuit is approximately 1.45, and the
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Figure 5.3: Second order bandpass Chebychev filter. The actual Chebychev
bandpass filter design has a 3 dB bandwidth of 49 MHz.

Figure 5.4: Two-stage impedance transform circuit. (a) The ladder network
shown here has a 3-dB bandwidth of over 400 MHz. (b) Simulated network
frequency response.

reflection coefficient is approximately 0.96, higher than the ideal 0.92. The

discrepancy is caused because the filter is only a second order design. The

design widens the bandwidth of the filter from the design parameter of 20

133



MHz to nearly 50 MHz and decreases the passband transmission. The lossless

matching circuit shown in Figure 5.5 is also relatively large as it contains 7

reactive elements, including 4 inductors, which occupy approximately 3 mm

by 3 mm of circuit space. In addition, this circuit is not tolerant to minor

changes in element values. A 10% change in the electro-optic capacitance

causes a 25 MHz shift of the imepdance match center frequency. The center

frequency can be brought back to 200 MHz by tuning the two filter induc-

tors and capacitor. However, tunable inductors are generally low-frequency

components that take up nearly 7 mm2 of circuit space. It is this reason

that the lossless matching circuit design is unused in the final electro-optic

modulator.

A second way to make the matching circuit is to add a small series re-

sistance or large parallel resistance to the electrode structure. This method

adds loss to the matching network. A wide bandwidth impedance match is,

in principle, easier to design with more resistance in the electrode structure.

The trade off is that the circuit draws more power because of the added

resistance. Ideally, the circuit should reach an impedance match at least as

good as was achieved by the Chebychev network, but still consume a small

enough amount of power for a common amplifier to supply. (This number

will be defined later.)

The circuit chosen is shown in Figure 5.6. This circuit is a two stage

ladder network impedance match to a load that contains a 150 Ω resistor in

parallel with the modulator electrode. It is designed to operate at a center
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Figure 5.5: Lossless EOM impedance matching circuit. (a) The lossless
impedance matching circuit contains seven reactive components to achieve a
48 MHz 3 dB bandwidth with a voltage gain of 1.4. (b) Modulator voltage
response curve for a normalized source of 1 volt. (c) Magnitude of reflection
coefficient. In the ideal case with an infinite number of stages and the precise
component values, the reflection coefficient would be 0.92.

frequency of 200 MHz, and with a bandwidth of 20 MHz. The elements

are chosen with values that are easily purchased. The reflection coefficient

(simulated in ADS) is shown in Figure 5.7. This matching circuit is a two-

stage match, which serves to make the bandwidth approximately 25% wider

than its one-stage counterpart.
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Figure 5.6: Lossy EOM impedance matching circuit. The impedance match-
ing circuit shown here adds a 150 Ω resistor in parallel with the EOM elec-
trode. The added loss increases the required power, but widens the matching
bandwidth.

Figure 5.7: Lossy EOM impedance matching circuit frequency response. The
reflection coefficient (S11) of the impedance matching circuit shown in Fig-
ure 5.6 has a center frequency of 200 MHz and a 3-dB bandwidth of 41
MHz.
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The amount of power drawn by this circuit can also be found. If the

voltage across the electrode is set to the required 17.7 volts, at 200 MHz,

the amount of current drawn is 190 mA. Both the voltage and current plots

are shown in Figure 5.8. This implies that the circuit amplifier must output

1.8 watts. In addition, all components must be able to handle the specified

current. The resistor has a 25 W capability, and the inductors have 2.4 A

capacity.

Figure 5.8: Lossy EOM impedance matching circuit voltage and current
responses. To achieve 17.7 volts at the EOM electrode, the source must have
an output of 9.5 V (zero-to-peak) and 190 mA current. This implies a drive
power of 1.8 W.

While the match is adequate at 200 MHz, it is necessary to realize that

the element values are not going to be exactly accurate. To compensate for

these inaccuracies, small, variable capacitors are placed in parallel with the

original capacitors. The average capacitance of each pair adds up to the

capacitance shown in Figure 5.6. Simulation results show that by varying
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these two capacitances, it is possible to completely compensate for up to 10%

error in all the other component values. Therefore, this circuit is tolerant to

error in component values.

5.3.3 EOM mount design

The mount of the electro-optic modulator should be as small as possible

given several constraints on the design. First, the mount must hold the

electro-optic crystal firmly without any added stress because the crystals are

extremely fragile. Second, there must be a good electrical ground on the

lower crystal electrode. Third, the crystal must be located close to the edge

of the mount in order to reduce the size of the carrier suppression module

(see section 5.3). Fourth, the crystal should be thermally isolated from the

heat produced by the added resistor as the modulator is being used. Lastly,

connecting and reconnecting the source to the EOM should not add any

stress to the mount.

The final mount design is shown in figure Figure 5.9. The mount consists

of three brass pieces: a base, a back wall, and a slider. The crystal rests

on the base of the mount that acts as electrical ground. This piece is the

only piece of brass that the crystal will be touching, and is lapped to a 9 µm

surface roughness. In addition, the brass base is gold coated to minimize the

amount of oxidation. The upper electrode is made from a piece of gold coated

silicon that is cut from a 500 µm thick wafer. The wafer is also optically flat

and does not put any stress on the crystal. The silicon electrode is gold
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coated on all four sides, and the electrode contact is made by a ribbon piece

of copper that had been silver epoxied to the top electrode surface. On top

of the stack is a piece of Sorbothane rubber that is also designed to minimize

the stress on the crystal. The entire stack is pressed down by the slider piece

of brass. The slider consists of two pegs that hold it horizontal while being

moved up and down, and relieve the amount of rotational stress caused by

tightening the screws that lock it in place.

Figure 5.9: Electro-optic modulator mount design. The electro-optic mod-
ulator mount is 30 mm long, 4 mm wide, and 7 mm tall. It is made from
three brass pieces, and the matching circuit sits against the back wall.

The matching circuit is placed on the back of the mount sidewall. The

layout of the matching circuit is shown in figure Figure 5.10. The circuit is

7.3 mm long by 7.5 mm wide and made on an FR4 substrate for strength.
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The resistor is a 25 Watt resistor, which is completely removed from the

mount except for two connecting wires. These wires add inductance to the

design, but this is calibrated out with the variable capacitors. The resistor

sits on top of a ceramic post with a miniature heat sink.

Figure 5.10: EOM matching circuit layout. The matching circuit is 7.3 mm
× 7.5 mm. The resistor is removed from the circuit to keep excess heat away
from the LiNbO3 crystal.

The SMA connector is not directly touching the mount, but rather con-

nected by three short wires, one to the center connector, and two to the

outside ground. The wires remove the mechanical stress caused by connect-

ing and disconnecting the circuit.
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5.4 Summary

This thesis describes an opto-electronic blind source separation system that

is capable of separating an unknown mixture of two completely unknown

signals. The separation technique that the system uses is similar to indepen-

dent component analysis in that it uses higher order statistics to separate

the signals. The system achieves a signal separation of over 20 dB provided

that at least one of the signals is sub-Gaussian.

Chapter 2 describes the theory underlying opto-electronic ICA. It begins

with the case of two sinusoidal signals and shows that the dynamics of the

system are such that only one signal is able to oscillate in the opto-electronic

feedback loop. The analysis is extended to two arbitrary probability density

function signals, and shows that the system gain is dependent on their joint

characteristic function.

Chapter 3 is a description of the opto-electronic ICA system. The input

beams are phase modulated with the two mixtures and carrier suppressed.

The ICA feedback loop contains another electro-optic phase modulator that

is over-driven to produce signal harmonics, and a photorefractive crystal that

amplifies the correlated portion of the loop signal with the input mixtures.

The phase modulated signal is mixed with a 90 degree shifted carrier to

convert it into a detectable amplitude signal. The 90 degree phase shift

is maintained by a feedback control loop that sets the voltage on a piezo-

electric movable mirror. The system performance is measured by correlating
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the output signal with the desired unmixed original signals.

Chapter 4 provides a description of the experimental data used to verify

the theory presented in chapter 2. The open-loop gain is measured, and signal

competition between both sinusoidal and arbitrary PDF signals is quantified.

In addition, the system performance from initial conditions to steady state

is measured in real time, and the signal mixtures are allowed to vary with

time while the system tracks one component. The system is demonstrated

using both frequency modulated and ones density encoded signals.

A 20 MHz bandwidth opto-electronic ICA system requires different com-

ponents than the previously demonstrated 100 kHz design. Among these

components are high-bandwidth electro-optic modulators and driving ampli-

fiers. The modulators must have a low driving voltage to achieve the desired

bandwidth, leading to a design of thin, long crystals. The driving amplifiers

require an input impedance of 50 Ω, which necessitates broadband matching

circuits on the modulators.

In addition, a high-bandwidth system should use modularized circuits,

including the carrier suppression circuit. Modularized subsystems will facili-

tate the building of the system for the next version, the multi-channel system.

These sub-systems must be as small as possible to reduce the environmental

drift in the interferometry.

Different homodyne detection schemes can be used in the high-bandwidth

system as well. This reduces the need for a high-speed phase locked loop in

the piezo controller feedback loop. In addition, it removes the piezo controller
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error signal from the input signal bandwidth.

The next steps in the life of the opto-electronic ICA project are well

defined. In order to be viable in a real world communications scenario, the

system must be a complete blind signal separation processor. This system

must include a PCA processor for whitening. Secondly, both of the input

signals must be recoverable, implying the design of a component removal

system. It is desirable to increase the number of communication channels

from two to at least four to demonstrate the scalability of the system. The

next step in increasing the signal bandwidth is to move to several hundred

megahertz. A jump of this magnitude requires a new design for the electro-

optic modulators. However, modulators with this bandwidth exist for longer

wavelength light and there is no reason that they could not be made at 532

nm as well. The feedback loop must be made smaller in order to utilize the

bandwidth of this type of modulator.
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Appendix A

Fundamentals of ICA

Independent component analysis (ICA) is a powerful processing technique

that uses the assumption of signal independence to discover the unknown

signals within a mixture. Although the rigorous method for was created

by Comon, in [60], it was originally developed as a back-propagating neural

network by Herault and Jutten [61]. As described in chapter 1, independence

is defined as: 〈
sa
1s

b
2

〉
= 〈sa

1〉
〈
sb
2

〉
(A.1)

where a and b are integers, and s1 and s2 are the signals, and the angular

brackets represent the time average of the signal. While s1 and s2 are de-

scribed as functions of time in this thesis, they can also be functions of space

or of frequency [62], [63], [64], [65]. Using the two-signal problem statement



defined in chapter 1: s̃1 (t)

s̃2 (t)

 =

a11 a12

a21 a22


s1 (t)

s2 (t)

 . (A.2)

where s̃1 and s̃2 are the mixtures and amn are the mixing coefficients. More

mixtures than coefficients is known as the over-determined ICA problem

[66], and is not addressed in this thesis. In general, this system represents

two equations and six unknowns. On the most fundamental level, ICA is

a technique to generate four more equations based on the assumption of

independence [41], [67]:

〈s1s2〉 = 〈s1〉 〈s2〉 (A.3)
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〉
(A.6)

While these correlation equations provide an intuitive understanding to

the solution of the blind source separation problem, they are difficult to

simultaneously solve for arbitrary signals. Instead, different measures of

signal independence that are based on one quantity are used. These measures

include kurtosis (section 2.4.4), maximum likelihood estimation, entropy, and

mutual information [1], [33] to name a few.

155



The traditional ICA algorithm assumes that there exists a new mixing

matrix, B, that can be applied to the signal mixtures in order to find the

original signals: s1 (t)

s2 (t)

 =

b11 b12

b21 b22


s̃1 (t)

s̃2 (t)

 . (A.7)

This assumption is valid if the mixing matrix, A, is invertible.

Algorithmically, the coefficients of matrix B are randomly chosen, and the

independence of the resulting signals is calculated using one of the methods

suggested above. The algorithm is then required to scan through the pos-

sible values of B until the independence is maximized. For a more efficient

algorithm, the gradient of the independence measure chosen is calculated

for each of the weights, B. The gradient provides a method for estimating

new values of the unmixing matrix in each iteration of the algorithm. This

method is known as the gradient ascent approach [68].

A useful illustration of the ICA algorithm applied to two signals is shown

in Figure A.1. This figure shows two depictions of each step of the algorithm.

A time domain representation of the two signals is shown in the first two rows

of this figure. The third row of the figure shows signal space plots for each

step of the process. In a signal space plot, the axes represent the two channels

of the system. A channel is one of the input pathways to the system. The

signals are represented as the vectors in the diagram. The projection of a

signal vector onto a channel axis represents the amount of that signal present

in the mixture on the channel. In this depiction, each vector lying along one
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Figure A.1: ICA procedure. This graphical representation demonstrates the
complete procedure of ICA in both the time domain and the signal space
domain. Two initial time-varying signals (a) are arbitrarily mixed together
(b). The eigenvectors of the input signals are found in (c), and normalized
to have the same variance (d). The final ICA procedure, a rotation, returns
the signal to its initial state (e).

of the channel axes represents separated signals.

Consider two independent signals: a sine wave, s1, and a random signal,

s2, with a Gaussian probability density function, as depicted in Figure A.1(a).

These signals, initially separated, each exist on only one channel, shown in

the signal space diagram. Without loss of generality, the signals are assumed

to have zero mean.
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The signals are mixed by a random matrix in Figure A.1(b), resulting in

the two system inputs. In the example shown here, the arbitrary real matrix

used is:

A =

 0.5 0.1

0.8 0.4

 . (A.8)

The first step to descramble the two signals, shown in Figure A.1(c), is

known as principle component analysis (PCA). From the initial mixtures, two

new uncorrelated mixtures are chosen. Mathematically, the time average of

the product of the two mixtures is zero:

〈s̃1s̃2〉 = 0. (A.9)

The mixtures are now orthogonal, although still not representations of the

original signals.

Figure A.1(d) shows the normalization of the power of the two mixtures.

This step, together with the previous step, is known as whitening or equal-

ization of the signals.

The final step of the procedure, shown in Figure A.1(e), is to find two

original independent signals, by measuring the independence as given by

Equation A.1:

There is enough information to find the signals if the correlations up to

fourth order are used, or a+ b ≥ 4. This inequality is satisfied only when the

signals are completely separated on each channel. The final ICA step is the

most difficult part of the procedure. It requires an accurate measurement of
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the statistical quantities, which implies that a long integration time for the

averaging is necessary compared to the signal variation time.
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