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Modern communication and radar signals increasingly utilize signals with high peak-to-average power

ratios to achieve spectral efficiency. Three power amplifier architectures have been developed to efficiently

amplify such signals one of which is outphasing. At high frequencies, such as X-band, outphasing requires

enhancement in the form of discrete supply modulation or rectification to achieve performance competitive

with alternatives such asDoherty and envelope tracking. This thesis focuses on the development, theoretically

and experimentally, of the outphasing power amplifier, including enhanced modes of operation.

A novel quasi-MMIC outphasing PA and measurement setup are developed to enable the direct measure-

ment of power waves internal to the PA architecture, yielding internal PA performance and load modulation.

Due to the flexibility of the PA prototype and measurement setup, both isolated and non-isolated combin-

ers are utilized with and without discrete supply modulation. Insight into the dynamic operation of five

outphasing variations is gained.

Two enhanced outphasing PAs are fully integrated on GaN MMICs. A power recycling LINC PA makes

use of the duality between a high efficiency PA and rectifier to recover power wasted in the isolated combiner.

Amulti-level Chireix outphasing PA utilizes discrete supplymodulation tominimize DC power consumption,

thereby improving efficiency at back-off. Realistic testing with a GaN discrete supply modulator MMIC

shows particular promise for the novel multi-level Chireix outphasing architecture.

Finally, the importance of the gain of power amplifiers internal to the outphasing architecture is substan-

tiated in simulation and measurement. Highly efficient multi-stage power amplifiers are optimized through

the development of harmonically terminated interstage matching networks.
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Chapter 1

Introduction

Contents

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The work presented in this thesis attempts to solve the challenge of efficiently amplifying a high peak-to-

average ratio signal, through the application and development of the outphasing power amplifier architecture.

The importance of this challenge corresponds to the critical role of the power amplifier (PA) in a wireless

transmitter, shown in Fig. 1.1. As the final active element in the chain, the power amplifier is tasked with

increasing the signal strength in order to overcome exponential free-space losses to reach the receiver.

In all applications, the efficiency of the PA has a significant effect. At high power levels, such as base

stations (hundreds of watts) or ground-based radars (millions of watts), low PA efficiency means high power

dissipation in the form of heat. Not only is this power lost, but power hungry cooling solutions must be

provided to avoid hardware failure, compounding the issue. Even at low power levels, such as in cell phones

(watts), low PA efficiency corresponds to shorter battery life.

Although the linearity of the PA significantly affects many wireless applications, such as the accurate

transmission of data in communication systems, this thesis focuses on the efficiency of the PA. In this



Figure 1.1: Wireless transmitter block diagram. The modulated signal is generated digitally at baseband for
the desired application, before being converted to the analog domain. After it is upconverted to the carrier
frequency, it is amplified by several linear gain stages and finally, the power amplifier, before it is converted
to a free-space traveling wave by the antenna.

introductory chapter, Section 1.1 provides background information to understand the amplification challenges

as well as motivation for the outphasing architecture. An outline of each chapter and corresponding

contributions is given in Section 1.2.

1.1 Background and Motivation

1.1.1 Communication Signals

The development of modern communication signals has been driven by spectral efficiency, packing as much

data into as little bandwidth as possible. The continued explosion of wireless electronics increases the

demand on the wireless infrastructure [1, 2]. As the smart phone gets smarter, and an entourage of other

devices are added to it, users demand increasing amounts of data.

Unfortunately, that data must be transmitted through a limited resource, the electromagnetic spectrum.

In order to maintain the quality of transmission for all users, the Federal Communications Commission

(FCC) allocates the spectrum and regulates the non-federal portion [3]. While the emission of a transmitter

within its allocated channel is enforced, the emission in adjacent channels is more important and challenging.

Spectral regulation is enforced by an emission mask, as demonstrated in Fig. 1.2b and Fig. 1.2a. The mask

designates the required attenuation of emission outside of the allocated channel for a given application or

transmission standard, such as LTE [4].

Modern communication signals are distinguished by their modulation schemes, corresponding to the

parameter of variation for the encoding of data: amplitude, frequency, phase, or any combination thereof.
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Figure 1.2: (a),(b) Spectra of MSK and QAM signals, respectively, with an example of an emission mask.
(c), (d) Constellation diagrams (red x’s) corresponding to 10 symbol MSK and QAM signals, respectively.
The blue line represents a time ∆t of the continuously received signals corresponding to 20 symbols.

Thus, the development of signals for the purpose of spectral efficiency involves finding the optimalmodulation

scheme for a given application. Development also includes various digital encoding schemes, as well as

filtering.

A comparison of two signals in Fig. 1.2will demonstrate the challenges ofmodern communication signals

without going deeply into communication theory. In both cases, the signals are filtered with a root-raised

cosine filter, with the rolloff parameter, α, set to 0.35. In (a) and (c), the spectrum and constellation are

shown for the minimum-shift-keying (MSK) modulation scheme, in which the phase is continuously varied.
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Figure 1.3: PDF and CCDF of a 4-QAM signal, demonstrating a 6 dB peak-to-average ratio.

A constellation diagram demonstrates the symbol or bit representation of the complex signal. The red x’s

denote symbols, which are encoded bit sequences. The received signal (blue) is sampled in the time domain,

and the bits corresponding to the nearest symbol are received. As seen in the constellation diagram, an MSK

signal has a constant amplitude and only four symbols. The MSK spectrum is unable to meet the mask

requirements, demonstrating large side-lobes leading to significant emissions in adjacent channels. While

applications for MSK exist, this modulation scheme is not spectrally efficient.

The quadrature-amplitude-modulation (QAM) scheme, on the other hand, has been developed for spectral

efficiency. The spectrum and constellation for a 16-QAM signal are shown in Fig. 1.2b and Fig. 1.2d,

respectively. In this case, the constellation diagram includes 16 uniquely encoded symbols, corresponding

to a higher data rate. More importantly, the signal demonstrates both amplitude and phase variation. The

combination of these two varying parameters enables the adherence to the emission mask due to a steep

rolloff of the side-lobes.

The takeaway from the comparison of the MSK and QAM signals is that spectrally efficient signals have

both amplitude and phase modulation. To understand the importance of these signal characteristics, the

statistics of a signal are helpful. Fig. 1.3 shows the probability density function (PDF) and complementary

cumulative distribution function (CCDF) for a 4-QAM signal. Both are measures of the probability that the

signal will exhibit given amplitude. Importantly, the distributions show that the peak amplitude will be 6 dB
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Figure 1.4: Non-ideal class-B GaN MMIC PA efficiency as a function of output power, demonstrating poor
efficiency roll-off with output power typical of single ended PAs.

higher than the average. This metric is called the peak-to-average power ratio (PAR or PAPR). Therefore,

spectrally efficient signals tend to have a large PAR. For example, an LTE signal will have a PAR between

11 and 12 dB.

The discussion on signals thus far has not considered the transmitting hardware, specifically the power

amplifier. The amplitude variation described by the PDF of the signal, performs a weighting function on the

efficiency characteristic of the PA, shown in Fig. 1.4 for the class-B GaNMMIC PA described in Section 2.2.

Therefore, the PA will operate near the average power level at low efficiency for the majority of the time, and

at peak power and efficiency a limited amount of time. In an average sense, the efficiency of traditional PA

classes is low, because the efficiency decays rapidly with output power. The difference between any output

power level and peak power is often used to describe reduced output power levels, using the term back-off.

Thus, 0 dB back-off is peak power, while the average power level for a 6 dB PAR signal will be at 6 dB

back-off. This normalized description of power aids in comparing performance for high PAR signals.

1.1.2 Radar Signals

Modern radars share the spectral efficiency challenge with communication systems, due to increasingly

strict mask requirements described in the Radar Spectrum Engineering Criteria (RSEC) [5], and regulated

by the National Telecommunications and Information Administration (NTIA). Traditionally, radars transmit

rectangular pulses through a class-C amplifier to achieve high hardware efficiency due to the switching nature

5



of class-C operation [6]. From Fourier analysis, the rectangular pulse shape in the time-domain corresponds

to a sinc2(x) frequency-domain response, leading to large out-of-band emissions [7]. In order to meet mask

requirements, a different pulse shape can be selected [8,9]. The Gaussian pulse shape has been demonstrated

in [10, 11] as a spectrally efficient envelope waveform. In adjusting the pulse shape for spectral efficiency,

the signal develops amplitude modulation and thus a PAR, presenting the same problem as communication

signals.

1.1.3 High Efficiency Power Amplifiers

Efficiency enhancement of power amplifiers has been and continues to be widely researched, due to the

large percentage of total transmitter power consumed by the power amplifier. As such, resources that treat

the topic more comprehensively than this brief introduction are available in [12–14]. Amplifier classes are

defined uniquely by the voltage and current waveforms at the intrinsic drain, which is the current source

node internal to the transistor model. The overlap of these waveforms corresponds to the power dissipated

in the transistor, and thus should be minimized to maximize efficiency. The waveform definitions directly

determine the required harmonic loading conditions at the output of the device.

Reduced conduction classes improve the efficiency by lowering the bias voltage, and subsequently the

quiescent current. The intrinsic drain waveforms for classes B and C are shown in Fig. 1.5. Notice that

the quiescent drain current, IDQ, is lower in class-C compared to class-B, corresponding to a decreased

power dissipation. The peak drain efficiency of class-B operation is 78.5%, with class-C reaching 100%

theoretically [12]. Reduced conduction classes require a short circuit load at all harmonic frequencies.

Harmonic terminations other than a short circuit can be utilized to shape the intrinsic drain waveforms and

improve efficiency. In Fig. 1.6 for example, class-F and inverse class-F PAs utilize open circuit terminations

at the third and second harmonics, respectively, to square the voltage and current waveforms, respectively

[12,15]. In both cases, the non-square waveform is an approximate half-sinusoid. Theoretically, no power is

dissipated in the transistor, and the drain efficiency peaks at 100%. Combinations of harmonic terminations

can provide desired characteristics, as found when mixing class-E and inverse class-F operation [16].

The intrinsic drain waveforms, defining each PA class, are only defined at a single input power, typically

6
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Figure 1.5: Intrinsic drain voltage and current waveforms, along with dissipated power for (a) class-B, and
(b) class-C operation.
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Figure 1.6: Intrinsic drain voltage and current waveforms for (a) class-F, and (b) inverse class-F operation.

enough to saturate the transistor. At lower input power levels, the optimum intrinsic drain waveforms are lost

along with the efficiency improvement. Therefore, high efficiency PA classes do not, in and of themselves,

efficiently amplify high PAR signals.

1.1.3a Efficiency Definitions

The following is a list of common PA efficiency definitions used in this thesis:

Drain Efficiency is the ratio of RF output power to DC supply power:

ηd =
Pout

PDC
(1.1)
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This definition does not account for RF input power, which may be significant if the gain is low, as is

often the case for high efficiency PAs that operate in saturation. Sometimes, this definition is referred

to simply as "efficiency".

Power-Added Efficiency takes into account the RF input power:

PAE =
Pout − Pin

PDC
(1.2)

PAE will always be less than drain efficiency, but as the gain increases the two definitions converge.

Total Efficiency is the ratio of the RF output power to the total input power, DC and RF:

ηtot =
Pout

PDC + Pin
(1.3)

Total efficiency also takes the RF input power into account. This definition is better suited for outphasing

than PAE, because PAE becomes less than zero when Pout > Pin, which occurs in outphasing PAs.

Average Efficiency is required for modulated signals, which have varying output power and thus varying

instantaneous efficiency. This definition is used in conjunction with one of the previously defined

efficiencies, taking the average of the included powers. For example, the average drain efficiency is

defined as:

ηavg =
Pout,avg

PDC,avg
(1.4)

∆Pout is the output power range over which the efficiency remains within 10 points of its peak value. This

definition is used solely in this work for the comparison of several outphasing PA architectures.

1.1.4 High Efficiency Power Amplifier Architectures

Instead of controlling the output power of the PA by modulating the input power, the input power can be

fixed to saturate the PA, resulting in an equivalent circuit shown in Fig. 1.7. The transistor operates at high

efficiency, and can be simplified to a switch. The output power of this circuit across the load is:

Pout =
V 2
D

2RL
(1.5)

8



Figure 1.7: Simplified circuit for saturated power amplifier.

Figure 1.8: Supply modulation block diagram and efficiency. In this architecture, the modulated signal is
split into high and low frequency paths. At low frequency (modulation bandwidth), the supply modulator
varies the supply for the high frequency PA, to maintain efficient operation.

Two parameters can be modulated in order to control the output power: drain voltage, and load resistance.

Three PA architectures have been developed to efficiently amplify high PAR signals by varying the supply

or load: supply modulation [17], Doherty [18], and outphasing [19]. In all three cases, two amplifiers are

required to modulated the desired parameter. Often, one or both of these amplifiers is chosen to operate in a

high efficiency class. Thus, the term architecture is used to designate a system level combination of PAs.

A PA architecture based on the variation of the drain voltage is called supply modulation, shown in

Fig. 1.8, where a low frequency amplifier modulates the bias point of the high frequency PA to which it is

supplying power. Depending on the signal split between the high and low frequency paths, this architecture

takes on various forms, including envelope elimination and restoration (EER) [17], envelope tracking [20],

and polar [13,21,22]. The improvement in efficiency comes from reducing the power dissipated in the radio-

frequency (RF) PAbyminimizing the supplied powerwith the RFPAoutput power reduction, according to the

dependence of the RF PA efficiency upon supply voltage, shown in Fig. 1.8. A continuous supply modulator

(SM) follows the trajectory formed by the peaks of each replicated RF PA efficiency curve, thereby greatly

9



Figure 1.9: Doherty bock diagram and efficiency. This architecture combines two, asymmetric PAs. At low
input powers, the peaking amplifier is off, and the carrier amplifier operates. As input power increases, the
peaking amplifier turns on, modulating the loads of both PAs to maintain saturation and high efficiency.

improving the efficiency at back-off compared to a constant supply. This architecture can be as reconfigurable

as its amplifiers. The bandwidth limitation often occurs for the continuous supply modulator, but techniques

for assisting a highly efficient switching modulator with a cascode amplifier extend bandwidth [23, 24].

The Doherty PA architecture is dependent upon two asymmetric high frequency PAs, called the carrier

and peaking amplifiers, which are traditionally biased in class-AB and C, respectively [25]. At low input

powers, the input voltage swing is not enough to turn the peaking amplifier on, so it appears as an open circuit.

Thus, the carrier amplifier provides class-AB amplification and efficiency into a nominal load, R. As the

input power increases, the peaking amplifier turns on, causing its load to decrease from infinity toward R/2.

The carrier amplifier load decreases toward R/2 as well, maintaining saturation and high efficiency, as shown

in Fig. 1.9. The impedance inverter in the combiner causes the carrier amplifier load to decrease, as required,

rather than increase [26]. The Doherty PA is an elegant solution, because it does not require upconversion,

but has a high frequency input. The bandwidth of this architecture is limited by the frequency dependence

of the quarter-wave transformers, but recent work has sought to overcome this limitation [27–30].

The PA architecture researched in this thesis is outphasing, which is dependent upon the interaction of

two symmetric high frequency PAs through a non-isolated combiner. In this case, the input amplitude is

held constant, and the load modulation is controlled by differential phase modulation of the input voltages.

The common current in the non-isolated combiner causes the loading of the internal PAs to vary. The

efficiency performance, specifically the peak at back-off, is dependent upon the design of the combining

network. Because the loading is reactive in outphasing, as opposed to the real loading in the Doherty
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Figure 1.10: Outphasing block diagram. In this architecture, two symmetric high-frequency PAs interact
through a non-isolated combiner. Differential phase modulation at the input controls the output power
through the interaction between PAs.

PA, performance is best when reactive compensation is used in the combiner [19]. The phase modulator

may be implemented digitally, in CMOS, as done in [31], where a 100MHz LTE signal is modulated and

upconverted to 10GHz. Recently, the amplitude to phase modulation conversion has been incorporated into

the input matching network at high frequency [32], yielding an elegant RF amplifier solution.

A variation of outphasing called LInear Amplification with Nonlinear Components (LINC) makes use

of an isolated combiner at the output [33]. The LINC PA architecture was developed for linear, not efficient,

amplification. Because the combiner isolates the internal PAs, load modulation is suppressed and does not

control the output power. LINC is based on vector decomposition at the input, and vector combination at the

output to reconstruct the signal envelope. The internal PAs do not contribute nonlinearities to the system,

because they are driven at a constant input power.

1.1.5 DARPA Microscale Power Conversion Program

The majority of the work presented in this thesis was performed as a part of DARPA’s Microscale Power

Conversion program [34], which had two focuses. The first was the development of GaN-on-SiC transistors

for both high efficiency RF power amplifiers and switching power electronics. This goal was tackled by

the foundry at Qorvo (TriQuint at the time), as well as HRL. The second objective was the development

of innovative X-band RF transmitters, with the goal of achieving 75% average efficiency with 500MHz of

modulation bandwidth at 5W of output power. The author was fortunate to be a part of the Rockwell Collins

team, focusing on the outphasing architecture.
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1.2 Thesis Organization

The work presented in this thesis focuses on the understanding and development of five variations of the

outphasing power amplifier architecture theoretically and experimentally. The content of each chapter is

summarized by the following:

Chapter 2: The load modulation based operation of the Chireix outphasing power amplifier is examined

both theoretically and experimentally at 10.1GHz. A measurement setup is devised to directly measure

the internal PA performance and load modulation within a Chireix outphasing PA. A hybrid Chireix

outphasing PA is developed with GaN MMIC internal PAs and off-chip combining that includes bi-

directional couplers to enable the measurement of power waves internal to the architecture. A brief

introduction to the fundamentals of GaNMMIC design is presented, and the practical issues of designing

aChireix combiner for desired loadmodulation are discussed. A small signal analysis of the non-isolated

combiner yields useful design equations.

Chapter 3: The linear amplification of the LINC PA architecture, a subset of the outphasing architecture, is

the focus. The theoretical foundation for the input signal processing common to all outphasing amplifiers

is presented. The internal PA performance and load modulation measurement setup developed in

Chapter 2 is extended to the LINC PA through the use of an isolated combiner, highlighting the linear

but inefficient amplification of the LINC PA.

Chapter 4: Discrete supply modulation is combined with the LINC PA architecture for significant efficiency

improvement. The theoretical understanding of this combination is developed for symmetric and

asymmetric supply modulation. The internal PA performance and load modulation measurement setup

from Chapter 3 is extended through static variation in the drain voltage of each internal PA.

Chapter 5: Discrete supply modulation is combined with the Chireix outphasing PA architecture for the

first time in literature. The internal PA performance and load modulation measurement setup from

chapter 2 is extended to include static variation in the drain voltage. The combiner design equations

12



derived in Chapter 2 are shown to accurately predict load modulation distortion due to internal PA

power imbalance. A supply modulated Chireix outphasing GaN MMIC PA is designed and measured

at 9.7GHz with a GaN discrete supply modulator.

Chapter 6: Microwave rectification is incorporated with the LINC PA architecture in order to recycle

wasted RF power, improving efficiency. The duality between high efficiency power amplifiers and high

efficiency, self-synchronous rectifiers is confirmed experimentally at 10.1GHz on two GaNMMIC PAs

described in [35] and leveraged for this architecture. The entire architecture is implemented on a GaN

MMIC (internal PAs, rectifier, and isolated combiner) at X-band.

Chapter 7: Due to constant input power levels in the outphasing PA architecture, high efficiency, multi-

stage PA design is investigated, since increased internal PA gain decreases the significance of the input

power. The focus of this chapter is on the development of harmonically terminated interstage matching

networks.

Chapter 8: Summarizes the contributions of this work and presents a path forward for future work.
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Chapter 2

Chireix Outphasing

Contents
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Outphasing was first introduced by Henri Chireix in 1935 [19] in order to reduce the operating costs

of the PA in amplitude modulated (AM) broadcast stations, which had become the dominant expense as

the power on carrier-wave operation exceeded 100 kilowatts. Aside from the fact that he was working with

tube amplifiers at the time, Chireix brought up PA architectures still being discussed and researched today.

He compared two approaches, corresponding to the node of the amplifier being varied for output power

control. The grid can be modulated to control the output power, as in traditional power amplifier classes.

Alternatively, the anode can be modulated by a low frequency, high power amplifier, as in popular envelope

tracking techniques today. Although reduced conduction classes (B or C) as well as those incorporating

harmonic shaping (F or F−1) improve efficiency at peak output power, no efficiency improvement is achieved



at reduced input (grid) drive levels. Under supply (anode) modulation, the efficiency of the power stage

remains high, but the envelope modulator must be able to supply high power while linearly tracking the

amplitude variations in the signal. Therefore, Chireix proposed a new amplifier architecture based on load

modulation called outphasing, whereby the output power is manipulated through variation in the differential

phase between the two internal power amplifiers.

The outphasing architecture found commercial success when RCA chose to implement it in their Am-

pliphase AM broadcast transmitters in the 1950s and 1960s [36,37]. It was reintroduced by D.C. Cox under

the name LInear Amplification with Nonlinear Components (LINC) in 1974 [33]. Unfortunately, Chireix

outphasing and LINC are commonly interchanged terms today, despite the drastic differences. The LINC

amplifier was developed for linearity, not efficiency, as it utilizes an isolated combiner at the output, and does

not operate by load modulation.

The outphasing technique has resurfaced in research today asmodern signals have incorporated significant

amplitudemodulation, and signal processing capabilities have improved. The newefforts havemainly focused

on the two RF components, the internal PAs and the combiner. A simulation-based study has been performed

to evaluate various amplifier classes under load modulation during outphasing operation [38] by determining

the PA classes that best approximate a voltage source, which exhibits constant output voltage swing with

load variation. Voltage-mode class-D and class-F are good candidates, while current-mode class-D and

inverse class-F are not. Class-E is mistakenly dismissed without evaluation. Chireix outphasing has been

demonstrated with class-B [39–42], class-C [19], class-D [43, 44], class-E [45–50], class-F [51–53], and

inverse class-F [54] internal power amplifiers, all of which operate at 2.14GHz with up to 90W of power,

except for a single work at 5GHz [51] with less than 1W.

Although recent combiner innovations have utilized microelectromechanical systems (MEMs) [55],

composite right/left handed (CRLH) transmission lines [56], tunable capacitances [57], and diodes [52],

passive combiners with reactive compensation have remained most popular and effective [39, 40, 48, 51, 54,

58, 59], spurring many works on design optimization [39, 41, 60–63].

Understanding the interaction between the internal PAs and combiner during outphasing operation is

critical, since it determines performance of the system. Unfortunately, the analyses describing these dynamics
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Figure 2.1: Flexible, MMIC-based outphasing block diagram with off-chip combiners that include bi-
directional couplers for the direct measurement of power waves, enabling internal PA performance and load
modulation measurement.

are very idealized, defining the load modulation without consideration for parasitics at the intrinsic drain

reference plane, which is typically inaccessible in simulation or measurement. The purpose of the work

presented in this chapter is to expand upon the theoretical understanding through direct measurement of load

modulation in an outphasing PA as well as the performance of the internal PAs under load modulation.

In order to accomplish this purpose, a quasi-MMIC outphasing PA, shown in Fig. 2.1, is constructed from

high efficiency GaN MMIC internal PAs and an off-chip combiner, which includes bi-directional couplers

for the direct measurement of power waves internal to the outphasing PA. Section 2.1 details idealized theory

of operation for Chireix outphasing. In Section 2.2, the design of a high efficiency GaN MMIC PA for use

within several outphasing variations in this chapter and those following is detailed. The design of a Chireix

combiner to enable measurements internal to the outphasing PA is described in Section 2.3. Finally, the

internal PA performance and load modulation measurement setup and results are presented in Section 2.4.

2.1 Chireix Outphasing Theory

The simplest theoretical explanations of outphasing [12,19], have been expanded to consider voltage source

resistances [39, 42], ideal class-B internal PAs [64, 65], and ideal class-E internal PAs [66]. Outphasing

operation based on load modulation is demonstrated theoretically in this section for the cases of simple (no

reactive compensation) and Chireix outphasing (reactive compensation). Signal generation and drive is the

same for all outphasing variations discussed in this thesis, and is described in Section 3.1 because LINC

theory explains the generation of the differential phase from the amplitude modulation of the input signal
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(a) (b)

Figure 2.2: (a) Simple outphasing circuit diagram, and (b) vector representation of idealized voltage sources.

more clearly.

The simple outphasing circuit in Fig. 2.2a connects two PAs, idealized as voltage sources V1 and V2 and

represented by the vectors defined in Fig. 2.2b, across a differential load. A critical component of the vector

relationship is the outphasing angle, θ, which is the phase symmetrically added and subtracted from the

common phase in each branch. The differential phase, ϕ, is the total phase between the two branches, or

twice the outphasing angle. Phase control in simulation is usually done symmetrically (θ), while control in

measurement is done asymetrically (ϕ), though both produce equivalent load modulation and results. Simple

outphasing is the term used in [64] to describe non-isolated outphasing without reactive compensation. Note

that the source V2 is shown in negative form, because the load is differential and combines via subtraction.

The voltage sources are defined in phasor form as:

V1 = A0(sin θ + j cos θ) (2.1)

V2 = A0(− sin θ + j cos θ) (2.2)

where A0 is the amplitude of the voltage sources. The load voltage and current is:

VL = V1 − V2 = 2A0 sin θ (2.3)

iL =
VL

RL
=

2A0 sin θ
RL

(2.4)

Now the impedances loading each voltage source (internal PA) can be found:

Z1 =
V1

iL
=

RL

2
(1 + j cot θ) (2.5)

Z2 =
V2

−iL
=

RL

2
(1 − j cot θ) (2.6)
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Figure 2.3: Load modulation for simple outphasing operation with RL set to 100Ω.

Z1

Z2

Figure 2.4: Load modulation for simple outphasing operation with RL set to 100Ω, demonstrating conjugate
reactive loading. Smith chart normalized to 50Ω.

In Fig. 2.3, the load modulation exhibits a constant real part, but a significant variation in the reactive part

with swept outphasing angle. At 90◦, a peak output power and efficiency are obtained as the load voltage is

maximized and the load impedances are purely real. As θ approaches 0◦ or 180◦, the load impedances become

highly reactive an approach an infinite magnitude, minimizing the power generated by the voltage source

and delivered to the load. Fig. 2.4 displays the load modulation on a 50Ω Smith chart. For 0◦ < θ < 90◦,

Z1 has a series inductance and Z2 has a series capacitance. Notice that the load impedances of the voltage
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(a) (b)

Figure 2.5: Equivalent shunt circuits demonstrating load modulation presented to (a) V1, with an inductive
shunt susceptance, and (b) V2, with an capacitive shunt susceptance.

sources are conjugates. If the outphasing angle was swept from 90◦ to 180◦, the load impedances seen by

each voltage source would swap, therefore sweeping from 0◦ to 180◦completes an entire load modulation

circle for each voltage source. This will be more important when compensation is introduced.

The load modulation can be equivalently described in terms of the admittance, which is helpful for

describing reactive compensation. Taking the inverse of Z1 and Z2 yields the load admittances:

Y1 =
iL
V1

=
2 sin2 θ

RL
(1 − j cot θ) (2.7)

Y2 =
iL
V2

=
2 sin2 θ

RL
(1 + j cot θ) (2.8)

which can be separated into real and imaginary parts to find the shunt susceptances and conductances:

Y1 = G + jB1 =
2 sin2 θ

RL
− j

sin 2θ
RL

(2.9)

Y2 = G + jB2 =
2 sin2 θ

RL
+ j

sin 2θ
RL

(2.10)

Equivalent half-circuits are shown in Fig. 2.5, where both voltage sources are loaded with an outphasing

angle dependent conductance. The load admittances are conjugate, where Y1 is inductively loaded and Y2 is

capacitively loaded. In Fig. 2.6 the real and imaginary parts of Y1 and Y2 are plotted. The load admittances

become purely real at 90◦, corresponding to maximum output power. At 0◦ and 180◦, the load admittances

are purely real, but zero, corresponding to an infinite impedance and minimum output power.

The input power is the power generated by the voltage sources, which can be calculated as:

Pin1 = |V1 |
2 |Y1 |=

2A2
0 sin θ
RL

(2.11)
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Figure 2.6: Load modulation in terms of admittance for simple outphasing operation with RL set to 100Ω.

similarly,

Pin2 = |V2 |
2 |Y2 |=

2A2
0 sin θ
RL

(2.12)

Thus, the total input power is:

Pin = Pin1 + Pin2 =
4A2

0 sin θ
RL

(2.13)

The total output power can be calculated as:

Pout =
|V1 |

2

R
+
|V2 |

2

R
=

4A2
0 sin2 θ

RL
(2.14)

The efficiency is the ratio of the output power to the input power:

η =
Pout

Pin
= sin θ (2.15)

Fig. 2.7 shows the variation of input and output power with outphasing angle. The voltage source

amplitude is set to normalize the peak output power to 1W. Fig. 2.8a demonstrates the efficiency of simple

outphasing with respect to outphasing angle. Fig. 2.8b shows the degradation of the efficiency at back-off.

Simple outphasing with class-B internal PAs has the same efficiency roll-off as a single ended class-B PA.
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Figure 2.7: Input and output power as a function of outphasing angle, demonstrating the system effect of
load modulation in simple outphasing.
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Figure 2.8: Efficiency of simple outphasing as a function of (a) outphasing angle, and (b) normalized output
power.

Theoretically, simple outphasing does not provide any efficiency benefit, which is why Chireix proposed

reactive compensation in the combiner. The additional elements are shown in the equivalent half-circuits

in Fig. 2.9. The compensation susceptance, BC , can be solved to cancel the reactive loading at a single

outphasing angle and corresponding output power level, making the load purely real and peaking the

efficiency. This topology has been named the Chireix combiner, and can be implemented with transmission

lines, lumped element approximations, or tunable elements such as capacitances [57], MEMs [55], and

diodes [52].
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(a) (b)

Figure 2.9: Equivalent shunt circuits with (a) capacitive and (b) inductive compensation, canceling the
reactive part of the load at a single output power in addition to peak output power.

Examining the reactively compensated half-circuits, new expressions for the load admittances are found:

Y ′1 = G + j(B1 + BC) =
2 sin2 θ

RL

[
1 − j

1
2

(
sin 2θ − RLBC

sin2 θ

)]
(2.16)

Y ′2 = G + j(B2 + BC) =
2 sin2 θ

RL

[
1 + j

1
2

(
sin 2θ − RLBC

sin2 θ

)]
(2.17)

The input power can be recalculated:

Pin1 = |V1 |
2 |Y ′1 |=

2A2
0 sin2 θ

RL

√
1 +

1
4

(
sin 2θ − RLBC

sin2 θ

)2

(2.18)

Pin2 = |V2 |
2 |Y ′2 |=

2A2
0 sin2 θ

RL

√
1 +

1
4

(
sin 2θ − RLBC

sin2 θ

)2

(2.19)

with the total input power being:

Pin = Pin1 + Pin2 =
4A2

0 sin2 θ

RL

√
1 +

1
4

(
sin 2θ − RLBC

sin2 θ

)2

(2.20)

Since the load resistance remains unchanged, the output power stays the same, and the efficiency becomes:

η =
Pout

Pin
=

1√
1 + 1

4

( sin 2θ−RLBC

sin2 θ

)2
(2.21)

Notice that the efficiency is maximum when the second part of the denominator is zero:

sin 2θ − RLBC = 0 (2.22)

Solving for the outphasing angle gives the value of RLBC corresponding to a second purely real load and

thus a second peak in efficiency:

θ =
1
2

arcsin (RLBC ) (2.23)
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To understand the choice of outphasing angle to reactively compensate, the relationship between outphasing

angle and normalized output power must be defined. The output power is normalized to 1W at θ = 90◦,

yielding the following relationship between the voltage source amplitude and load resistance:

RL = 4A2
0 (2.24)

Substituting (2.24) into (2.14) yields:

Pout = sin2 θ (2.25)

Taking the power logarithm of both sides yields the normalized output power with respect to the outphasing

angle:

Pout,n = 20 log (sin θ) (2.26)

which can be written in terms of the normalized output power:

θ = arcsin
(
10Pout,n/20

)
(2.27)

The designer can optimize average efficiency for a high PAR signal by choosing the compensated normalized

output power to be the PAR of the input signal. Then, the corresponding outphasing angle could be found

from (2.27), and the compensation susceptance from (2.23), which can be rewritten as:

BC =
sin 2θ

RL
(2.28)

Fig. 2.10 shows the admittance variation when compensation is incorporated at 9 dB back-off (Pout =

-9 dB). Notice the asymmetry about 90◦, and the decreased magnitude of the susceptance for θ < 90◦. These

observations can be explained by the load modulation visualized on a 50Ω Smith chart in Fig. 2.11. The

compensated load modulation is shown in green as compared to the uncompensated case in blue, with the

dashed and solid lines designating the loading on V1 and V2, respectively. Reactive compensation moves

the load modulation closer to the real axis, which has also moved the first intersection (purely real load,

and efficiency peak) slightly away from peak power. As the compensation is increased, the two real loads

move closer to each other until the load modulation circles are tangential to each other on the real axis when

RLBC reaches 1.0. As stated previously, sweeping the outphasing angle up to 180◦ completes a full circle of
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Figure 2.10: Compensated load modulation under outphasing operation with RL set to 100Ω for RLBC =
0.66.

RLBC : 0.00
RLBC : 0.66

Figure 2.11: Load modulation comparison with RL set to 100Ω for RLBC = 0, 0.66. Dashed and solid lines
are the loading presented to V1 and V2 respectively. Smith chart normalized to 50Ω.

load modulation. In the uncompensated case, the two circles overlap, so the power, efficiency and loading

are symmetric. When compensation is utilized, two distinct paths from peak power near the center of the

Smith chart to minimum power at the edge are realized: the inner trajectory along the real axis, and the outer

trajectory. The difference in the loading conditions along these trajectories corresponds to the asymmetry in

Fig. 2.10.
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Figure 2.12: Input and output power as a function of outphasing angle for RLBC = 0 and 0.66. Asymmetry
has been introduced to the input power of the compensated circuit due to its loading conditions, moving it
closer to the output power, and therefore improving efficiency.
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Figure 2.13: Efficiency as a function of (a) outphasing angle, and (b) normalized output power for RLBC =
0 and 0.66, demonstrating significant improvement with compensation.

The asymmetric loading conditions induce asymmetry in the input power, shown in Fig. 2.12, moving it

closer to the unchanged output power, thus improving efficiency, as shown in Fig. 2.13. The efficiency remains

high for a large range of outphasing angles, corresponding to 9 dB of output power range. The efficiency has

the appearance of hysteresis when plotted against normalized output power due to the difference in efficiency

between the two outphasing trajectories or load modulation paths. Of course, the worse trajectory need not

be used at all. The efficiency enhancement in outphasing is dependent upon Chireix’s proposed reactive

compensation and offers improvements on par with Doherty and envelope tracking architectures.
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By assuming the internal PAs to operate as voltage sources, the presented theory equates the system

efficiency with the power factor of the combiner. This assumption holds for linear branch amplifiers, like the

class-B [64], but not for switch-mode PAs that achieve higher efficiencies, such as class-E [48]. In that case,

the system efficiency is a function of both the internal PA and the combiner. The system drain efficiency can

be defined as the ratio of the total RF power at the fundamental to the total DC power drawn by the sources:

ηd =
∑N

n=1 Pr fn∑N
n=1 PDCn

(2.29)

where the total powers are summed up to N sources, or the number of internal PAs. Most often N is two, but

it may be higher, as in four-way outphasing [59, 67]. The RF and DC powers contributed and consumed by

the nth source can be calculated by:

Pr fn =
1
2

Re{vni∗n} =
1
2
|vn |

2Re{Yn} (2.30)

PDCn = VDCn IDCn =
(
VDCn

|vn |

IDCn

|in |

)
|vn |

2 |Yn | (2.31)

since |in |= |vn | |Yn |. Assuming identical sources, substituting (2.30) and (2.31) into (2.29) yields:

ηd = ηsPFN (2.32)

ηs =
1
2
|vn |

VDCn

|in |
IDCn

(2.33)

PFN =
∑N

n=1 Re{Yn}∑N
n=1 |Yn |

(2.34)

Now the system drain efficiency is the multiplication of the apparent efficiency of the source, ηs, and the

power factor of the load, PFN . The apparent efficiency does not consider any phase difference between the

load voltage and current, and therefore could be greater than unity. In any case, this additional theory shows

that the system efficiency must consider the efficiency of both the internal PA and combiner.

2.2 High Efficiency GaN MMIC PA Design

A monolithic microwave integrated circuit (MMIC) is an active or passive microwave circuit formed in situ

on a semiconductor substrate by a combination of deposition techniques including diffusion, evaporation,
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Figure 2.14: Layout of a pHEMT from Qorvo’s 0.15µm GaN process.

epitaxy, implantation and other means [68]. After failed attempts to develop MMICs using semi-insulating

silicon substrates, research on the three-five compound gallium arsenide (GaAs) showed it to be a good

insulator and able to function as a base material. The first GaAs MMIC was an X-band amplifier [69].

Although GaAs is still the most widely used substrate, a new three-five compound gallium nitride (GaN)

has emerged recently. GaN is a wide-bandgap semiconductor, which means the transistors fabricated on

such substrates can operate at a higher voltage, frequency, and temperature. Increased output impedance

is enabled by high voltage operation, resulting in a lower impedance transformation ratio in the matching

network, not only decreasing loss but improving bandwidth capabilities. Additionally, GaN transistors have

large current densities, which improves the power density beyond other semiconductors. Although research

and development of GaN started in the late 1990s, a handful of foundries have commercially released

processes today [70].

The crux of a semiconductor process is the transistor. An example layout is shown in Fig. 2.14, where

the gate, drain, and source fingers are all interlaced. The source is grounded by end-vias, while the gate and
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drain fingers are combined by a feed or bus. The gate width largely determines the maximum frequency of

operation and is typically used to distinguish process technologies. The gate periphery is the total size of the

transistor (ignoring the gate width), found by multiplying the number of fingers by the gate length. Often,

a process technology will define the expected power as a function of gate periphery, in mm. For example,

GaN processes can produce 5-7W/mm of power density. If a transistor has 10 fingers which are 100µm

long, the total gate periphery is 1mm, and the expected output power would be 5-7W. A tradeoff between

number of fingers and gate length exists for a desired output power. Shorter gate fingers will have more gain,

but require a larger number to achieve the same output power. Too many fingers can cause heating issues in

the center of the device, especially if the vias are on the end.

2.2.1 Qorvo 0.15µm GaN Process

All MMICs presented in this thesis are fabricated in a 0.15µm gate length process with an AlGaN/GaN epi-

taxial layer on 100µm SiC on 100mm diameter wafers. Typical DC characteristics of these pseudomorphic

high electron mobility transistors (pHEMTs) are Imax=1.15A/mm, transconductance gm,max=380mS/mm,

and 3.5V pinch-off at Vds=10V. Device breakdown voltage exceeds 50V at Igd=1mA/mm. Non-linear

device models were extracted for 4×75µm, 8×75µm, and 10×90µm devices (number of gate fingers by

gate width) at 10GHz. To support supply modulation applications, the models were fit to S-parameter and

load-pull data measured at low drain current over a wide range of drain bias voltages. Load-pull results for

a PAE of 62% at 10GHz and 20V drain bias demonstrated 3.4W/mm output power density with associated

gain of 14 dB [35]. The models are de-embedded to the fingers, and do not include the source vias, gate

feed, or drain feed, which must be accounted for in simulation. They are delivered as "black box" models,

meaning the internal ports (intrinsic drain) and parameters are inaccessible.

In this 3 Metal Interconnect (3MI) process [71], any combination metal layers can be utilized to form

microstrip lines of varying RF losses and DC current handling capabilities. For example, type 7 lines utilize

all three metal layers (M0, M1, and M2) to handle a maximum DC current density of 16.0mA/µm while

type 9 lines utilized only M1 and M2 to handle a maximum DC current density of 14.4mA/µm. Nitride and

MIM layers provide insulation between the metal layers and are used for creating capacitors with densities
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of 240 pF/mm2, 300 pF/mm2, and 1200 pF/mm2, all of which have different voltage handling capabilities.

2.2.2 MMIC Design

Circuit design forms the foundation for all MMICs, which is simply a realization of a circuit concept.

Resources have been published concerning MMIC design, giving many examples [72, 73] and a detailed

designmethodology for multi-stage, power combined PAs [74]. This section will concisely describe a simple,

high efficiency, single-stage MMIC PA design.

The device size is selected to meet design specifications, which are maximum efficiency at 10GHz with

more than 1W output power. Specification sheets or load-pull characterization in simulation or measurement

should be used to inform this decision in other cases. Since our nonlinear models are scalable to an extent,

the largest transistor size with model integrity is chosen. Scaling the number of fingers has a higher risk

for inaccuracy than scaling the gate width, so the 10×90µm device model is scaled up to 10×100µm.

The choice of bias conditions (gate and drain) are dependent upon the design goals and desired class of

operation. The supply voltage (drain) must be chosen such that the output voltage swing does not exceed the

breakdown voltage of the transistor, while the bias voltage (gate) will dictate key operational characteristics.

For this design, the device is biased at pinch-off (VG = -4.0V, IDQ=5mA) with a supply voltage of 20V. In

general, source- and load-pull simulations can be performed over varying bias conditions, input power, and

frequencies. This characterization provides the impedances that should be presented to the device by the

matching networks in order to obtain the desired performance.

2.2.2a Gate Bias Tee

Once the device has been properly characterized, the bias tees are designed. This part of thematching network

is of utmost importance, since it provides the low frequency (baseband) termination of the transistor, which

significantly affects linearity [75, 76] and more importantly, stability [12]. The bias tee may be utilized as a

matching element, or have no effect on RF matching, which would be referred to as an RF choke. In either

case, the bias tee must provide a low-loss DC path to the device, while properly terminating the baseband

impedance for stability.
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Figure 2.15: Layout of gate bias tee.
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Figure 2.16: Simulation of gate bias tee, demonstrating high input impedance and isolation.

In this design, the gate bias tee functions as an RF choke, presenting a high impedance to the matching

network at the fundamental frequency so as to reduce its effect on matching. The layout is shown in Fig. 2.15,

with the corresponding simulation in Fig. 2.16. The bias tee is simulated as a two-port network, where port

1 is connected to the RF path, and does not include the DC blocking capacitor. Note that the simulation

should include off-chip components, such as bond wires, bypass capacitors, and inductance in the long cable

connected to the power supply. Because the DC bond wire connects two shunt capacitors, possibly forming

a resonant circuit, a resistor is placed between the on-chip capacitor and bonding pad. It is called a de-Q

resistor because it reduces the quality factor of any resonance formed by the bond wire and capacitors.
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Figure 2.17: Layout of input matching network.

The bypass capacitor is implemented as a capacitor-over-via (COV), meaning its bottom layer is directly

connected to a via. It’s size is sufficiently large to provide a very low impedance at baseband frequencies

above DC, which dictates the RF-DC isolation (S21 simulation). The inductor transforms the short circuit of

the COV into a high impedance at RF, approximately 5 kΩ.

2.2.2b Input Matching Network

The input matching network (IMN) must transform the 50Ω generator impedance into that desired by the

transistor, as found in the source-pull characterization. An accurate simulation of matching networks should

include the RF probe pad as well as expected RF bond wires. The layout in Fig. 2.17 demonstrates a

narrowband matching network, with a simple shunt capacitor and series transmission line topology. The

long line extending from the RF pad to the shunt capacitor does not perform any matching, and is only

necessary to reach the chip edge, since the chip size was much larger than needed for this design. The DC

blocking capacitor is integrated into the transmission line by feeding the element on the bottom metal layer

(M0) and connecting only the top metal layer (M2) to the bias tee junction.

In addition to baseband impedance termination, RF loading conditions can cause instability in most

transistors. Stability circles can be generated to describe regions of the Smith chart where the device will

oscillate [77]. These circles can be manipulated at the gate of the transistor, and kept from overlapping

with the passive Smith chart with enough series resistance, ensuring stability (unconditional) for any passive
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(a) (b)

Figure 2.18: (a) Layout and (b) equivalent circuit for stability circuit at the input of the transistor.
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Figure 2.19: Simulated dissipative loss in the input and output matching networks.

load. Of course, a series resistance will incur loss at the fundamental, so other combinations of resistors,

capacitors, and inductors can be utilized to stabilize the transistor without affect RF performance. One

implementation is shown in Fig. 2.18. In this circuit, the inductance formed by the transmission line and the

capacitance are chosen to resonate at the fundamental frequency, providing a low-loss path, while all other

frequencies are forced through an additional resistance.

The losses in the input and output matching network are shown in Fig. 2.19, where the dissipative loss is

defined as:

Dissipative Loss (dB) = −10 log
(
|S21 |

2

1 − |S11 |2

)
(2.35)

which defines the losses related to dissipation or radiation in the network, and excluding mismatch at the
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Figure 2.20: Layout of output matching network.

input [78]. Essentially it is the ratio of the power delivered to the load to the power transferred into the

network. The input matching network incurs a loss of 2.38 dB. Though this seems high, it affects the

efficiency much less than loss at the output and helps to stabilize the transistor.

2.2.2c Output Matching Network

The output matching network (OMN) is designed for the fundamental frequency only, without any intentional

harmonic termination. However, during the optimization for efficiency, a high third harmonic impedance is

realized, contributing to the high efficiency achieved in this design. The OMN layout is shown in Fig. 2.20.

In this case, the bias tee is utilized as a shunt matching stub, which is effectively terminated in a short

circuit by the bypass capacitor. The drain bias tee utilizes a 45µm wide, type 9 transmission line to carry

a maximum of 648mA of DC current. For an estimated output power of 4W and a minimum expected

efficiency of 50%, the transistor would only draw 400mA. Notice that the air bridges to the bypass capacitor
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Figure 2.21: (a) Simulated total DC current drawn by the PA at 10GHz. (b) Simulated power dissipated in
the transistor under saturation.

are made wider due to their limited current handling capability. As implemented for the IMN, the DC block

is integrated into the series transmission line, and the RF pad and bond wire are considered in simulation.

For the OMN, port 1 is at the transistor and port 2 is at the output. Therefore, S12 and S22 replace S21 and

S11, respectively, in (2.35). The entire OMN incurs a dissipative loss of only 0.15 dB.

2.2.2d Final Simulations

The PA can now be formed by the designed IMN and OMN, and adjusted slightly for efficiency. Fig. 2.21a

shows the total (gate and drain) DC current drawn at 10GHz for swept input power. It is important to

be aware of the saturated current, which is 210mA in this case, especially for setting supply limits during

measurement. For thermal considerations, the power dissipated in the transistor per unit gate periphery is

plotted in Fig. 2.21b. According to thermal simulation at Qorvo, a power dissipation of 3.4W/mm will raise

the temperature of fingers internal to an 8x75µm pHEMT cell to 160◦ C. Therefore, this design should be

safe from thermal issues, since transistor power dissipation remains below 1.7W/mm across the operating

frequency range.

The output power, efficiency, and gain are characterized over swept input power in Fig. 2.22a and swept

frequency in Fig. 2.22b. A peak power-added efficiency (PAE) of 63% is achieved with an output power

of 34.7 dBm at an input power of 27 dBm at 10GHz. The saturated gain is 7.7 dB. The peak PAE remains
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Figure 2.22: Simulated output power, efficiency, and gain (a) at 10GHz, and (b) across frequency under
saturation.
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Figure 2.23: Simulated power amplifier S-parameters across frequency.

above 50% for 2GHz of bandwidth. The S-parameters of the amplifier, simulated over a broad bandwidth

are shown in Fig. 2.23. A small-signal gain of 12.2 dB is achieved at 10GHz, with an input return loss of

15.6 dB and an output return loss of 18.4 dB. It is important to view the S-parameters over a large frequency

range to check for indications of instability, such as |S11 | or |S22 | greater than zero. In this design, a slight

match and gain peak around 2.5GHz occurs, but does not indicate any stability issue according the Rollet

factor, k, used to analyze stability for this single-stage amplifier [77].
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Figure 2.24: Photograph of fixtured MMIC PA.

Figure 2.25: Load-pull measurement setup utilizing a LSNA and single frequency mechanical tuner.

2.2.3 Measurement Setup and Calibration

As discussed at the end of the theory in Section 2.1, the system efficiency is dictated by both the internal

PAs and combiner. In order to inform the design of the combiner, the internal PA must be characterized

by load-pull, which is done over several supply voltages in preparation for the inclusion of discrete supply

modulation. Prior to measurement, the MMICs are mounted on 40mil thick CuMo carrier plates. The RF

input and output bond pads are connected to 10mil thick alumina de-embedding lines with two short bond

wires. The DC pads are bonded to off-chip capacitors and pads on which spring loaded DC connectors are

landed. The carrier assembly is inserted into an aluminum test fixture. The opposite ends of the alumina

de-embedding lines are contacted with connectorized launchers. A photograph is shown in Fig. 2.24.

The load-pull measurement setup, shown in Fig. 2.25, is based on a large-signal network analyzer

(LSNA) [79], which has four time-domain receivers to make this two-port measurement. Bi-directional

couplers are utilized to acquire absolute incident and reflected waves at the calibrated reference planes

which are at the coaxial launchers of the MMIC fixture as the passive tuner varies the load impedance. In
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post-processing, the measurements are de-embedded to the MMIC bond wire using the test-fixture error

terms extracted from a TRL calibration measurement. Calibration combines a relative SOLT method with

an absolute power calibration using a power meter [80], and an absolute phase calibration performed during

the reverse "Thru" measurement as explained in [81], yielding an eight-term error matrix:

*............
,

v1

i1

v2

i2

+////////////
-

=



α1 β1 0 0

γ1 δ1 0 0

0 0 α2 β2

0 0 γ2 δ2



.

*............
,

r1

r2

r3

r4

+////////////
-

(2.36)

where ri is the raw-data acquired on the ADCs, and vi and ii are the RF voltages and currents respectively.

PA performance can be directly calculated from the calibrated voltage and current measurements. The RF

powers at the input and output of the DUT, in watts, are:

Pin =
1
2

Re{v1i∗1} (2.37)

Pout = −
1
2

Re{v2i∗2} (2.38)

which include the fundamental and harmonic powers. The negative sign corresponds to the direction of

power flow. The DC powers at the input (port 1) and output (port 2) of the DUT, in watts, are:

PDC1 = v1i1 (2.39)

PDC2 = v2i2 (2.40)

Now, the gain and efficiency can be calculated. To obtain the reflection coefficients being presented to and

by the DUT, the absolute power waves must be calculated from the calibrated RF voltage and current waves:

a1 =
1
2

(v1 + Z0i1) (2.41)

b1 =
1
2

(v1 − Z0i1) (2.42)

a2 =
1
2

(v2 + Z0i2) (2.43)

b2 =
1
2

(v2 − Z0i2) (2.44)
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Figure 2.26: Test fixture with connectorized launchers landing on alumina transmission lines which are
bonded to the MMIC, placed in between ports 2 and 3. Two-port S-parameters of each side of the fixture
are measured using the TRL calibration method, which designates these two networks as the error boxes for
calibration.

where the characteristic impedance, Z0, is calibrated to 50Ω. These waves are initially found at the coaxial

calibrated reference plane, as shown in Fig. 2.25. The reflection coefficients at the input, Γin, and output,

Γout , of the DUT can be found by:

Γin =
b1

a1
(2.45)

Γout =
b2

a2
(2.46)

The reflection coefficients being presented to the input, Γs, and output, Γl, of the DUT are found by:

Γs =
a1

b1
(2.47)

Γl =
a2

b2
(2.48)

The TRL calibration method is used to measure the S-parameters, [S], of the test fixture, which is shown

schematically in Fig. 2.26. To find the unknown S-parameters of the test fixture each side treated as an error

box in calibration language. The TRL method utilizes the measurement of three standards: Thru, Reflect,

and Line. A TRL kit containing these three standards has been fabricated and measured. Knowing the

S-parameters of the fixture, the absolute power waves can be de-embedded from the coaxial connector to the

MMIC bond wire, internal to the test fixture:

b1,d =
1

S12
(b1 − S11a1) (2.49)

a1,d = S21a1 + S22b1,d (2.50)
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b2,d =
1

S43
(b2 − S44a2) (2.51)

a2,d = S34a2 + S33b2,d (2.52)

The de-embedded voltages and currents can be calculated from the de-embedded absolute power waves as:

v1,d = a1,d + b1,d (2.53)

i1,d =
1
Z0

(a1,d − b1,d) (2.54)

v1,d = a2,d + b2,d (2.55)

i1,d =
1
Z0

(a2,d − b2,d) (2.56)

Now the powers at the input and output of the MMIC, de-embedded to the bond wires, can be calculated

from the de-embedded voltages and currents as:

Pin,d =
1
2

Re{v1,di∗1,d} (2.57)

Pout,d = −
1
2

Re{v2,di∗2,d} (2.58)

Again, these powers contain the fundamental and harmonic frequencies, enabling the calculation of any

performance parameter for the MMIC PA. The load-pull tuner can be set to 50Ω for a traditional power and

frequency swept PA measurement, or it can be swept to synthesize load impedances covering a large portion

of the Smith chart. In either case, the calibration must only be performed once.

2.2.4 MMIC Measurements

The fabricatedMMIC is 3.8×2.3mm2, as shown in Fig. 2.27. As stated previously, it ismounted andmeasured

in a fixture, which is de-embedded in post-processing. The power and frequency swept measurements are

shown in Fig. 2.28. A peak PAE of 69.9% is achieved with a drain efficiency of 86.3% at an output power of

34.2 dBm. This optimum occurs for a bias voltage of -4.4V, corresponding to a quiescent drain current of

0.45mA, and a supply voltage of 20V at 10.2GHz and 27 dBm of input power, yielding a saturated gain of

7.2 dB. To peak the efficiency the transistor is biased in deep pinch-off, which decreases the saturated gain.

The PAE remains above 60% for approximately 1GHz of bandwidth, and above 50% for nearly 2GHz.
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Figure 2.27: Photograph of MMIC PA, which is 3.8×2.3mm2. Test devices fill the empty space.
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Figure 2.28: Measured output power, efficiency, and gain (a) at 10.2GHz, and (b) across frequency under
saturation.
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Figure 2.29: Measured load-pull contours for (a) PAE, and (b) output power.
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The measured load-pull contours are shown in Fig. 2.29 for PAE and output power at 10.1GHz. A peak

PAE of 68% is measured at a load impedance of 51.9 + j10.8 Ω, while a peak output power of 35.4 dBm is

measured at a load impedance of 48 − j3.75 Ω.

2.3 Chireix Combiner Design

The combiner facilitates the vital interaction between the internal PAs, and its design centers on realizing

the desired load modulation, which will dictate the system performance for a given internal PA. The load

modulation intersections can be chosen specifically for each design application, but in all cases it is important

to load the internal PAs for balanced output power. To aid visually in the combiner design, the axis of power

symmetry demonstrates a straight trajectory from peak output power toward peak efficiency, over which the

internal PA loading should be balanced if the load modulation is symmetric about the axis. Imbalanced

loading of the internal PAs causes distortion in the load modulation. Referring to Fig. 2.11, one circle would

shrink while the other expands. Not only does this ruin performance, but it could lead to instability as

well. Therefore, the reference plane at which the combiner is designed must match that of the internal PA

characterization. If the theoretical load modulation referenced to the intrinsic drain is presented at the output

of this GaN MMIC, poor performance and instability would ensue. Again, this is because the theoretical

load modulation is referenced to the intrinsic drain of a device, not the output of a PA.

In order to measure the load modulation, as well as internal PA performance, it is necessary to include

low-loss (0.2 dB) bi-directional couplers [82] in the combiner topology. Since the load-pull characterization

of the internal PAs is performed at the MMIC bond wire plane, the combiner is designed at this plane as well.

As such, the fixture transition and bi-directional couplers are measured and included in the combiner design,

as detailed in Fig. 2.30. The SMA connector transition onto the PCB is also measured via TRL, so the design

comes down to the microstrip circuit. It is worth noting that the off-chip combining adds significant loss

(1 dB), but enables internal measurements as well as valuable comparison of several outphasing architectures

described in the subsequent chapters.

Small-signal analysis has been applied to the lossless, non-isolated, three-port combiner to predict the
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Figure 2.30: Detail of PA-combiner assembly. All internal measurements are de-embedded to the MMIC
bond wire reference plane. The microstrip circuit is designed to provide load modulation.

load modulation at the fundamental frequency, yielding equations useful for designing load modulation

circles. Because combiner design is done manually and visually, the speed of tuning is important. Being

able to simulate without harmonic balance greatly improves the responsiveness to tuning. The reflected

waves at the internal PA ports (1 and 2) are defined at the combiner reference plane in Fig. 2.30 as:

b1 = S11a1 + S12a2 + S13a3 (2.59)

b2 = S21a1 + S22a2 + S23a3 (2.60)

In outphasing, the input power waves at the PA ports are symmetrically and oppositely phase shifted (θ) and

possibly scaled (x) versions of each other:

a1 = xa2e j2θ (2.61)

a2 =
1
x

a1e−j2θ (2.62)

a3 = 0 (2.63)

Port 3 is assumed to be matched, x predicts the effect of PA output power imbalance, and θ is the outphasing

angle. Substituting these excitations into (2.59) and (2.60), the reflected waves become:

b1 = S11a1 + S12
1
x

a1e−j2θ (2.64)

b2 = S21xa2e j2θ + S22a2 (2.65)
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Figure 2.31: (a) Photograph of Chireix combiner fabricated on 30mil Ro4350B substrate. (b) Pout and
PAE load-pull contours measured at 10.1GHz, with the axis of power symmetry shown for design, and load
modulation predicted by (2.66), (2.67). PAE contours are shown from 30% to 60% in 10 point increments
and Pout contours are traced from 28 to 35 dBm in 1 dB steps. Smith chart is normalized to 50Ω.

The reflection coefficients at each input port of the combiner, corresponding to the load modulation at the

output of each internal PA, are found:

ΓPA1 =
b1

a1
= S11 +

1
x

S12 e−j2θ (2.66)

ΓPA2 =
b2

a2
= S22 + x S21 e j2θ (2.67)

With the aid of the small-signal analysis for quick and responsive simulation, the combiner can be

designed. The microstrip circuit shown in Fig. 2.31a is based on a tee-junction topology and optimized with

conjugate susceptances in the form of shunt stubs. The reactive compensation can also be realized by adding

and subtracting the same electrical length from each branch in the tee-junction [61]. The calculated load

modulation circles are overlaid on the measured load-pull characterization to visually analyze performance

and provide immediate feedback for combiner tuning, as demonstrated in Fig. 2.31b.

This combiner design intersects the load modulation circles, ΓPA1 and ΓPA2 , at the measured peak

efficiency at the same outphasing angle and remain in the highest efficiency impedance region possible,

while balancing over the axis of power symmetry. A peak output power is achieved near peak efficiency due

to the proximity to the maximum power load. The minimum output power is achieved when the loads reach

the edge of the Smith chart.
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2.4 Internal PA Performance and Load Modulation Measurements

2.4.1 Measurement Setup and Calibration

A dedicated outphasing measurement setup is established for both internal PA and system measurements of

various outphasing PAs [83]. An alternative is a near-field method used to measure internal interactions in

a Doherty PA in [84], which requires specialized equipment (field probe, 3-D positioner) and continuous

numerical simulation (HFSS). In this work, the absolute RF voltage and current waves of the internal PAs,

within the outphasing system, are not only measured at the input, as done in [81], but also at the output

through the inclusion of bi-directional couplers in the output combiner.

The measurement setup in Fig. 2.32 is an extension of the setup used to measure the internal PA MMICs

in subsection 2.2.3. This work can be done with a VNA in receiver mode as shown in [85]. Typically, a

four-channel, time-domain receiver is used to measure two-port devices under test (DUTs), but here it is

extended to measure two two-port DUTs (internal PAs) with the use of an RF switch matrix, which includes

four RF single pole, double throw (SPDT) switches (Agilent 8762C). The calibrated coaxial reference planes

are denoted P1, P2, P3, and P4, which are at the coaxial launchers of the MMIC fixture. In this setup,

port P1 is measured continuously to provide a phase reference for the other three ports, which are measured

sequentially using the RF switch matrix. Sequential measurements are aligned in the time-domain by adding

a delay to force the phase of the fundamental voltage at port P1 to 0◦. Taking the input voltage as a phase

reference is not an issue in outphasing, because the input power level remains constant and large.

The calibration of this system consists of three sequential two-port calibrations (P1-P2, P1-P3, P1-P4)

corresponding to the three switch configurations. Each two-port calibration is the same as that presented

in subsection 2.2.3, and uses a VNA SOLT method along with an absolute power calibration on port P1 in

forward mode with a power meter and an absolute phase calibration performed during the reverse "Thru"

measurement. De-embedding of the MMIC fixture is done as described previously, so all following internal

measurements are referenced to the MMIC bond wire plane at both the input and output.

During the outphasing measurements, the RF power applied to port P1, the input of PA1, is set for peak
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(a)

(b)

Figure 2.32: (a) Photo and (b) diagram of the measurement setup, based on a 4-port LSNA. The two output
couplers are included in the combiner, enabling measurement of internal load modulation and internal PA
performance. A phase shifter sweeps the differential phase (ϕ), while the source for that branch varies
amplitude to maintain a balanced input power level which saturates both PAs.

efficiency of the internal PA. A phase-shifter is placed after the second source and applied to port P2, the

input of PA2, to sweep the differential phase between the internal PAs at the fundamental frequency, defined

as:

ϕ = 6
v2

v1
(2.68)

The amplitude of the second source is adjusted for each phase to compensate for the variable loss in the
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Figure 2.33: Performance comparison of the two internal MMIC PAs at 10.1GHz, -4.2V gate bias, and 20V
drain supply.

phase-shifter, and maintain input amplitude balance. In addition to constant bias outphasing measurements,

the drain supply of each internal PA can be varied during measurement with this setup.

The two internal PA MMICs are chosen from a pool of measured chips to match as well as possible in

terms of gain, output power, and efficiency in saturation at 10.1GHz. Measurements of the two chips with

50Ω loads are shown in Fig. 2.33. The two chips are chosen to operate at 26.0 dBm input power and -4V gate

bias, since they exhibit small differences in PAE, output power, and gain of 1.06 points, 0.21 dB, and 0.1 dB,

respectively. Although the peak efficiency often occurs at 10.2GHz for these MMICs, the small sacrifice

in peak efficiency is worthwhile to achieve gain and output power balance. Differences in the load-pull

characteristic of the two chips are unknown.

2.4.2 Measurement Results

The load modulation is measured for the first time in literature, and presented in Fig. 2.34, for which a

differential phase sweep from -180◦ to 180◦ is performed. The peak PAE is obtained at the intersection of

the load circles near the center of the Smith chart, as designed. The peak output power is achieved near

that of the PAE due to the proximity of the load circles to the peak power impedance. The minimum output

power occurs at the edge of the Smith chart.

Comparatively, the measured and designed (Fig. 2.31b) load modulation are very close, but the measured
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Figure 2.34: Measurement of load modulation presented to internal PAs (MMIC bond wire plane) when
loaded with the non-isolated combiner from Fig. 2.31a.
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Figure 2.35: Measured power balance at the input and output of the internal MMIC PAs.

circles show a slight counterclockwise rotation as well as a slight enlargeing of the ΓPA2 circle. This slight

distortion is most likely induced by the combiner, since the internal PAs exhibit extremely small imbalances

under 50Ω loading. Fig. 2.35 demonstrates the power imbalance increase from the input of the internal PAs

to the output. The available input power balance is maintained between -0.25 dB and 0.2 dB. A much larger

variation, from -2 dB to 1.3 dB, is measured at the output of the internal PAs, which must be induced by

the combiner, since the internal PA gain imbalance only contributes 0.1 dB. Differences in the internal PA

load-pull characterization interact with imbalanced load modulation, resulting in internal PA output power

imbalance and some load modulation distortion.

The performance of the internal PAs is shown in Fig. 2.36 for a 20V supply voltage. The efficiency
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Figure 2.36: Measured internal PA output powers and efficiencies at 10.1GHz with 26.5 dB input power and
20V supply..
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Figure 2.37: Measured system output power and efficiency.

of each MMIC PA varies significantly with differential phase due to the load modulation. The internal

PA power imbalance induced by the combiner and available input power imbalance separates the efficiency

traces. The internal PA efficiencies are equal when the power imbalance is zero, at about 45◦. The combiner

was designed based on the load-pull characterization of only one of the internal MMIC PAs, so the designed

load modulation may have adversely affected the other. The output power imbalance can be taken into

account in the load modulation analysis, (2.66) and (2.67), through the variable x.

Finally the system performance is shown in Fig. 2.37 as a function of outphasing angle, and in Fig. 2.38

as a function of normalized output power, which is helpful when considering efficiency for high PAR signals.
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Figure 2.38: Measured system efficiency as a function of normalized output power.

Table 2.1: Chireix outphasing PA Performance

Architecture Peak Pout (dBm) Peak ηtot (%) ∆Pout (dB) Dynamic Range (dB)

Chireix 35.7 47.0 1.94 32.1

The system achieves a peak output power of 35.7 dBm at a differential phase of 5.4◦, and a peak total

efficiency of 47% at 10.3◦. The ∆Pout (defined in subsubsection 1.1.3a) achieved for Chireix outphasing is

1.9 dB, and a dynamic range of 32.1 dB is measured, as summarized in Table 2.1.

2.4.3 Linearity Issues and Indicators

Although specific linearitymeasurements (two-tone test, ACLR,EVM) are not performed, linearity indicators

can be ascertained from CW characterization. Sources of nonlinearity in traditional PAs, such as AM/AM

and AM/PM, are not present in outphasing PAs, because the input amplitude is constant. Outphasing

has different sources of nonlinearity entirely. Gain and phase imbalances between the branches are key

contributors to nonlinearity in all outphasing PAs [86], and are caused by imbalances in the internal PAs

and/or the combiner [87, 88]. Branch imbalances restrict the cancellation of the wide bandwidth quadrature

signal component in LINC PAs, leading to residue in adjacent channels [89]. The maximum measured gain

and phase imbalances are listed in Table 2.2. The gain imbalances measured under outphasing operation

must stem from combiner imbalance and input power imbalance, since the internal MMIC PAs demonstrate
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Table 2.2: Measured gain and phase imbalance

Architecture Max Gain Imbalance
(dB)

Max Phase Imbalance
(deg)

Max Encoding
Distortion (deg)

Chireix 2.01 25.01 5.39

less than 0.1 dB gain imbalance. In [90], the phase imbalance is shown to be more dependent on the gain

imbalance than branch electrical length imbalance, which explains the measured phase imbalances without

significant branch length differences.

An additional source of nonlinearity in outphasing PAs is the nonlinear phase transformation [87, 91],

which can be separated into encoding and clipping distortions [42]. The encoding distortion is a phase offset

that shifts the peak output power from θ = 0◦, which is visible in Fig. 2.37. In the LINC PA, encoding

distortion is caused by branch imbalances, and imperfect combiner summing and subtracting in terms of

phase. In Chireix outphasing, encoding distortion is inherent due to the impedance mismatching between

the internal PAs and combiner [92], and arises theoretically when source impedance, RS , is taken into

account [39, 42]. In which case, the voltage across the differential load becomes [42]:

VL = A0

2 j
√

1 + B2
C

R2
S

2 RS

RL
+ B2

C
R2
S

+ 1
sin (θ + α) (2.69)

and the encoding distortion is:

α = arctan (BCRS) (2.70)

After subtracting this offset, the clipping distortion is examined using two representations from measure-

ments. First, the theoretical and measured differential phases are compared in Fig. 2.39 using the relationship

between outphasing angle and normalized output power in [39] and in Equation 3.22:

ϕ = 2 arccos(10Pout,n/20) (2.71)

Chireix outphasing demonstrates up to 25◦ of deviation from the theoretical phase.

Second, the relationship between the outphasing angle and normalized output power is compared directly

between theory and measurement in Fig. 2.40. Nearly 2.7 dB of deviation from the theoretical relationship

occurs. In both cases, the solid blue trace shows the ideal (linear) characteristic. Although measurements
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Figure 2.39: Measured differential phase deviation, showing up to 25◦ deviation from ideal operation.
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Figure 2.40: Measured output power with respect to differential phase, showing up to 2.7 dB deviation from
ideal operation.

show concerning deviation from ideal operation, [48,91] have shown that Chireix outphasing can be linearized

sufficiently for communication applications.

2.5 Conclusion

This chapter formed the foundation for the following three chapters by introducing a measurement setup

devised to measure the internal PA performance and load modulation within an outphasing architecture.

The flexible, MMIC-based outphasing PA utilized high efficiency GaN MMIC PAs and various off-chip
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combiners, which enabled the internal measurements through the inclusion of bi-directional couplers. The

load modulation within a Chireix outphasing PA was measured for the first time in literature. An approach to

Chireix combiner design was discussed and aided by small-signal analysis, providing equations for predicting

load modulation. Finally, the linearity issues common to all outphasing architectures were discussed, and the

indicators of linearity found in static measurements of the Chireix outphasing PA prototype were described.

Themeasurement setup, performancemetrics of ∆Pout and dynamic range, and linearity indicators presented

in this chapter are the foundation for comparison with the outphasing architectures presented in the next

three chapters. Original contributions in this chapter include the following:

• The design andmeasurement of a 70% efficient (PAE)GaNMMICPAwith 2.7Wof output power [35].

• The derivation of equations predicting the load modulation of a three-port combiner under outphasing

excitation with small-signal analysis to aid in Chireix combiner design [83].

• The development of an internal PA performance and load modulation measurement setup at 10.1GHz,

along with a hybrid Chireix outphasing PA enabling the measurement of absolute power waves internal

to the architecture [83, 93, 94].

• The extension of the upper frequency of any outphasing PA implementation from 5GHz [51] to

10.1GHz [83,93, 94].

• The measurement of load modulation internal to a Chireix outphasing PA for the first time in literature

[83, 93, 94], demonstrating the variation of internal PA power and efficiency.
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LInear Amplification with Nonlinear Components (LINC) is a variation of outphasing proposed Cox in

1974 [33]. Although LINC shares the same outphasing modulated drive signal as its predecessor, Chireix

outphasing, it operates in a fundamentally different way at the output. Chireix outphasing controls the output

amplitude with load modulation, facilitated through a non-isolated combiner. LINC achieves output power

control by vector addition with an isolated combiner. Chireix outphasing was developed for high efficiency

amplification, while LINC was developed for linear amplification. Therefore, the choice between isolated

(LINC) and non-isolated (Chireix) combining is a trade-off between linearity and efficiency [58, 95].

In this chapter, the internal PA performance and load modulation measurements from Section 2.4 are

extended to the LINC PA by utilizing an isolated off-chip combiner. The theoretical foundation for LINC,

including the details of input signal generation and drive, is presented in Section 3.1. Section 3.2 describes

the design of the isolated combiner, as well as the measurement results.



Figure 3.1: Block diagram of LINC power amplifier architecture.

3.1 LINC Theory

The original LINC theory presented in [33] has only been extended to consider the sources of linearity

distortion in [86, 87]. The narrow focus is due to the minimal influence that the internal PA class has on

system performance, only setting the peak efficiency, while branch gain and phase imbalances contribute

significantly.

The LINC block diagram in Fig. 3.1 demonstrates the outphasing modulation common to all outphasing

variations, aswell as isolated combining at the output. The signal component separator converts the amplitude

modulation of an amplitude and phase modulated signal into additional differential phase modulation, θ(t).

In absence of amplitude modulation, the internal PAs are driven with a constant envelope signal, such that

they operate at peak efficiency in saturation. Because the internal PAs operate in CW, they do not exhibit

AM/AM or AM/PM distortion. At the output, an isolated combiner performs a vector addition of the

amplified signals to reconstruct the envelope.

An amplitude and phase modulated signal at the input can be written in the time domain as:

vin(t) = I(t) cos(ωt) + Q(t) sin(ωt) (3.1)

vin(t) = A(t) cos[ωt + φ(t)] (3.2)

where the signal components can be defined in Cartesian form as in-phase and quadrature components, I(t)

and Q(t), or in polar form as amplitude and phase components, A(t) and φ(t), respectively, and ω is the RF

carrier frequency. The signal component separator decomposes the input signal into two branch signals such
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Figure 3.2: LINC vector diagram of input voltages as defined in Fig. 3.1

that:

vin(t) = vin1(t) + vin2(t) (3.3)

where the input voltage signals in each branch are defined from Fig. 3.2:

vin1(t) = A0 cos[ωt + φ(t) + θ(t)] (3.4)

vin2(t) = A0 cos[ωt + φ(t) − θ(t)] (3.5)

The amplitude constant is set as:

A0 =
Amax

2
(3.6)

where

Amax = max|A(t)| (3.7)

To be clear, the signals vin1(t) and vin2(t) are used to drive the internal PAs in LINC and Chireix outphasing.

Signal decomposition is based on the trigonometric identity:

cos(A) + cos(B) = 2 cos
(

A + B
2

)
cos

(
A − B

2

)
(3.8)

Applying this identity to the sum of vin1(t) and vin2(t):

vin1(t) + vin2(t) = 2
Amax

2
cos[ωt + φ(t)] cos[θ(t)] (3.9)
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Substituting (3.9) into (3.3) yields:

A(t) cos[wt + φ(t)] = Amax cos[ωt + φ(t)] cos[θ(t)] (3.10)

which can be solved for the outphasing angle:

θ(t) = arccos
[

A(t)
Amax

]
(3.11)

This is the key relationship for signal decomposition, representing how the amplitude modulation is trans-

formed to differential phase modulation. When the amplitude of the input signal is maximum, then the two

signals are driven in-phase, or θ is 0◦. This differs from Chireix outphasing theory in Section 2.1, which

makes use of a differential load rather than a summing combiner. When the amplitude is minimum, then the

two signals are driven to be out-of-phase, or θ is 90◦, so that a differential phase of 180◦ is achieved.

Now the output of the LINC PA can be examined mathematically to show how linear amplification is

achieved. The output voltage of each PA is related to the input voltage by the voltage gain:

v1(t) = G vin1(t) (3.12)

v2(t) = G vin2(t) (3.13)

If the combiner is lossless, matched, and perfectly isolated, it will perform a perfect vector addition and

subtraction. The output voltage can be taken as either, but in this case is taken as the sum:

vΣ(t) = v1(t) + v2(t) = G [vin1(t) + vin2(t)] = G vin(t) (3.14)

since the branch voltage signals are decomposed so that their sum is equivalent to the input voltage signal.

Because the internal PAs are operated at a constant input power level, their gain, G, is constant. Therefore,

the relationship between the input and output voltages demonstrates linear amplification.

The voltage signal at the difference port of the isolated combiner will subtract the internal PA output

voltages based on a complimentary trigonometric identity:

cos(A) − cos(B) = −2 sin
(

A + B
2

)
sin

(
A − B

2

)
(3.15)
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which leads to the isolated port signal:

v∆(t) = v1(t) − v2(t) = −GAmax sin[ωt + φ(t)] sin[θ(t)] (3.16)

Ignoring the high frequency term in the output voltages, the sum and difference powers can be written as a

function of the outphasing angle modulation:

PΣ = 2Pout,PA cos2 θ (3.17)

P∆ = 2Pout,PA sin2 θ (3.18)

Normalizing the output power on the sum port yields:

Pout,n = cos2 θ (3.19)

and converting to the logarithmic scale:

Pout,n (dB) = 10 log(cos2 θ) (3.20)

Solving for the outphasing angle yields:

θ = arccos(10Pout,n/20) (3.21)

Or, in terms of differential phase:

ϕ = 2 arccos(10Pout,n/20) (3.22)

To find the efficiency, the total DC power consumed by the internal PAs must be defined:

PDC,tot =
2Pout,PA

ηd,PA
(3.23)

The drain efficiency can then be defined:

ηd =
PΣ

PDC,tot
= ηd,PA cos2 θ (3.24)

The theoretical efficiency of a LINCPA is directly proportional to the output power delivered to amatched

load, as shown in Fig. 3.3. This leads to a poor roll-off in efficiency, which drops to 50% at 3 dB power
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Figure 3.3: Theoretical efficiency of the LINC PA with the internal PA efficiencies set to 100%.
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Figure 3.4: Comparison between the theoretical efficiencies of a LINC PA with optimum class-B internal
amplifiers operating and a single-ended class-B PA.

backoff (50% output power) and 25% at 6 dB power backoff (25% output power). Note that the internal PA

efficiencies are set to 100%, leading to a peak system efficiency of 100%. If the internal PA efficiencies

are set to the maximum theoretical efficiency of the class-B amplifier, 78.7%, then a direct comparison can

be made with a single-ended, class-B PA in Fig. 3.4. Class-B shows a better efficiency roll-off with power

backoff than LINC. This serves to stress the point that LINC provides linear, not efficient, amplification.

58



(a)

ΓPA1
ΓPA2

(b)

Figure 3.5: (a) Photograph of rat-race combiner fabricated on 30mil Rogers 4350B substrate for operation
centered at 10.1GHz. (b) Load modulation predicted by (2.66), (2.67) utilizing measured rat-race S-
parameters. The Smith chart is normalized to 50Ω and shown for 0.6 < rL < 1.4.

3.2 Internal PA Performance and Load Modulation Measurements

The internal PA performance and load modulation measurements presented in this section utilize the same

setup as presented in Section 2.4, except a second power meter is placed at the isolated port of the combiner.

The subsequent sections will discuss the combiner design, internal and system measurements, as well as

linearity indicators.

3.2.1 Rat-Race Combiner

The rat-race combiner is chosen to isolate the two internal PAs at 10.1GHz. A Wilkinson combiner is

often used in LINC, but does not provide access to the isolated power at X-band. The combiner, shown in

Fig. 3.5a, is implemented in a standard microstrip form, and fabricated on 30mil Rogers 4350B substrate. In

a perfectly power balanced simulation, nonzero load modulation is predicted by (2.66) and (2.67), as shown

in Fig. 3.5b, leaving only the finite isolation of the combiner (24 dB) to be responsible. Fig. 3.6 shows the

through loss from each of the PA input ports (1,2) to the output port (3) and the difference port (4), which

varies between 0.6 and 0.8 dB at 10.1GHz.

The phase between the internal PAs and the output (6 S31, 6 S32) as well as the difference port ( 6 S41, 6 S42)

and more importantly the difference between those paths ( 6 S32− 6 S31, 6 S42− 6 S41) are shown in Fig. 3.7. At

10.1GHz the phase difference between the internal PAs and the output is 4.55◦, while the phase difference
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Figure 3.6: Measured through loss from each of the PA input ports (1,2) to the output port (3) and the isolated
port (4).
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Figure 3.7: Measured phase between the input and output ports, and the difference between those paths.
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Figure 3.8: Measured input match and isolation between inputs.
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Figure 3.9: Measurement of load modulation presented to internal PAs (MMIC bond wire plane) when
loaded with the isolated combiner from Fig. 3.5a.

between the internal PAs and the isolated port is -173.06◦. Therefore, the internal PAs will sum at the output

and subtract at the isolated port as desired. At 10.1GHz, the match presented to each of the internal PAs is

better than 24 dB, and the isolation between them is 24 dB, as shown in Fig. 3.8.

3.2.2 Measurement Results

The load modulation is measured for a differential phase sweep from -180◦ to 180◦ and shown in Fig. 3.9.

As predicted in Fig. 3.5b, the limited isolation in this rat-race combiner (24 dB) allows for unintentional

load modulation, which is a much smaller amount than observed for Chireix outphasing. Peak power and

efficiency occur at the intersection of the load modulation circles. An infinitely isolated combiner would

completely suppress load modulation.

The available input power balance is maintained between 0.05 dB and 0.7 dB. Internal PA output power

balance shows a larger variation, from 0.4 dB to 1.7 dB. The previously measured internal MMIC PA gain

imbalance only contributes 0.1 dB from the input to the output, so the remaining 0.9 dB must be induced by

the combiner. In simulation, with balanced input power and identical internal PAs, up to 0.7 dB internal PA

output power is induced by the measured combiner. Phase imbalances between the branches are not shown

to affect the amplitude of measured power imbalances.

The performance of the internal PAs is shown in Fig. 3.10 for a 20V supply voltage. The load variation

is small enough to flatten out the efficiency response of the internal PAs with respect to differential phase,
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Figure 3.10: Measured internal PA output powers and efficiencies at 10.1GHz with 26.5 dB input power and
20V supply.
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Figure 3.11: Measured system output power and efficiency.

limiting the variation to 7.5 points. As seen in Chireix outphasing, the internal PA efficiencies are separated

due to differences in the load-pull characteristic of the two internal MMIC PAs, which come into effect

through the internal PA output power imbalance induced by the small amount of load modulation.

The system performance is shown in Fig. 3.11. Now, there are two traces corresponding to RF output

powers exiting the sum (Σ) and difference (∆) ports of the isolated combiner, which are inversely proportional

to each other. Since the internal PAs operate at nearly constant efficiency with differential phase, the system

efficiency is most influenced by the output power characteristic, which rolls off sharply in LINC outphasing

as cos2 θ. The system achieves a peak output power of 35.8 dBm and a peak total efficiency of 47.6% at a
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Figure 3.12: Comparison of measured system efficiency as a function of normalized output power, demon-
strating the improvement of Chireix outphasing.

Table 3.1: Comparison of Chireix outphasing and LINC system performance

Architecture Peak Pout (dBm) Peak ηtot (%) ∆Pout (dB) Dynamic Range (dB)

Chireix 35.7 47.0 1.94 32.1

LINC 35.8 47.6 0.95 28.9

Table 3.2: Comparison of measured gain and phase imbalance

Architecture Max Gain Imbalance
(dB)

Max Phase Imbalance
(deg)

Max Encoding
Distortion (deg)

Chireix 2.01 25.01 5.39

LINC 1.26 20.67 3.74

differential phase of 3.7◦.

Fig. 3.12 compares the system efficiency for Chireix outphasing with LINC as a function of normalized

output power. At 6 dB back-off, Chireix outphasing achieves a 9.6 point improvement in total efficiency over

LINC. A ∆Pout of 0.95 dB is achieved with a dynamic range of 28.9 dB, as summarized in Table 3.1.

3.2.3 Linearity Indicators

Table 3.2 summarizes the gain imbalance, phase imbalance, and encoding distortion. Gain imbalance is

induced by the combiner, since the internal PAs demonstrate 0.1 dB gain imbalance when independently
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Figure 3.13: Comparison of measured differential phase deviation, showing only up to 8◦ deviation from
ideal operation for the LINC PA.

measured. Along with the unknown internal PA phase imbalance, the induced gain imbalance contributes

to the measured phase imbalance [90]. Gain imbalance contributes to encoding distortion through load

modulation distortion, and indirectly through phase imbalance. In conjunction with phase imbalance, the

deviation of the phase between the internal PAs and the sum and difference ports from 0◦ and 180◦ contributes

directly to encoding distortion.

A comparison of linearity indicators, as described in detail in subsection 2.4.3, can be made between

the LINC and Chireix outphasing prototypes. While the phase imbalance and encoding distortion are close,

LINC achieves a 0.75 dB reduction in gain imbalance. More importantly, the nonlinear phase transformation

is compared in Figs. 3.13 and 3.14. The near linear response of the LINC PA is established, as it only deviates

by 8◦ from ideal phase and closely follows the power response. The comparison shows that more work will

be required to linearize the Chireix outphasing PA as compared to the LINC PA.

3.3 Conclusion

The theoretical foundation for the input signal processing common to all outphasing amplifiers was presented.

The internal PA performance and load modulation measurement setup in Chapter 2 was extended in this

chapter to LINC, through the design and fabrication of an isolated, off-chip, rat-race combiner. Utilizing
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Figure 3.14: Comparison of measured output power with respect to differential phase, showing negligible
deviation for the LINC PA.

the same internal PAs enabled a direct comparison between the LINC and Chireix outphasing PAs, which

clearly exhibited something that is often confused in literature: the LINC PA amplifies linearly, while the

Chireix PA amplifies efficiently. Original contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to isolated

outphasing or LINC [83,93, 94].

• The measurement of load modulation internal to a LINC PA is demonstrated for the first time in

literature [83, 93, 94]. In this cases, it is minimal, yet nonzero, due to the finite isolation of the

combiner.

• Direct comparison between the LINC and Chireix outphasing PAs is enabled by this measurement

setup, which utilizes the same internal PAs. The efficiency improvement of Chireix outphasing, and

the linear amplification of LINC are both highlighted [83, 93, 94].

Although these measurements incur extra loss in order to explore the dynamics within the outphasing

architecture, the very low measured ∆Pout values indicate improvements may be necessary to efficiently

amplify high PAR signals. In the next chapter, the addition of discrete supply modulation to the LINC PA

architecture is examined.
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Demonstrated in the previous chapter both theoretically and experimentally, the efficiency of the LINCPA

decays rapidly with drive level reduction. Supply modulation can be incorporated to improve the efficiency

at back-off, thereby improving the average efficiency of amplifying high PAR signals. In this case, supply

modulation only needs to perform coarse output power control by discrete steps, since outphasingmodulation

performs fine control.

In envelope tracking, the supply modulator (SM) must have a continuously variable output. Achieving

the required modulation bandwidth, which must be at least five times that of the signal for linearization, is

very difficult and currently the bottleneck of the ET PA. Additionally, the supply modulator must be able to

swing the voltage very fast for high PAR signals, while providing a lot of power, corresponding to a very

high slew rate [96]. An eight-phase buck converter operating at a peak power of 176W, with slew rates up



Figure 4.1: LINC, ML-LINC, and AMO vector diagram.

to 3 kV/µs, is shown to track a 5MHz, 5 dB PAR signal with unknown linearity at 61.3% overall efficiency

(including gate drivers) in [97]. A GaN-on-SiC, two-phase synchronous buck converter MMIC operating

at a peak power of 10W is shown to track a 20MHz, 4.3 dB PAR LTE signal with 1.6% normalized RMS

error (NRMSE) at 80.1% overall efficiency in [98, 99]. A discrete supply modulator, on the other hand,

is much simpler than its continuous counterpart. A discrete SM may be implemented as a simple switch

network [100] or a digital-to-analog converter (DAC) architecture [101]. A 3-bit power-DAC operating at a

peak power of 159W, with slew rates up to 4.23 kV/µs, is shown to track a 20MHz, 11 dB PAR LTE signal

with 5% NRMSE at 78.2% overall efficiency in [101].

Since the isolated combiner at the output of a LINC PA performs a vector combination of the internal PA

output voltages, the concept of supply modulated LINC can be understood through vectors. Fig. 4.1 shows

the vector addition at the output of the LINC, multi-level LINC (ML-LINC), and asymmetric multilevel

outphasing (AMO), where the green vectors represent the internal PA output voltages, and the blue vector is

the sum of them, or the load voltage. The discrete supply levels are represented by concentric circles.

The addition of supply modulation allows for a reduction in outphasing angle, thereby reducing the RF

power dissipated in the isolated combiner. In ML-LINC, the discrete supply levels are varied symmetrically

[102]. These levels can be optimized based on the PDF of the input signal [103, 104]. In AMO, supply

levels are allowed to vary independently, providing an increase in efficiency through further reduction of

the outphasing angle [104, 105]. AMO has been validated experimentally with GaN, class-E internal PAs

at 1.95GHz in [106] and with CMOS, class-E internal PAs at 2.4Ghz in [100]. Both works implement a

switching network for the discrete supply modulator, and perform linearized modulated measurements.

In this chapter, the internal PA performance and load modulation measurement setup for the LINC
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Figure 4.2: Theoretical efficiency of the ideal, four level ML-LINC PA, demonstrating improvement for the
optimal trajectory.

PA in Section 3.2 is extended to include discrete supply modulation. The theoretical foundation for the

incorporation of symmetric and asymmetric discrete supply modulation with outphasing is presented in

Section 4.1 and Section 4.2, respectively. Section 4.3 demonstrates the measured results for these two

variations of the LINC PA architecture.

4.1 Multi-Level LINC Theory

In the LINC PA, the amplitude of the output vectors is fixed by the constant supply voltage. On the other

hand, ML-LINC allows the supply voltages to vary symmetrically, meaning the green vectors in Fig. 4.1

change in amplitude simultaneously. Now multiple combinations of supply levels and outphasing angles

can realize a given output vector. The optimal solution simultaneously minimizes the supply voltages and

the outphasing angle. Therein lies the improvement of ML-LINC. The decrease in the required range of

outphasing angle directly decreases the power dissipated in the isolated combiner, since its maximum and

minimum correspond to those of the outphasing angle.

ML-LINC produces a peak in efficiency for each supply level. Each normalized supply level can be

determined from the normalized output power at which the efficiency peaks are desired from (4.15). Fig. 4.2

shows the efficiency for four-level ML-LINC, where the supply levels (0.25, 0.354, 0.5, and 0.707V) peak
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Figure 4.3: (a) Theoretical outphasing angle for the ideal, four level ML-LINC PA, demonstrating a decrease
for the optimal trajectory. (b) Theoretical RF power dissipated in the isolated combiner, with decreases
corresponding to those in the outphasing angle.

the efficiency at 9, 6, 3, and 0 dB back-off. Essentially, the LINC PA efficiency curve is reproduced for each

additional supply level, so the different colored curves correspond to the four supply voltages listed. Traveling

along each curve is still accomplished by varying the outphasing angle. The blue trace demonstrates the

optimal trajectory, and its efficiency improvement over that of LINC.

Fig. 4.3 shows both the outphasing angle as well as power dissipated in the isolated combiner as a function

of normalized output voltage. For any single supply level, an outphasing angle of 90◦ must be reached to

minimize the output power, dissipating all generated RF power in the isolated combiner. However, for

multiple supply levels, the outphasing angle can be minimized over a larger portion of the output voltage,

minimizing the RF power lost in the combiner, and maximizing efficiency. Still, all generated RF power is

lost to achieve the minimum output power, but at a lower supply level the internal PAs generate much less

power.

4.2 Asymmetric Multilevel Outphasing Theory

In AMO, the supply levels are allowed to vary independently. Fig. 4.4 shows an example of AMO vectors,

where the green vectors v1 and v2 represent the output voltage of the internal PAs, and the blue vector vout

is the load voltage. The three supply levels (concentric circles) have amplitudes A1, A2, and A3. Now, even
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Figure 4.4: Detailed AMO vector diagram.

more combinations of supply levels (|v1 | and |v2 |) and outphasing angles (θ1 and θ2) can realize a given

output vector, since each can be varied independently. As will be shown, some constraints must be placed

on these variables in order to maintain the required common phase, φ(t) [107].

First, consider the conservation of energy for a lossless combiner. The sum of the input powers (internal

PA outputs) must equal the sum of the output powers (sum and difference ports):

P1 + P2 = PΣ + P∆ (4.1)

If we consider that the power is proportional to the square of the vector amplitude, then this equation can be

rewritten as:

A2
1 + A2

2 = (A1 + A2)2 + (A1 − A2)2 (4.2)

which incorrectly results in:

A2
1 + A2

2 = 2A2
1 + 2A2

2 (4.3)

In order to satisfy the conservation of energy, the output voltage vector must be defined as:

vout =
1
√

2
(v1 + v2) (4.4)

or

(v1 + v2) =
√

2vout (4.5)

which is reflected in the vector diagram in Fig. 4.4.
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Now the outphasing angles, θ1 and θ2, can be found using the law of cosines on their respective triangles

in the vector diagram:

θ1 = arccos


A2
1 + 2A2 − A2

2

4A1 A/
√

2


(4.6)

θ2 = arccos


A2
2 + 2A2 − A2

1

4A2 A/
√

2


(4.7)

These equations ensure that the common phase is not altered, while also reducing the independent variables

to A1 and A2, or |v1 | and |v2 |, the two supply levels of the internal PAs. For each output voltage or power,

all combinations of supply levels can be considered. The optimal solution minimizes the differential phase,

or the difference between the outphasing angles, maximizing efficiency. The output voltage vector can be

written from the vector diagram as:

vout =
A1 cos θ1 + A2 cos θ2

√
2

(4.8)

The total input voltage is:

vin = A1 + A2 (4.9)

Since efficiency is the ratio of the output and input powers, and power is proportional to the square of the

voltage, the efficiency can be written as:

η =
(A1 cos θ1 + A2 cos θ2)2

2(A1 + A2)2 (4.10)

The theoretical efficiency for AMO is compared to ML-LINC in Fig. 4.5 for the same four supply levels.

AMO provides more replicated efficiency curves from the
(
N
2

)
+ N combinations of supplies. Notice that

the additional peaks do not reach 100%. In an isolated combiner, power will be dissipated in the difference

port if the input amplitudes (supply levels) are different, even if the phases are equal. Due to the decrease

in efficiency for increasingly separated supply levels, AMO is usually restricted to utilize only symmetric

levels and combinations of adjacent levels. In this case, n supply levels will provided 2n − 1 peaks in

efficiency [107].

The efficiency peaks occur at the maximum output power for each given supply level. Therefore the

relationship between output power and supply level is found, so the supply levels can be chosen set the
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Figure 4.5: Theoretical efficiency of the ideal, four level AMO PA, demonstrating improvement for the
optimal trajectory beyond that of ML-LINC.

locations of the efficiency peaks in terms of normalized output power. According to (4.8), the maximum

output voltage is produced with the maximum supply level, when θ1 and θ2 are zero:

max(vout ) =
2Amax
√

2
(4.11)

Taking the square of the voltage yields the maximum output power:

max(Pout ) = 2A2
max (4.12)

Normalizing the maximum output power to 1W, yields the maximum supply level:

Amax =
1
√

2
(4.13)

The normalized output power in decibels can be written as a function of the normalized supply level:

Pout,n = 10 log

2
(

An

Amax

)2
(4.14)

An must be less than Amax . Solving for the normalized supply, one can choose the supply levels to peak

efficiency at the desired normalized output powers:(
An

Amax

)
=

√
10Pout,n/10

2
(4.15)

AMO maintains an even further reduced outphasing angle, as shown in Fig. 4.6a, causing a further

decrease in RF power dissipated in the isolated combiner, as shown in Fig. 4.6b, as compared to ML-LINC.
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Figure 4.6: (a) Theoretical outphasing angle for the ideal, four level AMO PA, demonstrating a decrease
for the optimal trajectory. (b) Theoretical RF power dissipated in the isolated combiner, with decreases
corresponding to those in the outphasing angle. In both cases, greater reduction is achieved by AMO than
ML-LINC.

No obvious penalty exists for implementing independent supply variation as in AMO, as compared to

symmetric variation in ML-LINC.

4.3 Internal PA Performance and Load Modulation Measurements

The internal PA and load modulation measurements presented in this section are based on the same setup

in Section 2.4 with the same adjustments in Section 3.2. To characterize the LINC PA with discrete supply

modulation, the drain voltage power supply is stepped, and for each level a full phase sweep is performed.

Implementing an actual discrete supply modulator will decrease the system efficiency according to its

efficiency, which should be more than 80% or 90% depending on the signal and power level [97–99, 101].

The initial calibration is not affected by operating the internal PAs at varying supply levels.

4.3.1 ML-LINC Measurement Results

The measured ML-LINC total efficiency in Fig. 4.7 is obtained for a drain voltage sweep from 10 to 20V

in 2V steps, corresponding to each trace of different color. The optimal operating points (solid blue) are

chosen for peak total efficiency, and aligns with the method in [102] of choosing the supply level to be as

small as possible while reaching the desired output power. The optimal trajectory improves the efficiency by
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Figure 4.7: Measured system total efficiency of the ML-LINC PA for swept differential phase at drain
voltages of 10, 12, 14, 16, 18, and 20V demonstrating advantageous new peaks.

Table 4.1: Measured system performance of supply modulated LINC PAs

Architecture Peak Pout (dBm) Peak ηtot (%) ∆Pout (dB) Dynamic Range (dB)

ML-LINC 36.5 51.7 3.1 39.5

AMO 36.5 52.5 4.9 41.1

10 to 26 points beyond the 20V case.

Table 4.1 summarizes the performance of ML-LINC, showing a ∆Pout improvement of 1.2 dB over

Chireix outphasing and 2.15 dB over LINC. In the figures following, the optimal operation (blue circles)

shows discontinuities corresponding to discrete supply steps. Fig. 4.8 exhibits the reduction in differential

phase, where the optimal operation only requires −24◦ < ϕ < 55◦ above 28 dBm (8.5 dB back-off), which is

a 60◦ reduction compared to the 20V supply case.

The reduced differential phase improves the total efficiency because less power is dissipated in the isolated

combiner. In Fig. 4.9, the optimal operation dissipates less than 0.92W of RF power in the combiner, and

provides 3.28W of improvement over 20V operation at 16.5 dB back-off (20 dBm). Aside from this expected

mechanism for efficiency improvement, Fig. 4.10 demonstrates a secondary effect. As in envelope tracking,

the DC power consumed by the internal PA reduces with supply voltage. Below 29.6 dBm (7 dB back-off),

the DC power consumption is reduced by 6.6W. Therefore, the benefits of supply modulation contribute to

improve the performances of both the internal PAs and combiner.
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Figure 4.8: Comparison of measured differential phase between constant 20V and optimal ML-LINC
operation, demonstrating a reduction for ML-LINC.
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Figure 4.9: Comparison of measured RF power dissipated in the isolated combiner between constant 20V
and optimal ML-LINC operation, which remains below 0.92W up to 6.5 dB back-off for ML-LINC.
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Figure 4.10: Comparison of measured DC power consumption between constant 20V and optimalML-LINC
operation, demonstrating power savings of up to 6.6W by ML-LINC.
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Figure 4.11: Measured system total efficiency of the AMO PA for swept differential phase at drain voltages
of 10, 12, 14, 16, 18, and 20V and combinations of adjacent levels, demonstrating nearly twice as many
peaks as ML-LINC.

4.3.2 AMO Measurement Results

For the AMO measurements, the supplies are varied independently in all combinations of drain voltages

from 10 to 20V in 2V steps. The measured total efficiency in Fig. 4.11 only shows symmetric levels, and

combinations of adjacent levels. In doing so, the six supply voltages produce eleven peaks in efficiency,

which is five more than ML-LINC, creating a much smoother optimal trajectory. This improvement would

be even more pronounced for fewer supply levels. Table 4.1 summarizes the performance showing a further

∆Pout improvement of 1.8 dB compared to ML-LINC.

As in ML-LINC, the differential phase range is reduced for AMO in Fig. 4.12 to −75◦ < ϕ < −5◦ down

to 32 dBm (4.5 dB back-off), which is 55◦ of improvement over 20V supply case. The same two mechanisms

are again reducing lost power. Fig. 4.13 illustrates the reduced RF power wasted in the isolated combiner,

remaining below 0.48W down to 30 dBm (6.5 dB back-off), where an improvement of 2.5W is achieved.

Fig. 4.14 validates the supply modulation effect through the decreased DC power consumption of the internal

PA, which is improved by 4.9W below 31.2 dBm (4.4 dB back-off). As shown in the total efficiency of AMO,

the increased number of supply level combinations provides a more continuous reduction in wasted RF and

DC power.
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Figure 4.12: Comparison of measured differential phase between constant 20V and optimal AMO operation,
demonstrating a reduction for AMO.
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Figure 4.13: Comparison of measured DC power consumption between constant 20V and optimal AMO
operation, demonstrating power savings of up to 4.9W by AMO.
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Figure 4.14: Comparison of measured RF power dissipated in the isolated combiner between constant 20V
and optimal AMO operation, which remains below 0.48W up to 6.5 dB back-off for AMO.
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Figure 4.15: Measured (a) loadmodulation, and (b) internal PA and systemPAE for theAMOPAwith varying
separation between supply levels [VD1,VD2]. Large supply separation shows significant load modulation,
causing both internal PA and system efficiency degradation.

As previously stated, AMO PAs typically utilize only symmetric supply levels and combinations of

adjacent levels, because the combining efficiency of an isolated combiner decreases as the difference between

supply levels increases, leading to a negligible improvement in efficiency [104]. Further substantiation for

this restriction is evident in Fig. 4.15, which shows the load modulation, internal PA efficiency, and system

efficiency for the following supply voltage combinations: [VD1,VD2] = [10V, 20V], [15V, 20V], [20V,

20V], [10V, 10V], [20V, 15V], and [20V, 10V]. As the internal PA output powers become imbalanced

by large a difference in the asymmetric supply levels, the isolation in the combiner is insufficient to prevent

substantial load modulation (Fig. 4.15a). Of course, a designer working with an AMO PA and isolated

combiner would probably not suspect that load modulation is occurring within the PA. Fig. 4.15b shows that

this amount of load modulation is enough to decrease the efficiency of one internal PA as well as the system.
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Figure 4.16: (a) Output power and (b) total efficiency for all combinations of drain voltages from 10V to
20V in 1V steps with the dashed black line demonstrating supply level symmetry. For each output power,
symmetric supplies maximizes efficiency.

Compared to the efficiencies shown for restricted levels in Fig. 4.11, the system efficiency for large supply

imbalances is significantly decreased.

Further confirmation for the supply level restriction is established in Fig. 4.16, which exhibits output

power and efficiency for all combinations of the drain voltages from 10V to 20V in 1V steps. At each

supply combination, the outphasing angle is chosen from a sweep for maximum efficiency. For each output

power contour (solid black lines), the optimal total efficiency lies on the trajectory of symmetric supply

levels (dashed black line). While the optimal continuous trajectory maintains balanced supply levels, AMO

offers efficiency improvement over ML-LINC when implementing discrete supply levels through additional

adjacent asymmetric level combinations.

4.3.3 Linearity Indicators

A comparison of linearity indicators, as described in subsection 2.4.3, is made between the ML-LINC

and AMO prototypes. Table 4.2 compares the gain and phase imbalances as well as encoding distortion,

which result for the same reasons as discussed in subsection 3.2.3. Both supply modulated LINC PAs show

an encoding distortion similar to LINC and a slightly better (3◦) maximum phase imbalance. ML-LINC
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Table 4.2: Measured gain and phase imbalance in supply modulated LINC PAs

Architecture Max Gain Imbalance
(dB)

Max Phase Imbalance
(◦)

Max Encoding
Distortion (◦)

ML-LINC 1.21 17.75 -24.25

AMO 1.48 16.31 -26.4
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Figure 4.17: Measured differential phase deviation in ML-LINC, showing up to 8◦ deviation from ideal
operation.
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Figure 4.18: Measured output power with respect to differential phase in ML-LINC, showing negligible
deviation.

has the same gain imbalance as LINC, while the slight asymmetry in AMO causes an approximate 0.2 dB

degradation.

Even with symmetric, discrete supply modulation, the ML-LINC PA still demonstrates the same linear
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Figure 4.19: Measured differential phase deviation for the AMO PA. VD1 is 20V, and VD2 is varied from
10V to 20V in 1V steps. The phase deviation increases substantially with the difference between supply
levels.
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Figure 4.20: Measured output power with respect to differential phase for the AMO PA. VD1 is 20V, and VD2

is varied from 10V to 20V in 1V steps. As the supply level difference increases, significant output power
distortion occurs.

behavior as in LINC in terms of the nonlinear phase transformation. In Fig. 4.17, ML-LINC attains the same

maximum deviation of 8◦ found in the LINC PA, along with the negligible deviation from ideal operation in

the output power in Fig. 4.18.

Interestingly, the AMO PA experiences increasingly nonlinear phase transformation as the difference in

its supply levels increases. To exhibit this behavior, one supply is set to 20V while the other (VD2) is varied

from 10 to 20V in 2V steps. As VD2 decreases, the deviation from linear phase relationship increases to
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75◦ in Fig. 4.19. In Fig. 4.20, not only does the peak power decrease, but the minimum power increases by

upwards of 20 dB. Both of these effects would significantly degrade the linearizability of the system if those

combinations of supply levels were used. The linearity degradation provides another reason to utilize only

symmetric and adjacent combinations of supply levels.

4.4 Conclusion

The concept of the supply modulated LINC PA architecture was described theoretically, detailing the

optimal split between outphasing angle and supply level. The internal PA performance and load modulation

measurement setup from Chapter 3 was extended through static variation in the drain voltage of each internal

PA. Symmetric (ML-LINC) and asymmetric (AMO) supply modulation led to ∆Pout improvements beyond

the LINC PA of 2.15 dB and 3.95 dB respectively, as well as improvements beyond the Chireix outphasing

PA of 1.16 dB and 2.96 dB respectively. Compared to the LINC PA, the ML-LINC PA was not found to

degrade load modulation or linearity performance, while increasing efficiency. However, when the supply

levels in AMO were separated by 5V or more, significant load modulation and linearity issues arose. AMO

operated optimally in terms of efficiency, load modulation, and linearity when the levels were restricted to

be symmetric or adjacent combinations. Original contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to supply

modulated LINC [94], demonstrating the efficiency improvement caused by minimized both RF and

DC power dissipation.

• The measurement of load modulation internal to the supply modulated LINC PA [94], which became

significant when the asymmetric supplies were separated by several volts, and led to decreased internal

PA efficiency.

82



Chapter 5

Multi-Level Chireix Outphasing

Contents

5.1 Multi-Level Chireix Outphasing Theory . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Internal PA Performance and Load Modulation Measurements . . . . . . . . . . . 86

5.3 Multi-Level Chireix Outphasing GaN MMIC PA . . . . . . . . . . . . . . . . . . . . . 95

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

The previous chapter highlighted the efficiency improvement obtained by incorporating discrete supply

modulation with the LINC PA, making one wonder what could be achieved if it were incorporated with

Chireix outphasing, which already has a higher efficiency performance, especially at power back-off. In

this thesis, and for the first time in literature [94, 108], this concept is demonstrated and named multi-level

Chireix outphasing (ML-CO). Fig. 5.1 shows the system architecture, featuring a non-isolated combiner at

the output and a discrete supply modulator.

The purpose of the discrete supply modulator is the same as when incorporated with LINC, to provide

coarse modulation of the internal PA output power. Effectively, this varies the amplitudes of the voltage

sources in Fig. 2.2b from the Chireix outphasing theory in Section 2.1. Two different amplitudes are shown

at the output of the internal PAs in the block diagram, while the differential phase modulation within the



Figure 5.1: Block diagram of multi-level Chireix outphasing.

signal provides fine output amplitude control.

The inner workings of the ML-CO PA are investigated and discussed in this chapter. The theoretical

performance is described in Section 5.1, before returning to the internal PA performance and loadmodulation

measurement setup which is extended to include this new architecture in Section 5.2. Finally, a ML-CO PA

implemented on a GaN MMIC at X-band is presented in Section 5.3.

5.1 Multi-Level Chireix Outphasing Theory

The operation of the efficiency improvement in ML-CO is very similar to ML-LINC, in that the discrete

supply modulation theoretically replicates the efficiency curve of Chireix outphasing with a given reactive

compensation for each supply level, as shown in Fig. 5.2. The four normalized supply levels (0.355, 0.5,

0.708, and 1.0V) are chosen to reach a maximum output power at 9, 6, 3, and 0 dB back-off. The normalized

supply voltages can be found by normalizing the Chireix outphasing output power in (2.14) to 1W at its peak

(θ=90◦, A0 = Amax = 1 V ), yielding a load resistance of 4Ω. At peak power for any supply level, An, (2.14)

now simplifies to:

Pout,n =
(

An

Amax

)2

(5.1)

Converting to decibels, and solving for the normalized supply level:(
An

Amax

)
= 10Pout,n/20 (5.2)
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Figure 5.2: Theoretical efficiency of the ideal, four level ML-CO PA, demonstrating improvement for the
optimal trajectory. The normalized supply levels of 0.355, 0.5, 0.708, and 1.0V set the maximum output
powers at 9, 6, 3, and 0 dB back-off.

In this example, the compensation susceptance is chosen to peak the efficiency at 3 dB back-off. From

(2.27), the corresponding outphasing angle is found to be 45◦, and the product RLBC is found to be 1.0 from

(2.28). Of course, the choice to peak efficiency at 3 dB is arbitrary, and four levels would not be necessary

if the peak was moved to a lower normalized output power.

As with ML-LINC, multiple combinations of outphasing angle and supply level yield a given output

power. The optimal solution minimizes the supply level. In the case of ML-CO, the outphasing angle

may not be minimized, due to overlapping between the efficiency curves of adjacent supply levels. In this

example, at peak power for a given supply (other than the highest), the efficiency of the next higher supply

is better. This means that the range of outphasing angle is not condensed at one extreme, 0◦ or 90◦, but

rather somewhere in the middle of the range, as shown in Fig. 5.3. The compression of outphasing angle is

completely dependent upon the number and value of supply levels, as well as the compensation susceptance.

In any outphasing PA, to achieve both maximum and minimum output power, the outphasing angle must

reach the extremes, but the compression over a range of output power reduces the bandwidth required of the

signal component separator. In ML-LINC and AMO, the reduction of outphasing angle directly decreased

the RF power dissipated in the isolated combiner, but in ML-CO, the combiner is not isolated and therefore

lossless.
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Figure 5.3: Theoretical outphasing angle for the ideal, four level ML-CO PA. Normalized supply voltages
are 0.355, 0.5, 0.708, and 1.0V.

5.2 Internal PA Performance and Load Modulation Measurements

The internal PA and load modulation measurements presented in this section are based on the setup in

Section 2.4. To characterize the ML-CO PA with discrete supply modulation, the drain voltage power supply

is swept statically, and for each level a full phase sweep is performed. The initial calibration is not affected

by operating the internal PAs at varying supply levels.

5.2.1 ML-CO Combiner Design

A new Chireix combiner must be designed for ML-CO operation. As described in detail for Chireix

outphasing in Section 2.3, the combiner includes the bi-directional couplers and all transitions from the

MMICs. The combiner must be designed at the same reference plane at which theMMIC PA is characterized.

As described in subsection 2.2.3, the internal MMIC PA is characterized by load-pull measurements at the

MMIC bond wire plane for drain voltages from 10 to 20V in 2V steps.

The load-pull contours are compiled in Fig. 5.4b to aid the design of the new combiner. The PAE contours

for all supply voltages are combined into regions of greater than 50% and 60%, so that an impedance inside

this region can achieve at least 50% or 60% PAE at one of the measured drain voltages. Of course, adding

supply modulation increases the size of these two regions compared to a single voltage. Using (2.66) and
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Figure 5.4: (a) Photograph of Chireix combiner designed for ML-LINC measurements at 10.1GHz and
fabricated on 30mil Ro4350B substrate. (b) Measured load-pull contours at drain voltages of 10, 12, 14,
16, 18, and 20V. Output power contours are traced from 29 to 34 dBm (with 1 dB step) for a 20V supply
to aid output power balancing. PAE contours for all voltages are combined into regions designating PAE >

50% and 60%, showing expansion of high efficiency impedances. The predicted load modulation follows
the movement of the PAE and output power maxima with drain voltage. Smith chart is normalized to 50Ω.

(2.67), the predicted load modulation for the combiner is overlaid on the compiled, measured load-pull

contours. Notice that the peak PAE and output power impedances follow a somewhat linear trajectory

toward the edge of the Smith chart with decreasing drain voltage. This combiner is designed to follow that

trajectory, by intersecting the circles at the peak PAE load for a 20V drain supply, and following the peaks

while maintaining output power balance. The output power contours are shown only for 20V, but balancing

the output power is difficult across various supply levels as the line of symmetry shifts.

The combiner shown in Fig. 5.4a is fabricated on 30mil Rogers 4350B substrate. Looking at themeasured

load modulation circles, it is clear that the overlapping section does not exactly follow the trajectory of the

peak PAE and output power, showing a slight counterclockwise rotation. This leads to distortion in the load

modulation measurement.

As the drain voltage is varied, the load-pull contours of the internal PAs change. If the load modulation is

power balanced for all supply levels, then the circles remain unchanged. In that case, the interaction between

the changing load-pull contours and the constant load modulation circles would cause a replication of the

hysteresis-like efficiency of Chireix outphasing, except each replication would have a different shape due to

the changing interaction between the internal PAs and combiner. In reality, the load modulation circles are
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Figure 5.5: Measured system total efficiency of ML-CO PA for swept differential phase for drain voltages
from 8 to 20V in 2V steps. Optimal operation, selected for peak total efficiency at each output power, takes
advantage of load modulation hysteresis to maintain high efficiency.

not power balanced for all supply levels. Each drain voltage varies the load-pull contours and subsequently

distorts the load modulation circles, so the operation is not as simple.

5.2.2 Measurement Results

The ML-CO system total efficiency is obtained for differential phase sweeps at drain voltages from 8 to 20V

in 2V steps, and shown in Fig. 5.5. Each trace of different color corresponds to a unique drain voltage. The

drain voltages are swept symmetrically, since independent variation in the supplies would force imbalances

in the load modulation. The optimal operating points are chosen for peak total efficiency at a each output

power.

The width, peak, slope, and shape of the total efficiency varies with supply voltage. At lower drain

voltages, the curves widen, which improves the performance and reduces the number of discrete levels

required to maintain high efficiency. The measured load modulation in Fig. 5.6 explains the advantageous

widening in the efficiency. The optimal phase trajectory starts at the peak output power load and moves

toward the peak efficiency load. At high supply voltages, both peak loads occur near the center of the Smith

chart, and the optimal trajectory moves toward the edge. However, when the supply is 12V, a reversal in the

optimal trajectory occurs. The peak output power is located near the bottom load modulation intersection,
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Figure 5.6: Measured internal load modulation in theML-CO PA. Imbalance in impedance loci radii exposes
the difficulty in maintaining internal PA Pout balance, but is mitigated through reduced differential phase
requirements and balanced supply levels.
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Figure 5.7: Measured power imbalance at the output of the internal PAs, demonstrating a the effects of
imbalanced loading conditions which worsen with reduced supply voltage.

while the peak efficiency is in between the intersections. Now the upward phase trajectory remains in the

high efficiency region for a larger range of outphasing angles and output power. The separation of the peak

efficiency and output power loads at lower supply levels aids in the widening of the efficiency curve.

The load modulation also demonstrates the difficulty in maintaining internal PA output power balance

over several supply levels, which rises up to nearly 8 dB with an 8V supply voltage in Fig. 5.7. During this

measurement sweep, the input power balance is maintained to within ± 0.8 dB. The effect is also evident

in the imbalanced radii of the load modulation circles. This issue may lead to instability, but the ML-CO

mitigates the risk by reducing the range of required differential phase, and thus the region of actual load
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Figure 5.8: Comparison of measured DC power consumption between constant 20V, optimal AMO, and
optimal ML-CO operation, demonstrating commensurate power savings between ML-CO and AMO.

modulation. Restriction to symmetrically varying supplies helps as well. Attempting to build this PA with

separate internal PA MMICs and off-chip combining is the worst case scenario for imbalances and load

modulation distortion. Implementing the entire PA on a single MMIC, as done in Section 5.3, reduces the

risk by ensuring better internal PA balance.

Unlike the supply modulated LINC PAs, theML-CO PA is lossless in the sense that no power is dissipated

in the combiner to provide isolation. Therefore, the only mechanism improving performance, aside from

reactively compensated load modulation, is the reduction of DC power consumption with supply level.

Fig. 5.8 demonstrates the DC power consumption of optimal ML-CO operation is comparable with that of

the AMO PA, showing a reduction of 8W compared to 20V operation at 30 dBm (6.8 dB back-off). In

Fig. 5.9 the required differential phase is decreased for optimal ML-CO operation to -80◦ < ϕ < -3◦ down to

29 dBm output power (7.8 dB back-off), a 75◦ improvement over 20V operation.

A comparison of the optimal efficiency curve between ML-LINC, AMO, and ML-CO is shown in

Fig. 5.10. ML-CO performs similarly to the others at peak power, and surpasses them below 31.5 dBm, more

than 5 dB back-off. Table 5.1 summarizes the system performances, showing a further increase in ∆Pout of

0.35 dB beyond the AMO PA, but a 30 dB decrease in dynamic range. Part of this reduction results from the

sweeps not completing the full load modulation circles near the edge of the Smith chart, while another major

factor is the imbalance which distorts the circles away from the edge of the Smith chart. However, simulation
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Figure 5.9: Comparison ofmeasured differential phase between constant 20V and optimalML-COoperation,
demonstrating a significant reduction. The optimal trajectory utilizes supply voltages from 8V to 20V in
2V steps.
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Figure 5.10: Comparison of efficiency for optimal ML-LINC, AMO, and ML-CO operation.

Table 5.1: Measured system performance of supply modulated outphasing PAs

Architecture Peak Pout (dBm) Peak ηtot (%) ∆Pout (dB) Dynamic Range (dB)

ML-LINC 36.5 51.7 3.1 39.5

AMO 36.5 52.5 4.9 41.1

ML-CO 36.8 51.3 5.25 10.5

confirms a dynamic range comparable to the supply modulated LINC PAs under full load modulation sweeps.
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Table 5.2: Measured gain and phase imbalance in supply modulated outphasing PAs

Architecture Max Gain Imbalance
(dB)

Max Phase Imbalance
(◦)

Max Encoding
Distortion (◦)

ML-LINC 1.21 17.75 -24.25

AMO 1.48 16.31 -26.4

ML-CO 2.79 52.52 -103.2
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Figure 5.11: Measured differential phase deviation in ML-CO, showing up to 50◦ deviation from ideal
operation. The shades of purple designate the supply voltage, the lightest and darkest corresponding to 10V
and 20V, respectively.

5.2.3 Linearity Indicators

A comparison of linearity indicators, as described in subsection 2.4.3, is made between supply modulated

LINC PAs and the ML-CO PA in Table 5.2. The ML-LINC and AMO PAs exhibit better gain imbalance

by more than 1 dB and better phase imbalance by 35◦. The ML-CO PA reaches the maximum measured

encoding distortion at -103.2◦, but this is simply an offset.

Variation of the supplies inML-COexacerbates the nonlinearity ofChireix outphasing, which is discussed

in detail in subsection 2.4.3. In both nonlinear phase transformation measurements, the linearity indicator of

the ML-CO PA is shown for each supply level in different shades of purple, with the lightest designating 10V

and the darkest designating 20V. In Fig. 5.11, the ML-CO PA shows up to 50◦ of deviation from theoretical

phase, and in Fig. 5.12, up to 7.5 dB of deviation in power is exhibited.
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Figure 5.12: Measured output power with respect to differential phase in ML-CO, showing up to 7.5 dB
deviation from ideal operation.

Compared to the linearity indicators of supply modulated LINC in subsection 4.3.3, linearizing the

ML-CO PA is much more difficult. While these measurements show significant linearity concerns, adequate

linearization has been performed for Chireix outphasing in [48,91] andwith supplymodulated LINC in [100].

Nevertheless, these measurements provide insight into the linearizability of each architecture.

5.2.4 Prediction of Load Modulation Distortion

The distortion of the measured load modulation in Fig. 5.6 compared to the the predicted load modulation in

Fig. 5.4b calls to question the validity and usefulness the small-signal combiner analysis and resulting design

equations, (2.66) and (2.67). The major discrepancy came from ignoring the power imbalance, implemented

in the equations by the variable x, when predicting the load modulation. As illustrated in Fig. 5.7, the induced

power imbalances are varying and nonzero. Furthermore, in ML-CO, the output power balance varies with

supply voltage. Therefore, entering a single value for x will not accurately predict load modulation.

In order to aid in the combiner design for these cases, a measurement based simulation method is

developed. It uses feedback to accurately predict load modulation with power imbalance. Because each

internal PA is characterized, this method will predict the imbalances caused by the differences in the two

chips.
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The procedure is as follows:

• Characterize each internal PA with load-pull measurement at all desired supply levels.

• Interpolate load-pull measurements.

• Simulate or measure S-parameters of combiner at the same frequency and reference plane as internal

PA characterizations.

• Calculate initial values of ΓPA1 and ΓPA2 from (2.66) and (2.67), as seen in Fig. 5.13a.

• From load-pull interpolation, find output power for each internal PA at initial values of ΓPA1 and ΓPA2 .

• Calculate power imbalance, the difference in output power between the internal PAs.

• Re-calculate values of ΓPA1 and ΓPA2 from (2.66) and (2.67), inserting the array of calculated power

imbalances as the variable x, as seen in Fig. 5.13b.

The simulation is set up in Keysight’s Advanced Design System (ADS) software. The measured load-

pull characterizations are stored in CITI formatted files. The Data Access Component is used in ADS to

interpolate the load-pull data. Although the data adheres to a polar grid better, a rectangular (Cartesian

coordinates) interpolation is utilized due to phase discontinuities in polar interpolation. It is important to

recognize that the interpolation of data near the edge of the measured range of impedances will not be

reliable or accurate, due to the abrupt end of data. Therefore, the load modulation predicted at the edge of the

Smith chart should be considered cautiously. A dummy DC simulation is used to force ADS to perform the

calculation of the initial (balanced) load modulation circles, extract corresponding output powers from the

interpolated load-pull characterization, and re-calculate the unbalanced load modulation circles. Note that

an additional iteration in this feedback calculation does not improve the accuracy of the prediction, which

indicates that the steady state solution does not completely balance output power.

The procedure is performed for the measured combiner used in ML-CO measurements. The newly

predicted load modulation in Fig. 5.13b shows the same expansion of the ΓPA2 and shrinking of the ΓPA1

circles, aswell as the trend of the distortion being exacerbated at low supply voltages as found inmeasurement.
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(a) (b)

Figure 5.13: (a) Simulation predicting the load modulation of a measured combiner based on (2.66) and
(2.67) with x=1 and internal PAs are biased at 20V. (b) Simulated predicted load modulation using feedback
to account for internal PA output power imbalance at supply levels between 10V and 20V in 2V steps.

The predicted load modulation using feedback compares extremely well qualitatively to the measurement in

Fig. 5.6. Note that the load-pull characterization had a limited range of reflection coefficient magnitude, so

the load modulation at the edge of the Smith chart will not be accurate due to interpolation error.

5.3 Multi-Level Chireix Outphasing GaN MMIC PA

The Chireix outphasing measurements in subsection 2.4.2 at 10.1GHz as well as 5GHz [51], demonstrate

that the second peak in efficiency at low output power has not been realized at high frequencies. The

efficiency load-pull contours rapidly degrade as compared to the output power contours, preventing high

efficiency operation at low output power. This may be due to the class of operation of the internal PAs as

well as parasitics at these frequencies. In this section, the same effect is present for a fully integrated ML-CO

GaN MMIC PA with high-efficiency class-F internal PAs. In this case, the integration reduces parasitics,

while class-F PAs should operate highly efficiently under load modulation [38]. The addition of discrete

supply modulation is found to improve the efficiency for a high PAR signal.
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Figure 5.14: (a) Comparison of intrinsic drain waveforms and dissipated power between sinusoidal class-A
operation (dashed, light gray) and class-F with five harmonic terminations (solid, dark gray). (b) Evolution
of intrinsic drain voltage and current waveforms for increasing number of class-F terminated harmonics.

5.3.1 ML-CO MMIC Design

5.3.1a Output Harmonic Terminations

To achieve high efficiency, the internal PAs are designed to operate in class-F [109]. In a harmonically

terminated power amplifier, such as class-F, the transistor is biased near pinch-off and driven hard to generate

harmonic power. Then, the output matching network synthesizes an infinite (open circuit) or zero (short

circuit) impedance at harmonic frequencies to shape the voltage and current waveforms at the intrinsic drain

of the transistor such that less power is dissipated, as demonstrated in Fig. 5.14a. In that case, theoretically,

no harmonic power is generated by the transistor. In the class-F PA, the OMN presents a short circuit

to even harmonics and an open circuit to odd harmonics, squaring the voltage waveform and peaking the

current waveform, as shown for an increasing number of harmonic terminations in Fig. 5.14b. Terminating

an infinite number of harmonics yields 100% efficiency for class-F operation [15].

In practice, a transistor will not generate harmonic power up to an infinite number of harmonics, so only

a few harmonics can be usefully terminated. Even if only the first three harmonics are terminated, a peak

efficiency of 75% is achievable, while five terminations will yield 83% efficiency [15]. A general Fourier

analysis of harmonically terminated PA operation is available in [110], while an in-depth description and

analysis of class-F operation is presented in [111]. Of course, [12] and [72] also provide ample information
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Figure 5.15: Simplified small signal model for capacitance extraction using Y-parameter analysis.

regarding high-efficiency PA classes, while [112] compares the performance of class-E, class-C, and class-F

PAs with a finite number of harmonics.

Because the harmonic terminations must synthesize an impedance at the intrinsic drain, and the available

transistor model does not have any internal accessibility, the output parasitics must be estimated and de-

embedded. For a transistor in this GaN MMIC process, the parasitics are well approximated by the output

capacitance, as confirmed in previous design experience [113,114]. The output capacitance is extracted from

the nonlinear model using the method in [115] based on the simplified field-effect transistor (FET) shown in

Fig. 5.15. The small-signal scattering parameters are simulated at 10MHz as a function of bias point and

then converted to admittance parameters. The FET π-model capacitances are calculated using the following

equations:

Cgd = −
Im{Y12}

2π f
(5.3)

Cds =
Im{Y22}

2π f
− Cgd (5.4)

Cgs =
|Y11 + Y12 |

2

2π f × Im{Y11 + Y12}
(5.5)

where the gate is port 1, the drain is port 2, and the source is grounded. The output capacitance is then found

by considering the combination of physical capacitances:

Cout = Cds + Cgd | |Cgs (5.6)

At pinch-off (Idq=3mA), the output capacitance reaches a steady value of 0.332 pF, as shown in Fig. 5.16.

This phenomenon is helpful in high-efficiency PA design, because those PA classes are most often biased

at pinch-off. Furthermore, the value of the output capacitance greatly affects the sensitivity of the phase of

harmonic terminations, making its estimation critical. Fortunately, GaN has a quite linear output capacitance,
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Figure 5.16: Extracted output capacitance of a 10×100µm pHEMT in Qorvo’s 0.15µm GaN process as a
function of bias voltage.

and the value is further reduced in the MMIC process. The output capacitance is absorbed into the output

matching network to shift the design reference plane to the intrinsic drain.

Typically, harmonic terminations are implemented in descending order, with the highest located closes

to the transistor [116], in order to minimize the losses at higher frequency so as to attain maximum reflection.

However, when the output capacitance is small enough such that it does not shift the phase of a harmonic

termination appreciably, then it may be desirable to place a lower order harmonic termination closest to the

transistor. For example, in this design, the bias tee is used to provide a second harmonic short circuit, as

shown in Fig. 5.17. The fundamental frequency performance (input impedance and isolation) is sacrificed

slightly to achieve a minimum impedance at the second harmonic of 1.88Ω, as shown in Fig. 5.18, presenting

a reflection coefficient with a magnitude of 0.94 and a phase of 178.1◦. De-embedding the output capacitance

only shifts the phase by 0.1◦, therefore an acceptable short circuit is presented to the intrinsic drain at the

second harmonic.

Now, how does the designer know if the output capacitance is "small enough" to not shift the phase of

a termination "too far"? What is small enough and too far? Well, this is always dependent on the desired

performance and application. The general harmonically terminated PA analysis in [110] characterizes the

efficiency improvement for any second or third harmonic impedance. From this information, ranges in

magnitude and phase of a harmonic termination are determined based on the desired performance. For
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Figure 5.17: Layout of second and third harmonic terminations at the output of the transistor.
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Figure 5.18: Simulation of gate bias tee, demonstrating high input impedance and isolation at f0, low
impedance at 2 f0, and high impedance at 3 f0.

example, a purely reactive second harmonic termination (|ΓL(2 f0)|=1) improves efficiency beyond 70%

within ±22.5◦ of a short or open circuit. Therefore, the harmonic termination does not need to be an exact

open or short to provide a significant improvement.

Since the bias tee presents a high, shunt impedance at the third harmonic, the termination must be

implemented with another element. This element must provide a resonance at the desired frequency so as

to appear as a short circuit at its connection to the through path. At frequencies where lumped elements are
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Figure 5.19: (a) Schematic of simulated third harmonic termination circuit. (b) Simulated S-parameters of
third harmonic termination.

not appropriate, shunt stubs are used. In this design, the inductive portion of the resonator is approximated

by a microstrip transmission line, as shown in Fig. 5.17. In general, any harmonic termination circuit can

be simulated as in Fig. 5.19. To reflect power at a harmonic frequency, S21 should be minimized and S11

maximized. The insertion loss at the fundamental frequency is critical as well, and will depend on the quality

factor of the resonator. In this case, the harmonic termination achieves a 31 dB resonance with 0.25 dB of

insertion loss at the fundamental frequency.

Once the resonator has been designed, it must be properly phased with respect to the intrinsic drain. To do

so, the harmonic terminations must be simulated at the intrinsic drain reference plane, as shown in Fig. 5.20.

The electrical length of the transmission line (microstrip lines and taper) between the intrinsic drain and the

third harmonic resonator must be determined to get zero phase at the intrinsic drain. The sensitivity of the

harmonic termination phase, and subsequently the electrical length of the series transmission lines, increases

with both output capacitance and frequency.

Fig. 5.21a demonstrates the desired second and third harmonic terminations presented at the intrinsic
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Figure 5.20: Schematic of simulated second and third harmonic terminations at the intrinsic drain.
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Figure 5.21: (a) Simulated impedance presented to the transistor at the intrinsic drain. (b) Simulated tuning
range at harmonic frequencies, demonstrating tunability at the fundamental frequency, but not at harmonics,
which are terminated.

drain by the designed OMN. The impedance synthesized at the second harmonic is 1.47 + j0.7 Ω, and at the

third harmonic is 282 + j1.54 Ω. At this point in the design process, it is important to check and make sure

that the loss in the harmonic terminations at the fundamental frequency has not restricted the ability to match

for peak efficiency. A tuner element is placed at the output of the harmonic termination network and varied

around the passive Smith chart at fundamental and harmonic frequencies, while the impedance is monitored
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Figure 5.22: Dissipative loss in the harmonic termination network with 50Ω load. Fundamental frequency
matching is not performed yet.

at the intrinsic drain. Fig. 5.21b demonstrates the resulting tunability at the fundamental frequency. At

harmonic frequencies, the implemented terminations fix the impedance presented at the intrinsic drain.

The fundamental tuning range is enabled by the minimized dissipative loss of 0.067 dB in the harmonic

terminations, demonstrated in Fig. 5.22. At the harmonics, the dissipative loss is very high, due to the

implemented terminations.

5.3.1b Input Matching Network

Once the harmonic terminations are designed, an iterative source- and load-pull is performed to find the

optimal fundamental impedances, resulting in an optimal reflection coefficient of ΓS( f0) = 0.946 159◦ for

the gate in terms of power and gain. The designed IMN in Fig. 5.23 utilizes the bias line as a matching

element, which is implemented as a shunt, grounded capacitor, providing 37 dB of RF-DC isolation. An

additional shunt, capacitive stub along with series transmission lines provides enough elements to match

at two frequencies. When these frequencies are placed in close proximity, more bandwidth is achieved, as

shown in Fig. 5.24, where the match is better than 25 dB over 1.2GHz of bandwidth centered at 10GHz.

A resistor (de-Q) is placed in the bias line to protect against a resonance occurring between the bypass

capacitor and any off-chip components, by reducing the quality factor. The DC blocking capacitor is

integrated into the series transmission line. A 1Ω shunt resistor is required with the bypass capacitor to
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Figure 5.23: Layout of input matching network.
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Figure 5.24: Simulation of input matching network match and RF-DC isolation.

provide stability. A regular tantalum nitride (TaN) resistor must be extremely wide relative to its length in

order to obtain such a small resistance, posing design rule issues. In order to obtain a small resistance, an

interdigital resistor is formed with a parallel combination of TaN resistors.
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Figure 5.25: Layout of full ML-CO MMIC PA, defining the combiner and its design reference plane.

5.3.1c Combiner Design

To minimize loss, the combiner performs all fundamental matching directly, without matching to an inter-

mediate impedance. Therefore, as discussed in the previous Chireix combiner designs, the internal PAs

are characterized by load-pull simulation immediately after the harmonic terminations, labeled the com-

biner reference plane in Fig. 5.25. A general Chireix-type combiner with a tee-junction and compensation

susceptances is tuned until the load modulation circles, labeled ΓPA1 and ΓPA2 , overlap the load-pull char-

acterization for the desired performance, as shown in Fig. 5.26. It is critical to note that the final form of the

combiner is completely dependent upon the reference plane at which it is designed, which must be where

the internal PAs are characterized by load-pull.

In this design, the load modulation circles intersect at an outphasing angle near the peak efficiency

impedance, then move toward the edge of the Smith chart while maintaining internal PA output power

balance along the inner trajectory. With the combiner, the total dissipative loss in the output matching

network at the fundamental frequency increases to 0.32 dB. For this calculation, the internal PA ports are

connected as a single port and (2.35) is applied.
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Figure 5.26: Load modulation of each PA, ΓPA1 and ΓPA2 , overlaid on the PAE and output power load-pull
contours at the combiner reference plane. Smith chart is normalized to 50Ω.

An implementation issue arises from Chireix outphasing theory, which assumes a differential load [19]

that is not easily implemented at gigahertz frequencies in microstrip. In [64], quarter-wave transformers are

used to convert each voltage source (internal PA) to a current source, so that the two outputs can be summed

using a common grounded load [12]. However, two quarter-wave transmission lines are difficult to fit into

the restricted area of a MMIC. Rather than using two quarter-wave transformers at the outputs of the internal

PAs, one can be used after the combining node. To save even more space, a transmission line equivalent

circuit can be used. Unfortunately, these equivalences are only readily available for the 90◦, 180◦, and 270◦

electrical lengths common to passive combining structures [117,118]. In [64], the transmission lines are 90◦

because the combiner is referenced to the intrinsic drain, but in this design the reference plane has shifted

and the electrical lengths are no longer 90◦. Therefore, an equivalent circuit, shown in Fig. 5.27b, is derived

for a variable length transmission line, shown in Fig. 5.27a. The derivation is also performed for other low-

and high-pass equivalent networks in Appendix B. In this MMIC process, it is favorable to use a microstrip

line rather than an inductor in the π-network to reduce loss.

First, the ABCD matrix of the TL-π network is found by cascading the ABCD matrices of its three

elements (Cp-TL-Cp) as follows:



A B

C D



=



1 0

jωCp 1





cos θs j Zs sin θs

jYs sin θs cos θs





1 0

jωCp 1



(5.7)
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Figure 5.27: (a) Ideal transmission line. (b) Ideal TL-π equivalent network.

Resulting in:



A B

C D



=



cos θs − ωZsCp sin θs j Zs sin θs

j
[
2ωCp cos θs + sin θs

(
1
Zs
− ω2C2

pZs

)]
cos θs − ωZsCp sin θs



(5.8)

Equating this to the ABCD matrix of an ideal transmission line [119]:



A B

C D



=



cos θ j Z0 sin θ

jY0 sin θ cos θ



(5.9)

Two of the three unknown variables (Cp, Zs, θs) can be solved for.

Solving for Cp and Zs:

Cp =
1
Z0

cos θs − cos θ
ω sin θ

(5.10)

Zs = Z0
sin θ
sin θs

(5.11)

Solving for Cp and θs:

Cp =
1
Z0

√
Z2
s − Z2

0 sin2 θ − Zs cos θ

ωZs sin θ
(5.12)

θs = arctan
*..
,

Z0 sin θ√
Z2
s − Z2

0 sin2 θ

+//
-

(5.13)

Solving for Zs and θs:

Zs =
Z0 sin θ√

1 −
(
ωCpZ0 sin θ + cos θ

)2
(5.14)

θs = arctan
*..
,

√
1 −

(
ωCpZ0 sin θ + cos θ

)2

ωCpZ0 sin θ + cos θ
+//
-

(5.15)

In this case, θs is chosen at the onset to be approximately 30◦, since the physical length of the series

TL is of utmost concern, leading to a shunt capacitance of approximately 0.5 pF. In choosing θs there is a
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Figure 5.28: Simulated load modulation at the intrinsic drain of each PA during outphasing. The harmonic
terminations do not change with fundamental load modulation due to the high quality factor of the resonators.

trade-off between loss and length; a shorter line leads to more dissipative loss in the equivalent network.

Using the TL-π equivalent circuit, the long TL is shrunk to fit on the MMIC. The shunt capacitors are visible

in Fig. 5.25 at the combiner junction, and the one near the RF pad is split into two parallel capacitors for

symmetry.

Fig. 5.28 shows the simulated loadmodulation at the intrinsic drain of each internal PA during outphasing

operation, a differential phase sweep. The fidelity of the harmonic terminations is demonstrated in their

immobility. Their effectiveness, though, is always relative to the fundamental impedance. As the fundamental

impedance increases with outphasing angle, the effect of the third harmonic termination is decreased. The

second harmonic termination is always much lower than the fundamental load, and thus provides a good

short circuit. Additionally, the fundamental loading is quite symmetric about the real axis, indicating internal

PA power balance.

Using the fundamental load modulation at the intrinsic drain, the combining efficiency or power factor

can be calculated and is shown in Fig. 5.29. The system efficiency is the product of the combining and

internal PA efficiencies. A second peak is created by the Chireix compensation at an outphasing angle

of 80◦. The difference between combining efficiencies for each internal PA is small, confirming that the

designed load modulation in Fig. 5.26 maintains balanced internal PA output power.
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Figure 5.29: Simulated combining efficiency of the microstrip combiner (referenced to the intrinsic drain)
is maintained above 70% over 85◦ of outphasing range.

(a) (b)

Figure 5.30: Photographs of (a) ML-CO GaN MMIC PA, with a size of 3.8×3.2mm2, and (b) MMIC
mounted in fixture as detailed in subsection 2.2.3.

5.3.2 Measurement Setup

The 3.8×3.2mm2 MMIC is fabricated in Qorvo’s 0.15µm GaN process, and shown in Fig. 5.30a. It is

fixtured in a similar fashion to the other MMICs in this work, as detailed in subsection 2.2.3 and shown in

Fig. 5.30b. The only difference is that there are two curved alumina lines at the input, rather than a single

straight line. This will make a slight difference in the de-embedding of the fixture.

In the measurement setup shown in Fig. 5.31, a phase shifter sweeps the differential phase. The source

amplitude on that branch is adjusted to compensate for the variable attenuation of the phase shifter. The

108



Figure 5.31: ML-CO measurement setup. Separate sources drive each PA branch, while a phase shifter
sweeps the differential phase. The source driving the phase shifter adjusts its amplitude to maintain constant
available input power to within 0.1 dB.

RF inputs and output are filtered and measured with a power meter. For each desired supply level, VD ,

a CW differential phase sweep is performed. The variable supply is implemented with a standard power

supply (Keysight E3649A) initially, before testing with a GaN discrete supply modulator MMIC, described

in the next section. In both cases, only a CW characterization is conducted: a phase sweep is performed for

each statically supplied drain voltage. Since modulated measurements are not performed, the average total

efficiency (ηtot,avg) for a modulated signal is calculated in post-processing to provide valuable performance

insight. The probability density function (PDF) of a QPSK signal with a 6 dB PAR is shown in Fig. 5.36 and

used as a weighting function to yield the average efficiency using the optimal trajectory.

A power calibration must be carefully performed to maintain constant available input power in the phase

shifting branch, and balanced power between branches. With the output power meter (PM3) connected to

port P1 and the phase shifter voltage set initially to 0V, the source finds the required amplitude to obtain

the desired input power measured by PM3 using a basic difference loop. Starting from an initial value, the

source increments its amplitude based on the difference between the desired and measured powers until it

obtains the solution within a predefined error. Once the source has the correct amplitude, the phase shifter

control voltage is swept, and for each value an offset is calculated and recorded between the newly measured

and desired input power. During measurement, this offset table is utilized to maintain constant available
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input power. This calibration is performed across frequency and input power levels. Note that available

input power is measured because only the forward wave is sampled by the directional coupler, and the output

power meter at port P1 is in a matched, 50Ω system. The same procedure is performed at input port P2 to

find the required second source amplitude to match the available input power at port P1. Constant available

input power as well as input power balance are maintained within ± 0.1 dB across phase after calibration.

Now that the input power can be precisely controlled, calibration must be performed for the accurate

measurement of power. When PM3 is placed at the input reference plane, P1 or P2, its measurement dictates

the available input power. The difference between PM3 and the corresponding coupled port power meter,

PM1 or PM2, is the frequency dependent difference in loss between the paths from the output of the band-pass

filter to the two power meters. This is the offset that must be added to the raw measurement of the coupled

port power meter to obtain the power at the input reference plane:

∆I1,2 = PM3 − PM1,2 (5.16)

At each frequency, any single calibration measurement performed for input power control can be used to find

these offsets.

Finally, the output power meter must be calibrated. With the frequency dependent offsets, the input

power meters, PM1 and PM2, can determine the available input power at P1 and P2. Now, the output power

meter is connected to the output attenuator and filter, and port P3 is connected to either port P1 or P2. At

each frequency, a measurement is performed at any power level high enough to be readable on the connected

power meters. The output offset describes the loss through the attenuator and filter, and can be calculated

from power meter measurements as:

∆O = PM1,2 + ∆I1,2 − PM3 (5.17)

If a "Thru" standard is available on the fixture, its loss can be calculated and de-embedded with another

measurement by replacing the fixtured MMIC between port P3 and port P1 or P2 with the standard. At each

frequency, another output offset can be calculated exactly as before:

∆OT = PM1,2 + ∆I1,2 − PM3 (5.18)
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Figure 5.32: AWR schematic of de-embedding straight alumina line simulation from the measured fixture
input transition, before embedding the curved alumina line simulation.

and compared to find the through loss:

∆T = ∆OT − ∆O (5.19)

Note that this calibration technique does not take into account reflections at each transition, which will

introduce error into the power meter measurements. It is not known how much error is introduced, but the

transitions were designed (expensively) to maintain good matching. For example, the launchers have a return

loss better than 25 dB at 10GHz.

Because the input alumina transmission lines on this fixture are curved, no through standard is available

to immediately de-embed the fixture loss. Instead, the input and output powers are adjusted in post processing

according to the calculated dissipative loss in the fixture transition (launcher and alumina line). The two-

port S-parameters of input and output transitions with a straight alumina lines are already known from

measurement of the TRL standards, as described in subsection 2.2.3. In NI AWR Microwave Office, the

straight and curved alumina lines are electromagnetically simulated with Axiem. The straight line simulation

is de-embedded from the measured two-port transition, leaving only the launcher. Afterward, the curved line

simulation is embedded onto the launcher to form an estimation of the actual fixture with curved alumina

lines, as shown in Fig. 5.32. The magnitude of S21 is only decreased by 0.084 dB with the curved line

compared to the straight one, and the magnitude of the return loss at each port of the fixture does not change

significantly (less than 0.1 dB).
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(a) (b)

Figure 5.33: (a) Circuit diagram of the power-DAC architecture. (b) Photograph of the fabricated GaN
implementation, with a size of 3.8×5.4mm2.

5.3.2a GaN Power-DAC MMIC

An implementation of a discrete supply modulator, referred to as a power-DAC in [101], is implemented in

Qorvo’s 0.15µm GaN-on-SiC process. The power-DAC is based on a direct digital-to-analog conversion

architecture, where the digital bits, bi and bi, control the three half-bridges of the circuit, as shown in

Fig. 5.33a. The three half-bridges are supplied with N = 3 isolated voltages, whose values are chosen to be

binary scaled: VD/2, VD/4, and VD/8. Since the voltage is modulated from 5.5V to 19.6V in measurement, a

voltage offset of 5.5V is added in series. The power-DAC output voltage applied to the load is obtained by:

Vout =
3∑
i=1

bi
VD

2i
+ Vof f set (5.20)

thus behaving like a DAC circuit, where the output can deliver power to the load. In actuality, the load ZL

in the circuit diagram is the power amplifier.

A photograph of 3.8×5.4mm2 chip is shown in Fig. 5.33b. The leftmost pairs of transistors are the high-

side and low-side switches of each half-bridge, employing large periphery pHEMT devices (64×150µm) to
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Figure 5.34: GaN power-DAC MMIC output voltage approximate of 1MHz sinusoid across a fixed resistive
load.

reduce the conduction resistance, Ron. To the right and in parallel to these power switches, high-side and

low-side diodes (40×125µm) are used to maintain a current path when both switches are turned off (blanking

time). The conduction resistance of the power switches has been accurately measured in DC regime to be

0.33Ω. In every control bit configuration, three switches are connected in series, so the total conduction

resistance of the Power-DAC is just below 1Ω. The isolated supply voltages of each half-bridge are bypassed

with an on-chip MIM (Metal-Insulator-Metal) capacitor of 330 pF. In order to control each half-bridge of

the power-DAC, The digital control signals, bi and bi, are isolated, level-shifted and amplified by external

isolators. Fig. 5.34 demonstrates the power-DAC MMIC output voltage approximating a 1MHz sinusoid

across a fixed, 33Ω resistive load at a measured efficiency of 96.4%. The GaN-on-Si hybrid implementation

in [101] demonstrated linearized tracking of vary fast signals, e.g. 10MHz LTE. Please refer to this source

for more details on this topology.

The details of the power-DAC portion of the measurement setup are shown in Fig. 5.35. The supply

board on the right provides the three DC isolated voltages from a single power source, while power-DAC

board on the left interfaces these voltages and the digital control signals with the QFN packaged power-DAC

MMIC. During ML-CO measurements, only two half-bridges of the power-DAC are utilized to synthesize

seven different supply levels. The two supply voltages, labeled V2 and V3 in Fig. 5.35, are set to roughly

half of the desired output voltage for each level, splitting the current nearly evenly to protect the bond-wires,
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Figure 5.35: Detail of power-DAC portion of overall measurement setup. Three isolated DC voltages are
produced by the supply board on the right, while the power-DAC board on the left interfaces digital control
signals and DC voltages with the MMIC, which is mounted in a QFN package.

which were continually failing at currents near the peak expected current for the ML-CO PA. The total DC

input power for the power-DAC is measured at the two outputs of the supply board with an oscilloscope via

current and voltage probes. The DC output power of the power-DAC is measured in a likewise manner along

the wires interfaced to the MMIC PA. When a measurement accounts for the power-DAC consumption, the

power-DAC input power is used as the DC power in the efficiency calculation. If the power-DAC is ignored,

its output power is used as the DC power.

5.3.3 ML-CO Measurement Results

Initially, the measurements are performed with a power supply varying the drain voltage statically, while

frequency and input power are swept. Fig. 5.36 shows a compilation of phase sweeps for swept supply levels

from 6V to 20V in 2V increments at 9.7GHz. A peak output power of 37 dBm (5W) is achieved, while a

peak total efficiency of 60.2% is reached at 35.7 dBm. The optimal trajectory, which is chosen to maximize

total efficiency, remains within 10 points of its peak for 5.45 dB of output power range (∆Pout ). An average

total efficiency of 48.1% is calculated in post processing for the 6 dB PAR QPSK signal at 9.7GHz, which

is 15.6 points higher than the average efficiency for only the 20V supply.

The average total efficiency for the defined QPSK signal is calculated across frequency, where the optimal

trajectory is determined as described above for the same range of supply voltages. Fig. 5.37 compares the
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Figure 5.36: Compilation of measured total efficiency for swept differential phase and supply levels from
6V to 20V in 2V increments at 9.7GHz. The optimal trajectory is selected to maximize ηtot . In black is
the PDF of a 6 dB PAPR QPSK signal used to calculate average total efficiency.
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Figure 5.37: Comparison of average total efficiency across frequency between the optimal trajectory and
20V supply, showing improvements between 8 and 19 points. Optimal operation achieves 400MHz of
bandwdith with ηtot,avg > 45%.

average total efficiency for the optimal trajectory at each frequency with only the 20V supply. In the optimal

case, the average total efficiency is greater than 45% for at least 400MHz of bandwidth, from 9.5GHz to

9.9GHz. The bandwidth of the driver amplifier and filters limited the frequency range of this measurement

on the low end. The improvement in efficiency of discrete supply modulation over constant supply ranges

from 8 to 19 points across the measured frequency range.

Finally, the average total efficiency at 9.7GHz is calculated for restricted number of supply levels and
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Figure 5.38: Average total efficiency for a 6 dB PAR QPSK signal with restricted supply levels, showing
diminishing returns for increasing number of levels.

Table 5.3: Average total efficiency with restricted supply levels

# Levels Supply Levels (V) ηtot,avg (%)

1 20 32.54

2 10, 20 44.3

3 8, 12, 20 45.88

4 8, 10, 12, 20 47.23

5 6, 8, 10, 12, 20 47.96

6 6, 8, 10, 12, 14, 20 48.07

7 6, 8, 10, 12, 14, 16, 20 48.09

8 6, 8, 10, 12, 14, 16, 18, 20 48.09

shown in Fig. 5.38. The 20V level must be included in all cases to maintain the same peak power. For each

number of supply levels, the optimal subset of the measured supplies is found for the 6 dB PARQPSK signal,

by checking the average total efficiency for every combination of supplies in the subset. The optimal subsets

are listed in Table 5.3. The addition of a single supply level shows a significant improvement in average total

efficiency, 12 points, while the improvements diminish with additional levels, only improving by 4 more

points with the addition of 7 more levels.

Now, the static measurements are repeated with the GaN power-DAC supplying the drain voltage and

power. At each supply level, the power-DAC is manually adjusted and a phase sweep is performed. Due to
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Figure 5.39: Total efficiency (a) without and (b) with considering power-DAC dissipation.

a small resistance in the power-DAC transistors, the supply voltage varies during the phase sweep, since the

DC current is varying. The variation ranges from 0.48V for the 5.5V level to 1.3V for the 19.6V level. Of

course, the variation will increase with the supplied current. This measurement is similar to the previous

one, except that the power-DAC input power is measured as well, so its efficiency can be taken into account.

Fig. 5.39 demonstrates the total efficiency for swept supply voltage generated by the power-DAC, without

considering its power consumption in (a) and accounting for it in (b). The supply voltage vary across the

phase sweep, and are labeled with the average value . At 19.6V, a peak output power of 36.8 dBm or 4.8W

is achieved in both cases. The efficiency curves in Fig. 5.39a should, and do, match very well with those

produced using the power supply in Fig. 5.36, since the power-DAC efficiency is ignored.

When taking the consumption of the power-DAC into account, the peak total efficiency drops from

61.3% to 57.4%. The decrease in performance is evident visually in comparing (a) and (b), but more

obvious in the comparison of the optimal trajectories in Fig. 5.40. The performance decreases at higher

supply voltages, because the efficiency of the power-DAC holds more weight at the system level, since it is

supplying significantly higher currents. At 5.5V, the power-DAC is supplying a maximum of 218mA, while

at 19.6V, it is supplying 419mA, corresponding to DC powers of 1.2W and 8.2W respectively. However,

even when considering the consumption of the power-DAC, the average total efficiency for the 6 dB PAR

signal only drops 4 points, from 48.2% to 44.1%. Therefore, the system is further validated by the use and

consideration of a real discrete supply modulator.
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Figure 5.40: Comparison of optimal trajectories with and without accounting for power-DAC consumption.

The efficiency of the power-DAC is shown in Fig. 5.41 for each phase swept supply level, as well as

the operating points of the optimal trajectory. The power-DAC operates more efficiently for higher output

voltage, and less current (power). Therefore, the efficiency decreases with the supplied voltage level. The

curve for each level exhibits hysteresis caused by the load modulation in the ML-CO PA. Along the most

efficient load trajectory, the internal PAs draw less current, thereby improving the power-DAC efficiency. As

the output power decreases, the power-DAC current decreases, causing the voltage drop across its internal

resistance to decrease, increasing the output voltage. Thus, at low output power, the power-DAC supplies the

highest voltage for a given supply level and the lowest current, which allows it to operate most efficiently.

Along the optimal trajectory the power-DAC operates between 81.5% and 91.5% efficiency.

Again, the average total efficiency is calculated for restricted number of supply levels, as shown in Fig. 5.42

with and without consideration for the power-DAC consumption. In both cases, the diminishing returns are

clearly visible, with the system efficiency (considering power-DAC dissipation) approaching 44.1%, 4 points

lower than the previous measurements ignoring the efficiency of the discrete supply modulator.

Although these measurements do not prove the dynamic capabilities of amplifying a modulated signal

with a ML-CO PA, they provide a more realistic, static characterization of expected performance. In order

to amplify with acceptable linearity, nonlinearities caused by both the outphasing dynamics at RF as well

as the transient response of the discrete supply modulator will need to be taken into account. Unfortunately,
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Figure 5.41: Efficiency of the power-DAC, showing the operating points of the optimal trajectory.
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Figure 5.42: Comparison of the average total efficiency for a 6 dB PAR QPSK signal with restricted supply
levels, with and without considering the power-DAC efficiency.

due to time and resource constraints, these steps were not attempted.

5.4 Conclusion

The combination of discrete supply modulation with the Chireix outphasing PA was performed for the first

time in literature. The internal PA performance and load modulation measurement setup from chapter 2 was

extended to include static variation in the drain voltage, while a new Chireix combiner was designed for

optimal load modulation with supply variation. The architecture further improved efficiency with a ∆Pout

of 5.25 dB, which is 0.35 dB beyond AMO. The internal load modulation measurements demonstrated the
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difficulty in maintaining internal PA power balance while sweeping the supply. An integrated GaN MMIC

implementation was shown to mitigate imbalances seen in the hybrid prototype. The supply modulated

Chireix outphasing MMIC PA was tested with a GaN discrete supply modulator, demonstrating improved

efficiency for high PAR signals. Finally, a study of supply level restrictions showed that only a few voltage

levels are required to produce a significant improvement in average efficiency for a 6 dB PAR signal. Original

contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to supply

modulated Chireix outphasing [94], demonstrating efficiency improvement, along with significant

imbalances of internal PA output power with swept supply, leading to load modulation distortion.

• The prediction of load modulation distortion caused by internal PA output power imbalance was

demonstrated to match measurement [83].

• Design of a GaNMMIC PA incorporating all of the RF components of the architecture (class-F internal

PAs and Chireix combiner) that achieved 48% average total efficiency for a 6 dB PAR QPSK signal

at 9.7GHz with 5W of output power [108]. This work won the student paper competition at the

Compound Semiconductor and IC Symposium.

• Testing of supply modulated Chireix outphasing GaN MMIC PA with a real supply modulator, imple-

mented in GaN [120].

• Study of optimal supply levels under quantity restriction [108,120], demonstrating a 12 point improve-

ment only a single additional level.

Special thanks to Tommaso Capello and Prof. Corrado Florian, from the University of Bologna, as well as

Dr. Scott Schafer. Tommaso helped perform outphasing measurements with the power-DAC during his stay

at CU. Dr. Schafer performed the 0.15µm GaN layout of the power-DAC to the specifications of Tommaso

and Prof. Florian.
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Power Recycling LINC
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Rectification can be incorporated in the LINC PA to improve its poor efficiency roll-off, discussed in

Chapter 3. Introduced in [121, 122] and detailed in the block diagram in Fig. 6.1 rectifies the RF power

wasted in the isolated combiner. Although the Wilkinson combiner is often used in implementations of

the LINC PA, the power dissipated in the isolation resistor is not readily accessible. If a 180◦ hybrid or

rat-race combiner is used instead, the isolated port power is dissipated in an external load, which could be

replaced by a rectifying element. The rectified power can be recycled into the power supply of the internal

PA through additional power management circuitry. Aside from the work presented in this thesis, the only

power recycling LINC PA is demonstrated at VHF in [123], demonstrating a 24.1 point average efficiency

improvement for a 50 kHz, 6.5 dB PAR signal at a 48MHz carrier frequency and 20.8W of output power.



Figure 6.1: Block diagram of a LINC PA with power recycling.

This chapter details a power recycling LINC GaN MMIC PA utilizing a high-efficiency, transistor-based

rectifier. Section 6.1 presents the idealized theory behind efficiency improvement in the LINC PA with

power recycling. In Section 6.2, the applications and challenges for rectification at microwave frequencies

are discussed. Section 6.3 delves into the duality between power amplifiers and rectifiers, while Section 6.4

validates the concept experimentally with two X-band MMIC PAs. Finally, an entire power recycling LINC

GaN MMIC PA is presented in Section 6.5.

6.1 Power Recycling LINC Theory

From the block diagram in Fig. 6.1, the efficiency of the power recycling LINC PA can be calculated for a

generalized rectifying element. The analysis is performed with the following highly idealized assumptions:

(1) the internal PAs are identical, matched, and isolated;

(2) the rectifier is matched and operates at constant efficiency;

(3) the combiner is lossless;

These assumptions do not take into account branch gain and phase imbalances, or detuning of the combiner

by the rectifier, which is treated as a perfect load. From the LINC theory presented in Section 3.1, the power

at the sum and difference ports of the isolated combiner are:

P∑ = 2Pout,PA cos2 θ (6.1)

P∆ = 2Pout,PA sin2 θ (6.2)
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Figure 6.2: Theoretical improvement in system drain efficiency with rectification of power on the isolated
port. The internal PAs are assumed to be 70% efficiency (ηd,PA = 70%), while the rectifier efficiency is set
to 50%, 60%, and 70%.

where θ is the outphasing angle. The total DC power consumption can be related to the output power,

Pout,PA, and drain efficiency, ηd,PA, of the internal PAs as:

PDC,tot = 2
Pout,PA

ηd,PA
(6.3)

The system drain efficiency without rectification is simply:

ηd =
P∑

PDC,tot
= ηd,PA cos2 θ (6.4)

Considering the rectified power, the system drain efficiency becomes:

ηd,r =
P∑

PDC,tot − ηrP∆
=

ηd,PA cos2 θ

1 − (ηd,PA)(ηr ) sin2 θ
(6.5)

where ηr is the rectification efficiency. The efficiency improvement with rectification can be written as:

∆ηd = ηd,r − ηd =
(η2

d,PA
)(ηr ) cos2 θ sin2 θ

1 − (ηd,PA)(ηr ) sin2 θ
(6.6)

Fig. 6.2 illustrates the theoretical system drain efficiency improvement with rectification. The internal PA

drain efficiency is assumed to be 70% and the rectification efficiency is set to 50%, 60%, and 70%, leading

to peak system drain efficiency improvements of 7.5, 9.5, and 11.7 points, respectively. These efficiencies

are chosen based on expectations for the prototype. Interestingly, the three peaks in improvement occur
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Figure 6.3: Theoretical improvement in system drain efficiency with rectification of power on the isolated
port. ηd,PA = 70%, and ηr is set to 50%, 60%, and 70%.

at -3.49 dB, -3.66 dB, and -3.84 dB normalized output power, respectively, even though the rectification

efficiency is held constant with output power.

The improvement from rectification depends on both the sum and difference output powers, which are

plotted against the normalized output power (sum port power) in Fig. 6.3. The sum port power is taken as

the output power, directly decreasing the efficiency as it decreases. The difference port power is rectified

according to the rectification efficiency, thus improving the efficiency as the output power decreases. Near

peak power, there is no difference port power to be rectified, and thus no improvement to be made. At the

other end, the rectified power is not enough to improve the efficiency with so little output power. Since the

efficiency improvement is minimized at low and high output power levels, the peak in efficiency improvement

must occur somewhere in between. Fig. 6.3 shows the peak just after the difference port power becomes

larger than the output power.

Drain efficiency can be a misleading metric for outphasing PAs, since it does not consider the input

power, which is both constant and significant. Therefore, the theory based on the drain efficiency definition

is expanded to include input power using the total efficiency definition. The total available input power into

the internal PAs is defined as:

Pav =
2Pout,PA

Gt
(6.7)
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Figure 6.4: Theoretical improvement in system total efficiency with rectification of power on the isolated
port. ηd,PA = 70%, and ηr is set to 50%, 60%, and 70%.

where Gt is the transducer gain of the internal PAs. The system total efficiency is written as:

ηtot =
P∑

PDC,tot + Pav
=

(Gt )(ηd,PA) cos2 θ

Gt + ηd,PA
(6.8)

Considering the rectified power, the system total efficiency becomes:

ηtot,r =
P∑

PDC,tot + Pav − ηrP∆

=
(Gt )(ηd,PA) cos2 θ

Gt + ηd,PA − (Gt )(ηd,PA)(ηr ) sin2 θ

(6.9)

Therefore, the efficiency improvement with rectification is:

∆ηtot = ηtot,r − ηtot

=
(G2

t )(η2
d,PA

)(ηr ) cos2 θ sin2 θ[
Gt + ηd,PA

] [
Gt + ηd,PA − (Gt )(ηd,PA)(ηr ) sin2 θ

] (6.10)

Fig. 6.4 illustrates the theoretical system total efficiency improvement with rectification. Again, the

internal PA efficiency is assumed to be 70% and the rectification efficiency is set to 50%, 60%, and 70%,

leading to peak system total efficiency improvements of 6.5, 8.1, and 9.9 points, respectively. The three

peaks in efficiency improvement occur at the same output power as for the drain efficiency, and for the same

reasons as discussed previously.
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6.2 Microwave Rectifiers

This section discusses the rectifier portion of the PA in Fig. 6.1. Many applications for microwave rectifiers

have developed alongside the modern communication infrastructure. Diode detectors rectify an AM radio

signal to receive its envelope. Wireless power transfer is used to power electronics from implanted medical

devices [124] to cars [125], all of which must have a rectifier [126]. In wireless energy harvesting, broadband

rectifiers are used to recover the ambient electromagnetic waves from sources such as a microwave or aWi-Fi

router [127]. To reduce the size, improve the transient response, and increase the power density of DC power

converters, microwave DC-DC converters have been developed [128] by utilizing an amplifier (DC input,

RF output) to drive a rectifier (RF input, DC output). Microwave rectifiers can even be used to improve the

efficiency of amplifiers under load mismatch by rectifying the reflected power [129].

As it pertains to power recycling LINC PAs, all reported results are based on diode rectifiers, typically

using Schottky diodes [121,130–132]. The focus has been mainly on the variation in input impedance of the

rectifier with input power. The primary method to reduce the impedance variation is through the addition

of a resistance (or impedance) compression network (RCN or ICN) [130]. Conjugate reactances are used

to compress the input impedance of two loads (rectifiers) with the same variation in input impedance. A

100:1 variation in resistance can be compressed to 5.05:1, or a 10:1 variation to 1.74:1. Compressing the

input impedance improves the efficiency across input power as well as maintaining impedance matching.

Originally implemented with lumped elements, this method has been expanded to utilize transmission

lines [133, 134], called a transmission line resistance compression network (TLRCN), to operate up to

4.6GHz [131]. RCNs have become useful enough to warrant looking into bandwidth restrictions [135] and

even dual-band design [136]. Other effective methods at improving rectification efficiency with input power

variation include use of a stepped-impedance resonator [132] or a self-biasing scheme [137], which follows

an optimal bias trajectory similar to that of an envelope tracking PA.

Unfortunately, the aforementioned research is not suitable to implement in an X-band MMIC. Diode-

based rectifiers are not optimal for efficient, watt-level rectification at X-band frequencies, and adding a

second rectifier and a TLRCN is not feasible for monolithic integration due to size constraints. Therefore,
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(a) (b)

Figure 6.5: Simulated time-domain intrinsic drain voltage (blue) and current (red) waveforms for varying
RF power at drain for (a) PA and (b) rectifier operation. For PA operation, VDS = 28V.

a transistor-based rectifier approach is adopted, enabled by the time-reversal duality between the power

amplifier and rectifier circuits as described in [138], and detailed in the next section.

6.3 Time Reversal Duality of Power Amplifiers

Presented in [138] and expanded in [139], the high-efficiency rectifier and high-efficiency power amplifier

are shown to be related by time-reversal duality [140] of the transistor’s main current source, which means

the intrinsic drain voltage and current during rectifier operation are related to those of the amplifier by

vPA(t) = vR(t) and iPA(t) = −iR(t). In [138], a class-F harmonically terminated transistor amplifier circuit

is shown to operate efficiently as both an amplifier and rectifier at 2GHz. Simulations are performed with

a 8×75µm GaN HEMT model, which includes nonlinear capacitances Cgs , Cgd and Cds, gate-source

and gate-drain diodes, and breakdown and trapping effects. This model reproduces the nonlinear transistor

behavior for both positive (first quadrant) and negative (third quadrant) drain voltages. The design of both

high-efficiency power amplifiers and rectifiers consist of shaping the intrinsic drain voltage and current

waveforms by presenting appropriate load impedances at the fundamental and harmonic frequencies. For

the class-F PA circuit with terminations up to the fifth harmonic, Fig. 6.5a shows the expected squared

voltage and peaked current. Due to the time-reversal duality of the main current source, the circuit exhibits

high-efficiency intrinsic drain waveforms during rectifying operation, as shown in Fig. 6.5b. This technique
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(a) (b)

Figure 6.6: PA circuit operating as (a) power amplifier and (b) rectifier.

will be leveraged to implement a highly efficient rectifier at X-band.

Operating a power amplifier as a rectifier is detailed in Fig. 6.6, where the input is now the RF drain,

the output is the DC drain, and the gate remains DC biased. The RF source moves from the gate to the

drain and increases in power to roughly the saturated output power under PA operation. The drain supply

is replaced with a resistive load to measure the rectified DC output power. Synchronous operation of the

rectifier requires a second RF source to drive the gate of the transistor to turn it on. Self-synchronous

operation relies upon power coupled from the drain to the gate through the shared capacitance, Cgs. With a

highly reflective termination, Zgate, the coupled power can be reflected into the gate to turn on the transistor

without a second RF source.

6.4 X-Band GaN MMIC PA and Rectifier Measurements

Two high-efficiency GaN MMIC PAs [35] are characterized under PA and rectifier operation, to confirm

the principle of duality at X-band. Both MMICs are designed Qorvo’s 0.15µm GaN-on-SiC process, and

shown in Fig. 6.7. Circuit-A is a single-stage amplifier using a 10×100µm transistor biased at pinch-off

(IDQ ≈ 5mA), with an output matching network optimized for efficiency. The layout includes testing

structures and has an unnecessarily long input network to fit the reticle layout of the wafer. Circuit-B is a

single-stage amplifier that combines two 10×100µm transistors, biased in deep class-AB, with a reactive

combiner.
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(a) (b)

Figure 6.7: X-Band MMIC power amplifiers tested as rectifiers. (a) Circuit-A: single-stage PA, at a size of
3.8×2.3mm2. (b) Circuit-B: single-stage power combined PA, with a footprint of 2.0×2.3mm2.

Figure 6.8: Power amplifier measurement setup, utilizing an LSNA. Measurement reference planes are
de-embedded to the MMIC bond wire within the test-fixture.

6.4.1 Power Amplifier Measurements

The measurement setup, shown in Fig. 6.8, is equivalent to the setup described in subsection 2.2.3, except

for the exclusion of the passive load-pull tuner. Nonetheless, the calibration and de-embedding previously

described apply to this measurement as well.

First, the two MMICs are measured as power amplifiers, providing the basis for comparison with the

same circuits in rectifying operation. Circuit-A is measured at 10.1GHz with a gate bias voltage of -4.0V

and drain supply of 20V. Shown in Fig. 6.9, the MMIC achieves a peak PAE of 68.0% and a peak drain

efficiency of 79.1% with 34.8 dBm of output power at an input drive of 25.9 dBm, yielding a saturated gain

of 8.9 dB. The DC drain current drawn at peak efficiency is approximately 192mA. Circuit-B is measured

under the same conditions. Fig. 6.10 demonstrates a peak PAE of 63.1%with 35.4 dBm of output power at an

input drive of 29.1 dBm, yielding a saturated gain of 6.3 dB. The DC drain current drawn at peak efficiency
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Figure 6.9: Circuit-A power swept amplifier measurement at 10.1GHz with VG = −4.0V and VD = 20V,
demonstrating a peak PAE of 68.0% at an output power of 34.8 dBm and 192mA of DC drain current drawn.
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Figure 6.10: Circuit-B power swept amplifier measurement at 10.1GHz with VG = −4.0V and VD = 20V,
demonstrating a peak PAE of 63.1% at an output power of 35.4 dBm and 225mA of DC drain current drawn.

is approximately 225mA. These power amplifier measurements are straightforward, and will provide the

baseline for comparison between power amplifier and rectifier operation.

6.4.2 Rectifier Measurements

The core of the rectifier measurement setup is the same as described for the power amplifier, utilizing

the four-channel LSNA and the same calibration and de-embedding methods. The differences arise from

the changing operation of the DUT. The setup in Fig. 6.11 orients the MMIC in the same way as the PA
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Figure 6.11: Rectifier measurement setup, utilizing LSNA and active tuning on the RF gate. The active
tuning loop is used to overcome the losses in the passive tuner and extend the reflection coefficient magnitude
achievable. When using active tuning, the passive tuner is set to appear as a 50Ω transmission line.

measurement setup. While the gate remains biased, the drain bias is replaced with a DC load, RD . The DC

power dissipated in this load is the output power. In this setup, the load is a variable resistor, and the voltage

across it is measured with a digital multi-meter to obtain the DC output power. The RF source now drives

input power into the drain (PA output). The gate (PA input) is terminated for synchronous operation.

The gate termination is initially implemented with a passive tuner, but the loss between the tuner and

the MMIC at the fundamental frequency (10.1GHz) reduces the achievable magnitude of the reflection

coefficient. As will be discussed in detail subsequently, the peak rectification efficiency is achieved with

a gate termination at the edge of the Smith chart, at impedances the tuner cannot achieve. Therefore, an

active loop is implemented to overcome the losses of the tuner. Although the passive tuner could be used to

assist the active loop, it is set to behave as a 50Ω transmission line during active load-pull. The active loop

couples the gate power, sets the magnitude with an amplifier and variable attenuator, and adjusts the phase

with a phase shifter, before injecting the power back into the gate to synthesize any impedance on the Smith

chart, provided there is enough power. If a nonlinear model that can accurately predict the behavior of the

transistor in the third quadrant existed, then the gate termination could be implemented on the MMIC and

achieve the high magnitude reflection coefficient required for high rectification efficiency.

In order to obtain optimal rectifier performance, the effect of the variable parameters must be examined

for each circuit. The three controls for the self-synchronous rectifier are the DC drain load (RD), the gate

bias voltage (VG), and the gate termination (Zgate). These parameters have been listed in order of increasing
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Figure 6.12: Circuit-A (a) rectification efficiency and (b) input impedance as a function of input power and
DC drain load. An insignificant 2.7 point fluctuation occurs in the efficiency with load variation, while the
input impedance shows more significant variation.

importance and sensitivity with respect to rectification efficiency, which is defined as:

ηr =
PDC

Pin
=

2|VD |
2

RD Re
{
v f0i∗

f0

} (6.11)

The DC drain resistance will determine the magnitude of the current and voltage for a given output power,

and therefore it should be chosen to limit those magnitudes to values that the transistor can handle. The

value can be estimated from the power amplifier design and operation. At a 20V drain supply, both circuits

approach approximately 200mA of DC drain current, which leads to an approximate impedance of 100Ω.

For circuit-A, Fig. 6.12 demonstrates the effect of sweeping the DC drain load on the rectification efficiency

and the input impedance at a constant gate bias of -4.7V and optimal gate termination. The load is swept

from 60Ω to 200Ω in 20Ω steps. The peak rectification efficiency, in Fig. 6.12a, is not significantly affected

by variations around the optimal 100Ω load, dropping only 2.7 pts over the measured 140Ω variation.

However, the load impacts the input impedance of the rectifier in Fig. 6.12b.

In Fig. 6.13, similar results are shown for Circuit-B, with a load sweep from 40Ω to 140Ω in 20Ω steps

at a gate bias of -4.7V and suboptimal gate termination. The rectification efficiency varies by only 2.6 points

throughout the load sweep in Fig. 6.13a, while the input impedance varies significantly in Fig. 6.13b.
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Figure 6.13: Circuit-B (a) rectification efficiency and (b) input impedance as a function of input power and
DC drain load. The efficiency ranges by only 2.6 points with variations in the load, while the input impedance
shows more significant variation.
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Figure 6.14: Circuit-A (a) rectification efficiency and (b) input impedance of the rectifier under gate bias
voltage and input power sweeps. The gate bias voltage is swept from -3.7V to -4.7V in 0.2V increments.
Deep pinch-off improves the efficiency by 12 points, but has little effect on the input impedance.

The gate bias affects the rectification more significantly than the DC drain resistance. Fig. 6.14 shows

the effect of the gate bias on the rectification efficiency and input impedance of the circuit-A rectifier. The

gate bias voltage is swept from -3.7V to -4.7V in 0.2V increments with a drain load of 100Ω and the

optimal passive tuner gate termination. In Fig 6.14a, higher gate biases are shown to turn the transistor on

more, causing it to saturate quicker, broadening the range of peak efficiency with respect to input power, but
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Figure 6.15: Circuit-B (a) rectification efficiency and (b) input impedance of the rectifier under gate bias
voltage and input power sweeps. The gate bias voltage is swept from -3.7V to -4.7V in 0.2V increments.
Deep pinch-off improves the efficiency by 6.2 points, but has little effect on the input impedance.

reducing the peak value. As the transistor bias moves toward pinch-off, the peak rectification efficiency is

increased by 12 points and narrowed with respect to input power. Contrary to the DC drain load, the gate

bias voltage does not significantly affect the input impedance of the rectifier, seen in Fig 6.14b.

Fig. 6.15 shows the same trend for circuit-B, which is swept over the same bias conditions, gate termina-

tion, and drain load, which is 20Ω away from optimal. Fig 6.15a demonstrates an improvement of 6.2 points

in rectification efficiency by reducing the bias of the device, and Fig 6.15b corroborates the insensitivity of

the input impedance to gate bias variation.

The gate reflection coefficient, Γgate, presented by the RF gate termination, Zgate, is the most important

parameter for rectification efficiency. The magnitude of the reflection coefficient must be high to reflect

enough power, coupled from the drain throughCgd, to drive the transistor into saturation, peaking rectification

efficiency. The phase of this reflection coefficient is quite sensitive, as shown for circuit-A in Fig. 6.16a, which

combines the data taken with the passive tuner with the data using the active loop. Reducing the magnitude

of the reflection coefficient from 0.76 at the maximum to 0.3 will decrease the rectification efficiency by 10

points. The active load-pull increased the reflection coefficient magnitude by 0.15, increasing the rectification

efficiency by 3 points. Though only a small region of the Smith chart was swept in each case, Fig. 6.16b

more clearly shows the phase sensitivity for circuit-B, where significant efficiency degradation occurs at the
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Figure 6.16: Gate termination load-pull contours combining passive tuner and active loop data for (a)
circuit-A, and (b) circuit-B.
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Figure 6.17: Optimal circuit-A (a) rectification performance and (b) input impedance for swept input power
at 10.1GHz with VG = −4.7V, RD = 100 Ω, and Zgate = 8.47 + j24.88 Ω, demonstrating a peak efficiency
of 64.4%.

phase edges of the active loop sweep. A more complete contour would better display the high sensitivity of

the efficiency to the gate termination.

Fig. 6.17a shows the optimal performance for circuit-A operating as a rectifier at 10.1GHz and biased in

deep pinch-off at -4.7V. The peak rectification efficiency achieved is 64.4% with a DC drain resistance of

100Ω and a gate termination of 8.47 + j24.88 Ω, which is achieved with the active loop. The input power

required at peak efficiency is 34.1 dBm, which is only 0.7 dB from the output power at peak PAE during PA
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Figure 6.18: Optimal circuit-B (a) rectification performance and (b) input impedance for swept input power
at 10.1GHz with VG = −4.7V, RD = 800 Ω, and Zgate = 8.18 + j26.8 Ω, demonstrating a peak efficiency
of 62.5%.

operation. As the rectifier is saturated and reaches peak efficiency, the DC drain voltage approaches 18V,

close to the optimal drain supply voltage of the power amplifier, 20V. The 18V output across the 100Ω

resistor corresponds to 180mA of output DC drain current, which is also quite close to the 192mA drawn by

the PA at peak efficiency. The power coupled to the gate is shown to do so by a factor that steadily decreases

from -9 to -22 dB. The gate power is shown to saturate around the efficiency peak. Fig. 6.17b shows the input

impedance variation with input power; the input becomes better matched as the input power increases. The

gate termination achieved by the active loop is shown as well.

Fig. 6.18a shows the optimal performance for circuit-B operating as a rectifier at the same frequency

and gate bias as circuit-A. The peak rectification efficiency is 62.5% with a DC drain resistance of 80Ω

and a gate termination of 8.18 + j26.8 Ω, which is again achieved with the active loop. The input power

required at peak efficiency is 36.6 dBm, which is only 1.2 dB from the output power at peak PAE during

PA operation. As the rectifier is saturated and reaches peak efficiency, the DC drain voltage approaches

21V, close to the optimal drain supply voltage of the power amplifier, 20V. The 21V output across the 80Ω

resistor corresponds to 260mA of output DC drain current, which is also quite close to the 225mA drawn by

the PA at peak efficiency. The power coupled to the gate is shown to do so by a factor that steadily decreases

from -9 to -22.4 dB. Again, the gate power is shown to saturate around the efficiency peak. Fig. 6.17b shows
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Table 6.1: Comparison of power amplifier and rectifier operation

Power Amplifier Rectifier
Measurement Circuit-A Circuit-B Circuit-A Circuit-B

Efficiency (%) 68.0 63.1 64.4 62.5

Input Power (W) 3.8 (DC) 4.2 (DC) 2.6 (RF) 4.6 (RF)

Output Power (W) 3.0 (RF) 3.4 (RF) 1.7 (DC) 2.9 (DC)

the same input impedance variation with input power discussed for circuit-A as well as the gate termination

achieved by the active loop.

A comparison of the measured PA and rectifier operation is summarized in Table 6.1. As the rectifier is

driven into saturation and to peak efficiency, the input power approaches the peak output power of the PA,

while the output voltage approaches the drain supply of the PA at peak efficiency. The duality is also present

in the DC drain currents drawn by the PA and produced by the rectifier, both reaching the same approximate

value at peak efficiency. It is shown that a circuit designed as a high-efficiency power amplifier can be

operated as a high-efficiency rectifier with the proper DC drain load, gate termination, and gate bias voltage.

Taking two of either circuit presented and arranging them such that a PA sourced a rectifier, a high-efficiency

microwave DC-DC converter would be obtained, as shown in [141]. The conversion efficiency would be

approximately the multiplication of the PA and rectifier efficiencies.

6.5 Power Recycling LINC GaN MMIC PA

The time reversal duality principle presented and confirmed by X-band MMIC measurements in Section 6.3

plays a critical role in the implementation of a full power recycling LINC PA on a GaN MMIC, which is

designed in the 0.15µm GaN process from Qorvo detailed in subsection 2.2.1.
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Figure 6.19: Layout of the input matching network for the internal PA and rectifier circuits. Meandering the
input line is used to reduce the circuit area and utilize previously empty vertical space.

6.5.1 MMIC Design

6.5.1a Internal Power Amplifier & Rectifier Circuit Design

In this design, the same circuit is used for both the internal PAs and the rectifier, since the available transistor

model does not include operation in the third quadrant. Without such modeling, rectifier simulations cannot

be performed. Fortunately, the PA-rectifier duality, verified experimentally in Section 6.4, can be utilized to

ensure a highly efficiency rectifier based on the design of a highly efficient power amplifier.

The internal PA circuit is based on the previously designed and measured MMIC described in subsec-

tion 2.2.2. In order to fit three of these circuits along with a combiner on a single MMIC, the circuit size

has to be reduced. Because the original design demonstrated desirable results, the adjustments made are

fine tuned to minimize changes in loss or impedance matching. The main difference in the layout can be

observed in the input matching network, shown in Fig. 6.19. The network has been meandered to consume

less horizontal space by utilizing available vertical space. Additionally, a small adjustment has been made
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Figure 6.20: Input match (S22 of IMN) comparison between the original MMIC design and the new compact
layout. The layout changes do not significantly affect the impedance presented to the gate of the transistor.
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Figure 6.21: Input matching dissipative loss comparison between the original MMIC design and the new
compact layout. The meandering of the IMN has increased the loss by 0.052 dB.

to the RF choke inductor, and the shunt matching capacitor has been changed to a capacitor-over-via.

The effects of the layout adjustments on the input match and loss of the input matching network are

demonstrated in Figs. 6.20 and 6.21 respectively. At the fundamental frequency of 10GHz, the impedance

presented to the transistors is virtually unchanged. The loss of the input matching network has varied, but

only slightly at the fundamental, increasing by 0.052 dB. Therefore, the meandering of the input matching

network should not have any significant effects on the fabricated internal power amplifier.
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Figure 6.22: Layout of the output matching network for the internal PA and rectifier circuits. The inductor
has been shrunk and moved to conserve vertical space.

A similar approach has been taken with the output matching network (OMN), as shown in Fig. 6.22. In

the original design, the OMN was 1.8mm in height, due to the bias tee and the shunt inductor. The new

chip length is 3.1mm vertically, but only 3.075mm when the saw street is taken into account. To replicate

this circuit three times on the chip, its vertical dimension must be less than half of this chip dimension.

Unfortunately, the 1.8mm OMN is larger than the vertical allotment of 1.5375mm. Therefore, the shunt

inductor is shortened and moved to the top side of the signal path, nestled into the opening below the bias

tee.

As with the input matching network, the adjustments made to the output matching network are optimized

to maintain the performance measured in the original design. Figs. 6.23 and 6.24 demonstrate the effects

of the layout adjustments to the output match and loss of the output matching network respectively. At the

fundamental frequency as well as harmonics, the transistor is loaded by the almost the same exact impedances

as in the original design. Although the harmonic impedances were not intentionally controlled in the original

design, replicating them is still important. The new output matching network has actually improved the

amount of loss by 0.044 dB.
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Figure 6.23: Output match (S11 of OMN) comparison between the original MMIC design and the new
compact layout. The layout changes do not significantly affect the impedance presented to the drain of the
transistor.

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

si
pa

tiv
e 

Lo
ss

 (d
B

)

Original
Meandered

Figure 6.24: Output matching dissipative loss comparison between the original MMIC design and the new
compact layout. Adjustments to the inductor have actually decreased the loss by 0.044 dB.

The layout of the internal PA, shown in Fig. 6.25, has been reduced from the original design size of

3548×1793µm2down to 1577×1480µm2, a much smaller footprint which allows the circuit to be replicated

three times on a chip that is 4×3.1mm2. The internal PA can be simulated in a 50Ω environment, since the

combiner is expected to be matched to 50Ω. Of course, at the output of the internal PA, the probe pads and

bond wire are left out, since the PA will be connected directly to the combiner. A power swept simulation at
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Figure 6.25: Layout of power amplifier circuit, which is also used as the rectifier circuit, appearing three
times in the full MMIC layout.
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Figure 6.26: Power swept simulation of the internal PA at 10GHz, showing a peak PAE of 59.2% with an
output power of 34.6 dBm and 8.1 dB of gain.

10GHz is performed from 10 to 30 dBm, as shown in Fig. 6.26. A peak PAE of 59.2% is achieved with an

output power of 34.6 dBm at an input power of 26.5 dBm, resulting in 8.1 dB of saturated gain. A frequency

swept simulation is performed from 8 to 12GHz at an input power of 26.5 dBm. The results shown in

Fig. 6.27 demonstrate about 2.2GHz of bandwidth where the peak PAE is above 50%, and even broader

bandwidth for reasonable output power and gain. These simulations confirm the minimal effect of the layout

changes made for this design as compared to the original design.
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Figure 6.27: Frequency swept power simulation of the internal PA from 8 to 12GHz at an input power of
26.5 dBm. More than 50% PAE is achieved over 2.2GHz of bandwidth.

Figure 6.28: High-pass lumped element equivalent T-network.

6.5.1b Combiner Design

A 180◦rat-race combiner is utilized for its isolation as well as accessibility to power dumped into the isolated

port. Lumped elements can be utilized to shorten the length of transmission lines or fully approximate

them as described in [142], and specifically for rat-race combiners in [117, 118]. In this design, a high-pass

T-network, shown in Fig. 6.28, is used to approximate the 270◦transmission line in the rat-race combiner. The

equivalent inductance and capacitance are related to the characteristic impedance of the 270◦transmission

line by the following [117]:

L =
Z0

ω0
(6.12)

C =
1

ω0 Z0
(6.13)

The high-pass T-network matches the performance of a long transmission line with only a single inductor,

which is beneficial since the spiral inductors in this MMIC process incur more loss than the capacitors. The
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Figure 6.29: Layout of the rat-race combiner. The 90◦lines have been shortened using shunt capacitors and
the 270◦line has been approximated by a T-network, lumped element equivalent circuit.

90◦transmission lines not fully approximated by a lumped element network, but simply shortened with a

shunt capacitance at the two connection nodes between the three 90◦lines.

The layout of the rat-race combiner is shown in Fig. 6.29. The approximate 270◦line is at the top, while

the others are shortened 90◦lines, with the shunt capacitances at the bottom. The 90◦lines are meandered to

minimize coupling effects, which act to reduce the electrical length, causing more length to be required and

increasing losses. The overall size of the combiner is 1600×1815µm2.

The combiner is optimized for performance at 10GHz. Fig. 6.30 shows the through loss from each of

the PA input ports (1,2) to the output port (3) and the rectifier port (4), which varies between 0.2 and 0.3 dB

at 10GHz. The phase between the internal PAs and the output ( 6 S31, 6 S32) as well as the rectifier ( 6 S41,

6 S42) and more importantly the difference between those paths (6 S32 − 6 S31, 6 S42 − 6 S41) are shown in

Fig. 6.31. At 10GHz the phase difference between the internal PAs and the output is only 1.7◦, while the

phase difference between the internal PAs and the rectifier is 179.5◦. Therefore, the internal PAs will sum

at the output and subtract at the rectifier. The phase exhibits a broader bandwidth than the magnitude. The

match presented to each of the internal PAs and the isolation between them is shown in Fig. 6.32. At 10GHz,

the match presented to each PA is better than 31 dB, while the isolation is 46 dB.
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Figure 6.30: Simulated through loss from each of the PA input ports (1,2) to the output port (3) and the
rectifier port (4).
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Figure 6.31: Simulated phase between the input and output ports, and the difference between those baths.
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Figure 6.32: Simulated input match and isolation between inputs.
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Figure 6.33: Swept outphasing angle simulation of the final MMIC, excluding the rectifier. A peak PAE of
56.3% is achieved with 5.2W of output power.

6.5.1c Final Simulations

To confirm the design, outphasing simulations are performedwithout the rectifier, since it cannot be simulated.

Outphasing performance is demonstrated in Fig. 6.33 at 10GHz for an outphasing angle sweep. A peak

power of 5.2W is achieved with a peak PAE of 56.3%when the internal PAs are driven in-phase. Aminimum

output power of 0.26mW is achieved with a peak rectifier input power at the difference port of the combiner

of 5.2W. Because the rectifier has half the total periphery of the internal PAs, rectification efficiency should

peak when the envelope is half of its maximum, at an outphasing angle of 45◦, and remain high as the

difference port power increases with the decreasing envelope.

Two concerns arise in the utilization of the rectifier that can be informed by the measurements performed

in Section 6.4. Depending on the power handling capabilities of the technology, the rectifier could be

overdriven to failure. During previous testing, more than twice the PA output power was driven into the

same circuit operating as a rectifier without failure. Another concern is the input impedance variation of

the rectifier with input power, which could detune the combiner and cause load modulation or suboptimal

performance. In the measurements of subsection 6.4.2, the input impedance varied significantly, but in this

case, the variation is unknown. A circuit that can be used to reduce this variation is called a resistance

compression network (RCN) [130], which has been implemented in transmission line for high frequencies
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Figure 6.34: Swept frequency simulation of the final MMIC, excluding the rectifier. A peak PAE of 56.3%
is achieved at 10GHz, while PAE remains above 50% for a little over 1GHz of bandwidth.

in [134]. Unfortunately, these networks require at least two rectifier circuits as identically varying loads,

which will not fit within the given chip size. Therefore, nothing is done to mitigate the potential negative

effects of the impedance variation in the rectifier other than improving the isolation.

A frequency swept simulation is performed with in-phase drive at 26.5 dBm in each branch. The results

shown in Fig. 6.34 demonstrate peak performance at 10GHz. Furthermore, the PAE remains above 50% for

1.12GHz. The optimal performance is on the high end of the amplifier pass band, which is a slight concern.

6.5.2 Measurement Setup and Method

The fabricated GaN MMIC PA is shown in Fig. 6.35, and is 4×3.1mm2in size. The PA circuit is replicated

three times, twice as a PA and once as a rectifier. These three circuits are then combined in the center of

the chip by the rat-race combiner. Two test devices are included in the bottom left corner of the MMIC.

The MMIC is mounted in a similar fashion to the single-stage MMIC PAs previously measured, as shown in

Fig. 6.36, and requires four connectorized launchers.

In the measurement setup in Fig. 6.37, a phase shifter sweeps the differential phase, ϕ, which is twice

the outphasing angle, θ. The variable attenuation of the phase shifter is overcome by adjusting the source

amplitude on that branch. Constant available power is maintained to within 0.1 dB after calibration, whereby

offsets are calculated for each phase shifter control voltage. The available power of the second source is
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Figure 6.35: Photograph of the outphasing GaN MMIC PA with integrated rectifier. The internal PAs and
rectifier utilize 10×100µm pHEMTs. A shrunken 180◦rat-race provides isolation and combining.

Figure 6.36: Photograph of fixtured GaN MMIC PA. The chip is mounted on a CuMo tab and bonded to
alumina transmission lines, on which connectorized launchers land. DC pads are bonded to off-chip bypass
capacitors and pads on which to land spring loaded DC pins.

Figure 6.37: Measurement setup sweeps differential phase while maintaining balanced available power
(<0.1 dB). The rectifier parameters (RD , VG,r , and Zgate), and PA parameters (Freq, Pavail, VG , VD) are
tunable.

calibrated to match that of the first, in order to maintain balance (<0.1 dB) between the two inputs. These

power meter calibrations are performed at the coaxial connector of the launcher, and are detailed further

in subsection 5.3.2. A single frequency load-pull tuner is connected to the gate through a short cable in
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order to sweep the gate termination Zgate. All measurements are de-embedded from the coaxial connector

of the launchers to the MMIC bond wire reference plane in post-processing using the S-parameterss of the

fixture transitions. Unfortunately, the fixture transitions are measured only for straight alumina transmission

lines, and this fixture required curved lines to space the launchers appropriately. Therefore, the loss through

the straight alumina line is simulated and subtracted from the fixture transmission loss, and the loss of the

curved alumina line is simulated and added to the fixture transmission loss. At 10GHz, the longer, curved

alumina lines add approximately 0.08 dB of insertion loss to the fixture transitions, which is even less than

the uncertainty of a power meter measurement.

As discussed in subsection 6.4.2 and shown in Fig. 6.37, the rectifier has three parameters: RD , VG,r , and

Zgate, which are the DC load, the bias voltage, and the RF gate termination, respectively. Note that a circuit

to interface the rectifier with the power supply is not implemented in this work, and the rectified power is

dissipated in the DC load. Additionally, several PA parameters must be determined: frequency, available

power, and PA bias. Due to the large number of unknown parameters, a method is developed to find optimal

operation.

First, the optimal internal PA operation is determined with frequency, power, and bias swept measure-

ments. For each combination of these variables, a full differential phase sweep is performed. Because

performance at peak output power is evaluated here, the rectifier parameters are set to conservative values.

Typically, transistor rectifiers are biased at pinch-off for optimal efficiency. The DC load is initially set

to 100Ω, which was the optimal value measured in subsection 6.4.2. The RF gate termination is 50Ω

to turn off the rectifier. Fig. 6.38 illustrates performance at peak power across frequency for the optimally

found available input power of 26.2 dBm and bias of -4.0V. The MMIC achieves ηtot > 50% and Pout >

5W over at least 400MHz bandwidth. The bandwidth limitation was due to that of the driver amplifier as

well as the filters. A finer sweep revealed the optimal operating frequency to be 10.35GHz. Next, the

rectifier parameters are swept with those of the PA fixed at optimal values. Rectified power is measured

while load-pull is performed on the gate of the rectifier over various bias conditions and DC loads. The

differential phase is set to produce the minimum RF output power prior to the load-pull, to ensure that the

rectifier is being driven hardest. Fig. 6.39 shows an optimal rectifier load-pull measurement for RD = 50 Ω
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Figure 6.38: Power, gain and efficiency across frequency with in-phase drive. ηtot > 50% and Pout > 5W
achieved over at least 400MHz bandwidth.
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Figure 6.39: Rectifier load-pull (Zgate) for DC rectified power reaches a sensitive peak of 2.24W. Because
|Γ| is limited to 0.6, optimal rectified power and efficiency cannot be achieved. Smith chart is normalized to
50Ω.

and VG,r = −4.0 V, with 2.24W of rectified power. Each black ’x’ corresponds to a measured impedance.

Although the rectified power is most sensitive to Zgate, it is quite insensitive to variation of RD and VG,r .

Losses between the MMIC and tuner in the fixture transition and cable are significant at X-band (1.25 dB at

10.35GHz) and limit the tuning range to |Γ|≤ 0.6. Improved performance is expected with a higher reflection

coefficient magnitude, which can be achieved by active load-pull or on-chip termination.
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Figure 6.40: RF output power, DC rectified power, ηd,r , and ηtot,r with optimal PA and rectifier parameters.
A peak ηtot of 62.5% is achieved with 6W of RF output power at 10.35GHz.

6.5.3 Outphasing Measurement Results

With all of the optimal PA and rectifier parameters set, the measured system performance is shown in

Fig. 6.40. Both the drain and total efficiencies include rectified power, and reach peaks of 71.80% and

65.2%, respectively, at a peak output power of 37.78 dBm or 6W at 10.35GHz. As expected the output

power and efficiency peakwhen driven in-phase, and decrease with differential phase, opposite of the rectified

power. Minimum output power is achieved with a differential phase a little greater than the expected 180◦due

to some branch imbalances most likely caused by the rectifier detuning the combining network.

The efficiency improvement achieved through the addition of the rectifier is demonstrated in Figs. 6.41

and 6.42, with up to 2.24W of rectified power. ηd and ηtot do not include the rectified power, while ηd,r and

ηtot,r include the rectifier contributions. The differences in efficiency with and without rectification, labeled

∆ηd and ∆ηtot , reach peak values of 8.1 and 6.5 points at -3.5 dB normalized output power, respectively.

The efficiency improvement is confined to the middle region of the normalized output power, as described

theoretically.

The agreement betweenmeasurement and theory shows that the highly idealized assumptions are realistic.

An internal PA drain efficiency of 71.8% and gain of 8.5 dB are extracted from measurement and used in

theoretical calculations. Although it cannot be measured, a rectification efficiency of 51% is found to match
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Figure 6.41: Measured ηd, ηd,r , DC rectified power, ∆ηd,r , and theoretical ∆ηd,r demonstrating efficiency
improvement through power recycling as envelope amplitude is decreased. Up to 2.24W of rectified power
improves the system drain efficiency by up to 8.1 points at 3.5 dB back-off, matching theory.
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Figure 6.42: Measured ηtot , ηtot,r , DC rectified power, ∆ηtot,r , and theoretical ∆ηtot,r demonstrating
efficiency improvement through power recycling as envelope amplitude is decreased. Up to 2.24W of
rectified power improves the system total efficiency by up to 6.5 points at 3.5 dB back-off, matching theory.

theory to measurement. Based on experience presented in subsection 6.4.2, this rectification efficiency is

reasonable given the reduced tuning range in this measurement. The rectification efficiency is expected to

improve to the peak internal PA drain efficiency (> 70%) by increasing the magnitude of the gate reflection

coefficient through active load-pull, or on-chip termination. In that case, the peak improvement in system

drain and total efficiencies would be 12.9 points and 10.2 points, respectively.
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6.6 Conclusion

The utilization of rectification to improve the efficiency roll-off characteristic of the LINC power amplifier is

developed theoretically. The duality between high efficiency power amplifiers and high efficiency rectifiers

is confirmed experimentally at 10.1GHz on two GaN MMIC PAs described in [35] and leveraged for

this architecture, which is especially critical due to the lack of accurate modeling in the third quadrant

(rectification). The entire architecture is implemented on a GaN MMIC (internal PAs, rectifier, and isolated

combiner) at X-band. This design is one of three LINC PAs with power recycling, and operates at the highest

frequency, 10.35GHz, among its peers through the use of a high-efficiency, self-synchronous transistor

rectifier and GaN integration. Original contributions in this chapter include the following:

• The experimental validation of the high efficiency PA-rectifier duality at 10.1GHz with two GaN

MMIC PAs, which achieved between 62.5% and 68% efficiency in both modes of operation [126,143].

• The design and measurement of a GaN power recycling LINC MMIC PA, demonstrating a peak drain

efficiency of 71.8% with 6W of output power at 10.35GHz with a peak rectified power of 2.25W,

leading to a drain efficiency improvement of 8.1 points at 3.5 dB back-off [144].
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The effect of internal PA gain in outphasing is most obvious when using the PAE definition of efficiency,

because the PAE drops below zero when the output power becomes less than the input power, which is

equivalent to the gain in terms of normalized output power in decibels. For example, the PAE will become

negative for an outphasing amplifier with 10 dB of gain at 10 dB back-off. While most authors prefer to use

the total efficiency definition to avoid the unintuitive negative PAE, or ignore input power altogether with the

drain efficiency definition, the internal PA gain concern substantiated by the PAE definition is both present

and relevant.
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Figure 7.1: (a), (c) PAE comparison between ET, ML-CO, and ML-LINC for single-stage and two-stage
PAs, respectively. (b), (d) ET characteristic as a function of input power for single-stage and two-stage PAs,
respectively.

The internal PA gain also affects the efficiency of supply modulated outphasing. In simulation, a com-

parison is made between envelope tracking (ET), ML-CO, and ML-LINC, shown in Fig. 7.1a. Interestingly,

the efficiency peaks of ML-CO and ML-LINC occur at approximately the same output power levels, but

this is not the case for ET, where the efficienciey peaks extend lower in output power, which is desirable for

efficiently amplifying high PAR signals. The difference between ET and ML-CO/ML-LINC is the output

power control variable (aside from the supply voltage); input power and outphasing angle, respectively. As

shown in Fig. 7.1b, a highly compressed, single-stage PA is sensitive to input power. A 5 dB input power

difference exists between the peak PAE at 8V and 20V drain voltages. More importantly, the PAE at 8V

has dropped by 28 points from its peak when driven with the optimal input power for 20V, which is chosen
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as the constant input power for the outphasing architectures in this thesis.

The same simulation is performed for a two-stage GaN MMIC PA. A comparison is shown in Fig. 7.1c

between ET, ML-CO, and ML-LINC. In this case, the efficiency peaks for each architecture line up quite

closely in output power, achieving similar efficiencies at back-off. While a 4 dB input power difference

exists between the peak PAE at 8V and 20V, the drop in PAE at 8V when driven at the optimal 20V input

power is only 1.5 points, as shown in Fig. 7.1d. This insignificant drop is due to the two-stage PA having

a flatter compression characteristic. Therefore, for optimal supply modulated outphasing performance, the

internal PAs should have multiple stages. The increased gain of additional stages reduces the influence and

significance of the constant input power.

Note that the roll-off beyond the last peak is not of primary concern. It is common to stop outphasing

operation at low output powers, and reduce the input power to improve the poor roll-off of outphasing. This

is called mixed-mode outphasing [40, 66, 145, 146]. The same technique is used at low output power levels

in ET [96].

The output matching network is most critical to the performance of any high efficiency PA, but in multi-

stage PAs, the interstagematching network (ISMN) dictates the overall performance of the cascaded amplifier

stages. The cascade of multiple stages can be leveraged to improve linearity [147, 148]. Most often though,

amplifier stages are cascaded to increase gain. Historically, this has reduced ISMN design to a fundamental

frequency complex matching problem, on which many design analyses have been based [149–152]. Even

some high efficiency PA designs only consider the fundamental frequency of the ISMN [153–155].

In order to keep improving PA efficiency, the ISMN must be optimized at harmonic frequencies. Very

little work has been published in this area. One approach is to utilize the driver stage to shape the intrinsic

gate waveform of the output stage, as done in [156], where an inverse class-F stage drives a class-F power

stage. Compared to the class-F power stage alone (without input harmonic terminations), the two stage

PA achieves a peak efficiency 4 points higher, and 200MHz more bandwidth with the PAE greater than

60%. This excellent work is based on the study of input harmonic injection [157, 158]. Unfortunately, it

necessitates a custom model with access to the intrinsic gate. Another approach is to harmonically terminate

the driver stage to improve its efficiency [159,160]. Still, few details are given concerning the ISMN design.
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Figure 7.2: Two-stage PA analysis diagram

This chapter aims to improve the understanding of harmonically terminated ISMN design. In Section 7.1,

a theoretical basis for the efficiency of cascaded amplifiers is formed. The approach to ISMN design begins

with an understanding of the complex, bi-directional, independent matching it must perform in Section 7.2.

Eleven lumped-element and transmission line ISMNs are derived in Section 7.3 as starting points for design,

one of which is substantiated by a design example in Section 7.4.

7.1 Cascaded Efficiency Analysis

A useful starting point is to evaluate, theoretically, how the addition of a driver stage affects the performance

of the power stage. To accomplish this, the circuit in Fig. 7.2 is considered. The isolator represents the

assumption that the two stages do not interact with each other, therefore its loss is not considered as this

architecture will not actually be implemented. This assumption will be true if the transistors are sized

properly, and the ISMN is designed well.

7.1.1 Cascaded Drain Efficiency

The drain efficiency of the cascaded stages is defined as:

ηd =
Pout2

Pdc
(7.1)

The DC power consumed by each stage is defined independently as:

Pdc1 =
Pout1

ηd1

(7.2)

Pdc2 =
Pout2

ηd2

(7.3)
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Figure 7.3: Cascaded drain efficiency of the circuit in Fig. 7.2 as a function of the efficiency of each stage,
shown for output stage gains of 7 and 10 dB.

The total DC power consumed is the sum of each individual PA consumption:

Pdc = Pdc1 + Pdc2 =
Pout1

ηd1

+
Pout2

ηd2

(7.4)

Since the isolator is assumed to be lossless, the input power of PA2 is equal to the output power of PA1,

yielding:

Pout2 = G2Pout1 (7.5)

Substituting (7.4) and (7.5) into (7.1), and simplifying yields:

ηd =
ηd1ηd2

ηd1 +
ηd2
G2

(7.6)

as found in [159].

The cascaded drain efficiency is plotted in Fig. 7.3 as a function of the drain efficiency of each stage for

output stage gains of 7 and 10 dB. Given an expected gain and efficiency of the output stage, the required

efficiency of the driver stage can be determined for the desired cascaded efficiency. As the gain of the output

stage increases, its efficiency increasingly influences the cascaded efficiency. Because of this, the contours

in Fig. 7.3 are flatter in the right plot (10 dB) compared to the left (7 dB), decreasing the required driver stage

efficiency and increasing the region of high efficiency.
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7.1.2 Cascaded Power-Added Efficiency

Extending the analysis to consider the gain of the driver stage, the cascaded power-added efficiency is

investigated. It is defined as:

PAE =
Pout2 − Pin1

Pdc
(7.7)

The DC power consumed by each stage is defined as:

PDC1 =
Pout1

ηd1

(7.8)

PDC2 =
Pout2

ηd2

(7.9)

The total DC power consumed is the sum of each individual PA consumption:

PDC = PDC1 + PDC2 =
Pout1

ηd1

+
Pout2

ηd2

(7.10)

Again, the isolator is assumed to be lossless, so the input power of PA2 is equal to the output power of PA1,

yielding:

Pout2 = G2Pout1 (7.11)

which can be related to the driver stage input power via the driver stage gain:

Pout2 = G1G2Pin1 (7.12)

Substituting (7.10), (7.11), and (7.12) into (7.7) and simplifying, the cascaded PAE becomes:

PAE =
G2 −

1
G1

1
ηd1

+ G2
ηd2

(7.13)

It may be preferable to find the cascaded PAE in terms of the PAE of each stage. If so, the total DC power

can be defined in terms of PAE:

PDC = PDC1 + PDC2 =
Pout1

ηd1

+
Pout2

ηd2

=
Pout1 − Pin1

PAE1
+

Pout2 − Pin2

PAE2
(7.14)

Substituting (7.14), (7.11), and (7.12) into (7.7) and simplifying, the cascaded PAE is found in terms of the

PAE of each stage as:

PAE =
PAE1PAE2G1G2 − 1)

PAE1G1(G2 − 1) + PAE2(G1 − 1)
(7.15)
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Figure 7.4: Cascaded PAE of the circuit in Fig. 7.2 as a function of the PAE of each stage, shown for 18 dB
driver stage gain with 7 and 12 dB output stage gains.

The cascaded power-added efficiency is plotted in Fig. 7.4 as a function of the PAE of each stage for a

driver stage gain of 18 dB and output stage gains of 7 and 12 dB. Now, the cascaded efficiency is a function

of the gains of both stages. Typically, the driver stage has a higher gain because it is a smaller device and is

often operated further from saturation. Given the expected gains of the two stages and the PAE of the output

stage, the required PAE of the driver stage can be determined. The amount of influence each stage has on

the cascaded efficiency is a function of the relative gain. As the gain of the output stage increases relative to

that of the driver stage, the contours in Fig. 7.4 flatten in the right plot compared to the left, decreasing the

required driver stage efficiency and increasing the region of high efficiency.

7.2 Bi-Directional Matching

The interstage matching network must perform bi-directional matching between the complex transistor

impedances loading the network, as shown in Fig. 7.5. Minimally, the ISMN must match the two transistors

at a single frequency for maximum power transfer, as traditionally done. However, for high efficiency, the

transistors may be intentionally mismatched at the fundamental and harmonic frequencies, according to

source- and load-pull characterization. Therefore, the ISMN must transform the output impedance of the

driver stage into the desired reflection coefficient for the output stage, referenced to its impedance, and vice

versa. The purpose of this section is to determine if a passive set of S-parameters exist for given complex

reference impedances (transistors), which will yield the desired matching or mismatching.
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Figure 7.5: High efficiency interstage matching network circuit. Zout,Q1 and Zin,Q2 are the output and input
impedances of the driver and power transistors, respectively.

Aside from proving the existence of valid S-parameters, this analysis provides a couple more uses.

The desired S-parameters may be generated for 50Ω reference impedances, enabling direct comparison

with measured S-parameters. Additionally, a synthesized two-port network may be optimized to match the

generated 50Ω S-parameters, in order to achieve the desired performance when loaded with the complex

impedance transistors. This analysis could be replicated at harmonic frequencies, providing the required

harmonic S-parameters for a given set of terminations, and then synthesized in a circuit.

7.2.1 Change of Reference Impedance

In order to accomplish bi-directional impedance matching, a method for changing the reference impedances

of an S-parameter defined network is commandeered from [161]. The authors of this excellent work

utilize pseudo-waves, which are a mathematical construct without any physical meaning. Pseudo-waves

can help accomplish the goal, but are rather unintuitive. For example, matching to a complex reference

impedance does not make the pseudo-wave scattering matrix reflection coefficient zero. Therefore, the

method presented in [161] is expanded to utilize power waves [162], which are also utilized by commercially

available microwave simulation software. Power waves are also a mathematical construct, like pseudo-waves,

but have direct physical meaning, like traveling waves. They are defined at a single port for a given reference

impedance, Zre f , as:

a(Zre f ) =
v + Zre f i

2
√���Re

{
Zre f

}���
(7.16)

b(Zre f ) =
v − Z∗re f i

2
√���Re

{
Zre f

}���
(7.17)
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where v and i are the total voltage and current, respectively. The inverse relationships to (7.16) and (7.17)

are:

v =
ρ√���Re
{
Zre f

}���

(
Z∗re f a + Zre f b

)
(7.18)

i =
ρ√���Re
{
Zre f

}���
(a − b) (7.19)

where ρ is defined by:

ρ =




1, when Re
{
Zre f

}
> 0

−1, when Re
{
Zre f

}
< 0

(7.20)

The convenience of the power wave definition is found when examining the available power from a generator,

and power transferred from the generator to a load. The available power from a generator can be written as:

Pav = ρ|a |2 (7.21)

while the power transferred from the generator to the load is found to be:

PL = Re
{
vi∗

}
= ρ

(
|a |2−|b|2

)
(7.22)

Clearly, the power wave definitions give an intuitive understanding of the incident, reflected, and transmitted

powers. The reflection coefficient for these waves is defined as:

Γ =
ZL − Z∗re f
ZL + Zre f

(7.23)

When the complex reference impedance and load impedances are conjugate matched, maximum power

transfer occurs, and the reflection coefficient becomes zero.

The method for changing reference impedances of the two-port network is as follows:

(1) Define desired S-parameter matrix, S

(2) Convert S to the cascade matrix, R

(3) Multiply R by change of reference impedance matrices, P, on both sides
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(4) Convert R with changed reference impedances back to S

First, the desired two-port network, S, must be defined by:


b1
(
Z i
re f

)
b2

(
Z j
re f

)


= Si j



a1
(
Z i
re f

)
a2

(
Z j
re f

)


(7.24)

where,

Si j =



S11 S12

S21 S22



(7.25)

The matrix values are chosen for the function of the matching network, matched or intentionally mismatched.

If mismatching the ports based on the source- and load-pull, the optimal impedances must be referenced to

the proper impedances, Z i
re f

and Z j
re f

.

Next, the desired S is converted to the cascade matrix R, which relates the power waves as:


b1
(
Z i
re f

)
a1

(
Z i
re f

)


= Ri j



a2
(
Z j
re f

)
b2

(
Z j
re f

)


(7.26)

The indices in the superscript of Ri j indicate that the reference impedance at port 1 is Z i
re f

and at port 2 is

Z j
re f

. The general conversion between scattering and cascade matrices are:

R =
1

S21



S12S21 − S11S22 S11

−S22 1



(7.27)

and

S =
1

R22



R12 R11R22 − R12R21

1 −R21



(7.28)

Since the cascade matrix separates the power waves of each port, reference impedance transformations

can be implemented by a matrix multiplication on each side. This transformation can be derived using the

power wave, total voltage, and total current definitions. By expressing a(Z j
re f

) and b(Z j
re f

) in terms of v

and i using (7.16) and (7.17), and v and i in terms of a(Zm
ref

) and b(Zm
ref

) using (7.18) and (7.19), a linear

relationship between the power waves for each reference impedance is found:


a
(
Z j
re f

)
b
(
Z j
re f

)


= Pjm



a
(
Zm
ref

)
b
(
Zm
ref

)


(7.29)
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where

Pjm ≡



P11 P12

P21 P22



=
1

2
√

Re
{
Z j
re f

}√
Re

{
Zm
ref

}



Z j
re f

+ Zm∗
re f

Zm
ref
− Z j

re f

Zm∗
re f
− Z j∗

re f
Z j∗
re f

+ Zm
ref



(7.30)

This equation provides the exact expression of the complex impedance transform. The reference impedance

of port 2 can be transformed by substituting (7.29) into the right hand side of (7.26), yielding:



b1
(
Z i
re f

)
a1

(
Z i
re f

)


= Ri jPjm



a2
(
Zm
ref

)
b2

(
Zm
ref

)


(7.31)

The impedance transformation on port 1 is more complicated. In order to substitute into the left hand side

of (7.26), the vectors in (7.29) must be flipped. First, take the two equations held in (7.29):

a
(
Z j
re f

)
= P11a

(
Zm
ref

)
+ P12b

(
Zm
ref

)
(7.32)

b
(
Z j
re f

)
= P21a

(
Zm
ref

)
+ P22b

(
Zm
ref

)
(7.33)

Rewriting this to flip the vectors yields:

b
(
Z j
re f

)
= P22b

(
Zm
ref

)
+ P21a

(
Zm
ref

)
(7.34)

a
(
Z j
re f

)
= P12b

(
Zm
ref

)
+ P11a

(
Zm
ref

)
(7.35)

Unlike the case for the pseudo-wave transformation matrix, Q, in [161], P is not symmetric. It is clear from

(7.30), that P11 = P∗22 and P12 = P∗21. The expression relating the flipped vectors can be written simply as:



b
(
Z j
re f

)
a

(
Z j
re f

)


= Pjm∗



b
(
Zm
ref

)
a

(
Zm
ref

)


(7.36)

Now the left hand side of (7.31) can be replaced by (7.36) with the indices i and p, yielding:

Pip∗



b1
(
Zp
re f

)
a1

(
Zp
re f

)


= Ri jPjm



a2
(
Zm
ref

)
b2

(
Zm
ref

)


(7.37)

Then, Pip∗ can be moved to the right hand side by multiplying both sides by its inverse:

[Pip∗]−1Pip



b1
(
Zp
re f

)
a1

(
Zp
re f

)


= [Pip∗]−1Ri jPjm



a2
(
Zm
ref

)
b2

(
Zm
ref

)


(7.38)
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Since,

Pnn∗ = I (7.39)

where I is the identity matrix, the following is true:

[Pnm∗]−1 = Pmn∗ (7.40)

Now, (7.38) can be simplified to:



b1
(
Zp
re f

)
a1

(
Zp
re f

)


= Ppi∗Ri jPjm



a2
(
Zm
ref

)
b2

(
Zm
ref

)


(7.41)

Finally, yielding the transformed cascade matrix:

Rpm = Ppi∗Ri jPjm (7.42)

Lastly, the new cascade matrix Rpm can be converted back to an S-parameter matrix Spm using (7.28).

7.2.2 Conjugate Match Example

First, an example showing the existence of S-parameters to perform simultaneous complex matching on

the two complex impedance ports without loss is shown. The desired S-parameter matrix is chosen to be

matched, lossless, and reciprocal:

Si j =



0 1

1 0



(7.43)

The cascade matrix is made by converting Si j to Ri j and filling in the P matrices in (7.42) with the following

values chosen for this example:

Zp
re f

= Z0 = 50 Ω (7.44)

Z i
re f = Zre f ,1 = 10 + j10 Ω (7.45)

Z j
re f

= Zre f ,2 = 75 + j25 Ω (7.46)

Zm
ref = Z0 = 50 Ω (7.47)
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S2P_BLK
ID=P1
S11=-0.672131 - 0.393443*j
S21=0.610576 + 0.143665*j
S12=S21@S2P_BLK.P1
S22=0.777049 - 0.052459*j

PORT
P=1
Z=10+j*10 Ohm

PORT
P=2
Z=75+j*25 Ohm

Figure 7.6: AWR simulation setup demonstrating validity of derived 50Ω S-parameters for achieving desired
complex conjugate match.

S11

S21

S22

Figure 7.7: AWR simulation results demonstrating validity of derived 50Ω S-parameters for achieving
desired complex conjugate match.

Converting Rpm to Spm yields:

Spm =



−0.672131 − j0.393443 0.610576 + j0.143665

0.610576 + j0.143665 0.777049 − j0.052459



(7.48)

This matrix is the required 50Ω scattering matrix to achieve the desired scattering when loaded with the

complex reference impedances. Spm is entered into the S2P_BLK component in the NI AWR Microwave

Office simulator as shown in Fig. 7.6. The simulated results in Fig. 7.7 confirm the desired response.

7.2.3 Intentional Mismatch Example

Now, an example showing the existence of S-parameters to perform simultaneous mismatching on the two

complex impedance ports without loss will be shown. This is the desired performance at the fundamental
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S2P_BLK
ID=P2
S11=-0.631036 - 0.00315329*j
S21=0.457419 + 0.470807*j
S12=S21@S2P_BLK.P2
S22=0.254291 - 0.273489*j

PORT
P=1
Z=10+j*10 Ohm

PORT
P=2
Z=75+j*25 Ohm

Figure 7.8: AWR simulation setup demonstrating validity of derived 50Ω S-parameters for achieving desired
mismatch.

frequency for the designed ISMN. The desired S-parameter matrix is chosen to be mismatched, lossless, and

reciprocal:

Si j =



0.6 e j60◦ 0.8

0.8 0.6 e j210◦



(7.49)

The cascade matrix is made by converting Si j to Ri j and filling in the P matrices in (7.42) with the following

values chosen for this example:

Zp
re f

= Z0 = 50 Ω (7.50)

Z i
re f = Zre f ,1 = 10 + j10 Ω (7.51)

Z j
re f

= Zre f ,2 = 75 + j25 Ω (7.52)

Zm
ref = Z0 = 50 Ω (7.53)

Converting Rpm to Spm yields:

Spm =



−0.631036 − j0.00315329 0.457419 + j0.470807

0.457419 + j0.470807 0.254291 − j0.273489



(7.54)

This matrix is the required 50Ω S-parameters to achieve the desired S-parameters when loaded with

the complex reference impedances. Spm is simulated as shown in Fig. 7.8, with the results in Fig. 7.9. The

network provides the desired reflection coefficient to each port, or transistor in the case of an ISMN.

7.3 Harmonically Terminated Interstage Matching Networks

Many techniques for synthesizing a circuit exist [163, 164]. One approach could be to generate a transfer

function based on the desired harmonic frequency S-parameters generated by the method in the previous

167



S11

S21

S22

Figure 7.9: AWR simulation results demonstrating validity of derived 50Ω S-parameters for achieving
desired mismatch.

section. This transfer function could be realized by a circuit using a number of commercially available

synthesis tools. Unfortunately, these tools are typically oriented toward filters and not well suited for

matching to complex impedances.

Several works have sought to analytically find both lumped element [165, 166] and transmission line

[167, 168] circuit implementations for class-F and inverse class-F output matching networks. These works

are leveraged to derive a number of harmonically terminated interstage matching networks. The difference

between the OMN and ISMN is the bi-directionality, meaning the harmonic terminations must be properly

phased at both ports of the network, while bi-directional fundamental impedance matching occurs. The

following analyses are referenced to the intrinsic drain, thus ignoring transistor parasitics and treating

transistors as resistive loads. When parasitics are present, they must either be resonated, or more likely, the

phase of each harmonic termination will need to be adjusted via series elements between resonators.

In the following subsections, eleven networks are provided as starting points for any harmonically

terminated ISMN implementation. First, six lumped element networks that provide class-F (short circuit at

2 f0, open circuit at 3 f0) and inverse class-F (open circuit at 2 f0, short circuit at 3 f0) harmonic terminations

to both ports are presented (three each). Next, five transmission line networks are derived, presenting class-F,
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inverse class-F, and arbitrary phase harmonic terminations to each transistor. The aim of this work is to

provide a starting point for implementing a harmonically terminated ISMN.

7.3.1 Lumped Element ISMNs

To generate these networks, the placement of resonators is first devised. These resonators are comprised of

an inductor and capacitor with its subscript corresponding to the harmonic of its resonance. For example,

C2 and L2 resonate at the second harmonic. Next, the network is examined at the fundamental and harmonic

frequencies. To accomplish this, the characteristics of each resonator at frequencies of interest outside of

resonance must be known. The value of the dominant element, which is designated with a prime superscript

(′), of both series and parallel resonators at frequencies outside of resonance are provided in Appendix A.

Finally, equations can be written based on the harmonic frequency circuits and desired terminations to

constrain the element values, while leaving two degrees of freedom for performing fundamental matching

for each network.

7.3.1a Class-F

The first class-F network makes use of series resonators, and is shown in Fig. 7.10a, along with the equivalent

networks at the fundamental and harmonic frequencies in Figs. 7.10b, 7.10c, and 7.10d. Looking at the

network at harmonic frequencies, the constraints take form. The resonant frequency of the series resonators

contrains the capacitor in each, while the inductor is left as a degree of freedom for fundamental matching,

since the quality factor is proportional to the inductor, yielding the following constraints:

C2 =
1

(2ω2)2L2
(7.55)

C3 =
1

(3ω3)2L3
(7.56)

where ω1 is designated as the fundamental frequency in radians per second. At the second harmonic, the

short circuits are in parallel with some capacitive load, and if the quality factor of the 2 f0 resonators is high

enough, then a short circuit will be enforced. At the third harmonic, L′2, which is the dominant inductance

value of the 2 f0 resonator, must resonate with C in parallel to provide an open circuit. The value of L′2 can
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(a) (b)

(c) (d)

Figure 7.10: Class-F ISMN utilizing series resonators. (a) Circuit diagram, and equivalent circuits at (b) f0,
(c) 2 f0, and (d) 3 f0.

be found from:

L′2 =
(ω2 − ω2

0)L2

ω2 =
(x2 − 1)L2

x
(7.57)

where x = 3/2, since it is the value of the second harmonic resonator at the third harmonic. Then, C is

forced to resonate with L′2 at 3 f0:

C =
1

(3ω3)2L′2
(7.58)

Now, three of the five component values are constrained to the remaining two, which are free to perform

fundamental impedance matching.

Another class-F network makes use of parallel resonators, as shown in Fig. 7.11a, along with the

equivalent networks at the fundamental and harmonic frequencies in Figs. 7.11b, 7.11c, and 7.11d. In this

case, the capacitors in each resonator are available to optimize for fundamental matching, since their values

are proportional to the quality factors. This yields the following constraints:

L2 =
1

(2ω2)2C2
(7.59)

L3 =
1

(3ω3)2C3
(7.60)

At the third harmonic, the parallel 3 f0 resonators provide the open circuit. At the second harmonic, the

shunt capacitance must resonate with the sub-resonant inductance of the parallel 3 f0 resonator, which can
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(a) (b)

(c) (d)

Figure 7.11: Class-F ISMN utilizing parallel resonators (a) Circuit diagram, and equivalent circuits at (b)
f0, (c) 2 f0, and (d) 3 f0.

be found by:

L′3 =
ω2

0L3

ω2
0 − ω

2
=

L3

1 − x2 (7.61)

where x = 2/3, since it is the value of the third harmonic resonator at the second harmonic. Then, C can be

found from:

C =
1

(2ω2)2L′3
(7.62)

The third class-F network makes use of both parallel and series resonators, and is shown in Fig. 7.12a,

along with the equivalent networks at the fundamental and harmonic frequencies in Figs. 7.12b, 7.12c, and

7.12d. This time, the capacitor in the 3 f0 resonator and the inductor in the 2 f0 resonator are the degrees of

freedom for fundamental matching, as their values are proportional to the quality factor of their respective

resonators. This yields the following constraints:

C2 =
1

(2ω2)2L2
(7.63)

L3 =
1

(3ω3)2C3
(7.64)

At the third harmonic, the parallel 3 f0 resonators provide the open circuit, as in the previous network. At

the second harmonic, the shunt resonator provides a short circuit in the center of the network. Thus, the
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(a) (b)

(c) (d)

Figure 7.12: Class-F ISMN utilizing both series and parallel resonators. (a) Circuit diagram. Equivalent
circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

capacitance must resonate with the sub-resonant inductance of the parallel 3 f0 resonator, which can be found

by:

L′3 =
ω2

0L3

ω2
0 − ω

2
=

L3

1 − x2 (7.65)

where x = 2/3, since it is the value of the third harmonic resonator at the second harmonic. Then, C can be

found from:

C =
1

(2ω2)2L′3
(7.66)

7.3.1b Inverse Class-F

The first inverse class-F network makes use of series resonators, and is shown in Fig. 7.13a, along with the

equivalent networks at the fundamental and harmonic frequencies in Figs. 7.13b, 7.13c, and 7.13d. The

value of inductors will not be constrained, in order to perform fundamental matching, since the quality factor

is proportional to their value, yielding the following constraints on the capacitors:

C2 =
1

(2ω2)2L2
(7.67)

C3 =
1

(3ω3)2L3
(7.68)

At the third harmonic, the series resonators provide short circuits at the transistor terminals. If the quality

factor of the 3 f0 resonators is high enough, then the inductive parallel load will not have a significant effect.
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(a) (b)

(c) (d)

Figure 7.13: Inverse class-F ISMN utilizing series resonators. (a) Circuit diagram, and equivalent circuits at
(b) f0, (c) 2 f0, and (d) 3 f0.

At the second harmonic, the sub-resonant capacitance C ′3 of the series 3 f0 resonator must resonate with L in

parallel to provide an open circuit. The value of C ′3 can be found from:

C ′3 =
ω2

0C3

ω2
0 − ω

2
=

C3

1 − x2 (7.69)

where x = 2/3, since it is the value of the third harmonic resonator at the second harmonic. Then, L can be

found from:

L =
1

(3ω2)2C ′2
(7.70)

Another inverse class-F network makes use of parallel resonators, and is shown in Fig. 7.14a, along

with the equivalent networks at the fundamental and harmonic frequencies in Figs. 7.14b, 7.14c, and 7.14d.

In this case, the capacitors in each resonator are left free to optimize for fundamental matching, since their

value is proportional to the quality factor. This yields the following constraints:

L2 =
1

(2ω2)2C2
(7.71)

L3 =
1

(3ω3)2C3
(7.72)

At the second harmonic, the parallel 2 f0 resonators provide the open circuit. At the third harmonic, the

shunt inductance must resonate with the super-resonance capacitance of the parallel 2 f0 resonator, which
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(a) (b)

(c) (d)

Figure 7.14: Inverse class-F ISMN utilizing parallel resonators. (a) Circuit diagram, and quivalent circuits
at (b) f0, (c) 2 f0, and (d) 3 f0.

can be found by:

C ′2 =
(ω − ω2

0)C2

ω2 =
(x2 − 1)C2

x2 (7.73)

where x = 3/2, since it is the value of the second harmonic resonator at the third harmonic. Then, L can be

found from:

L =
1

(3ω3)2C ′2
(7.74)

The third inverse class-F network makes use of both parallel and series resonators, and is shown in Fig.

7.15a, along with the equivalent networks at the fundamental and harmonic frequencies in Figs. 7.15b,

7.15c, and 7.15d. This time, the inductor in the 3 f0 resonator and the capacitor in the 2 f0 resonator are the

degrees of freedom for fundamental matching, as their values are proportional to the quality factor of their

resonators. This yields the following constraints:

L2 =
1

(2ω2)2C2
(7.75)

C3 =
1

(3ω3)2L3
(7.76)

At the second harmonic, the parallel 2 f0 resonators provide the open circuit. At the third harmonic, the

shunt series resonator provides a short circuit in the center of the network, according to its quality factor. In
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(a) (b)

(c) (d)

Figure 7.15: Inverse class-F ISMN utilizing both series and parallel resonators. (a) Circuit diagram, and
equivalent circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

order to transfer this short circuit to the transistor terminals, the shunt inductance L must resonate with the

super-resonant capacitance C ′2 of the parallel 2 f0 resonator, which can be found by:

C ′2 =
(ω − ω2

0)C2

ω2 =
(x2 − 1)C2

x2 (7.77)

where x = 3/2, since it is the value of the second harmonic resonator at the third harmonic. Then, L can be

found from:

L =
1

(3ω3)2C ′2
(7.78)

For each network, three of the five component values are constrained by harmonic termination criteria.

The remaining two components are optimized to match the fundamental impedances. During optimization

for fundamental matching, reduction in the values of the two free components will lead to a decreased quality

factor in the resonators and could reduce the effectiveness of the harmonic terminations.

7.3.2 Transmission Line ISMNs

The concepts behind the derivation of lumped element ISMNs is now extended to consider transmission line

implementations. The placement of harmonic short circuits is first devised, then the network is analyzed at the

fundamental and harmonic frequencies for component constraints. In most cases, the harmonic terminations

are enforced only by the electrical lengths of the lines, otherwise conditions for their characteristic impedances
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(a) (b)

(c) (d)

Figure 7.16: (a) Class-F ISMN circuit diagram. Equivalent circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

must also be solved. In all cases, the characteristic impedances of some or all of the transmission lines are

free to perform fundamental matching. In the following subsections, two class-F ISMNs, two inverse class-F

ISMNs, and an arbitrary phase ISMNs are analyzed.

7.3.2a Class-F

The first class-F network utilizes two RF shorted 90◦ transmission lines to simultaneously terminate the

second harmonic and provide DC biasing to each transistor. An open circuit stub provides the third harmonic

termination, as shown in Fig. 7.16a. The equivalent networks at the fundamental and harmonic frequencies

are shown in Figs. 7.16b, 7.16c, and 7.16d.

This particular network fixes the harmonic terminations through the electrical length of each TL, in-

dependent of the characteristic impedances. At the fundamental frequency in Fig. 7.16b, the characteristic

impedances of the single stub network are optimized for fundamental matching, because the bias lines appear

as high impedances and do not affect the fundamental impedance. At the second harmonic in Fig. 7.16c, the

90◦ bias line is effectively 180◦, transforming the RF short circuit into an RF short circuit, which must have
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(a) (b)

(c) (d)

Figure 7.17: (a) Class-F ISMN circuit diagram. Equivalent circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

a high enough quality factor so as to short the parallel impedance of the transformed shunt stub. At the third

harmonic, the 30◦ stub is effectively 90◦, transforming the open circuit into a short circuit at the center node.

The 30◦ series TLs are effectively 90◦, and transform this short circuit to an open circuit at each transistor.

Although the second class-F network has only a single bias line, a second 90◦ shorted stub could be

added without affecting RF performance (if it is ideal) directly at either device. This circuit utilizes the same

elements as the previous one, as shown in Fig. 7.17, along with the equivalent networks at the fundamental

and harmonic frequencies in Figs. 7.17b, 7.17c, and 7.17d.

This network also fixes the harmonic terminations through the electrical length of each TL, independent

of the characteristic impedances. At the fundamental frequency in Fig. 7.17b, the characteristic impedances

of the single stub network are optimized for fundamental matching, since the bias line appears as a high

impedance, and does not affect the fundamental impedance. Again, the 90◦ short and 30◦ open circuit stubs

provide short circuits at the second and third harmonics, respectively. The 90◦ series TLs are effectively

180◦ and 270◦ at the second and third harmonics, transforming the short circuits at the center node to short
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(a) (b)

(c) (d)

Figure 7.18: (a) Inverse class-F ISMN circuit diagram. Equivalent circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

and open circuits, respectively, at each transistor.

7.3.2b Inverse Class-F

The first inverse class-F network, shown in Fig. 7.18a, is slightly more complicated than the class-F ISMNs.

The 90◦ shorted TLs (bias lines) from the first class-F ISMN are shortened to 60◦, and the 30◦ open circuit

stub is extended to 45◦. In this analysis, only the left side of the network is examined, since the network

is symmetric and equations describing the right side are equivalent. At the fundamental frequency in

Fig. 7.18b, all TLs are used to perform matching. At the second harmonic in Fig. 7.18c, the 45◦ open circuit

stub is effectively 90◦, transforming the open to a short circuit at the center node. From either transistor, the

impedance at the second harmonic is the parallel combination of two shorted TLs, 60◦ and 120◦ in electrical

length, whose input impedances are:

Zin(60◦) = j Z1 tan(60◦) = j Z1
√

3 (7.79)

Zin(120◦) = j Zb1 tan(120◦) = − j Zb1
√

3 (7.80)
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Figure 7.19: Required relationship for second harmonic open circuit termination for first inverse class-F
ISMN.

The impedance seen by the device is the parallel combination:

Zin =
( j Z1
√

3)(− j Zb1
√

3)
j Z1
√

3 − j Zb1
√

3
=

3Z1 Zb1

j
√

3(Z1 − Zb1)
(7.81)

which is infinite when the characteristic impedances of the two TLs are equal, Z1 = Zb1. Of course, if the

characteristic impedances are very close, then the impedance can be sufficiently large. The 30◦ electrical

length of the series TL could be adjusted (θ1) to allow for unequal TL impedances, Z1 6= Zb1. If the input

impedance of the series TL is written more generally:

Zin(2θ1) = j Z1 tan(2θ1) (7.82)

The impedance seen by the device can be written as:

Zin =
( j Z1 tan(2θ1))(− j Zb1

√
3)

j Z1 tan(2θ1) − j Zb1
√

3
=

Z1 Zb1
√

3 tan(2θ1)
j
(
Z1 tan(2θ1) − Zb1

√
3
) (7.83)

which will be infinite when:

Z1 tan(2θ1) = Zb1
√

3 (7.84)

This relationship is plotted graphically in Fig. 7.19, where the characteristic impedances of the two TLs are

defined from 20Ω to 80Ω on the axes, and the color corresponds to the required series TL electrical length.

Two of these three values can be utilized to perform fundamental matching, along with the characteristic
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Figure 7.20: (a) Inverse class-F ISMN circuit diagram. Equivalent circuits at (b) f0, (c) 2 f0, and (d) 3 f0.

impedance of the open circuit stub. At the third harmonic in Fig. 7.18d, the 60◦ shorted stubs (bias lines) are

effectively 180◦, presenting a short circuit to the transistor.

The second inverse class-F network, shown in Fig. 7.20a, is a slightly modified version of the first class-F

network. At the fundamental frequency in Fig. 7.20b, the characteristic impedances of the single stub TLs

are optimized to perform matching. At the second harmonic in Fig. 7.20c, the 90◦ shorted TLs (bias lines)

are 180◦ and translate the short circuit to the series path. The series 45◦TL is effectively 90◦ and converts the

short circuit to an open circuit. At the third harmonic in Fig. 7.17d, the 30◦ TL is effectively 90◦, transforming

the open circuit to a short circuit at the center node. The shunt 90◦ bias line is 270◦and transforms the short

circuit to an open circuit, so it does not affect matching. A total series electrical length of 180◦ translates

the short circuit at the center node to each transistor, provided that the characteristic impedances of the two

series TLs are equal. If those two impedances differ, the transformation gets a little more complicated, as
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will be seen in the case for arbitrary phase harmonic terminations.

7.3.2c Arbitrary Phase Harmonic Terminations

The arbitrary phase network, shown in Fig. 7.21a, is especially useful for design with packaged devices.

Often, access to the intrinsic drain is not available for packaged device models, so optimization of harmonic

termination phases can be performed at the package reference plane. In this case, the arbitrary phase

harmonically terminated ISMN allows direct design for the given, non-classified, harmonic terminations.

The 90◦ shorted TLs (bias lines) provide a short circuit at the second harmonic, while the 30◦ stub provides

a short circuit at the center node at the third harmonic. The electrical lengths of the four series TLs can

be solved to enforce the desired phase of the second and third harmonic terminations presented to each

device, independently. Afterward, the characteristic impedances of the TLs can be optimized to perform

fundamental matching. The analysis below leaves out the left/right distinction to for brevity.

From Fig. 7.21c, the input impedance at the second harmonic can be written as:

Zin(2 f0) = j Z1 tan(2θ1) (7.85)

The reflection coefficient is defined only for a purely real reference impedance as:

Γin(2 f0) =
Zin − Rre f

Zin + Rre f
=

Z2
1 tan2(2θ1) − R2

re f + j2Rre f Z1 tan(2θ1)

R2
re f

+ Z2
1 tan2(2θ1)

(7.86)

Solving for the phase of the reflection coefficient yields:

φ2 f0 = 6 Γin = arctan *
,

2Rre f Z1 tan(2θ1)
Z2

1 tan2(2θ1) − R2
re f

+
-

(7.87)

Constraining θ1:

θ1 =
1
2



arctan
*...
,

Rre f cot
(
φ2 f0

2

)
Z1

+///
-

+ πn



(7.88)

If Z1 = Z2, the input impedance at the third harmonic can be found from Fig. 7.21d as:

Zin(3 f0) = j Z1 tan[3(θ1 + θ2)] (7.89)

The reflection coefficient is:

Γin(3 f0) =
Zin − Rre f

Zin + Rre f
=

Z2
1 tan2[3(θ1 + θ2)] − R2

re f + j2Rre f Z1 tan[3(θ1 + θ2)]

R2
re f

+ Z2
1 tan2[3(θ1 + θ2)]

(7.90)
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Figure 7.21: (a) Arbitrary phase harmonic termination ISMN circuit diagram. Equivalent circuits at (b) f0,
(c) 2 f0, and (d) 3 f0.

Solving for the phase of the reflection coefficient yields:

φ3 f0 = 6 Γin = arctan *
,

2Rre f Z1 tan[3(θ1 + θ2)]
Z2

1 tan2[3(θ1 + θ2)] − R2
re f

+
-

(7.91)

Constraining θ2:

θ2 =
1
3



−3θ1 + arctan
*...
,

Rre f cot
(
φ3 f0

2

)
Z1

+///
-

+ πn



(7.92)

If Z1 6= Z2, the input impedance in between the two series TLs at the third harmonic can be written as:

Zin,a(3 f0) = j Z2 tan(3θ2) (7.93)
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Translating this impedance to the transistor node yields:

Zin(3 f0) = Z1
Zin,a + j Z1 tan(3θ1)
Z1 + j Zin,a tan(3θ1)

= Z1
j Z2 tan(3θ2) + j Z1 tan(3θ1)
Z1 − Z2 tan(3θ1) tan(3θ2)

(7.94)

The reflection coefficient can be written:

Γin(3 f0) =
Zin − Rre f

Zin + Rre f
=

[
Z1(Z1 tan(3θ1) + Z2 tan(3θ2)) + jRre f (Z1 − Z2 tan(3θ1) tan(3θ2))

]2

[
Rre f (Z1 − Z2 tan(3θ1) tan(3θ2))

]2
+ [Z1(Z1 tan(3θ1) + Z2 tan(3θ2))]2

(7.95)

The phase of the reflection coefficient is:

φ3 f0 = 6 Γin = arctan *.
,

Z2
1 [Z1 tan(3θ1) + Z2 tan(3θ2)]2 − R2

re f
[Z1 − Z2 tan(3θ1) tan(3θ2)]2

2Z1Rre f

[
Z1 Z2 tan(3θ2) − Z1 Z2 tan2(3θ1) tan(3θ2) + tan(3θ1)(Z2

1 − Z2
2 tan2(3θ2))

] +/
-

(7.96)

Constraining θ2:

θ2 =
1
3


arctan *.

,

Z1
[
ζ tan2(3θ1) − ζ − ζ sec2(3θ1) sec(φ3 f0) + (Z2

1 + R2
re f ) tan(3θ1) tan(φ3 f0)

]

Z2
[
R2
re f

tan2(3θ1) tan(φ3 f0) − Z2
1 tan(φ3 f0) − 2ζ tan(3θ1)

] +/
-

+ πn

(7.97)

where ζ = Z1Rre f . These long equations require the periodicity to be represented in the +πn term at the

end. Depending on the reference impedances and TL characteristic impedances, the constrained electrical

length may become negative, and will require an additional electrical length to reach the minimal positive

value. The characteristic impedance of every TL can be optimized in this ISMN for fundamental frequency

matching.

7.3.3 Discussion

In this section, six lumped element and five transmission line ISMNs have been derived. It may appear

inadequate to only analyze these networks for real reference impedances, when transistors have complex

impedances. However, these networks will most likely be used to present fundamental and harmonic

impedances based on source- and load-pull simulation or measurement, which are almost always referenced

to a real impedance. Therefore, the complex reference impedances of the transistors loading the network

must be taken into account only when performing the desired fundamental matching optimization. More

details are given through a design example in the next section.
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Table 7.1: Optimal ISMN harmonic impedances

Harmonic
Frequency

Optimal Driver Stage Load
Reflection Coefficient (50Ω)

Optimal Output Stage Source
Reflection Coefficient (10Ω)

f0 0.7 6 60◦ 0.95 6 -162◦

2 f0 0.95 6 84◦ 0.95 6 260◦

3 f0 0.95 6 -45◦ to 120◦ 0.95 6 300◦

7.4 ISMN Design Example

In this section, the ISMN portion of a two-stage PA design is discussed to give instruction for utilizing the

derived harmonically terminated interstage matching networks and bi-directional matching analysis. The

example is for a two-stage base station PA, centered at 2.14GHz. The power stage must be capable of

producing 100W of power, and the driver stage should be able to produce the power required to saturate the

output stage (36-38 dBm). In this hybrid design, two GaN transistors fabricated by Cree are selected. The

power device is the DC-3GHz, 100W, 50V CGHV40100F packaged GaN HEMT, which has a low output

capacitance of only 7.3 pF due to its very high drain voltage. The driver transistor is the DC-18GHz, 6W,

40V packaged GaN HEMT, the CGHV1F006S, which has an extremely low output capacitance of 0.31 pF,

allowing for highly efficient operation. Both devices will be biased near pinch-off, below 10% of the peak

current.

In order to design the ISMN, the optimal harmonic loading conditions for each transistor must be known,

as well as the impedances of each transistor loading the ISMN. The former is found through iterative,

harmonic source- and load-pull simulation (or measurement) for both devices. In Table 7.1, the optimal

harmonic loading conditions for the output of the driver stage and the input of the power stage are found

from simulation. A 10Ω reference impedance is used for the power transistor to provide higher Smith chart

resolution near peak power and efficiency impedances.

Of course, the designer must be aware of the effectiveness of each harmonic termination. In this case,

the third harmonic termination at the input of the power stage provides a negligible efficiency improvement

(<1 point). Therefore, the overall performance may improve by disregarding the phase of this harmonic
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Table 7.2: ISMN series TL electrical lengths constrained by harmonic termination phases.

Transmission Line (θ) Harmonic Stage Harmonic Phase (deg) Electrical Length (deg)

θ1l 2 Driver 84◦ 3.7◦

θ2l 3 Driver 66◦ 59.6◦

θ1r 2 Output 260◦ 65.7◦

θ2r 3 Output 300◦ 46.5◦

termination in favor of better optimization at the fundamental frequency. Note also, that a range of phases at

a particular harmonic may be acceptable. For example, the driver stage efficiency due to the third harmonic

termination remains high over a significant phase range.

Next, the transistor impedances loading the ISMN at the fundamental frequency must be found: the

output impedance of the driver device and the input impedance of the power device. Both of these are found

from small-signal S-parameter simulations, which only use bias tees and small-signal ports. At 2.14GHz,

the output impedance of the driver transistor is 5.88− j76.4 Ω while the input impedance of the power device

is 0.22 + j1.43 Ω.

Starting with an ISMN topology from Section 7.3, the harmonic terminations are constrained. The

arbitrary phase TL ISMN from Fig. 7.21 is chosen for this design, since it allows for harmonic terminations

referenced to the package. The electrical lengths of each series TL are given by (7.88) and (7.97) considering

the desired harmonic phases in Table 7.1, as detailed in Table 7.2. These are confirmed in simulation with

the port impedances set to the reference impedances of the source- and load-pull simulations. In actuality,

the opposite port will be loaded with the transistor impedance. However, this does not affect the harmonic

termination due to the high quality factor resonators.

With the harmonic termination phases constrained, now the fundamental frequency matching is per-

formed in one of two ways: using the bi-directional matching analysis, or directly optimizing in simulation.

This design will start with the former to demonstrate how to utilize the previous equations, and end with the

latter. First, the desired fundamental reflection coefficients for each stage must be converted to the transistor

reference impedance in order to properly select the desired S. The optimal source-pull reflection coefficient

for the power device of 0.95 6 -162◦ is converted to an impedance using its reference impedance of 10Ω,

185



and then back to a reflection coefficient again using the input impedance of the power device as the reference

impedance, resulting in a reflection coefficient of 0.313 6 -56.78◦. The same is done for the optimal load-pull

reflection coefficient for the driver device, resulting in a reflection coefficient of 0.692 6 0.23◦. These two

reflection coefficients will now be used as the desired S22 and S11 respectively.

The selection of the ’through’ parameters in S is unclear, since |S11 | 6= |S22 |, meaning the network must

be lossy. In order to minimize the loss, the through parameters are chosen such that:

|S21 |= |S12 |=
√

1 −max(|S11 |, |S22 |) (7.98)

Therefore, the desired S-parameters are set to:

Si j =



0.692 e j0.225◦
√

1 − 0.692

√
1 − 0.692 0.313 e−j56.8◦



(7.99)

The cascade matrix is made by converting Si j to Ri j and filling in the P matrices in (7.42) with the following

values chosen for this example:

Zp
re f

= Z0 = 50 Ω (7.100)

Z i
re f = Zre f ,1 = 5.88 − j76.4 Ω (7.101)

Z j
re f

= Zre f ,2 = 0.22 + j1.43 Ω (7.102)

Zm
ref = Z0 = 10 Ω (7.103)

Converting Rpm to Spm yields:

Spm =



0.631115 + j1.7926 −0.311081 + j0.405599

−0.311081 + j0.405599 −1.21639 − j0.286412



=



1.96 70.6◦ 0.5

0.5 1.256 -166.75◦



(7.104)

Interestingly, the ISMN should have S-parameters with magnitudes greater than one, meaning the network

cannot be passive. Fortunately, the ISMN is not really a passive network, as it is loaded with two generators.

Though not performed in this work, the application of active load-pull theory, as in appendix B of [169],

could bring clarity to this viewpoint of the ISMN. The resulting S-parameters are confirmed in simulation.

Fig. 7.22 shows the simulation setup while Fig. 7.23 shows the results, demonstrating the desired S-parameter

performance when loaded with the proper transistor impedances.
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S2P_BLK
ID=P1
S11=0.631115 + 1.7926*j
S21=-0.311081 + 0.405599*j
S12=S21@S2P_BLK.P1
S22=-1.21639 - 0.286412*j
Z1=50
Z2=10

PORT
P=1
Z=5.88-j*76.4 Ohm

PORT
P=2
Z=0.22+j*1.43 Ohm

Figure 7.22: AWR simulation setup to confirm ISMN S-parameters.
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Figure 7.23: Simulation of ISMN S-parameters showing desired results.

Now, the free parameters (Z1l, Z2l, Z1r , Z2r , and Z3) of the constrained ISMN are optimized such that

the large-signal S-parameters match the desired S-parameters transformed to the 10Ω and 50Ω reference

impedances, as shown in Fig. 7.24. The power supplied by each generator to the ISMN is taken from

simulation of each transistor under the expected bias and harmonic loading conditions. Afer optimization,

the following S-parameters are realized:

Spm =



1.64 6 70.6◦ 0.5

0.76 1.526 -166.75◦



(7.105)

The optimized ISMN must be simulated in the two-stage PA to determine if the realized S-parameters are

close enough to those desired, by evaluating the cascaded PA performance.

The second way to optimize the ISMN for fundamental matching is purely passive. Two simulations,

one for the reflection coefficient of each transistor, must be simultaneously optimized, as shown in Fig. 7.25.

For the power stage, port 1 of the ISMN is loaded with the driver transistor impedance, while port 2 is set to
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P=2
Z=10 Ohm
Pwr=43 dBm

Figure 7.24: AWR simulation setup for the optimization of the ISMN at the fundamental frequency, consid-
ering the transistors as generators.

1 2

PORT
P=1
Z=32.7-j*63.6 Ohm

PORT
P=2
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ID=S1
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P=1
Z=5.88-j*76.4 Ohm

PORT
P=2
Z=0.446+j*1.76 Ohm

(b)

Figure 7.25: AWR simulation setup to optimize the ISMN performance passively for (a) the driver stage
load, and (b) the power stage load.

the conjugate of the desired load impedance. For the driver stage, port 1 is set to the conjugate of the desired

load impedance, while port 2 is loaded with the power transistor impedance. The magnitude of the input

match of each simulation, port 2 for the power stage and port 1 for the driver stage, is optimized to achieve

the desired impedance transformation in both directions.

7.5 Conclusion

The interstage matching network is currently the weak link in the design of high efficiency, multi-stage PAs,

which are necessary for outphasing due to the constant, significant input power levels. Therefore, the require-

ments of the interstage matching network to terminate harmonics at both ports and perform fundamental

matching were explored theoretically and in simulation. Eleven, minimum loss, harmonically terminated in-
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terstage matching networks were derived for lumped element and transmission line implementation. Original

contributions in this chapter include:

• The derivation and analysis of harmonically terminated interstage matching networks implemented

with lumped elements and transmission lines, which utilized aminimal number of elements to decrease

loss. Equations were derived to constrain the harmonic terminations for each transistor loading the

network, while some were degrees of freedom for fundamental frequency matching.

Unfortunately, a base station PA is a poor application for the harmonically terminated ISMNs developed

in this chapter. The main reason is the parasitics of the large, packaged transistors required, especially in

the output stage. The gate-to-source capacitance at the input of the CGHV40100F transistor is 29.3 pF. At

the second (4.28GHz) and third (6.42GHz) harmonics, this capacitance presents 1.27Ω and 0.85Ω paths to

ground, respectively, reducing the impact of the input harmonic terminations provided by the ISMN. A large,

bare-die transistor does not provide a better opportunity. The CGH60120D is the bare-die transistor within

the CGH40120F, a 120W GaN packaged transistor, which have 34 pF and 35 pF gate-to-source capacitances

respectively. Apparently, the package does not contribute significant input capacitance.

MMICs or smaller bare-die transistors can make use of harmonically terminated ISMNs, due to lower

input capacitances and reduced parasitics in general. The 10×100µm transistor used by several MMIC

designs in this thesis has a gate-to-source capacitance of only 0.77 pF, which represents an impedance to

ground of 48.3Ω and 32.2Ω at 4.28GHz (2 f0) and 6.42GHz (3 f0), respectively. Even at harmonics of

10GHz, this capacitance presents 10.3Ω and 6.9Ω paths to ground at the second and third harmonics,

respectively.

The theoretical development in this chapter gives a basis for designing bidirectional matching networks

for complex loads, that include matching at the harmonic frequencies. This approach is useful for interstage

matching of multi-state power amplifiers and this chapter lays down the foundation for future designs.
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Chapter 8

Conclusion and Future Work
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8.1 Summary

The research presented in this thesis focused on the understanding and development of the outphasing PA

architecture for efficiently amplifying high PAR signals. In order to expand understanding on an architecture

created in 1935, the internal PA performance and load modulation were examined in measurement. A quasi-

MMIC outphasing PA architecture was constructed from high efficiency GaN MMIC internal PAs and an

off-chip combiner, which included bi-directional couplers for the direct measurement of power waves internal

to the architecture. Using three different off-chip combiners, both non-isolated and isolated, five variations

of the outphasing power amplifier were measured at 10.1GHz: Chireix outphasing, LINC, multi-level LINC,

asymmetric multilevel outphasing, and multi-level Chireix outphasing.

Each architecture was characterized in measurement in terms of internal PA performance (power and



efficiency), load modulation, system performance (∆Pout ), and linearity indicators. Due to the consistent

use of the same internal MMIC PAs, comparisons can be made between each architecture. The addition of

discrete supply modulation was shown to be crucial for efficiency enhancement, with the AMO and ML-CO

PAs achieving the highest efficiency at back-off. While both architectures need signal processing to linearize

the signal split between outphasing angle and supply modulation, the AMO PA exhibited significantly less

nonlinear phase transformation than the ML-CO PA, and should be much easier to linearize. A GaNML-CO

MMIC PA was designed and measured at 9.7GHz, achieving state-of-the-art average efficiency for a 6 dB

PAR signal.

The concept of high efficiency PA-rectifier duality was verified experimentally at 10.1GHz with two

GaN MMIC PA circuits, and leveraged into a power recycling LINC PA architecture. The duality proved

critical, because the rectifier could not be simulated with the available model. A GaN power recycling LINC

MMIC PA was designed and measured at 10.35GHz. The power recovered by the self-synchronous rectifier

improved the system efficiency by 8.1 points at 3.5 dB back-off.

Finally, the focus turned to the PAs internal to the outphasing architecture. Harmonically terminated

interstage matching networks were developed in lumped element and transmission line implementations, to

further improve high efficiency power amplifier classes.

8.2 Future Work

Several avenues are available for the continuation of the work presented in this thesis. Most obvious is

performingmodulatedmeasurements with the most promising outphasing PA architectures developed: AMO

andML-CO. Linearized, modulated measurements have been performed on the AMO PA already [100,106],

demonstrating its practical feasibility, as well as competitive performance. Significant work is required to

demonstrate the practicality of the ML-CO PA. Two signal generation and upconversion paths are required

in this case. Static characterization must be performed considering the imbalances in the PA itself as

well as the upconversion paths, similar to [91]. The optimal signal split between outphasing angle and

supply modulation must be determined, before the input signal can be decomposed into branch signals and
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Figure 8.1: Active interstage load-pull network.

presdistorted digitally at baseband.

The GaN power recycling LINC MMIC PA could be refined in one of two ways. A third quadrant model

could be made for a transistor available on a test chip, so that a design could be fully simulated, enabling

the self-synchronous gate termination to be implemented on-chip. An alternative would be to overcome the

losses in the tuner with an active loop, as done in the measurements in subsection 6.4.2, to find the optimal

gate termination. A design iteration could then be performed, implementing the termination on-chip. In

either case, power circuitry could be developed to boost the voltage of the rectifier and interface the recovered

power with a power supply.

The harmonically terminated interstage matching network analysis performed in this thesis barely cracks

the surface of possible research in this area. In the ISMN design example in Section 7.4, the s-parameters

required to optimally match the transistors at the fundamental frequency were not passive. Upon further

reflection, the ISMN is not really passive, since it is loaded with two generators. This would be a useful

application and extension of the active load-pull theory presented in [169]. Additionally, a more generalized

lumped-element implementation of a harmonically terminated ISMN could be beneficial to develop.

Lastly, an interstage active load-pull measurement could be devised using the network shown in Fig. 8.1.

The benefit of such a measurement is accurately capturing the interaction between the two transistors,

especially at harmonic frequencies. To do so, the through path has minimal loss, but the circulator and

coupler must be broadband to pass harmonic power. The RF sources must be able to vary both amplitude and

phase. Additionally, sources operating at the fundamental and harmonic frequencies must be combined to

synthesize harmonic impedances at the transistors, which is already done on commercially available active
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load-pull systems.

The 50Ω S-parameters of this network are the following:

S =



0 Icirc ≈ 1 Icirc + Icoup

≈ 1 0 Icirc C

Icirc + I1 I2 0 I2 + Icoup

Icoup + I3 I3 + C I3 + Icoup 0



(8.1)

where Icirc and Icoup are the isolations of the circulator and coupler, respectively. C is the coupling factor

of the coupler. I1 and I2 are the isolations of isolators 1 and 2, respectively. The focus of this network is to

provide low loss paths between the transistors, and between one RF source and a corresponding transistor.

The characteristic impedance of the transistor, alongwith the loss between it and the RF source will determine

the power and phase required by the source to synthesize impedances covering the Smith chart. This network

will not take into account power reflected by Q2 back into Q1 due to the isolation of the circulator.

Finally, the ML-CO MMIC PA could be directly integrated with the power-DAC MMIC, as well as

a signal component separator MMIC, as developed on CMOS in [31]. The combination of these three

would yield a fully integrated ML-CO MMIC PA, requiring only digital control signals and supply voltages.

DARPA is working toward this type of integration through the Diverse Accessible Heterogeneous Integration

(DAHI) program, which is aiming at transistor-scale heterogeneous integration of CMOS, GaN, GaAs, InP,

MEMS and more [170].

8.3 Contributions

Original contributions from the material presented in this dissertation are summarized by chapter below.

Chapter 2 developed the understanding of loadmodulation operationwithin the Chireix outphasing power

amplifier both theoretically and experimentally. A hybrid Chireix outphasing PA was developed with GaN

MMIC internal PAs and off-chip combining that included bi-directional couplers to measure the internal PA

performance and load modulation directly. A brief introduction to the fundamentals of GaN MMIC design

was presented, along with the practical issues of designing a Chireix combiner for desired load modulation.
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Original contributions in this chapter include the following:

• The design andmeasurement of a 70% efficient (PAE)GaNMMICPAwith 2.7Wof output power [35].

• The derivation of equations predicting the load modulation of a three-port combiner under outphasing

excitation with small-signal analysis to aid in Chireix combiner design [83].

• The development of an internal PA performance and load modulation measurement setup at 10.1GHz,

along with a hybrid Chireix outphasing PA enabling the measurement of absolute power waves internal

to the architecture [83, 93, 94].

• The extension of the upper frequency of any outphasing PA implementation from 5GHz [51] to

10.1GHz [83,93, 94].

• The load modulation internal to a Chireix outphasing PA was measured [83,93,94], demonstrating the

variation of internal PA power and efficiency.

Chapter 3 developed the understanding of the linear amplification in the LINC PA architecture, a subset of

outphasing amplifiers. The theoretical foundation for the input signal processing common to all outphasing

amplifiers was presented. The measurement setup developed in chapter 2 was extended to the LINC PA

through the use of an isolated combiner. Original contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to isolated

outphasing or LINC [83,93, 94].

• The measurement of load modulation internal to a LINC PA was demonstrated [83, 93, 94]. In this

cases, it was minimal, yet nonzero, due to the finite isolation of the combiner.

• Direct comparison between the LINC and Chireix outphasing PAs was enabled by this measurement

setup, which utilizes the same internal PAs. The efficiency improvement of Chireix outphasing, and

the linear amplification of LINC are both highlighted [83, 93, 94].

Chapter 4 combined discrete supply modulation with isolated outphasing (LINC) for efficiency im-

provement. The theoretical understanding of this combination was developed for symmetric and asymmetric
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supplymodulation. The internal PA performance and loadmodulationmeasurement setup from chapter 3was

extended through static variation in the drain voltage of each internal PA, symmetrically and asymmetrically.

Original contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to supply

modulated LINC [94], demonstrating the efficiency improvement caused by minimized both RF and

DC power dissipation.

• The measurement of load modulation internal to the supply modulated LINC PA [94], which became

significant when the asymmetric supplies were separated by several volts, and led to decreased internal

PA efficiency.

Chapter 5 combined discrete supply modulation with Chireix outphasing for the first time in literature.

The internal PA performance and load modulation measurement setup from chapter 2 was extended to

include static variation in the drain voltage. An integrated GaN MMIC implementation was shown to

mitigate imbalances seen in the hybrid prototype. The supply modulated Chireix outphasing MMIC PA

was tested with a GaN discrete supply modulator, demonstrating improved efficiency for high PAR signals.

Original contributions in this chapter include the following:

• The extension of the internal PA performance and load modulation measurement setup to supply

modulated Chireix outphasing [94], demonstrating efficiency improvement, along with significant

imbalances of internal PA output power with swept supply, leading to load modulation distortion.

• The prediction of load modulation distortion caused by internal PA output power imbalance was

demonstrated to match measurement [83].

• Design of a GaNMMIC PA incorporating all of the RF components of the architecture (class-F internal

PAs and Chireix combiner) that achieved 48% average total efficiency for a 6 dB PAR QPSK signal at

9.7GHz with 5W of output power [108]. This work won the student paper design competition at the

Compound Semiconductor and IC Symposium.
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• Testing of supply modulated Chireix outphasing GaN MMIC PA with a real supply modulator, imple-

mented in GaN [120].

• Study of optimal supply levels under quantity restriction [108,120], demonstrating a 12 point improve-

ment only a single additional level.

Chapter 6 incorporated microwave rectification with the LINC PA architecture in order to recycle

dissipated RF power and improve efficiency. The duality between high efficiency power amplifiers and high

efficiency rectifiers was confirmed experimentally at 10.1GHz on two GaN MMIC PAs described in [35]

and leveraged for this architecture. The entire architecture was implemented on a GaNMMIC (internal PAs,

rectifier, and isolated combiner) at X-band. Original contributions in this chapter include the following:

• The experimental validation of the high efficiency PA-rectifier duality at 10.1GHz with two GaN

MMIC PAs, achieved between 62.5% and 68% efficiency in both modes of operation [126,143].

• The design and measurement of a GaN power recycling LINC MMIC PA, demonstrated a peak drain

efficiency of 71.8% with 6W of output power at 10.35GHz with a peak rectified power of 2.25W,

leading to a drain efficiency improvement of 8.1 points at 3.5 dB back-off [144].

Chapter 7 moved toward high efficiency multi-stage PA design, which is necessary for outphasing due to

the constant input power. Because high efficiency output matching networks are well understood, the focus

of this chapter was on the development of harmonically terminated interstage matching network. Original

contributions in this chapter include:

• The derivation and analysis of harmonically terminated interstage matching networks implemented

with lumped elements and transmission lines, which utilized aminimal number of elements to decrease

loss. Equations were derived to constrain the harmonic terminations for each transistor loading the

network, while some were degrees of freedom for fundamental frequency matching.

196



Bibliography

[1] NBC News, “FCC warns of mobile’s looming spectrum crisis,” Oct. 2009. [Online]. Available:

http://www.nbcnews.com 2

[2] Ericsson, “Ericsson Mobility Report,” Nov. 2015. [Online]. Available: http://www.ericsson.com/

mobility-report 2

[3] Federal Communications Commission, “Radio Spectrum Allocation.” [Online]. Available:

http://www.fcc.gov 2

[4] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for Mobile Broadband. Elsevier

Science, 2013. 2

[5] National Telecommunications and Information Administration, “Manual of Regulations and Proce-

dures for Federal Radio Frequency Management,” Washington, DC, USA, May 2014. 5

[6] M. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill Education, 2008. 6

[7] C. Baylis, M. Fellows, L. Cohen, and R. J. M. II, “Solving the Spectrum Crisis: Intelligent, Reconfig-

urable Microwave Transmitter Amplifiers for Cognitive Radar,” IEEE Microw. Mag., vol. 15, no. 5,

pp. 94–107, Jul. 2014. 6

[8] R. Chen and B. Cantrell, “Highly bandlimited radar signals,” in IEEE Radar Conf., 2002, pp. 220–226.

6

197

http://www.nbcnews.com
http://www.ericsson.com/mobility-report
http://www.ericsson.com/mobility-report
http://www.fcc.gov


[9] J. de Graaf, H. Faust, J. Alatishe, and S. Talapatra, “Generation of spectrally confined transmitted

radar waveforms: experimental results,” in IEEE Radar Conf., Apr. 2006, pp. 76–83. 6

[10] M. Rodriguez, M. Roberg, A. Zai, E. Alarcon, Z. Popovic, and D. Maksimovic, “Resonant Pulse-

Shaping Power Supply for Radar Transmitters,” IEEE Trans. Power Electron., vol. 29, no. 2, pp.

707–718, Feb. 2014. 6

[11] A. Zai, M. Pinto, M. Coffey, and Z. Popovic, “Supply-Modulated Radar TransmittersWith Amplitude-

Modulated Pulses,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 9, pp. 2953–2964, Sep. 2015.

6

[12] S. Cripps, Radio Frequency Power Amplifiers for Wireless Communications, 2nd ed., ser. The Artech

House Microwave Library. Artech House, 2006. 6, 16, 29, 96, 105

[13] J. Hoversten, “Efficient and Linear Microwave Transmitters for High Peak-to-Average Ratio Signals,”

Ph.D. dissertation, The University of Colorado at Boulder, 2010. 6, 9

[14] A.Grebennikov, N. Sokal, andM. Franco, Switchmode RF andMicrowave Power Amplifiers. Elsevier

Science, 2012. 6

[15] F. Raab, “Class-F Power Amplifiers with Maximally Flat Waveforms,” IEEE Trans. Microw. Theory

Tech., vol. 45, no. 11, pp. 2007–2012, Nov 1997. 6, 96

[16] S. Kee, I. Aoki, A. Hajimiri, and D. Rutledge, “The class-E/F family of ZVS switching amplifiers,”

IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1677–1690, Jun. 2003. 6

[17] L. R. Kahn, “Single-Sideband Transmission by Envelope Elimination and Restoration,” Proc. IRE,

vol. 40, no. 7, pp. 803–806, Jul. 1952. 9

[18] W. Doherty, “A New High Efficiency Power Amplifier for Modulated Waves,” Proc. IRE, vol. 24,

no. 9, pp. 1163–1182, Sep. 1936. 9

[19] H. Chireix, “High Power Outphasing Modulation,” Proc. IRE, vol. 23, no. 11, pp. 1370–1392, Nov

1935. 9, 11, 14, 15, 16, 105

198



[20] D. Kimball, M. Kwak, P. Draxler, J. Jeong, C. Hsia, C. Steinbeiser, T. Landon, O. Krutko, L. Larson,

and P. Asbeck, “High Efficiency WCDMA Envelope Tracking Base-Station Amplifier Implemented

with GaAs HVHBTs,” in IEEE Compound Semiconduct. Integr. Circuit Symp., Oct. 2008, pp. 1–4. 9

[21] N. Wang, N. D. Lopez, V. Yousefzadeh, J. Hoversten, D. Maksimovic, and Z. Popovic, “Linearity of

X-band Class-E Power Amplifiers in a Digital Polar Transmitter,” in IEEE MTT-S Int. Microw. Symp.,

Jun. 2007, pp. 1083–1086. 9

[22] J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, and Z. Popovic, “Codesign of PA,

Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Trans. Microw.

Theory Tech., vol. 60, no. 6, pp. 2010–2020, Jun. 2012. 9

[23] D. Sardin and Z. Popovic, “Decade bandwidth high-efficiency GaN VHF/UHF power amplifier,” in

IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1–3. 10

[24] ——, “High Efficiency 15-500MHz Wideband Cascode GaN HEMT MMIC Amplifiers,” in IEEE

MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. 10

[25] F. H. Raab, “Efficiency of Doherty RF Power-Amplifier Systems,” IEEE Trans. Broadcast., vol.

BC-33, no. 3, pp. 77–83, Sep. 1987. 10

[26] R. Caverly, F. Raab, and J. Staudinger, “High-Efficiency Power Amplifiers,” IEEE Microw. Mag.,

vol. 13, no. 7, pp. S22–S32, Nov 2012. 10

[27] D. Gustafsson, C. M. Andersson, and C. Fager, “AModified Doherty Power Amplifier With Extended

Bandwidth and Reconfigurable Efficiency,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp.

533–542, Jan. 2013. 10

[28] D. Gustafsson, J. C. Cahuana, D. Kuylenstierna, I. Angelov, and C. Fager, “A GaN MMIC Modified

Doherty PA With Large Bandwidth and Reconfigurable Efficiency,” IEEE Trans. Microw. Theory

Tech., vol. 62, no. 12, pp. 3006–3016, Dec. 2014. 10

199



[29] X. Fang and K. K. M. Cheng, “Broadband, wide efficiency range, Doherty Amplifier design using

frequency-varying Complex Combining Load,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015,

pp. 1–4. 10

[30] J. He, J. H. Qureshi, W. Sneijers, D. A. Calvillo-Cortes, and L. C. N. deVreede, “A wideband 700W

push-pull Doherty amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4. 10

[31] M. S. Mehrjoo, S. Zihir, G. M. Rebeiz, and J. F. Buckwalter, “A 1.1-Gbit/s 10-GHz Outphasing

Modulator With 23-dBm Output Power and 60-dB Dynamic Range in 45-nm CMOS SOI,” IEEE

Trans. Microw. Theory Tech., vol. 63, no. 7, pp. 2289–2300, Jul. 2015. 11, 193

[32] T. W. Barton and D. J. Perreault, “Theory and Implementation of RF-Input Outphasing Power Am-

plification,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 12, pp. 4273–4283, Dec. 2015. 11

[33] D. Cox, “Linear Amplification with Nonlinear Components,” IEEE Trans. Commun., vol. 22, no. 12,

pp. 1942–1945, Dec 1974. 11, 15, 53, 54

[34] J. Albrecht, A. Kane, and T.-H. Chang, “DARPA’s Microscale Power Conversion Program,” in IEEE

Compound Semiconduct. Integr. Circuits Symp, Oct. 2012, pp. 1–4. 11

[35] S. Schafer,M. Litchfield, A. Zai, Z. Popovic, andC. Campbell, “X-BandMMICGaNPowerAmplifiers

Designed for High-Efficiency Supply-Modulated Transmitters,” in IEEE MTT-S Int. Microw. Symp.

Dig., Jun. 2013, pp. 1–3. 13, 28, 52, 128, 153, 194, 196

[36] A. Miller and J. Novik, “Principles of operation of the Ampliphase transmitter,” Broadcast News, vol.

104, 1959. 15

[37] D. Musson et al., “Ampliphase... for Economical Super-Power AM Transmitters,” Broadcast News,

no. 119, pp. 24–29, 1964. 15

[38] J. Yao and S. Long, “Power Amplifier Selection for LINC Applications,” IEEE Trans. Circuits Syst.,

vol. 53, no. 8, pp. 763–767, Aug 2006. 15, 95

200



[39] I. Hakala, D. Choi, L. Gharavi, N. Kajakine, J. Koskela, and R. Kaunisto, “A 2.14-GHz Chireix

Outphasing Transmitter,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2129–2138, Jun.

2005. 15, 16, 50

[40] J. Qureshi, M. Pelk, M. Marchetti, W. Neo, J. Gajadharsing, M. Van der Heijden, and L. C. N.

De Vreede, “A 90-W Peak Power GaN Outphasing Amplifier With Optimum Input Signal Condition-

ing,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1925–1935, Aug. 2009. 15, 156

[41] M. El-Asmar, A. Birafane, M. Helaoui, A. Kouki, and F. Ghannouchi, “Analytical Design Methodol-

ogy of Outphasing Amplification Systems Using a New Simplified Chireix Combiner Model,” IEEE

Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1886–1895, Jun. 2012. 15

[42] S. Moloudi and A. Abidi, “The Outphasing RF Power Amplifier: A Comprehensive Analysis and a

Class-B CMOS Realization,” IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1357–1369, Jun. 2013.

15, 16, 50

[43] T.-P. Hung, D. Choi, L. Larson, and P. Asbeck, “CMOS Outphasing Class-D Amplifier With Chireix

Combiner,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 619–621, 2007. 15

[44] S. Lee and S. Nam, “A CMOS Outphasing Power Amplifier With Integrated Single-Ended Chireix

Combiner,” IEEE Trans. Circuits Syst., vol. 57, no. 6, pp. 411–415, Jun. 2010. 15

[45] R. Beltran, F. Raab, andA. Velazquez, “HFOutphasing Transmitter Using Class-E Power Amplifiers,”

in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 757–760. 15

[46] M. van der Heijden, M. Acar, J. Vromans, and D. Calvillo-Cortes, “A 19W high-efficiency wide-band

CMOS-GaN class-E Chireix RF outphasing power amplifier,” in IEEE MTT-S Int. Microw. Symp.

Dig., 2011, pp. 1–4. 15

[47] N. Singhal, H. Zhang, and S. Pamarti, “A Zero-Voltage-Switching Contour-Based Outphasing Power

Amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1896–1906, Jun. 2012. 15

201



[48] D. Calvillo-Cortes, M. van der Heijden, M. Acar, M. de Langen, R. Wesson, F. van Rijs, and

L. de Vreede, “A Package-Integrated Chireix Outphasing RF Switch-Mode High-Power Amplifier,”

IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3721–3732, Oct 2013. 15, 26, 51, 93

[49] M. Ruiz, R. Morante, L. Rizo, J. Garcia, P. Gilabert, and G. Montoro, “A dual-band outphasing

transmitter using broadband class E power amplifiers,” in Workshop Integr. Nonlin. Microw. MMW

Circuits, Apr. 2014, pp. 1–3. 15

[50] C. Xie, D. Cripe, J. Reyland, D. Landt, and A. Walker, “Development of High-Efficiency X-Band

Outphasing Transmitter,” in IEEE Compound Semiconduct. Integr. Circuit Symp., Oct. 2014, pp. 1–4.

15

[51] J. Grundlingh, K. Parker, and G. Rabjohn, “A High Efficiency Chireix Out-Phasing Power Amplifier

for 5GHz WLAN Applications,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jun. 2004, pp.

1535–1538. 15, 52, 95, 194

[52] J. Qureshi, R. Liu, A. J. M. De Graauw, M. Van der Heijden, J. Gajadharsing, and L. C. N. De Vreede,

“A highly efficient chireix amplifier using adaptive power combining,” in IEEE MTT-S Int. Microw.

Symp. Dig., Jun. 2008, pp. 759–762. 15, 21

[53] T. Hwang, K. Azadet, R. Wilson, and J. Lin, “Characterization of Class-F Power AmplifierWithWide

Amplitude and Phase Bandwidth for OutphasingArchitecture,” IEEEMicrow.Wireless Compon. Lett.,

vol. 24, no. 3, pp. 188–190, Mar. 2014. 15

[54] W. Gerhard and R. Knoechel, “Differentially Coupled Outphasing WCDMA Transmitter with Inverse

Class F Power Amplifiers,” in IEEE Radio Wireless Symp., Jan. 2006, pp. 355–358. 15

[55] M. El-Asmar and A. Kouki, “Improving Chireix Combiner Efficiency using Mems Switches,” in

Canadian Conf. Electr. Comp. Eng., May 2006, pp. 2310–2313. 15, 21

[56] H. Koulouzis and D. Budimir, “LDMOS Power Amplifiers with CRLH Combiners for LINC Trans-

mitters,” in Europ. Microw. Conf., Sep. 2006, pp. 1181–1184. 15

202



[57] F. Raab, “High-Efficiency Linear Amplification by Dynamic Load Modulation,” in IEEE MTT-S Int.

Microw. Symp. Dig., vol. 3, Jun. 2003, pp. 1717–1720. 15, 21

[58] C. P. Conradi, R. Johnston, and J.McRory, “Evaluation of a Lossless Combiner in a LINCTransmitter,”

in IEEE Canadian Conf. Electr. Comp. Eng., May 1999, pp. 105–110. 15, 53

[59] D. Perreault, “A New Power Combining and Outphasing Modulation System for High-Efficiency

Power Amplification,” IEEE Trans. Circuits Syst., vol. 58, no. 8, pp. 1713–1726, Aug 2011. 15, 26

[60] B. Stengel and W. Eisenstadt, “LINC Power Amplifier Combiner Method Efficiency Optimization,”

IEEE Trans. Veh. Technol., vol. 49, no. 1, pp. 229–234, Jan. 2000. 15

[61] W. Gerhard and R. Knoechel, “Improved Design of Outphasing Power Amplifier Combiners,” in

German Microw. Conf., Mar. 2009, pp. 1–4. 15, 43

[62] T. Ni and F. Liu, “A New Impedance Match Method to Improve Efficiency of LINC with Chireix

Combiner,” Microw. Optical Technol. Lett., vol. 52, no. 6, pp. 1418–1421, Mar. 2010. 15

[63] M. Pampin-Gonzalez, M. Ozen, C. Sanchez-Perez, J. Chani-Cahuana, and C. Fager, “Outphasing

Combiner Synthesis from Transistor Load Pull Data,” in IEEE MTT-S Int. Microw. Symp. Dig., May

2015, pp. 1–4. 15

[64] F. Raab, “Efficiency of Outphasing RF Power-Amplifier Systems,” IEEE Trans. Commun., vol. 33,

no. 10, pp. 1094–1099, Oct 1985. 16, 17, 26, 105

[65] R. Beltran and F. Raab, “Simplified Analysis and Design of Outphasing Transmitters Using Class-E

Power Amplifiers,” in IEEE Top. Conf. Power Amp. Wireless Radio Appl., Jan. 2015, pp. 1–3. 16

[66] D. Calvillo-Cortes and L. de Vreede, “Analysis of Pure- and Mixed-Mode Class-B Outphasing

Amplifiers,” in IEEE Latin American Symp. Circuits Syst., Feb. 2014, pp. 1–4. 16, 156

[67] T.Barton, J. Dawson, andD. Perreault, “ExperimentalValidation of a Four-WayOutphasingCombiner

for Microwave Power Amplification,” IEEEMicrow. Wireless Compon. Lett., vol. 23, no. 1, pp. 28–30,

2013. 26

203



[68] R. Pucel, “Looking Back at Monolithic Microwave Integrated Circuits,” IEEE Microw. Mag., vol. 13,

no. 4, pp. 62–76, May 2012. 27

[69] R. S. Pengelly and J. A. Turner, “Monolithic Broadband GaAs FET Amplifiers,” Electron. Lett.,

vol. 12, pp. 251–252, May 1976. 27

[70] R. Pengelly, S. Wood, J. Milligan, S. Sheppard, and W. Pribble, “A Review of GaN on SiC High

Electron-Mobility Power Transistors and MMICs,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6,

pp. 1764–1783, Jun. 2012. 27

[71] TriQuint Semiconductor, “3MI Layout Rules, Rev AB,” online, Nov. 2013. 28

[72] I. Bahl, Fundamentals of RF and Microwave Transistor Amplifiers. Wiley, 2009. 29, 96

[73] J. Walker, Handbook of RF and Microwave Power Amplifiers, ser. The Cambridge RF and Microwave

Engineering Series. Cambridge University Press, 2011. 29

[74] C. Campbell, Microwave Monolithic Power Amplifier Design. John Wiley & Sons, Inc., 2012.

[Online]. Available: http://dx.doi.org/10.1002/047134608X.W8180 29

[75] J. Brinkhoff and A. Parker, “Effect of Baseband Impedance on FET Intermodulation,” IEEE Trans.

Microw. Theory Tech., vol. 51, no. 3, pp. 1045–1051, Mar. 2003. 29

[76] J. Brinkhoff, A. Parker, and M. Leung, “Baseband Impedance and Linearization of FET circuits,”

IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2523–2530, Dec. 2003. 29

[77] R. Ludwig and G. Bogdanov, Rf Circuit Design: Theory and Applications, ser. Pearson international

edition. Prentice-Hall, 2009. 31, 35

[78] R. W. Beatty, “Insertion Loss Concepts,” Proc. IEEE, vol. 52, no. 6, pp. 663–671, Jun. 1964. 33

[79] P. Roblin, “Large-Signal Vector Measurement Techniques with NVNAs,” in Nonlinear RF Circuits

and Nonlinear Vector Network Analyzers. Cambridge Univ. Press, 2011, ch. 2, pp. 17–65. 36

204

http://dx.doi.org/10.1002/047134608X.W8180


[80] J. Verspecht, “Calibration of a Measurement System for High Frequency Nonlinear Devices,” Ph.D.

dissertation, Vrije Universiteit Brussel, 1995. 37

[81] K. Andersson and C. Fager, “Oscilloscope based two-port measurement system using error-corrected

modulated signals,” in Workshop Integr. Nonlin. Microw. MMW Circuits, Sep. 2012, pp. 1–3. 37, 44

[82] “CA-26 Data Sheet,” Marki Microwave, Morgan Hill, CA. 41

[83] M. Litchfield, T. Reveyrand, and Z. Popovic, “X-Band Outphasing Power Amplifier with Internal

Load Modulation Measurements,” in Eur. Microw. Conf., Oct. 2014, pp. 1428–1431. 44, 52, 65, 120,

194, 195

[84] R. Hou, M. Spirito, J. Gajadharsing, and L. de Vreede, “Non-Intrusive Characterization of Active

Device Interactions in High-Efficiency Power Amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig.,

Jun. 2013, pp. 1–3. 44

[85] T. Reveyrand, T. Gasseling, D. Barataud, S. Mons, and J.-M. Nebus, “A Smart Load-Pull Method

to Safely Reach Optimal Matching Impedances of Power Transistors,” in IEEE MTT-S Int. Microw.

Symp. Dig., Jun. 2007, pp. 1489–1492. 44

[86] F. Casadevall and J. Olmos, “On the Behavior of the LINC Transmitter,” in IEEE Veh. Technol. Conf.,

May 1990, pp. 29–34. 49, 54

[87] A. Birafane and A. Kouki, “Sources of Linearity Degradation in LINC transmitters for Hybrid and

Outphasing combiners,” in Canadian Conf. Electr. Comp. Eng., vol. 1, May 2004, pp. 547–550. 49,

50, 54

[88] J. Yi, Y. Yang, and B. Kim, “Effect of efficiency optimization on linearity of LINC amplifiers with

CDMA signal,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, May 2001, pp. 1359–1362. 49

[89] L. Sundstrom, “Automatic adjustment of gain and phase imbalances in LINC transmitters,” Electron.

Lett., vol. 31, no. 3, pp. 155–156, Feb. 1995. 49

205



[90] S. Ampem-Darko and H. Al-Raweshidy, “Gain/phase imbalance cancellation technique in LINC

transmitters,” Electron. Lett., vol. 34, no. 22, pp. 2093–2094, Oct 1998. 50, 64

[91] A. Huttunen and R. Kaunisto, “A 20-W Chireix Outphasing Transmitter for WCDMA Base Stations,”

IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2709–2718, Dec 2007. 50, 51, 93, 191

[92] A. Birafane and A. Kouki, “On the Linearity and Efficiency of Outphasing Microwave Amplifiers,”

IEEE Trans. Microw. Theory Tech., vol. 52, no. 7, pp. 1702–1708, Jul. 2004. 50

[93] Z. Popovic, T. Reveyrand, D. Sardin, M. Litchfield, S. Schafer, and A. Zai, “Design andMeasurements

of High-Efficiency PAs for High PAR Signals,” in ARFTG Microw. Meas. Conf., Dec. 2014. 52, 65,

194

[94] M. Litchfield, T. Reveyrand, and Z. Popovic, “LoadModulationMeasurements of X-Band Outphasing

Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 12, pp. 4119–4129, Dec. 2015.

52, 65, 82, 83, 120, 194, 195

[95] A. Birafane, M. El-Asmar, A. Kouki, M. Helaoui, and F. Ghannouchi, “Analyzing LINC Systems,”

IEEE Microw. Mag., vol. 11, no. 5, pp. 59–71, Aug. 2010. 53

[96] J. Hoversten and Z. Popovic, “System Considerations for Efficient and Linear Supply Modulated RF

Transmitters,” in IEEE Workshop Control Modeling Power Electron., Jun. 2010, pp. 1–8. 66, 156

[97] M. Vasic, P. Cheng, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos, D. Tena, and F. J. Ortega-Gonzalez,

“The Design of a Multilevel Envelope Tracking Amplifier Based on a Multiphase Buck Converter,”

IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4611–4627, Jun. 2016. 67, 73

[98] Y. Zhang, M. Rodriguez, and D. Maksimovic, “100 MHz, 20 V, 90Synchronous Buck Converter with

Integrated Gate Driver,” in IEEE Energy Conversion Congress Expo., Sep. 2014, pp. 3664–3671. 67,

73

206



[99] Y. Zhang, M. RodrÃŋguez, and D. MaksimoviÄĞ, “Output Filter Design in High-Efficiency Wide-

BandwidthMulti-Phase Buck Envelope Amplifiers,” in IEEE Appl. Power Electron. Conf. Expo., Mar.

2015, pp. 2026–2032. 67, 73

[100] P. Godoy, S. Chung, T. Barton, D. Perreault, and J. Dawson, “A 2.4-GHz, 27-dBm Asymmetric

Multilevel Outphasing Power Amplifier in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47,

no. 10, pp. 2372–2384, Oct 2012. 67, 93, 191

[101] C. Florian, T. Cappello, R. P. Paganelli, D. Niessen, and F. Filicori, “Envelope Tracking of an RF High

Power Amplifier With an 8-Level Digitally Controlled GaN-on-Si Supply Modulator,” IEEE Trans.

Microw. Theory Tech., vol. 63, no. 8, pp. 2589–2602, Aug. 2015. 67, 73, 112, 113

[102] Y.-C. Chen, K.-Y. Jheng, A.-Y. Wu, H.-W. Tsao, and B. Tzeng, “Multilevel LINC System Design for

Wireless Transmitters,” in Int. Symp VLSI Des. Automat. Test., Apr. 2007, pp. 1–4. 67, 73

[103] J. Guan, A. Aref, and R. Negra, “System-level performance study of a multistandard outphasing

transmitter using optimised multilevels,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4.

67

[104] S. Chung, P. Godoy, T. Barton, E. Huang, D. Perreault, and J. Dawson, “Asymmetric Multilevel

Outphasing Architecture forMulti-standard Transmitters,” in IEEE Radio Freq. Integr. Circuits Symp.,

Jun. 2009, pp. 237–240. 67, 78

[105] J. Hur, O. Lee, K. Kim, K. Lim, and J. Laskar, “Highly efficient uneven multi-level LINC transmitter,”

Electron. Lett., vol. 45, no. 16, pp. 837–838, Jul. 2009. 67

[106] P. Godoy, S. Chung, T. Barton, D. Perreault, and J. Dawson, “A Highly Efficient 1.95-GHz, 18-W

Asymmetric Multilevel Outphasing Transmitter for Wideband Applications,” in IEEE MTT-S Int.

Microw. Symp. Dig., Jun. 2011, pp. 1–4. 67, 191

[107] P. A. Godoy, “Techniques for High-Efficiency Outphasing Power Amplifiers,” Ph.D. dissertation,

Massachusetts Institute of Technology, 2011. 70, 71

207



[108] M. Litchfield and Z. Popovic, “Multi-Level Chireix Outphasing GaNMMIC PA,” in IEEE Compound

Semiconduct. Integr. Circuit Symp., Oct. 2015, pp. 1–4. 83, 120, 195, 196

[109] V. J. Tyler, “A New High-Efficiency High Power Amplifier,” Marconi Rev., vol. 21, no. 130, pp.

96–109, Fall 1958. 96

[110] M. Roberg and Z. Popovic, “Analysis of High-Efficiency Power Amplifiers With Arbitrary Output

Harmonic Terminations,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 2037–2048, Aug.

2011. 96, 98

[111] P. Colantonio, F. Giannini, G. Leuzzi, and E. Limiti, “On the Class-F Power Amplifier Design,”

Int. J. RF Microw. Comp.-Aided Eng., vol. 9, no. 2, pp. 129–149, Mar. 1999. [Online]. Available:

http://dx.doi.org/10.1002/(SICI)1099-047X(199903)9:2<129::AID-MMCE7>3.0.CO;2-U 96

[112] F. Raab, “Class-E, Class-C, and Class-F Power Amplifiers Based Upon a Finite Number of Harmon-

ics,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 8, pp. 1462–1468, Aug 2001. 97

[113] M. Litchfield, M. Roberg, and Z. Popovic, “A MMIC/Hybrid High-Efficiency X-Band Power Ampli-

fier,” in IEEE Topical Conf. PA Wireless Radio Appl., Jan. 2013, pp. 10–12. 97

[114] M. D. Roberg, “Analysis & Design of Non-Linear Amplifiers for Efficient Microwave Transmitters,”

Ph.D. dissertation, The University of Colorado at Boulder, 2012. 97

[115] J. Vuolevi and T. Rahkonen, Distortion in RF Power Amplifiers, 1st ed. ch.5, pp. 145-147: Artech

House Publishers, 2003. 97

[116] M. Roberg, J. Hoversten, and Z. Popovic, “GaN HEMT PA with over 84% power added efficiency,”

Electron. Lett., vol. 46, no. 23, pp. 1553–1554, Nov. 2010. 98

[117] S. Parisi, “180◦ Lumped Element Hybrid,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, Jun. 1989,

pp. 1243–1246. 105, 143, 219

[118] A. Grebennikov, “Power Combiners, Impedance Transformers and Directional Couplers: Part III,”

High Freq. Electron. Mag., vol. 7, no. 2, pp. 42–52, 2008. 105, 143, 219

208

http://dx.doi.org/10.1002/(SICI)1099-047X(199903)9:2<129::AID-MMCE7>3.0.CO;2-U


[119] D. Pozar, Microwave Engineering, 4th ed. Wiley, 2011. 106, 219

[120] M. Litchfield, T. Cappello, C. Florian, and Z. Popovic, “X-Band GaNMulti-Level Chireix Outphasing

PA with a Discrete Supply Modulator MMIC,” in submitted to IEEE Compound Semiconduct. Integr.

Circuit Symp., Oct. 2016, pp. 1–4. 120, 196

[121] R. Langridge, T. Thornton, P. Asbeck, and L. Larson, “A Power Re-Use Technique for Improved

Efficiency of Outphasing Microwave Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 47,

no. 8, pp. 1467–1470, Aug. 1999. 121, 126

[122] X. Zhang, L. Larson, P. Asbeck, and R. Langridge, “Analysis of power recycling techniques for RF

and microwave outphasing power amplifiers,” IEEE Trans. Circuits Syst., vol. 49, no. 5, pp. 312–320,

May 2002. 121

[123] P. Godoy, D. Perreault, and J. Dawson, “Outphasing Energy Recovery Amplifier With Resistance

Compression for Improved Efficiency,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp.

2895–2906, Dec. 2009. 121

[124] J. Ho, S. Kim, and A. Poon, “Midfield Wireless Powering for Implantable Systems,” Proc. IEEE, vol.

101, no. 6, pp. 1369–1378, Jun. 2013. 126

[125] T. Ohira, “Via-wheel power transfer to vehicles in motion,” in IEEE Wireless Power Transfer Conf.,

May 2013, pp. 242–246. 126

[126] Z. Popovic, T. Reveyrand, S. Schafer, M. Litchfield, I. Ramos, and S. Korhummel, “Efficient Trans-

mitters and Receivers for High-Power Wireless Powering Systems,” in IEEE Wireless Power Transfer

Conf., May 2014, pp. 32–35. 126, 153, 196

[127] J. Hagerty, F. Helmbrecht, W. McCalpin, R. Zane, and Z. Popovic, “Recycling Ambient Microwave

Energy with Broad-Band Rectenna Arrays,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp.

1014–1024, Mar. 2004. 126

209



[128] I. Ramos, M. Ruiz Lavin, J. Garcia, D. Maksimovic, and Z. Popovic, “GaN Microwave DC-DC

Converters,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 12, pp. 4473–4482, Dec. 2015. 126

[129] C.-W. Chang, Y.-J. Chen, and Y.-J. Chen, “A Power-Recycling Technique for Improving Power

Amplifier Efficiency Under Load Mismatch,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10,

pp. 571–573, Oct. 2011. 126

[130] Y. Han, O. Leitermann, D. Jackson, J. Rivas, and D. Perreault, “Resistance Compression Networks

for Radio-Frequency Power Conversion,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 41–53, Jan.

2007. 126, 146

[131] J. Xu and D. Ricketts, “An Efficient, Watt-Level Microwave Rectifier Using an Impedance Com-

pression Network (ICN) With Applications in Outphasing Energy Recovery Systems,” IEEE Microw.

Wireless Compon. Lett., vol. 23, no. 10, pp. 542–544, Oct. 2013. 126

[132] D. Wang and R. Negra, “A 2.3GHz single-ended energy recovery rectifier with stepped-impedance

resonator for improved efficiency of outphasing amplifier,” in Eur. Microw. Conf., Oct. 2013, pp.

920–923. 126

[133] J. Xu, W. Tai, and D. Ricketts, “A transmission line based resistance compression network (TRCN)

for microwave applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1–3. 126

[134] T. W. Barton, J. M. Gordonson, and D. J. Perreault, “Transmission Line Resistance Compression

Networks for Microwave Rectifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4.

126, 147

[135] J. McFarland and T. Barton, “Bandwidth of Transmission-Line Resistance Compression Networks for

Microwave Outphasing Transmitters,” in Texas Symp. Wireless Microw. Circuits Syst., Apr. 2015, pp.

1–4. 126

[136] K. Niotaki, A. Georgiadis, and A. Collado, “Dual-Band Rectifier Based on Resistance Compression

Networks,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. 126

210



[137] M. N. Ruiz and J. A. Garcia, “An E-pHEMT Self-biased and Self-synchronous Class E Rectifier,” in

IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. 126

[138] T. Reveyrand, I. Ramos, and Z. Popovic, “Time-reversal duality of high-efficiency RF power ampli-

fiers,” Electron. Lett., vol. 48, no. 25, pp. 1607–1608, Dec. 2012. 127

[139] M. Roberg, T. Reveyrand, I. Ramos, E. Falkenstein, and Z. Popovic, “High-Efficiency Harmonically

Terminated Diode and Transistor Rectifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp.

4043–4052, Dec. 2012. 127

[140] D. Hamill, “Time Reversal Duality and the Synthesis of a Double Class E DC-DC Converter,” in

IEEE Power Electron. Specialists Conf., Jun. 1990, pp. 512–521. 127

[141] J. Garcia, R. Marante, and M. de las Nieves Ruiz Lavin, “GaN HEMT Class E2 Resonant Topologies

for UHF DC/DC Power Conversion,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 4220–

4229, Dec. 2012. 137

[142] Y. Zhou and Y. Chen, “Lumped-element equivalent circuit models for distributed microwave direc-

tional couplers,” in Int. Conf. Microw. MMW Technol., vol. 1, Apr. 2008, pp. 131–134. 143

[143] M. Litchfield, S. Schafer, T. Reveyrand, and Z. Popovic, “High-Efficiency X-Band MMIC GaN Power

Amplifiers Operating as Rectifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. 153,

196

[144] M. Litchfield and Z. Popovic, “X-Band Outphasing GaN MMIC PA with Power Recycling,” in IEEE

MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4. 153, 196

[145] W. Gerhard and R. Knoechel, “Improvement of power amplifier efficiency by reactive Chireix com-

bining, power back-off and differential phase adjustment,” in IEEE MTT-S Int. Microw. Symp. Dig.,

Jun. 2006, pp. 1887–1890. 156

[146] T. Barton and D. Perreault, “An RF-Input Outphasing Power Amplifier with RF Signal Decomposition

Network,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4. 156

211



[147] T. Hirayama, N. Matsuno, M. Fujii, and H. Hida, “PAE enhancement by intermodulation cancellation

in an InGaP/GaAs HBT two-stage power amplifier MMIC forW-CDMA,” inGallium Arsenide Integr.

Circuit Symp. Dig., Oct 2001, pp. 75–78. 156

[148] A. Khan, H. Sarbishaei, and S. Boumaiza, “High efficiency two-stage GaN power amplifier with

improved linearity,” in IEEE Topical Conf. PA Wireless Radio Appl., Jan. 2014, pp. 4–6. 156

[149] W. Kut, “Exact Synthesis of Interstage Matching Networks for Broadband Microwave GaAs FET

Amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1977, pp. 312–316. 156

[150] J. Villar and F. Perez, “Graphic Design of Matching and Interstage Lossy Networks for Microwave

Transistor Amplifier,” IEEE Trans. Microw. Theory Tech., vol. 33, no. 3, pp. 210–215, Mar. 1985. 156

[151] R. Tomar and P. Bhartia, “A simple interstage matching technique for designing hybrid microwave

power amplifiers,” IEEE Microw. Mag., vol. 4, no. 3, pp. 67–84, Sep. 2003. 156

[152] S. Dutta Roy, “On the Design of the Triple-Resonance Interstage Network,” IEEE Trans. Circuits

Syst., vol. 55, no. 9, pp. 863–866, Sep. 2008. 156

[153] K. Mori, S. Shinjo, F. Kitabayashi, A. Ohta, Y. Ikeda, and O. Ishida, “An L-Band High-Efficiency

and Low-Distortion Power Amplifier Using HPF/LPF Combined Interstage Matching Circuit,” IEEE

Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2560–2566, Dec 2000. 156

[154] P. Colantonio, F. Giannini, R. Giofre, E. Limiti, C. Lanzieri, and S. Lavanga, “A Two Stage High

Frequency Class F Power Amplifier,” inWorkshop Integr. Nonlin. Microw. MMW Circuits, Jan. 2006,

pp. 187–190. 156

[155] P. Saad, D. Maassen, and G. Boeck, “Efficient and Wideband Two-Stage 100W GaN-HEMT Power

Amplifier,” in IEEE MTT-S Int. Eur. Microw. Conf., Oct. 2014, pp. 1281–1284. 156

[156] A. Ramadan, T. Reveyrand, A. Martin, J.-M. Nebus, P. Bouysse, L. Lapierre, J.-F. Villemazet, and

S. Forestier, “Two-Stage GaN HEMT Amplifier With Gate-Source Voltage Shaping for Efficiency

212



Versus Bandwidth Enhancements,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 699–706,

Mar. 2011. 156

[157] A. Ramadan, A. Martin, T. Reveyrand, J.-M. Nebus, P. Bouysse, L. Lapierre, J.-F. Villemazet, and

S. Forestier, “Efficiency enhancement of GaN power HEMTs by controlling gate-source voltage

waveform shape,” in Eur. Microw. Conf., Sep. 2009, pp. 1840–1843. 156

[158] A. Ramadan, T. Reveyrand, A. Martin, J. Nebus, P. Bouysse, L. Lapierre, J. Villemazet, and

S. Forestier, “Experimental study on effect of second-harmonic injection at input of classes F and F-1

GaN power amplifiers,” Electron. Lett., vol. 46, no. 8, pp. 570–572, Apr. 2010. 156

[159] S. Pajic, N. Wang, P. Watson, T. Quach, and Z. Popovic, “X-Band Two-Stage High-Efficiency

Switched-Mode Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2899–

2907, Sep. 2005. 156, 158

[160] S. Gao, H. Xu, S. Heikman, U. K. Mishra, and R. York, “Two-stage quasi-class-E power amplifier in

GaN HEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 28–30, Jan. 2006.

156

[161] R. B. Marks and D. F. Williams, “A General Waveguide Circuit Theory,” J. Res. Nat. Inst. Standards

Technol., vol. 97, no. 5, pp. 533–561, Sep. 1992. 161, 164

[162] K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microw. Theory Tech., vol. 13,

no. 2, pp. 194–202, Mar. 1965. 161

[163] B. Minnis, Designing Microwave Circuits by Exact Synthesis. Norwood, MA: Artech House, 1996.

167

[164] P. Abrie, Design of RF and Microwave Amplifiers and Oscillators. Norwood, MA: Artech House,

1999, vol. 1. 167

[165] R. A. Beltran, “Class-F and Inverse Class-F Power Amplifier Loading Networks Design Based Upon

Transmission Zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4. 168

213



[166] A. Grebennikov, “Circuit Design Technique for High Efficiency Class F Amplifiers,” in IEEE MTT-S

Int. Microw. Symp. Dig., vol. 2, Jun. 2000, pp. 771–774. 168

[167] ——, “High-Efficiency Transmission-Line GaN HEMT Inverse Class F Power Amplifier for Active

Antenna Arrays,” in Asia Pacific Microw. Conf., Dec 2009, pp. 317–320. 168

[168] ——, “Load Network Design Techniques for Class F and Inverse Class F PAs,” High Freq. Electron.

Mag., vol. 10, no. 5, pp. 58–76, 2011. 168

[169] S. R. Schafer, “Carrier and Envelope Frequency Measurements for Supply-Modulated Microwave

Power Amplifiers,” Ph.D. dissertation, University of Colorado at Boulder, Dec. 2015. 186, 192

[170] D. Green, “Diverse Accessible Heterogeneous Integration (DAHI).” [Online]. Available:

http://www.darpa.mil/program/diverse-accessible-heterogeneous-integration 193

214

http://www.darpa.mil/program/diverse-accessible-heterogeneous-integration


Appendix A

Off-Resonance Lumped Element Resonator

Equivalent Components

Often, lumped element resonators are useful as harmonic terminations in high efficiency PA design. At

non-harmonic frequencies, though, these networks still contribute to impedance matching, and should be

known. In the design of harmonically terminated, lumped element ISMNs in subsection 7.3.1, off resonance

lumped element resonator values are required in order to utilize them in a resonator at another frequency,

minimizing the number of components. In this appendix, the value of equivalent circuit elements (inductors

and capacitors) for lumped element resonators at frequencies above and below resonance is derived for series

and parallel resonators.

A.1 Series Resonator

The input impedance of the series resonator, shown in Fig. A.1, can be written as:

Zin(ω) = jωL +
1

jωC
= j

(ω2LC − 1)
ωC

(A.1)

Using the relationship between L and C at the resonant frequency:

ω0 =
1
√

LC
(A.2)



Figure A.1: Series LC resonator.

the input impedance can be written in terms of the capacitor or inductor only:

Zin(ω) = j
(ω2 − ω2

0)
ω2

0ωC
(A.3)

Zin(ω) = jL
(ω2 − ω2

0)
ω

(A.4)

The ratio of the evaluated frequency to the resonant frequency is defined as:

x =
ω

ω0
(A.5)

A.1.1 Below Resonance (x < 1)

At low frequencies, an inductor approaches a short circuit while a capacitor approaches an open circuit.

Thus, the series resonator is capacitive below resonance. Setting the input impedance, (A.3) or (A.4), equal

to the that of an equivalent capacitor, C ′, yields the following:

C ′ =
ω2

0C

ω2
0 − ω

2
=

C
1 − x2 (A.6)

C ′ =
−1

L(ω2 − ω2
0)

=
−1

ω2
0L(x2 − 1)

(A.7)

A.1.2 Above Resonance (x > 1)

Above resonance, the series resonator is inductive. Setting the input impedance, (A.3) or (A.4), equal to the

that of an equivalent inductor, L′, yields the following:

L′ =
ω2 − ω2

0

ω2ω2
0C

=
x2 − 1
x2ω2

0C
(A.8)

L′ =
(ω2 − ω2

0)L

ω2 =
(x2 − 1)L

x
(A.9)
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Figure A.2: Parallel LC resonator.

A.2 Parallel Resonator

The input impedance of a parallel resonator, shown in Fig. A.2, can be written as:

Zin(ω) = jωL//
1

jωC
=

jωL
1 − ω2LC

(A.10)

Using (A.2), the input impedance can be written in terms of the capacitor or inductor only:

Zin(ω) =
jω

(ω2
0 − ω

2)C
(A.11)

Zin(ω) =
jω2

0ωL

ω2
0 − ω

2
(A.12)

A.2.1 Below Resonance (x < 1)

Below resonance, the parallel resonator is inductive. Setting the input impedance, (A.11) or (A.12), equal to

the that of an equivalent inductor, L′, yields the following:

L′ =
1

(ω2
0 − ω

2)C
=

1
ω2

0C(1 − x2)
(A.13)

L′ =
ω2

0L

ω2
0 − ω

2
=

L
1 − x2 (A.14)

A.2.2 Above Resonance (x > 1)

Above resonance, the parallel combination is capacitive. Setting the input impedance, (A.11) or (A.12),

equal to the that of an equivalent capacitor, C ′, yields the followingr:

C ′ =
(ω − ω2

0)C
ω2 =

(x2 − 1)C
x2 (A.15)

C ′ =
ω2 − ω2

0

ω2ω2
0L

=
x2 − 1
x2ω2

0L
(A.16)
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Appendix B

Transmission Line Equivalent Networks

Table B.1: ABCD Parameters for Networks

Circuit ABCD Parameters

A = cos θ
B = j Z0 sin θ
C = jY0 sin θ
D = cos θ

A = 1 + Z1
Z3

B = Z1 + Z2 + Z1Z2
Z3

C = 1
Z3

D = 1 + Z2
Z3

A = 1 + Y2
Y3

B = 1
Y3

C = Y1 + Y2 + Y1Y2
Y3

D = 1 + Y1
Y3

Equivalent networks formed in the shape of a "T" or "π" can be used to approximate other networks over

a narrow bandwidth, while only being exact at a single frequency. A desirable network to approximate in

the context of MMIC design is the transmission line, since it can be difficult to fit a long line into the small



Figure B.1: Low-pass π-network

confines of a MMIC. Equivalences between the T- or π-network and a transmission line are only readily

available for the 90◦, 180◦, and 270◦ electrical lengths common to passive combining structures [117, 118].

InMMIC design, the electrical length of a required transmission line may not be a multiple of 90◦. Therefore,

this appendix derives equivalent networks for a transmission line with any electrical length and characteristic

impedances.

Table B.1 shows the ABCD parameters of the transmission line, T-network, and π-network [119]. The

parameters Zi and Yi are impedances and admittances, respectively, where i distinguishes each of the three

elements. The transmission line is defined by its characteristic impedance, Z0, and its electrical length, θ.

The following analysis solves for the equivalent network parameters by equating its ABCD parameters with

that of a transmission line. Note that A and D are equal for the transmission line, forcing Z1 = Z2 andY1 = Y2,

leading to symmetric networks.

B.1 Low-Pass Equivalent Networks

The low-pass π-network makes use of a series inductor, Ls, and shunt capacitors, Cp, as shown in Fig. B.1.

By filling in the corresponding Y-parameters, Y1 = Y2 = jωCp and Y3 = 1/jωLs , the ABCD matrix of this

network is found: 

A B

C D



=



1 − ω2LsCp jωLs

− jωCp(ω2CpLs − 2) 1 − ω2LsCp



(B.1)

Equating this to the ABCD matrix of a transmission line in Table B.1, and solving for Cp and Ls yields:

Ls = Z0
sin θ
ω

(B.2)

Cp =
1
Z0

1 − cos θ
ω sin θ

(B.3)
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Figure B.2: Low-pass T-network

Figure B.3: Low-pass TL-π-Network

The low-pass T-network utilizes two series inductors, Ls, and a shunt capacitor, Cp, as shown in Fig. B.2.

By filling in the corresponding Y-parameters, Z1 = Z2 = jωLs and Z3 = 1/jωCp , the ABCD matrix of this

network is found: 

A B

C D



=



1 − ω2LsCp − jωLs(ω2CpLs − 2)

jωCp 1 − ω2LsCp



(B.4)

Equating this to the ABCD matrix of a transmission line in Table B.1, and solving for Cp and Ls yields:

Ls = Z0
1 − cos θ
ω sin θ

(B.5)

Cp =
1
Z0

sin θ
ω

(B.6)

In MMIC fabrication, spiral inductors can be quite lossy. In that case, a transmission line may be utilized

to provide the series inductance. The low-pass TL-π network utilizes a series transmission line, Zs, θs, and

shunt capacitors, Cp, as shown in Fig. B.3. The equations given in Table B.1 are not valid for the series TL

element. Therefore, the ABCD matrix of this network is calculated by cascading the ABCD matrices of the

three elements, Cp - TL - Cp, as follows:



A B

C D



=



1 0

jωCp 1





cos θs j Zs sin θs
j sin θs
Zs

cos θs





1 0

jωCp 1



(B.7)
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Leading to the following:



A B

C D



=



cos θs − ωZsCp sin θs j Zs sin θs

j
[
2ωCp cos θs + sin θs

(
1
Zs
− ω2C2

pZ1
)]

cos θs − ωZsCp sin θs



(B.8)

Equating this to the ABCD matrix of a transmission line in Table B.1, two of the three unknown variables

(Cp, Zs, θs) can be solved for.

Solving for Cp and Zs:

Cp =
1
Z0

cos θs − cos θ
ω sin θ

(B.9)

Zs = Z0
sin θ
sin θs

(B.10)

Solving for Cp and θs:

Cp =
1
Z0

√
Z2
s − Z2

0 sin2 θ − Zs cos θ

ωZs sin θ
(B.11)

θs = arctan
*..
,

Z0 sin θ√
Z2
s − Z2

0 sin2 θ

+//
-

(B.12)

Solving for Zs and θs:

Zs =
Z0 sin θ√

1 −
(
ωCpZ0 sin θ + cos θ

)2
(B.13)

θs = arctan
*..
,

√
1 −

(
ωCpZ0 sin θ + cos θ

)2

ωCpZ0 sin θ + cos θ
+//
-

(B.14)

B.2 High-Pass Equivalent Networks

The high-pass π-network makes use of a series capacitor, Cs, and shunt inductors, Lp, as shown in Fig. B.4.

By filling in the corresponding Y-parameters, Y1 = Y2 = −j/ωLp and Y3 = jωCs, the ABCD matrix of this

network is found: 

A B

C D



=



ω2LpCs − 1 −j
ωCs

j(1−2ω2LpCs )
ω3L2

pCs
ω2LpCs − 1



(B.15)
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Figure B.4: High-pass π-network

Figure B.5: High-pass T-network

Equating this to the ABCD matrix of a transmission line in Table B.1, and solving for Lp and Cs yields:

Lp = Z0
sin θ

ω (cos θ − 1)
(B.16)

Cs =
−1
Z0

1
ω sin θ

(B.17)

The high-pass T-network utilizes two series capacitors,Cs, and a shunt inductor, Lp, as shown in Fig. B.5.

By filling in the corresponding Y-parameters, Z1 = Z2 = −j/ωCs and Z3 = jωLp, the ABCD matrix of this

network is found: 

A B

C D



=



ω2LpCs − 1 −j
ωCs

j(1−2ω2LpCs )
ω3C2

sLp
ω2LpCs − 1



(B.18)

Equating this to the ABCD matrix of a transmission line in Table B.1, and solving for Lp and Cs yields:

Lp = −Z0
1

ω sin θ
(B.19)

Cs =
1
Z0

sin θ
ω (cos θ − 1)

(B.20)
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