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Abstract— This article presents an analysis of the effects of
amplifier process-related performance variation on the radiation
patterns of a W-band active transmit antenna array. Based on
measured on-wafer S-parameters for about 80 amplifier chips
designed in an experimental 90-nm gallium nitride (GaN) on SiC
process, a statistical analysis of the array patterns is performed.
Several types of probability density functions (pdfs) are generated
from measured data and compared to determine which statistical
approach is most relevant. We find that a joint distribution that
maintains the correlation structure between |S21| and � S21 is
important for an accurate analysis. The monolithic microwave
integrated circuits (MMICs) are connected to the waveguide-fed
horn antenna elements in the array via microstrip-to-waveguide
transitions fabricated on alumina. The transitions are analyzed in
full-wave simulations with fabrication tolerances included in the
analysis. Finally, the MMIC and transition statistical variations
are cascaded, resulting in a quantitative evaluation of spatial
power combining. Given a random choice of power amplifier
chips in a 4 × 4 array, the EIRP is shown to vary by ±3 dB
at 94 GHz.

Index Terms— Gallium nitride (GaN) amplifier monolithic
microwave integrated circuits (MMICs), Gaussian, horn antenna,
kernel density estimation, Markov chain Monte Carlo (MCMC),
microstrip to waveguide transition, power combining, probability
density, W-band.

I. INTRODUCTION

M ILLIMETER-WAVE applications above Ka-band are
becoming increasingly important due to the heavily

used spectrum at lower microwave frequencies. For example,
there are new 5G unlicensed allocations at the V-band in
the 57–64- and 64–71-GHz bands [1], [2]. High data rate
communication systems operating at 92 GHz and achieving
6.5 Gb/s with quadrature amplitude modulation (QAM)-128
were demonstrated in gallium nitride (GaN) [3], and data
rates up to 80 Gb/s with 16-QAM signals were shown in
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Fig. 1. Image of W-band MMIC PAs with bias circuit, microstrip-to
waveguide alumina transitions, and input/output WR-10 waveguides.

a 6-m range wireless 75-GHz link using 100-nm InGaAs
mHEMT technology [4]. Low-power W-band phased arrays
using silicon technology were demonstrated for automotive
radar and imaging, [5]–[7], while a 3-D imaging 100-GHz
MIMO FMCW radar is investigated in [8].

To achieve transmitters with high effective isotropic radiated
power (EIRP) at millimeter-wave frequencies, spatial power
combining arrays are of interest, e.g., [9]. Here, we consider
an architecture in which each element is fed by a monolithic
microwave integrated circuit (MMIC) amplifier, as shown in
Fig. 1, with the detail of the multistage power amplifier chip,
bias circuitry, and transitions to WR-10 input and output
waveguides. The three-stage MMIC PA is implemented in
GaN on SiC with power combining of 30 transistors for a
peak output power approaching 1 W.

Due to the short gate sizes in the tens of nm range, as well
as complex heterostructures, millimeter-wave GaN processes
exhibit variations larger than their lower frequency microwave
counterparts. The goal of this article is to provide an analysis
and understanding of the effects of variations in millimeter-
wave GaN MMIC PAs on the overall performance of a
transmit array. The statistical analysis process flow consists
of data collection, estimation of a probability density function
(pdf), sampling from the estimated pdf, and the subsequent
application of the samples to a stated problem.
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Here, we perform this statistical analysis for a portion of
a transmit chain, taking into account the measured variations
in MMIC PAs and simulated variations in transitions from
microstrip-to-waveguide antenna feeds. We fit and estimate the
marginal and bivariate pdfs of measured amplifier small-signal
amplitude and phase of S21, comparing two methods (Gaussian
and kernel estimation). A cascaded matrix approach allows
extension to additional components in the transmit chain
that might contribute to variations, such as antenna element
fabrication tolerances and driver amplifier gain variations.

Another possible use of the presented analysis is in cali-
bration of large phased array, especially at millimeter-wave
frequencies where MMIC process variations often require
pretesting of the die, e.g., [3] and [10]. Most calibration tech-
niques require a setup that provides high degree of phase and
amplitude accuracy and necessary functionality in beamform-
ing architectures to apply fine calibration resolution [11]–[13].
The analysis here can provide insight into the need for
pretesting of PAs, given a range and accuracy of available
phase shift and variable gain required for correction in the
calibration steps. Advance knowledge of the gain amplitude
and phase can inform the decision related to costly preselection
of MMICs or the need for bias control across the transmit
array, which will affect the EIRP.

The outline of this article is given as follows. Section II
gives specifics of the MMIC PA design and a measured
data set across three wafers, revealing correlation of various
parameters due to fabrication. Section III initially idealizes
sample data with normal/Gaussian distributions for both uni-
variate and bivariate cases as independent random variables
and then presents a kernel density estimation method that
better describes the data set. Section IV discusses using the
pdf estimates in an algorithm for repeated sampling. A W-band
chip transition to waveguide is simulated with a fabrication and
packaging tolerance study in Section V. Section VI shows that
the pdfs estimated from a 4-D kernel density scheme can be
used in a cascaded topology by compounding error. Finally,
in Section VII, the analysis is applied to a spatial power
combining array of E-plane horns each fed by an MMIC
chosen independently and identically from the probability
densities estimates.

II. W-BAND MMIC PA

State-of-the-art GaN millimeter-wave power amplifiers
include a traveling wave amplifier with 2.5-W output power
and a 13.9-dB gain from 75 to 100 GHz using a 140-nm T2
HRL process [14]. In this T-gate HRL process, there has been
significant effort devoted to HEMT scaling [15]. A four-stage
PA with greater than 30-dB gain and 1.2-W output power
across 72 to 90 GHz has been demonstrated in a 90-nm Qorvo
process [16]. Two GaN MMIC PAs demonstrated 400-mW
output power with greater than 10-dB gain at 91 GHz in
a 100-nm Fraunhofer process [17]. A two-stage cascaded
architecture PA showed 1.15-W maximum output power with
18.9-dB maximum gain and 77.8–90 GHz in an 80-nm Fujitsu
GaN process [18]. Three W-band GaN MMIC PAs fabricated
in a 150-nm Raytheon process demonstrated 21-dB gain

Fig. 2. Circuit block diagram of the chain power amplifier architecture with
five UC three-stage PAs connected through Lange couplers. All five UCs are
biased from the same voltage supplies.

at 95 GHz, 37% PAE at 91 GHz, and 1.7 W at 91 GHz
[19]. A GaN-based 92-GHz phased array with output power
as high as 7 kW from was demonstrated for an active denial
system [9].

Here, we describe briefly a GaN MMIC PA in Fig. 1
designed for around 1-W output power across the 75–110-GHz
frequency range, as detailed in [20]. The circuit architecture is
shown in Fig. 2 and is a five-element chain amplifier similar
to that in [14]. The number of sections, n = 5, is chosen
to achieve 1-W output power. The amplifier is implemented
in Qorvo’s 90-nm T-gate GaN-on-SiC process. Each unit
cell (UC) power amplifier is a three-stage, two-way power
combined topology, with a layout shown in Fig. 3. Using non-
linear EEHEMT models for 2 × 40-, 4 × 30-, and 4 × 40-μm
devices, drive staging is chosen with efficiency in mind. The
bias conditions are kept at the modeled quiescent current,
where 150 mA/mm corresponds to class-AB operation. The
drain currents are 24, 36, and 48 mA for the first, second, and
third stages, respectively.

Transistors in millimeter-wave processes have high gains in
the lower frequency region, and therefore, stability must be
carefully analyzed. Multiple stability analysis methods were
performed during design—K factor, internal Nyquist stability,
and loop gain [21], [22]. For in-band stability, resistors in
the RF-path directly on the second stage gates introduce a
small enough loss while maintaining overall efficiency. Small
resistors, about 5 �, are in the dc path of the gates in all
stages. To eliminate odd-mode instability, resistors are placed
in the symmetry line and minimized in value using loop-
gain simulations. The reactive output combiner is modeled
and optimized to reduce current imbalances.

Due to the large lower frequency transistor gain, the out-of-
band stability is considered under process variations, specif-
ically with gm ± 30%, Cgs ∓ 30%, and Cgd ± 30% and the
SiN thickness varied by ±10%, which results in instabili-
ties between 16 and 40 GHz. A small blocking capacitance
(0.03 pF) absorbed in the matching network, together with
low-frequency bypassed resistors, provides a viable solution
for low-frequency gain reduction while maintaining bandwidth
above 75 GHz. The resulting loop gain simulations of the final
UC design in Fig. 4 show a phase margin greater than 30◦.

The stabilized UC PAs are arranged, as shown in Fig. 2,
where the input power is coupled to each of the five cascaded
PAs for uniform drive. The outputs combine coherently, and
each of the unit PAs operates under the same conditions (the
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Fig. 3. Layout of a UC PA in the five-way chain power amplifier from Fig. 2. The staging ratio is 1:1.5:2, and the peripheries for stages 1, 2, and 3 are
160, 240, and 320 μm, respectively. The die area is 2.75 × 0.64 mm2. Some metal layers and proprietary transistor layers have been removed.

Fig. 4. Loop gain simulations from 0.1 to 120 GHz. Both even- and odd-mode
(due to symmetry and two-way power combining) loop gains are analyzed at
each stage. As can be seen, the nominal condition is far from the unstable
region.

same gain, PAE, and Pout). A series of four Lange combiners
with varying coupling coefficients are designed. The choice
of the coupling factors C1–C4 is critical for equal power
input, as described in [14]. For a five-way combiner, C4 can
be found from

C2
4 = t2

4

1 + t2
4

(1)

where t2
4 is the efficiency of the fourth section. The remaining

sections follow a recursive relationship:

C2
i = C2

i+1t2
i

1 + C2
i+1t2

i

, i = 3, 2, 1. (2)

Fig. 5 shows the coupling coefficients for a five-stage chain
PA, as a function of loss per stage. Equations (1) and (2)
result in (C1, C2, C3, C4) = (7.0, 6.0, 4.8, 3.0) dB, assuming
an efficiency of 1. The ports of the Lange couplers require a
layout with two 90◦ bends, modified from the standard layout,
as shown in Fig. 6 for a 3-dB version. The coupler design is
adjusted by adjusting the gap between the coupled lines. The
different current distribution for the different port layouts is

Fig. 5. Choice of coupling at each stage in Fig. 2 assuming 0.5 dB of loss in
each coupler and subsequent transmission line is shown in red. A pragmatic
approach would be to have this choice as a first pass and calculate the loss
of each coupler design around the coupling value.

shown in Fig. 6. It can be seen that careful EM simulations
result in a design with coupling and through parameters that
are flat across the band.

In the final chain PA design from Fig. 2, the low-dispersion
loss for each section (∼0.5 dB) is found through careful EM
modeling with optimization of feed structures and minimized
current crowding in the Lange fingers. This loss corresponds
to the highlighted coupling coefficients in Fig. 5, which are
implemented in the final layout shown in Fig. 7 of the
fabricated MMIC.

The simulated and measured small-signal frequency
response is shown in Fig. 8(a). The measured performance
of two out of the 83 chips shows that the nonlinear model
overestimates small-signal gain. Fig. 8(b) shows the simulated
large-signal gain saturation across frequency. The simulated
and measured large-signal performances, on the two MMICs,
as a function of input power at 81 and 94 GHz are shown
in Fig. 9(a) and (b), respectively. The small-signal measure-
ments are obtained with an HP8510C network analyzer with
millimeter-wave extenders. The SOLT calibration is performed
at the GSG plane with an alumina W-band impedance standard
substrate from Cascade Microtech. A power-calibrated scalar
test setup is used for large-signal measurements. The signal is
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Fig. 6. (a) Standard W-band 3-dB Lange coupler port layout and modified
layout as required by PA design showing surface current amplitude distribu-
tion. (b) Comparison of full-wave simulated through and coupled parameters
for the two cases. The current distribution in the standard results in more
variation across the band than the optimized design.

generated with a sweeper in Ka-band, followed by a Quinstar
Ka-band amplifier, a passive tripler, and a W-band amplifier.

As shown in Fig. 7, 1- and 0.1-nF off-chip capacitors were
mounted and are intended to suppress lower frequency bias-
line oscillations. With the chip and capacitors mounted and
under bias, no oscillations are seen on a 50-GHz spectrum
analyzer connected via a 100-μm GSG-to-2.4 mm coax probe.
Although a W-band spectrum analyzer was not available, our
experience is that usually even higher frequency oscillations
have downconverted frequency components that are observable
with a spectrum analyzer, indicating that the PA is stable.
In addition, the measurements are repeatable over time, and
no fluctuations in the dc current are observed when biasing the
device and with RF input power, which would provide another
indication of instability.

Data across wafers were only available for small-signal
parameters, and therefore, the remainder of this article uses
small-signal data for the variation analysis. Nevertheless, this
analysis can be easily extended to be statistically meaningful
in the large-signal operation given large-signal measurements
of the entire data set.

After fabrication, 83 chips from three separate wafers and
two wafer lots were measured on-wafer in small-signal with

Fig. 7. Photograph of a five-way serially combined three-stage MMIC power
amplifier designed for full W-band coverage mounted on a CuMo carrier with
bondable MIM capacitors. The left GSG pad is the RF input, connected to
coupler C1. The size of the die is 3.9 mm × 3.81 mm.

Fig. 8. (a) Small-signal simulated and measured performance of the five-
section chain PA from 0.1 to 115 GHz with two representative mounted MMIC
PAs. The red shaded area is the full range of the measured 83 MMICs. The
dashed vertical bars represent the limitations of the measurement systems
used. (b) Large-signal simulated gain shows similar compressive characteris-
tics over frequency.

identical biasing conditions. The variation of S21 across the
chips is shown in Fig. 10. The solid line is the mean value
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Fig. 9. Simulated and measured large-signal characteristics over a power
input sweep at (a) 81 and (b) 94 GHz with two representative MMIC PAs.
The dashed vertical bars represent the limitations of the measurement systems
used.

of the measurements, and the shaded area encompasses two
standard deviations. The two frequencies (81 and 94 GHz) are
used in the remainder of this article for the statistical analysis.

With fabrication variation, each MMIC element has dif-
fering transmission amplitude and phase. If an array system
designer is given 83 MMICs with an 4 × 4 array, there are
n!/(c!(n −c)!) = 83!/(16!(83−16)!) = 5×1016 combinations
without replacement. The goal of the remainder of this article
is to estimate the effects of MMIC variation on the entire
transmit array performance. The analysis method is universal
and can be applied to each section of a dc-to-RF chain and
is only dependent on performance data obtained from the
measurement and/or simulation.

III. STATISTICAL ANALYSIS OF PROCESS VARIATION

The process variations for millimeter-wave MMICs with
gates shorter than 100 nm are due to factors from epitaxial
growth of GaN on SiC [23], [24] to gate definition [25],
[26]. Substrate nonuniformities include warpage [27], [28],
bowing [27], [29], and substrate and epilayer defects [24],
[30]–[33]. Published knowledge on these defect effects on
device performance is reviewed in [30], with increased leakage
current, reduced blocking voltage, electric field crowding on
surface pits, and local reduction of carrier lifetime being the
most important contributors. One of the biggest sources of
performance spread comes from poor process control in sur-
face cleaning, which can cause variations in current collapse
and the depletion region. All these mechanisms create large
uncertainty of device performance from lot-to-lot, wafer-to-
wafer, and across a wafer. Devices vary radially across a

Fig. 10. Measured |S21| and unwrapped � S21 for 83 MMIC PAs. The solid
line is the mean, and the lightly shaded region is two standard deviations from
the mean. The dashed lines are the frequencies with which the rest of this
article uses in the analysis.

wafer due to bowing, ohmic contact and gate growth are
affected by wafer warpage, and the epitaxial layer growth is
sensitive to substrate defects. Table I summarizes qualitatively
processing issues when transistors are scaled for millimeter-
wave operation.

There are limited published statistical analyses for
millimeter-wave power amplifier performance related to
processing variations. A recent simple study that displays RF
measured wafer statistics for K-band PA MMICs is given
in [34] for a mature foundry process. The results show
that even optimized commercial foundry processes have a
significant variation in small- and large-signal regimes at
lower millimeter-wave frequencies. For an analysis of device
variations that can be applied to cascaded elements in a
transmit array, the first step is to understand the pdf associated
with the measured MMIC data.

Taking into account the complex fabrication parameter
dependence from Table I, the full joint distribution function
of the measured performance metrics can be perceived as
a combination of dependent variables. Methods for analyz-
ing amplitude and phase excitation errors in arrays assume
Gaussian pdfs of errors, based on antenna fabrication toler-
ances [35], [36]. In [37], the Gaussian errors are assumed
to be correlated in amplitude and phase, which changes the
array gain pattern. However, the antenna array analyses do not
take into account statistics related to the devices in the system
chain. Here, we include a part of the transmit chain, including
the MMIC PA and transitions from the MMIC to the antenna,
which can then be combined with antenna element variations.
In particular, we consider pdfs beyond simply Gaussians as
a better description of the measured MMIC data.

A. Gaussian Bivariate Uncorrelated PDF

The following univariate Gaussian distribution is found from
the mean, μ, and the variance, σ 2, of the measured data:

f
(
x |μ, σ 2

) = 1

σ
√

2π
e− 1

2 (
x−μ
σ )

2

. (3)
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TABLE I

SUMMARY OF mm-WAVE SCALING TRADEOFFS IN GaN HEMTS

In the multivariate case, μ becomes a k-dimensional mean
vector, and σ 2 becomes �, a k ×k co-variance matrix, which,
for the bivariate case, reduces to

μ =
(

μX

μY

)
,� =

(
σ 2

X ρσX σY

ρσX σY σ 2
Y

)

where ρ is the correlation between x and y. In the example
case discussed here, x is |S21|, while y is � S21, and X and Y
represent samples. The relevant bivariate function that follows
is then:

f (x, y|μ,�)

= 1

2πσX σY

√
1 − ρ2

×exp

(
− 1

2
(
1 − ρ2

)[
(x − μX )2

σ 2
X

+ (y − μY )2

σ 2
Y

−2ρ(x − μX )(y − μY )

σXσY

])
. (4)

The bivariate uncorrelated (ρ = 0) Gaussian for the sample
data from Section II is visually represented in Fig. 11 at 81 and
94 GHz. There are large portions of the 2-D space that bivari-
ate Gaussian estimation fails to describe accurately, even if the
correlation is introduced. This, in turn, means that a statistical
analysis of a transmit array will result in antenna complex
coefficients with a skewed mean and, consequently, inaccurate
predictions of the main beam and sidelobe variations due to
MMIC variations.

B. Nonparametric Kernel Density Estimation

To describe the measured data set better, we investigate
nonparametric pdfs. Here, we estimate the measured pdf using
the kernel density estimator (KDE) [38]. To illustrate the
difference from the Gaussian pdf, Fig. 12 compares a 1-D pdf
for S21 at 81 and 94 GHz, showing that the Gaussian does not
accurately capture univariate behavior. This exploratory data

Fig. 11. Bivariate Gaussian distribution contours centered at the 1-D mean
values with 1-D standard deviation values for both magnitude and phase of
the measured MMICs at 81 (blue) and 94 GHz (red). The sample set at each
frequency is scatter-plotted as well.

analysis reveals multimodal, asymmetric distributions with
frequency-dispersive behavior.

When dimensionality is increased, correlation can be main-
tained as follows. Let {X1, Y1}, . . . , {X83, Y83} be a 2-D vec-
tor sample from the measured data at a single frequency,
with a pdf fd(x), where x has a general dimensional-
ity of value d . The true univariate and bivariate densities
can be estimated such that f̂d(x) accurately approximates
the marginal or joint distributions. The KDE is defined
as

f̂d (x |H ) = n−1
n∑

i=1

KH (x − Xi ) (5)

where KH is a normalized continuous, unimodal, and sym-
metric kernel function. H is a symmetric, positive definite
matrix of smoothing parameters, with dimension d , referred
to as the bandwidth in this context. The kernel scales with H
as follows:

KH (x) = |H |−1/2K
(
H −1/2x

)
(6)

where |H | is applied to x and the kernel is normalized to
this smoothing. The scaled kernels are then summed and
normalized by the data set size n. For multivariate data sets, the
Gaussian kernel is a popular choice. The scaled and translated
version becomes

KH (x − Xi ) = (2π)−
d
2 |H |− 1

2 e− 1
2 (x−Xi )

T H −1(x−Xi ) (7)

which is centered at Xi and with variance matrix H , which
needs to be determined when the pdf is unknown. One method
to do this is unbiased cross validation (UCV), which is a
“leave-one-out” cross-validation method where the estimated
pdf is evaluated against an estimate of the same data minus
one sample [39], [40]. The extended method of smoothed
cross validation (SCV) has shown promise in reducing large
variability in UCV by improving estimation of the integrated
squared bias [41]. The multivariate extension of SCV has been
explored by Duong [38]. This article uses an unconstrained
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Fig. 12. For (a) 81 and (b) 94 GHz, the scatter plot shows the data set points. These are then shifted into a form of rug plot on each axis; here, both the
Gaussian and the kernel density estimates are plotted in comparison. It is easy to see that the Gaussians do not accurately capture univariate densities.

SCV in 1-D, 2-D, and 4-D. Table II shows the values found
for the univariate and bivariate cases ĤSCV, where f1 is 81 GHz
and f2 is 94 GHz. Fig. 13 shows the result of the kernel density
estimation applied to the measured MMIC data set for 81 and
94 GHz. A scatter of the 83 sample points is plotted on top of
filled contours of the 2-D joint density estimate. The marginal
density estimates are shown in the sides of the image. For
an improved statistical analysis with an increased data set,
standard sampling methods are applied, as described next for
completeness.

IV. MARKOV CHAIN MONTE CARLO SIMULATION

Markov chain Monte Carlo (MCMC) methods repeatedly
sample a multidimensional continuous random variable from
a target probability distribution π(x). Ideally, these samples
are independent and identically distributed (i.i.d.). Repeated
MCMC i.i.d. sampling constructs a Markov chain with a
distribution π(x) = f̂ (x) determined by the kernel density
estimates established in Section III. The aim of this KDE
and MCMC combination is to create simulated data that can
extend the analysis to include the MMIC package and antenna
elements of a transmit array. The Metropolis–Hastings MCMC
algorithm is used here, with details provided in Appendix A,
in context with KDE.

MCMC methods have a few disadvantages that are specif-
ically important for this analysis: 1) the draws are locally
correlated and 2) the Markov chain needs significant simula-
tion time to converge to the target distribution. The draws are
correlated through the Markov process. Sets of nearby draws
are correlated with each other and do not correctly reflect the
target distribution, while over the long term the draws do.
We choose a “jumping-width” of five draws with a single long
chain to reduce autocorrelation and to reduce simulation time.

TABLE II

UNCONSTRAINED SCV BANDWIDTH SELECTION

Convergence means that the Markov chain has settled to the
stationary distribution. The “burn-in” period of initial draws
might follow a drastically different distribution and is typically
discarded.

A result of this sampling algorithm for the 1-D cases with
the first 1000 draws discarded can be seen in Fig. 14. The
kernel density estimates of the original data set and the MCMC
sample set show better agreement as the iterations of the
MCMC are increased, allowing for a sufficient “tour” of the
target density and tighter convergence.

The Metropolis–Hastings algorithm requires two initializa-
tion constraints: an arbitrary starting point and a proposal
distribution. For simulations here, dependent symmetric uni-
variate and bivariate Gaussian proposal densities are used,
with variance found from the data set statistics, as seen in
Section III-A. A proposal variance that is dependent on the
original data set is found to have a positive effect on conver-
gence time for individual dimensions and overall convergence.

With multivariate distributions, the algorithm requires a
multidimensional initial point and multivariate joint proposal
distribution of the same dimensions. The KDE is now evalu-
ated across a N-dimensional (N-D) grid, and the acceptance
ratio for the proposed N-D candidate states is calculated
using N-D interpolation between meshed vertices. The benefit
of a bivariate Metropolis–Hastings algorithm is apparent in
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Fig. 13. Univariate and bivariate kernel pdf estimates for small-signal gain of 83 measured MMICs from three wafers at (a) 81 and (b) 94 GHz. A conclusion
that can be drawn is that wafer-to-wafer data can differ significantly. In this case, wafer 1 shows a larger variance than the other two.

Fig. 14. Univariate (magnitude and phase) MCMC draws are plotted at (a) 81 and (b) 94 GHz in scatter, underneath are the univariate kernel density
estimates. The dashed lines are the data set kernel density estimates, as shown in Fig. 12, and the solid lines are the 1-D kernel density estimates of the
MCMC results. Plotted are 10000 draws with the first 1000 draws discarded as a “burn-in” time.

Section III-B. The bivariate density maintains properties of
dimensionality, such as parameter correlation, which would
otherwise be removed by reducing to the univariate densities.
This can be seen by a closer comparison of Figs. 14 and 15.

Another interesting comparison seen in Figs. 14 and 15 is
the difference between the original data and MCMC samples
when plotting the kernel density estimates of both. It has been
shown that the MCMC rejection step introduces changes in
the estimates of the bias and variance [42]. In the estimated
pdf of the MCMC samples, regions can significantly deviate

from the original data; and as such, this comparison does not
necessarily show that the samples are drawn from the correct
pdf. To identify that the MCMC has correctly drawn from the
stationary distribution, Appendix B describes various metrics
for convergence of the MCMC to the stationary distribution.

V. MMIC-WAVEGUIDE TRANSITION DESIGN

At this point, we have a good statistical representation
of W-band MMIC PA gain variation across several wafers.
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Fig. 15. Bivariate MCMC draws are plotted at (a) 81 and (b) 94 GHz in scatter underneath 3-D contour plots of the bivariate kernel density estimates.
Underneath this 3-D plot is the relative error between the bivariate sample density estimate and the MCMC density estimate. The intensities of dark and
light show spots where the MCMC either overestimated or underestimated, respectively. Of the simulation, 10 000 draws are plotted with the first 1000 draws
discarded as a “burn-in” time.

The MMICs are next combined in a spatial power combining
an array of waveguide horn antennas. The transition from each
MMIC to a WR-10 rectangular waveguide is then analyzed
with its fabrication- and mounting-related parameter spreads.
A review of millimeter-wave waveguide transitions with vari-
ous techniques is presented in [43]–[45], and the main designs
of those references are conventional E-plane microstrip-to-
waveguide transitions covering the entire W-band. The design
implemented here is seen in the simulation model of Fig. 16.
One wave-port excites the microstrip on the MMIC, while the
other is the WR-10 waveguide in the split-block configuration
seen in Fig. 1.

The transition is designed on a polished 100-μm Alumina
substrate with top and bottom 5-μm-thick copper metal layers.
On the top side, a rectangular probe radiates into the WR-10
cavity with a back short at F = λg/4, which is rounded
due to CNC machining. A stepped-impedance microstrip line
is used for matching from a capacitive load to a 50-� line
on alumina that ends in a gold pad for a more reproducible
bond-wire MMIC to transition interconnect. On the bottom
side, the metal is not deposited underneath the rectangular
probe and is only underneath the matching networks and 50-�
line.

Using finite-element EM analysis in ANSYS HFSS, the
nominal design shows less than 1 dB of insertion loss across
W-band. However, a large amount of variability is introduced
by fabrication and mounting. A linear parameter sweep cover-
ing six variable dimensions was performed; these are labeled
in Fig. 16. In Fig. 16(a), A, B, C, D, and E correspond
to the copper pedestal height underneath the MMIC, the
bondwire height, the gap between MMIC and alumina, the
typical tolerance of metallization (±5 μm), and the placement
in the waveguide, respectively. In Fig. 16(b), F is the back-
short distance due to CNC machining tolerance. All these
parameters have units of μm and do not vary more than
0.5 mm.

The result of the large parameter sweep on the transmission
coefficient is seen in Fig. 17. The worst case transmission is up
to −5 dB for the largest deviation in dimensions, with more
sensitivity to C compared to other dimensions. The average
value is centered around −3 dB with a standard deviation of
about 1 dB. Lost in these Gaussian statistics, but seen in the
regions of tightly spaced thin purple lines of Fig. 17, is that
the transmission coefficient is not equally affected by the A–F
dimension variations at all frequencies. This indicates that the
transition analysis can also benefit from the density estimation
and sampling presented in Sections III-B and IV.

VI. CASCADED S-PARAMETERS IN A STATISTICAL

FRAMEWORK

Now, we have two separate cascaded statistically described
networks: the amplifier Sa and the transition Sb. From [46],
this cascaded network is a single two-port block, Sc, given by

[
Sc

11 Sc
12

Sc
21 Sc

22

]
=

[
Sa

11 + κSa
12Sa

21 Sb
11 κSa

12Sb
12

κSa
21Sb

21 Sb
22 + κSb

12Sb
21 Sa

22

]
where

κ = 1

1 − Sa
22 Sb

11

. (8)

It should be noted that Sc
21 is a combination of four

complex parameters (eight variables), two from each network.
The bivariate Sa

21 is estimated and sampled in Fig. 15 and
Section IV. The other three complex parameters could be done
in the same manner; however, separating these S-parameters
would remove any within-network correlation structures.

The linear transition network, Sb, is physically symmetric
and reciprocal; while creating the statistical data set, passivity
under these assumptions is maintained. However, the amplifier
matrix, Sa , has an unknown correlation between gain and
output match, which affects the sampling. For each two-port
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Fig. 16. W-band MMIC-to-waveguide transition, simulated in HFSS, consists
of a copper-metalized alumina probe and a 25-μm gold bondwire. Six
parameter sweeps are generated where in (a) A, B, C, D, and E correspond
to copper pedestal height underneath the MMIC, bondwire height, the gap
between MMIC and alumina, typical tolerance of metallization, and placement
into the waveguide, respectively, and in (b) F is the backshort distance due
to CNC machining tolerance.

Fig. 17. Simulated parametric sweep of |S21| of the W-band transition, for
dimensions [A, B, C, D, E, F] varied between [5:60 μm, 25:65 μm, 10:110
μm, −5:5 μm, −10:10 μm, 876:926 μm]. Plotted is the mean value in red,
one standard deviation in blue fill, and all sweeps in thin transparent purple
lines.

network, the interdependence of the S-parameters implies a
cross correlation requiring a higher order model, which is
an expansion of the bivariate to a multivariate distribution,

Fig. 18. Two separate simulated 4-D Markov chains for both the power
amplifier and transition networks. The top-left plot is of the magnitude of the
parameters, the top-right plot is of the wrapped phase of the parameters, and
the bottom plot is of the cascaded network Sc

21.

in this case to four dimensions. The estimation and sampling
algorithm is run once for each network, while the correlation
between [Sa

21, Sa
22] and [Sb

21, Sb
11] is maintained. Random

variables X for Sa and Y for Sb can be estimated and sampled
in 4-D.

A resulting final cascaded Sc
21 equation containing the two

random variables, X and Y , where each sample point consists
of four dimensions, is given by

Z Sc
21

=
(

X R(Sa
21) + i X I(Sa

21)

)(
YR(Sb

21) + iYI(Sb
21)

)
1 −

(
X R(Sa

22) + i X I(Sa
22)

)(
YR(Sb

11) + iYI(Sb
11)

) . (9)

The resulting random variable Z is a complex parameter
consisting of the same number of samples drawn from each
MCMC chain. One such combination is presented in Fig. 18.

VII. ANTENNA ARRAY CASCADED STATISTICS

A cascaded statistical description is next applied to a 16-
element transmit antenna array. We use a 4 × 4 array as it
is the smallest 2-D array that is used often as a subarray
to validate performance and indicate potential scaling to a
larger array. The block diagram showing relevant components
is given in Fig. 19. The classical antenna array tolerance
analysis, e.g., [35], [47], calculates the array factor based
on random variations in amplitude and phase with a normal
pdf and statistically independent errors. The array errors that
are considered in these analyses are due to small variations
in current excitations from the mechanical imprecision in
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Fig. 19. Block diagram of the final transmit stage analyzed in Section VII.

Fig. 20. 16-element horn array with detail of E-plane horn element. The
element spacing is roughly 0.5 mm.

the antenna elements. To extend to a multivariable analysis
in 2-D arrays, Monte Carlo methods are proposed in [48].
Furthermore, the interval analysis that computes the bounds
of a linear antenna array response by modeling bounds on the
complex excitation is studied in [49] and [50]. In these works,
20-element and larger arrays are analyzed using ideal sources
and isotropic antenna elements. Here, we extend the classical
analysis to include measured PA variations.

The antenna element used as an example in the simulations
is an E-plane square-aperture W-band horn fed by WR-10
waveguide feeds. The array, as shown in Fig. 20, is designed
for fabrication with split-block machining in five parts stacked
in the x-direction. The antenna array is simulated in Ansys
HFSS. The simulated VSWR over the band for the four
elements in each quadrant is shown in Fig. 21 when all
elements are fed in-phase with equal amplitudes.

The array factor is classically given by

AF(u, v) =
M∑

m=1

N∑
n=1

Wmne jφmn(u,v) (10)

but, in this case, the complex excitation Wmn is a statistical
quantity that has the joint distribution, as estimated in Sec-
tion VI, with f̂d(x). This means that the radiation pattern
of the array will also be a statistical quantity made of the
cascaded samples of the MMIC and transition to waveguide,
assuming that the antenna elements are ideal. It is computed
by adding the independent far-field patterns from all 16 ele-
ments previously extracted from simulations. Using 1000 sets

Fig. 21. Simulated VSWR of the horn antenna plotted over frequency.

Fig. 22. Ideal radiation pattern of the array (dashed line), with cascaded
statistical mean and standard deviation shown for comparison for broadside.

Fig. 23. Broadside gain comparison for an ideal antenna array excitation
and the means of the various statistics. The overlapping shaded areas are the
corresponding regions of one standard deviation.

of 16 samples of the Sc
21 cascaded vector, the descriptive

statistics of the broadside pattern are shown in Figs. 22–24.
The ideal array gain pattern is plotted in dashed black line,
while all the 1000 Monte Carlo simulations are shown in thin
purple lines with their mean shown in solid red. The shaded
blue region represents one standard deviation away from the
mean. Some conclusions from Fig. 22(a) are as follows: 1) the
mean value of the sidelobe is about 1.5 dB higher than that
of the ideal sidelobe level; 2) the increased value of the mean
is not symmetrical; 3) the main beam is roughly at the same
level as in the ideal case; and 4) the variance in the main lobe
is smaller than in the sidelobes.

It is interesting to see the effects of different pdfs on the
asymmetry in the sidelobe level for the broadside E-plane
gain. Fig. 23 compares Gaussian, bivariate, and cascaded cases
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Fig. 24. For a comparison of the various statistics, boxplots with overlaid
violin-plots are shown for (a) 3-dB beamwidth and (b) pointing error variation
for the broadside.

from Sections III-A, III-B, and VI. For the Gaussian and
bivariate cases, the nominal value of the alumina transition is
used. In the Gaussian case, the mean performs close to ideal
and affects the main beam and sidelobes equally. The bivariate
KDE samples show similar behavior, but with slightly higher
values. However, the cascaded draws result in an asymmetry,
where one sidelobe is around the same as the bivariate case,
while the other is 1.5 dB higher.

Using the main beam deviations for a broadside E-plane cut,
the 3-dB beamwidth is investigated in Fig. 24(a). The median
value of the cascaded is roughly 0.3◦ smaller than the bivariate
and Gaussian cases. The cascaded set shows a large positive
skew, with the majority of 3-dB beamwidths are smaller and
below 14◦. The bivariate case shows a larger interquartile
range (width of the boxed region) than the Gaussian, with
a slightly lower median and a slight positive skew toward the
smaller beamwidth.

In Fig. 24(b), the beam pointing error is calculated as the
difference between the maximum values of the ideal case
and the various pdfs. Interestingly, the cascaded case shows a
preference for a specific direction, and the median is centered
around 0.1◦. This positive skew can be seen as well in the
colored violin plots. In the bivariate case, the median is
centered at 0◦; however, the interquartile range is larger than

for the Gaussian and appears to have more outliers that extend
beyond 3◦ of beam pointing error. For both boxplot images
[see Fig. 24(a) and (b)], the Whisker maximum and minimum
are set to a default of 1.5 interquartile range.

The analysis shows that an accurate prediction of antenna
radiation pattern characteristics requires taking into account
the statistical dispersion of the amplifiers and transitions,
especially at the W-band where process-related variations can
be high. For a 16-element spatial power combining array, the
first sidelobe level can vary ±6 dB and the EIRP by ±3 dB
when random amplifier chips from the measured batch are
chosen to populate the array.

VIII. CONCLUSION

This article presents statistical analysis for a spatial
power combining array that operates across the W-band.
The analysis starts from measured on-wafer S-parameters
for about 80 power-combined amplifier chips designed in an
experimental 90-nm GaN on SiC process. The pdfs, both
parametric (Gaussian) and nonparametric (kernel density esti-
mation), are generated from measured data and propagated
using a Markov chain Monte Carlo to the antenna elements.
The connection from the chips to alumina microstrip-to-
waveguide transitions is analyzed with full-wave simulations
in conjunction with the same statistical approach. The analysis
is given on cases of the small-signal MMIC gain cascaded with
passive transitions with a simple Gaussian model, a bivariate
kernel density estimated model, and a model developed by
using multivariate S-parameters as complex random variables
in a cascaded network. The waveguides feed a 16-element
square horn array, and the effect of cascaded statistics on EIRP
is quantified. An extension to cascaded antenna fabrication tol-
erances is straightforward and follows the same methodology.

Furthermore, the knowledge of process variations and their
correlated statistics can give an insight into the ability to
calibrate a phased array without pretesting and choosing
MMICs, as has been done in many millimeter-wave transmit
arrays. Calibration techniques require a high degree of phase
and amplitude accuracy in the beamformer for acceptable cal-
ibration resolution, as can be seen in examples of narrowband
arrays at Ku-band (17.3–17.8 GHz) [51], relatively broadband
Ka-band arrays (37–42 GHz) [52], and a 90.7-GHz 384-
element array [53]. Advance knowledge of the gain amplitude
and phase can inform the decision related to costly preselection
of MMICs or the need for bias control across the transmit
array. Improving the error on gain amplitude is especially
important for narrowband transmit arrays, where bias control
affects the efficiency and contributes to the reduction in EIRP
and increase in thermal stress. In broadband arrays, the phase
variations in calibration become more critical, as does element-
to-element coupling and active scan coefficient that takes into
account variations in large-signal PA parameters.

APPENDIX A
METROPOLIS–HASTINGS ALGORITHM

The Metropolis–Hastings algorithm is used here for the
estimation and sampling by creating a Markov chain through a
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Algorithm 1: Univariate Metropolis–Hastings
Data: A kernel-density estimated uni-variate density

f̂ (x)
Result: Markov chain of unique independent and

identically distributed draws as X

Initialize:
Choose proposal density ∼ q(x)
Choose an arbitrary point x i

0

for iterations = 1,2…N do
Propose: x cand ∼ q(x i |x i−1)
Acceptance probability:
α(x cand|x i−1) = min{1, q(xi−1 |xcand)

q(xcand |xi−1)
f̂ (xcand)

f̂ (xi−1 )
}

u ∼ Uni f (0, 1)
if u < α then

Accept: x i = x cand

Set: X (i) = x i

else
Reject: x i = x i−1

end
end

series of accept–reject steps, as described in Algorithm 1 [54].
This algorithm randomly attempts movements in the parameter
space, occasionally accepting moves or lingering in the same
state. The acceptance ratio α demonstrates how probable the
newly proposed state is in relation to the current state, with
respect to the target distribution. Movements that are more
probable than the current state will consistently be accepted.
However, if a movement is less probable, a rejection might
occur, and as the relative drop in probability increases, the
proposed state is rejected with a higher likelihood.

A common choice for the proposal distribution is a sym-
metric distribution q(x i |x i−1) = q(x i−1|x i). Some standard
symmetric proposals are Gaussian or uniform distributions
centered at the chain’s current state. The symmetry cancels out
the effects of the proposal density, resulting in an acceptance
ratio α(x cand|x i−1) that is proportional to how likely the current
state, x i−1, and the proposed state x cand are under the full joint
density distribution. As the number of dimensions increases in
the target density, the proposal acceptances need to be optimal
for all dimensions simultaneously to avoid excessively slow
convergence.

APPENDIX B
MCMC CONVERGENCE

There are different ways to test for MCMC convergence.
Trace plots can show if the parameters are “mixing” well,
defined as moving around the parameter space efficiently.
Alternatively, autocorrelation on the Markov chains should
display a drop in magnitude as the lag increases. These can
show potential for convergence of a single chain but do not
produce rigorous criteria for determining convergence for an
estimated pdf.

Gelman and Rubin [55] created a convergence metric that
looks at inferences from m simulated Markov chains and

Fig. 25. Gelman and Rubin’s diagnostic of potential scale reduction factor
as it changes through the MCMC iterations. Ideally, the chains converge to
1; after reaching below a certain threshold for R̂, typically, it is said to be
converged. This metric relays a solid value for “burn-in” time; approximately,
here, it would be 1000 draws.

compares these to inferences made by combining n draws from
all sequences. To do this, the average of the m within-sequence
variances is initially calculated as

W = 1

m(n − 1)

m∑
j=1

n∑
t=1

(
θ j t − θ̄ j.

)2
(11)

where θ j t is the sample point, and θ̄ j. is the average over the
draws (t). The variance B/n between the m sequence means
is calculated as

B

n
= 1

m − 1

m∑
j=1

(
θ̄ j. − θ̄..

)2
(12)

where θ̄.. is the average over the entire set of chains. Then,
an estimate of the variance of the stationary distribution as a
weighted average of W and B is formed

σ̂ 2 = n − 1

n
W + B

n
. (13)

Finally, the potential scale reduction factor (R̂) is calculated
as

R̂ =
√

(m + 1)

m

σ̂ 2

W
− n − 1

mn
(14)

which reduces to 1 as n → ∞. A large R̂ suggests that either
the estimate of the variance σ̂ 2 can be further decreased by
more simulations or that further simulation will increase W
since the simulated chains have not made a full route of the
target distribution. On the other hand, if R̂ is close to 1,
it can be concluded that each of the m sets of n simulated
observations is close to the target distribution.

An extended metric for the multivariate case can be found
in [56]. W and B/n denote within- and between-sequence
covariance estimate matrices in d dimensions, respectively.
V̂ becomes the estimate of the posterior variance–covariance
matrix, and R̂, the multivariate R̂, is determined as a scalar
measure of the distance between V̂ and W . Fig. 25 shows R̂
as a function of the chain iteration for the amplitude and phase
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of the MMIC gain at 81 and 94 GHz, as well as the univariate,
bivariate, and 4-D cases (as needed in Section VI). R̂ quickly
drops to 1 for all parameters, and it can be concluded that
m chains are each close to the target distribution. A burn-in
time is set as a threshold; when R̂ is below this threshold, the
draws can be taken as i.i.d.
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Applied Electromagnetics at the College of Engineering and Applied Sciences,
University of Colorado Boulder, in May 2018.

Laila Marzall (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from the Federal University of Santa Maria, Santa
Maria, Brazil, in 2006, and the M.S. degree in
electronics engineering from the Technological Insti-
tute of Aeronautics, São José dos Campos, Brazil,
in 2009, with a thesis on microstrip antenna design.
She is currently pursuing the Ph.D. degree in elec-
trical engineering at the University of Colorado
Boulder, Boulder, CO, USA.

She worked in the industry as an antenna designer
for more than 15 years. Her research interests are in beamformers and front
ends for broadband phased-arrays and in nonreciprocal ferrite devices.

Daniel Martin (Student Member, IEEE) received
the B.S. and M.S. degrees from The University of
Texas at Dallas, Richardson, TX, USA, in 2015 and
2016, respectively, and the Ph.D. degree from the
University of Colorado Boulder, Boulder, CO, USA,
in 2020.

His research interests include microwave power
amplifier theory and design, III–V device technol-
ogy, RFIC, and active phased array radar technology.

Gregor Lasser (Member, IEEE) received the
Dipl.Ing. and Dr.Techn. degrees (Hons.) in elec-
trical engineering from the Vienna University of
Technology, Vienna, Austria, in 2008 and 2014,
respectively.

Since 2017, he has been an Assistant Research
Professor with the University of Colorado Boul-
der, Boulder, CO, USA, where he is working on
broadband supply modulated power amplifiers and
compact intelligent antenna systems.

Dr. Lasser received the second position of the
EEEfCOM Innovation Award in 2008 for the RFID testbed developed during
his diploma thesis and the Faculty Award of the Faculty of Electrical
Engineering and Information Technology, Vienna University of Technology,
for the presentation of his doctoral dissertation entitled “Passive RFID for
Automotive Sensor Applications.” In 2017, he won the Best Paper Award at
the IEEE Wireless and Microwave Technology Conference (WAMICON) for
his work on analog predistortion of GaN power amplifiers. Since 2016, he has
been serving as the Vice-Chair of the IEEE Denver Joint AP-S/MTT Section.
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