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Abstract—The effective constitutive parameters of a high-
temperature superconducting (HTS) metamaterial are extracted
from measured scattering parameters at liquid nitrogen tempera-
ture (≈75.68 K at the National Institute of Standards and Tech-
nology, Boulder, CO, USA). The YBa2Cu3O7 split-ring resonator
(SRR) arrays are placed inside a WR-90 waveguide with two
different orientations and are excited with the dominant TE10

mode in both cases. By treating the SRR array as a homogeneous
medium described by the biaxial permittivity and permeability
diagonal tensors, the two sets of S parameters allow for the
extraction of three out of the six tensor components. The extracted
parameters are then compared to full-wave simulations of SRR
arrays in free space. The samples are measured from 8.2 to
12 GHz and show a frequency band between 9.25 and 10.45 GHz
with a negative effective permeability, as expected. Finally, numer-
ous high-quality factor resonances that accompany the main res-
onances are observed in both the low-temperature measurement
and the low-loss simulation.

Index Terms—High-temperature superconducting (HTS), mag-
nesium oxide (MgO), split-ring resonators (SRRs), yttrium barium
copper oxide (YBCO).

I. INTRODUCTION

THERE have been many proposed methods for character-
izing the effective constitutive parameters of split-ring

resonator (SRR) arrays, with a purpose of demonstrating the
existence of an effective negative permeability over some fre-
quency band. For example, in [1]–[5], the plane wave normal
incidence approach was discussed for retrieving the effective
parameters; in [6], an optimization technique was presented;
and in [7], a waveguide approach for retrieving the anisotropic
parameters was presented. Applications that take advantage of
the effective near-zero and negative permeability property of
SRRs include negative index materials [8], [9] and electromag-
netic cloaks [10], [11]. The circuits in these studies use normal
metal and exhibit loss that limits their performance and can be
reduced by using superconductors. In this paper, we present
the extracted effective relative permittivity and permeability of
high-temperature superconducting (HTS) SRR arrays. Of the
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Fig. 1. Sketch of an experimental X-band YBCO SRR array deposited on a
MgO substrate with a = 2.5 mm, b = 2 mm, c = 0.2 mm, d = 0.2 mm, and
t = 0.5 mm. The material axes 1, 2, and 3 correspond with the tensor elements
¯̄ε and ¯̄μ.

listed method, we find that the waveguide method in [7] is best
suited to our experimental study of the effective permittivity
and permeability tensors of HTS SRR arrays since the wave-
guide setup is confined to a small space, which can be cooled
easily as demonstrated by Trang et al. [12]. Another waveguide
retrieval method theoretically proposed by Damaskos et al.
[13] requires measurements of the samples with the waveguide
excited by both the TE10 and the TE20 modes, which would be
difficult to accomplish experimentally. Other studies on super-
conducting metamaterials have been presented by Ricci et al.
[14]–[16] and Chen et al. [17], but the quantitative effective
constitutive parameters were not discussed. In [12], the relative
effective permittivity and permeability of HTS yttrium barium
copper oxide (YBCO) SRRs are extracted by assuming homo-
geneous and isotropic bulk properties.

In this paper, we present the extracted effective relative
permittivity and permeability of YBCO SRR arrays deposited
on a magnesium oxide (MgO) substrate, as shown in Fig. 1.
The arrays are measured inside a WR-90 X-band waveguide
at liquid nitrogen (LN2) temperature. YBCO has a critical
temperature of ≈88 K [18], above the boiling temperature of
LN2 (≈75.68 K at 1655 m elevation in Boulder, CO, USA).
The free-space wavelength at 10 GHz is greater than ten times
the SRR array spatial period, and thus, the array can be thought
of as having effective parameters. We will show that in the
frequency band where the real part of the relative permeability
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μ′ is negative, the imaginary part μ′′ quickly drops to near
zero. The effective parameters extracted from the scattering
(S) parameters treat the SRR array as a homogeneous medium
described by the biaxial relative permittivity and permeability
tensors ¯̄ε = diag[ε1, ε2, ε3] and ¯̄μ = diag[μ1, μ2, μ3], respec-
tively. The time convention followed in this paper is ejωt with
ε = ε′ − jε′′ and μ = μ′ − jμ′′.

The SRR specifications and measurement setup will first be
discussed, followed by an outline of the extraction method used
to calculate the tensor elements from the measured and simu-
lated S parameters. Arrays of the SRRs are placed inside the
waveguide with two orthogonal orientations and the respective
scattering parameters recorded. Measurements from the two
orientations discussed in this paper allow for the retrieval of
three of the six tensor elements, i.e., μ1, ε2, and μ3, with the
material indices shown in Fig. 1. The other three elements can
be retrieved in a similar manner by measuring the samples with
two different orientations, as discussed in [7], but they are not
needed for our experiments and were therefore not calculated.
The retrieved parameters are then compared with those from
the waveguide and free-space full-wave simulations of identical
SRR arrays. Finally, we briefly discuss the additional high
Q-factor resonances, accompanying the main resonances, that
are only seen in the cryogenic measurement and simulations of
low-loss samples.

II. SRR SPECIFICATIONS AND MEASUREMENT SETUP

Each SRR is made of a 700-nm-thick YBCO split-ring de-
posited on a 500-μm-thick MgO substrate, which has a nominal
relative permittivity of 9.7 and at 77 K an electric loss tangent
of 5× 10−6 at 10.48 GHz [19]. The relevant dimensions are
shown in Fig. 1. A single contact mask was used for patterning
the SRR arrays on a 50.8× 50.8 mm2 YBCO/MgO square
wafer. After etching, a 200-μm resinoid blade was used to
dice 4 × 1 and 4 × 9 samples, of dimensions 10× 2.5 mm2

and 10× 22.5 mm2, respectively. The diced 4 × 1 and 4 × 9
samples have dimensions of 9.95× 2.35 and 22.35× 10 mm2,
respectively. This slight deviation in dimensions has a negligi-
ble effect on our results. The SRR dimensions are chosen such
that the magnetic plasma frequency, which is defined as the fre-
quency where the real part of the effective permeability is equal
to zero, falls in the X-band region. The center-frequency free-
space wavelength λ0 = 3 cm is greater than ten times the SRR
array spatial period a; thus, a � λ0 is a valid approximation
[4]. In this limit, we can treat the structure as having effective
material parameters.

A waveguide thru-reflect-line calibration was performed on
an Agilent 8722ES vector network analyzer (VNA) at liquid
nitrogen temperature (≈76 K) to set the calibrated reference
planes (CRPs) to the end of the waveguide adapters. By per-
forming the calibration at low temperature, we take into account
the enhanced electrical conductivity of the metallic waveguide
structures. For measurement of each calibration standard, the
whole structure (waveguide adapters and standard) is wrapped
with aluminum foil to prevent LN2 seeping into the waveguide
components and altering the measured phase because LN2 has
a higher dielectric constant (1.538 [20]) than air. The same

Fig. 2. Measurement setup showing the CRPs and the material under test
(MUT) reference planes (MRPs). The portion inside the hashed box is cooled
to ≈76 K. The arrows indicate the locations for the calibration and material
reference planes.

Fig. 3. Photographs of diced 4 × 1 and 4 × 9 YBCO SRR arrays on MgO
substrates aligned inside a WR-90 waveguide with orientations (a) I and (b) II,
respectively. The gray bars in (a) mark the locations of the 4 × 1 strips. The
material axes corresponding to the Cartesian axes are shown for orientations
(c) I and (d) II.

cooling method was used for measuring the samples. Finally,
we note that the CRPs and the material reference planes are
different, as shown in Fig. 2. Thus, the measured S parameters
had to be further deembedded by postprocessing the measured
calibrated data.

III. EXTRACTION METHOD

Arrays of the HTS SRRs are placed inside an X-band rectan-
gular waveguide, with orientations I and II shown in Fig. 3(a)
and (b), respectively. For orientation I, nine evenly spaced 4 ×
1 SRR strips were axially inserted into the waveguide, totaling
36 SRRs. For the rest of this paper, this will be referred to
as the 4 × 1 strip array. A single 4 × 9 sample was used for
the transverse orientation II, again with 36 SRRs. Note that
alternating rows of the conducting SRRs in Fig. 3(a) and (b)
are flipped. This is done so that when the image theory is
applied along the waveguide walls, the arrays look infinitely
periodic in the x and y directions. In addition, as pointed out by
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Smith et al. [21], the symmetrical arrangement of the SRRs,
as in our case, reduces the magnetoelectric coupling that is
responsible for the bianisotropic behavior. For both cases, the
dominant TE10 mode is excited in the waveguide, which has
the electric field in the y direction [see Fig. 3(c) and (d)], or
along material axis 2.

In order for these resonating elements to have effective
properties, an effective length L has to be defined. Thus, the
propagation factor through this effective material is given by

P = e−jk0znL (1)

where n is the effective refractive index, and k0z is the longi-
tudinal wavenumber of an empty waveguide. The anisotropic
nature of the SRRs implies that we should expect two different
effective indices, i.e., nI and nII, when measuring the sample
along two different axes. An analogous way of studying nI and
nII is to measure them along a single axis, but with the SRR
structure rotated, as with orientations I and II.

The period of the SRR array is 2.5 mm. Thus, 2.5 mm was
chosen for L in orientation II. The 4 × 1 sample width is
2.35 mm. This slight deviation from the designed value of
2.5 mm was a result of dicing imperfection. We thus used
L = 2.35 mm for orientation I. If this L is changed to 2.5 mm
instead, the value for min[Re(μ1)] is equal to −6.8 rather
than −7.3, as shown in Fig. 5(a). However, the frequency of
min[Re(μ1)] is not affected, neither is the magnetic resonant
frequency. As derived by Nicolson and Ross [22] and Weir [23],
the scattering parameters are related to the refractive index and
normalized wave impedance ζ normalized to ζ0 = ωμ0/k0z by

Γ =
S2
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Note that Γ is the reflection coefficient at the air-sample bound-
ary if the sample extends semi-infinitely in the propagation
direction. The sign in (2) is chosen such that |Γ| ≤ 1. The real
part of n has an ambiguity of 2πm, where m is chosen so
that n is a continuous function. By measuring the scattering
parameters with the two orientations shown in Fig. 3, we can
retrieve μ1, ε2, and μ3. These parameters are related to the
refractive index and normalized wave impedance by
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√
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μ1

μ3√
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μ1
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Fig. 4. Measured reflection (S11, blue curve) and transmission (S21, red
curve) coefficient magnitudes of the (a) nine 4 × 1 SRR strips and (b) 4 × 9
SRR array, respectively, placed inside the waveguide section with the whole
structure cooled to ≈76 K. The markers in (b) indicate the locations of the
sharp Fano-like resonances.

resulting in formulas for the constitutive parameters

μ1 = nIζI
μ3 = nIIζII
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I k

2
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where k0 = ω
√
μ0ε0, and kx is the waveguide cutoff wavenum-

ber of the dominant TE10 mode.

IV. EXPERIMENTAL RESULTS

Using a ProtoMat S62 PCB milling machine, deep grooves
were milled on a Rohacell 51 IG foam to be used as sample
holders for the 4 × 1 SRR strips. The sample holders ensure
equal separation between the samples and prevent them from
moving during the measurements. The Rohacell foam has a
room temperature relative permittivity of 1.07 and a loss tan-
gent of 0.0021 at 10 GHz [24], which is very similar to the elec-
tromagnetic properties of air. Properties of the foam at 77 K are
not available. The SRR samples with the foam (orientation I)
and without the foam (orientation II) are then placed inside
a WR-90 waveguide for measurement, as shown in Fig. 3(a)
and (b), respectively.

For each of the two measurements, the S parameters were
deembedded to the material reference planes, with the transmis-
sion and reflection coefficients shown in Fig. 4. The stopband
about 9.5 GHz in Fig. 4(a) suggests a region of negative
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Fig. 5. Effective parameters extracted from waveguide measurements of the two oriented samples, with (a) zoomed in μ1, (b) μ3, (c) ε2(I), and (d) ε2(II).
The blue and red curves are measurements and waveguide simulations, respectively. The solid and dashed curves represent the real (′) and imaginary (′′) parts,
respectively. The inset plot in (a) shows the measured μ1 with the full vertical scale.

Fig. 6. Effective permeability μ1 extracted from room temperature measure-
ment of the copper SRR arrays on a Rogers 3010 substrate, plotted on the same
scale as Fig. 5(a) for comparison. The solid and dashed blue curves represent
the real (′) and imaginary (′′) parts, respectively. The same measurement and
calibration approach was used as in the cryogenic case.

μ1 and positive ε2. Using the S parameters from these two
measurements, the three parameters, i.e., μ1, ε2, and μ3, are
calculated from the formulas discussed earlier, with the results
shown in Fig. 5. Near the resonances, (10) and (11) give two
different effective permittivities along material axis 2. However,
away from the resonant locations, the two have similar values.

The magnetic plasma frequency of this resonant structure
is 10.45 GHz, μ′

1 = 0 in Fig. 5(a). Just below this frequency,
between 9.25 and 10.45 GHz, the real part of the relative
permeability μ′

1 is negative, which is consistent with previously
published work on SRRs. Generally, the imaginary part μ′′

1,
corresponding to loss, is large in this frequency band in room
temperature normal conducting SRRs. The extracted value

Fig. 7. Reflection (S11, blue curve) and transmission (S21, red curve) coef-
ficients of the 4 × 9 SRR array sample from full-wave waveguide simulations.
The markers indicate the locations of the sharp Fano-like resonances.

from the HTS SRR arrays, however, shows that at frequencies
above the frequency where μ′

1 is at its minimum, μ′′
1 quickly

drops to near zero. This is a property that is not observed in
normal conducting SRRs on lossy substrates, as shown in the
extracted μ1 for the copper SRRs on a Rogers 3010 substrate
(see Fig. 6). The Rogers 3010 substrate has a dielectric constant
of 10.2 with a loss tangent of 0.0022 at 10 GHz [25]. The
magnetic loss tangents (tan δμ = |μ′′/μ′|) for the Cu SRRs at
f(μ′

min) = 9.59 GHz and f(μ′
min) + 100 MHz are 0.911 and

0.523, respectively, a 42% reduction. The tan δμ for the HTS
SRRs at f(μ′

min) = 9.53 GHz and f(μ′
min) + 100 MHz are

0.324 and 0.068, respectively, a 79% reduction. In Fig. 5(c),
we notice that ε′′ is negative at frequencies just above where ε′

is at a minimum. This is also seen in many published works on
SRRs. A study of why different signs are seen for the imaginary
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Fig. 8. Effective parameters extracted from the free-space and waveguide simulations of the two SRR arrays, with (a) μ1 and (c) ε2(I) from orientation I and
(b) μ3 and (d) ε2(II) from orientation II. The red and blue curves represent the waveguide and free-space solutions, respectively. The solid and dashed curves are
the real (′) and imaginary (′′) parts, respectively.

parts of the constitutive parameters is beyond the scope of
this paper. An explanation for this had been proposed by
Koschny et al. [26]. In the frequency region where the effective
permeability exhibits a resonant response, the effective permit-
tivity exhibits an antiresonant response. This antiresonance is
due to the finite lattice period of the metamaterial structure and
gives rise to the negative ε′′ shown in Fig. 5(c), as opposed to
the positive μ′′ shown in Fig. 5(a).

V. COMPARISON TO SIMULATIONS

For comparison, the 4 × 1 SRR strips and 4 × 9 SRR samples
placed inside the waveguide were modeled in the Ansys HFSS
full-wave finite-element method simulator. In the simulations,
a perfect electric conductor was used for the waveguide walls,
the relative permittivity of MgO was set to 9.7 with a tan δ
of 5× 10−6, and the electrical conductivity of YBCO was
set to 2.847× 109 S/m, calculated from the sheet resistance
of YBCO from [18]. The simulated S parameters from the
orientation I and II models agree well with our low-temperature
measurements. The multiple sharp resonances above and below
the main resonances are also present, as shown in Fig. 7. The
calculated effective parameters from the waveguide simulations
are shown as solid and dashed red curves in Fig. 8. The effective
μ1 and ε2(I) from the waveguide simulation are also plotted
together with the measured results in Fig. 5(a) and (c), showing
a 54-MHz offset. The effective μ3 and ε2(II) results are shown
together in Fig. 5(b) and (d). Multiple sharp features are shown
in both figures, corresponding to the sharp resonances shown in
Figs. 4(b) and 7.

The free-space effective parameters of SRR arrays are of
practical interest for applications such as metamaterial cloaks
[10], [11]. Thus, free-space models of the SRR arrays were
created in separate HFSS simulations and the effective parame-
ters extracted for comparison and validation purposes. Electric
and magnetic walls are assigned at the transverse boundaries to
define the directions of the electric and magnetic fields (E par-
allel to axis 2) and to emulate a uniform plane wave normally
incident on the SRR samples. For the free-space orientation I,
the E- and H-fields are parallel to material axes 2 and 1, respec-
tively. For the free-space orientation II, the E- and H-fields are
parallel to material axes 2 and 3, respectively. In addition, the
electric walls mirror the SRRs in the vertical direction to match
the alternating arrangement of our HTS SRR arrays.

A set of scattering parameters is obtained for each of the
orientations, from which the effective constitutive parameters
are retrieved using the free-space extraction method discussed
in [22] and [23]. The model with which the SRR array is aligned
with orientation I allows for the extraction of μ1 and ε2(I),
whereas orientation II allows for ε2(II) and μ3 extraction. These
results are shown together with results from the waveguide
simulations in Fig. 8 as blue solid and dashed curves. There
is a slight offset in frequency between the two simulations:
f(μ′

1,min) differ by 28 MHz, and f(ε′2I,max) differ by 29 MHz.
The offset is likely a result of imperfect meshing in the wave-
guide simulation, as further simulations suggest. The obvious
disagreements from the two extraction techniques can be seen
in the μ3 and ε2(II) curves. A reason for this is that the magnetic
fields are present in both transverse and longitudinal directions
inside the waveguide. They result in resonant behavior in both
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orientations and give rise to the resonant feature seen in the
waveguide μ3 and ε2(II), but not in the free-space μ3 and
ε2(II). The antiresonant behavior at 10.66 GHz is a result from
dividing by a near-zero μ1 in (11).

VI. DISCUSSION

In both the waveguide cryogenic measurement [see Fig. 4(b)]
and the low-loss simulation (Fig. 7) of the 4 × 9 sample,
the S parameters show eight high-Q resonances in addition to
the main resonance, which are not seen in the low-loss free-
space simulation. To the best of our knowledge, this is the
first time such sharp and numerous features are observed in
the waveguide measurement of SRR arrays. We are currently
investigating their origin and will be reporting the findings
in the near future. Kumley and Kuester [27] pointed out that
high-Q resonances (referred to as Fano resonances) can arise
from the slight variations in the structural dimension in the
element array. However, the SRRs in the simulation have the
same dimensions, thus ruling out this possibility. Similar sharp
resonant features have also been observed by Kurter et al.
[28]. These sharp dips in the electromagnetically induced trans-
parency observed in this work are explained by the coupling of a
gold (Au) strip and superconducting niobium (Nb) SRRs at sub-
TC , due to the large loss contrast between Au and Nb. In our
experiments, only YBCO are used as the conducting material,
and therefore, this loss differential does not exist. A single
Fano or “trapped-mode” resonance has also been reported in
[29] and [30] from free-space measurements of asymmetrical
SRR arrays. The sharp resonances from our measurement have
Q-factors (fr/Δf3 dB) as high as 1400, which is much higher
than those observed in [29] for the asymmetrical SRR arrays
also of YBCO thin films. In the case where the SRRs are
made of copper on a Rogers 3010 substrate, room temperature
measurements did not clearly reveal these high-Q features
because the losses in the conductor and substrate damp them
out. Details of the high-Q resonances will be reported in a
separate article.

In summary, arrays of 4 × 1 strips and 4 × 9 YBCO SRR
arrays were independently measured inside a WR-90 X-band
waveguide at liquid nitrogen temperature. From the two sets of
recorded S parameters, the effective constitutive parameters are
retrieved where the SRR array is assumed to have an effective
length and take on a homogeneous medium described by diago-
nal permittivity and permeability tensors. The extracted results
from the measurements agree well with those from the low-loss
waveguide and free-space full-wave simulations. The extracted
effective permeability shows a negative μ′ in the frequency
band between 9.25 and 10.45 GHz, with the imaginary part
μ′′ quickly dropping to near zero close to the minimum of
μ′, a property not observed with room temperature normal
conducting SRR arrays.
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