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Abstract—Describing functions are developed as a large-signal
analysis tool for multi-frequency and multi-dimensional nonlin-
earities. The implementation and analysis method is discussed
along with limitations. Describing functions are then used to
analyze a GaN transistor in large-signal operation at X-band with
a low frequency excitation on the drain for supply modulation.
Describing functions agree well with harmonic balance over RF
input power into saturation of the FET device and are used to
characterize the FET baseband impedance with a second RF
tone.

Index Terms—Describing functions, nonlinear analysis, large-
signal analysis.

I. INTRODUCTION

Previous efforts in modeling nonlinear elements have fo-

cused on Volterra series, e.g. [1]–[4], which can accurately

describe only mildly nonlinear circuits, requiring low orders

of mixing products. Extraction of the Volterra series requires

that the nonlinearity be a power series or a Taylor series (for

non-polynomial function) about a bias point. The fitting of the

power series to the nonlinearity restricts that applicability for

Volterra series to small-signal and weakly nonlinear circuits. In

addition, the Volterra operators are independent of amplitude

meaning that the solution obtained is linearized about a single

static operating point.

Many practical nonlinearities arise in large-signal mode

where the Volterra series approach is not valid. A particularly

challenging large-signal case is the analysis of saturated high-

efficiency PAs with supply modulation (envelope tracking).

The active device is in this case driven by large signals in the

RF gate input at the carrier frequency, simultaneously with

large envelope-bandwidth signals in the drain supply input, as

shown in Fig. 1. In this paper, modeling of the complicated

Ids(Vgs,Vds) nonlinearity of the FET transistor is performed

using the describing function (DF) quasi-linearization method

[5] in which the extracted functions are dependent on the size

of input signals. This property is incredibly useful in that

it can explain small-signal and large-signal phenomena in a

single compact formula. However, describing functions rely

on knowing the input waveform and the ability to integrate

the nonlinear element equation. For microwave circuits, DFs

have been successfully applied to finding the “sweet-spot” for

IMDs in a transistor power amplifier [6].

II. DESCRIBING FUNCTION FORMULATION

Quasi-linearization used with DFs refers to a method where

the approximated output is a linear operation that depends

on the input of a signal of finite size, requiring knowledge

Fig. 1. Application for DF with multiple frequency excitations and mixing
on the gate and drain of a nonlinear element for supply modulation.

of the type of input signal, as independent signals will not

have independent outputs. Bias, sinusoidal, Gaussian noise are

examples of types of inputs. The DF for a particular input form

is the same for all nonlinearities. In microwave circuits, the

input signal is generally a sum of sinusoidal signals at the input

and output. This brings up an additional requirement that any

feedback from the nonlinear output back to the input must be

adequately filtered so the original input form still holds.

The DF for a single sinusoidal input to a real valued

nonlinearity in phasor form can be written as [5]

N1(V,θ) =
2

2π

2π
∫

0

y[V cos(φ)]e jφ dφ , (1)

where y[t] is the equation for the nonlinear element, cosφ is

the input signal (in this case a sinusoid), and integration is

carried out over all possible phases of the sinusoid φ . The DF

is dependent on the input amplitude and relative phase of the

signal. The factor of 2 in the numerator accounts for two equal

components at positive and negative frequencies. Equation

(1) is mathematically simple and can easily be compared to

Fourier series; the fundamental tone is being “picked” out of

the signal y[x(t)] and the result becomes a function of the

input amplitude and phase. Additionally, the n-th harmonic

component at the output can be found easily:

Nn(V,θ) =
2

2π

2π
∫

0

y[V cos(φ)]e jnφ dφ . (2)

Equation (2) can be extended to a 2-dimensional nonlinear-
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Fig. 2. Measured drain impedance at 1 MHz for a GaN FET device versus RF
input power (10.7 GHz) and drain bias voltage. There is a characteristic peak
in the low frequency impedance which occurs before the device saturates. The
Angelov nonlinear model shows a similar effect versus RF input power.

ity and K-sinusoidal inputs as follows

N~k(
~Va, ~Vb, ~θa, ~θb) =

2

(2π)K

2π
∫

0

dφ1· · ·

2π
∫

0

dφK y

[

Va0 (3)

+
K

∑
i=1

Vai cos(φai +θai),Vb0

+
K

∑
i=1

Vbi cos(φbi +θbi)

]

× exp

[

j

(

K

∑
i=1

kiφi

)]

where K is the total number of input sinusoids, ~V and
~θ are vectors of the input sinusoid amplitudes and phases

respectively, and ~k is a vector denoting the mixing order

of the describing function. The subscripts a and b denote

the two independent inputs to the nonlinearity (2-dimensional

nonlinearity). Equation (3) also adds in the DC bias of V0 to

the input of the nonlinear element. Even though (3) becomes

a K dimensional integral, the interpretation is still simple; the

full frequency spectrum (sum of tones) is fed to the nonlinear

function (y[x(t)]) and the~k-th order output is selected with the

exponential (exp(. . .)).

If input frequencies are harmonics of one another, (3) is no

longer the optimum DF. This is easily seen as the harmonics at

the input of a nonlinear element can mix in different ways to

the same output frequency. This means that one DF equation

is no longer enough; the sum of all the mixing terms that land

on a particular frequency is needed to get the total nonlinear

response to the input tones.

The benefit of analyzing a nonlinear method with (3) as

opposed to harmonic balance, is that the all mixing products

at the same frequency can be computed, giving information

about how the nonlinearity combines input tones to give the

total harmonic response at a frequency. In contrast, harmonic

balance gives only the total harmonic response.

Fig. 3. Describing function result for Angelov FET with 10 GHz input on
gate, and 10 MHz input on drain. The total DF result (sum of the individual
mixing products) tracks very closely to the HB result (dotted blue line).

III. ANGELOV CURRENT SOURCE MIXING TONES

The interaction of a low frequency (LF) and RF signal

in a nonlinear Angelov FET model is now examined on the

example of a GaN FET which is operated in envelope tracking

mode with a low-frequency 10-MHz large signal injected into

the drain, while under large RF operation at 10 GHz. Using

a Volterra series in this case is impractical because the signal

amplitudes are large and the nonlinear current source equation

is complicated, requiring a large number of coefficients. In the

DF approach, the Angelov standard current source [7] replaces

y[· · · ] in (3), which is a function of the gate, drain, and back-

gate voltages.

The first issue that arises from calculating (3) is that the

input voltage vector (amplitude and phase for all spectral com-

ponents) is unknown. The Angelov compact model contains

resistive, reactive, and nonlinear elements. This means that

the solution of the circuit involves coupled, nonlinear, and

frequency dependent equations. A commercial HB simulator is

used to simulate the FET model and the control node voltages

are exported and used as inputs for the DF method. By using

HB, not only can the nonlinearity effects be calculated, but the

total DF component results can be compared to the HB total

component result for validation. Note however the important

difference: HB gives total frequency content, while the DF

approach includes information of specific interactions between

signals.

As an example, a Gallium Nitride (GaN) FET has a

measured low-frequency impedance at the drain as shown

in Fig. 2 [8]. An Angelov model extracted from the device

shows a similar phenomenon in the drain impedance, but the

mechanism for the peaking is difficult to understand and a

more intuitive description would be useful to understand how

to control this behavior.

Equation (3) is extended to a 3-dimensional nonlinearity

and Python code was implemented to compute the result. Inte-

gration was performed with, Cubature, a multi-dimensional

978-1-5090-0698-4/16/$31.00 ©2016 IEEE



integration library1. The FET was simulated in ADS with

five harmonics plus mixing products (up to order 5). The

gate, drain, and back-gate voltages were exported and used

with the describing function code. To shorten the time for

integration of the DF, the bias and a small selection of tones

were used (chosen based on relevance to the total solution):
~f =[10e6, 9.99e9, 10e9, 10.01e9]Hz. The com-

plex drain impedance is calculated as Zd = Vd/Id using the

following steps:

• HB is used to simulate the Angelov model with a 10 GHz

fundamental on the gate and 10 MHz tone on the drain;

• the control voltages are exported which provide the inputs

to (3);

• the describing function N~k is numerically integrated;

• all order mixing products that land on the same frequency

are summed;

• total DF response is compared to HB.

Fig. 3 shows the results of the DF output for the various

mixing products for the drain current at 10 MHz compared to

the total current as found by HB (dotted line). The numbers

in the brackets correspond to the frequency mixing products

as given by the vector of frequencies in the previous para-

graph. For example, the primary (and majority of the current)

component comes from the 10 MHz signal injected at the

drain (legend key~k =[1,0,0,0]). The second order mixing

products which involve 10 GHz and one of the IM3 side

tones, have a smaller effect but are increasingly significant

at higher RF input powers. The sum of the DFs gives the

black line in the plot which tracks closely to the HB result.

At lower RF input powers DF are almost identical to the HB

result. Fig. 4 shows the computed drain impedance, Zd , for the

total DF result and various subsets of the total DF result. If

one just uses the primary 10 MHz tone to calculate Zd (red

dashed line), the result is very flat and does not exhibit the

peaking characteristic as shown in Fig. 4. Adding the RF tone

in addition to the 10 MHz tone (black line) gives a self-biasing

effect when the transistor starts to compress, but the impedance

bump is less than the HB result (solid black line). Whereas,

the full DF result (adding in the second order mixing products)

tracks closely to the HB result. The results are not identical

because of a small numerical offset of the DF compared to

the HB result (in Fig. 3 the results are nearly identical at low

RF input power, however, with the very small drain voltage,

the impedance difference becomes ≈6 Ω).

The resulting conclusion that can be drawn is that the

RF IM3 products mixing back down to LF provide a non-

trivial decrease in current at the onset of saturation, thereby,

increasing the drain node impedance. This effect can be tested

by modifying one of the RF adjacent tones at the gate and

simulating the resulting effect on the LF impedance. Using the

same export node voltages and modifying the amplitude and

phase of the 9.99 GHz tone at the gate gives drain impedance

1C code for the library is at http://ab-initio.mit.edu/wiki/index.php/
Cubature. A Python wrapper can be found at https://github.com/saullocastro/
cubature.

Fig. 4. (a) HB voltage used to calculate the (b) drain impedance. The
comparison between HB and (total) DF Zd is close both having very similar
trends. If only the primary LF tone is used, the impedance does not have the
large characterisitc bump in impedance.

Fig. 5. LF impedance (Zd ) of a FET when excited with 10 GHz and a
9.99 GHz tone is modified to have a set power (symbols) and phase (dotted
line connecting symbols of certain type).

results shown in Fig. 5. With no modification, the device

exhibits an impedance close to the blue ‘x’ shown in the

plot (which is the HB solution as given from Fig. 4). As the

9.99 GHz tone power is increased, the impedance can be swept

along a circular path roughly centered on the ‘x’ by means of

the phase. The mixing product of the two RF tones (down to

LF) is an output power with amplitude and phase that can be

directly controlled.

A measurement bench was developed and a GaN FET was

used to validate this phenomena using two RF tones at the gate

while simultaneously measuring the low frequency mixing

product [8]. The primary RF source at 10.7 GHz was set for

an input power of 15 dBm. The low frequency impedance

was measured at 20 MHz. Results of the measurement are

shown in Fig. 6. The impedance with no power on the second

RF tone is approximately 300 Ω. As the secondary tone

power is increased and the phase swept, the same impedance

modification effect is seen as in the simulated case. The LF

impedance is centered around the 0 W input power case, and
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Fig. 6. Measured Zd with a RF source of 10.7 GHz and a secondary RF
source at 10.68 GHz with power given in the legend. The same LF impedance
modification effect is seen as in DF and HB simulations.

larger radius circles are given by swept angle at a particular

power of the RF tone. Note that the input powers for the

secondary tone cannot be compared between the simulated

and measured case: the simulated case sets the power at the

internal gate control node assuming voltage across a 50 Ω, load

while the measured case is the available power at the input of

the FET.

One may note that the computed impedances over swept

phase as shown by DF are not centered at the zero power

point. This is because the HB control voltages for 24 dBm

were used, only modifying the 9.99 GHz tone, instead of re-

simulating in HB for each gate input power: all the remaining

elements of the Angelov model were ignored when directly

modifying the 9.99 GHz tone. If the control voltages for HB

were used for each input power and phase, the shape would

be almost identical to the measured case.

This “active” impedance modification can be used directly

with the measured LF impedance to predict the LF output

waveform for wideband RF signals. Unfortunately, due to

equipment limitations, the relative phase of the RF sources,

which would be required to give the full picture of RF → LF

mixing, could not be measured.

IV. CONCLUSION

In summary, describing functions are shown to be a use-

ful approach for accurate description of the multi-frequency

mixing products of a GaN FET under supply modulation. DF

allows analyzing outputs at higher mixing orders without and

increase in complexity, either in code or extraction time. This

paper presents the DF formulation, and shows results for the

dependence of the low-frequency (10 MHz) drain impedance

with a large-signal RF (10 GHz) input power. The inputs to

the calculation are found from an available Angelov model

and harmonic balance.

This paper detailed an example of exploring the mixing

products down to low frequency of a supply modulated transis-

tor under large signal RF drive. Understanding how RF tones

mix down to low frequency allows better understanding of how

the supply modulator can be used to negate the low frequency

power for better linearity or inform DPD algorithms for wide-

band supply modulation. The results show the same trends as

observed in measurement.
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