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Continuous Broadband GaAs and GaN MMIC
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Abstract— We describe the design of two broadband monolithic
microwave integrated circuit (MMIC) loaded-line reflective phase
shifters and their performance over the 6-12-GHz band. Lange
couplers with transistor-loaded transmission-line reactive loads
provide variable phase shift through reverse-bias control. A GaAs
phase shifter with four diode-connected transistors in each of the
two reactive loads is designed with discrete inductors to provide
an increasing phase shift with frequency. A GaN reflective phase
shifter uses 14 transistors in each reactive load with a goal of
increasing the phase shift across the band. Measurements show
continuous phase shift from 40° to 70° with less than 6-dB
insertion loss over the 6-10-GHz band and from 60° to 165° with
less than 8-dB insertion loss across the 8§-12-GHz band for the
GaAs and GaN MMICs, respectively. The power performance of
the MMICs is compared in terms of large-signal S-parameters,
harmonics, and IP3. The GaN phase shifter exhibits similar level
of harmonic generation like the GaAs device at a 20-dB higher
input power.

Index Terms— Broadband, GaAs, GaN, monolithic microwave
integrated circuit (MMIC), phase shifter.

I. INTRODUCTION

HASE shifters are common components in analog beam-

formers of phased array antennas, as well as in instrumen-
tation, e.g., reflectometers or phase-noise discriminators. Phase
shifter circuit architectures vary depending on the operational
bandwidth and can be digital or continuous [1]. Table I shows
a comparison of published continuous broadband (>40%)
phase shifters demonstrated in the X-band frequency range,
with the two monolithic microwave integrated circuit (MMIC)
phase shifters presented in this letter highlighted in bold,
where [2] is the best commercially available device in this
frequency range. In [3]-[6], the topology is reflective with
different hybrids (branch-line, Lange) and variable reflective
loads implemented with MEMS [7] or varactors [3], [8]. Large
continuous phase shifts in [8§]-[10] are accomplished with two
cascaded phase shifters. Loaded transmission-line circuits can
provide a true time delay over as much as a decade bandwidth
shown in discrete phase shifters, e.g., [11]. The loaded-line
phase shifters are varied using varactors [12], MEMS [13],
or ferroelectrics [14], [15] and are typically limited by return
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Fig. 1. Topology of reflective loaded-line continuous broadband phase shifter.
The coupled and through ports of the Lange coupler are variable reactances,
as in a reflective phase shifter. The variable reactances are implemented
with tunable artificial transmission lines that use diode-connected transistors
as variable capacitors. Both reactive loads are implemented with lumped
inductors and a shorted termination in the GaAs MMIC (blue) and with
transmission-line sections and an open termination in the GaN MMIC (red).

TABLE I

SUMMARY OF BROADBAND PHASE SHIFTERS AT X-BAND
Ref. f., GHz | FBW, % | A® | IL, dB | Topology
[5] 10.2 43 105 | 3 Reflective
[6] 12 100 120 | 4 Reflective
[9] 10.25 114 98 9 Reflective dual
[10] 9.75 67 90 3.65 Reflective dual
[15] 10 40 285 11 Loaded Line
[2] 11.5 113 400 | 8 N/A
GaAs | 8 50 71 6 Reflective
GaN | 10 40 167 | 7.4 Reflective

loss variation over frequency. This variable characteristic
impedance has been addressed by adding additional tunable
components, demonstrated at lower frequencies in [16] at
1 GHz and [17] at 5 GHz.

Here, we present broadband GaAs (6-10 GHz) and GaN
(812 GHz) continuous MMIC phase shifters, with a topology
as shown in Fig. 1. To achieve a good match and large phase
shift across a broad bandwidth, the circuit in Fig. 1 combines
a reflective topology with a loaded-line variable reactance.
Two circuits are implemented: a GaAs MMIC with increasing
phase in frequency and a GaN MMIC with maximum phase
shift in the center of the band. The designs are presented in
Section II and the measured results in Sections III and IV, with
a comparison of harmonic generation and IP3 dependence on
input power. To the best of the authors’ knowledge, this is
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Fig. 2. Photographs of 2.5 mm x 2.5 mm GaAs and I mm x 2.5 mm GaN
chips. The gate directions for the chips are indicated with red arrows. The
effects of bends in the Lange couplers are compensated with electrical length
and bridge placement.

the first comparison of broadband GaAs and GaN monolithic
phase shifters in terms of power performance.

II. MMIC PHASE SHIFTER CIRCUIT DESIGN

The phase shifters are designed following well-known meth-
ods in, e.g., [18] and are implemented in WIN Semiconduc-
tors’ GaAs enhancement (E-mode) PIHI0 and GaN deple-
tion (D-mode) NP15-00 pHEMT processes. Each variable
capacitor in Fig. 1 is implemented with a transistor with
grounded source and drain terminals. The capacitance range is
0.241-0.470pF at 9 GHz for gate bias variations of —0.2 to
0.6 V for the GaAs E-mode devices and 0.163-0.281pF at
9 GHz for —3 to —1-V gate bias variation for the D-mode
GaN devices. Fig. 2 shows photographs of the two fabricated
MMICs. The GaAs phase shifter uses three lumped 0.4-nH
inductors and four transistors in each shorted loaded line.
The GaN phase shifter loaded lines are open-circuited and
use 14 transistors with electrically short, 95-Q lines as series
inductors. The lines are 15 yum wide and 65 ym long (1.7° at
12 GHz). The periphery of the pHEMTs is chosen to approx-
imately scale with power density of the processes: 4 x 75 um
in GaAs (1.5 W/mm) and 2 x 75 gm in GaN (3.5 W/mm).
The circuits are designed using foundry nonlinear models and
full-wave simulations in Cadence AWR.

III. SMALL-SIGNAL MEASUREMENTS

The fabricated chips are measured with a probe station and
network analyzer with on-wafer SOLT calibration standards.
Fig. 3 shows the measured S-parameter magnitudes from 6 to
12 GHz for the GaAs (blue) and GaN (red) phase shifters,
for three gate bias voltages corresponding to the edges and
center of the phase range. The dashed lines show the simulated
behavior for the same bias conditions. The match remains
below 10 dB for both the devices across the range due to
the reflective topology. The nonlinear models predict the
capacitance changes well, but at slightly different gate voltages
than in measurement, resulting in a frequency shift between
the measured and simulated data. Depending on the bias and
frequency, the transmission amplitude varies and needs to be
evaluated together with phase changes.

Fig. 4 shows the measured and simulated phase of Sy; as a
function of control voltage and phase shift and group delay as
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Fig. 3. Simulated and measured S-parameters for both GaAs and GaN chips
at three bias voltages of interest.
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Fig. 4. (a) Measured and simulated phase as a function of gate bias. The
black lines indicate lower (fine dashed), middle (dashed), and upper (solid)
biases for a useful voltage range. For this range, (b) shows the measured and
simulated phase variation for 6-12 GHz. The results for the GaAs and GaN
MMICs are shown on the left (blue) and right (red), respectively.

a function of frequency. The useful voltage range is indicated
with vertical black lines in Fig. 4(a) for both MMICs. For
this range, the phase is plotted across frequency in Fig. 4(b),
showing that with appropriate choice of bias control, the GaAs
and GaN MMICs have 40°-150° and 60°-165° of phase
variation, respectively. Ideally, for artificial transmission lines,
the group delay should be flat, but the reflective topology adds
additional dispersion.

The reactive line in the GaAs MMIC is electrically shorter
and the phase shifter has more phase variation at the higher
frequency, which is useful for broadband phased array feed
networks. On the other hand, the reactive line in the GaN phase
shifter is electrically long and supports an in-band resonance.
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Fig. 5. Measured frequency dependence of transmission coefficient (top) and
maximum phase shift (bottom) for an input power range of 5-25 dBm in steps
of 5dB. |Sy1] is plotted at the highest voltage for the GaAs (left, blue) and
GaN (right, red) devices. The GaAs circuit is too lossy above P, = 15 dBm.

The phase shift peaks around 8 GHz and is 20° higher at the
lower edge of the band and 90° lower at the higher edge of
the band, compared with the GaAs phase shifter.

IV. LARGE-SIGNAL NONLINEAR PERFORMANCE

Large-signal measurements are performed with a network
analyzer calibrated with a linear amplifier at the input
port. Fig. 5 shows the amplitude and phase change of the
large-signal transmission coefficient. A frequency-dependent
increase in loss and a reduction in phase change are observed
for both MMICs, but at different power levels, as expected. For
the GaAs MMIC, above 10 dBm of input power, the device
provides 50°-60° of phase shift but |S;|, drops below
—15dB. On the other hand, the GaN MMIC has 20°-75°
of phase shift for up to 20 dBm of input power with little
variation in |Sy;| compared with the small-signal case. The
power dependence eventually levels, because the first diode
behaves as a short and the phase is no longer tunable. The GaN
phase shifter has higher power handling since the transistor
gate—source breakdown voltage exceeds 100 V and is limited
by the gold 95-Q transmission line to about 7 W, by the
manufacturer.

To quantify the harmonics, a CW signal is amplified with
a linear amplifier and the output harmonic content measured
with a spectrum analyzer. A coupler and power meter at the
chip input enable calibrated power measurements. The results
are shown in Fig. 6. The harmonic generation is frequency-
and bias-dependent for both MMICs. The GaN phase shifter
generates the same harmonic level at a 20-dB higher input
power than the GaAs circuit, as expected.

Two-tone measurements with 5, 10, and 15 MHz tone
spacings are performed with two identical CW sources and a
broadband power combiner followed by a linear amplifier, with
power measured at the output of the MMICs with a spectrum
analyzer. The results are shown in Fig. 7. Note that the bias has
a greater effect than in the case of CW measurements, and that
the third-order intermodulation products (IP3) are significantly
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Fig. 6. Harmonic generation as a function of input power for the GaAs (blue)
and GaN (red) phase shifters at 9 GHz.
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Fig. 7. Lower IP3 tone as a function of input tone power measured at
9 GHz for tone spacings of 5, 10, and 15 MHz, at three bias voltages for the
GaAs (blue) and GaN (red) circuits.

higher in level than the harmonics. The GaN MMIC does not
show further increase in IP3 after 15 dBm.

V. CONCLUSION

This letter compares GaAs and GaN broadband MMIC
phase shifters with a combined reflective and loaded-line
topology. The GaN MMIC tolerates higher input powers,
which is not surprising, but is quantified here for the first
time. For the same harmonic content generation and IMD3 lev-
els, the GaN MMIC requires 20 dBm higher input power,
while the phase and amplitude degrade at 15 dBm higher
power.
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