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Louis Scharf

Date

The final copy of this thesis has been examined by the signatories;

and we find that both the content and the form meet acceptable presentation

standards of scholarly work in the above mentioned discipline

HRC Protocol



iii

Vian, James Edwin (Ph.D., Electrical Engineering)

An Optically-Switched Transmit/Receive Lens Array for Beam-Space Adaptive Com-

munication Systems

Thesis directed by Professor Zoya Popović

With the growth in todays modern communication world, multiple user

and multi-path environments are becoming an ever increasing problem. These en-

vironments reduce the quality of the communication link through multiple users

interfering with each other or self interference in multi-path environments. A com-

mon technique used to combat these environments, is to use a planar antenna array

that steer its receptivity pattern in the direction of the desired user. The receptivity

patterns for the arrays are control through adaptive algorithms that adjust the mag-

nitude and phase of each received signal at each element in the planar array before

coherently combining the signals. The magnitude and phase adjustments (complex

weights) reverse the phase shifts induced in the signals as they propagate across the

surface of the planar array. The disadvantage of this technique is that it requires

significant amounts of computational processing power for large arrays containing

many antenna elements. By using a microwave lens array instead of a planar array in

the communication system, the received signals are transformed from a phase-space

representation to a beam-space representation, which can reduce the processing load

for the algorithm and may increase the overall signal to noise ratio (SNR) through

partial beam-forming before the noise is added to the system. For these reasons, an

optically controlled transmit/receive lens array is developed. The optical control of

the lens array allows the array to switch between transmit and receive modes rapidly

with negligible interference to the microwave signals. A low optical power single pole

double throw switch is developed for routing the transmit and receive signals in the
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array that has insertion loss of 0.3 dB and isolation of 36 dB. To model the per-

formance of lens arrays for wireless communication systems, code is developed that

calculates the imaging properties of lens arrays under different design conditions.

The lens array modeling code is used in conjunction with a modified Least Mean

Square (LMS) algorithm that turns off small valued complex weights, to improve the

overall SNR and adaptation rate for the communication system.
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research group. To Stein Hollung, whose work on transmit/receive lens arrays is the

bases for my work research. To Eric Bryerton, Joe Tustin, Michael Forman, Todd

Marshall, Manoja Weiss and Jan PeetersWeem, whose conservations on on electro-

magnetic theory (among other things) help me to better understand this difficult

topic. A special thanks to Shawn Stone, Pete Kirkpatrick and Paul Smith, who help

with the buying, building and testing of many of the items in this thesis. I would

also like to thank Michael Forman, Todd Marshall and Jan PeetersWeem for their

time and patience in teaching me the ways of Linux and LaTex which made the

writing of this thesis possible.

In addition to the members of Zoya Popović’s group, I would like to thank
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CHAPTER 1

INTRODUCTION

1.1 Adaptive Communication Systems

In recent years there has been an explosion in growth in civilian wireless

communications. With the increased use of wireless communications systems, such

as cellular phones, and data communications systems, such as wireless local area

networks (WLAN), the wireless environment is getting increasingly more complex.

With the exponential increase in users and faster data rates, the once plentiful re-

sources of bandwidth (BW) and transmission power are now scarce. In an effort to

increase the capacity of communication systems where multiple users and multiple

propagation path interference becomes a problem, advanced modulation, coding and

power control techniques have been developed, [3, 4, 5, 6, 7]. These techniques have

gone a long way towards increasing the systems capacity without sacrificing system

performance.

In wireless communication systems, multiple antennas may be used to im-

prove the system performance through diversity transmission and reception. Di-

versity is effectively transmission and/or reception of multiple copies of the same

information that are slightly different. When the multiple copies are combined co-

herently or non-coherently, the resulting effective signal to noise ratio (SNR) of the

system is much greater than that of a single copy. The more copies of the signal the

larger the performance improvement of the system (usually measured in bit error

rate, BER, decrease).
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The concept of diversity dates back to the 1940’s when it was used to

improve radar performance. Much of the early published work focuses on diversity

reception where multi-path fading is a problem [8, 9, 10, 11, 12]. For example,

transmission over long distances (i.e., part-way around the world) results in multiple

reflections of the waves off the ionosphere, and the different reflected waves interfere

with each other at the antenna. When this interference is destructive, it is referred

to as “multi-path fading”, since the signal fades in that case. Price and Green [12],

showed that if delayed copies of the received signals where combined together in

what they called a “Rake” receiver, much of the effects of the multi-path fading

can be removed. Multi-path fading also occurs in communication systems where

the transmission distances are shorter. However, if multiple antennas are used,

the fading at each antenna will be different and depends on the distance between

antennas. The farther the antennas can be separated, the more uncorrelated the

fading at each antenna is. When two antennas are about ten free-space wavelengths

(10λ) apart, the multi-path fading at each antenna can be considered independent

and the signals may be combined based on their average signal to noise ratio (SNR)

[8, 9, 10]. Turin [11] showed that if the fading at each antenna is correlated, then

the optimal combination of the received signals is a coherent weighted sum using the

mean of the signal fading for the weights, and a non-coherent weighted sum based

on the covariance of the the signal fading for the weights. A completely coherent

summation is preferred for these statistical diversity systems, since in this case the

SNR grows as the square of the order of diversity, in contrast to linearly for the

non-coherent case.

With the advent of the microprocessor it becomes feasible to build antenna

diversity systems that use adaptive algorithms to control the combination of the

signals received at the different antenna elements. Since the algorithm is able to
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perform real time tracking of the received signals, the antenna signals may be co-

herently combined depending on the instantaneous relationship between the signals,

and not the average off all possible realizations of the correlation between them. As

a result, the SNR for an adaptive antenna diversity system is usually better than the

SNR for a statistical antenna diversity system. Since the instantaneous relationship

between the signals is important, the antennas may be be placed at a smaller spac-

ing (on the order of λ/2), making the system more compact. As mentioned earlier,

modern communication systems have to maintain quality of service with multiple

users interfering with each other, as well as the same user interfering with itself due

to multi-path fading. Since adaptive arrays can learn about their environment, they

can adapt to the environment without any prior knowledge of the signal sources,

assuming that the environment changes slowly when compared to the convergence

rate of the algorithm.

One of the first adaptive antenna diversity systems dates back to the 1950’s

when Howells and Applebuam used a dual-antenna system to remove the effects of

an unwanted user, [13]. The magnitude and the phase of one antenna signal is

adjusted so that when it is combined with the second antenna signal, the unwanted

user is canceled out. This is an example of an adaptive antenna diversity system that

isolates users in a multi-user environment. If the second received signal is another

copy of the “desired” user’s signal due to multi-path, then the magnitude and phase

of the antenna signals would be adjusted such that the received signals combine

coherently.

The magnitude and phase changes in the received signals are often referred

to as weights, in reference to a complex weighted sum. The weights in the algorithm

have an interpretation in microwave antenna array theory. The weights are the

relative magnitudes and phases of the generators at each antenna element for a

transmit array. Because of reciprocity, this is equivalent to the amplitude and phases



4

that would need to be imposed on the receiver voltages at each element in reception

for equal transmit and receive far-field radiation patterns. In an adaptive system, the

complex weights vary based on a feedback signal. This in turn changes the far-field

radiation pattern of the array in some pre-determined fashion. For example, it places

the main beam in the direction of the “desired” user, and a null in the interference

direction. If the user is in a multi-path environment, then the weights are adjusted

so that there is a lobe pointed in each direction from which the “desired” signal

is received. For a multi-user environment, a null is placed in the direction of the

“other” user, and very little of its signal is received.

Military applications are also showing an increased need for adaptive arrays

both for multi-user communication systems and radar systems. As with the civilian

communication environment, military environments are prone to interference from

other users and multi-path fading. The military environments also have an additional

interferer, “The Enemy”, who is jamming “desired” user signals with a signal that

can be many times greater in magnitude than that of the “desired” user. If the

complex weights are implemented with relative phases, the system is narrowband

and results in changes of radiation pattern as the frequency changes. This is often

referred to as “beam squint” and is yet an unsolved problem in practical broadband

arrays. For broadband signals, a complex weighted sum of time delayed versions of

the signals are needed to prevent beam squint. This processing technique is referred

to as true-time delay processing.

One of the disadvantages of adaptive array systems is that they require

significant computational power to calculate the adaptive weights. The number

of computations increases geometrically with the number of array elements. In this

thesis, a new type of front end (antenna array and receiver) is explored in the context

of adaptive systems. In a “standard” planar array, each element receives a phase-

shifted version of the same input plane wave. In the lens array presented in this thesis,
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the antenna array performs a Fourier transform and images the signal sources onto a

focal surface, and the signal image is then sampled with receivers. Most applications

require both transmit and receive functions, and a part of this thesis is concerned

with fast efficient routing of signals through transmit and receive paths. To that end,

the transmit and receive array presented in this thesis uses optical control which does

not interfere with microwave signals and can be very fast and energy efficient.

1.2 Adaptive Planar Array Communication Systems

The basic architecture of a narrowband adaptive array is shown in Fig-

ure 7.3. It consists of an array whose signals are adjusted both in magnitude and

phase (i.e. each element has a complex weight) before being combined. The weights

are controlled by an algorithm which uses information about the structure of the

“desired” user’s signal (i.e. modulation, coding, pulse shape, etc.) to estimate the

instantaneous relationships between the received signals. The information about

the “desired” signal is contained in the training signal. There are many differ-

ent algorithms used in adaptive antennas depending on the needs of the system

[13, 14, 15, 16, 17]. One of the earliest algorithms is the LMS (Least Mean Square)

algorithm develop by Widrow [18]. It is a gradient search algorithm that minimizes

the error between the output signal, yk, and the training signal dk (Figure 7.3). The

result is a set of weights that converges to the optimal set of weights known as the

Wiener solution [19]. Once they converge, the weights stay fixed until the commu-

nication environment changes and the algorithm proceeds to readjust the weights.

The adaptive system in Figure 7.3 is intended for a narrowband application

of bandwidth BW, where the delay of the received signals across the array or the

difference in delay between multi-path signals is less than 1
BW . For very broadband

systems, such as some used by the military, or for large delay multi-path environ-

ments, true-time delay processing is needed. The length of the delay line is at most
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Figure 1.1. An example of a narrowband planar array adaptive receiver shown for
the single user case. The received signals, si(t), are amplified with LNAs and down-
converted (mixer, local oscillator and LPF) before being sampled (represented by
switches). For this model, the effect of the LNAs and down-converters is the addition
of noise. The received signals plus noise are sampled with a sampling period T, giving
signals, xi,k, used by the algorithm. The algorithm uses the training signal, dk, to
adjust the weights, W, such that the SNR at the output, yk, is maximized.
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Figure 1.2. The weight trajectories in the complex plane for a planar array adaptive
receiver converging to the optimal weights.

twice the maximum delay expected to be seen between signals, and the time interval

are spaced at a period of 1
BW . An entire area of research focuses on this type of

adaptive system, referred to as Space-Time Adaptive Processing, STAP [6].

The Wiener solution is the optimal solution for the weights that minimizes

the error between the training signal and the output. The Wiener solution

Wopt = R−1P (1.1)

where (R)ij = E[xix∗j ] is the correlation of the received signals, and (P )i = E[xid]

is the correlation of the training signal and the received signals. For a standard

narrowband planar array, each of the array elements receives approximately the

same amplitude (for far-field sources), but with a relative phase shift that depends

on the array period and angle of incidence. Using these assumptions in Equation

(1.1), the solution results in complex weights that lie on a circle, Figure 7.4. The

weight trajectories in Figure 7.4 show the convergence of the LMS algorithm for a

plane wave incident on a planar array with ten elements in a row. If an interfering

signal is present, the weights rotate so that the power of the interfering signal is
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reduced below the noise floor of the system. This weight distribution in the complex

plane implies that each of the received signals has equal importance. For adaptive

algorithms, the adaptation rate is inversely proportional to the number of weights

and the computational load is proportional to the number of weights.

For systems that require small beamwidths (i.e., radar), have large numbers

of interfering users and need many nulls, or require multiple beams due to multi-

path, a large array with many elements is needed to provide the degrees of freedom

for a good solution. In these situations, adaptive planar arrays are slow require large

and require significant amounts of computational power [20].

1.3 Adaptive Lens Array Communication Systems

The multi-user, multi-path and jammer environments have one thing in

common: they all have signals arriving from different directions. For a planar array,

the angle of arrival is encoded in the phase variations across the surface of the

array. If a microwave lens is used, the signals are instead imaged onto a focal

surface at different locations “behind” the lens. By sampling the focal surface with

detectors (antennas and receivers), the algorithm only has to process those detectors

illuminated by the “desired” user’s signal. The architecture of the lens naturally

separates spatially the received signals much like a pre-formed beam space array. If

an interfering signal is present, then the weights for the detectors illuminated by the

“desired” user’s signal adjust to cancel out any of the interfering signal they receive.

For multi-path environments, there are several spots illuminated by the “desired”

user’s signals and the corresponding detectors are used. One obvious advantage

of lens arrays is that the number of weights depends on the number of paths the

“desired“ user’s signal takes to the array and not the number of elements in the

array. By using fewer weights, the adaptive system should adapt faster and require

significantly less computational power.
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There are many architectures for microwave lenses. For example, dielectric

lenses look and act like optical lenses. Network lenses use beam-forming networks

that mimic the beams produced by sampling the image surface of a lens (e.g., Butler

matrices). Such networks can be made efficient [21, 22, 23] and are lossless since the

beams are orthogonal [24, 25, 26]. However, for large arrays, these networks can have

significant loss due to the power combiners and phase shifters contained in them [27].

Finally, there are “Boot lace” lens arrays which are two arrays connected together in

element pairs with transmission lines. The transmission lines simulate the delay that

a microwave signal undergoes through a dielectric lens. The transmission lines are

longer in the center than on the edge, in analogy to an optical lens being thicker in

the center. Lens arrays are also prone to loss just as network lenses, but the loss in

a array lens grows slower than the loss in a network lens as the number of elements

increases, [27].

Lens arrays may have an advantage over planar arrays by performing some

beam-forming before noise in added by receivers. A discussion on the effects of lens

arrays on communication systems, which points to interesting future work in given

in the Section 7.3.2.

1.4 Fast Optical Control of Lens Arrays

Bi-directional lens arrays are are needed for radar and communications

systems. However, it is possible to design bi-directional lenses with amplifiers that

add gain to the system. The amplifiers are connected between each pair of antenna

elements. One of the major advantages of active lens arrays is that they can produce

very powerful transmitting signals through spatial power combining, which in turn

means that lower-power, less expensive, more efficient power amplifiers can be used

in transmission [27].

In a bi-directional array, the transmit signals are routed through power
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Figure 1.3. A cylindrical bi-directional lens array which uses SPDT switches to route
through either the transmit path (PA) and receive path (LNA) respectively.

amplifiers (PAs) and the receive signals are routed through LNAs. This can be

accomplished in two ways. The first way is to use circulators that direct signals

depending on their direction of propagation. Unfortunately, these devices are too

large for use in lens arrays. The second way is to direct the signals using single

pole double throw (SPDT) switches, as in Figure 1.3. By using two SPDT switches

in each element, the lens array is limited to half- duplex operation, which can be

limiting for some communication systems, but not for radar. The rise time and fall

time for the switches should be on the order of a few nanoseconds to accommodate

wide bandwidth signals. For example, a 2 ns rise time, τrise, switch can handle a

BW = 1.8
2π τrise

= 140 MHz [28] signal at its fastest switching rate.

In the past, half-duplex bi-directional lens arrays have been electrically

controlled [1]. The control lines for the switches weave in and out between the unit

cells, as can be seen in the photograph in Figure 1.4. To minimize the number of

control lines in the array, the switches for the unit cells are connected in parallel.

By connecting the switches in parallel, the RC time constants for the switches add,

and this slows down the rise time of the array. An array with hundreds of unit cells

can have a switching rise time of a microsecond, even though nanosecond switches

are used in each element.
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(a) (b)

Figure 1.4. Example of an electrically controlled bi-direction lens array that uses
orthogonally polarized slot antennas (b) for the array elements [1].

Instead of electrically controlling the switches in parallel, it is possible to

optically address each individual unit cell. By using optical fibers, the control opti-

cal signals are naturally isolated from the microwave signals and the fibers do not

interfere with the microwave radiation. Since each switch is individually controlled,

the rise time for the array is the same as the rise time for the unit cell, independent

of array size.

1.5 Organization

This thesis presents work on applying lens arrays to communication and

radar systems. It covers the development of a fast, low-power optically-controlled

transmit/receive lens array and simulations of a lens array adaptive communication

system. Chapter 2 reviews microwave switch design, the current work done in op-

tical switches and the development of an optically controlled resonant microwave
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switch. Chapter 3 discusses the development and characterization of an improved

optical switch. Chapter 4 discusses the design and implementation of an optically-

controlled transmit/receive lens array. Chapter 5 discusses a numerical model for

lens arrays designed to explore the tradeoffs in lens array design. Chapter 6 reviews

the LMS algorithm and simulations of an adaptive lens array systems with tradeoffs

in hardware and required computational processing. Chapter 7 discusses some topics

for future directions that are motivated and validated by the work presented in this

thesis.



CHAPTER 2

8 GHZ RESONANT SWITCH AND UNIT CELL DESIGN

2.1 Microwave Switches Background

The principle goal of the research described in this chapter is to design

a fast optically controlled, half-duplex transmit/receive active antenna array. One

basic component of the array is an optically controlled single pole double throw

switch (SPDT) used to route the transmit and receive signals. The design of the

SPDT switch consists of microwave circuit, optical circuit and design .

Switches at microwave frequencies in principle work the same way as switches

at low frequencies (few hundred MHz and below): the signal chooses the path that

has the lower impedance. There are three measures of performance for a switch:

insertion loss (IL); isolation (ISO); and return loss (RL). IL is the ratio of power

delivered to a load for an ideal switch in its “on” state to the actual switch in it’s

“on” state. Therefore IL is a measure of the power lost from the load due to the

imperfections in the switch. It is usually expressed in positive decibels. Using scat-

tering parameters, IL=1/|s21| for the switch in the “on” state. ISO is the ratio of

amount of power delivered to the load for an ideal switch in the “on” state to the

amount of power delivered to the load for actual switch in the “off” state. ISO is a

measure of how well the switch turns “off” the load and is expressed as 1/|s21| for

the switch in the “off” state. Return loss appears only at microwave frequencies and

is the amount of power reflected at the switch because the load is no longer ideally

matched to the source. It is expressed as 1/|s11| for the switch.
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Figure 2.1. Transmission line schematics for a SPDT switch with microwave de-
vices,such as PIN diodes, in series (a) and shunt (b).

The main difference between microwave and low frequency switches is that

effective impedance of a device, e.q. a PIN diode, depends on its position in the

switch. This leads to two main configurations of microwave switches, the series and

shunt configuration, Figure 2.1.

The series configuration operates in the same intuitive way as a low fre-

quency switch with the low impedance device in the “on” path and the high impedance

device in the “off” path. The equations for IL, ISO and RL as

IL =
∣∣∣∣(2 + Zh)(1 + Zl) + Z0(1 + Zh)

2Z0(1 + Zh)

∣∣∣∣2 (2.1)

ISO =
∣∣∣∣(2 + Zl)(1 + Zh) + Z0(1 + Zl)

2Z0(1 + Zh)

∣∣∣∣2 (2.2)

RL =
∣∣∣∣Zload − Z0

Zload + Z0

∣∣∣∣ (2.3)

Zload =
(Zl + Z0)(Zh + Z0)
Zl + Zh + 2Z0

(2.4)

As seen from 2.1-2.3, good switch design requires a device that has a very small

impedance in the “on” path and a very large impedance in its “off” path.

As mentioned earlier, in microwave circuits, the effective impedance of a

device depends on its position in the circuit. The shunt configuration for SPDT

microwave switch exploits this property to improve the IL or ISO of the switch

in some cases. For the “on” path, the high impedance state of the device is in
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parallel with the intrinsic transmission line impedance (Z0), resulting in an combined

impedance approximately equal to Z0. Thus, there is a small reflection at the device

for sufficiently large impedance devices. For the “off” path, the low impedance of

the device shorts the transmission line, causing a large reflection at the device. To

prevent the short in the “off” path from shorting out the “on” path, a λ/4 section

of transmission line is used, to transform the short to high impedance (open) at the

Y-junction. The shunt configured switch has inherently smaller bandwidth than the

series configured switch due to this λ/4 section of transmission line.

To solve for the IL, ISO and RL for shunt configured switch,
[
A B
C D

]
calcu-

lated at the Y-junction and used to find IL, ISO, and RL as:

IL or ISO =
1
4
|A+

B

Z0
+ CZ0 +D|2 (2.5)

RL =
A+B − C −D
A+B + C +D

, (2.6)

where A B

C D

 =

 1 0

Y1 1


 0 j

Z0

jZ0 0


 1 0

Y2 1

 , (2.7)

(2.8)

and Y1, Y2 are give for the IL and ISO, respectively, as

IL: Y1 =
Zl‖Z0

Z2
0

Y2=
1
Zh
, (2.9)

ISO: Y1=
Zh‖Z0

Z2
0

Y2 =
1
Zl
. (2.10)

There are two basic categories of devices use in microwave switches. The first cate-

gories is active devices like diodes and transistors. The second categories is mechan-

ical structures that use moving metal contacts.

Active microwave switches have been around for decades and are avail-

able as microwave monolithic integrated circuits (MMICs). A typical MMIC SPDT
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Transmission Lines

3 MESFETs in parallel

Figure 2.2. An example of a MMIC SPDT switch with multiple devices (in this case
MESFETs) used to improve IL and ISO.

switch, figure 2.2, uses multiple devices to improve the IL and ISO of the switch

over a larger BW. Due to the non-linear nature of the devices, they generally gen-

erate large inter-modulation products if two signals are present in the switch at the

same time. Table 2.1 shows some typical values of IL, ISO, RL and third-order

inter-modulation product (IP3) for commercially available switches.

The recent development of mircoelectromechanical systems (MEMS) has

allowed the development of mechanical microwave switches. An excellent tutorial

on microwave MEMS switches is given by Elliott Brown, [29], which discusses the

advantages, disadvantages and areas of development for MEMS switches. MEMS

are mechanical structures built on the micron scale using semiconductor etching

techniques developed for integrated circuit. Cantilever and air bridge are the two

basic styles for MEMS switch.

The cantilever switch has a conductive arm connected to one side of a gap

and suspended over a metal contact on the other side of the gap. To close the switch,

Table 2.1: Examples of commercially available MMIC switches
manufacture M/A-Com M/A-Com Alpha
part number 2954-2004 MASW20000 AS018R2-00

IL (dB) 1.8 2.1 2.2
ISO (dB) 50 50 42
VSWR 2 1.8 1.85

BW (GHz) 2-18 DC-18 DC-18
Switching speed 20 ns 2ns 3ns

Inter-modulation Intercept Point N/A 43dBm 46dBm
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an electric field is applied between the metal arm and the pull down electrode in the

gap. The electrostatic forces generated pulls the arm down making contact with

the metal contact on the other side of the switch. The pull-down electrode usually

has an insulator deposited upon it to prevent the shorting of the control voltage.

By reducing the electric field to a value typically less than the threshold voltage

needed to close the switch, the switch will open. This switch is commonly used with

microstrip transmission line architectures.

The air bridge switch lends itself to co-planar waveguide (CPW) architec-

tures, where the air bridge is connected between the two ground strip of the CWP

and is suspended over the center line. Again, by applying an electric field between

the air bridge and an electrode on the center line (not shown), the air bridge bends

down to short out the CPW transmission line. In this case the switch path is “off”

when the electric field is applied. Then by reducing the electric field, the air bridge

opens and turns the switch “on”.

The IL, ISO and RL for cantilever and air bridge MEMS switches depends

on the difference between the “close” and “open” capacitance between the arm (or

bridge) and the transmission line. For good IL in cantilever switch and ISO in the

air bridge switch, the capacitance should be as large as possible or preferably an

ohmic contact. For a good ohmic contact, strong electrostatic forces are needed to

compress the contacts together. For good ISO in a cantilever switch and IL in the air

bridge switch, the capacitance should be as small as possible, leading to a large gap

between arm (or bridge) and transmission line. MEMS switches can exhibit IL of

0.4 dB below 1 GHz to just below 1 dB up to 40 GHz and ISO of 40 dB below 1 GHz

which degrades about 20 dB at 40 GHz.

There is a natural tradeoff between switch rate, performance and control

voltage. In order to make a fast switch, the movement of the pieces should be

minimized, which reduces the IL or ISO of the switch. By increasing the electric field
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strength and the stiffness of the arm (or bridge), the arm is forced to the contact

quicker and relaxes faster. It appears that the MEMS switches are fundamentally

limited to a “close” time of about 1µs and a “open” time of about 10µs due to

material properties.

Since electrostatic forces are used to control the MEMS switch, the required

energy needed to control the switch equals the difference in the stored energy in the

switch capacitance between the “open” and “close” states. The total control power

is the stored energy times the switch rate, 1
2(Cclose−Copen)V 2fs . For example, with

“close” capacitance (“open” capacitance is negligible) of 13 pF, a close state voltage

of 4 V and a switch rate of 10 kHz, the total power dissipated is approximately 1µW.

Besides low control power, MEMS switches also display superior linearity from the

lack of non-linear devices like diodes and MESFETs.

2.2 Photonic Switches Background

The earliest photonic switches were developed at much lower RF frequencies

[30, 31]. The switches consist of a gap in a conductive path filled with photo-

conductive materials. The switch is “closed” when the photo-conductive material

is illuminated with watt-level optical power. Much of the practical work focuses on

RF and microwave photonic switches that are fast [32, 33, 34]. These switches are

used in high-power inductive energy storage pulse power systems [35]. One reported

switch is used to control a 100 kW power source with a PIN diode and 2D laser

diode array [36]. Only in the past five to ten years has work been done on microwave

photonic switches. Most of the effort has been focused on developing a PIN diode

that acts as good switch diode as well as a good photodiode. This is one technique

for developing a microwave photonic switch, two more techniques are presented in

section 2.3.1.

By using a PIN diode as the microwave and the optical device, the optical
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signal provides the power for control; no additional power from supply bias line is

needed. The optical signal generates the carriers in the PIN diode, reducing the diode

impedance. The more light illuminates the device, the lower the devices impedance.

Therefore, the device is in a high impedance state with no light, and in the low

impedance state with high optical power density.

A device that has good optical performance and microwave performance is

not easy o obtain. From the microwave point of view, the PIN diode should have a

small junction capacitance for a high “off” impedance and low “on” resistance. From

the optical point of view, the PIN diode should have a large active area for more

light gathering ability and use materials that have good responsivity (generation

of carriers from photons). These conditions oppose each other in the optimization

of the PIN diode design. For example, a large active area causes a large junction

capacitance. Low “on” resistance means more optical power, or large active area

and good responsivity materials. Materials used in PIN photodiodes that have good

responsivities typically have larger loss than the materials used for high quality

microwave PIN diodes.

In [37], demonstrated a switch is presented with IL=2.2 dB for 1 mW of

optical power and with rise and fall time of .01µs to 10µs depending on optical

power. The IL is limited by the mount of optical power delivered to the PIN diode,

while the ISO is limited by the diode capacitance. [38] demonstrated a switch with

IL of 1.2 dB for 40 mW of optical power and ISO of 30 dB. Both switches need on

the order of milliwatts of optical power to achieve good IL with good ISO.

2.3 Developing Photonic Switch

As presented in the previous section 2.2, most of the work done in photonic

switches has been done in order to develop devices that could sever both as a mi-

crowave and optical device. In this work, we use off-the-shelf devices for both the
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microwave and optical circuits. Most of the fast optical components are develop for

the optical communication industry, limiting the wavelengths to 880 nm, 1310 nm

and 1500 nm, which are all in the infrared (IR).

Besides being limited to off-the-shelf components, the ability to machine

parts is limited to what can be manufactured on a printed circuit board (PCB)

prototyping milling machine model 93s made by LPKF. The milling machine can

cut, drill and gouge substrate materials, FR4 (PCB material), brass and aluminum

of up to 1.6 mm (64 mils). It has an accuracy of 8µm (0.3 mils) with a minimum drill

hole size of 300µm in diameter. The minimum cutting round is 250µm (10 mils) for

substrates, 1 mm for FR4 and 2 mm for metal.

One of our goals was also to minimize the size ofthe switch and the required

optical power. A small switch size is needed it insure proper array element spacing

to prevent grating lobes. Low optical power is needed not only for overall efficiency,

but also in order to be able to control large arrays with a single standard laser-diode.

2.3.1 Techniques for Optical Control The previous work shown

in section 2.2 demonstrated only one means of optical control of a microwave switch.

In principle there are three techniques for optical control. The first is to have a op-

toelectronic device like a photodiode or photo-transistor act as the microwave device

that switches between the high and low impedance state, Figure 2.3(a). This is the

technique used in section 2.2. The second is to use a photo-voltaic device to pro-

vide the bias power for a microwave device, which changes impedance states Figure,

2.3(b). For example, a PIN photodiode which generates carries when illuminated

and therefore biases a microwave PIN diode. The third technique uses a optoelec-

tronic device to control the bias current for a microwave device, Figure 2.3(c). Each

technique has its own advantages and disadvantages, and has been investigate to

some degree in this project.

The first technique uses a optoelectronic device in a microwave switch. This
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Figure 2.3. Three principle ways to optically control a microwave switch: use a
photo-device as a microwave devices in the switch (a); use the photo-device to power
the microwave device in a switch (b); and use the photo-device to control the bias
power to a microwave device (c).

technique requires the fewest number of devices and supply bias lines, however it is

difficult to produce an optoelectronic device that functions well as both a microwave

and optical device(see section 2.2). Another disadvantage of the this technique is

the IL and ISO are a function of optical power.

The second technique uses the photo-voltaic device to bias a microwave

device, which in turns provides the high and low impedance for the microwave switch.

Again, this type of control does not require external bias for the microwave switch,

but still requires substantial optical power (10’s of mW). By using a microwave PIN

diode in the switch, the IL and ISO equal that of a traditional microwave switch.

Since the microwave PIN diode “on” impedance depends on bias current, the IL or

ISO for this technique depend on the optical control power.

The third technique uses an optoelectronic device to control the bias voltage

for the microwave device. This technique also has the advantage of good IL and ISO,

as well as the potential of requiring much less optical power, however it requires an

external supply bias line for the switch. If the switch is integrated with microwave

amplifiers or other active components that require bias power, then the photonic

switch does not necessarily add extra bias lines.
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2.3.2 Investigating Optical Devices Used as Microwave Switch

Components The first technique for optical control uses an optoelectronic device

as the microwave device in a microwave switch, which is ideal due to the small

numbers of optoelectronic and space required. Several PIN photodiodes with active

areas ranging from 300µm to 80µm are tested in series and shunt configurations

in hopes of being able to use the first type of optical control. Unfortunately, there

is little difference (few dB) between the IL and ISO for the “on” and “off” states

of the PIN photodiodes. In section 3.1.1 there is evidence presented that points to

the bond wires used in the packaging of the photodiode leading to the poor IL and

ISO performance. There is also significant loss (between 3 dB and 6 dB) due to the

resistive nature of the photodiodes.

2.3.3 Investigating Optical Devices That Bias Microwave Switch

Component The second technique of optical control using a photo-voltaic device

to power a microwave device has the advantage in not needing an external power

source [39, 40]. This technique is very difficult to test in the laboratory because of

the difficulty in coupling large amounts of optical power onto the active area of the

device. Most microwave PIN diodes require about 1 mA to 3 mA of current at 1 V

to 1.5 V and it is not easy to generate enough current at the required voltage from a

photodiode. Several photodiodes can be connected in series to produces the required

voltage. A typical responsivity for infrared InGaAs photodiodes is 0.95 A/W, im-

plying that 3 mW of optical power is needed at each photodiode to generate enough

current to bias the microwave PIN diode “on”.

Eight PIN photodiodes connected in series to control a microwave varactor

diode with 450µW of optical power has been demonstrated [41, 42]. The success of

this design relies heavily on the fact that reverse bias current for a varactor diode is

only a few µA. The complexity of delivering large amounts of optical power to mul-

tiple photodiodes per switch makes this technique impractical for array applications.
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Table 2.2: Performance data for devices in Figure 2.4
manufacturer Siemens Texas QT

Instruments Optoelectronics
type Photo- Photo- Photo-

transistor amplifier Darlington
part number SHF 300 TSL250 LI4F1
wavelength 880 nm 840 nm 850 nm
Irradiance

Responsivity 2-4 (mA/mW/cm2) 80 (mV/µW/cm2) 3 (mA/mW/cm2)
Rise/Fall

Time 10µs 90µs 250− 300µs
Collector
Current 50 mA 1.6 mA

2.3.4 Investigating Optical Devices That Control the Bias of

Microwave Switch Component The third technique uses an optoelectronic

device to control the bias current to microwave device. If a photodiode is used for

the optoelectronic device, then 3 mW of optical power is still required to generate

enough carriers for the 3 mA current to flow through the photodiode. This is a

lot of optical power for control, especially when bias power is available. Photo-

transistors and photo-amplifiers have much larger effective responsivity through the

use of devices withgain, such as transistors or operational amplifiers. Two photo-

transistorx and one photo-amp, Table 2.2, are tested with a microwave PIN diode.

All three of the devices are able to control the PIN diode with very little optical

power (µW), however the response time for the devices ranges from 10µs to 250µs.

This is on the order of what is possible for electrical control for large arrays, which

does nott warrant the extra cost and complexity of optical control. The physical size

of the devices also prohibits their use in microwave arrays, Figure 2.4.

2.3.5 Photo-MESFET The photo-amps in sections 2.3.4 use MOS-

FETs devices for gain which are inherently slow compared to microwave standards.

Using the photo-amp concept, but a MESFET instaed as the gain device with a

faster response time, the resulting photo-MESFET should be able to control the
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25 mm

(a)

25 mm

(b)

25 mm

(c)

Figure 2.4. Three optoelectronic device used for control of microwave PIN diode:
SFH300 photo-transistor (a), LI4F1 photo-Darlington (b) and TSL251 photo-amp
(c). Note that the total circuit dimension is roughly one free-space wavelength at
10 GHz.

PIN diode with very little optical power.

A true photo-MESFET would use the optical signal to generate carriers in

its gate region. Without the ability to produce specialized devices such as photo-

MESFETs, a circuit version is developed in this work, Figure 2.5. The photodiode

controls the gate bias voltage on the MESFET, thus turning it “on” or pinching

it “off”. The circuit form of a photo-MESFET does require an additional negative

voltage bias line to pinch off the MESFET.

Two photo-MESFETs are developed using the components given in Ta-

ble 2.3. The first design uses the EG&G photodiode, but we later switched to

the Fermionics photodiode for its smaller package with negligible change in perfor-

mance. As mentioned in section 2.1, MESFETs can be used as the “high” and “low”

-V

+V

Figure 2.5: Schematic for the circuit implementation of a photo-MESFET
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Table 2.3. The performance data of the MESFET and two photodiodes used to
implement the photo-MESFET

HP EG&G Fermionics
AFT-26836 C30637ECER FD80S3

Type General Purpose Active Area
(dia) 75µm 80µm

Gain 9 dB Responsivity 0.86 A/W 0.85 A/W
Saturated

Drain Current 30 mA Capacitance 0.4 pF 0.4 pF
Bandwidth 16 Bandwwidth 3.5 2

(GHz) 16 (GHz) 3.5 2

impedance devices in microwave switches resulting in a simpler switch design than

having the photo-MESFET control another microwave device. The shunt configured

photo-MESFET switch performs the best at 9.1 GHz with an IL of -2.3 dB, ISO of

-19.2 dB and bias current of 30 mA, Figure 2.6. A RL of -1.37 dB when the channel

is “off” and -11.7 dB when the channel is “on” shows that there is 1 dB to 2 dB of

power loss in the MESFET itself.

The 30 mA of current required by the photo-MESFET is undesirable for use

in the switch, so the photo-MESFET is tested with microwave diodes. Two of the

diodes used with the photo-MESFET are given in Table 2.4 and have surprisingly

similar results compared to the photo-MESFET. Like the MESFET, the diodes give

the best IL and ISO in a shunt configuration. The HSMP3892, Figure 2.7, has IL of

-4.4 dB and ISO of -17.4 dB at 9.08 GHz for a bias current of 30 mA. The MA4E2054,

Figure 2.8, has an insertion loss of 4.2 dB and ISO of -20.2 dB at 9.12 GHz for a bias

current of 3.3 mA. The MA4E2054 diode has the same performance as the other

Table 2.4. Performance characteristics for two microwave diodes tested with the
photo-MESFET.

Manufacture Hewlett Packard M/A-Com
Type PIN Diode Schottky Diode

Part number HSMP-3892 MA4E2054
Capacitance 0.30 pF 0.35 pF

“on” Resistance 2.5 Ω 10 Ω
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Figure 2.6. The measured RL (a), IL (blue –) and ISO (red - -) (b) for a photo-
MESFET in a shunt configuration
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Figure 2.7. The measured RL (a), IL (blue –) and ISO (red - -) (b) for a HSMP-3892
in a shunt configuration. All of the s-parameter measurements were maded using
HP 8510C Network Analyzer.
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Figure 2.8. The measured RL (a), IL (blue –) and ISO (red - -) (b) for a MA4E2054
in a shunt configuration
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Figure 2.9. Lumped element models for the “on” on “off” characteristics for a
MESFET (a) and a diode (b).

devices with only 3.3 mA of current, and is the device chosen for the SPDT switch

to be used in the array.

2.3.6 Resonant Switch Operation The similar performance be-

tween three very different devices (MESFET, PIN diode and Schottky diode) hints

towards an unusual mode of operation for the devices in the switch. All three de-

vices have similar IL and ISO of about -20 dB in a very narrow bandwidth around

9.1 GHz. Another interesting anomaly is the fact that the switch is “off” when the

device is “off” and vise versa for a shunt configuration, which is opposite to the

theory presented in section 2.1.

The narrow bandwidth of the ISO suggests a resonant operation of the

device. The small circuit models for the devices and their packages, Figure 2.9,

show that a resonance can occur between the junction capacitance of the device

and the bond wire inductance in the package when the device is “off”. The series

resonance of the inductor and capacitor forms a very low impedance that shorts out

the transmission line turning the switch “off”.

When the device is “on”, the bond wire inductance is in series with the

“on” resistance of the device. Estimating that the bond wire inductance of about

0.5 nH for a 0.5 pF junction capacitance resonates at 9 GHz, the resulting IL is about
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Figure 2.10. Schematic for an optically controlled SPDT switch with PIN diodes in
a shunt configuration. Thick lines represent transmission lines.

1.2 dB. This is about 1 to 2 dB better than measured, suggesting some additional

“ohmic” loss. The RL for this model is about 3.5 dB which is consistent with mea-

surements for the three devices. Obviously, the package bond wire inductance limits

the performance of the switch and a chip PIN diode would perform better. M/A-Com

MA4GP032 chip PIN diodes were purchased, but would take 10 weeks to deliver, so

work is done on a resonant switch design in the interim as a learning and backup

process.

2.4 SPDT Switch Design

The design of a SPDT switch is more elaborate than presented in section

2.1. Care must be taken to isolate the switching bias currents for the two diodes and

to suppress loading of the microwave signal by the diode bias circuitry (i.e. photo-

MESFET). Series capacitors are used to separate the switching bias currents for the

two diodes Figure 2.10. A 70 Ω microstrip line (the highest impedance line that we

can mill) connects the photo-MESFET to the diode. A 100 pF capacitor is in shunt

with the microstrip line λ/4 away from the diode, which presents a high impedance

to the diode for its microwave short. The initial development of the SPDT switch

is done with the HSMP3892 diode, but latter was changed to the MA4E2054 diode
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Figure 2.11. Illustration of diode connected to microstrip line with annular ring
around the ground via

for its lower current level performance.

2.4.1 Manufacturing Tollerances A robust repeatable switch de-

sign is necessary for success in arrays that contain hundreds of these switches. The

first SPDT switch constructed with the HSMP3892 PIN diode demonstrated the

sensitivity of the switch to manufacturing variations. The resonant frequency of the

diode is very sensitive to how they are connected to the microstrip line. For example,

two diodes from the same lot are used in a switch. Both are shorted to ground using

a wire, but one has an annular ring, Figure 2.12. The resonant frequency of the

switch with the annular ring moved from 9.08 GHz to 8.56 GHz, Figure 2.12(b).

Another experiment was performed to investigate diode placement, Figure

2.13. Since the diode impedance is reflected to the Y-junction, its placement helps

determine the RL for the switch as well as the operation frequency. By moving

the diode 0.3 mm away from the Y-junction the resonant frequency moves from

8.9 GHz to 8.7 GHz, Figure 2.14(b). The ISO and IL stays relatively unchanged at

approximately 23 dB and 5.4 dB respectively.

In order to insure good placement of the diodes, notches are cut into the

microstrip lines for the diodes Figure 2.15. To test the effectiveness of the notches

a set of diodes are measured in the circuit, remove and then replace back into the



32

6 7 8 9 10 11 12 13 14
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

|S
11

| (
dB

)

Frequency (GHz)

(a)

6 7 8 9 10 11 12 13 14
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

|S
21

| (
dB

)

Frequency (GHz)

(b)

Figure 2.12. Measured RL (a), IL (blue) and ISO (red) (b) for a HSMP-3892 PIN
diode in a switch with shunt configuration without (–) and with an annular ring
around the ground via (- -).



33

Figure 2.13. Layout of the SPDT switch illustrating the change in placement for the
diode along the microstrip transmission line.

circuit. The overall resonant frequency of the switch did not change, however the

ISO was reduced by 2 dB from 19.3 dB to 17.4 dB and the IL changed from 7.4 dB

to 3.2 dB, Figure 2.16(b). There are two possible sources for the change. First, the

soldering, de-soldering, and re-soldering may have done some thermal damage to the

devices, effecting their performance. Second, the solder bubble connecting the diode

to the microstrip line has a different shape each time and probably filled the notch

gap better in the second set of measurements.

Another experiment examines the switch sensitivity to different sets of

diodes. The measurements resulting fro placing a new set of diodes shows a 0.16 GHz

change in resonant frequency between the old and new sets of diodes from 8.72 GHz

to 8.56 GHz, Figure 2.17(b). The ISO improved from -19.3 dB to -21.0 dB, and the

IL improved from -7.4 dB to -4.8 dB. These simple experiments show that even with

meticulous care in fabricating the SPDT switch, it will be difficult to construct sev-

eral switches with similar enough performance. This becomes a problem when the

resonant frequency of the switch needs to be the same as the resonant frequency of

the patch antenna in each element of the array.
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Figure 2.14. The measured RL (a), IL (blue) and ISO (red) (b) for the SPDT in
Figure 2.13 before (–) and after (- -) the new diode placement.
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Figure 2.15. An illustration of a diode connected to a microstrip line using a notch
for percise placement.

2.4.2 Four Different SPDT Switch Designs Using a resonant

diode in a SPDT switch proves to be a difficult to simulate and predict with any

accuracy, therefore a shot gun approach to the problem is adopted. Four different

SPDT switches are made with different lengths of transmission line between the

MA4E2054 Schottky diodes and the Y-junction Figure 2.18.

From the experiments in section 2.4.1, variations in the diodes, placement

and soldering resulted in switches that worked at frequencies lower than the 9.1 GHz

response predicted in section 2.3.6. The four SPDT switch designs have incremental

changes in the layout based on a switch design centered at 8 GHz. Theoretically, the

distance between the diode and the Y-junction should be λ/4. The four switches

designated “a”,“b”,“c” and “d” use transmission line lengths of 0.8 λ/4, 0.89 λ/4,

λ/4 and 1.07 λ/4. From the IL and ISO measurements, circuit “a” has the best

performance with a resonant frequency at 8.15 GHz, IL=3.6 dB, ISO=24.6 dB and

RL=6.3 dB, as shown in Figure 2.19.

2.4.3 Effects of Optical Control Until now, most of the effort fo-

cuses on the RF performance of the switch and how it relates to the diodes, setting

the optical control aside. The optical control part of the SPDT switch requires a

photo-MESFET to control the diode current and optical mounts to align fibers to the

photodiode, as shown in photograph Figure 2.20. To understand the effects of the
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Figure 2.16. Measured RL (a), IL (blue) and ISO (red) (b) for diodes placed using
notches as shown in Figure 2.15. The same set of diodes are measured in the switch
(–), then removed and replaced (- -)
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Figure 2.17. Measured RL (a), IL (blue) and ISO (red) (b) for two sets of diodes (–
and - -) in a SPDT switch that uses notches for placement.
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Figure 2.18. The general layout of optically controlled SPDT switch for the circuit
in Figure 2.10. The placement of the diode (distance d) is adjusted to optimize the
SPDT switch performance.

optical control on the SPDT switch, the “a” SPDT switch is tested under different

stages of construction. The first stage has just the Schottky diodes and capacitors,

with the bias control provided through a bias tee. The second stage has MESFETs

added with their gate bias being controlled. The third stage adds the optical mount.

The optical mount is made out of FR4 material with a 3 mm minimum spacing be-

tween the FR4 and the microstrip lines. Finally, the photodiode is added and the

switch is controlled using a laser-didoe. At each stage of the experiment, IL and ISO

are affected with a net result of 2-3 dB increase in IL and ISO, as shown in Figure

2.21.

2.5 Unit Cell Array Element Design

The unit cell design, Figure 3.1, is essentially two SPDT switches connected
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Figure 2.19. The measured RL (a), IL (b) and ISO (c) for four different SPDT switch
designs illustrated in Figure 2.18: d=0.8 λ/4 (blue), d=0.89 λ/4 (red), d=λ/4 (green)
and d=1.07 λ/4 (yellow). All four circuits are measured with the same calibration.
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SPDT Switch Optical Mount

Figure 2.20. Photograph of Optically-controlled 8 GHz SPDT switch with optical
mount

back-to-back with the power amplifier (PA) and low noise amplifier (LNA) connect-

ing them. The photo-MESFET circuit is modified to contain a push-pull photodiode

pair for rapid turning “on” an “off” of the MESFET [43]. Each MESFET in turn

provides the bias control for the appropriate pair of PIN diodes in the two SPDT

switches. The switches and MMICs are powered through a 5 V supply line with a

1 kΩ current-limiting resistor for the switches. The two antennas are connected to

the Y-junction ports of the SPDT. Due to the amount of circuitry in the unit cell,

a substrate with a high dielectric constant is needed to shrink the overall circuit

layout. Rogers’ Duriod 6010.5 with a thickness of 0.508 mm (25 mils) is used.

2.5.1 Low Noise Amplifier and Power Amplifier The MMIC am-

plifiers, Table 2.5, are chosen for three practical reasons. They are low cost, available

with short delivery times, and require only a single supply voltage. Both MMICs

have input and output matching filters that reject the lower frequency switching

current, Figure 2.23. The matching filters are designed assuming gold bond wires

that are 0.254 mm (10 mil) long and have a diameter of (0.7 mils). The MMICs are

mounted on a brass pedestal to minimize total bond wire lenght, Figure 2.24.
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Figure 2.21. The measured RL (a), IL (b) and ISO (c) for d=0.8λ/4 SPDT switch
design (blue), with MESFET (red), with MESFET and optical mount (green), and
with optical mount and photodiode (yellow).

Table 2.5: Performance data for the LNA and PA
Manufacture Hewlett Packard United Monolithic Semiconductor
Part number HMMC-5618 CHA2036

Type Power Amplifier Low Noise Amplifier
Gain (dB) 14 16
BW (GHz) 6-20 7-13

1 dB Compression (dBm) 18 10
Supply Voltage (V) 5 5
Noise Figure (dB) 5.5 2
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Figure 2.22. Unit cell schematic with push-pull photodiodes for faster control. Thick
lines represent transmission lines.
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Figure 2.23. Measurement of RL for LNA at lower frequencies (< 1 Ghz) demon-
strating the isolation of the LNA from the diode circuitry.
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Figure 2.24. Photographs of LNA (a) and PA (b) resting on brass platforms and
biased through 100pF chip capacitors.

2.5.2 Bias Line Design Supplying power to all the MMICs and

switches in an array proves to be a difficult problem and has led to array instabilities

[1, 44]. The instabilities arise from free-space coupling of the microwave signal onto

the power bias lines. To minimize the coupling to the bias lines, a filter bias line

is used. A filter bias line has a cascade of high and low impedance transmission

lines that are λ/4 long at the design frequency, resulting in a notch filter, Figure

2.25. A problem with filter bias lines is their small cross-sectional area for the high

impedance sections (assuming microstrip lines), which increases the resistance of the

Figure 2.25. Photograph of filter bias line with a 30-gauge wire for reduced resistance.
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Figure 2.26. Measured IL for a 25 mm long filter bias line without 30 gauge wire
(blue –) and with the wire (red - -).

bias line. To increase the cross sectional area of the bias line, a 30-gauge wire is

soldered down the center of the line. Since the high frequency current density is

largest at the edges of the line, the wire should have minimal effect on RF filter

performance. The measurements of a 25 mm long filter bias line designed at 8 GHz

shows about 10 dB suppression of 8.5 GHz signals without the wire, and about 8 dB

with the wire, Figure 2.26.

2.5.3 Antenna Design Two types of printed antennas are used most

often in planar lens array designs: slot antennas and microstrip patch antennas.

Slot antennas consist of a slot cut into a ground plane and fed with a microstrip

line(Figure 2.27) or a CPW. Slot antennas radiate on both sides of the ground plane

in a hemispherical pattern with nulls in the direction of the ground plane [45]. For

this reason, when slot antennas are used in planar lens arrays, polarizer are needed

to isolate the two sides of the array [44, 1]. For lens arrays used in an angle diver-

sity communication system, the addition of the polarizers would add unnecessary

aberrations to the lens, reducing the communication systems performance.

Microstrip patch antennas consist usually of a rectangular piece of metal

above a ground plane. They are fed using microstrip lines (Figure 2.28), coaxial



45

Microstrip

Slot

Ground plane

Substrate

Figure 2.27: Illustration of a microstrip fed slot antenna.

lines or aperture feeds. The microstrip patch antenna radiates due to fringing elec-

tric fields at the edges of the patch, in a hemispherical pattern on one side of the

ground plane with nulls in the ground plane direction [45]. Using microstrip patch

antennas in a planar lens array eliminates the need for polarizers. Unfortunately,

microstrip patch antennas are resonant and have bandwidths on the order of 2-4%.

The bandwidth can be increased using electrically thick substrates at the cost of

radiation efficiency due to substrate modes [21].

A 8 GHz non-radiating edge fed patch antenna is designed using a method

of moments simulator Ensemble by Ansoft. The patch is 5.47 mm by 7.82 mm with

Figure 2.28. Photograph of 8 GHz patch antenna on 10.5 dielectric substrate. Ac-
companying the patch antenna are five FR4 apertures used to measure the effects of
FR4 mount on the patch radiation
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Figure 2.29. The measured RL for the patch antenna as it radiates through different
size mounts: no mount (blue), 20 mm by 20 mm (red), 17.5 mm by 17.5 mm (green)
and 15 mm by 15 mm (yellow). The FR4 mounts with apertures 20 mm by 20 mm
or larger have negligible effect on the antenna radiation.

the microstrip feed 0.76 mm from the center of the non-radiating edge. Ensemble

is used to estimate the coupling between the patch antenna and a microstrip line

in its vicinity. In order to maintain 30 dB isolation between the patch antenna and

nearby microstrip transmission lines to prevent oscillations, it was found that all

lines should be 3 mm from the radiating edge and 2 mm from the non-radiating edge

of the patch antenna.

Besides the patch antenna coupling to other parts in the circuit, the patch

antenna needs to radiate through a aperture in the optical mount. Since the FR4

material used in the optical mount is lossy at 8 GHz, by measuring the return loss

of the patch antenna as the antenna radiates through different apertures, we can

determine the effect of the mount. As the FR4 material begins to load the near field

of the patch antenna, the return loss should decrease. Five different apertures were

built: 15 mm by 15 mm, 17.5 mm by 17.5 mm, 20 mm by 20 mm, 22.5 mm by 22.5 mm

and 25 mm by 25 mm, (Figure 2.28). The two apertures smaller that 20 mm by 20 mm

reduce the reflected power, as seen in Figure 2.29. A 20 mm by 20 mm aperture is the

smallest aperture that the patch antenna can radiate through unchanged. Radiation
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Figure 2.30. Measured radiation patterns for the 8 GHz patch antenna alone (blue)
and radiating through 20 mm by 20 mm aperture

patterns were taken with and without the FR4 aperture and are shown in Figure

2.30. The aperture attenuates the patch radiation pattern on the sides and the

ripples are due to multi-path effects in the test setup (desicribed later in section

4.3.2).

2.5.4 Slot Coupler vs. Vias Feed With a patch antenna on each

side of the unit cell and a ground plane separating them, it is necessary to devise

a means of coupling signals from one side of the unit cell to the other. One tech-

nique uses a slot coupler, Figure 2.31, which has been shown to have coupling losses

of 2 dB and operating up to 25 GHz [46]. Early design work in slot couplers at

Microstrip

Slot

Ground plane

Substrate

Figure 2.31: Illustration of microstrip coupler made from two pieces of substrate.
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Figure 2.32: Measured IL for 10 GHz slot coupler on 10.5 dielectric substrate.

10 GHz produced simulated results of coupling loss of 2.76 dB with a RL of 34 dB,

showing that slot couplers are prone to substrate modes, Figure 2.32. The measured

results for the slot coupler has 0.5 dB of coupling loss and 22 dB of RL at 10.5 GHz.

Unfortunately, in order to produce this good performance, meticulous care is taken

to align the slots and to ensure good electric contact between the two substrate

ground planes, using silver epoxy, without any air gaps. By applying pressure to

the slot coupler to squeeze the air gaps the coupling loss changes from about -3 dB

to the 0.5 dB. In addition, to the fabrication problems, the currents in slot couplers

generally extend several substrate thicknesses beyond the slot, reducing available

real-estate. For these reasons, the slot coupler is impractical for the design of the

unit cell. Instead, a 0.5 mm diameter brass rod is used as a via to connect the two

sides of the array with about 1 dB coupling loss, Figure 2.33.

2.5.5 Unit Cell Layout The layout for the unit cell follows from the

layout of the SPDT switch. The MMICs are placed between the two back-to-back

SPDT switches with 0.38 mm (15 mil) brass platforms to raise them up from the

center ground plane, Figure 2.34(a). The push-pull photodiodes are connected to

the MESFET and the -2.3 V bias line running horizontally across the top and bottom
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Figure 2.33. The measured loss for a 0.5 mm diameter via connecting two microstrip
lines on 0.64 mm, εr = 10.5 substrate material.

(a) (b)

Figure 2.34. Photograph showing the active (a) and passive (b) sides of the unit cell
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Figure 2.35. Photograph showing the optical mount placed on the unit cell with the
optical fibers.

of the unit cell. The 5 Volt bias line runs vertically on the passive side of the array

which also contains one of the antennas, Figure 2.34(b). The optical mount contains

the optical fibers and the 20 mm by 20 mm aperture through which the other patch

antennas radiates through, Figure 2.35.

2.5.6 Testing Unit Cell The gain of the unit cell is tested in the

setup shown in Figure 2.36 for both transmit and receive modes. In both cases, no

measurable power was transmitted through the unit cell. As mentioned before, there

Bias
DC

Transitio
n

Analyzer

HP70820A

Optical
Drive

30 cm 30 cm

Figure 2.36. Illustration of the test setup used to measure the unit cell. The test
setup is calibrated to an aperture the size of the unit cell.
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Figure 2.37. Measured differential on/off gain for the two unit cells containing only
LNA (blue) and PA (red). The noise in the measurement is due the dynamic range
of the HP 70820A.

are many difficulties in developing a unit cell with a resonant switch and microstrip

patch antenna such that their resonant frequencies overlap. Instead, two unit cells

are made, one for transmit mode and one for receive mode, with the Schottky diodes

removed. The differential on/off gain of each unit cell agrees with the predicted

gains of the MMIC amplifiers at 16.2 dB for the LNA and 14.9 dB for the PA, Figure

2.37. It is also interesting to point out that the patch antennas radiated at different

frequencies even though they were made identically and at the same time. This

demonstrates the sensitivity of the patch design to manufacturing deviations. A new

wide bandwidth switch design is to needed overcome the problem of patch antenna

variations.



CHAPTER 3

10 GHZ CHIP-PIN DIODE SPDT SWITCH

3.1 Improved Switch Design

In the previous chapter, a resonant switch was described. This architecture

is narrow bandwidth and sensitive to parameter variations. Since the ultimate goal is

to integrate this circuit into an array, a design is required which can be manufactured

to behave the same many times. Figure 3.1 shows an improved unit cell design.

The series and shunt capacitors used to isolate the diodes and provide a microwave

short for the bias line have been replaced with high pass filters (HPF) and low pass

filters (LPF), respectively. In addition to the push-pull photodiodes, there are push-

pull MESFETs for rapid turning on/off of the PIN diodes. Complementary optical

pulses control each set of photodiodes. For example, when the transmit photodiodes

are illuminated (and the receive photodiodes are not), MESFETs labeled 2 and

LNA

PA

via

Front Antenna

Receive

Receive

Transmit

Back Antenna

Transmit
PD

PIN

PINPIN

PD

PIN

1

2

3

4

1 2

3
4

Figure 3.1. Improved unit cell design with push-pull photodiodes and MESFETs,
chip PIN diodes, HPFs and LPFs.
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Ground Plane

Mircostrip
PIN Diode

Bond Wires

(a)

Ground Plane

Via

Mircostrip

PIN Diode

Bond Wire

(b)

Ground Plane

Mircostrip
PIN Diode

Bond Wires

Via

(c)

Figure 3.2. Three different configurations for connecting a chip diode into a switch:
series (a), shunt (b) and T-network (c).

3 in Figure 3.1 are quickly pinched “off” while MESFETs 1 and 4 are turn “on”.

MESFET one sources current for PIN diodes 1 and 2, while MESFET four discharges

the junction capacitance of PIN diodes three and four. With PIN diodes 1 and 2

biased “on”, the LNA channel is switched “off”, and when the PIN diodes, 3 and 4

biased “off”, the PA channel is switched “on”.

3.1.1 MA4GP032 Chip PIN diode As demonstrated in Chapter

2 the package inductance of the diodes and MESFETs limits their switching per-

formance at X-band. The M/A-Com MA4GP032 chip PIN diodes which have an

“on” resistance of 1.5 Ω and junction capacitance of 0.12 pF, are used in the new

switch design. There are three configurations for the PIN diode in a switch, (series,

shunt and T-network), Figure 3.2. Using lumped element models for the bond wires

(inductors) and PIN diode (resistor for “on” and capacitor for “off”), MatLab calcu-

lations predict the IL and ISO for the series configuration to be 1.8 dB and 1.7 dB,

and for the shunt configuration to be 1.2 dB and 0.95 dB at 10 GHz. The measured

IL and ISO are consistent with the lumped element model, showing 0.59 dB IL and

2.1 dB ISO for the series configuration and 0.3 dB IL and 2.3 dB for the shunt con-

figuration, Figure 3.3. However, the T-network configuration performance is greatly

improved through reactance cancellation with the bond wires inductance.

There are three design parameters that affect the performance of a PIN
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Figure 3.3. Measured IL (blue) and ISO (red) for the series (–) and shunt (- -) switch
configurations.

diode SPDT switch in: bond wire inductance (L), distance between diode and Y-

junction (d) and transmission line impedance (Z0). MatLab code based on trans-

mission line equations and lumped element models examines the design tradeoffs for

these parameters. Previous measurements of the series and shunt configured PIN

diode switches support the use of a lumped element model for predicting IL, ISO and

RL. The bond wire inductance is probably the most fabrication sensitive parameter

in the switch circuit at 10 GHz. Using a thin microstrip line on a dielectric substrate

with εr = 10.5 as the model for the bond wire above a ground plane, the inductance

is estimated to be 2 nH/mm. Depending on the arc of the bond wire and where it

connects to the microstrip line, this number can vary by as much as 50%.

Two MatLab simulations of SPDT switch are performed varying the trans-

mission line impedance and length with the bond wire inductance held at 1 nH and

1.5 nH. The IL, ISO and RL is calculated for the switches paying close attention to

the sensitivity of switch performance as the parameters change. The lower limit for

the inductance at 1 nH is set by the size of the PIN diode. The PIN diode sits on

a 0.5 mm diameter brass rod via, limiting the gap in the microstrip line to 1 mm.
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From the simulations, the IL and ISO are relatively insensitive to changes transmis-

sion line impedance and length, as for the 1 nH case in Figures 3.4. In general,

the IL and ISO improves with the increase of transmission line impedance. The RL

is the only parameter that significantly sensitive to design parameters, Figure 3.5.

Overall, 1 nH has better performance than the 1.5 nH, however caution is warranted

since the transmission line equations only give general trends of performance and

neglect many high order effects.

To verify the tradeoff analysis, five different circuits are built to test the

effects of bond wire inductance and transmission line impedance, Figure 3.6. The

first two circuits (“a” and “b”) have the PIN diode in a T-network with 1.5 nH and

1 nH bond wire respectively. The second set of circuits (“c” and “d”) were built to

examine the loss of exponential of λ/4 and λ/2 tapers from 50 Ω microstrip lines

to 70 Ω microstrip line. The final circuit (“e”) combines the λ/4 taper with 1 nH

bond wire to measure the total effect of a high transmission line impedance with

PIN diode.

The ISO of the switch needs to be sufficient to prevent oscillations in the

ring formed by two SPDT switches in the final array element design. In other words

the sum of the sum of the loop gain and losses around the loop must be less than

the twice the ISO:

GLNA,dB +GPA,dB − 2 ILdB − 2 ISOdB = 0, (3.1)

where GLNA,dB and GPA,dB are gains of the LNA and PA respectively. Equation 3.1

that implies a ISO of 15 dB is needed for a switch with 30 dB loop gain (i.e. LNA =

16 dB and PA = 14 dB)to prevent oscillations assuming IL=0. Circuit “b” with 1 nH

bond wire inductors has the best performance with IL=0.75 dB and ISO=20.3 dB,

which is close to or better than the simulated values of 2 dB IL and 20.2 dB ISO 3.7.

Circuit “b” also exhibits low loss as seen in Figure 3.8. The loss from the exponential

impedance tapers does dominates over any benefit the higher impedance transmission
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Figure 3.4. Simulated IL (a) and ISO (b)for T-network SPDT switch using
MA4GP032 PIN diode with 1 nH bond wires
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Figure 3.6. Five test circuits use to examine the performance of PIN diode in different
configurations. Circuit “a” is T-network PIN diode with 1.5 nH bond wires and 50 Ω
transmission line. Circuit “b” is T-network PIN diode with 1 nH bond wires and 50 Ω
transmission line. Circuit “c” is λ/4 impedance taper from 50 Ω to 70 Ω transmission
line. Circuit “d” is λ/2 impedance taper from 50 Ω to 70 Ω transmission line. Circuit
“e” is T-network PIN diode with 1 nH bond wires and 70 Ω transmission line.
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Figure 3.7. The measured IL (–) and ISO (- -) for circuit “a” (blue), circuit “b” (red)
and circuit “e” (green).
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Figure 3.8. Measured loss in circuit “b” for the switch “on” (red) and the switch
“off” (blue).
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Figure 3.9. Measured IL for circuit “c” (blue), circuit “d” (red) and circuit “e”
(green).

lines gives in IL and ISO, Figure 3.9.

3.1.2 High Pass Filter In designing the switch circuit, it is impor-

tant to make all components very compact in order to have a unit element of the

array smaller than a free-space squared. We therefore use lumped elements to de-

sign the components. A HPF, Figure 3.10, made from a chip capacitor and bond

wire inductors replaces the series capacitor used in the previous SPDT switch de-

sign, Figure 2.10. The addition of the series inductor is necessary to bridge the gap

in the microstrip line. To minimize the effects of this inductor, the gap distance

(a)

Via

Ground Plane

PIN Diode Mircostrip

Bond Wire

(b)

Figure 3.10. Circuit schematic (a) for HPF constructed from two bond wires and
chip capacitor (b).
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Figure 3.11. Picture of HPF with 2 nH shunt bond wire, 0.25 nH series bond wire
and 1 pF chip capacitor.

is adjusted such that the inductor is resonant with the capacitor at 10 GHz. The

smallest gap that can be milled on the available PC-board prototyping machine of

5 mils (.0127 mm) creates a 0.25 nH inductor which is resonant with a 1 pF chip ca-

pacitor at 10 GHz, Figure 3.11. An addition of a 2 nH shunt inductor increase the

attenuation of lower frequency components (below 1 GHz) that are generated by a

nanosecond switching currents. The HPF has good performance of 0.1 dB loss at

10 GHz and 20 dB rejection for frequencies below 1 GHz, Figure 3.12.
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Figure 3.12. Measured (blue –) and simulated lumped element model (red - -) per-
formance of HPF. Measurements above 5 GHz are calibrated and uncalibrated below
5 GHz.
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Figure 3.13. Lumped element schematic for LPF constructed from chip capacitor
and two bond wires used in biasing the chip PIN diodes (a) and implementation of
circuit (b). The distance ‘d’ that LPF is placed from the 50 Ω is adjusted it minimize
reflections at the T-junction.

3.1.3 Low Pass Filter An inductor capacitor LPF, Figure 3.13, re-

places the shunt capacitor that suppresses the microwave signal from the diode bias

circuits. The 3rd order LPF provides suppression of the 10 GHz carrier while allowing

the sub-gigahertz switching currents to pass.

Lumped element models are used to explore effectiveness of three different

LPF designs based on three commercially available capacitor values of 1 pF, 3 pF and

5 pF. The LPF with inductance of 0.85 nH and capacitance of 3 pF provides the best

compromise between rejection of RF carrier and filter bandwidth. The 3 pF capacitor

is also insensitivity to reflection distance as shown in Figure 3.14 with and optimal

distance of 58o. A mistake in recording the optimal values for simulations done

with Puff and MatLab led to designs with reflection line distances of 90o and 58o.

This mistake turns out to be advantages with the SPDT switch is latter optimized.

Testing both circuits, Figure 3.15, shows that the 90o reflection line has the best

performance, Figure 3.16. The 90o bias line has a loss of 0.107 dB on the 50 Ω

microstrip line at the T-junction and 34 dB suppression of a 10 GHz signal through

the LPF.
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Figure 3.14. Simulated IL (blue), RL (green) for 50 Ω microstrip line and LPF
isolation (green) as a function of the distance between the LPF and microstrip.
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Figure 3.15. Picture showing the two different LPF designs, one with a reflection
distance of 90o and the other with a reflection distance of 58.8o.
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Figure 3.16. Measured IL (blue) and LPF isolation (red) for the LPF design with
reflection distances of 90o. The loss in the 50 Ω microstrip line is in (blue) and the
LPF rejection is in (red). The simulated performance is in (green).

3.1.4 Simulation of Transient Response of SPDT Switch A

circuit model developed in SPICE by Orcad, based on physical measurements of

the various components, and combinations of the components is used to model the

transient response of the switch. Measured DC voltages and currents for various

interconnections of the PIN diodes and MESFETs, Figure 3.17, are used to develop

the SPICE component models. The photodiode model is based on manufacture

specifications. The photodiode model itself uses a voltage-controlled current source

to simulate the generation of carriers by optical signals, Figure 3.18.
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VGS
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VDS

VGS
+

+I

--

(c)

Figure 3.17. Three different test configurations used to measured DC voltages and
currents for developing a SPICE model.
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Figure 3.18. A lumped element model for photodiode using a voltage controlled
currents source to simulate the generation of carriers as a result of an optical signal.

The rise and fall times for the back-to-back SPDT switch are dependent on

the optical power as shown in Figure 3.19. The fastest rise time is 2.4 ns with 9 mW

of optical power, limited by the RC time constant for the current limiting resistor

and the sum of the PIN diode’s capacitances. For optical power smaller than 9 mW,

the RC time constant of the MESFET gate capacitance and the “on” resistance of

the photodiode dominates. At 1µW of optical power, the rise time for the switch

is 1800 ns. The current limiting resistor increases the rise time as compared to the

fall time. It turns out that the photodiode’s capacitance effect on the rise and fall

times is minimal, and a photodiode with four times the active area and twice the

capacitance for a would be acceptable and would on the other hand greatly improve

coupling of optical power.
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Figure 3.19. SPICE simulation of Rise time and fall time for two back-to-back SPDT
switches used in the unit cell.
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Figure 3.20. Picture of SPDT switch using MA4GP032 chip PIN diodes with HPFs
and LPFs.

3.2 Optimized SPDT Switch Design

Two different approaches are taken in optimizing the design of the SPDT

switch from its optimized components. The first design uses PUFF to optimize the

PIN diode, LPF and HPF designs together, while the second design fixes the filter

designs and optimizes only the PIN distance from the Y-junctions, Figure 3.20. The

first design optimizes the PIN diode distance (d1) 54o and LPF distance (d2) to

67o. The second design optimizes the PIN diode distance (d1) to 52o. The first

circuit has a IL of 1.05 dB (1.55 dB simulated), ISO of 28 dB (-21.8 dB simulated)

and 2:1 VSWR BW of 4.64 GHz from 6.48 GHz to 11.12 GHz. The second circuit out

performed the previous with IL of 0.315 (1.81 simulated), ISO of 36.33 dB (20.6 dB)

and 2:1 VSWR BW of 2.49 GHz from 8.27 dB to 10.76 dB, Figure 3.21.

When measuring the SPDT switches, the HPFs were placed in backwards

and shorted the PIN diodes with their shunt inductors. These inductors were re-

moved for the measurements shown in Figure 3.21. It ensure that HPF orientation

does not affect the SPDT switch performance two Y-junction circuit are built with

the HPFs place forwards and backwards as shown in Figure 3.22. The IL and ISO
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Figure 3.21. The measure RL (a), IL (blue b) and ISO (red b) for the second
optimized SPDT switch
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Figure 3.22. The Y-junction circuits used to measure the effect of the HPFs placed
forwards (a) and backwards (b).



68

0 2 4 6 8 10 12 14
−80

−70

−60

−50

−40

−30

−20

−10

0

10

|S
21

| (
dB

)

Frequency (GHz)
Student Version of MATLAB

Figure 3.23. Measured calibrated (–) and uncalibrated (- -) IL for the Y-junction
with the HPFs placed correctly and the shunt inductors remove one by one. The
measurements with two inductors are in (blue), one inductor are in (red) and no
inductors are in (green).

measurements for the two circuits show that both circuits perform the same within

a few tenths of dB in IL and few dB in ISO.

3.2.1 Estimation of Switching Current Isolation The SPDT

switch has its best performance when the shunt inductors in the HPFs are removed.

However, by removing the shunt inductors, will the HPFs affectivily isolate the to

sides of the SPDT switch at fast switch rates? From the SPICE model, the fastest

rise time for the switch was found to be 2.4 ns. A voltage waveform for the PIN

diodes with 2 ns rise and fall times, magnitude of 1.2 V and pulse period of 5 ns is

constructed in MatLabi as shown in Figure 3.24(a). This waveform represents the

fastest reasonable switch rate for the SPDT switch. The voltage waveform is fil-

tered through the measured HPF’s frequency response shown in Figure 3.23. The

Fourier transform of the voltage waveform shows that most of its spectral energy is

below 500 MHz (Figure 3.24(b)), where the HPF (without shunt inductors) attenu-

ates about 10 dB. The voltage waveform seen by the other PIN diode after passing

through the two HPFs is about a tenth of its orginal magnitude. Since the PIN

diodes turn “on” at 1 V, the HPFs with shunt inductors do isolate the two sides of
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Figure 3.24. Simulation of the time (a) and frequency (b) suppression of the switching
currents generated by a 2 ns rise time/fall time 5 ns pulse period optical pulse by the
HPFs. The bias switching currents on one side of the SPDT switch (blue) are filtered
through HPFs using the data from Figure 3.23 with no inductors to simulates the
induced switching currents on the other side of the SPDT switch (red).
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Table 3.1. Measured input and output power for back-to-back SPDT switch showing
maximum input power for the SPDT switch is at least 17 dBm.

Input Power “on” Path “off” Path Difference
(dBm) Output Power (dBm) Output Power (dBm) Difference

-5 -30.3 -65.3 -34.9
0 -25.6 -61.6 36.0
5 -20.7 -57.1 36.4
10 -15.6 -51.8 36.2

16.7 -9.1 -44.4 35.31

the SPDT switch at its fastest switch rate.

3.2.2 Maximum Input Power for SPDT Switch The maximum

microwave input power for the SPDT switch is when the PIN diodes rectify enough of

the microwave signal and self-bias. When this occurs, the IL and RL will increases

and the difference between the IL and ISO will decrease. The SPDT switch is

tested with RF input power ranging from -5 dBm to 17 dBm while measuring the

outputwave forms for the “on” and “off” paths. The output power for the two paths

increases linearly with input power for the full range, while maintaining a 36 dB

difference between the IL and ISO, Table 3.1.

3.3 Switch Rate Measurements

For testing the response time of the SPDT switches in the unit cell, a special

back-to-back SPDT switch circuit is made, Figure 3.25, in which the antenna and

MMICs are replaced with microstrip ports for connection to a microwave source and

oscilloscope. The oscilloscope connected to one of the ports will record the switch

turning “on” and “off”. A bias tee connected between the oscilloscope and SPDT

prevents the oscilloscope from loading the PIN diode bias circuitry. The optical fibers

connect the SPDT switch to the optical test setup which provides complementary

optical pulses with variable width.
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Figure 3.25. Picture of back-to-back SPDT switch layout used to test the SPDT
switches transient response. The LNA, PA and antennas have been replaced with
microstrip ports for testing.

3.3.1 Optical Test Setup The optical control test setup is respon-

sible for providing variable width optical pulses with fast rise times and fall times to

the photodiodes in the back-to-back SPDT switch. The power in the optical pulses

also needs to vary from less than microWatt to several milliWatts. The pulses are

created by splitting the power from an Ortel 10 mW 1300 nm laser diode into two

electro-optical (EO) intensity modulators. A polarization-maintaining evanescent

mode coupler is used to split the optical signal from the laser while still maintaining

the correct polarization orientation for the EO modulators. The Ortel laser diode is

fiber pigtailed with single mode fiber iwhich scrambles the output polarization of the

light from the laser. By stressing the single mode fiber, the light can be forced into

one polarization mode. The EO modulators are chosen to have a 3 GHz bandwidth

allowing them to generate pulses with of 0.1 ns rise and fall times.

τrise =
1.8

2π BW
(3.2)

To achieve complete extinction of the optical pulse, the EO modulators are driven

at Vπ (4.5 V) by Veritech VMCM2.5MD-422 EO modulator drivers that provide the

necessary gain needed to drive the 50 Ω input port of the EO modulator.

Two different setups are developed to stimulate the SPDT switch with
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Figure 3.26. Illustration of the fast optical test setup able to generate 25 ns wide
complementary optical pulses with 2 ns rise time/fall time.

optical pulses of different rise and fall times, Figure 3.26,3.27. The first setup is

for high optical power, where the SPDT is expected to react in tens of nanoseconds,

Figure 3.26. Two HP 83620A synthesizers are synchronized together through their

10 MHz synchronization ports. The cable connecting the two HP 83620A sweeper

is long enough to delay the pulses such that the 20 MHz sine waves produced by

the synthesizer are 180o out of phase. The output sine waves drive the Veritech EO

modulators creating optical pulses with 25 ns pulse width and 1.5 ns rise and fall

times, Figure 3.28. An additional 2 ns variable electrical delay line is used to tune

MM Fiber
62.5/128

MM Fiber
200/220

EO Drivers
Veritect

Variable Electrical
Delay

Function
Generator

Fiber Splice

Op amps

Transmit Fibers

Receive Fibers

PM Coupler
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Laser Diode
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Figure 3.27. Illustration of the slow optical test setup able to generate 625 ns to
6250 ns wide complementary optical pulses with 25 ns rise time/fall time.
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Figure 3.28. The complementary optical pulses (blue and red) for the fast optical
setup (a). The rise time and fall times are shown in (b).
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the setup for variations in cables and fiber lengths.

The second setup is for low optical power pulses, which requires long pulse

widths, Figure 3.27. This setup uses a HP 8116A function generator to generate

a square wave that in turn drives two operational-amplifier in inverting and non-

inverting unity gain configurations. Again the Veritech EO drivers are used to am-

plifier the operational-amplifier outputs for the EOs. This system is able to generate

pulses varying in width from 625 ns to 6250 ns with a constant rise time and fall time

of 25 ns, Figure 3.29.

The output of the EO modulators is split and fed to the SPDT switch.

Ideally, the output fibers of the multi-mode splitter would be glued directly to the

photodiodes to minimize the coupling loss as illustrated, Figures 3.30. Optical fibers

have a protective jacket that prevents water from penetrating the micro-fractures in

the glass which would cause the fiber to break. To glue the multi-mode fiber to the

photodiodes, the outer jacket is stripped off, making the fiber extremely delicate. It

proved impossible to develop a support mount for the fibers that allows access to

the microwave circuits and prevents the fibers from shearing. Instead, the output

fibers from the multi-mode splitter is glued to 200µm fibers that as suspended over

the photodiodes, as shown in Figure 3.31. Due to the uncertainties in the relative

position of the photodiode with respect to the fiber, the fiber is move away from

the photo diode so that the natural diffraction from the end of the fiber produces a

470µm spot on the photodiode. To prevent cross-talk between fibers, baffles made

from aluminum are positioned on the PDs. A 5 mil piece of FR4 is glued to the

bottom surface of the baffle to prevent it from shorting out the PDs. Assuming the

multi-mode fiber uniformly illuminates the spot, the loss in the coupling is 15.7 dB.

Ths is too high for a practical application, and in Chapter 7 are given suggestions

as to how this loss can be rduced in future designs.
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Figure 3.29. The complementary optical pulses (blue and red) for the slow optical
setup (a). The rise time and fall times are shown in (b).



76

(a) (b) (c)

Figure 3.30. Photographs showing the 62.5µm core to multimode fiber (a), the
80µm active area of the photodiode (b) and the fiber and photodiode glued together
(c).

Aluminium
Baffle

Fibers

Fibers

Figure 3.31. Photograph of the optical mount for the back-to-back SPDT switch .
The mount contains an aluminum baffle to prevent cross-talk between photodiodes.
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Figure 3.32. Illustration of the calibration configuration (upper arm) and the testing
configuration (lower arm) of the slow optical test setup

3.3.2 Calibration of the Optical Setup It is important to esti-

mate the uncertainties in the amount of optical power delivered to the photodiode

as a result of changes in the optical setup and mechanical variations. The two op-

tical setups are calibrated at the output of the EO modulator with fiber pigtailed

Fermionics photodiodes (upper arm in Figure 3.32). After calibration, the FC/FC

optical connector is broken and the multimode fiber setup is connected (lower arm in

Figure 3.32). By adding the multimode fiber setup, the calibration has an additional

4 dB of loss and 2 dB of uncertainty.

Most of the loss and uncertainty is due to the free-space coupling from the

fiber to the photodiode active area. To calculate the uncertainty in the coupling,

each mechanical connection between the optical mount, RF mount and substrate is

described as a stochastic process. The mechanical structures are discussed in more

detail in section 4.1. For example, the holes used to align the optical mount to the

RF mount have an uncertainty in their position of ±5.7µm. Table 3.2 describes the

probability density functions (PDFs) for the various components in the system.

The uncertainty of the photodiode placement is based on measurements of

21 photodiodes. Figure 3.33 shows the PDF for alignment of various components
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Table 3.2. Properties of probability density functions used to calculated the mis-
alignment of the photodiodes with the optical fibers.

Description pdf mean variance
Hole Location
Optical Mount Uniform [-10:10] 0 33
Hole Location

RF Mount Uniform [-10:10] 0 33
Alignment Pin

Bending Uniform [-100:100] 0 3333
Fiber Location in

Optical Mount Hole Uniform [-30:30] 0 300
Photodiode Placement

on Mount Uniform [-160:160] 0 8533

in the mechanical system. The resulting uncertainty in the mechanical alignment

is ±93µm, mostly due to the uncertainty in the placement of the chip photodiode

on its mount. The alignment between the photodiode mount and the optical fiber

has an uncertainty of ±71µm. The overall loss in the free space coupling of fiber

to photodiode is 15.7 dB ±1 dB assuming that the spot created by the optical fiber

has uniform power density. The total loss and uncertainty in the optical test setup

is 19.7 dB +1.7 dB
−2.7 dB .
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Figure 3.33. The probability density functions for the alignment for the optical fibers
to the photodiode mount (blue) and the photodiodes (red).
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Table 3.3: The measured rise time and fall time of the back-to-back SPDT switch.
Optical Power (µW) Rise Time (ns) Fall Time (ns)

15 555 469
9.3 772 785
4.95 1180 1180
2.75 2290 1600

3.3.3 Measured Switch Rate Performance The second optical

setup is used to measure the SPDT switch, since the 20 dB of optical loss limits the

fastest response time for the SPDT to about 500 ns. At these slow rise times and

fall times, the bias tee filters the output response, and the rise and fall times cannot

be measured with the oscilloscope. The bias tee is removed and the SPICE model is

adjusted to account for the loading of the oscilloscope. The SPDT switch is measured

at four different optical powers with rise and fall times shown in Table 3.3. Figure

3.34 plots the measured rise time and fall time for the different optical powers with

simulated rise times and fall times and uncertainty bounds. Interestingly enough, the

SPDT switch operates better than expected. These suggests that expected loss for

the optical control is less than stated earlier, probably due to the assumption that
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Figure 3.34. The measured rise time (red ·) and fall time (blue ·) for the back-
to-back SPDT switch. The measured performance is consistent with the simulated
performance (–) and within the simulated error bounds (- -).
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the spot made by the optical fiber has uniform power density and not Gaussian.

The minimum amount of optical power needed maintain the state of the switch is

0.25µW.



CHAPTER 4

10 GHZ UNIT CELL AND LENS ARRAY

4.1 Unit Cell Construction

In the previous chapter the design and implementation of an optically con-

trolled SPDT switch was presented. When this switch is inserted into an element

of an active array, a number of manufacturing issues need to be solved, including

electrical and mechanical ones.

The mechanical designs needs to fulfill certain requirements, while being

limited to tools and materials available in the laboratory. The soft low-loss Roger’s

Duroid substrates used to make the microwave circuits need to be reinforced with

a stiffer material to maintain their shape while being mounted into different test

setups. The material used to reinforce the substrate should be a dielectric to avoid

interference with the microwave circuits. If at all possible, the support structure

should also protect the delicate gold bond wires on the surface of the array. The

mechanical system needs to align the optical fibers to the photodiodes while al-

lowing access to the microwave components. Precise placement of the microwave

components is also critical. For convenience, all the pieces are milled on the PCB

prototyping milling machine mentioned in section 2.3. The milling machine can mill

FR4 (PCB material), aluminum and brass, as well as the softer Teflon-based sub-

strates. Soft metals, such as copper gum, the milling tools, while low temperature

plastics like Nylon, Delrin and polycarbonate melt from the high-speed milling tool

friction.
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Optical Mount

Substrate
RF Mounts

Figure 4.1. Illustration of the assembly of the FR4 mounting structures with the
substrates.

Since the milling machine is limited to cutting, drilling and gouging (milling

only part way through the material) on materials up to 128 mils thick, the overall unit

cell is composed of a set of laminate pieces pined together, Figure 4.1. It is composed

of four layers of FR4 and two layers of Duroid. The two layers of Duroid substrate

contain the front and back side microwave circuits (i.e. antennas, SPDT switch, ...).

The bottom three layers of the FR4 RF mount, support the soft Duroid material

by sandwiching it between them. This mount also provides two sets of alignment

pins used to align the substrate with the optical mount. The top two layers of FR4,

referred to as the optical mount, align the optical fibers to the photodiodes while

protecting the gold bond wires. Since the optical fibers are free space coupled to the

photodiodes, the optical mount may be removed from the RF mount for access to

the microwave circuits.

4.1.1 Unit Cell Layout The layout of the unit cell is based on the

layout of the array, such that the performance and stability of the unit cell is as

close as possible to that of the array. There are two sides to the unit cell, the active

component side and passive component side.
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On the active component side, effort is made to have about 30 dB of isolation

between any two paths that can carry the microwave signal. Since the maximum

gain of the MMICs is about 16 dB, this should prevent any free space oscillations.

The electrical and mechanical components are restricted to be outside an area of

20 mm by 20 mm, (section 2.5.3), around the each patch antenna. The bias lines

are placed on the passive side of the unit cell to prevent oscillations due to coupling

through the MMICs power connections. A tilt of 6.3o to the patch antennas allows

for tighter packing of the unit cells into the array.

For good optical fiber coupling the photodiodes need to be accurately po-

sition on the substrate. The holes are cut into the active side substrate the exactly

fit the ceramic mounts for a pair of photodiodes. The pressure fit of the photodiodes

into these holes allows for the precise positioning. The ground plane for the active

side substrate is milled away just around the holes to prevent the photodiodes from

shorting. A via is provided to make the ground connection for the photodiode.

The PIN diodes and LPF capacitors are mounted with silver epoxy on

0.5 mm brass via posts in the substrate providing a good ground connection and

accurate placement of the devices. In an effort to minimize the length of the bond

wires to the MMICs and capacitors, they are placed on 0.38 mm (15 mil) brass plat-

forms. Longer pass-through vias are made to connect the active and passive sides

of the unit cell. The ground planes are removed from around the pass-through via

holes on the both the active and passive substrates to prevent the vias from shorting

to the ground plane. One set of pass through vias connects the -2.3 V bias line to

the photodiodes while another set connects the 5 V bias line to the current limiting

resistor and MMICs. The passive side patch antenna is also connected the active

side with a pass-through via. The brass components are pictured on a penny to

demonstrate their size, Figure 4.2. All of the brass pieces are made to a accuracy of

1-2 mils from bras rods or brass strips cut on the milling machine. Then the brass
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Figure 4.2. Photograph showing the size of the milled brass pieces on a penny used
in the construction of the unit cell.

pieces are filed to size as illustrates in Figure 4.3.

The passive side of the unit cell contains the bias line, antenna, and the

lensing delay lines. Even though the MMICs have 100 pF capacitors filtering the 5 V

supply voltage, additional capacitor pads are placed approximately every λ/2 along

the bias-line encase bias-line oscillations occur. Since the MMICs and SPDT switch

are supplied from the same bias line and their vias are placed quite close together,

additional capacitor pads are place next to the switch via to suppress the switching

currents from polluting the 5 V supply to the MMICs.

Besides the FR4 and substrate pieces, special aluminum plates are made

to allow gold bonding on both sides of the unit cell. The hole pattern cut into them

allows from maximum heating the material for gold bonding while not damaging the

circuits. Figure 4.4 pictures the aluminum plate for the lens array.

Figure 4.3. An illustration showing how to fabricate the small brass pieces used in
the unit cell.



85

Figure 4.4. Photograph showing an aluminum plate that allows wire bonding on
both side of the lens array.

4.1.2 RF Mount Design The main purpose for the RF mount is

to provide support for the Duroid substrate and align the substrate to the optical

mount. 0.8 mm brass pins in the lower FR4 RF mount pieces match 0.8 mm holes in

the substrate and 1 mm holes in the upper FR4 RF mount pieces. The 1 mm holes

have tapered ends allowing easier mating of the two pieces. An additional four pins

set in the second RF mount piece match four 1 mm holes in the optical mount, Figure

4.5(a). One pin fixed in the bottom RF mount piece passed through all FR4 and

substrate layers to align with the optical mount. It is in the center of the photodiode

cluster allowing maximum absolute alignment between the fibers and photodiodes.

20 mm by 200 mm apertures cut into the lower RF mount pieces allow the passive

side antennas radiate through the RF mount, Figure 4.5(b).

4.1.3 Optical Mount Design The optical mount is the most compli-

cated piece made with the highest tolerances. It provides protection to the microwave

circuits while maximizing the aperture (20 mm by 20 mm minimum) through which

the active side patch antenna radiates. It also contains optical fibers and baffling to

prevent cross-talk between the photodiodes.

The optical mount consists of three laminated layers of FR4. The top two

layers contain the windows for the antennas as well as the 300µm holes that hold
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Figure 4.5. Photograph showing the active side (a) and passive side (b) of the RF
mount for the unit cell with their alignment pins.

the 240µm optical fibers, Figure 4.6(a). The third layer contains the baffles which

are 1.5 mm in diameter and 1.27 mm deep that fit over each photodiode, Figure

4.6(b). A post that rests on the substrate surface maintains the baffle height above

the photodiodes. The fibers are fitted into the optical mount such that they rest

1.12 mm above the photodiodes and protrude 0.15 mm into the baffle. The optical

fibers are secured in the 0.3 mm holes with quartz. The optical fibers protrude into

the baffles to prevent the quartz wax from flowing over their ends in the gluing

process.

4.2 Unit Cell Testing

The test setup for the unit cell is the same as the one used for testing

the 8 GHz unit cell, Figure 2.36. There is 13.5 dB of loss in the unit cell due to

aperture loss (4.7 dB x 2), IL (0.32 dB x 2), via loss (1 dB) and radiation efficiency

(2.4 dB). The gain of the MMICs overcome the loss to give a positive gain for the unit



87

Optical Fibers

(a)

Resting Post

Alignment Hole

Baffles

Optical Fiber

(b)

Figure 4.6. Optical mount for the unit cell placed on the FR mount (a) showing the
optical fibers and antenna apertures. The back side of the mount (b) shows the FR4
baffle and substrate resting post.

cell in a “through” measurement, Figure 4.7. The unit cell exhibits at least 30 dB of

isolation in anomalous modes of operation such as: transmitting in receive mode and

receiving in transmit mode. Measurement performed with the unit cell powered “off”

all exhibit 30 dB of isolation demonstrating that isolation measurement is limited to

edge diffraction around the unit cell.

4.3 Array Design and Testing

The lens array, Figure 4.8, is designed as a cylindrical lens with 3 row of

8 unit cells. The slant to the rows allows for tighter packing of the unit cells with

3/4λ spacing in the focusing dimension and 1λ in the non-focusing dimension. The

focal distance to diameter ratio is 1 and the points of perfect focus, section 5.1, are

at ±45o. Figure 4.9 shows the simulated radiation patterns for the lens with 0o and
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Figure 4.7. Measured gain of the unit cell in the transmit (blue) and receive mode
(red) calibrated to a “through” measurement of an aperture of 3/4λ by 1λ.

30o off optical axis feeds. The half power beam widths (HPBW) for the 0o feed is

8.5o in focusing dimension and 17o in the non-focusing dimension. The HPBW for

the 30o feed increases to 12.5o in the focusing dimension and 16o in the non-focusing

dimension. The simulations are done using code describe in section 5.2. Due to the

1λ spacing, grating lobes appear at ±90o in the non-focusing dimension. The 3/4λ

spacing causes grating lobes to appear when the main beam is steered off axis, Figure

4.9(b). Figure 4.10 shows the radiation pattern for a cut in the focusing dimension.

4.3.1 Optical Control Problems with the Array Measurements

The transmit and receive fibers from each unit cell are bundled together using quartz

wax. Each bundle is polished with 10µm to 0.5µm polishing paper. particles size.

The bundles are aligned to a 70 mW 1480 nm laser diode that is collimated using

a 8 mm focal distance lens, Figure 4.11. Since the beam from the laser diode is

elliptical in shape, it is impossible to get a perfectly collimated beam using a single

lens. It is important to collimate the laser beam since the optical fibers are limited

to an acceptance angle of 25.4o or less, determined by their numerical aperture of

0.22. The optical fiber bundles were polished by hand using a specially made jig

to hold them perpendicular to the polishing surface. Unfortunately, due to human
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(a)

(b)

Figure 4.8: The active side for the lens array (a) with optical mount (b).
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(a) (b)

Figure 4.9. Simulated normalized radiation patterns for the lens array with 0o off
axis feed (a) and 30o off axis feed (b). The focusing dimension is the horizontal axis
and the non-focusing dimension is the vertical axis.
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Figure 4.10. Simulated normalize radiation patterns for the 0o off axis feed (red)
and the 30o off axis feed (blue) in the focusing dimension.
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Figure 4.11. Photograph showing the coupling of the 1480 nm laser diode to the
optical fiber bundle.

imperfection, the outside fibers in the bundle have rounded edges, from the wobbling

of the jig.

The rounded edges and the reduced optical power at the edge of the bundle

reduced the optical power coupled into the outside fibers preventing proper biasing

for their unit cells. Figures 4.12 and 4.13 show the best achieved bias voltages for the

PIN diodes for the array in transmit and receive modes respectively. The PIN diodes

are “on” for voltages above 1 V. Voltages just below the threshold voltage present

a low impedance to the switch which may not be enough to prevent oscillation.
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Figure 4.12. Picture showing the oscillating and questionable unit cells for the lens
in transmit mode.
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Figure 4.13. Picture showing the oscillating and questionable unit cells for the lens
in receive mode.

When neither set of PIN diodes are properly biased “on”, then both paths in the

SPDT switch are “on” forming a ring oscillator with the LNA and PA providing

the gain. With the 30 dB isolation between the unit cells, each unit cell oscillated

at its own frequency, around 8 GHz and can be seen on the spectrum analyzer. By

counting the number of oscillating peaks, the number of non-functioning unit cell

can be determined. By moving the laser spot across the fiber bundle, it is possible to

properly bias once oscillating unit cells at the expense of another unit cell oscillating.

It is this test methodology that proved each unit cell is built properly and the optical

control is the reason for the array oscillation.

4.3.2 Array Pattern Measurements At the time of the develop-

ment of the optically controlled lens array, an anechoic chamber was not available

with a rotating stage that could accommodate the optical feed setup. Therefore pre-

liminary radiation pattern measurements are taken with a rotating stage mounted

to an optical table, Figure 4.14. A horn antenna mounted on a rotating arm behind

the lens array provides the feed for the array. Patterns are taken for the feed at

0o and 30o off optical axis. The 30o feed radiation pattern does not steer the main

beam through the fiber bundles shown in, Figure 4.14. A spectrum analyzer is used

to measure the transmit and receive power while filtering out the radiated power
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Figure 4.14. Photograph showing the setup used to measure the radiation patterns
for the lens array.

from the oscillating unit cells.

Unfortunately, in this environment, multi-path reflections and power leak-

ing around the lens array to the feed limits the accuracy of the pattern measurements.

The effects of multi-path are estimated by monitoring the spectrum analyzer power

levels as objects and people move about in the room. After looking at the pattern

measurements of the active and passive arrays, the best estimate for the accuracy

in the radiation patterns is about 10 dB to 15 dB down from the main lobe for the

active array. No discernible array pattern can be deduced from the passive arrays,

implying that the errors due to multi-path and power leakage are on the order of the

gain of the lens. Radiation patterns can be discern for the active lens array due to

the gain of the LNA and PA.

Radiation patterns taken in the focusing dimension, show an increase in side

lobe power and an asymmetry in the main beam, Figures 4.15. The characteristic

grating lobes do appear in the pattern for the 30o scan angle, Figure 4.15(b). Patterns

simulations for the transmit and receive cases with the appropriate oscillating unit

cells turned off and a patch antenna feed, show an increase in side lobe and some

asymmetry, Figure 4.16. Most of the asymmetry in the radiation patterns must be

due to multi-path errors. Three-dimensional pattern simulations show a reduction

in the radiation pattern structure due to the “off” unit cells, Figures 4.17, 4.18.
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Figure 4.15. The measure normalized radiation patterns in the focusing dimension
for the 0o off axis (a) and the 30o off axis (b) feeds. The transmit patterns are in
(blue) and the receive patterns are in (red).
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(b)

Figure 4.16. The simulated normalized radiation patterns for the 0o off axis (a) and
the 30o off axis (b) feeds in the focusing dimension. The transmit patterns are in
(blue) and the receive patterns are in (red) with the oscillating unit cells turned off.
The radiation patterns for a fully function lens array are in (green).



96

(a) (b)

Figure 4.17. The simulated normalized radiation patterns for the 0o off axis (a) and
the 30o off axis (b) feeds for the lens array in receive mode.

To estimate the effects of the fiber bundles on the radiation pattern, mea-

surements are done with the passive array by itself, with the FR4 mount and with

the FR4 mount and optical fibers. A different test setup is used for the passive array

where the array held fix and the source horn moves. This setup seems less prone

to multi-path errors and the patterns are taken in the evening when the laboratory

is empty. A major source of error in these measurements is maintaining the horn

pointing direction to the array. The pattern measurements for the array with the

main beam steered through the fiber bundle shows about 2 dB reduction in power for

the FR4 mount and the FR4 mount with optical fibers, Figure 4.19. From section

2.5.3 the FR4 mount does attenuate the patch radiation pattern off axis. There is

not a noticeable difference between the FR4 and the FR4 mount with optical fibers,

suggesting that the FR4 mount dominates the reduction in the radiation pattern.
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(a) (b)

Figure 4.18. The simulated normalized radiation patterns for the 0o off axis (a) and
the 30o off axis (b) feeds for the lens array in transmit mode.
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Figure 4.19. Measured passive array radiation patterns for the array (blue), array
with FR4 mount (red), and array with FR4 mount and optical fibers. The 30o off
axis feed steers the main beam through the fiber bundles.
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4.4 Shaped Pulse Control of SPDT Switch

For controlling very large antenna arrays, the optical control pulses maybe

further optimized in shape to provide more efficient use of the optical power. As

mentioned in section 3.1.4, the controlling factor on how fast the SPDT switch

changes states is the RC time constant formed from the gate capacitance of the

MESFET and the “on” resistance of the photodiode. The “on” resistance of the

photodiode is a model for the generated carriers in the photodiode discharging the

stored charge on the gate capacitance of the MESFET. The more carriers there are,

the faster the capacitor discharges. Once the capacitor is discharged, there is not

need for the large numbers of carriers and the optical power can be reduced to a

level where the gate of the MESFET is held at the proper voltage potential. From

the measurements in section 3.3.3, this requires only 0.25µW of optical power.

The low “background level” power level suggests a novel control methodol-

ogy for the SPDT switch, where the photodiodes are pulsed at a high optical power

long enough to allow the switch to change state and then reduced to the minimum

power for the rest of the period. For the switch rates measured in section 3.3.3, the

required optical energy needed to change the state of the switch stays reasonably

constant with switch rate at about 10 pJ to 20 pJ, which is far less than the reported

energy required to switch a MEMS switch [29]. Figure 4.20 shows a SPICE simula-

tion for this control scheme where the complementary optical pulses (blue and red)

are switched from 7 mW of optical power to 0.25µW. The bias voltage across the

two sets of PIN diodes (purple and yellow) switch for “on” to “off” and vise versa,

showing the switch changes state.

The real motivation for this type of control comes into play when large

arrays are being controlled. For example, assuming a commercially available 100 mW

1480 nm laser diode used in yttrium doped fiber amplifiers is used to control an array

at its fastest rate of 2.4 ns rise time for periods of 10 ns. How large of an array can
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Figure 4.20. SPICE simulated performance for the unit cell using shaped optical
pulses to reduces the required optical power needed for fast switching. The voltage
sources representing the optical signals are (blue and red, far left y-axis scale) and
the bias voltages for the two sets of PIN diodes are in (purple and yellow, right y-axis
scale)

be controlled with and without the shaped optical pulses? The 100 mW limit on the

laser diode is the average power limit dictated by the laser ability to dissipate heat.

For a 2.4 ns rise time, 9 mW of optical power is needed per diode or 18 mW per unit

cell. For the non-shape optical pulse that allows a

100 mW
18 mW

= 5.5 (4.1)

unit cells to be controlled. For the shape optical pulse the average optical power

needed per unit cell is

2
2.4 ns
10 ns

9 mW + 2
7.6 ns
10 ns

0.25µW = 4.3 mW (4.2)
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allowing

100 mW
4.3 mW

= 23.2 (4.3)

unit cells to be controlled. As the pulse period increases, the power savings for the

shaped pulse become more significant.



CHAPTER 5

LENS ARRAYS DESIGN

5.1 Constrained Lens Array Theory

As presented in chapter 1, adaptive array communications systems use a

complex weighted sum of the array element outputs to steer a beam in the direction

of the desired user and creating nulls in the directions of any unwanted users. In

“standard” planar arrays, the information about the direction of the desired user

is contained in the phase variations across the array, thus the adaptive algorithm

uses all the elements in the array to steer the beam towards the user. However, lens

arrays focus signals from different directions onto a focal surface, where the resulting

image spatial decorrelates the different signal allowing for more efficient processing

of the information. This is equivalent to transforming the problem from a phase-

space representation (planar array) to a beam-space representation (lens array). The

focusing quality of the lens array affects the overall performance of the adaptive lens

array system. In order to understand how lens arrays affect the performance of an

adaptive array system, it is important to understand how the design of a lens array

affects its ability to focus.

There are several different types of lens arrays that date back to the 1940’s,

in which stacked metal plates form a waveguide lens used to enhance early RADAR

performance [47]. Gent introduced “the Boot Lace Aerial” in 1957 in which trans-

mission lines connect two antenna arrays to form a lens [48]. The two antenna arrays
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Figure 5.1. “The Boot Lace” lens array showing the four degrees of freedom: 1.
Curved non-feed surface; 2. Curved feed surface; 3. Non-feed and feed elements
relative offset; and 4. Delay.

function as the front and back surfaces of the lens, and the transmission lines intro-

duce the delays through the lens. The surface of the lens on the side of the focal

surface will be referred to as the feed side, and the other side the non-feed side. The

transmission lines are longer in the center, in analogy to an optical lens being thicker

in the center. By using transmission lines instead of waveguides structures, the lens

is non-dispersive over a very large bandwidth.

In principle, the lens arrays can be categorized by the numbers of degrees

of freedom in their design. There are up to four degrees of freedom in lens arrays,

as indicated Figure 5.1:

1. Non-feed side curved surface;

2. Feed side curved surface;

3. The relative positions between radiating pairs of elements in the two arrays; and

4. The electrical delay between elements.

The number of degrees of freedom in the design determines the number of perfect

focal points on the focal surface, one for each degree of freedom. Roa [49] and Rap-

paport and Zaghloul [50] have reported designs with four perfect focal points. Roa

placed the focal points on a straight line where Rappaport and Zaghloul placed them
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Figure 5.2. A McGrath planar constrained lens with two degrees of freedom: 1.
Non-feed and feed elements relative offset and 2. Delay.

on a circle, symmetric about the optical axis. Rotman and Turner [51] presented a

three-focal point array lens where the front non-feed side is constrained to be flat.

Two of the three focal points lie symmetric about the optical axis, and the third is

on the optical axis.

The lens array presented first by McGrath [2] is of most interest to this

project since it constrains both the non-feed side and the feed side to be flat, Figure

5.2. With only two degrees of freedom, the two focal points lie symmetrically around

the optical axis at angles ±θ0. The equations that determine the location and the

delay for each element in the array are derived from Figure 5.2, such that the path

delays for a plane wave incident at an angle θ0 are the same for any element pair in

the array. Equation (5.1) relates the location of a feed-side element (ρ) in terms of

the non-feed side elements (r), focal distance (F ) and angle of perfect focus (θ0).

ρ =

√
F 2 − r2 sin2 θ0

F 2 − r2
(5.1)

The delay for each element (W ) is determined by the non-feed side element position,

focal distance and the unit delay for the center element (W0):

W = F +W0 −
1
2

√
F 2 + ρ2 − 2ρF sin θ0 −

1
2

√
F 2 + ρ2 + 2ρF sin θ0 (5.2)
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At all other points on the focal surface, the path delay error follows closely a cubic

function, Figure 5.3(a), suggesting “coma” aberrations [24] which can be reduced by

re-focusing. McGrath found that a new focal surface (G(θ)) given by equation (5.3)

minimizes the RMS error in path length integrated over the aperture of the lens,

Figure 5.3(b). The G(θ) is given by:

G (θ) = F sec (θ0)
[
1 +

1
2

sin2 α sin2 θ

(1− secα) (1 + sinα sin θ)

]
(5.3)

α = sin−1
(rmax

F

)
(5.4)

where rmax is the radius of the lens. Equations (5.1, 5.2, and 5.3) are given in terms

of radial coordinates of the elements, therefore a three-dimensional array can be

designed by imposing symmetry about the optical axis. Roa states that in practical

situations, this axial symmetry is not possible, and a lens has a cone of best focus

instead of a cone of perfect focus at θ0. Figure 5.3 also shows how the cone of best

focus and the re-focused focal surface try to minimize the average error by letting

the phase be both positive and negative.

Since the planar constrained lens only has two degrees of freedom, it can be

uniquely specified by two design parameters (F/D and θ0) and the feed side element

spacing, where D is the diameter of the aperture. Figure 5.4 shows the layout of two

different lens arrays that are 4λ in diameter and have inter-element spacings of λ
2 .

The first lens design has F/D=0.6 and θ0 = 0, and the second design has F/D=0.6

and θ0 = 45o. The red x’s and yellow o’s represent the centers of the non-feed side

and feed side radiating elements, respectively, with the focal surface for the lenses

shown in blue. The first thing to note is that for small enough F/D and θ0, it

is possible to have a lens design that is unrealistic since the feed side elements lie

outside the array aperture. By increasing θ0, the elements are brought in but at the

cost of deforming the focal surface away from the lens which results in increased loss.

As in planar array design, the inter-element space in the lens array needs to be λ
2
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(a)

(b)

Figure 5.3. Normalized phase error versus normalized aperture coordinates for a
spherical focal surface (a), and a refocused focal surface (b). (Scanned for [2]
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Figure 5.4. Example of two lens designs with F/D=0.6 and cone of best focus, θ0 = 0o

(a) and θ0 = 45o (b). Red x’s depict the centers of the non-feed side antennas and
yellow o’s those of the feed side antennas. The focal surface of the lenses are shown
in blue.

by λ
2 to prevent grating lobes when steering off axis, [21]. However, the best way to

pack the elements (unit cells) into the lens aperture is yet to be determined.

5.2 Lens Array Modeling

a lens arrays, only approximates a real microwave lens. The finite sampling

of the aperture and the approximation of the refraction through a lens with delay

lines introduce loss and aberrations in the image of the lens. As from phase errors,

there are several other factors in the physics of lens arrays that also lend to the loss

and aberrations in images. For example, the polarization and radiation patterns of

the antenna elements in the lens affect how the re-radiated signals are focused on

the image for different scan angles. The path loss difference between the different
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elements in the lens and a point on the focal surface affects how the different signals

interfere.

An analytical solution for the aberrations and loss in a lens array system is,

however the physics of the problem makes a analytical solution intractable. Instead,

a numerical model for the lens array is developed to characterize the aberration and

loss. The model uses radiation coupling equations based on Franhoffer diffraction

theory, since the physical size of the lens system is beyond the resources of most

full-wave simulators. Using radiation coupling equations, the model will not be able

to predict high order interactions between elements in the array and elements on the

focal surface. The model should be flexible enough to allow changes in lens design,

different types of sources excitations and focal surface detectors. It also needs to

be able to simulate various microwave environments (i.e. multi-path, multi-user,

moving sources, changing polarization, etc.) so the effects of lens arrays in adaptive

antenna systems may be explored.

5.2.1 Physical Bases for the Numerical Model In the model for

the lens array, only far-field (Franhoffer) radiation coupling is taken into account

[45, 52]. This coupling is the result of spherical electromagnetic waves propagating

from one antenna to another. The effective length is used to describe the coupling

between antennas since it preserves both the gain and polarization of the antenna.

The electric field at a point in the far field induced by an antenna with input current

Iin is given by

−→
E = −jη kIin

4π R
−−→
leff (θ, φ)e−jkR (5.5)

where
−−→
leff is a vector describing the polarization and gain of the electric field for an

antenna in the direction (θ, φ). k is the propagation constant for a plane wave, and

R is the distance between the center of the antenna and the point of observation.

The induced open circuit voltage, Voc, at the antenna port with an incident electric
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Figure 5.5: Coordinate relationships for calculating the coupling of two antennas.

field
−→
E is given by:

Voc =
−→
E ∗ ·

−−→
leff (θ, φ) (5.6)

A∗ denotes conjugate transpose of the electric field vector. The coupling between a

transmit and receive antenna that are separated by, R, and in the directions (θtran,

φtran) and (θrec, φrec) for transmit and receive angles, respectively, as shown in

Figure 5.5, is given by:

Voc = −jη kIin
4π R

−−→
leff

∗(θrec, φrec) ·
−−→
leff (θtran, φtran)e−jkR (5.7)

−−→
leff for both antennas are in a common coordinate system for the dot product of

the effective lengths to accurately describe the polarization interaction. This can be

rewritten as:

Voc = jη
kIin
4π R

∣∣∣−−→leff (θrec, φrec)
∣∣∣ ∣∣∣−−→leff (θtran, φtran)

∣∣∣(−−→
ρ∗eff (θrec, φrec) · −−→ρeff (θtran, φtran)

)
e−jkR (5.8)

Equation (5.8), explicitly separates the antenna gains |leff |and polarization −→ρ (θ, φ)

in to a form more useful for the model. All calculations are done at a single frequency

with narrowband systems in mind.

Using Equations (5.5, 5.6, and 5.8) all the electric fields on the lens array

and focal surface can be calculated. For example, assume we have a source antenna

in the near field of the lens array and a far-field plane wave incident on the lens array.
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Figure 5.6. Example of lens array system with far-field source (magenta hexagon),
near-field source (magenta circle) and a detectors on the the focal surface (green
squares).

The lens array itself is populated with antenna elements on both sides, each having

their own orientation, connected through delay lines and amplifiers. The antenna

elements on the feed side of the array radiate to antennas placed on the focal surface,

or other points, behind the array. Figure 5.6 illustrates the lens system with the near

field source represented by a magenta circle and the far-field source represented by

a magenta hexagon in the direction of arrival 6λ from the center of the lens in the

direction of reception. The non-feed side antennas are represented by red x’s and

feed side antennas represented by yellow o’s at their positions in the array. The

detector antenna (green) is on the focal surface (blue). Each source, array element,

and detector has its own orientation represented by its own local coordinate system.

Using Jacobean matrices, [J], to perform coordinate transformations from

local to global coordinate systems and from spherical to Cartesian coordinate systems
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Figure 5.7. The coupling between two antennas, each with its own local coordinate
systems

referring to Figure 5.7, Equation (5.8) can be rewritten in a form as

Voc = jη
kIin
4π R

∣∣∣−−→leff (θrec, φrec)
∣∣∣ ∣∣∣−−→leff (θtran, φtran)

∣∣∣
−−→
ρ∗eff (θrec, φrec) · [Jrec,sphere(θrec, φrec)] · [J∗rec,globe]·

[Jtran,globe] · [J∗tran,sphere(θtran, φtran)] · −−→ρeff (θtran, φtran)e−jkR (5.9)

[Jrec,globe] transform local receive Cartesian coordinates to global receive

Cartesian coordinates. [Jrec,sphere(θrec, φrec)] transforms receive Cartesian coordi-

nates to receive spherical coordinates in a direction (θrec, φrec). Since Jacobian

matrices are unitary, their inverse is the conjugate transpose represented by [J∗] and

performs the inverse coordinate transformation, [53].

Using a circuit model to describe the connection of non-feed side elements

to feed side elements, Figure 5.8, the input current for the feed side antenna can be

calculated from the induced open circuit voltage at the non-feed side antenna as:

Iin,NFD =
VocGain

RFD +RNFD
(5.10)

where RFD and RNFD are the feed side and non-feed side antennas resistances,

respectively. Here the amplifier gain is a current gain and the antenna impedances

are assume to be real and matched to the amplifiers.

By cascading Equation (5.9) for a near-field source or Equation (5.6) for

a far-field planes with Equation (5.10) for propagating through the lens array and
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Figure 5.8. Circuit model for the non-feed side and feed side antennas in a lens array.

Equation (5.9) for feed side elements radiating to a detector, the open circuit voltage

at the detector can be determined. From Equation (5.10), lens arrays fundamentally

have 3 dB more loss than an equivalent planar array due to the conversion of radiated

power to voltage and back to radiated power prior to detection (reception).

5.2.2 Antenna Element Models The equations presented in sec-

tion 5.2.1 describe the radiation in terms of the antenna effective lengths. One of the

requirements for a numerical model for a lens array, is the ability to describe arbi-

trary antennas. A standard way to describe an antenna’s effective length is through

an integral of its surface currents [45, 52]. Depending on the antenna, this could be

an electric current (e.g. in a dipole) or a magnetic current ( e.g. in a cavity model for

a patch antenna). in a lossless antenna, the total radiated power is equal the total

input power (Pin) at the feed. This is sometimes written as a relationship between

input resistance, Rant, and radiation resistance, Rrad, [45]:

Prad = |I0|2Rr (5.11)

Pin = |Iin|2Ra (5.12)

Ra
Rr

=
|I0|2

|Iin|2
(5.13)

where the I0 and Iin are the electric current density for the antenna and input current

at the feed of the antenna respectively.

The radiation resistance is essentially a normalization of the total power
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radiated:

Rrad =
1
|Iin|2

∫∫
S

−→
E ×

−→
H ∗ · dS

=
1

η |Iin|2

∫∫
S

∣∣∣−→E ∣∣∣2 · dS
(5.14)

where η is the free space impedance, 377Ω.

If the model has to perform a power normalization integral each time the

effective length of the antenna is needed, it will run prohibitively slow. Fortunately,

many antennas like dipoles, microstrip patch antennas and slot antennas have a

structure to their electric and magnetic surface currents that determine their radia-

tion patterns. For dipole antennas, all the calculations including the normalization

constant can be done ahead of time and stored in a file, however for patch and slot

antennas whose radiation pattern changes for different shape antennas, this is not

true. For patch and slot antennas it is possible to calculate the general shape of

the radiation pattern as a function of the patch shape apriori and then perform the

surface integral once to calculate the normalization constant.

It is possible to relate the integral of the radiated power to an integral

of the prototypes effective length. Then by calculating the normalization constant

from the integral of the prototype’s effective length a single set of equations can be

used for the power normalization and the radiation coupling calculation. The total

radiated power by an antenna is given by

Prad =
∫∫
S

−→
E ×

−→
H ∗ · dS

=
1
η

∫∫
S

∣∣∣−→E ∣∣∣2 dS
(5.15)



113

The electric field is calculated from the electric current density vector,
−→
J , as

−→
EJ =

−kη
4πR

e−jkR
∫∫
S

−→
J e−jkR cosψ dS

=
−kη
4πR

e−jkR
−→
N

(5.16)

−→
N =

∫∫
S

−→
J e−jkR cosψ dS (5.17)

where ψ is the angle between the vectors that point to the current element and the

observation point in space. For a magnetic current density vector,
−→
M , the electric

field is

−−→
EM =

k

4πR
e−jkR âr ×

∫∫
S

−→
Me−jkR cosψ dS

=
−k
4πR

e−jkR âr ×
−→
L ,

(5.18)

−→
L =

∫∫
S

−→
Me−jkR cosψ dS, (5.19)

where âr is the unit vector for the direction of observation. Combining Equation

(5.5) with equations (5.16), (5.17), (5.18), and 5.19) gives the effective length in

terms of electric and magnetic currents:

−−−−−−−−→
Leff,J(θ, φ) =

−→
N

Iin
=
J0

Iin

−→
N ′(θ, φ) (5.20)

−−−−−−−−→
Leff,M (θ, φ) =

−âr ×
−→
L

ηIin
=
−ârM0 ×

−→
L′(θ, φ)

ηIin
(5.21)

N ′(θ, φ) and L′(θ, φ) represent the surface integral for the antennas per Equations

(5.17 and 5.19) and J0 and M0 are normalization constants for power conservation.

If both electric and magnetic currents are present then the effective length is give by

−−−−−→
Leff,J,M =

−−−→
Leff,J +

−−−−→
Leff,M (5.22)

Combining equation (5.15) with (5.16) results in an equation for the input antenna
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resistance, as follows:

Prad =
J2

0

2η

∫∫
S

∣∣∣∣−jkη4πR
e−jkR

−→
N ′
∣∣∣∣2 dS (5.23)

|Iin|2

2
Rant =

J2
0k

2η

32π2R2

∫∫
S

∣∣∣−→N ′∣∣∣2 dS (5.24)

Rant =
J2

0k
2η

16π2R2

∫∫
S

∣∣∣∣∣
−→
N ′

Iin

∣∣∣∣∣
2

dS (5.25)

(5.26)

Note that Equation (5.25) contains the effective length in the integral. Now it is

possible to solve for the normalization constant J0 in terms of the antenna input

resistance, and the input current. For the lens model both the input resistance and

input current are taken to be unity for unit input power in the calculation of the

normalization constant, J0:∣∣∣∣ 1
J0

∣∣∣∣2 =
k2η

16π2R2

∫∫
S

∣∣∣−→N ′∣∣∣2 dS (5.27)

A similar set of equation can be written for magnetic currents:

Prad =
M2

0

2η

∫∫
S

∣∣∣∣ jk4πR
e−jkR âr ×

−→
L′
∣∣∣∣2 dS (5.28)

|Iin|2

2
Rant =

M2
0k

2

32ηπ2R2

∫∫
S

∣∣∣âr ×−→L′∣∣∣2 dS (5.29)

Rant =
M2

0k
2η

16π2R2

∫∫
S

∣∣∣∣∣−âr ×
−→
L′

ηIin

∣∣∣∣∣
2

dS (5.30)

∣∣∣∣ 1
M0

∣∣∣∣2 =
k2

16ηπ2R2

∫∫
S

∣∣∣âr ×−→L′∣∣∣2 dS (5.31)

When both electric and magnetic currents are present and their scaling constants

are related by J0 = CM0, then the new normalization equation is given by∣∣∣∣ 1
J0

∣∣∣∣2 =
k2η

16π2R2

∫∫
S

∣∣∣∣∣−→N ′ − C âr ×
−→
L′

η

∣∣∣∣∣ dS (5.32)
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(a) (b)

Figure 5.9. The radiation pattern (a) and far-field electric field pattern (b) for a
semi-directional antenna. The electrical field vectors are plotted tangent to a unit
sphere with their tails denoted as circles.

.

There are two principle antennas used in the model simulations, semi-

directional and patch antenna. A semi-directional antenna radiates equally well

in all directions in a hemisphere and nowhere else, Figure 5.9(a). The electric field

polarization is chosen to be consistent with a ây oriented electric surface currents den-

sity vectors, Figure 5.9(b). When Equation (5.27)is applied to the semi-directional,

antenna the normalization constant becomes J0 =
√

2
ηπ

To calculate the normalization constant for the patch antenna, the cavity

model is used [45], Figure 5.10. The cavity model represents the radiation from

fringing electric fields off the patch as two magnetic currents. To be consistent

with the semi-directional antenna, the magnetic currents are chosen to be in the

âx direction,
−→
Mx, so that the radiated electric field is polarized along âx. By using

the cavity model for the patch antenna, the numerical model only needs the electric
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Figure 5.10: Cavity model for patch antenna.

length (Le), width (We) and height (he) to calculate the normalization constant and

the all subsequent effective lengths. The relevant equations are given below.

leff,θ =
−Lφ
ηIin

(5.33)

leff,φ =
Lθ
ηIin

(5.34)

Lθ =2|
−→
Mx|heWe cos θ cosφsinc (khe cos θ)

sinc
(
k
We

2
sin θ cosφ

)
cos
(
k
Le
2

sin θ sinφ
) (5.35)

Lφ =− 2|
−→
Mx|heWe sinφsinc (khe cos θ)

sinc
(
k
We

2
sin θ cosφ

)
cos
(
k
Le
2

sin θ sinφ
) (5.36)

a similar set of equations are derived for ây oriented currents,
−→
My, the equations are,

Lθ =2|
−→
My|heLe cos θ sinφsinc (khe cos θ)

sinc
(
k
Le
2

sin θ sinφ
)

cos
(
k
We

2
sin θ cosφ

) (5.37)

Lφ =2|
−→
My|heLe cosφsinc (khe cos θ)

sinc
(
k
We

2
sin θ sinφ

)
cos
(
k
Le
2

sin θ cosφ
) (5.38)

With equations (5.33) to (5.38) the model can simulate any polarize patch antenna

including elliptical polarization by relating
−→
My = C

−→
Mx, where C is a complex con-

stant. The normalization constants, M0, needs to be calculated only once and them

stored in memory for future reference. For example, the patch antenna used in
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(a) (b)

Figure 5.11. The radiation pattern (a) and far-field electric field pattern (b) for a
patch antenna. The electric field vectors are plotted tangent to a unit sphere with
their tails denoted as circles.

Chapter 4 has a radiation pattern, as shown in Figure 5.11(a) and electric field po-

larization plot, Figure 5.11(b) for a magnetic current density in the âx direction.

5.2.3 Numerical Model Structure MatLab 5.3 produced by Math-

Works is chosen as the programming tool for a design-oriented lens array modeling

tool. A complete listing of the MatLab functions are listed in Appendix A, with a

basic description of the objects listed below. Many of the objects and functions have

names taken from microwave and optical imaging systems.

Object 1: antenna

The antenna object describes the type of antenna, its position and its orientation.

Stored with the antenna object is a set of coordinate transformation matrixes that

allow easy calculation of coupling between antenna elements per Equation (5.9).

Object 2: Lens
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The lens object contains all the information to describe the lens: size, shape (circular

or rectangular), number of unit cells and the design parameters (F/D and θ0) as well

as a complete description of each unit cell (gain, delay, feed side and non-feed side

antenna objects). Since the lens array is an approximation to a lens, the way the

aperture is populated with unit cells can effect its performance. To explore the

effects of the unit cell placement, two different lattices and aperture approximations

are used. The unit cells may be packed with a triangular lattice or maximally fill

the aperture. The aperture may be approximated by constraining the unit cells to

be within the aperture boundary, or letting them cross the boundary by 1
4 unit cell

width. Figure 5.12 shows four examples of a 3λ radius circular lens with different

lattices and aperture approximations.

Object 3: Array

For comparison to a lens array, a planar array object is develop under the same

conditions as the lens array.

Object 4: Detector

A detector is an antenna element (or antenna array with corporate feed) placed

behind the used lens to detect the focal image of the lens. Each element in the

detector is an antenna object with a delay and gain associated with it. The output

of the corporate feed network may also have a gain associated with it.

Object 5: Imager

An imager is a collection of detectors used to sample the image produced by the

lens.

Object 6: Source

There are two different types of sources: near-field and far-field. A near-field source

is an antenna object radiating towards the array. A far-field source is a plane wave

incident upon the array. Both sources have input magnitudes, Iin for near-field and

Ein for far-field, and phase delays.
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Student Version of MATLAB

(a)

Student Version of MATLAB

(b)

Student Version of MATLAB

(c)

Student Version of MATLAB

(d)

Figure 5.12. Four examples of unit cell layouts. Triangular lattice and unconstrained
aperture approximation (a) Triangular lattice and constrained aperture approxima-
tion (b) Maximumly packed lattice and unconstrained aperture approximation (c)
Maximumly packed lattice and constrained aperture approximation (d)
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Object 7: Channel

The channel describes how the signals for a user is received by the array. It is a

collections of near-field and far-field sources that represent the paths that the users

signal took to the array.

Object 8: QOLTF

The Quasi-Optical Lens Transfer Function is a matrix that describes the induced

open circuit voltages at the outputs of each detector in an imager due to a channel

through a lens array.

Object 9: NoiseTF

The Noise Transfer Function is a matrix that relates the noise introduced by gain

elements in a lens and noise in the detectors to the outputs of a “imager”.

Object 10: Radiation Pattern

Radiation pattern is the far-field radiation pattern of a lens array as seen in reception

by a detector feed.

Object 11: Image Pattern

The Image pattern is the received power that a detector with unit load will receive

when placed on the focal surface for a given “ channel”.

For easier interpretation of radiation patterns and image patterns, two dif-

ferent coordinate system are used in their calculation, Figure 5.13. The (α, χ) coor-

dinate system is the negative of the (θ, φ) coordinate system.

Combining the above objects makes it possible to model communication

systems that have mobile sources, multiple users, multi-path propagation channels,

and time varying polarization.

5.3 Lens Simulation Results

In designing planar lens arrays, there are only two degrees of freedom:

the relative antenna positions and unit cell delays. These two degrees of freedom
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Figure 5.13. The two coordinate systems used to plot radiation and image pat-
terns. By plotting the results in these two coordinate system, the inverse image
introduced by the lens is reversed and a source at (αs, χs)=(C1,C2) is detected at
(θd,φd)=(C1,C2).

are uniquely specified by two design parameters, F/D and cone of best focus, θ0.

These two parameters only define the structure of the lens and do not define the

antenna elements nor how the unit cells are placed in the array. To understand how

the lens design parameters and unit cell design lens’ overall performance, several

numerical experiments are performed. The metrics that define a good lens design are

application-specific. For example, in a spatial power combining application, the loss

in the lens system affects the combining efficiency and is therefore most important. In

an angle diversity communication system, the aberrations (distortions in the image)

may be more important than the loss. Since it is not known which performance

metrics are most important for angle diversity communication systems, a general

characterization of focusing ability of the lens is performed for different lens designs.

In most communication systems, it is the average performance that matters, and in

an imaging system this average is over spatial angles. In the numerical experiments,

fifty far-field sources are used, uniformly spread over the field of view for 0o to 90o

off axis, Figure 5.14. The sources are arrange on concentric circles of 0o (source 1),

20o (sources 2-7), 40o (sources 8-18), 60o (sources 19-33), and 80o (sources 34-50) off

axis.
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Figure 5.14: Fifty far-field sources used in numerical lens array simulations.

5.3.1 F/D versus θ0 The first experiment examines the loss in a

lens as a function of F/D and θ0. Eight prototype lens designs are based on all

combinations (patch or semi-directional antennas; triangle or maximumly packing

lattice; and constrained or unconstrained aperture approximation). The lenses are

4λ in diameter and use λ
2 by λ

2 unit cells. For each prototype lens, the F/D and θ0 are

swept from 0.5 to 2 and 0o to 45o, respectively. Since some F/D and θ0 combinations

can lead to lens designs where the feed-sided antennas are outside their respective

unit cell boundaries, in each simulation this physical limitation is verified. The loss

is calculated for each source as the lens focuses the radiation onto a detector on the

focal surface. The loss is the amount of collected power by the detector compared to

the total power incident on the array aperture (the area of the lens aperture times
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Figure 5.15. The average (a) and variance (b) for the loss of a 4λ lens with semi-
directional antennas over all fifty sources showing the trends in loss as a function of
F/D and θ0.

the incident power flux density). Therefore reduction in antenna element gain for

scan angles off the optical axis is considered to be loss.

Since the amount of data obtained in this numerical experiment is large,

only the trends will be discussed here. These trends are independent of the antenna

elements used, size of the lens and its field of view. However, the optimal design

for the lens (the optimal values for F/D and θ0) are highly dependent on these

parameters and the lens design needs to be optimize for each set of parameters.

Figure 5.15(a) shows the average loss over the 50 sources as a function of F/D and

θ0 for a maximally packed unconstrained lens with semi-directional antennas. The

loss dose not monotonically decrease as F/D increases but oscillates. This oscillation

is not a result of standing waves between the lens array and detector, since the

model does not include these effects. The oscillation most be a result of sinusoidal

variation in the phase error as a function of F/D. For a constant F/D, the loss

does monotonically decrease as θ0 increases. The mean loss is minimize by having

the smallest possible F/D and θ0. This is equivalent to having the focal surface as
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close as possible to the lens, suggesting that path loss between lens and detector

is the dominant loss mechanism. Simulations are performed where path loss and

polarization loss are calculated independently. The simulations show that almost all

the loss can be account for by the path loss, while the polarization loss contributes

only 2% to 5% of the total loss.

The variance of the loss over the 50 sources describes the how much the

loss changes as a source moves off axis. Ideally, the loss should remain constant and

the variance would be zero. The variance of the loss decreases as the cone of perfect

focus moves away from the optical axis, Figure 5.15(b). This is consistent with the

phase error for the unit cells being averaged over the field of view (section 5.1).

Assuming the phase error is a polynomial function of scan angle, Shel-

ton [49] suggests that the optimal positions for the perfect focal points in a two-

dimensional lens array occur at the roots of a Chebyshev polynomial whose order

is the number of degrees of freedom. For example, a McGrath lens has two degrees

of freedom, and the points of perfect focus should be placed at ±45o for minimum

error up to 60o off axis. Figures 5.16(a) and 5.16(b) show the loss for a 4λ lens with

(F/D=.82, θ0 = 14o) and (F/D=0.5, θ0 = 45o), respectively. These plots illustrate

that it is possible to design a lens with large or small θ0 and still achieve low variance

in loss if the F/D is chosen properly. It appears that the semi-directional lenses have

less variation in their loss than patch-antennas lenses. This is probably due to the

reduced gain of the patch antennas when the sources are far from the optical axis. It

also appears that the patch antenna limits the useful scan angle of the lens to about

±60o, independent of θ0. Another interesting phenomenon is the variation in loss for

sources that have the same angle from the optical axis (e.g. sources 19-33 that are

60o of axis). The loss increases and decreases in a cosine fashion, showing the affect

polarization loss in the system.

The lattice and aperture approximation seems to have little effect. However,
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Figure 5.16. The loss for a 4λ diameter lens with semi-directional antennas and
design parameters F/D=0.82 θ0 = 14o (a) and F/D=0.5 θ0 = 45o (b).
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the larger the number of unit cells in the array, the more power it can collect, which

argues for maximally packed unconstrained lens designs.

5.3.2 Lens Abberations The next experiment looks at aberration

in the image for different lens designs as the source moves off axis. For an ideal

lens, the image produced by a far-field source off axis should be identical to the one

produced by a source on axis, only shifted. Aberrations are distortions of the image,

as illustrated in Figure 5.17. The mean loss is minimized when F/d and θ0. The

aberrations can reduce the performance of a communication system by spreading

the received power over a larger area on the focal surface. This will require more

detectors to sample the image, which adds more noise sources to the angle diversity

communication system and reduces the directivity of the lens.

Again, eight prototype 4λ lens designs with unit cell size of λ
2 by λ

2 are

used. Each is a combination of the semi-directional or patch antennas, triangular or

maximally packing lattices, and (F/D=0.8, θ0 = 14o) or (F/D=0.5, θ0 = 45o). For

each of the prototype lenses, image patterns are calculated for each of the 50 sources.

The half power beam radius (HPBR) for each pattern is calculated in eight different

directions. The first lobe (ring) is also measured in a similar manner. The metrics

of interest are: the average HPBR, the average radius of the first lobe ring and the

ratio of the first lobe average power to the main beam power. Another metric is

the average difference between the phase at the center of the main beam and the

HPBR points. This metric is not important for adaptive systems, but has value for

non-adaptive systems and this is discussed in the future work section 7.3.1.

Tables 5.1, 5.2, 5.3, and 5.4 show the metrics for the lens designs. The

percent standard deviation (STD) is the percent ratio of the STD to the mean. It

gives an estimate of how much the HPBR and first lobe radius distort from the ideal

circle. The percent STD for the HPBR phase is the ratio of the STD of delta phase

at the HPBR points to 360o. For a uniformly distributed phase from −180o to 180o,
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(a) (b)

(c) (d)

Figure 5.17. Image patterns for sources at 0o (a), 20o (b), 40o (c) and 60o (d) off
axis showing the aberrations in the image.
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Table 5.1. Metrics for F/D=0.82, θ0 = 14o, and a triangular lattice using semi-
directional antennas.

metric 0o 20o 40o 60o 80o

Average HPBR (degrees) 8.3 8.6 9.50 10.76 9.88
STD (%) 2.2e-14 19.6 13.93 18.76 19.45

Average HPBR Phase 20 18.54 -148.6 1.78 -45
STD (%) 0 14.6 32 22.6 20.92

Average First
Lobe Radius

(degrees) 27.2 21.14 21.8 21.8 21.85
STD (%) 0 51.5 77.07 86.9 75.23

Average First
Lobe Power

(dB) -18 -5.68 -4.10 -3.22 -4.1

Table 5.2. Metrics for F/D=0.5, θ0 = 45o, and a triangular lattice using semi-
directional antennas.

metric 0o 20o 40o 60o 80o

Average HPBR (degrees) 7.9 8.34 9.5 11.84 10.32
STD (%) 0 21.93 24.27 40.34 37.34

Average HPBR Phase 3.5 -16.97 42.56 8.38 15.14
STD (%) 0 2.89 4.59 6.32 5.2

Average First
Lobe Radius

(degrees) 25.7 23.51 20.85 15.6 19.49
STD (%) 0 62.42 83.24 87.08 79.0

Average First
Lobe Power

(dB) -25.77 -5.43 -2.86 -1.77 -3.13
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Table 5.3. Metrics for F/D=0.82, θ0 = 14o, and a maximally packed lattice using
semi-directional antennas.

metric 0o 20o 40o 60o 80o

Average HPBR (degrees) 7.84 8.32 9.2 10.58 9.6
STD (%) 0 20.24 13.2 18.52 19.7

Average HPBR Phase 18.1 17.37 -141.1 2.37 -42.47
STD (%) 0 14.03 32.58 22.32 20.43

Average First
Lobe Radius

(degrees) 25.7 22.83 21.9 19.04 21.06
STD (%) 0 38.57 75.12 92.25 73.53

Average First
Lobe Power

(dB) -17.1 -7.32 -4.14 -2.80 -4.02

Table 5.4. Metrics for F/D=0.5, θ0 = 45o, and a maximally packed lattice using
semi-directional antennas.

metric 0o 20o 40o 60o 80o

Average HPBR (degrees) 7.33 8.12 9.67 11.09 10.56
STD (%) 1.3e-14 23.54 23.4 41.13 37.48

Average HPBR Phase 1.07 -18.7 28.89 1.50 9.9
STD (%) 0 2.54 4 5.8 5.28

Average First
Lobe Radius

(degrees) 34 23.71 19.5 18.0 18.6
STD (%) 0 69.9 82.0 88. 32 86.0

Average First
Lobe Power

(dB) -25.53 7 -4.81 7i -2.71 -2.41 -2.48
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the STD is 104o (or 29%).

Several trends can be deduced from the data. First of all, the comparison

between like lenses with triangular lattices versus maximally packed lattices, shows

almost identical performances, again arguing for building lenses with as many unit

cells as possible. All four lens have the same increase in average HPBR size, starting

with about 16o beamwidth at 0o off axis to about 22o beamwidth at 60o off axis.

However, the variance on the HPBR is lower for the lenses with θ0 = 14o, especially

for large scan angles. The phase stability for the lenses with θ = 45o is nearly

constant over scan angle, while the lenses with θ = 14o appear to approach uniform

distribution at large scan angles. The average power in the first side lobe approaches

the power in the main lobe at large scan angles for all four lens designs, however the

lenses with θ0 = 45o have better side lobe levels, especially at small scan angles. All

four of the lenses have large variations in the first lobe power which is evident from

Figure 5.17, where the first lobe power is larger on the side farthest from the center.

5.3.3 Lens Array Loss under Scaling We have seen in Section

5.3.1 that the loss in lens arrays can be large but it is also important to see if the

loss in the lens arrays changes with size. The arguments in section 1.3 for improved

SNR in communication systems relies on the assumption that the loss in a lens array

does not increase with size. This assumption is based on a geometric argument for

a lens operating in the paraxial region. Let us assume that there is an aperture

antenna whose effective area equals its physical area and is 2x0 by 2y0, on the focal

surface of a lens with diameter, D, Figure 5.18(a). The angular size of this antenna

viewed from the lens is θantenna ≈ 2x0
F = 2 x0

ConstD
, where F/D = Const. The angle

that includes the HPBW spot focused on the lens is θHPBW ≈ 20.51λ
D , [54], Figure

5.18(b). Both the aperture size and the focal spot size scale as the inverse of the

lens diameter, resulting in loss independent of lens size.

Two prototype lenses with semi-directional antennas, λ
2 by λ

2 unit cells
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Figure 5.18. Illustration showing the angular size of an antenna on the focal surface
(a) and the HPBW spot (b) as viewed from the lens.

spacing and, (F/D=0.8, θ0 = 14o) or (F/D=0.5, θ0 = 45o) are used to estimate the

loss of a lens under scaling. The lenses are scaled from 3λ (35 unit cells) to 10λ

(306 unit cells) in diameter. The metric of interest is how the loss scales with the

number of unit cells, Ncells.

loss = Nα
cells. (5.39)

By taking 20log10(·) of both sides in Equation (5.39), α becomes the slope of the

curve.

Figure 5.19 show the average loss for the lens sources. For the lens with

F/D=0.8 and θ0 = 14o, the loss is constant for sources within 20o of the optical axis.

For θ0 = 14o, the phase error is minimized for angles less than 20o from Shelton’s

approximation, showing the lens array to be a good approximation to a lens. For

sources 20o or more off axis, the loss scales as N0.11
cells to N0.4

cells. For the lens with

F/D=0.5 and θ0 = 45o the loss is increases for all source angles but at a smaller

rate. The loss scales as N0.08
cells to N0.22

cells. In both cases, the average scaling power over

all sources within 60o of the optical axis is N0.16
cells.
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Figure 5.19. The average loss for a lens with F/D=0.82 and θ0 = 14o (a) and
F/D=0.5 and θ0 = 45o (b) lens array as it is scaled from 3λ to 10λ. The source at
0o is in blue, sources at 20o are in red, sources at 40o are in green, sources at 60o are
in yellow, sources from 0o to 40o are in magenta and sources from 0o to 60o are in
cyan.



CHAPTER 6

SIMULATION OF BEAM-SPACE ADAPTIVE LENS ARRAY SYSTEMS

6.1 The LMS Algorithm

Adaptive arrays communication systems date back to 1950’s the when How-

ells and Applebaum demonstrated the nulling of an interfering signal using a two

element array [13]. Shortly afterwards, Widrow developed the LMS (Least Mean

Squares) algorithm which is one of the simplest and most common algorithms used

in adaptive systems. The LMS algorithm has been used in many different applica-

tions like adaptive arrays [18, 15], adaptive noise canceling [55], recursive filters [19],

etc. LMS belongs to the class of algorithms that use gradient descent methods to

find a minimum on an error surface. Two other popular algorithms, Newton’s and

steepest descent, also belong to the this class of algorithms.

An excellent tutorial on the LMS algorithm is give in [19], briefly repeated

here for convenience. Let us assume that the LMS algorithm is applied to the

adaptive array in Figure 6.1. Independent white noise, ni,k, is added to each of the

antenna signals, αidk. The subscript i is used to indicated the i-th signal and the

subscript k is used to indicated the k -th sample in time. αi is a complex coefficient

used to describe the amplitude and phase changes of the original transmitted signal

dk that each antenna receives. For convenience, the received signals and noise are

expresses in vector form, dkA, and Nk, respectively, where a matrix or a vector are

in bold face. The output of the adaptive array, yk, is a linear weighted sum of the
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Figure 6.1. An example of a narrowband planar array adaptive receiver. The noise
is added after each antenna element to model the effects of the LNAs and switches
represent the sampling of the received signals with a sampling period of T.

received antenna signals and noise:

yk = Wk
∗Xk, (6.1)

Xk = dkA + Nk, (6.2)

The vector Wk is a vector contain the weights for the linear sum, while * denotes

complex conjugate transpose. Wk,Xk,Nk and A are column vectors.

The LMS algorithm adjusts the weights such that the error,

ek = dk − yk, (6.3)

is minimized. The mean square error, E[|e|2k], is a quadratic function of W:

ζ = E[|e|2k] = E[d2
k] + W∗RW − 2P∗iW, (6.4)

where

R = E[XkX∗k] (6.5)

P = E[d∗kXk] (6.6)
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Here the E[·] denotes the expectation. Since the error function, ζ, is quadratic in

W, it has one minimum given by

Wopt = R−1P (6.7)

which is sometimes known as the Wiener solution.

The LMS algorithm, just like the Newton Raphson and steepest descent

algorithms, use an estimate of the gradient of the error function, ζ, to transverse

down the slope to the local minimum. In the LMS case, the algorithm uses the

instantaneous value for the squared error as the estimate for ζ. By taking the partial

derivative of the |e|2k in terms of weights, W, the gradient is estimated to be

∇̂k =
∂|e|2k
∂W

= −2e∗kXk (6.8)

The next set of weights is found by using the current set of weights and progressing

in the negative gradient direction:

Wk+1 = Wk − µ∇̂

= Wk − 2µe∗kXk

(6.9)

The constant µ is a gain constant that regulates the step size to insure convergence.

A convenient way to express the weights is in terms of the optimal weight

solution and the weight error variable, Vk,

Wk = Vk + Wopt (6.10)

and examine the expected decay of Vk by calculating and neglecting noise in the

system

E[Wk+1] = E[Wk] + 2µE[ekXk]

= E[Wk] + 2µ (E[dkXk]− E[XkX∗kWk])

= E[Wk] + 2µ (P−RE[Wk])

= (I− 2µR)E[Wk] + 2µRWopt

(6.11)
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Using the eigenvectors of R to rotate the system to its principal-axis coordinates

(where the signal correlation matrix, R, is diagonal) expressed using a primed vari-

able, it can be shown that

V′k = (I− 2µΛ)k V0
′ (6.12)

where Λ is the diagonal matrix containing the eigenvalues of R and V0
′ is the initial

weight vector. From Equation (6.12), the algorithm learns as a decay of a set of

exponential functions. It shows that the mean vector converges slower for more

weights. It also shows that for the mean vector to converge, the gain constant µ

needs to be

0 < µ <
1

λmax
, (6.13)

where λmax is the largest eigenvalue of R. Since the eigenvalues of R are difficult to

calculate, µ is often set to be

µ =
µ0

Tr[R]
(6.14)

where Tr[·] is the trace of R. Since Tr[R] is the sum of the eigenvalues, this condition

guarantees convergence.

Equation (6.12) shows the mean of the weights decay to the optimal solu-

tion. The noise in the system causes the weights to dither around the optimal value.

The amount that the weights dither depends on the gain constant, µ. Let us assume

the gradient estimation ∇̂k has independent noise added, Zk, such that

∇̂k = ∇k + Zk (6.15)

Assuming that the algorithm has already converged to steady-state solution, Wopt,

then ∇k = 0. Then in accordance with Equations (6.15) and (6.8),

Zk = −2e∗kXk (6.16)
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The covariance of the noise is given by

cov[Zk] =E[ZkZ∗k] = 4E[|e|2kXkX∗k]

≈ 4ζminR
(6.17)

When the weights are near the optimal solution, the error ek is approximately inde-

pendent of the received signals, Xk.

ζmin is the minimum value for the error function given by

ζmin = E[|d|2k]−P∗Wopt (6.18)

Using the eigenvector matrix of R, denoted Q, to rotate the system to the principal-

axis coordinates, we have

E[Zk
′] = cov[Zk

′Z′k
∗] =E[Q−1ZkZ∗kQ]

≈ 4ζminΛ
(6.19)

It can be shown that from Equation (6.19), the covariance of Vk, (weight noise), is

given by

cov[Vk
′V′k

∗] =
µ

4
(
Λ− µΛ2

)−1
E[Zk

′Z′k
∗]

≈ µζmin
(
Λ− µΛ2

)−1 Λ

≈ µζminI

(6.20)

assuming µ is relatively small. From Equation (6.12), each weight relaxes with a

time constant

τi ≈
1

2µλi
(6.21)

showing the natural tradeoff between the weight noise and adaptation rate.

6.2 Sampling the Lens Array Focal Surface

To insure that all the information contained in the image is preserved, the

detectors are placed on the focal surface in accordance with the two-dimensional
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sampling theorem. The sampling theorem dictates the sampling period and pattern

for a finite bandwidth function that is linear and shift invariant. Given a func-

tion f(x, y) and its two-dimensional Fourier transform F (ωx, ωy), then the sampled

version of f(x, y), f(n,m), given by

f(n,m) = f(x, y)|(x,y)=V(m,n) (6.22)

(6.23)

where (m,n) samples are given by,

x
y

 =
[
V

]n
m


=
[
V1V2

]n
m


(6.24)

where V is a two dimensional matrix containing the vectors V1,V2 for the sampling

pattern. An example of sampling is given in Figure 6.2 when f(x, y) is a circle

function, which is a hexagonal pattern. The Fourier transform of f(n,m) is the sum

of the aliased copies of F (ωx, ωy) given by

F {f(n,m)} =
1

|detV|
∑
k,l

F (ωx − ωx0 , ωy − ωy0) (6.25)

fxo
fyo

 =
[
U

]k
l

 , (6.26)

(6.27)

where V is related to U as

UTV = 2πI (6.28)

From [54], a lens in its paraxial region approximates the two dimensional

Fourier transform. If a plane wave is assumed to be the source, then the lens size and
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Figure 6.2. An example of two-dimensional hexagon sampling of an Airy pattern (a)
and the aliases Fourier transform (b).

shape (pupil function) determine the image pattern. The lens shape is the inverse

Fourier transform of the image pattern. The sampling vectors of the image must be

short enough to prevent the aliased copies of the pupil function from overlapping.

For a rectangularly shaped lens, Figure 6.3, of size 2Ax by 2Ay, the image

intensity pattern is

I0 ∝ sinc2

(
2Axx
λz

)
sinc2

(
2Ayy
λz

)
(6.29)

The sample vectors for the rectangular lens are

V =

 πλz2Ax
0

0 πλz
2Ay

 (6.30)

Combining Equations (6.29) and (6.30) gives the samples for the image function

I0(m,n) ∝ sinc2

(
2Axmπλz

2λzAx

)
sinc2

(
2Aynπλz

2λzAx

)
∝ sinc2 (πm) sinc2 (πn)

(6.31)

For a source on the optical axis, the samples fall on the center of the main lobe and

in its nulls, as shown in Figure 6.4.
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x

y

(a) (b)

Figure 6.3. A rectangular aperture (a) and its crossed sinc(x) Fourier transform (b).

Figure 6.4. The sampling (numbered x’s) of a rectangular aperture lens intensity
image for a 60o field of view.
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Figure 6.5: A circular aperture (a) and its Airy pattern Fourier transform (b).

For a circular lens with radius r the image pattern is

I0(ρ) ∝ 2J1(2πrρ)
2πrρ

ρ =
√
x2 + y2 (6.32)

and J1 is the Bessel function of the first kind, Figure 6.5. Equation (6.32) is referred

to as the Airy pattern. A hexagonal pattern is the optimal sampling pattern that

minimizes the number of samples [56] for a circular aperture with sampling vectors

V =
1
2r

1 1√
3

1 − 1√
3

 (6.33)

For a source on the optical axis, the samples also fall on the center of the main lobe

and near the nulls, Figure 6.6. It is interesting to note that for both the rectangular

and circular lenses, the ratio of the HPBW and the sampling vector lengths is 1.13.

Simulations of the lens array image patterns agree well with Equations

(6.29) and (6.32) in the paraxial region, however, it is important to point out that

not all of the conditions for the sampling theorem are met by the lens array system:

the lens system is noisy, and the aberration in the lens cause the system to be

shift-variant. The noise has theoretically infinite bandwidth which contradicts the

finite bandwidth condition. However, the noise in the simulations is added after
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Figure 6.6. The sampling (numbered x’s) of a circular aperture lens intensity image
for a 60o field of view.

the image for the desired signal is formed, and it is the information in the image

pertaining to the desired signal that needs to be retained. The beamwidth of the

image increases as the source moves off axis, suggesting that the effective bandwidth

of the system decreases. Therefore the detectors oversample the image for signals

far off the optical axis. The detectors are placed in an hexagonal pattern on the

projection of the focal surface onto a disk, Figure 6.6. When the position of the

detectors is inverse transformed back to the focal surface, the outer detectors end

up closer together than those in the center, resulting in over sampling of the sources

that are far off axis. This projection results in the detectors being placed closer

together on the edges of the disk than in the center of the disk, Figure 6.7, again

causing over sampling of signals far of the optical axis.
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Figure 6.7: An example of a 6λ diameter lens with a sampled focal surface

6.3 Numerical Experiments on Lens Array Systems

The goal of using a lens array as the front end for an adaptive array system

is to show that a lens array system has better SNR under scaling and adapts faster

since it requires fewer weights. A set of numerical experiments is performed to

compare a lens array to a planar array in an adaptive system. For the lens array

system, the signals for the detectors are ranked from strongest SNR to weakest SNR.

Then the lens system is simulated using the strongest signal, followed by the two

strongest signals, etc. For simplicity, the LMS training signal dk is set equal to the

transmitted data.

The output SNR is the principle metric for a communication system. Three

different techniques are used to estimate the output SNR of the system. The first is

a measure of the bit error rate (BER). This is the average number of wrong guesses a

system makes in decoding the information . These experiments use QPSK complex

baseband modulated data for the transmitted signals and the algorithm samples at

twice the symbol rate. For QPSK modulation, the decisions boundaries are shown in

Figure 6.8. The second technique is to estimate the noise in the output signal as the
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Figure 6.8: QPSK modulation and slicer decision regions.

part of the output signal that is not the transmitted data, dk. From Equation (6.3),

the algorithm tries to make the output signal look like the training signal (data).

Therefore the noise at the output is

ynoise,k = yk − dk (6.34)

Then the SNR is given by

SNRdata =
var[dk] + E[dk]2

var[ynoise,k] + E[ynoise,k]2
(6.35)

For unit power QPSK modulation, the var[dk] = 1, E[dk] = 0 and equation 6.35

reduces to

SNRdata =
1

var[ynoise,k] + E[ynoise,k]2
(6.36)

The third technique is based on representing the output as the product of the received

signals and the weights:

yk = Wk
∗Xk (6.37)

= (Wopt + Vk)∗ (dkA + Nk) (6.38)

= Wopt
∗dkA + Vk

∗dkA + Wopt
∗Nk + Vk

∗Nk, (6.39)

where the first term is the signal and the last three terms are the noise. This SNR is

calculated in two different ways. One uses the calculated Wopt given by Equation

(6.7) and the second uses the estimate of the optimal weights, Ŵopt = E[Wk], as
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in Equation (6.12). Then the noise is calculated as

ynoise,k = yk −W∗
optdkA (6.40)

̂ynoise,k = yk − Ŵ∗
optdkA (6.41)

and the SNR is

SNRWopt =
cov[W∗

optdkA] + E[W∗
optdkA]2

cov[ynoise,k] + E[ynoise,k]2

=

∣∣W∗
optA

∣∣2
cov[ynoise,k] + E[ynoise,k]2

(6.42)

SNR
Ŵ∗

opt
=
cov[Ŵ∗

optdkA] + E[Ŵ∗
optdkA]2

cov[ ̂ynoise,k] + E[ ̂ynoise,k]2
=

∣∣∣Ŵ∗
optA

∣∣∣2
cov[ ̂ynoise,k] + E[ ̂ynoise,k]2

(6.43)

for QPSK modulation. As a comparison for the algorithms performance, the theo-

retical output yk,opt is calculated using the optimal weights, Wopt, as in Equation

(6.1).

6.3.1 SNR vs. Number of Signals The first experiment focuses

on the change in SNR as more received signals are added to the lens array system,

or in other words, more detector signals are used. Given the arguments in section

1.3, the SNR should increase as more signals are added, until the SNR of the next

signal is so small that it reduces the system performance. From Equation (6.39), as

each signal is added to the system, the vectors Wopt, A, Vk and Nk increase by

one. Since the signals are added in decreasing order of SNR, at some point the added

value to A is very small. Since the value added to Wopt is proportional to the value

added to A, Equation (6.7), the new value in Wopt is also very small. Thus the

first three terms in Equation (6.39) do not change significantly for the added signal.

However, the fourth term is independent of A and should add a significant amount

of noise to the system.

The simulations are performed using a 6λ diameter lens that has 110 unit
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Figure 6.9. Sampling of a 6λ diameter circular lens with a source 20o off optical
axis.

cells. Semi-directional antennas are used, F/D = 0.5, and θ0 = 45o to minimize

aberrations. The source of the signal is 20o off axis with detectors placed as shown

in Figure 6.9. Figure 6.10 shows the distribution of normalized received signal power

across all the detectors. The only noise sources in the system are at the detectors.

Simulations are run such that the SNR of the peak received signal at the detector,

SNRX, varies from 0.1 dB to 10 dB, by adjusting the power of the noise sources.

The gain constant for the system is determine by Equation (6.14), with µ0 = 0.05.

Figure 6.11 to 6.13 show the simulated BER, SNRdata and SNRW for the

different cases of SNRX. Under all three metrics, the system performance improves

as the SNRX increases. This seems like an obvious result, but it gives important

insight to the operation of the Wiener solution. In the Wiener solution, the weights
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Figure 6.10. The distribution of received signal power across the 121 detectors for
the image in Figure 6.9.
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Figure 6.11. The BER for SNRX 0.1, 0.178, 0.316, 1, 1.78, and 3.162 (top to
bottom). The BER for the adaptive lens array systems is shown in blue and BER
for the optimal weight solution is shown in red. The noise in the data is due to
different noise and data realizations for the different simulations.
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Figure 6.12. The SNRdata, Equation (6.35), for SNRX=0.1, 0.178, 0.316, 1, 1.78,
and 3.162 (top to bottom). The adaptive lens array systems is shown in blue and
the optimal weight solution is shown in red.
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Figure 6.13. The SNRW for SNRX= 0.1, 0.178, 0.316, 1 1.78, and 3.162 (top to
bottom). The SNRWopt (6.42) for lens array systems is shown in blue, the SNR

Ŵopt

(6.43) is shown in green and the optimal weight solution is shown in red.
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Figure 6.14. The Wiener solution for the weights with received signal in Figure 6.9
and SNRX=0.1, 0.178, 0.316, 0.562, 1, 1.78, 3.162, 5.62, and 10. Each weight track
starts with the lowest SNRX and ends with the largest SNRX at the weight number.

are a scaled and decorrelated (R−1) version of the received desired signal (P). The

scaling of the weights depends on the relative magnitudes of the noise power to the

signal power, and the received signals is found as

R = E [XkXk
∗] (6.44)

= E [(dkA + Nk) (dkA + Nk)∗] (6.45)

= σ2
signalAA∗ + σnoiseI (6.46)

= Q−1
(
σ2
signalΛA + σ2

noiseI
)
Q (6.47)

For a strong input SNRX, the weights illuminated by the desired signal have the

largest magnitude. However, as the noise in the system increases, the weights adjust

inwards to minimize the amount of noise at the output, Equation (6.47) as illustrated

by Figure 6.14. The measured performance of the adaptive system is slightly less

that that of the optimal weight system showing the effects of the weight noise in the

system. Since the difference between the optimal weight system SNR and the adap-

tive weight system SNR is small, the weight noise does not contribute considerable
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noise to the output, for step size, µ = 0.05
Tr[R] .

In all cases, the system performance improves as more signals are added to

the system, which is expected. The added signal and noise powers cause the weights’

magnitude to adjust inwards. Figure 6.15 shows the change in the optimal weights

for the SNRX = 0.1 and SNRX = 10 as more signals are added to the system. In the

SNRX = 10 case, the signal power dominates the weight scaling when a few signals

are used, but the noise quickly begins to dominate. This is why the high SNRX case

weights scale faster than the low SNRX case where the noise always dominates. The

weights are constantly being changed as the additional signals are added so that the

output SNR is a monotonically increasing function. Another way of looking at the

weights are diagrams for the output signals. For a system with good SNR, the output

signal should form clusters on the modulation constellation diagrams, Figure 6.16.

As the noise increases, the center of the clusters move inwards. Figure 6.17 shows

the centers of the clusters and there STD radii for various SNRX. It is interesting

to point out that the STD radius do not vary significantly for different numbers of

signals used.

Figure 6.18 shows the weight noise power for the different SNRX cases

and variance on the weight noise power which agrees well with calculations based

on Equations (6.20), Figure 6.19. The simulated noise power is about 7 dB lower

than that calculated and may be related to the fact that the samples of the mod-

ulated data are not a uniformly distributed, but are cyclostationary [57, 58]. It

is interesting to point out that the weight noise increases for larger SNRX. Since

the increased SNRX means a decrease in total noise power and input power for the

system, Equation (6.5), the gain constant is larger, Equation (6.14), accounting for

the increase in weight noise. The variation in weight noise between the weights is

small and consistent with theory. These simulations still raise the question: “Is it

possible to have a signal whose SNR is so small that the addition of this signal to
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(b)

Figure 6.15. The Wiener solution for the weights with received signal in Figure 6.9
with SNRX = 0.1 (a) and SNRX = 10 (b) as signals are added to the adaptive
lens system. Each point in the weight tracks represents the Wiener solution for 1, 2,
3,. . . , 10, all (121) received signals used, starting with 1 signals and ending with all
signals (the numbered point).
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Figure 6.16: Eye diagram for adaptive lens array system with SNRX = 10.
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Figure 6.17. Eye diagram for adaptive lens array system with SNRX = 10 (red),
SNRX = 1 (blue), SNRX = 0.3 (green) and SNRX = 0.1 (yellow). The centers
(o’s) and STD rings are plotted for 1, 2, 3,. . . , 10 and all (121) signals used.
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(b)

Figure 6.18. The measured weight noise (a) and variation in weight noise between
the weights (b) for SNRX = 0.1 (magenta), 0.17 (cyan), 0.32 (red), 0.56 (green), 1
(blue), 1.78 (yellow), 3.162 (magenta), 5.6 (cyan) and 10 (red).
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(b)

Figure 6.19. The calculated weight noise (a) and variation in weight noise between
the weights (b) for SNRX = 0.1 (magenta), 0.17 (cyan), 0.32 (red), 0.56 (green), 1
(blue), 1.78 (yellow), 3.162 (magenta), 5.6 (cyan) and 10 (red).
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Figure 6.20. The SNR
Ŵopt

for increasing lens array diameters (3λ, 3.5λ, 4λ, 4.5λ,
5λ, 5.5λ, 6λ, 6.5λ, 7λ, 7.5λ, 8λ, 10λ and 12λ, bottom to top).

the system would reduce the overall performance?”. In these simulations, the signals

have a range of 30 dB in signal power and the output SNR appears to be a monotoni-

cally increasing function. Since the step size changes in accordance to the amount of

signal and noise power, the algorithm is still able to estimate the signal components

in all of the detectors. We can see the improved estimation of the signals by the

reduction in weight noise, Figure 6.18.

6.3.2 SNR vs. Lens Array Size The next experiment focuses on

the change in output SNR as the lens size increases. The same basic setup is used

in the simulations as in section 6.3.1 with a lens of F/D = 0.5, θ0 = 45o and a

diameter varying from 3λ (28 unit cells) to 12λ (454 unit cells). The detector SNR

is set at SNRX = 112. Figure 6.20 shows each system SNR
Ŵ

as the number of

signals increases. These curves have the same monotonically increasing nature as

those in section 6.3.1. Figure 6.21 shows the maximum SNR for the lens array and

the planar array. It is expected that the lens array SNR would grow faster than the
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Figure 6.21. Maximum SNR
Ŵopt

for adaptive lens array (blue) and planar array
(red).

SNR for planar array as the lens size increases. Instead, the difference between the

two curves appears constant, which suggests the loss increasing with size does have

a large effect on performance, Section 5.3.3.

6.3.3 Adaptation Rate Vs. Number of Signals The final as-

serted advantage of the lens arrays in adaptive systems is its increased adaptation

rate due to fewer weights. The same setup is used as in section 6.3.1 to estimate the

adaptation rates for a lens array with SNRX = 1, 3and10. For each configuration of

the system, 500 simulations are performed averaging their error sequences. Figure

6.22 shows the error curves for the SNRX = 10 case with the planar array adapting

almost as fast as the lens cases with 9 signals. The lens case where all signals are

used is slower than the planar array indicating the weights corresponding to low re-

ceived signal power need a long time to adapt, as in Equation (6.21). Table 6.1 show

the estimated adaptation rates for different lens and planar array systems. Since

the step size changes as the number of signals are used, the resulting SNR always

increases at the cost of adaption rate. This is a classic tradeoff in adaptive systems

and needs to be explored further.
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Figure 6.22. Error curve tracks for 5 (blue), 9 (red) and all (yellow) signal used in
adaptive lens array compared to a planar array (green).

Table 6.1. The number of time steps required for planar and lens array systems to
adapt.

Number of Signals in Lens Array
SNRX 1 3 5 9 all array

1 10 15 30 40 120 70
3.2 8 13 18 27 80 60
10 13 20 22 25 80 40



CHAPTER 7

FUTURE WORK AND CONCLUSIONS

7.1 Optically Controlled Lens Arrays

7.1.1 Future Work for Optically Controlled Lens Arrays There

are three principle problems that have to be overcome for optically controlled lens

arrays to become practical. First, the size of the SPDT switches should be reduced.

Second, a better optical circuit for delivering optical signals to the photodiodes needs

to be designed. Third, the overall construction complexity should be minimized

further..

Looking at the layout of the unit cell, most of the SPDT switch size comes

from the packages of the MESFETs and photodiodes. Using chips or MMICs, the

switch size could be reduced by about a factor of 2. If a MMIC SPDT switch

is optically controlled through its bias, the size would be reduced further. An all-

MMIC solution for the optical controlled microwave switch would significantly reduce

the size and complexity of the array manufacturing, but require a special process..

A significant amount of the effort and complexity in the array is in the

design and fabrication of the optical fiber mount. By using ridge waveguides [59]

stamped or etched into a translucent material to replace the optical mount and the

fibers, the optical system can be made in a single fabrication step. In Chapter 4, the

electrical and optical circuit could be separated at the photodiode and optical fiber

interface. It is also this interface that causes most of the lost in the optical circuit.

Instead of separating the two circuits at the photodiode/fiber interface, it would be
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Figure 7.1: New optical feed system for optically controlled arrays.

more efficient to have the connection at the photodiode/MESFET interface, as illus-

trated in Figure 7.1. By directly gluing the photodiodes to the optical waveguides,

the loss in the optical circuit could be reduced to about 1 dB. The photodiode is

connected to the MESFETs through a connector, shown as a pin/socket connector

in the figure. Since most of the spectral energy in the switch currents is 500 MHz or

below, the added inductance and capacitance of a pin/socket connector should have

negligible affect.

7.1.2 Conclusion for Optically Controlled Lens Arrays In this

thesis, a high-speed optically controlled T/R active antenna is demonstrated. This

active antenna is designed as an element of a 6λ0 by 3λ0 cylindrical active lens

array with a F/D=1, a directivity of 20 dB and a 10-degree beamwidth in the focusing

plane. The lens array is capable of phase-shifterless beamforming in both transmition

and reception.

The optically controlled SPDT switch used to route the signal in the active

antenna exhibits 0.31 dB insertion loss, 36 dB isolation and -10 dB return loss from

8.36 to 10.8 GHz. Unlike in previously-demonstrated optically-controlled microwave

switches, these microwave parameters do not change with the level of incident control

(optical) power. However, the optical power level conveniently controls the switching

speed alone, making the same switch design easily integrated into applications with

different switching speed requirements. Microsecond switching required in most T/R
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applications can be accomplished with only microWatts of optical power, but some

applications, such as phase shifters in phased array, polarization switching in multi-

path environments and wide bandwidth systems would benefit from nanosecond

switching speeds. Even though the 2.6 ns speed demonstrated in this paper requires

relatively large optical power (about 10 mW), the optical energy is quite low, 21 pJ.

For comparison, the fastest reported MEMS microwave switch has a rise time of

about 1µs to 5µs and requires about 2 nJ of control energy [29]. The switch presented

here draws more electrical power ( 3 mA per PIN diode) than a MEMS switch, but

the required DC current is a small fraction of the 160 mA drawn by the LNA and

PA. However, the optically controlled microwave switch requires significantly less

control energy than a MEMS switch, since the energy distribution is fundamentally

different. In some respects, it is easier to generate fast optical pulses than to generate

fast high voltage (30 V - 50 V) electrical pulses required for MEMMS switches.

The active array element is designed with off-the-shelf components not op-

timized for speed or low power, and the coupling of light from the fibers is not

optimal. Therefore, the presented results are by no means fundamentally limited

and we expect that significant improvements can be made by using PDs with better

placement tolerances, using chip MESFETs for the pin diode bias control and by

improving the laser diode to photodiode coupling efficiency (using, e.g. microlenses

and printed optical waveguide structures). Ultimately, a large portion of the switch,

and in principle the entire switch circuit, can be implemented monolithically.

7.2 Modeling of Lens Arrays

7.2.1 Future Work in Modeling Lens Arrays Most of the errors

in the numerical model in Chapter 5 are due to only accounting for direct radiation.

Due to the close proximately of the lens array elements and the detectors to the

lens, mutual coupling will play an important role in the lens array performance.
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Figure 7.2: Mutual coupling for patch antenna with arbitrary orientations.

In physical measurements with real active lens arrays, standing waves have been

noticed between the lens and the detector elements that can not be explained by

simple radiation, [1]. In an attempt to estimate some of the mutual coupling, the

numerical model is modified to include the calculation of induced currents in each

antenna due to other antennas in its neighborhood, [60, 61, 62]. [62] shows that the

mutual coupling between arbitrary orientated patch antennas, Figure 7.2, can be

estimated from several full-wave simulations and the following equation

|S21| =
ρ

x1+sin θ
, (7.1)

where ρ is a fitting parameter. Currents induced by mutual coupling can be calcu-

lated from the mutual coupling impedances. With these current, the mutual coupling

image is calculated to estimate the error in the image calculations. Averaging the

error over all fifty sources (section 6.3) the mean error is about 1.5% suggesting that

the image pattern is at best accurate to 18 dB below the main lobe. Hopefully, in

the near future it will be possible to perform a full wave model of a lens array.

Besides improving the accuracy of the model, work needs to be done to de-

termine the best lens array design for both circular and rectangular lenses. A ques-

tion of whether of not the lens array transformation fundamentally limits the achiev-

able radiation patterns for a lens array should be addressed. Work in [25, 26, 24] on

the limitations of network lenses may be applicable to lens arrays since the sampling
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pattern presented in section 6.2 appear to corresponds with the beams produce by

network lenses. Finally, an analytical model for the lens array transformation should

be developed that describes the lens array loss, aberrations and antenna element ef-

fects so that a communication model can be developed.

7.2.2 Conclusion for Modeling of Lens Arrays The preliminary

work done in chapter 5 shows that design of lens arrays can be optimized for different

performance criteria (i.e. loss, aberration, etc.). Depending on the choice of design

parameters, the loss or aberrations in the lens can optimized. It is still unknown

what characteristic is most important to lens array communication systems and more

work needs to be done to answer this question.

7.3 Adaptive Lens Array Systems

7.3.1 Future Work for Adaptive Lens Array Systems The work

presented in chapter 6 is for the simplest communication problem, a single user.

More work needs to be done in determining the affects of loss and aberrations on the

pre-noise beam-forming process gain. Also the tradeoffs between adaption rate and

weights noise needs to be explored and compared to a planar array system. The sim-

ulations should be expanded to more complicated environments like the multi-user

and multi-path environments. Besides simulating more complicated environments,

the receiver model should be modified to incorporate practical limitations, such as

imperfect training signals. Lens array systems may also have advantages with other

algorithms such as angle of arrival algorithms.

7.3.2 An Arguement for Improved SNR with Lens Arrays Lens

arrays may have an advantage over planar arrays by performing some beam-forming

before noise in added by gain devices such as low noise amplifiers (LNAs) and down
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Figure 7.3. An example of a narrowband planar array adaptive receiver shown for
the single user case. The received signals, si(t), are amplified with LNAs and down-
converted (mixer, local oscillator and LPF) before being sampled (represented by
switches). For this model, the effect of the LNAs and down-converters is the addition
of noise. The received signals plus noise are sampled with a sampling period T, giving
signals, xi,k, used by the algorithm. The algorithm uses the training signal, dk, to
adjust the weights, W, such that the SNR at the output, yk, is maximized.

converters which translate the modulated signal to a lower frequency. In most “stan-

dard” adaptive systems, there is a LNA place directly after each array element, Fig-

ure 7.3. By placing the amplifiers close to the array elements, the affect of the noise

introduced by cable loss can be minimized. In systems that are not limited by “sky”

noise, the noise generated by the LNAs becomes the dominate noise source and is

usually considered to be white and uncorrelated. After the LNA, a down-converter

are usually added to mix the carrier signal to a lower frequency which is easier to

process. Down-converters, which contain mixers (multipliers), local oscillators (LOs)

and low pass filters (LPFs) do add additional noise and can have gain greater than
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unity. For our purpose a complex-baseband model will be used and the noise gener-

ated by a LNAs and down-converters are modeled as uncorrelated and white noise

sources. The output signal, yk, can be written in terms of sampled versions of the

received signals (si(k)), the noise sources (ni(k)) and the optimal weights (wi):

y(k) =

(
N∑
i=1

wisi(k)

)
+

(
N∑
i=1

wini(k)

)
, (7.2)

where i is the ith antenna element. The first term is the signal term, and the second

term is the noise term. For a planar array receiving a signal from a far-field source,

each element sees a phase shifted version of the original signal,

si(k) = αis0(k) (7.3)

s0(k) is the sampled complex baseband representation of the transmitted signal, and

αi is a complex constant representing the phase shift of the signal and taken to have

unit magnitude. Under these conditions, y(k), reduces to

y(k) =

(
N∑
i=1

wiαis0(k)

)
+

(
N∑
i=1

wini(k)

)
, (7.4)

It can be shown from Equation (1.1) that the optimal solution for the weights is

wi = w0α
∗
i , where wo is a real constant, Figure 7.4. Substituting the weights into

Equation (7.4), the output reduces to

y(k) =

(
N∑
i=1

w0|αi|2s0(k)

)
+

(
N∑
i=1

w0α
∗
ini(k)

)
(7.5)

=

(
w0s0(k)

N∑
i=1

1

)
+

(
w0

N∑
i=1

e−φini(k)

)
(7.6)

= (w0s0(k)N) +

(
w0

N∑
i=1

e−φini(k)

)
(7.7)
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Figure 7.4. The weight trajectories in the complex plane for a planar array adaptive
receiver converging to the optimal weights.

φi is the phase shift seen by each array element. The SNR for this system is

SNRplanar =
E [(Nw0s0(k)) (Nw0s0(k))∗]

E
[(
w0
∑N

i=1 e
−φini(k)

)(
w0
∑N

i=1 e
−φini(k)

)∗] (7.8)

=
N2w2

0σ
2
s

w2
0

∑N
i=1E

[
(e−φini(k)) (e−φini(k))∗

] (7.9)

=
N2σ2

s

Nσ2
n

(7.10)

=
Nσ2

s

σ2
n

(7.11)

Since the signals add coherently and the noise adds incoherently the SNR for this

system scales linearly with the number of the elements in the array.

The system in Figure 7.3 is the “typical way” in which planar arrays adap-

tive systems are implemented; however, if the beamforming could be done before the

noise is added, then the resulting SNR is greater than showed previously, Figure 7.5.

In this case, the output signal is

y(k) =

(
N∑
i=1

wisi(k)

)
+ ni(k) (7.12)
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Figure 7.5. An example of a planar array adaptive system where the beam-forming is
performed before any amplifiers of down-converters (represented by the noise source).

Again, using the previous assumptions for the noise, weights and αi’s, y(k) reduces

to

y(k) = Nw0s0(k) + ni(k) (7.13)

The resulting SNR is

SNRplanar,ideal =
E [(Nw0s0(k)) (Nw0s0(k))∗]

E [(ni(k)) (ni(k))∗]
(7.14)

=
N2w2

0σ
2
s

σ2
n

(7.15)

=
N2w2

0σ
2
s

σ2
n

(7.16)

(7.17)

If it is possible to perform the beam-forming (weights) before the down

conversion (noise) then the SNR grows as N2. In addition, gain in the weights (w0)

can be added without penalty. However, the system in Figure 7.5 is not practical.

There are several important physical limitations that are over looked in the model.

First of all, the samplers in the system need to operate at twice the carrier frequency,
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Figure 7.6. An example of a narrowband lens array adaptive receiver shown for the
single user case. The received signal, s(t), is perfectly focused onto a detector on
the focal surface. The detected signal, e−jφNs(t), are amplified and down converted
(represented by the noise source). The down converted signals plus noise are sampled
(represented by switches) with a sampling period T. Since the lens perfectly focuses
the received signal, the algorithm only chooses which detector to switch to the output.

since the act of down conversion adds noise to the system. Secondly, the beam-

forming hardware needs to located very close to the antenna array, since cable loss

reduces signal power and adds thermal noise. It is for this reason that LNAs are

placed close to the antenna elements and become one of the dominate noise sources.

A lens array, Figure 7.6, focuses the received signal, s(t), to a point on the

focal surface. The transmission line delays in the lens and the spatial delays between

lens elements and the focal point act as the beam-forming network (weights) shown

in Figure 7.5. For an ideal lens, all of the lens array received signals, si(k), sum

coherently at the focal point, ejφNs0(k). Here the φ indicates that in general, the

coherent sum of the signals is out of phase from the original signal. In the ideal lens

system, the algorithm decision is to choose which detector is illuminated by the lens.
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Figure 7.7. An example of a narrowband lens array adaptive receiver shown for
the single user case. The received signal, s(t), is focused onto detectors on the
focal surface. The detected signals, αiNs(t), are amplified and down converted
(represented by the noise source). The down converted signals plus noise are sampled
(represented by switches) with a sampling period T, giving signals, xi,k, used by the
algorithm. The algorithm uses the training signal, dk, to adjust the weights, W, such
that the SNR at the output, yk, is maximized.

Just like the pre-noise beam-forming planar array system, the SNR is

SNRlens,ideal =
E
[(
ejφNs0(k)

) (
ejφNs0(k)

)∗]
E [(n(k))(n(k))∗]

(7.18)

=
N2σ2

s

σ2
n

(7.19)

Unfortunately, it is not possible to build an ideal lens array. The array can

not focus all of the received signals to a single point, but to a focal spot, Figure 7.7.

This means that the signal signal power is distributed over many detectors. For the

formulation of the performance of the system in Figure 7.7, let us redefine the αi’s

as a measure of how well the lens focuses. Assuming that the lens array elements

receive signals from a far-field source of the form,

si(k) = ejφis0(k) (7.20)

where φi describes the phase shift seen by each array element, the signals received

by the detectors on the focal surface is given by

si,det(k) = αiNs0(k) (7.21)
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The αi’s shows how well the lens coherently focuses the re-radiated signals to each

detectors and are constrained such that

M∑
i=1

|αi| ≤ 1 (7.22)

Here the summation is taken from 1 to M for the M detectors on the focal surface.

Interestingly, if the detectors are placed on the focal surface in accordance to the

2-dimensional sampling theorem, then M ≈ N . For this analysis, we will assume

M = N so that both the planar array system and lens array system have the same

number of degrees of freedom (weights).

The output for this system is given by

y(k) =

(
N∑
i=1

wiαiNs0(k)

)
+

(
N∑
i=1

wini(k)

)
, (7.23)

Again, using wi = w0α
∗
i , the output becomes

y(k) =

(
w0Ns0(k)

N∑
i=1

|αi|2
)

+

(
w0

N∑
i=1

α∗ini(k)

)
, (7.24)

The SNR for the system is

SNRlens =
E
[(
w0Ns0(k)

∑N
i=1 |αi|2

)(
w0Ns0(k)

∑N
i=1 |αi|2

)∗]
E
[(
w0
∑N

i=1 α
∗
ini(k)

)(
w0
∑N

i=1 α
∗
ini(k)

)∗] (7.25)

=
w2

0N
2σ2
s

∣∣∣∑N
i=1 |αi|

2
∣∣∣2

w2
0

∑N
i=1E [(α∗ini(k)) (α∗ini(k))∗]

(7.26)

=
w2

0N
2σ2
s

(∑N
i=1 |αi|

2
)2

w2
0σ

2
n

∑N
i=1 |αi|

2
(7.27)

=
N2σ2

s

σ2
n

N∑
i=1

|αi|2 (7.28)

The Equation (7.28), describes the SNR for an imperfect lens array system. The

system can be considered as a hybrid system with beam-forming before noise is

added (lens) and beam-forming after noise is added (weights). When the αi’s have

equal magnitude, |αi| = 1
N , then beam-forming occurs after the addition of the noise.
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This is as if the lens array does not focus the signals but illuminate the focal surface

equally. In this case, the SNR of Equation (7.28) reduces to

SNRlens =
Nσ2

s

σ2
n

(7.29)

which is the same as for the planar array case in Figure 7.3. When all the αi’s are

equal to zero except for one which has unit magnitude, then in this case all the

beam-forming in done before the noise is added (the ideal lens case). Then Equation

(7.28) becomes

SNRlens =
N2σ2

s

σ2
n

(7.30)

and equals the result for the ideal lens case.

Given the two previous examples, the hybrid lens system should have a

better performance than the “typical” planar array system, Figure 7.3, from the

partial beam-forming done before the noise is added. Is this true in general? The

SNR Equation (7.28) depends on the distribution of the signal among the detectors

described by the summation
N∑
i=1

|αi|2 (7.31)

Let us start with the no pre-noise beam-formingi, where |αi| = 1
N = α0. Equation

(7.31) becomes
N∑
i=1

|α0|2 (7.32)

Then re-distribute the signal by letting αm = α0− c and αn = α0 + c where m,n are

the indexes of two detectors. The Equation (7.32) becomes N∑
i=1,i6=m,n

|α0|2
+ (α0 − c)2 + (α0 + c)2 =

 N∑
i=1,i6=m,n

|α0|2
+ 2α2

0 + 2c2 (7.33)

=

(
N∑
i=1

|α0|2
)

+ c2 (7.34)

>
N∑
i=1

|α0|2 (7.35)
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Therefore the re-distribution of the signal, pre-noise beam-forming, increases the

processing gain of the system. The limiting case is the perfect lens system.

There are several practical issues in adaptive system that still need to be

addressed. It is true that the optimal solution for an adaptive system adds in a

signal no matter how small its signal power. For a lens system, most of the signal

power is concentrated on a few detectors. If a system only processes the detector

signals with the most signal power, the resulting SNR will only be slightly less than

the optimal SNR,

SNRlens,M =
N2σ2

s

σ2
n

M∑
i=1

|α0|2 (7.36)

M < N and determines the number of detector signals to be used. Practically

speaking, a processor operating on a subset of the detector signals will have nearly

optimal SNR with far less computation load. In real adaptive systems, the samplers

also quantize the detector signals. If these quantizers do not have enough dynamic

range (bits), then the quantization noise may obscure the algorithms ability to esti-

mate very weak signals. Finally, there is a fundamental tradeoff between the weight

noise (how well the algorithm estimates the optimal weights) and convergence to

the optimal weight solution. The faster the algorithm converges to the solution, the

more weight noise there is at the output, which reduces the systems SNR. For the

lens array system, this tradeoff is different than for the “typical” planar array system

and may have some addition practical advantages.

It has been shown that lens array can improve a adaptive systems SNR

though pre-noise beam-forming. How this SNR increases as the number of elements

in the lens array increase is still unknown. Unfortunately, real lens arrays are lossy,

N∑
i=1

|αi| < 1 (7.37)

and the loss increases with lens size,

|αi| ∝ N−b, 0 < b < 1 (7.38)



172

Figure 7.8: Image pattern for “desired” user at 30o in multi-user model.

This loss is a result of path loss between lens array elements and elements on the

focal surface. It does not add any additional noise to the system but does reduce

signal power. The affect of this loss on adaptive lens array systems is still unknown.

7.3.3 Adaptive Lens Array Systems with Multiple Users The

multi-user case and the user/jammer case are examples of a “desired” user being

interfered by an “other” user. Preliminary simulations for the multi-user case are

done with the “other” user at twice the QPSK modulation data rate and equal

transmit power moving towards the “desired” user. The user is 20o off axis, Figure

7.8. When the “other” user moves close to the “desired” user as in Figure 7.9, then

the desired user’s weight adjust to null out the “other” user, Figure 7.10(a) and 7.11.

The weight plot, Figure 7.10(b) and the radiation plots, Figure 7.13, for the planar

array show similar results as in the lens array case. Cuts in the radiation patterns

along χ = 0 show that the lens and planar arrays create the same depth nulls when

the “other” user is close to the “desired” user showing the limitation in the array

layout, Figure 7.13. The planar array creates deeper nulls when the “other” user is

far from the “desired” user to reduce its power below the noise floor since planar
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(a) (b)

(c) (d)

Figure 7.9. Image pattern for “other” user at −40o (a), 0o (b), 20o (c) and 25o (d)
in multi-user simulation.
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Figure 7.10. The movement of the optimal weight for lens array (a) and planar array
(b) adaptive systems as the “other” user moves closer to the “desired” user. The
final realization of the optimal weights are the numbered data points.



175

(a) (b)

(c) (d)

Figure 7.11. The radiation patterns for lens array system in multi-user environment
with “desired” user at 30o and the “other” user at −40o (a),0o (b), 20o (c) and 25o

(d).
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(a) (b)

(c) (d)

Figure 7.12. The radiation patterns for planar array system in multi-user environ-
ment with “desired” user at 30o and the “other” user at −40o (a),0o (b), 20o (c) and
25o (d).
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Figure 7.13. χ = 0 cuts for the radiation patterns in figure 7.11 (a) and figure 7.13
(b). The cuts are shown for the “other” user at −40o (yellow), 0o (green), 20o (red)
and 25o (blue).
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arrays have less loss than lens arrays. These results suggest that lens array and a

planar array have the same ability to null out “other” users and that there is not a

fundamental limitation in achievable radiation patterns.

7.3.4 Adaptive Lens Array Systems with Multi-path For the

multi-path case, both lens and planar arrays steer beams in the directions of the

received signals for the “desired” user, Figure 7.14. The gain in each beam is pro-

portional to the strength of the signal in each path. For example, path 2 has 10 dB

less power that path 1, and the difference in there respective array gains is about

10 dB. Again, the lens array system (Figure 7.15) only uses the detectors illuminated

by the “desired” user, Figure 7.16(b). Since the signals for the three paths are cor-

related, they form a standing wave on the surface of the arrays causing the weighs

in the planar array form on sets of of circles instead of just one, Figure 7.16(a). The

planar arrays still have a better SNR of 23.5 dB, versus the lens arrays of 15.1 dB.

The simulations in section 6.3 are impractical from the point of view that

the LMS algorithm knows the transmitted data for the training signal and that the

sources are stationary. In a realistic situations, neither of theses conditions are valid.

The simulations need to be repeated with decision-directed feedback used for the

training signal and with the transmitting sources moving. An important question is

whether the weights that are turned “off” will turn back “on” when needed. One

simple solution is a second algorithm which uses a larger set of weights and check

if new weights are needed. Another solution is to devise a means of estimating the

amount of “desired” user signal at each detector to determine which weights should

be “on”.

A lens array may have an advantage in statistical diversity systems where

it naturally decorrelates signals. Previous statistical diversity systems use antennas

that are separated by many wavelengths (on the order of 10λ) to decorrelate the

signals, [8, 9, 10, 12, 63]. By using a lens array, the same order of diversity can
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(a)

(b)

Figure 7.14. The radiation patterns for an adaptive lens array (a) and the planar
array (b) for three paths of power 0 dB (1), -10 dB (2) and -3 dB (3) in a multi-path
environment.
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Figure 7.15: The image pattern and detector layout for multi-path environment.

be achieved in a much smaller space. In most statistical diversity systems, the

received signals are first decorrelated and then combined. Since a lens array already

partially decorrelates the signals, the processor can finish decorrelating the signals

with minimal computational power. Turin [63] shows that the optimal combination

of the received signals depends on the first- and second-order statistics of the received

signals. In a lens array, this is the average of the mean and correlation between the

detector signals over all incident angles. If both the mean and covariance of the

detectors are non-zero, then the optimal sum of the signals is a mixture of coherent

(for non-zero mean) and non-coherent (for non-zero covariance) detection. From the

simulations in section 5.3.2, the phase variations on the signals can be uniformly

distributed depending on the lens design. A uniform phase distribution has a non-

zero mean and only a non-coherent sum of the signals, which has lower SNR than a
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Figure 7.16. The optimal weights for an adaptive lens array (a) and the planar array
(b) in a multi-path environment.
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coherent summation of signals. Most of the work in this problem centers around the

characterization of the lens correlation function. Once this is know, then it should be

a straightforward analysis to determine if lens arrays have an advantage in statistical

diversity systems.

7.3.5 Conclusion for Adaptive Lens Array Systems More work

needs to be done to show whether lens arrays have clear advantages in adaptive sys-

tems. It is clear that they have the advantage of reduced computational complexity

at the cost of SNR. The main limitation of lens arrays are their losses. However, for

a small enough aperture, network lens arrays and dielectric lenses may be used with

less loss. Even though the sampling of the image surface is consistent with the beam

spacing for network lenses, it might be important to over-sample of the image sur-

face to recover some of the lost power. Lens arrays have built-in direction of arrival

(DOA) information which may give them advantages with some types of algorithms

[64, 16, 17]. In this thesis, the analysis of the LMS algorithm applied to lens antenna

arrays opened up a new area of research in adaptive (smart) antennas. A lot of work

in the future, both at the algorithm and front-end hardware end, remains to be done.
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APPENDIX A

MATLAB CODE

This appendix contains all the MatLab code used in the numerical modeling
of the lens arrays and LMS adaptive systems.
. Numerical Model Main Code

antenna pattern.m

function [antenna_ptrn]=antenna_pattern(antenna,alpha_range, ki_range)

%this function calculates the antenna pattern in effective length

alpha=[alpha_range(1):(alpha_range(2)-alpha_range(1))/(alpha_range(3)-1):...
alpha_range(2)];

ki=[ki_range(1):(ki_range(2)-ki_range(1))/(ki_range(3)-1):ki_range(2)];

for k=1:length(alpha)
for l=1:length(ki)

[le(k,l),ro{k,l}]=feval(antenna.name,alpha(k),ki(l),antenna.polar);
end

end

antenna_ptrn.le=le;
antenna_ptrn.polar=ro;
antenna_ptrn.alpha=alpha;
antenna_ptrn.ki=ki;
antenna_ptrn.create=’antenna_pattern’;

arrayTF.m

function [array_TF]=arrayTF(array,channel,optional)

%this function creates a tranfer function for channel to array
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% the channel inputs are all unity
%optional.polar_source use polarization for source coupling
% default is ’yes’
%optional.polar_feed use polarization for feed coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’
%optional.pathloss_feed use pathloss for feed coupling
% default is ’yes’

optional_focus.polar_source=’yes’;
optional_focus.polar_feed=’yes’;
optional_focus.pathloss_source=’yes’;
optional_focus.pathloss_feed=’yes’;

if nargin == 3
if isfield(optional,’polar_source’)

optional_focus.polar_source=optional.polar_source;
end
if isfield(optional,’polar_feed’)

optional_focus.polar_feed=optional.polar_feed;
end
if isfield(optional,’pathloss_source’)

optional_focus.pathloss_source=optional.pathloss_source;
end
if isfield(optional,’pathloss_feed’)

optional_focus.pathloss_feed=optional.pathloss_feed;
end

end

for k=1:length(channel)

source=channel{k};
[array_TF(:,k)]=array_focus(array,source,optional_focus);

end

array flux.m

function [flux]=array_flux(array,I_in,alpha_range,ki_range)

%this function calculates the total radiated flux from an array whose
%elements have input currents I_in
%alpha_range is the range of alpha angles [alpha_min,alpha_max,alpha_N]
%ki_range is the range of ki angles [ki_min,ki_max,ki_N]
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alpha=[alpha_range(1):(alpha_range(2)-alpha_range(1))/(alpha_range(3)-1):...
alpha_range(2)];

ki=[ki_range(1):(ki_range(2)-ki_range(1))/(ki_range(3)-1):ki_range(2)];

flux.alpha=alpha;
flux.ki=ki;

for k=1:alpha_range(3)
comments([’Radiation Pattern ’,num2str(k/alpha_range(3),2)]);
for l=1:ki_range(3)

if alpha(k)==0 & l~=1
flux.E_rad{k,l}=flux.E_rad{1,1};
flux.P_rad(k,l)=flux.P_rad(1,1);

else
a_rad=[-1*sin(alpha(k))*cos(ki(l));-1*sin(alpha(k))*sin(ki(l));...

-1*cos(alpha(k))];

E_rad_kl=[0;0;0];
for m=1:array.N_c

delay_klm=-dot(a_rad,array.cell.nfd.pos{m});

[antenna_m]=pull_antenna(array,m);
receive.pos=antenna_m.pos+a_rad;
[theta_tran,phi_tran]=get_direction(antenna_m,receive);

[le_klm,ro_klm]=feval(antenna_m.name,theta_tran,phi_tran,...
antenna_m.polar);

E_rad_klm=377*((-j*2*pi)/(4*pi))*le_klm*exp(-j*2*pi*delay_klm)*...
ro_klm;

E_rad_kl=E_rad_kl+E_rad_klm;
end
flux.E_rad{k,l}=E_rad_kl;
flux.P_rad(k,l)=E_rad_kl’*E_rad_kl/377;

end
end

end

flux.total=0;
alpha_step=abs(alpha(2)-alpha(1));
ki_step=abs(ki(2)-ki(1));

for k=1:alpha_range(3)-1
for l=1:ki_range(3)-1

E_rad_temp=(flux.E_rad{k,l}+flux.E_rad{k+1,l}+flux.E_rad{k,l+1}+...
flux.E_rad{k+1,l+1})/4;

pwr_avg=E_rad_temp’*E_rad_temp/377;
area=sin((alpha(k)+alpha(k+1))/2)*alpha_step*ki_step;
flux.total=flux.total+pwr_avg*area;

end
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end

directivity.m

function [direct,flux]=directivity(rad_ptrn,optional)

%this function calculates the directivity of a radiation pattern
%it assumes that all points not taken in the pattern have zero power
%flux is the result of the power flux integral
%optional.freq tells which ’measured radiation’ pattern to use
switch (rad_ptrn.create)

case(’plot_radiation’)
disp(’Please use output of rad_pattern’)

case{’rad_pattern’,’antenna_pattern’,’image_pattern’}
flux=0;
switch (rad_ptrn.create)

case ’rad_pattern’
Voc=rad_ptrn.Voc;

case ’image_pattern’
Voc=rad_ptrn.Voc;
rad_ptrn.alpha=rad_ptrn.theta;
rad_ptrn.ki=rad_ptrn.phi;

case ’antenna_pattern’
Voc=rad_ptrn.le;

end

flux=0;
alpha=rad_ptrn.alpha;
ki=rad_ptrn.ki;
alpha_step=abs(alpha(2)-alpha(1));
ki_step=abs(ki(2)-ki(1));

for k=1:length(rad_ptrn.alpha)-1
for l=1:length(rad_ptrn.ki)-1

Voc_temp=[Voc(k,l),Voc(k+1,l),Voc(k,l+1),Voc(k+1,l+1)];
pwr_avg=Voc_temp*Voc_temp’/4;
area=sin((alpha(k)+alpha(k+1))/2)*alpha_step*ki_step;
flux=flux+pwr_avg*area;

end
end

case(’measured’)
flux=0;
pwr=rad_ptrn.pwr;
alpha=rad_ptrn.alpha;
ki=rad_ptrn.ki;
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alpha_step=abs(alpha(2)-alpha(1));
ki_step=abs(ki(2)-ki(1));

for k=1:length(rad_ptrn.alpha)-1
for l=1:length(rad_ptrn.ki)-1

pwr_avg=sum([pwr(k,l),pwr(k+1,l),pwr(k,l+1),pwr(k+1,l+1)])/4;
area=sin((alpha(k)+alpha(k+1))/2)*alpha_step*ki_step;
flux=flux+pwr_avg*area;

end
end

disp(’not tested yet need a function to strip out a rad_ptrn from data’)
end

direct=(4*pi*max(max(abs(Voc)))^2)/flux;
if strcmp(rad_ptrn.create,’antenna_pattern’)

flux=flux*((2*pi*377)^2)/((4*pi)^2*377);
end

get first lobe.m

function [first_lobe]=get_first_lobe(ptrn,optional)

%this function calculates the peak power of the first side lobe of
%the a pattern in eigth direction.
%optional.center

if strcmp(ptrn.create,’rad_pattern’) | strcmp(ptrn.create,’image_pattern’)

pwr=abs(ptrn.Voc).^2;
if strcmp(ptrn.create,’rad_pattern’)

ptrn.theta=ptrn.alpha;
ptrn.phi=ptrn.ki;

end

if exist(’optional’)
HPBW.center=optional.center;

else
[k_list,k_index]=max(pwr);
[pwr_max,l_index]=max(k_list);
k_index=k_index(l_index);
HPBW.center=[ptrn.theta(k_index),ptrn.phi(l_index)];

end

x_max=HPBW.center(1)*cos(HPBW.center(2));
y_max=HPBW.center(1)*sin(HPBW.center(2));
x_y_points=j*ones(2,8);
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for m=0:7

r_temp=[0:1/40:2];
x_temp=cos(m*pi/4)*r_temp+x_max*ones(size(r_temp));
y_temp=sin(m*pi/4)*r_temp+y_max*ones(size(r_temp));

for k=1:length(r_temp)
theta(k)=sqrt(x_temp(k)^2+y_temp(k)^2);
if theta>.001

phi(k)=atan2(y_temp(k),x_temp(k));
if phi(k) <0

phi(k)=phi(k)+2*pi;
end

else
phi(k)=0;

end
end

[X,Y]=meshgrid(ptrn.phi,ptrn.theta);
[r_intp]=interp2(X,Y,pwr,phi,theta);

first=0;
second=0;
for k=1:length(r_intp)-1

if r_intp(k) <= r_intp(k+1) & first==0
first=1;
rise=k;

end

if r_intp(k) > r_intp(k+1) & first==1 & second==0
second=1;
fall=k+1;

end
end

if first==1 & second==1
[first_lobe.pwr(m+1),index]=max(r_intp([rise:fall]));
r_lobe=r_temp(rise+index-1);

else
r_lobe=0;

end

x_y_points(1,m+1)=r_lobe*cos(m*pi/4)+x_max;
x_y_points(2,m+1)=r_lobe*sin(m*pi/4)+y_max;

end

vector1=[sin(HPBW.center(1))*cos(HPBW.center(2));...
sin(HPBW.center(1))*sin(HPBW.center(2));...
cos(HPBW.center(1))];

count=8;
for m=1:8
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if x_y_points(1,m)~=j
theta=sqrt(x_y_points(1,m)^2+x_y_points(2,m)^2);
if theta>.001

phi=atan2(x_y_points(2,m),x_y_points(1,m));
if phi < 0

phi=phi+2*pi;
end

else
phi=0;

end

vector2=[sin(theta)*cos(phi);sin(theta)*sin(phi);cos(theta)];
first_lobe.angles(m)=acos(vector1’*vector2);

else
count=count-1;
first_lobe.angles(m)=0;

end
end

first_lobe.angle_avg=sum(first_lobe.angles)/count;
first_lobe.pwr_avg=sum(first_lobe.pwr)/count;

else
disp(’use output of rad_pattern or image_pattern’)

end

get HPBW.m

function [HPBW]=get_HPBW(ptrn,optional)

%this function calculates the HPBW of the a pattern in eigth direction.
%the average angel is the angel from the center to the outward
%optional.center

if strcmp(ptrn.create,’rad_pattern’) | strcmp(ptrn.create,’image_pattern’)

Voc=ptrn.Voc;
if strcmp(ptrn.create,’rad_pattern’)

ptrn.theta=ptrn.alpha;
ptrn.phi=ptrn.ki;

end

[X,Y]=meshgrid(ptrn.phi,ptrn.theta);

if exist(’optional’)
HPBW.center=optional.center;
[Voc_max]=interp2(X,Y,Voc,HPBW.center(2),HPBW.center(1));
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pwr_max=Voc_max*Voc_max’;
HPBW.pwr_max=pwr_max;

else
[k_list,k_index]=max(Voc);
[Voc_max,l_index]=max(k_list);
k_index=k_index(l_index);
HPBW.center=[ptrn.theta(k_index),ptrn.phi(l_index)];
pwr_max=Voc_max*Voc_max’;
HPBW.pwr_max=pwr_max;

end

x_max=HPBW.center(1)*cos(HPBW.center(2));
y_max=HPBW.center(1)*sin(HPBW.center(2));
x_y_points=j*ones(2,8);
for m=0:7

r_temp=[0:1/40:1];
x_temp=cos(m*pi/4)*r_temp+x_max*ones(size(r_temp));
y_temp=sin(m*pi/4)*r_temp+y_max*ones(size(r_temp));

for k=1:length(r_temp)
theta(k)=sqrt(x_temp(k)^2+y_temp(k)^2);
if theta(k)>.001

phi(k)=atan2(y_temp(k),x_temp(k));
if phi(k)<0

phi(k)=phi(k)+2*pi;
end

else
phi(k)=0;

end
end

[Voc_intp]=interp2(X,Y,Voc,phi,theta);
r_intp=abs(Voc_intp).^2;

first=0;
for k=1:length(r_intp)-1

if r_intp(k) >= pwr_max/2 & r_intp(k+1)<=pwr_max/2 & first==0
first=1;
slope=(r_temp(k+1)-r_temp(k))/(r_intp(k+1)-r_intp(k));
intercept=r_temp(k)-slope*r_intp(k);
r_3dB=slope*(pwr_max/2)+intercept;

slope=(Voc_intp(k+1)-Voc_intp(k))/(r_temp(k+1)-r_temp(k));
intercept=Voc_intp(k) -slope*r_temp(k);
Voc_3dB=slope*r_3dB+intercept;
HPBW.phase(m+1)=angle(Voc_3dB)-angle(Voc_max);

x_y_points(1,m+1)=r_3dB*cos(m*pi/4)+x_max;
x_y_points(2,m+1)=r_3dB*sin(m*pi/4)+y_max;

end
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end
end

vector1=[sin(HPBW.center(1))*cos(HPBW.center(2));...
sin(HPBW.center(1))*sin(HPBW.center(2));...
cos(HPBW.center(1))];

count=8;
for m=1:8

if x_y_points(1,m)~=j
theta=sqrt(x_y_points(1,m)^2+x_y_points(2,m)^2);
if theta>.001

phi=atan2(x_y_points(2,m),x_y_points(1,m));
if phi<0

phi=phi+2*pi;
end

else
phi=0;

end

vector2=[sin(theta)*cos(phi);sin(theta)*sin(phi);cos(theta)];
HPBW.angles(m)=acos(vector1’*vector2);

else
count=count-1;
HPBW.angles(m)=0;

end
end

if count==0
HPBW.avg=0;

else
HPBW.avg=sum(HPBW.angles)/count;

end

else
disp(’use output of rad_pattern or image_pattern’)

end

image pattern.m

function [image_ptrn,mutual_ptrn]=image_pattern(lens,channel,theta_range,phi_range,optional)

%this function outputs the det_antenna Voc for an omni direction antenna
%polarized to the center element of the lens feed side for the ’channel’
%input over the specified ranges.
%mutual_prtn is the image produced by the mutual coupling currents
%theta_range is a vector [theta_start,theta_end,theta_N]
%phi_range is a vector [phi_start,phi_end,phi_N]
%optional.polar_source use polarization for source coupling
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% default is ’yes’
%optional.polar_feed use polarization for feed coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’
%optional.pathloss_feed {’yes’ ’no’ ’focal’} use pathloss for feed coupling
% ’focal’ uses the focal distance on the optical axis
% as the path loss for all antenna elements
% default is ’yes’
%optional.surface (’focal’,radius) to use the focal surface or a surface of
% radius ’radius’ default is ’focal’
%optional.det_antenna allows you to define your own detector antenna element
%optional.mutual.use (’yes’, ’no’,’max’) calculates the image do to mutual
% coupling. ’yes’ uses the estimated magnitude and phase
% of the coupled currents and ’max’ uses just the magnitude
% default is ’no’
%optional.mutual.extra is an open field for use by name_mutual.m mutual
%coupling calculations functions

mutual.use=’no’;
surface=’focal’;
focal=’no’;
optional_focus.polar_source=’yes’;
optional_focus.polar_feed=’yes’;
optional_focus.pathloss_source=’yes’;
optional_focus.pathloss_feed=’yes’;

%initalize default det_antenna
middle=round(lens.N_c/2);
[fd_antenna]=pull_antenna(lens,middle,’feed’);
[le_nfd,ro_fd]=feval(fd_antenna.name,0,0,fd_antenna.polar);
J_sph_fd=xyz2sph(0,0);
J_gfd=fd_antenna.local;
ro_source=J_gfd’*J_sph_fd’*ro_fd;
det_antenna.polar=ro_source;
det_antenna.theta_r=0;
det_antenna.name=’omni_antenna’;
%

if nargin ==5
if isfield(optional,’polar_source’)

optional_focus.polar_source=optional.polar_source;
end
if isfield(optional,’polar_feed’)

optional_focus.polar_feed=optional.polar_feed;
end
if isfield(optional,’pathloss_source’)

optional_focus.pathloss_source=optional.pathloss_source;
end
if isfield(optional,’pathloss_feed’)

if strcmp(optional.pathloss_feed,’focal’)
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optional_focus.pathloss_feed=’no’;
focal=’yes’;

else
optional_focus.pathloss_feed=optional.pathloss_feed;
focal=’no’;

end
end
if isfield(optional,’mutual’)

mutual=optional.mutual;
end
if isfield(optional,’surface’)

surface=optional.surface;
end
if isfield(optional,’det_antenna’)

det_antenna=optional.det_antenna;
end

end

theta=[theta_range(1):(theta_range(2)-theta_range(1))/(theta_range(3)-1):...
theta_range(2)];

phi=[phi_range(1):(phi_range(2)-phi_range(1))/(phi_range(3)-1):phi_range(2)];

Iin_fd=0;
for k=1:theta_range(3)

for l=1:phi_range(3)
comments([’Calculating Image ’,num2str(k/theta_range(3),2)]);
if theta(k)==0 & l~=1

Voc(k,l)=Voc(1,1);
else

if strcmp(surface,’focal’)
[rad]=get_focal(lens, theta(k));

else
rad=surface;

end

pos=[rad*sin(theta(k))*cos(phi(l));rad*sin(theta(k))*sin(phi(l));...
rad*cos(theta(k))];

[detector_kl]=build_det(det_antenna.name,pos,...
det_antenna.theta_r,1,1,0.5,0.5,0,det_antenna.polar);

Voc_temp=0;
for m=1:length(channel)

source_m=channel{m};

[Voc_temp2,Iin_fd_m]=lens_focus(lens,source_m,detector_kl,...
optional_focus);

Voc_temp=Voc_temp+Voc_temp2;

if k==1 & l==1
switch(mutual.use)
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case {’yes’,’max’}
Iin_fd=Iin_fd+Iin_fd_m;

end
end

end
Voc(k,l)=Voc_temp;

end

end
end
if strcmp(focal,’yes’)

image_ptrn.Voc=Voc/get_focal(lens,0);
else

image_ptrn.Voc=Voc;
end
image_ptrn.theta=theta;
image_ptrn.phi=phi;
image_ptrn.create=’image_pattern’;

if strcmp(mutual.use,’yes’) | strcmp(mutual.use,’max’)

Voc=[];
[mutual_couple]=get_mutual_Z(lens,optional.mutual);
switch(mutual.use)

case{’yes’}
Iin_fd_mutual=mutual_couple*Iin_fd;

case{’max’}
Iin_fd_mutual=abs(mutual_couple)*abs(Iin_fd);

end

for k=1:theta_range(3)
for l=1:phi_range(3)

comments([’Calculating Mutual ’,num2str(k/theta_range(3),2)]);

if theta(k)==0 & l~=1
Voc(k,l)=Voc(1,1);

else
if strcmp(surface,’focal’)

[rad]=get_focal(lens, theta(k));
else

rad=surface;
end

pos=[rad*sin(theta(k))*cos(phi(l));rad*sin(theta(k))*sin(phi(l));...
rad*cos(theta(k))];

a_z=(-1*pos)/sqrt(pos’*pos);

[detector_kl]=build_det(det_antenna.name,pos,...
det_antenna.theta_r,1,1,0.5,0.5,0,det_antenna.polar);
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[Voc(k,l)]=mutual_focus(lens,Iin_fd_mutual,detector_kl,...
optional_focus);

end
end

end

if strcmp(focal,’yes’)
mutual_ptrn.Voc=Voc/get_focal(lens,0);

else
mutual_ptrn.Voc=Voc;

end
mutual_ptrn.theta=theta;
mutual_ptrn.phi=phi;
mutual_ptrn.create=’image_pattern’;

end

local unit vectors.m

function local_unit_vectors(device,optional)

%local_unit_vectors(device,optional)
%this function plots local unit vectors for antennas in the device
%(lens or detectors)
%optiona.fig_num is optional and default is 4
%optional.font_size is optional allows the letter font size to be changed
% default is 10
%optional.length length of unit vectors
% default is 0.25

fig_num=4;

optional_draw.font_size=10;
if nargin==2

if isfield(optional,’fig_num’)
fig_num=optional.fig_num;

end
if isfield(optional,’font_size’)

optional_draw.font_size=optional.font_size;
end
if isfield(optional,’length’)

optional_draw.length=optional.length;
end

end

figure(fig_num)

if findstr(class(device),’cell’)
for k=1:length(device)
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device_k=device{k};

switch device_k.device
case(’detector’)

for m=1:device.N_c
drawunit(device_k.cell.local{m},device_k.cell.pos{m},’c’,...

optional_draw)
end

case(’source’)
switch device_k.type

case(’nearfield’)
drawunit(device_k.local,device_k.pos,’m’,optional_draw)

case(’farfield’)
drawunit(device_k.local,device_k.pos,’m’,optional_draw)

end
end

end
else

switch device.device
case(’lens’)

for m=1:device.N_c
drawunit(device.cell.nfd.local{m},device.cell.nfd.pos{m},’g’,...

optional_draw)
drawunit(device.cell.fd.local{m},device.cell.fd.pos{m},’c’,...

optional_draw)
end

case(’array’)
for m=1:device.N_c

drawunit(device.cell.nfd.local{m},device.cell.nfd.pos{m},’g’,...
optional_draw)

end
case(’detector’)

for m=1:device.N_c
drawunit(device.cell.local{m},device.cell.pos{m},’c’,optional_draw)

end
case(’source’)

switch device.type
case(’nearfield’)

drawunit(device.local,device.pos,’m’,optional_draw)
case(’farfield’)

drawunit(device.local,device.pos,’m’,optional_draw)
end

end
end

make channel.m

function [channel]=make_channel(alpha_max,alpha_sample)
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%this function uniformly places far field sources over a surfcae from 0
%to alpha_max

alpha=[0:alpha_max/(alpha_sample-0.5):alpha_max]
alpha_step=alpha(2)-alpha(1);

channel_num=1;
channel{channel_num}=build_far(0,0,pi/2,1,[0;1;0]);
for k=2:length(alpha)

ki_sample=floor(sin(alpha(k))*2*pi/alpha_step);

if floor(k/2)==k/2
ki=[0:2*pi/ki_sample:2*pi-2*pi/ki_sample];

else
ki=[0+pi/ki_sample:2*pi/ki_sample:2*pi-pi/ki_sample];

end

for l=1:ki_sample
channel_num=channel_num+1
channel{channel_num}=build_far(alpha(k),ki(l),pi/2,1,[0;1;0]);

end
end

make imager.m

function [imager]=make_imager(lens,detector,theta_max,optional)

%this function places the detectors on the image_ptrnr surface spaced according
%the Nyquist sampling therom. I use a small angle approximation that results
%in alittle over sampling for lens smaller than radius=3 lambda
%’detector’ is the element used
%( right now only written for single antenna for use in ’2D’ lens, arrays
% detectors are for ’1D’ lenses)
%’theta_max’ range from 0 to theta_max to place the detectors
%optional.image_ptrn will use image pattern to calculate HPBW for sampling
% use image with beam on optical axis
% default is to estimate HPBW from lens size
%optional.sampling_scale ratio of desired sampling rate to Nyquist sampling rate
% default is 1
%optional.surface (’focal’,num) which focal surface to use focal surface or
% a ball of radius ’num’
% default is focal surface
%optional.fit (’ceil’,’floor’) ceil packs the detectors such the whole angle
% space is covered with max spacing no greater than Nyquist
% floor packs the detectors starting at the center with Nyquist
% spacing until theta_max is reached
% default is floor
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surface=’focal’;
sampling_scale=1;
estimate=’yes’;
fit=’floor’;

if nargin==4
if isfield(optional,’sampling_scale’)

sampling_scale=optional.sampling_scale;
end
if isfield(optional,’surface’)

surface=optional.surface;
end
if isfield(optional,’image_ptrn’)

image_ptrn=optional.image_ptrn;
estimate=’no’;

end
if isfield(optional,’fit’)

fit=optional.fit;
end

end

switch(estimate)
case(’yes’)

switch(lens.lensing)
case(’2D’)

switch(lens.shape)
case(’circle’)

HPBW=2*asin(.255/lens.dimension);
case(’rect’)

HPBW(1)=2*asin(1.4/(lens.dimension(1)*pi));
HPBW(2)=2*asin(1.4/(lens.dimension(2)*pi));

end
case(’1Dx’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

HPBW(1)=2*asin(1.4/(lens.dimension(1)*pi));
HPBW(2)=0;

end
case(’1Dy’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

HPBW(1)=0;
HPBW(2)=2*asin(1.4/(lens.dimension(2)*pi));

end
end
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case(’no’)
HPBW=get_HPBW(image_ptrn);
switch(lens.lensing)

case(’2D’)
switch(lens.shape)

case(’circle’)
HPBW=2*HPBW.avg;

case(’rect’)
HPBW(1)=sum(HPBW.angles([1,5]))/2;
HPBW(2)=sum(HPBW.angles([3,7]))/2;

end
case(’1Dx’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

HPBW(1)=sum(HPBW.angles([1,5]))/2;
HPBW(2)=0;

end
case(’1Dy’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

HPBW(1)=0;
HPBW(2)=sum(HPBW.angles([3,7]))/2;

end
end

end

switch(lens.lensing)
case(’2D’)

switch(lens.shape)
case(’circle’)

sample=HPBW*1.13*0.5*[1 1 ;sqrt(3) -sqrt(3)];
case(’rect’)

sample(:,1)=sampling_scale*HPBW(1)*1.12*[1;0];
sample(:,2)=sampling_scale*HPBW(2)*1.12*[0;1];

end
case(’1Dx’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

sample(:,1)=sampling_scale*HPBW(1)*1.12*[1;0];
sample(:,2)=[0;0];

end
case(’1Dy’)

switch(lens.shape)
case(’circle’)

disp(’warning this code does not work with 1D circle lenses’)
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case(’rect’)
sample(:,1)=[0;0];
sample(:,2)=sampling_scale*HPBW(2)*1.12*[0;1];

end
end

switch(lens.lensing)
case(’2D’)

switch(lens.shape)
case(’circle’)

x_space=2*abs(sample(1,1));
switch(fit)

case(’ceil’)
num_u1=ceil(theta_max/x_space);
num_u2=num_u1;
sample_new=theta_max/num_u1;
sample=(sample_new/x_space)*sample;

case(’floor’)
num_u1=floor(theta_max/x_space);
num_u2=num_u1;

end
case(’rect’)

x_space=abs(sample(1,1))
y_space=abs(sample(2,2))
switch(fit)

case(’ceil’)
num_u1=ceil(theta_max/x_space);
sample_new=theta_max/num_u1;
sample(:,1)=(sample_new/x_space)*sample(:,1);
num_u2=ceil(theta_max/y_space);
sample_new=theta_max/num_u2;
sample(:,2)=(sample_new/y_space)*sample(:,2);

case(’floor’)
num_u1=floor(theta_max/x_space);
num_u2=floor(theta_max/y_space);

end
end

pos=[];
for k=-num_u1-1:num_u1+1

for l=-num_u2-1:num_u2+1
pos_temp=sample*[k;l];
if sqrt(pos_temp’*pos_temp)/theta_max < 1.04

pos=[pos,pos_temp];
end

end
end

case(’1Dx’)
switch(lens.shape)

case(’circle’)
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disp(’warning this code does not work with 1D circle lenses’)
case(’rect’)

x_space=abs(sample(1,1));
switch(fit)

case(’ceil’)
num_u1=ceil(theta_max/x_space);
sample_new=theta_max/num_u1;
sample(:,1)=(sample_new/x_space)*sample(:,1);

case(’floor’)
num_u1=floor(theta_max/x_space);

end
end

pos=[];
for k=-num_u1-1:num_u1+1

pos_temp=sample*[k;0];
if sqrt(pos_temp’*pos_temp)/theta_max < 1.04

pos=[pos,pos_temp];
end

end

case(’1Dy’)
switch(lens.shape)

case(’circle’)
disp(’warning this code does not work with 1D circle lenses’)

case(’rect’)
y_space=abs(sample(2,2));
switch(fit)

case(’ceil’)
num_u2=ceil(theta_max/y_space);
sample_new=theta_max/num_u2;
sample(:,2)=(sample_new/y_space)*sample(:,2);

case(’floor’)
num_u2=floor(theta_max/y_space);

end
end

pos=[];
for k=-num_u2-1:num_u2+1

pos_temp=sample*[0;k];
if sqrt(pos_temp’*pos_temp)/theta_max < 1.04

pos=[pos,pos_temp];
end

end
end

[m,n]=size(pos);

for k=1:n
pos_temp=pos(:,k);
if detector.N_c==1
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theta_temp=sqrt(pos_temp’*pos_temp);
if theta_temp>.01

phi_temp=atan2(pos_temp(2),pos_temp(1));
if phi_temp<0

phi_temp=phi_temp+2*pi;
end

else
phi_temp=0;

end

focal_temp=get_focal(lens, theta_temp);
pos_xyz=[focal_temp*sin(theta_temp)*cos(phi_temp);...

focal_temp*sin(theta_temp)*sin(phi_temp);...
focal_temp*cos(theta_temp)];

a_z=(-1*pos_xyz’)/sqrt(pos_xyz’*pos_xyz);
detector_temp=detector;
[antenna_temp]=build_ant(detector.cell.name{1},pos_xyz,...

a_z,detector.cell.theta_r{1},detector.cell.polar{1});
detector_temp.cell.pos(1)=antenna_temp.pos(1);
detector_temp.cell.name(1)=antenna_temp.name(1);
detector_temp.cell.base(1)=antenna_temp.base(1);
detector_temp.cell.theta_r(1)=antenna_temp.theta_r(1);
detector_temp.cell.local(1)=antenna_temp.local(1);
detector_temp.cell.polar(1)=antenna_temp.polar(1);

imager{k}=detector_temp;
else

disp(’need to write code that places arrays’)
end

end

noiseTF.m

function [noise_TF]=noiseTF(lens,imager,optional)

%this function creates a transfer function that related the noise sources
%(amplifiers) to the detector outputs.
%noise_TF.lens is the lens sources
%noise_TF.det is cell structure containing the TF for each detectors unitcell
%noise_TF.imager is the noise source at each port of the imager before sampling
%The noise doesn’t go through the amplifiers.
%optional.delay_lens (’before’, ’after’) default ’before’
%optional.delay_detector (’before’, ’after’) default ’before’
%optional.polar use polarization for feed coupling
% default is ’yes’
%optional.pathloss use pathloss for feed coupling
% default is ’yes’
%optional.flags flags the turn on/off the calculates of TF
% [lens,detector,imager]
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% default is [1,1,1]

delay_lens=’before’;
delay_detector=’before’;
optional_feed.polar=’yes’;
optional_feed.pathloss=’yes’;
flag=[1,1,1];

if nargin==3
if isfield(optional,’delay_lens’)

delay_lens=optional.delay_lens;
end

if isfield(optional,’delay_detector’)
delay_detector=optional.delay_detector;

end

if isfield(optional,’polar’)
optional_feed.polar=optional.polar;

end

if isfield(optional,’pathloss’)
optional_feed.pathloss=optional.pathloss;

end

if isfield(optional,’flags’)
flags=optional.flags;

end
end

if flags(1)==1
for k=1:lens.N_c

%comments([’QOL noise TF ’,num2str(k/lens.N_c,3)]);
for m=1:length(imager)

detector=imager{m};
[fd_antenna]=pull_antenna(lens,k,’feed’);

switch(delay_lens)
case ’before’

Iin_fd=exp(-j*2*pi*lens.cell.delay(k));
case ’after’

Iin_fd=1;
end

Voc=0;
for l=1:detector.N_c

[det_antenna]=pull_antenna(detector,l);
[Voc_l]=couple(fd_antenna,det_antenna,Iin_fd,optional_feed);
switch(delay_detector)

case ’before’
Voc=Voc+Voc_l*detector.g*detector.cell.g{l}*...
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exp(-j*2*pi*detector.cell.delay{l});
case ’after’

Voc=Voc+Voc_l*detector.g*detector.cell.g{l};
end

end
Voc=Voc*detector.g;

noise_TF.lens(m,k)=Voc;
end

end
end

if flags(2)==1
for k=1:length(imager)

detector=imager{k};

noise_det_temp=zeros(1,detector.N_c);

for l=1:detector.N_c
switch(delay_detector)

case(’before’)
noise_det_temp(l)=detector.g*exp(-j*2*pi*detector.cell.delay{l});

case(’after’)
noise_det_temp(l)=detector.g;

end
end
noise_TF.det{k}=noise_det_temp;

end
end

if flags(3)==1
noise_TF.imager=eye(length(imager));

end

number elements.m

function number_elements(device,optional)

%this function numbers the antennas in the device (lens detectors channel
%imager)
%optiona.fig_num is optional and default is 4
%optional.font_size this optional allows the fonts size to be changed
% default is 10

fig_num=4;
font_size=10;
if nargin==2

if isfield(optional,’fig_num’)
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fig_num=optional.fig_num;
end
if isfield(optional,’font_size’)

font_size=optional.font_size;
end

end

figure(fig_num)

if findstr(class(device),’cell’)
for k=1:length(device)

device_k=device{k};

switch device_k.device
case(’detector’)

for m=1:device_k.N_c
pos=device_k.cell.pos{m};
[H_temp]=text(pos(1),-1*pos(3),pos(2),...

[num2str(k,2),’,’,num2str(m,3)]);
set(H_temp,’FontSize’,font_size)

end
case(’source’)

pos=device_k.pos;
switch device_k.type

case(’nearfield’)
[H_temp]=text(pos(1),-1*pos(3), pos(2),num2str(k,3));
set(H_temp,’FontSize’,font_size)

case(’farfield’)
[H_temp]=text(pos(1),-1*pos(3),pos(2),num2str(k,3));
set(H_temp,’FontSize’,font_size)

end
end

end
else

switch device.device
case(’lens’)

for m=1:device.N_c
pos=device.cell.nfd.pos{m};
[H_temp]=text(pos(1),-1*pos(3),pos(2),num2str(m,3));
set(H_temp,’FontSize’,font_size)

end
case(’array’)

for m=1:device.N_c
pos=device.cell.nfd.pos{m};
[H_temp]=text(pos(1),-1*pos(3),pos(2),num2str(m,3));
set(H_temp,’FontSize’,font_size)

end
case(’detector’)

for m=1:device.N_c
pos=device.cell.pos{m};
[H_temp]=text(pos(1),-1*pos(3),pos(2),num2str(m,3));
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set(H_temp,’FontSize’,font_size)
end

end
end

per error.m

function [error_ptrn]=per_error(image_ptrn, mutual_ptrn)

%this function plots the percent error do to mutual coupling

error_ptrn=image_ptrn;
error_ptrn.create=’per_error’;
error_ptrn.error_point=abs(mutual_ptrn.Voc./image_ptrn.Voc);
temp_max=max(max(abs(image_ptrn.Voc)));
error_ptrn.error_max=abs(mutual_ptrn.Voc./(temp_max*ones(size(mutual_ptrn.Voc))));

planar array.m

function [array]=planar_array(shape,dimension,antenna,unitcellsize,latice)

%Shape is a string argument that discribes the lens shape ’circle’,’rect’
%dimension is a vector that contains the important dimensions for the array
% circle [radius]
% rect [width,height] width = x dimension and height = y dimension
%antenna is cell discribes the antenna types,
%polarization and orientation. The polarization vector is for a model
%antenna in the oreintation for the theorical or measured radiation patterns.
%Orientation discribes the rotation of the antennas from the model antenna.
%unitcellsize defines the x/y dimensions for unitcell
% [width,height] width = x height = y
%latice is a cell of strings that discribes the how the unitcells are
%placed in the lens {pattern,boundary}
% PATTERN
% ’triangle’ uses a triangular lattice to fill the shape trying to maximise
% the number of unit cells
% ’max’ uses a row structure with as many unitcells as possible in
% each row
% BOUNDARY
% ’best’ is the tightest packing allowing for 1/4 of the unitcell
% to extend outside the defined shape
% ’limit’ is the tightest packing without letting the unitcells
% extend outside the defined shape
%note: all dimensions are in wave length of the center frequency
%note: this code assumes for now that the lens is confined to a plane
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%initialize array
array.device=’array’;
array.shape=shape;
array.dimension=dimension;
array.cell.width=unitcellsize(1);
array.cell.height=unitcellsize(2);

switch shape
case {’circle’}

[array]=packcircle(latice,array);
case {’rect’}

[array]=packrect(latice,array);
end

array.N_c=sum(array.R);
[array]=packant2(array,antenna);

plot antenna.m

function plot_antenna(antenna_ptrn,parameter,optional)

%this function plots the antenna_ptrn pwr or polarization
%parameter {’pattern’,’polar’} the pattern is on a linear scale
% the polarization is plotted 1/8 of effective
% length circular polarization plots incorrectly
%optional.data {’raw’, ’norm’ ,num} default is the normalize the max power
% to 0 dB or the max power can be normalize
% to ’num’ in dB
%optional.export {’screen’, ’file’} this option ajusts the colors for
% screen viewing or file exporting

figure(7)
whitebg(’k’)
view(3)

data=’norm’;
export=’screen’;
if nargin==3

if isfield(optional,’data’)
data=optional.data;

end
if isfield(optional,’export’)

export=optional.export;
end

end

switch (parameter)
case ’pattern’

colormap(’jet’)
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pwr=antenna_ptrn.le.*antenna_ptrn.le;

max_pwr=max(max(pwr));

if strcmp(data,’norm’)
pwr=pwr/max_pwr;

elseif strcmp(class(data),’double’)
data=10^(data/10);
pwr=(data/max_pwr)*pwr;

end
% pwr=10*log10(pwr);

for k=1:length(antenna_ptrn.alpha)
for l=1:length(antenna_ptrn.ki)

z(k,l)=pwr(k,l)*cos(antenna_ptrn.alpha(k));
y(k,l)=pwr(k,l)*sin(antenna_ptrn.alpha(k))*sin(antenna_ptrn.ki(l));
x(k,l)=pwr(k,l)*sin(antenna_ptrn.alpha(k))*cos(antenna_ptrn.ki(l));

end
end

surf(x,y,z,x.^2+y.^2+z.^2)
%colorbar
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)
axis(’equal’)
case ’polar’

drawball(1)
colormap(’gray’);
switch(export)

case ’screen’
caxis([1,1.1]);

case ’file’
caxis([0,0.1]);

end
hold on
for k=1:length(antenna_ptrn.alpha)

for l=1:length(antenna_ptrn.ki)
if antenna_ptrn.alpha(k)==0 & antenna_ptrn.ki~=0

else
z_temp=cos(antenna_ptrn.alpha(k));
y_temp=sin(antenna_ptrn.alpha(k))*sin(antenna_ptrn.ki(l));
x_temp=sin(antenna_ptrn.alpha(k))*cos(antenna_ptrn.ki(l));
[J_sph]=xyz2sph(antenna_ptrn.alpha(k),antenna_ptrn.ki(l));
polar_vector= J_sph’*antenna_ptrn.polar{k,l}/8;
plot3([x_temp,x_temp+polar_vector(1)],...

[y_temp,y_temp+polar_vector(2)],...
[z_temp,z_temp+polar_vector(3)],’g’);

plot3(x_temp,y_temp,z_temp,’go’);
end
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end
end
hold off
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)
axis(’equal’)

end

plot array.m

function plot_array(array,optional)

%plot_array(array,optional)
%This function plots a 3d picture of the array in figure 4
%optional.fig_num default is 4

fig_num=4;
if nargin==2

fig_num=optional.fig_num;
end

whitebg(’k’)
figure(fig_num)
view(3)

for m=1:array.N_c
drawrect(array.cell.nfd.base{m},array.cell.nfd.pos{m},array.cell.height, ...

array.cell.width,’r’);

hold on
plot3(array.cell.nfd.pos{m}(1),-1*array.cell.nfd.pos{m}(3), ...

array.cell.nfd.pos{m}(2),’rx’);

end

hold on
switch array.shape

case{’circle’}
angle=[0:pi/15:2*pi];
D=2*array.dimension;
x_circle=(D/2)*cos(angle);
y_circle=(D/2)*sin(angle);
z_circle=zeros(1,length(angle));
plot3(x_circle,-1*z_circle,y_circle,’r’)

case {’rect’}
w=array.dimension(1);
h=array.dimension(2);
x=[-w/2, -w/2, w/2, w/2, -w/2];
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y=[h/2, -h/2, -h/2, h/2, h/2];
z=zeros(1,5);
plot3(x,-1*z,y,’r’)

end
hold off
axis(’equal’)

xlabel(’x’)
ylabel(’-z’)
zlabel(’y’)

plot channel.m

function plot_channel(channel,optional)

%This function plots a 3d picture of the channel in figure 4
%optional.fig_num default is 4
%optional.radius changes the size of source symbol radius
% default is 0.25
%optional.distance changes the distance the far field source symbols
% are plotted default is 6

optional_plot.fig_num=4;
optional_plot.radius=0.25;
if nargin==2

if isfield(optional,’fig_num’)
optional_plot.fig_num=optional.fig_num;

end
if isfield(optional,’radius’)

optional_plot.radius=optional.radius;
end
if isfield(optional,’distance’)

optional_plot.source.pos=(optional.distance/6)*source.pos;
end

end

for k=1:length(channel)
source_k=channel{k};
plot_source(source_k,optional_plot);

end

plot couple.m

function plot_couple(transmit,receive,optional)

%function plot_couple(transmit,receive,optional)
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%this function plots the coupling between two antennas ’transmit’ (red) and
%’receive’ (blue). Only linear polarization and 1/r loss is used. All
%antenna fields are required (name,polar,bae,local,pos,theta_r).
%optional.pathloss default is ’yes’
%optional.fig_num default is 5

fig_num=5;
pathloss=’yes’;
if nargin==3

if isfield(optional,’pathloss’)
pathloss=optional.pathloss;

end

if isfield(optional,’fig_num’)
fig_num=optional.fig_num;

end
end

figure(fig_num)
view(3)
whitebg(’k’)

drawrect(transmit.local,transmit.pos,.5,.5,’r’)
drawrect(receive.local,receive.pos,.5,.5,’g’)

drawunit(transmit.local,transmit.pos,’r’)
drawunit(receive.local,receive.pos,’g’)

[theta_rec,phi_rec]=get_direction(receive,transmit);
[theta_tran,phi_tran]=get_direction(transmit,receive);
J_sph_tran=xyz2sph(theta_tran,phi_tran);
J_sph_rec=xyz2sph(theta_rec,phi_rec);
J_gt=transmit.local;
J_gr=receive.local;

Rt=transmit.pos;
Rr=receive.pos;
r=Rr-Rt;
r_mag=sqrt(r’*r);

[le_t,ro_t]=feval(transmit.name,theta_tran,phi_tran,transmit.polar);
ro_t_l=J_gt’*J_sph_tran’*ro_t;

switch pathloss
case (’no’)

Ei_g=((2*pi)/(4*pi))*le_t*ro_t_l;
case(’yes’)

Ei_g=((2*pi)/(4*pi*r_mag))*le_t*ro_t_l;
end

pos=receive.pos;
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xpoint=(Ei_g)+pos;

hold on
plot3([pos(1),xpoint(1)],-1*[pos(3),xpoint(3)],[pos(2),xpoint(2)],’y’)
plot3([transmit.pos(1),receive.pos(1)],-1*[transmit.pos(3),receive.pos(3)], ...

[transmit.pos(2),receive.pos(2)],’b’)

axis(’equal’)

hold off
grid on

plot detector.m

function plot_detector(detector,optional)

%this function plots a 3d picture of the detector in figure 4
%optional.fig_num default is 4

fig_num=4;
if nargin==2

fig_num=optional.fig_num;
end

whitebg(’k’)
figure(fig_num)
view(3)
connecting=[];
for m=1:detector.N_c

drawrect(detector.cell.base{m},detector.cell.pos{m},detector.cell.height, ...
detector.cell.width,’g’);

hold on
plot3(detector.cell.pos{m}(1),-1*detector.cell.pos{m}(3), ...

detector.cell.pos{m}(2),’rx’);
hold off
connecting=[connecting,detector.cell.pos{m}];

end
hold on
plot3(connecting(1,:),-1*connecting(3,:),connecting(2,:),’g’)
hold off
axis(’equal’)

plot detector pos.m
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function plot_detector_pos(imager)

%this function plots detectors positions on image plot

figure(2);
whitebg(’w’)
for k=1:length(imager)

detector_k=imager{k};
pos_k=detector_k.cell.pos{1};

theta_k=atan2(sqrt(pos_k(1)^2+pos_k(2)^2),pos_k(3));

if theta_k > .001
phi_k=atan2(pos_k(2),pos_k(1));
if phi_k < 0

phi_k=phi_k+2*pi;
end

else
phi_k=0;

end

x_k=theta_k*cos(phi_k);
y_k=theta_k*sin(phi_k);
hold on
plot3(x_k,y_k,0,’kx’)
text(x_k,y_k,0,num2str(k,3))
hold off

end

plot error.m

function [error_ptrn_plot]=plot_error(error_ptrn,ref,optional)

%this function plots the error pattern and outputs the plotted data
%’ref’ determines which percent error calculation to plot
% ’point’ is point by point calculation
% ’max’ percent error referenced to max power of image pattern
%optional.scale (’linear’,’dB’) default is dB
%optional.data (’raw’,num) default num is the max scale limit
%optional.format (’polar’,’rect’) default is polar representation of
% theta and phi where the imageius is
% linear with theta
%optional.theta_range [theta_start,theta_end] if theta_start = theta_end
% it plots is a cut with theta=theta_start
%optional.phi_range [phi_start,phi_end] if phi_start = phi_end then it produces
% the plot is a cut with phi=phi_start
%if either of the theta or phi ranges are of length one, then plot_image
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%allows stacking of 2D plots and optional.line_color defines the line
%type and color (default is blue solid)
%if the output of one plot_image is feed into another plot_image
%then the data is reploted ignoring all optional’s
%if measured data if feed is used, then the optional.freq determines
%which pattern is used

scale=’linear’;
data=100;
format=’polar’;
figure(5)
line_color=’b-’;

if strcmp(ref,’point’)
error_ptrn.error=error_ptrn.error_point;

elseif strcmp(ref,’max’)
error_ptrn.error=error_ptrn.error_max;
end

if nargin==3
if isfield(optional,’line_color’)

line_color=optional.line_color;
end

end

switch (error_ptrn.create)
case(’plot_error’)

if isfield(error_ptrn,’x’)
surf(error_ptrn.x,error_ptrn.y,error_ptrn.error)
title([’theta is from ’,num2str(error_ptrn.theta_range(1)/pi,2),’-’...

num2str(error_ptrn.theta_range(2)/pi,2),’ (pi)’])
xlabel(’x’)
ylabel(’y’)
zlabel([’percent error (’,scale,’)’])
axis(’square’)

else
if length(error_ptrn.theta)==1

hold on
plot(error_ptrn.phi/pi,error_ptrn.error,line_color)
title([’theta = ’,num2str(error_ptrn.theta(1))]);
xlabel(’phi (pi)’)
ylabel([’pwr (’,scale,’)’])
hold off

elseif length(error_ptrn.phi)==1
hold on
plot(error_ptrn.theta/pi,error_ptrn.error,line_color)
title([’theta = ’,num2str(error_ptrn.phi(1))]);
xlabel(’theta (pi)’)
ylabel([’percent error (’,scale,’)’])
hold off

else
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surf(error_ptrn.phi/pi,error_ptrn.theta/pi,error_ptrn.error);
xlabel(’phi (pi)’)
ylabel(’theta (pi)’)
zlabel([’percent error (’,scale,’)’])

end
end

case{’per_error’}
if nargin ==3

if isfield(optional,’scale’)
scale=optional.scale;

end
if isfield(optional,’data’)

data=optional.data;
end
if isfield(optional,’format’)

format=optional.format;
end
if isfield(optional,’theta_range’)

theta_range=optional.theta_range;
[Y,start_temp]=min(abs(error_ptrn.theta-theta_range(1)*...

ones(size(error_ptrn.theta))));
[Y,end_temp]=min(abs(error_ptrn.theta-theta_range(2)*...

ones(size(error_ptrn.theta))));
error_ptrn.theta=error_ptrn.theta([start_temp:end_temp]);
error_ptrn.error=error_ptrn.error([start_temp:end_temp],:);

end
if isfield(optional,’phi_range’)

phi_range=optional.phi_range;
[Y,start_temp]=min(abs(error_ptrn.phi-phi_range(1)*...

ones(size(error_ptrn.phi))));
[Y,end_temp]=min(abs(error_ptrn.phi-phi_range(2)*...

ones(size(error_ptrn.phi))));
error_ptrn.phi=error_ptrn.phi([start_temp:end_temp]);
error_ptrn.error=error_ptrn.error(:,[start_temp:end_temp]);

end
end

error_data=error_ptrn.error;

if strcmp(class(data),’double’)
[m,n]=size(error_data);
for k=1:m

for l=1:n
if error_data(k,l)>data

error_data(k,l)=data;
end

end
end

end

if strcmp(scale,’dB’)
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error_data=20*log10(error_data);
end

if length(error_ptrn.theta)==1
hold on
plot(error_ptrn.phi/pi,pwr,line_color)
title([’theta = ’,num2str(error_ptrn.theta(1))]);
xlabel(’phi (pi)’)
ylabel([’percent error (’,scale,’)’])
error_ptrn_plot.error=error_data;
error_ptrn_plot.theta=error_ptrn.theta;
error_ptrn_plot.phi=error_ptrn.phi;
hold off

elseif length(error_ptrn.phi)==1
hold on
plot(error_ptrn.theta/pi,pwr,line_color)
title([’theta = ’,num2str(error_ptrn.phi(1))]);
xlabel(’theta (pi)’)
ylabel([’percent error (’,scale,’)’])
error_ptrn_plot.error=error_data;
error_ptrn_plot.theta=error_ptrn.theta;
error_ptrn_plot.phi=error_ptrn.phi;
hold off

else
switch (format)

case (’polar’)
for k=1:length(error_ptrn.theta)

for l=1:length(error_ptrn.phi)
x(k,l)=error_ptrn.theta(k)*cos(error_ptrn.phi(l));
y(k,l)=error_ptrn.theta(k)*sin(error_ptrn.phi(l));

end
end
surf(x,y,error_data)
title([’theta is from ’,num2str(error_ptrn.theta(1)/pi,2),’-’...

num2str(error_ptrn.theta(length(error_ptrn.theta))/pi,2),...
’ (pi)’])

xlabel(’x’)
ylabel(’y’)
zlabel([’percent error(’,scale,’)’])
axis(’square’)
error_ptrn_plot.error=error_data;
error_ptrn_plot.x=x;
error_ptrn_plot.y=y;
error_ptrn_plot.theta_range=[error_ptrn.theta(1),...

error_ptrn.theta(length(error_ptrn.theta))];
case(’rect’)

surf(error_ptrn.phi/pi,error_ptrn.theta/pi,pwr);
xlabel(’phi (pi)’)
ylabel(’theta (pi)’)
zlabel([’percent error (’,scale,’)’])
error_ptrn_plot.error=error_data;
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error_ptrn_plot.theta=error_ptrn.theta;
error_ptrn_plot.phi=error_ptrn.phi;

end
end
error_ptrn_plot.create=’plot_error’;

end

plot focal.m

function plotfocl(lens,optional)

%plotfocl(lens,max_theta)
%This function plots the focal surface
%optional.surface [’focal’,radius] chooses between the focal surface and
% a sphere of radius of radius ’radius’
% default is ’focal’
%optional.theta_max theta_max is the max angle for ploting the focal surface
% default is theta_max=pi/4
%optional.rings the number of ring plotted
% default is 6
%optional.fig_num is the numb of the figure the surface will be plotted in
% default is figure 4
%optional.color is the color for the surface
% default is ’c’ cyan

surface=’focal’;
theta_max=pi/4;
rings=6;
fig_num=4;
color=’c’;

if nargin==2
if isfield(optional,’surface’)

surface=optional.surface;
end
if isfield(optional,’theta_max’)

theta_max=optional.theta_max;
end
if isfield(optional,’rings’)

rings=optional.rings;
end
if isfield(optional,’fig_num’)

fig_num=optional.fig_num;
end
if isfield(optional,’color’)

color=optional.color;
end

end
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figure(fig_num)
view(3)
phi=[0:pi/10:2*pi];
theta=[theta_max/rings:theta_max/rings:theta_max];
phi_line=[0:pi/4:2*pi];

X_line=[];
Y_line=[];
Z_line=[];
for k=1:length(theta)

if strcmp(surface,’focal’)
focal_rad=get_focal(lens,theta(k));

else
focal_rad=surface;

end

x_circle=-1*focal_rad*sin(theta(k))*cos(phi);
y_circle=-1*focal_rad*sin(theta(k))*sin(phi);
z_circle=focal_rad*cos(theta(k))*ones(1,length(phi));

hold on
plot3(x_circle,-1*z_circle,y_circle,color)
hold off

x_temp=-1*focal_rad*sin(theta(k))*cos(phi_line);
y_temp=-1*focal_rad*sin(theta(k))*sin(phi_line);
z_temp=focal_rad*cos(theta(k))*ones(1,length(phi_line));

X_line=[X_line;x_temp];
Y_line=[Y_line;y_temp];
Z_line=[Z_line;z_temp];

end

hold on

plot3(X_line,-1*Z_line,Y_line,color)

hold off
xlabel(’x’)
ylabel(’-z’)
zlabel(’y’)
axis(’equal’)

plot image.m

function [image_ptrn_plot]=plot_image(image_ptrn,optional)

%this function plots the image pattern and outputs the plotted data
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%optional.scale (’linear’,’dB’) default is dB
%optional.data (’raw’,’norm’,num) default is normalize to max unity
% num is the normalizaton of the max power
% to this value in the scan range and
% scale specified
%optional.format (’polar’,’rect’) default is polar representation of
% theta and phi where the imageius is
% linear with theta
%optional.theta_range [theta_start,theta_end] if theta_start = theta_end
% it plots is a cut with theta=theta_start
%optional.phi_range [phi_start,phi_end] if phi_start = phi_end then it produces
% the plot is a cut with phi=phi_start
%if either of the theta or phi ranges are of length one, then plot_image
%allows stacking of 2D plots and optional.line_color defines the line
%type and color (default is blue solid)
%if the output of one plot_image is feed into another plot_image
%then the data is reploted ignoring all optional’s
%if measured data if feed is used, then the optional.freq determines
%which pattern is used

scale=’dB’;
data=’norm’;
format=’polar’;
figure(2)
line_color=’b-’;

if nargin==2
if isfield(optional,’line_color’)

line_color=optional.line_color;
end

end

switch (image_ptrn.create)
case(’plot_image’)

if isfield(image_ptrn,’x’)
surf(image_ptrn.x,image_ptrn.y,image_ptrn.pwr)
title([’theta is from ’,num2str(image_ptrn.theta_range(1)/pi,2),’-’...

num2str(image_ptrn.theta_range(2)/pi,2),’ (pi)’])
xlabel(’x’)
ylabel(’y’)
zlabel([’pwr (’,scale,’)’])
axis(’square’)

else
if length(image_ptrn.theta)==1

hold on
plot(image_ptrn.phi/pi,image_ptrn.pwr,line_color)
title([’theta = ’,num2str(image_ptrn.theta(1))]);
xlabel(’phi (pi)’)
ylabel([’pwr (’,scale,’)’])
hold off

elseif length(image_ptrn.phi)==1
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hold on
plot(image_ptrn.theta/pi,image_ptrn.pwr,line_color)
title([’theta = ’,num2str(image_ptrn.phi(1))]);
xlabel(’theta (pi)’)
ylabel([’pwr (’,scale,’)’])
hold off

else
surf(image_ptrn.phi/pi,image_ptrn.theta/pi,image_ptrn.pwr);
xlabel(’phi (pi)’)
ylabel(’theta (pi)’)
zlabel([’pwr (’,scale,’)’])

end
end

case{’image_pattern’,’measured’}
if strcmp(image_ptrn.create,’measured’)

%pull image pattern for optional.freq
%squareroot the pwr and make field image_ptrn.Voc
disp(’measure data part of the code is not done yet’)

end

if nargin ==2
if isfield(optional,’scale’)

scale=optional.scale;
end
if isfield(optional,’data’)

data=optional.data;
end
if isfield(optional,’format’)

format=optional.format;
end
if isfield(optional,’theta_range’)

theta_range=optional.theta_range;
[Y,start_temp]=min(abs(image_ptrn.theta-theta_range(1)*...

ones(size(image_ptrn.theta))));
[Y,end_temp]=min(abs(image_ptrn.theta-theta_range(2)*...

ones(size(image_ptrn.theta))));
image_ptrn.theta=image_ptrn.theta([start_temp:end_temp]);
image_ptrn.Voc=image_ptrn.Voc([start_temp:end_temp],:);

end
if isfield(optional,’phi_range’)

phi_range=optional.phi_range;
[Y,start_temp]=min(abs(image_ptrn.phi-phi_range(1)*...

ones(size(image_ptrn.phi))));
[Y,end_temp]=min(abs(image_ptrn.phi-phi_range(2)*...

ones(size(image_ptrn.phi))));
image_ptrn.phi=image_ptrn.phi([start_temp:end_temp]);
image_ptrn.Voc=image_ptrn.Voc(:,[start_temp:end_temp]);

end
end

pwr=(abs(image_ptrn.Voc)).^2;
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max_value=max(max(pwr));
max_temp=max_value;

if strcmp(data,’norm’)
max_temp=1;

elseif strcmp(class(data),’double’)
if strcmp(scale,’linear’)

max_temp=data;
else

max_temp=10^(data/10);
end

end

pwr=max_temp*pwr/max_value;

if strcmp(scale,’dB’)
pwr=10*log10(pwr);

end

if length(image_ptrn.theta)==1
hold on
plot(image_ptrn.phi/pi,pwr,line_color)
title([’theta = ’,num2str(image_ptrn.theta(1))]);
xlabel(’phi (pi)’)
ylabel([’pwr (’,scale,’)’])
image_ptrn_plot.pwr=pwr;
image_ptrn_plot.theta=image_ptrn.theta;
image_ptrn_plot.phi=image_ptrn.phi;
hold off

elseif length(image_ptrn.phi)==1
hold on
plot(image_ptrn.theta/pi,pwr,line_color)
title([’theta = ’,num2str(image_ptrn.phi(1))]);
xlabel(’theta (pi)’)
ylabel([’pwr (’,scale,’)’])
image_ptrn_plot.pwr=pwr;
image_ptrn_plot.theta=image_ptrn.theta;
image_ptrn_plot.phi=image_ptrn.phi;
hold off

else
switch (format)

case (’polar’)
for k=1:length(image_ptrn.theta)

for l=1:length(image_ptrn.phi)
x(k,l)=image_ptrn.theta(k)*cos(image_ptrn.phi(l));
y(k,l)=image_ptrn.theta(k)*sin(image_ptrn.phi(l));

end
end
surf(x,y,pwr)
title([’theta is from ’,num2str(image_ptrn.theta(1)/pi,2),’-’...
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num2str(image_ptrn.theta(length(image_ptrn.theta))/pi,2),...
’ (pi)’])

xlabel(’x’)
ylabel(’y’)
zlabel([’pwr (’,scale,’)’])
axis(’square’)
image_ptrn_plot.pwr=pwr;
image_ptrn_plot.x=x;
image_ptrn_plot.y=y;
image_ptrn_plot.theta_range=[image_ptrn.theta(1),...

image_ptrn.theta(length(image_ptrn.theta))];
case(’rect’)

surf(image_ptrn.phi/pi,image_ptrn.theta/pi,pwr);
xlabel(’phi (pi)’)
ylabel(’theta (pi)’)
zlabel([’pwr (’,scale,’)’])
image_ptrn_plot.pwr=pwr;
image_ptrn_plot.theta=image_ptrn.theta;
image_ptrn_plot.phi=image_ptrn.phi;

end
end
image_ptrn_plot.create=’plot_image’;

end

plot imager.m

function plot_imager(imager,optional)

%This function plots a 3d picture of the imager in figure 4
%optional.fig_num default is 4

optional_plot.fig_num=4;
if nargin==2

optional_plot.fig_num=optional.fig_num;
end

for k=1:length(imager)
detector_k=imager{k};
plot_detector(detector_k,optional_plot);

end

plot lens.m

function plotlens(lens,optional)

%plotlens(lens,optional)
%This function plots a 3d picture of the quasi-optical lens in figure 4
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%optional.fig_num default is 4

fig_num=4;
if nargin==2

fig_num=optional.fig_num;
end

whitebg(’k’)
figure(fig_num)
view(3)

for m=1:lens.N_c
drawrect(lens.cell.nfd.base{m},lens.cell.nfd.pos{m},lens.cell.height, ...

lens.cell.width,’r’);

hold on
plot3(lens.cell.nfd.pos{m}(1),-1*lens.cell.nfd.pos{m}(3), ...

lens.cell.nfd.pos{m}(2),’rx’);

plot3(lens.cell.fd.pos{m}(1),-1*lens.cell.fd.pos{m}(3), ...
lens.cell.fd.pos{m}(2),’yo’);

hold off

end

hold on
switch lens.shape

case{’circle’}
angle=[0:pi/15:2*pi];
D=2*lens.dimension;
x_circle=(D/2)*cos(angle);
y_circle=(D/2)*sin(angle);
z_circle=zeros(1,length(angle));
plot3(x_circle,-1*z_circle,y_circle,’r’)

case {’rect’}
w=lens.dimension(1);
h=lens.dimension(2);
x=[-w/2, -w/2, w/2, w/2, -w/2];
y=[h/2, -h/2, -h/2, h/2, h/2];
z=zeros(1,5);
plot3(x,-1*z,y,’r’)

end
hold off
axis(’equal’)

xlabel(’x’)
ylabel(’-z’)
zlabel(’y’)
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plot radiation.m

function [rad_ptrn_plot]=plot_radiation(rad_ptrn,optional)

%this function plots the radiation pattern and outputs the ploted data
%optional.scale (’linear’,’dB’) default is dB
%optional.data (’raw’,’norm’,num) default is normalize to max unity
% num is the normalizaton of the max power
% to this value in the scan range and
% scale specified
%optional.format (’polar’,’rect’) default is polar representation of
% alpha and ki where the radius is
% linear with alpha
%optional.alpha_range [alpha_start,alpha_end] if alpha_start = alpha_end
% it plots is a cut with alpha=alpha_start
%optional.ki_range [ki_start,ki_end] if ki_start = ki_end then it produces
% the plot is a cut with ki=ki_start
%if either of the alpha or ki ranges are of length one, then plot-radiati
%allows stacking of 2D plots and optional.line_color defines the line
%tye and color (default is blue solid)
%if the output of one plot_radiation is feed into another plot_radiation
%then the data is reploted ignoring all optional’s
%if measured data if feed is used, then the optional.freq determines
%which pattern is used

scale=’dB’;
data=’norm’;
format=’polar’;
figure(3)
line_color=’b-’;

switch (rad_ptrn.create)
case(’plot_radiation’)

if isfield(rad_ptrn,’x’)
surf(rad_ptrn.x,rad_ptrn.y,rad_ptrn.pwr)
title([’alpha is from ’,num2str(rad_ptrn.alpha_range(1)/pi,2),’-’...

num2str(rad_ptrn.alpha_range(2)/pi,2),’ (pi)’])
xlabel(’x’)
ylabel(’y’)
zlabel([’power (’,scale,’)’])
axis(’square’)

else
if length(rad_ptrn.alpha)==1

hold on
plot(rad_ptrn.ki/pi,rad_ptrn.pwr,line_color)
title([’alpha = ’,num2str(rad_ptrn.alpha(1))]);
xlabel(’chi (pi)’)
ylabel([’power (’,scale,’)’])
hold off

elseif length(rad_ptrn.ki)==1
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hold on
plot(rad_ptrn.alpha/pi,rad_ptrn.pwr,line_color)
title([’alpha = ’,num2str(rad_ptrn.ki(1))]);
xlabel(’alpha (pi)’)
ylabel([’power (’,scale,’)’])
hold off

else
surf(rad_ptrn.ki/pi,rad_ptrn.alpha/pi,rad_ptrn.pwr);
xlabel(’chi (pi)’)
ylabel(’alpha (pi)’)
zlabel([’power (’,scale,’)’])

end
end

case{’rad_pattern’,’measured’,’antenna_pattern’}
switch rad_ptrn.create

case(’measured’)
%pull radiation pattern for optional.freq
%squareroot the pwr and make field rad_ptrn.Voc
disp(’measure data part of the code is not done yet’)

case(’antenna_pattern’)
rad_ptrn.Voc=rad_ptrn.le;

end

if nargin==2
if isfield(optional,’scale’)

scale=optional.scale;
end
if isfield(optional,’line_color’)

line_color=optional.line_color;
end
if isfield(optional,’data’)

data=optional.data;
end
if isfield(optional,’format’)

format=optional.format;
end
if isfield(optional,’alpha_range’)

alpha_range=optional.alpha_range
[Y,start_temp]=min(abs(rad_ptrn.alpha-alpha_range(1)*...

ones(size(rad_ptrn.alpha))));
[Y,end_temp]=min(abs(rad_ptrn.alpha-alpha_range(2)*...

ones(size(rad_ptrn.alpha))));
rad_ptrn.alpha=rad_ptrn.alpha([start_temp:end_temp]);
rad_ptrn.Voc=rad_ptrn.Voc([start_temp:end_temp],:);

end
if isfield(optional,’ki_range’)

ki_range=optional.ki_range;
if ki_range(1)==ki_range(2)

ki_range(2)=ki_range(2)+pi;
[Y,start_temp]=min(abs(rad_ptrn.ki-ki_range(1)*...

ones(size(rad_ptrn.ki))));
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[Y,end_temp]=min(abs(rad_ptrn.ki-ki_range(2)*...
ones(size(rad_ptrn.ki))));

rad_ptrn.ki=ki_range(1);
rad_ptrn_start=rad_ptrn.Voc(:,[start_temp]);
rad_ptrn_end=rad_ptrn.Voc(:,[end_temp]);
rad_ptrn.Voc=[rad_ptrn_end([length(rad_ptrn_end):-1:1]);...

rad_ptrn_start];
rad_ptrn.alpha=...

[-1*rad_ptrn.alpha([length(rad_ptrn.alpha):-1:1])...
,rad_ptrn.alpha];

else

[Y,start_temp]=min(abs(rad_ptrn.ki-ki_range(1)*...
ones(size(rad_ptrn.ki))));

[Y,end_temp]=min(abs(rad_ptrn.ki-ki_range(2)*...
ones(size(rad_ptrn.ki))));

rad_ptrn.ki=rad_ptrn.ki([start_temp:end_temp]);
rad_ptrn.Voc=rad_ptrn.Voc(:,[start_temp:end_temp]);

end
end

end

pwr=(abs(rad_ptrn.Voc)).^2;

max_value=max(max(pwr));
max_temp=max_value;

if strcmp(data,’norm’)
max_temp=1;

elseif strcmp(class(data),’double’)
if strcmp(scale,’linear’)

max_temp=data;
else

max_temp=10^(data/10);
end

end

pwr=max_temp*pwr/max_value;

if strcmp(scale,’dB’)
pwr=10*log10(pwr);

end

if length(rad_ptrn.alpha)==1
hold on
plot(rad_ptrn.ki/pi,pwr,line_color)
title([’alpha = ’,num2str(rad_ptrn.alpha(1))]);
xlabel(’chi (pi)’)
ylabel([’power (’,scale,’)’])
rad_ptrn_plot.pwr=pwr;
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rad_ptrn_plot.alpha=rad_ptrn.alpha;
rad_ptrn_plot.ki=rad_ptrn.ki;
hold off

elseif length(rad_ptrn.ki)==1
hold on
plot(rad_ptrn.alpha*180/pi,pwr,line_color)
title([’alpha = ’,num2str(rad_ptrn.ki(1))]);
xlabel(’alpha (degrees)’)
ylabel([’power (’,scale,’)’])
rad_ptrn_plot.pwr=pwr;
rad_ptrn_plot.alpha=rad_ptrn.alpha;
rad_ptrn_plot.ki=rad_ptrn.ki;
hold off

else
switch (format)

case (’polar’)
for k=1:length(rad_ptrn.alpha)

for l=1:length(rad_ptrn.ki)
x(k,l)=rad_ptrn.alpha(k)*cos(rad_ptrn.ki(l));
y(k,l)=rad_ptrn.alpha(k)*sin(rad_ptrn.ki(l));

end
end
surf(x,y,pwr)
title([’alpha is from ’,num2str(rad_ptrn.alpha(1)/pi,2),’-’...

num2str(rad_ptrn.alpha(length(rad_ptrn.alpha))/pi,2),...
’ (pi)’])

xlabel(’x’)
ylabel(’y’)
zlabel([’power (’,scale,’)’])
axis(’square’)
rad_ptrn_plot.pwr=pwr;
rad_ptrn_plot.x=x;
rad_ptrn_plot.y=y;
rad_ptrn_plot.alpha_range=[rad_ptrn.alpha(1),...

rad_ptrn.alpha(length(rad_ptrn.alpha))];
case(’rect’)

surf(rad_ptrn.ki/pi,rad_ptrn.alpha/pi,pwr);
xlabel(’chi (pi)’)
ylabel(’alpha (pi)’)
zlabel([’power (’,scale,’)’])
rad_ptrn_plot.pwr=pwr;
rad_ptrn_plot.alpha=rad_ptrn.alpha;
rad_ptrn_plot.ki=rad_ptrn.ki;

end
end
rad_ptrn_plot.create=’plot_radiation’;

end

plot source.m
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function plot_source(source,optional)

%this function plots a 3d picture of the source in figure 4
%optional.fig_num default is 4
%optional.radius changes the size of source symbol radius
% default is 0.25
%optional.distance changes the distance the far field source symbols
% are plotted default is 6

fig_num=4;
radius=0.25;
if nargin==2

if isfield(optional,’fig_num’)
fig_num=optional.fig_num;

end
if isfield(optional,’radius’)

radius=optional.radius;
end
if isfield(optional,’distance’)

source.pos=(optional.distance/6)*source.pos;
end

end

whitebg(’k’)
figure(fig_num)
view(3)

switch(source.type)
case(’nearfield’)

drawpolygon(source.base,source.pos,radius,20,’m’);
case(’farfield’)

drawpolygon(source.base,source.pos,radius,6,’m’);
end

hold on
plot3(source.pos(1),-1*source.pos(3),source.pos(2),’rx’);
axis(’equal’)
hold off
grid on

plot source pos.m

function plot_source_pos(channel,name,offset)

%this function plots the signals on the radiation plattern plots
%the numbering is signals,source farfield ’x’ and nearfield ’o’
%’name is the name of the source

figure(3)
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whitebg(’w’)
for l=1:length(channel)

source_l=channel{l};
name=num2str(l,3);
hold on
switch (source_l.type)

case(’farfield’)
angle_l=source_l.angle;
x=angle_l(1)*cos(angle_l(2));
y=angle_l(1)*sin(angle_l(2));
Htemp=plot3(x,y,0,’kx’);
set(Htemp,’MarkerSize’,10);
if nargin>1

text(x+offset(1),y+offset(2),0,name)
else

text(x,y,0,[num2str(l,3)]);
end

case(’nearfield’)
pos_l=source_l.pos
alpha=atan2(sqrt(pos_l(1)^2+pos_l(2)^2),pos_l(3));
ki=atan2(pos_l(2),pos_l(1))
if ki<0

ki=ki+2*pi;
end
x=angle_l(alpha)*cos(angle_l(ki));
y=angle_l(alpha)*sin(angle_l(ki));
Htemp=plot3(x,y,0,’ko’);
set(Htemp,’MarkerSize’,10);
if nargin>1

text(x+offset(1),y+offset(2),0,name)
else

text(x,y,0,[num2str(l,3)]);
end

end
hold off

end

ptrn grid.m

function ptrn_grid(fig_num,angle_max,spacing,labels)

figure(fig_num);
angles=[spacing:spacing:angle_max];
theta=[0:pi/20:2*pi];

for k=1:length(angles)
hold on
for l=1:length(theta)

x(l)=angles(k)*cos(theta(l));



237

y(l)=angles(k)*sin(theta(l));
z(l)=1;

end
plot3(x,y,z,’k:’)
if strcmp(labels,’x’)

Htext=text(angles(k),0.1,1,[num2str(angles(k)*180/pi ,2),’^o’]);
else

Htext=text(0.0,angles(k),1,[num2str(angles(k)*180/pi ,2),’^o’]);
end
set(Htext,’Color’,[0,0,0]);
hold off

end
hold on
plot3([0,angle_max],[0,0],[1,1],’b:’)
plot3([0,0],[0,angle_max],[1,1],’b:’)
plot3([0,-angle_max],[0,0],[1,1],’b:’)
plot3([0,0],[0,-angle_max],[1,1],’b:’)
hold off

rad pattern.m

function [rad_ptrn]=rad_pattern(lens,detector,alpha_range,ki_range,optional)

%this function outputs the receive Voc at a detector
%for a source with unit input. ’rad_ptrn’ contains fields ’Voc’, ’alpha’
%and ’ki’.
%alpha_range is a vector that contains[alpha_start,alpha_end,alpha_N]
%ki_range is a vector that contains[ki_start,ki_end,ki_N]
%optional.polar_source use polarization for source coupling
% default is ’yes’
%optional.polar_feed use polarization for feed coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’
%optional.pathloss_feed use pathloss for feed coupling
% default is ’yes’

optional_focus.polar_source=’yes’;
optional_focus.polar_feed=’yes’;
optional_focus.pathloss_source=’yes’;
optional_focus.pathloss_feed=’yes’;

%initalize default farfield source
middle=round(lens.N_c/2);
[nfd_antenna]=pull_antenna(lens,middle,’nonfeed’);
[le_nfd,ro_nfd]=feval(nfd_antenna.name,0,0,nfd_antenna.polar);
J_sph_nfd=xyz2sph(0,0);
J_gnfd=nfd_antenna.local;
ro_source=J_gnfd’*J_sph_nfd’*ro_nfd;
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polar=xyz2sph(0,0)*ro_source;
%

if nargin==5
if isfield(optional,’polar_source’)

optional_focus.polar_source=optional.polar_source;
end
if isfield(optional,’polar_feed’)

optional_focus.polar_feed=optional.polar_feed;
end
if isfield(optional,’pathloss_source’)

optional_focus.pathloss_source=optional.pathloss_source;
end
if isfield(optional,’pathloss_feed’)

optional_focus.pathloss_feed=optional.pathloss_feed;
end

end

if ki_range(3)==1
ki=(1);
alpha=[-alpha_range(2):(2*alpha_range(2))/(alpha_range(3)-1):...

alpha_range(2)];
else

alpha=[alpha_range(1):(alpha_range(2)-alpha_range(1))/(alpha_range(3)-1):...
alpha_range(2)];

ki=[ki_range(1):(ki_range(2)-ki_range(1))/(ki_range(3)-1):ki_range(2)];
end

for k=1:alpha_range(3)
comments([’Radiation Pattern ’,num2str(k/alpha_range(3),2)]);
for l=1:ki_range(3)

if alpha(k)==0 & ki(l)~=0
Voc(k,l)=Voc(1,1);

else
[source_kl]=build_far(alpha(k),ki(l),0,1,polar);
[Voc(k,l)]=lens_focus(lens,source_kl,detector,optional_focus);

end
end

end

rad_ptrn.Voc=Voc;
rad_ptrn.alpha=alpha;
rad_ptrn.ki=ki;
rad_ptrn.create=’rad_pattern’;

rad ptrn array.m
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function [rad_ptrn]=rad_ptrn_array(array,weights,alpha_range,ki_range,optional)

%this function outputs the received weighted sum of Voc at each array element
%for a source with unit input. ’rad_ptrn’ contains fields ’Voc’, ’alpha’
%and ’ki’.
%weigts is the weigted sum of the Voc’s in the array and is a column vector
%y=W’*X
%alpha_range is a vector that contains[alpha_start,alpha_end,alpha_N]
%ki_range is a vector that contains[ki_start,ki_end,ki_N]
%optional.polar_source use polarization for source coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’

optional_focus.polar_source=’yes’;
optional_focus.pathloss_source=’yes’;

%initalize default farfield source
middle=round(array.N_c/2);
[nfd_antenna]=pull_antenna(array,middle,’nonfeed’);
[le_nfd,ro_nfd]=feval(nfd_antenna.name,0,0,nfd_antenna.polar);
J_sph_nfd=xyz2sph(0,0);
J_gnfd=nfd_antenna.local;
ro_source=J_gnfd’*J_sph_nfd’*ro_nfd;
polar=xyz2sph(0,0)*ro_source;
%

if nargin==5
if isfield(optional,’polar_source’)

optional_focus.polar_source=optional.polar_source;
end
if isfield(optional,’pathloss_source’)

optional_focus.pathloss_source=optional.pathloss_source;
end

end

alpha=[alpha_range(1):(alpha_range(2)-alpha_range(1))/(alpha_range(3)-1):...
alpha_range(2)];

ki=[ki_range(1):(ki_range(2)-ki_range(1))/(ki_range(3)-1):ki_range(2)];

for k=1:alpha_range(3)
comments([’Radiation Pattern ’,num2str(k/alpha_range(3),2)]);
for l=1:ki_range(3)

if alpha(k)==0 & ki(l)~=0
Voc(k,l)=Voc(1,1);

else
[source_kl]=build_far(alpha(k),ki(l),0,1,polar);
[Voc_kl]=array_focus(array,source_kl,optional_focus);
Voc(k,l)=weights’*Voc_kl;

end
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end
end

rad_ptrn.Voc=Voc;
rad_ptrn.alpha=alpha;
rad_ptrn.ki=ki;
rad_ptrn.create=’rad_pattern’;

QOL.m

function [lens]=QOL(shape,dimension,antenna,lensing,delay_0,theta_0,F,unitcellsize,latice)

%[lens]=QOL(shape,deminsion,antenna,lensing,delay_0,theta_0,F,unitcellsize,latice)
%Shape is a string argument that discribes the lens shape ’circle’,’rect’
%dimension is a vector that contains the important deminsions for the lens
% circle [radius]
% rect [width,height] width = x dimension and height = y dimension
%antenna is cell discribes the feed and non-feed side antenna types,
%polarization and orientation. The polarization vector is for a model
%antenna in the oreintation for the theorical or measured radiation patterns.
%Orientation discribes the rotation of the QOL antennas from the model antenna.
%The information is listed as to cells in the order of {feed side,
%non-feedside}, where feed side is a sub cell containing {antenna,
%polarization,orientation}
% polarization} %lensing is a string that discribes the in how many dimensions the lens
%focuses in
% [’2D’], [’1Dx’], [’1Dy’]
%delay_0 is the base delay for the unitcell in the center of the lens
%unitcellsize defines the x/y dimensions for unitcell
% [width,height] width = x height = y
%latice is a cell of strings that discribes the how the unitcells are
%placed in the lens {pattern,boundary}
% PATTERN
% ’triangle’ uses a triangular lattice to fill the shape trying to maximise
% the number of unit cells
% ’max’ uses a row structure with as many unitcells as possible in
% each row
% BOUNDARY
% ’best’ is the tightest packing allowing for 1/4 of the unitcell
% to extend outside the defined shape
% ’limit’ is the tightest packing without letting the unitcells
% extend outside the defined shape
%note: all dimensions are in wave length of the center frequency
%note: this code assumes for now that the lens is confined to a plane

%initialize lens
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lens.device=’lens’;
lens.shape=shape;
lens.dimension=dimension;
lens.cell.width=unitcellsize(1);
lens.cell.height=unitcellsize(2);
lens.delay_0=delay_0;
lens.theta_0=theta_0;
lens.F=F;
lens.lensing=lensing;
switch shape

case {’circle’}
[lens]=packcircle(latice,lens);

case {’rect’}
[lens]=packrect(latice,lens);

end

lens.N_c=sum(lens.R);

%determine non-feed antenna points and delays

[lens]=fdside(lensing,lens);
[lens]=packant(lens,antenna);
lens.N_r=length(lens.R);

QOLTF.m

function [QOL_TF,mutual_TF]=QOLTF(lens,channel,imager,optional)

%this function creates a tranfer function for channel to imager
%mutual_TF is the transfer function produced by the mutual coupling currents
%optional.polar_source use polarization for source coupling
% default is ’yes’
%optional.polar_feed use polarization for feed coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’
%optional.pathloss_feed use pathloss for feed coupling
% default is ’yes’
%optional.mutual.use (’yes’, ’no’,’max’) calculates the image do to mutual
% coupling. ’yes’ uses the estimated magnitude and phase
% of the coupled currents and ’max’ uses just the magnitude
% default is ’no’
%optional.mutual.extra is an open field for use by name_mutual.m mutual
%coupling calculations functions

mutual.use=’no’;
optional_focus.polar_source=’yes’;
optional_focus.polar_feed=’yes’;
optional_focus.pathloss_source=’yes’;
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optional_focus.pathloss_feed=’yes’;

if nargin == 4
if isfield(optional,’polar_source’)

optional_focus.polar_source=optional.polar_source;
end
if isfield(optional,’polar_feed’)

optional_focus.polar_feed=optional.polar_feed;
end
if isfield(optional,’pathloss_source’)

optional_focus.pathloss_source=optional.pathloss_source;
end
if isfield(optional,’pathloss_feed’)

optional_focus.pathloss_feed=optional.pathloss_feed;
end
if isfield(optional,’mutual’)

mutual=optional.mutual;
end

end

for k=1:length(channel)
for l=1:length(imager)

%comments([’QOLTF ’,num2str(((k-1)*length(channel)+l)/(length(channel)*...
% length(imager)),3)]);

source=channel{k};

detector=imager{l};
[QOL_TF(l,k),Iin_fd_k]=lens_focus(lens,source,detector,optional_focus);

if ~strcmp(mutual.use,’no’)
[mutual_Z]=get_mutual_Z(lens,mutual);
switch(mutual.use)

case {’yes’}
Iin_fd_mutual_k=mutual_Z*Iin_fd_k;

case {’max’}
Iin_fd_mutual_k=abs(mutual_Z)*abs(Iin_fd_k);

end
[mutual_TF(l,k)]=mutual_focus(lens,Iin_fd_mutual_k,detector,...

optional_focus);
end

end
end
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Numerical Model Support Code
array focus.m

function [Voc]=array_focus(array,source,optional)

%this fucntion calculates the open circuit voltage at each element of an array
%Voc is a column vector
%optional.pathloss_source defaults is ’yes’
%optional.polar_source defaults is ’yes’

Voc=0;
optional_source.pathloss=’yes’;
optional_source.polar=’yes’;

if nargin==3
if isfield(optional,’pathloss_source’)

optional_source.pathloss=optional.pathloss_source;
end
if isfield(optional,’polar_source’)

optional_source.polar=optional.polar_source;
end

end

for k=1:array.N_c
[nfd_antenna]=pull_antenna(array,k,’nonfeed’);

switch source.type
case (’farfield’)

[Voc(k,1)]=couple_farfield(source,nfd_antenna,optional_source);
case (’nearfield’)

[Voc(k,1)]=couple(source,nfd_antenna,source.Iin,optional_source);
end

end

build ant.m

function [antenna]=build_ant(name,pos,a_z,theta_r,polar)

%this function creates an antenna element
%pos in global cooridaint
%name is antenna name
%a_z is z unit vector for base corridants (row)
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%theta_r is local coordinat rotation
%polar is local sphereical corridaint polarization

antenna.pos={pos};
antenna.name={name};
antenna.base={get_base(a_z)};
antenna.theta_r={theta_r};
antenna.local={rotate_base(antenna.base{1},antenna.theta_r{1})};
antenna.polar={polar};

build det.m

function [detector]=build_det(name,pos,theta_r,g,cell_g,width,height,delay,polar)

%This function makes a detector that point to the center of the lens

a_z=(-1*pos’)/sqrt(pos’*pos);
[detector.cell]=build_ant(name,pos,a_z,theta_r,polar);
detector.g=g;
detector.device=’detector’;
detector.N_c=1;
detector.cell.g={cell_g};
detector.cell.width=width;
detector.cell.height=height;
detector.cell.delay={delay};

build far.m

function [source_far]=build_far(alpha,ki,theta_r,field,polar)

%this function makes a far field source receive at angle ’alpha’
%and ’ki’. Theta_ r is the angle of rotation of local corridiants
%polar is a length 3 column vector discribing the local polarization
%in sphereical corrdiants.

source_far.device=’source’;
source_far.type=’farfield’;
source_far.field=field;
source_far.angle=[alpha,ki];
a_z_b=[sin(alpha)*cos(ki),sin(alpha)*sin(ki),cos(alpha)];
source_far.base=get_base(a_z_b);
source_far.theta_r=theta_r;
source_far.local=rotate_base(source_far.base,theta_r);
source_far.polar=polar;
source_far.pos=-6*a_z_b’;
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build signal.m

function [signal]=build_signal(channel,constell,w_RF,T_data,user)

%this function builds a signal

signal.channel=channel;
signal.constell=constell;
signal.w_RF=w_RF;
signal.T_data=T_data;
signal.user=user;

comments.m

function [Hfig]=comments(text_input)

%this function displays the text in a figure

figure(10)
Hfig=figure(10);
%set(Hfig,’Position’,[550,500,300,100]);
menubar=get(Hfig,’Menubar’);
switch(menubar)

case(’figure’)
set(Hfig,’Menubar’,’none’);
axis([-1,1,-1,1,-1,1])
text(-2,0,text_input);
Haxis=gca;
set(Haxis,’Visible’,’off’);
Htext=get(Haxis,’Children’);
set(Htext,’FontSize’,22);

case(’none’)
Haxis=gca;
Htext=get(Haxis,’Children’);
set(Htext,’String’,text_input);

end

couple.m

function [Voc]=couple(transmit,receive,Iin,optional)

%function [Voc]=couple(transmit,receive,Iin,optional)
%this function calculates the open circuit voltage genterated in the
%’receive’ antenna by a ’transmit’ antenna.
%optional.pathloss default is ’yes’
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%optional.polar default is ’yes’

polar=’yes’;
optional_Ei.pathloss=’yes’;

if nargin==4
if isfield(optional,’polar’)

polar=optional.polar;
end
if isfield(optional,’pathloss’)

optional_Ei.pathloss=optional.pathloss;
end

end
[Ei_mag,ro_t_l]=get_Ei(transmit,receive,Iin,optional_Ei);

[theta_rec,phi_rec]=get_direction(receive,transmit);
[le_r,ro_r_l]=feval(receive.name,theta_rec,phi_rec,receive.polar);
switch polar

case (’yes’)
Voc=le_r*Ei_mag*ro_r_l’*ro_t_l;

case (’no’)
Voc=le_r*Ei_mag;

end

couple.m

function [Voc]=couple_farfield(source,receive,optional)

%this function calculates the coupling between a farfield source and
% a non-feed side antenna element

polar=’yes’;

if nargin==3
if isfield(optional,’polar’)

polar=optional.polar;
end

end

alpha=source.angle(1);
ki=source.angle(2);
a_rad=[-1*sin(alpha)*cos(ki);-1*sin(alpha)*sin(ki);-1*cos(alpha)];
delay=-dot(a_rad,receive.pos);

Ei_mag=source.field*exp(-j*2*pi*delay);

source.pos=receive.pos+a_rad;
[theta_tran,phi_tran]=get_direction(source,receive);
[theta_rec,phi_rec]=get_direction(receive,source);
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J_sph_tran=xyz2sph(theta_tran,phi_tran);
J_sph_rec=xyz2sph(theta_rec,phi_rec);
J_gt=source.local;
J_gr=receive.local;

ro_t_l=J_sph_rec*J_gr*J_gt’*J_sph_tran’*source.polar;
[le_r,ro_r_l]=feval(receive.name,theta_rec,phi_rec,receive.polar);

switch polar
case (’yes’)

Voc=le_r*Ei_mag*ro_r_l’*ro_t_l;
case (’no’)

Voc=le_r*Ei_mag;
end

couple farfield.m

function drawball(radius)

%this function draws a hemisphere of radius ’radius’

figure(7)
view(3)

theta=[0:pi/30:pi/2];
phi=[0:pi/10:2*pi];

for k=1:length(theta)
for l=1:length(phi)

ball(k,l)=radius*cos(theta(k));
x(k,l)=radius*sin(theta(k))*cos(phi(l));
y(k,l)=radius*sin(theta(k))*sin(phi(l));

end
end
surf(x,y,ball)

xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

axis(’equal’)

drawpolygon.m
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function drawpolygon(local,pos,radius,sides,color)

%drawpolygon(local,pos,radius,sides,color)
%this is a private function
%this function draws a polygon aperture with local coordinates system ’local’
% and position ’pos’ in global coordinates

hold on

theta=[0:2*pi/sides:2*pi];
point=[];
for k=1:length(theta)

x=radius*cos(theta(k));
y=radius*sin(theta(k));
point=[point,local’*[x;y;0]+pos];

end

x=point(1,:);
y=point(2,:);
z=point(3,:);
plot3(x,-1*z,y,color);
hold off

drawrect.m

function drawrect(local,pos,height,width,color)

%drawrect(local,pos,height,width,color)
%this is a private function
%this function draws a rectangle aperture with local coordinates system ’local’
% and position ’pos’ in global coordinates

hold on

h=height;
w=width;

point1=local’*[.5*w;.5*h;0]+ pos;
point2=local’*[-.5*w;.5*h;0]+ pos;
point3=local’*[-.5*w;-.5*h;0]+ pos;
point4=local’*[.5*w;-.5*h;0]+ pos;
point5=local’*[.5*w;.5*h;0]+ pos;

x=[point1(1),point2(1),point3(1),point4(1),point5(1)];
y=[point1(2),point2(2),point3(2),point4(2),point5(2)];
z=[point1(3),point2(3),point3(3),point4(3),point5(3)];
plot3(x,-1*z,y,color);
hold off
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drawunit.m

function drawunit(local,pos,color,optional)

%drawunit(local,pos)
%this function plots the local unit vectors at 1/4 length
%optional.font_size allows the change in font size
% default is 10
%optional.length length of unit vector
% default is 0.25

font_size=10;
length_luv=0.25;

if nargin==4
if isfield(optional,’font_size’)

font_size=optional.font_size;
end
if isfield(optional,’length’)

length_luv=optional.length;
end

end

hold on
xpoint=local’*length_luv*[1; 0; 0] + pos;
ypoint=local’*length_luv*[0; 1; 0] + pos;
zpoint=local’*length_luv*[0; 0; 1] + pos;

plot3([pos(1),xpoint(1)],-1*[pos(3),xpoint(3)],[pos(2),xpoint(2)],color)
plot3([pos(1),ypoint(1)],-1*[pos(3),ypoint(3)],[pos(2),ypoint(2)],color)
plot3([pos(1),zpoint(1)],-1*[pos(3),zpoint(3)],[pos(2),zpoint(2)],color)

[H]=text(xpoint(1),-1*xpoint(3),xpoint(2),’x’);
set(H,’FontSize’,font_size)
[H]=text(ypoint(1),-1*ypoint(3),ypoint(2),’y’);
set(H,’FontSize’,font_size)
[H]=text(zpoint(1),-1*zpoint(3),zpoint(2),’z’);
set(H,’FontSize’,font_size)

hold off

fdside.m

function [lens]=fdside(lensing,lens)

%[lens]=fdside{lensing,lens)
%This is a private function that calculates the feed side antennas and
%delay in radians base on a paper by McGrath
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%initalize variables
lens.cell.fd.pos=lens.cell.nfd.pos;
lens.cell.delay=[];
cell_rad_old=0;

for m=1:lens.N_c
if lens.cell.nfd.pos{m}(1)==0 & lens.cell.nfd.pos{m}(2) ==0

x_temp=0;
y_temp=0;

else
cell_rad=sqrt(lens.cell.nfd.pos{m}’*lens.cell.nfd.pos{m});
temp_rad=cell_rad*sqrt((lens.F^2-(cell_rad^2)*sin(lens.theta_0)^2)...

/(lens.F^2-cell_rad^2));
switch lensing

case {’1Dx’}
x_temp=(temp_rad/cell_rad)*lens.cell.nfd.pos{m}(1);
y_temp=lens.cell.nfd.pos{m}(2);
temp_rad=x_temp;

case {’1Dy’}
y_temp=(temp_rad/cell_rad)*lens.cell.nfd.pos{m}(2);
x_temp=lens.cell.nfd.pos{m}(1);
temp_rad=y_temp;

case {’2D’}
x_temp=(temp_rad/cell_rad)*lens.cell.nfd.pos{m}(1);
y_temp=(temp_rad/cell_rad)*lens.cell.nfd.pos{m}(2);

end
end

lens.cell.fd.pos{m}(1)=x_temp;
lens.cell.fd.pos{m}(2)=y_temp;
%calculate delays
temp=lens.F+lens.delay_0-0.5*sqrt(lens.F^2+temp_rad^2-2*temp_rad*lens.F ...

*sin(lens.theta_0));
temp2=-0.5*sqrt(lens.F^2+temp_rad^2+2*temp_rad*lens.F*sin(lens.theta_0));

lens.cell.delay=[lens.cell.delay,temp+temp2];

if imag(temp+temp2)>.01
disp(’bad lens design, theta_0 or F is too small’)

end

%find max radius
if cell_rad>cell_rad_old

cell_rad_old=cell_rad;
end

end

lens.cell.g=ones(1,lens.N_c);
lens.r_max=cell_rad_old;
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get Ei.m

function [Ei_mag,ro_t_l]=get_Ei(transmit,receive,Iin,optional)

%function [Ei_mag,ro_t_l]=get_Ei(transmit,receive,Iin,optional)
%this function calcualtes the incident electric field on a recieve antenna
%in the local cooridainats of the receive antenna keeping polarization separte.
%It assumes unit input current and the output is a vector of the electric
%field in the local spherical cooridants [r,theta,phi]. There is an
%optional input that allows ignoring 1/r loss. optional.pathloss default
%is ’yes’.
%’receive’ and ’transmit’ contain the fields [name,polar,base,local,pos,theta_r]

pathloss=’yes’;
if nargin==4

if isfield(optional,’pathloss’)
pathloss=optional.pathloss;

end
end

Rt=transmit.pos;
Rr=receive.pos;
r=Rr-Rt;
r_mag=sqrt(r’*r);

[theta_tran,phi_tran]=get_direction(transmit,receive);
[theta_rec,phi_rec]=get_direction(receive,transmit);

[le_t,ro_t]=feval(transmit.name,theta_tran,phi_tran,transmit.polar);

J_sph_tran=xyz2sph(theta_tran,phi_tran);
J_sph_rec=xyz2sph(theta_rec,phi_rec);
J_gt=transmit.local;
J_gr=receive.local;

ro_t_l=J_sph_rec*J_gr*J_gt’*J_sph_tran’*ro_t;
switch pathloss

case(’no’)
Ei_mag=377*((-j*2*pi)/(4*pi))*le_t*exp(-j*2*pi*r_mag)*Iin;

case(’yes’)
Ei_mag=377*((-j*2*pi)/(4*pi*r_mag))*le_t*exp(-j*2*pi*r_mag)*Iin;

end
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get base.m

function [base]=get_base(a_z_b)

%[base]=get_base(a_z_b)
%this function gets to the base corridant system for an antenna with normal
%a_z_b with a_x_b normal a_y and in positive x direction

a_x=[1 0 0];
a_y=[0 1 0];
a_z=[0 0 1];

x_b=cross(a_y,a_z_b);

if x_b*a_x’ < 0
x_b=-1*x_b;

end

a_x_b=x_b/sqrt(x_b*x_b’);
a_y_b=cross(a_z_b,a_x_b);

base=[a_x_b;a_y_b;a_z_b];

get direction.m

function [theta,phi]=get_direction(transmit,receive)

%function [theta,phi]=get_direction(transmit,receive)
%this function calculates the look direction in the local cooridants of transmit
% antenna ’transmit’ as it radiates to a receive antenna ’receive’
%’receive’ and ’transmit’ contain the fields [name,polar,base,local,pos,theta_r]

Rt=transmit.pos;
Rr=receive.pos;
r=Rr-Rt;

r_l=transmit.local*r;
theta=atan2(sqrt(r_l(1)^2+r_l(2)^2),r_l(3));

if theta <0
theta = theta + 2*pi;

end

phi=atan2(r_l(2),r_l(1));

if phi <0
phi=phi+2*pi;

end
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%define phi=0 hen theta is 0 or pi
if theta < 10e-4 | abs(theta-pi) < 10e-4

phi=0;
end

get focal.m

function [focal_rad]=get_focal(lens, theta)

%this function calculates the focal distance for a ’lens’ at angle theta
%this focal distance is really only known for circle antennas

theta=abs(theta);
phi=asin(lens.r_max/(lens.F));
temp=lens.F*(1+0.5*((sin(phi)^2*sin(theta)^2)/((1-sec(phi)) ...

*(1+sin(phi)*sin(theta)))));
focal_rad=sec(lens.theta_0)*temp;

get mutual Z.m

function [mutual_Z]=get_mutual_Z(lens,mutual)

%this function create the coupling matrix between feed side antennas
%mutual.extra is an open field for uses with in mutual coupling
%calculating functions

mutual_Z=zeros(lens.N_c,lens.N_c);
for k=1:lens.N_c

for l=1:lens.N_c
if k==l

mutual_couple(k,l)=0;
else

r_21_g=lens.cell.fd.pos{k}-lens.cell.fd.pos{l};
r_21_l=lens.cell.fd.local{k}*r_21_g;
temp=lens.cell.fd.name{k};
space=findstr(’_’,temp);
func_name=[temp([1:space-1]),’_mutual’];
[Z_21]=feval(func_name,r_21_l,mutual.extra);
mutual_Z(k,l)=Z_21;

end
end

end

lens focus.m

function [Voc,Iin_fd]=lens_focus(lens,source,detector,optional)
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%this fucntion calculates the open circuit voltage for a detectot
%do to a source focus through a lens.
%optional.pathloss defaults is ’yes’
%optional.polar defaults is ’yes’
%Iin_fd is the input current to each feed side antena for use in mutual
%coupling calculations

Voc=0;
optional_source.pathloss=’yes’;
optional_source.polar=’yes’;
optional_feed.pathloss=’yes’;
optional_feed.polar=’yes’;

if nargin==4
if isfield(optional,’pathloss_feed’)

optional_feed.pathloss=optional.pathloss_feed;
end
if isfield(optional,’pathloss_source’)

optional_source.pathloss=optional.pathloss_source;
end
if isfield(optional,’polar_feed’)

optional_feed.polar=optional.polar_feed;
end
if isfield(optional,’polar_source’)

optional_source.polar=optional.polar_source;
end

end

for k=1:lens.N_c
[nfd_antenna]=pull_antenna(lens,k,’nonfeed’);

switch source.type
case (’farfield’)

[Voc_nfd]=couple_farfield(source,nfd_antenna,optional_source);
case (’nearfield’)

[Voc_nfd]=couple(source,nfd_antenna,source.Iin,optional_source);
end

Iin_fd(k,1)=(Voc_nfd/2)*lens.cell.g(k)*exp(-j*2*pi*lens.cell.delay(k));
[fd_antenna]=pull_antenna(lens,k,’feed’);

for l=1:detector.N_c
[det_antenna]=pull_antenna(detector,l);
[Voc_l]=couple(fd_antenna,det_antenna,Iin_fd(k),optional_feed);
Voc=Voc+Voc_l*detector.cell.g{l}*exp(-j*2*pi*detector.cell.delay{l})*...

detector.g;
end

end
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mutual focus.m

function [Voc]=mutual_focus(lens,Iin_fd_mutual,detector,optional)

%this funcition calculates the open circuit voltage at a detector
%do to mutual coupling currents
%optional.polar_feed ’yes’,’no’ to use polarization between feed and lens
% default is ’yes’
%optional.pathloss_feed ’yes’,’no’ to use pathloss between feed and lens
% default is ’yes’

Voc=0;
optional_feed.polar=’yes’;
optional_feed.pathloss=’yes’;

if nargin==4
if isfield(optional,’polar_feed’)

optional_feed.polar=optional.polar_feed;
end

if isfield(optional,’pathloss_feed’)
optional_feed.pathloss=optional.pathloss_feed;

end
end

for k=1:lens.N_c
for l=1:detector.N_c

[fd_antenna]=pull_antenna(lens,k,’feed’);
[det_antenna]=pull_antenna(detector,l);
[Voc_l]=couple(fd_antenna,det_antenna,Iin_fd_mutual(k),...

optional_feed);
Voc=Voc+Voc_l*detector.cell.g{l}*detector.g*...

exp(-j*2*pi*detector.cell.delay{l});
end

end

omni antenna.m

function [le_t,ro_t]=omni_antenna(theta,phi,polar)

%function [le_t,ro_t]=omni_antenna(theta,phi,polar)
%this function returns the magnitude of the effective length and polarization
%for a omni directional in local cooridants at angels (theta,phi)
%The structure ’polar’ contains the polarization of the omin directional
%antenna in local xyz coordiants the default is x-polarized.

if isempty(polar);
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polar=[0;1;0];
end

J0=sqrt(1/(377*pi));
J_sph=xyz2sph(theta,phi);
if abs(theta-pi/2)> 10e-3

ro_t=[0 0 0;0 1 0;0 0 1]*J_sph*polar;
ro_t=ro_t/sqrt(ro_t’*ro_t) ;
le_t=J0;

else
ro_t=[0;0;0];
le_t=0;

end

omni mutual.m

function [Z_21]=omni_mutual(r_21,extra)

%this function calculates the complex impedance between to omni antennas
%extra contains the ratio of free space wave length to effective
%wave length in material

%update with papers

Z_21_mag=1/(r_21’*r_21);
Z_21_phs=exp(-j*2*pi*sqrt(r_21’*r_21)*extra)

packant.m

function [lens]=packant(lens,antenna)

%[lens]=packant(lens,antenna)
%This function orients the antennas in the lens. It assumes the antenna
%normals to point away from the lens.

a_x=[1 0 0];
a_y=[0 1 0];
a_z=[0 0 1];

for m=1:lens.N_c
lens.cell.nfd.name{m}=antenna.nfd.name;
lens.cell.nfd.polar{m}=antenna.nfd.polar;
lens.cell.nfd.theta_r{m}=antenna.nfd.theta_r;
lens.cell.nfd.base{m}=get_base([0 0 -1]);
lens.cell.nfd.local{m}=rotate_base(lens.cell.nfd.base{m},antenna.nfd.theta_r);
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lens.cell.fd.name{m}=antenna.fd.name;
lens.cell.fd.polar{m}=antenna.fd.polar;
lens.cell.fd.theta_r{m}=antenna.fd.theta_r;
lens.cell.fd.base{m}=get_base([0 0 1]);
lens.cell.fd.local{m}=rotate_base(lens.cell.fd.base{m},antenna.fd.theta_r);

end

packant2.m

function [array]=packant2(array,antenna)

%[array]=packant2(array,antenna)
%This function orients the antennas in the array. It assumes the antenna
%normals to point away from the array.

a_x=[1 0 0];
a_y=[0 1 0];
a_z=[0 0 1];

for m=1:array.N_c
array.cell.nfd.name{m}=antenna.nfd.name;
array.cell.nfd.polar{m}=antenna.nfd.polar;
array.cell.nfd.theta_r{m}=antenna.nfd.theta_r;
array.cell.nfd.base{m}=get_base([0 0 -1]);
array.cell.nfd.local{m}=rotate_base(array.cell.nfd.base{m},...

antenna.nfd.theta_r);
end

packcircle.m

function [lens]=packcircle(latice,lens)

%function [lens]=packcircle(dimensionunitcellsize,latice)
%this is a private function that packs the unitcells into a circle
%based on latice conditions

%initialize variables
rad=lens.dimension(1);
lens.R=[];
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lens.cell.nfd.pos=[];
x_store=[];
y_store=[];
z_store=[];

switch latice{1}
case {’max’}

switch latice{2}
case {’best’}

lens.N_r=round(2*rad/lens.cell.height);
case {’limit’}

lens.N_r=floor(2*rad/lens.cell.height);
end

temp=[1:lens.N_r];
temp2=((lens.N_r/2)+0.5)*ones(1,lens.N_r);
temp3=lens.cell.height*(temp-temp2);
y_temp=temp3([lens.N_r:-1:1]);

for m=1:lens.N_r;
row_length=2*sqrt((rad)^2-(y_temp(m))^2);
switch char(latice(2))

case {’best’}
N_cell=round(row_length/lens.cell.width);

case {’limit’}
N_cell=floor(row_length/lens.cell.width);

end

temp=[1:N_cell];
temp2=((N_cell/2)+0.5)*ones(1,N_cell);
x_temp=lens.cell.width*(temp-temp2);

lens.R=[lens.R,N_cell];
x_store=[x_store,x_temp];
y_store=[y_store,y_temp(m)*ones(1,N_cell)];
z_store=[z_store,y_temp(m)*zeros(1,N_cell)];

end

for m=1:length(x_store)
lens.cell.nfd.pos{m}=[x_store(m);y_store(m);z_store(m)];

end

case {’triangle’}

switch latice{2}
case {’best’}

lens.N_r=round(2*rad/lens.cell.height);
case {’limit’}
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lens.N_r=floor(2*rad/lens.cell.height);
end

temp=[1:lens.N_r];
temp2=((lens.N_r/2)+0.5)*ones(1,lens.N_r);
temp3=lens.cell.height*(temp-temp2);
y_temp=temp3([lens.N_r:-1:1]);

%find offset at row one
mid_row=round(lens.N_r/2);
row_length=2*sqrt((rad)^2-y_temp(mid_row)^2);

switch latice{2}
case {’best’}

N_cell=round(row_length/lens.cell.width);
case {’limit’}

N_cell=floor(row_length/lens.cell.width);
end

if rem(N_cell,2)==0
mid_offset=0.5;

else
mid_offset=0;

end

offset=mod((mid_offset+(mid_row-1)*0.5),1);

for m=1:lens.N_r;
row_length=2*sqrt((rad)^2-(y_temp(m))^2);

switch latice{2}
case {’best’}

N_cell1=floor(((row_length/2)+(-offset+0.5)*lens.cell.width) ...
/lens.cell.width);

if rem(((row_length/2)+(-offset+0.5)*lens.cell.width), ...
lens.cell.width)> 0.75*lens.cell.width

N_cell1=N_cell1+1;
end

N_cell2=floor(((row_length/2)+(offset-0.5)*lens.cell.width) ...
/lens.cell.width);

if rem(((row_length/2)+(offset-0.5)*lens.cell.width), ...
lens.cell.width)> 0.75*lens.cell.width

N_cell2=N_cell2+1;
end

N_cell=N_cell1+N_cell2;



260

case {’limit’}
N_cell1=floor(((row_length/2)+(-offset+0.5)*lens.cell.width) ...

/lens.cell.width);
N_cell2=floor(((row_length/2)+(offset-0.5)*lens.cell.width) ...

/lens.cell.width);
N_cell=N_cell1+N_cell2;

end

temp=[1:N_cell];
temp2=((N_cell2+1 )-offset)*ones(1,N_cell);
x_temp=lens.cell.width*(temp-temp2);

lens.R=[lens.R,N_cell];
x_store=[x_store,x_temp];
y_store=[y_store,y_temp(m)*ones(1,N_cell)];
z_store=[z_store,y_temp(m)*zeros(1,N_cell)];

offset=mod(offset+0.5,1);
end
for m=1:length(x_store)

lens.cell.nfd.pos{m}=[x_store(m);y_store(m);z_store(m)];
end

end

packrect.m

function [lens]=packrect(latice,lens)

% [lens]=packrect(dimension,unitcellsize,latice)
%this is a private function that packs the unitcells into a rectangle
%based on latice conditions

%initalize variables
width=lens.dimension(1);
height=lens.dimension(2);
lens.R=[];
x_store=[];
y_store=[];
z_store=[];

switch latice{1}

case {’max’}

switch latice{2}
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case {’best’}
lens.N_r=round(height/lens.cell.height);

case {’limit’}
lens.N_r=floor(height/lens.cell.height);

end

temp=[1:lens.N_r];
temp2=((lens.N_r/2)+0.5)*ones(1,lens.N_r);
temp3=lens.cell.height*(temp-temp2);
y_temp=temp3([lens.N_r:-1:1]);

for m=1:lens.N_r;
switch latice{2}

case {’best’}
N_cell=round(width/lens.cell.width);

case {’limit’}
N_cell=floor(width/lens.cell.width);

end

temp=[1:N_cell];
temp2=((N_cell/2)+0.5)*ones(1,N_cell);
x_temp=lens.cell.width*(temp-temp2);

lens.R=[lens.R,N_cell];
x_store=[x_store,x_temp];
y_store=[y_store,y_temp(m)*ones(1,N_cell)];
z_store=[z_store,y_temp(m)*zeros(1,N_cell)];

end

for m=1:length(x_store)
lens.cell.nfd.pos{m}=[x_store(m);y_store(m);z_store(m)];

end

case {’triangle’}

switch latice{2}
case {’best’}

lens.N_r=round(height/lens.cell.height);
case {’limit’}

lens.N_r=floor(height/lens.cell.height);
end

temp=[1:lens.N_r];
temp2=((lens.N_r/2)+0.5)*ones(1,lens.N_r);
temp3=lens.cell.height*(temp-temp2);
y_temp=temp3([lens.N_r:-1:1]);

%find offset at row one
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mid_row=round(lens.N_r/2);
switch latice{2}

case {’best’}
N_cell=round(width/lens.cell.width);

case {’limit’}
N_cell=floor(width/lens.cell.width);

end

if rem(N_cell,2)==0
mid_offset=0.5;

else
mid_offset=0;

end

offset=mod((mid_offset+(mid_row-1)*0.5),1);

for m=1:lens.N_r;

switch latice{2}
case {’best’}

N_cell1=floor(((width/2)+(-offset+0.5)*lens.cell.width) ...
/lens.cell.width);

if rem(((width/2)+(-offset+0.5)*lens.cell.width), ...
lens.cell.width)> 0.75*lens.cell.width

N_cell1=N_cell1+1;
end

N_cell2=floor(((width/2)+(offset-0.5)*lens.cell.width) ...
/lens.cell.width);

if rem(((width/2)+(offset-0.5)*lens.cell.width), ...
lens.cell.width)> 0.75*lens.cell.width

N_cell2=N_cell2+1;
end
N_cell=N_cell1+N_cell2;

case {’limit’}
N_cell1=floor(((width/2)+(-offset+0.5)*lens.cell.width) ...

/lens.cell.width);
N_cell2=floor(((width/2)+(offset-0.5)*lens.cell.width) ...

/lens.cell.width);
N_cell=N_cell1+N_cell2;

end

temp=[1:N_cell];
temp2=((N_cell2+1)-offset)*ones(1,N_cell);
x_temp=lens.cell.width*(temp-temp2);
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lens.R=[lens.R,N_cell];
x_store=[x_store,x_temp];
y_store=[y_store,y_temp(m)*ones(1,N_cell)];
z_store=[z_store,y_temp(m)*zeros(1,N_cell)];
offset=mod(offset+0.5,1);

end

for m=1:length(x_store)
lens.cell.nfd.pos{m}=[x_store(m);y_store(m);z_store(m)];

end
end

patch antenna.m

function [le_t,ro_t]=patch_antenna(theta,phi,polar)

%function [le_t,ro_t]=patch_antenna(theta,phi,polar)
%this function returns the magnitude of the effective length and polarization
%for a patch in local cooridants at angels (theta,phi). The structure
%’polar’ contains additional informationi specific to this antenna type.
%polar.Le is the effective length of patch antenna
%polar.We is the effective width of patch antenna
%polar.h is the effective heigth of patch antenna
%polar.crosspole is the cross polar ratio in dB default is infinite
%polar.delta is the phase shift between the two polarizations (determines
% RHP LHP)

global Globalcal_patch

needcal=’no’;
if ~isempty(Globalcal_patch)

cal=Globalcal_patch;
verify=’yes’;

elseif exist(’patch_antenna_cal.mat’,’file’)
disp(’reading patch cal from file’)
load(’patch_antenna_cal’);
Globalcal_patch=cal;
verify=’yes’;

else
needcal=’yes’
verify=’no’;

end

if strcmp(verify,’yes’)
if cal.polar.Le~=polar.Le | cal.polar.We~=polar.We | cal.polar.h~=polar.h

needcal=’yes’;
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else
if isfield(cal.polar,’crosspole’) & isfield(polar,’crosspole’)

if cal.polar.crosspole~=polar.crosspole | cal.polar.delta~=polar.delta
needcal=’yes’;

end
elseif isfield(cal.polar,’crosspole’) & ~isfield(polar,’crosspole’)

needcal=’yes’;
elseif ~isfield(cal.polar,’crosspole’) & isfield(polar,’crosspole’)

needcal=’yes’;
end

end
end

switch(needcal)
case(’yes’)

disp(’calibrating patch antenna’)

Prad=0;

theta_step=pi/60;
phi_step=pi/20;
theta_temp=[0:theta_step:pi/2];
phi_temp=[0:phi_step:2*pi];

L_mag=[];
flux=0;
for k=1:length(theta_temp)

for l=1:length(phi_temp)
L_temp=patch_antenna_L(theta_temp(k),phi_temp(l),polar);
L_mag(k,l)=L_temp’*L_temp;

end
end

for k=1:length(theta_temp)-1
for l=1:length(phi_temp)-1

L_mag_avg=sum([L_mag(k,l),L_mag(k+1,l),L_mag(k,l+1),...
L_mag(k+1,l+1)])/4;

area=sin((theta_temp(k)+theta_temp(k+1))/2)*theta_step*phi_step;
flux=flux+L_mag_avg*area;

end
end

M0=1/sqrt(((2*pi)^2/(16*377*pi^2))*flux);

cal.M0=M0;
cal.polar=polar;

Globalcal_patch=cal;
save /home/sydney/vian/matlab/toolbox/QOlens/working/patch_antenna_cal cal
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case(’no’)

M0=cal.M0;
end

L=patch_antenna_L(theta,phi,polar);
field=(-M0/377)*cross([1;0;0],L);

if field’*field < 10e-9
le_t=0;
ro_t=[0;0;0];

else
le_t=sqrt(field’*field);
ro_t=field/le_t;

end

patch antenna L.m

function [L]=patch_antenna_L(theta,phi,polar)

%this function calculates the results of the surface integral of the
%magnetics currents.
%’polar’ contains additional informationi specific to this antenna type.
%polar.Le is the effective length of patch antenna
%polar.We is the effective width of patch antenna
%polar.h is the effective heigth of patch antenna
%polar.crosspole is the cross polar ratio in dB default is infinite
%polar.delta is the phase shift between the two polarizations (determines
% RHP LHP)
%note i think i want the polar to contain fields (polar,crosspole,length)

Z=2*pi*polar.h*cos(theta);
X=2*pi*(polar.We/2)*sin(theta)*cos(phi);
AF=2*cos(2*pi*(polar.Le/2)*(sin(theta)*sin(phi)));

if Z==0
temp1=1;

else
temp1=sin(Z)/Z;

end

if X==0
temp2=1;

else
temp2=sin(X)/X;

end
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L_theta=cos(theta)*cos(phi)*temp1*temp2*AF;
L_phi=-sin(phi)*temp1*temp2*AF;
L=[0;L_theta;L_phi];

if isfield(polar,’crosspole’)
CR=10^(polar.crosspole/10);

if isfield(polar,’delta’)
delta=polar.delta;

else
delta=0;

end

Z=2*pi*polar.h*cos(theta);
Y=2*pi*(polar.Le/2)*sin(theta)*sin(phi);
AF=2*cos(2*pi*(polar.We/2)*(sin(theta)*cos(phi)));

if Z==0
temp1=1;

else
temp1=sin(Z)/Z;

end

if Y==0
temp2=1;

else
temp2=sin(Y)/Y;

end

L_theta=cos(theta)*sin(phi)*temp1*temp2*AF;
L_phi=cos(phi)*temp1*temp2*AF;
L_temp=[0;L_theta;L_phi]*exp(j*delta);

A=1/(1+CR);
B=1-A;
L=B*L+A*L_temp;

end

if theta>pi/2
L=[0;0;0];

end

patch mutual.m

function [Z_21]=patch_mutual(r_21,extra)

%this function calculates the complex impedance between to patch antennas
%extra.lambda_eff contains the ratio of free space wave length to effective
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%wave length in material
%extra.ro contain the scale constant for the magnitude coupling

%update with papers

theta=atan2(sqrt(r_21(1)^2+r_21(2)^2),r_21(3));

if theta <0
theta = theta + 2*pi;

end

phi=atan2(r_21(2),r_21(1));

if phi <0
phi=phi+2*pi;

end

%define phi=0 hen theta is 0 or pi
if theta < 10e-4 | abs(theta-pi) < 10e-4

phi=0;
end

r_21_mag=sqrt(r_21’*r_21);
Z_21_mag=(extra.ro/r_21_mag)^(1+sin(phi));
Z_21_phs=exp(-j*2*pi*r_21_mag*extra.lambda_eff);
Z_21=Z_21_mag*Z_21_phs;

pull antenna.m

function [antenna]=pull_antenna(device,antenna_num,lens_side)

%this function pulls out one antenna from a device, the lens_side
%is only needed if the device is a lens and not a detector

switch device.device
case(’array’)

antenna.name=device.cell.nfd.name{antenna_num};
antenna.polar=device.cell.nfd.polar{antenna_num};
antenna.base=device.cell.nfd.base{antenna_num};
antenna.local=device.cell.nfd.local{antenna_num};
antenna.pos=device.cell.nfd.pos{antenna_num};
antenna.theta_r=device.cell.nfd.theta_r{antenna_num};

case(’lens’)
switch lens_side

case(’nonfeed’)
antenna.name=device.cell.nfd.name{antenna_num};
antenna.polar=device.cell.nfd.polar{antenna_num};
antenna.base=device.cell.nfd.base{antenna_num};
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antenna.local=device.cell.nfd.local{antenna_num};
antenna.pos=device.cell.nfd.pos{antenna_num};
antenna.theta_r=device.cell.nfd.theta_r{antenna_num};

case(’feed’)
antenna.name=device.cell.fd.name{antenna_num};
antenna.polar=device.cell.fd.polar{antenna_num};
antenna.base=device.cell.fd.base{antenna_num};
antenna.local=device.cell.fd.local{antenna_num};
antenna.pos=device.cell.fd.pos{antenna_num};
antenna.theta_r=device.cell.fd.theta_r{antenna_num};

end
case(’detector’)

antenna.name=device.cell.name{antenna_num};
antenna.polar=device.cell.polar{antenna_num};
antenna.base=device.cell.base{antenna_num};
antenna.local=device.cell.local{antenna_num};
antenna.pos=device.cell.pos{antenna_num};
antenna.theta_r=device.cell.theta_r{antenna_num};

end

rotate base.m

function [local]=rotate_base(base,theta_r)

%[local]=rotate_base(base,theta_r)
%this function rotates the base coordinat system through an angle ’theta_r’
%in the base coordiants system xy plane

rotate=[cos(theta_r) sin(theta_r) 0; -sin(theta_r) cos(theta_r) 0; 0 0 1];
local=rotate*base;

semi antenna.m

function [le_t,ro_t]=semi_antenna(theta,phi,polar)

%function [le_t,ro_t]=semi_antenna(theta,phi,polar)
%this function returns the magnitude of the effective length and polarization
%for a semi directional in local cooridants at angels (theta,phi)
%The structure ’polar’ contains the polarization of the omin directional
%antenna in local xyz coordiants the default is x-polarized.

if isempty(polar);
polar=[0;1;0];
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end
J0=sqrt(2/(377*pi));
J_sph=xyz2sph(theta,phi);
if theta < (pi/2-10e-3)

ro_t=[0 0 0;0 1 0;0 0 1]*J_sph*polar;
ro_t=ro_t/sqrt(ro_t’*ro_t) ;
le_t=J0;

else
ro_t=[0;0;0];
le_t=0;

end

semi mutual.m

function [Z_21]=semi_mutual(r_21,extra)

%this function calculates the complex impedance between to semi antennas
%extra contains the ratio of free space wave length to effective
%wave length in material

%update with papers

Z_21_mag=1/(r_21’*r_21);
Z_21_phs=exp(-j*2*pi*sqrt(r_21’*r_21)*extra)

xyz2sph.m

function [J_sph]=xyz2sph(theta,phi)

%function [J_sph]=xyz2sph(theta,phi)
%this function creates an Jacobian to convert cartisian vectors to
%spherical vectors

J_sph=[sin(theta)*cos(phi) sin(theta)*cos(phi) cos(theta); ...
cos(theta)*cos(phi) cos(theta)*sin(phi) -1*sin(theta); ...
-1*sin(phi) cos(phi) 0 ];

LMS Code
adapt rad ptrn.m

function [rad_ptrn]=adapt_rad_ptrn(lens,imager,weight,alpha_range,ki_range,optional)
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%this function outputs the receive Voc at a detector defined by the imager
%and weights for a source with unit input.
%’rad_ptrn’ contains fields ’Voc’, ’alpha’ and ’ki’.
%alpha_range is a vector that contains[alpha_start,alpha_end,alpha_N]
%ki_range is a vector that contains[ki_start,ki_end,ki_N]
%optional.polar_source use polarization for source coupling
% default is ’yes’
%optional.polar_feed use polarization for feed coupling
% default is ’yes’
%optional.pathloss_source use pathloss for source coupling
% default is ’yes’
%optional.pathloss_feed use pathloss for feed coupling
% default is ’yes’
optional_rad.polar_source=’yes’;
optional_rad.polar_feed=’yes’;
optional_rad.pathloss_source=’yes’;
optional_rad.pathloss_feed=’yes’;
if nargin==6

optional_rad=optional;
end

for m=1:length(imager)
m/length(imager)
if weight(m)~=0

detector_m=imager{m};
[rad_ptrn_m]=rad_pattern(lens,detector_m,alpha_range,ki_range...

,optional_rad);
if m==1

rad_ptrn=rad_ptrn_m;
rad_ptrn.Voc=weight(m)*rad_ptrn_m.Voc;

else
rad_ptrn.Voc=rad_ptrn.Voc+weight(m)’*rad_ptrn_m.Voc;

end
end

end

cal W est .m

function [W_est]=cal_W_est(R_est,P_est,mask)

mask_pos=[];
for k=1:length(mask)

if mask(k)==1
mask_pos=[mask_pos,k];

end
end

R_reduce=R_est(mask_pos,mask_pos);
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R_reduce_inv=inv(R_reduce);
R_sub_inv=zeros(length(mask));
R_sub_inv(mask_pos,mask_pos)=R_reduce_inv;
W_est=R_sub_inv*P_est;

csf.m

function [signal]=csf(signal,field)

%this function changes the signal field
%field is a vector for each source in the channel

channel_temp=signal.channel;
for k=1:length(field)

source_temp=channel_temp{k};
source_temp.field=field(k);
channel_temp{k}=source_temp;

end
signal.channel=channel_temp;

drawvar.m

function drawvar(pos,radius,sides,color)

%drawpolygon(local,pos,radius,sides,color)
%this is a private function
%this function draws a polygon aperture with local coordinates system ’local’
% and position ’pos’ in global coordinates

hold on

theta=[0:2*pi/sides:2*pi];
point=[];
for k=1:length(theta)

x=radius*cos(theta(k));
y=radius*sin(theta(k));
point=[point,[x;y;0]+pos];

end

x=point(1,:);
y=point(2,:);
z=point(3,:);
plot3(x,y,z,color);
hold off
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get data.m

function [data_new]=get_data(constell)

%this function randomly detemines the next data sample for a given
%constellation and symbol period. All constellations have peak power
%of unity.
% support for ’QPSK’ ’BPSK’ ’carrier’

switch(constell)
case(’QPSK’)

symbols=[1,j,-1,-j];
case(’BPSK’)

symbols=[1, -1]
case(’carrier’)

symbols=[1, 1];
end

data_new=symbols(1+floor(length(symbols)*rand(1,1)));

get data pwr.m

function [data_pwr]=get_data_pwr(constell)

%this function calculates the data pwr
% support for ’QPSK’ ’BPSK’ ’carrier’

switch(constell)
case(’QPSK’)

symbols=[1,j,-1,-j];
case(’BPSK’)

symbols=[1, -1]
case(’carrier’)

symbols=[1, 1];
end

data_pwr=symbols*symbols’/length(symbols);

plot error.m

function plot_error(sub_non,window)

font_size=10;
colors=[’y’,’m’,’c’,’r’,’g’,’b’,’y’];
[m,n]=size(sub_non.QOL.e);
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for l=1:m
for k=1:window-1

e_temp(l,k)=sum(sub_non.QOL.e(l,[1:k]));
end
for k=window:n

e_temp(l,k)=sum(sub_non.QOL.e(l,[k-window+1:k]));
end

end

for k=1:10:m
hold on
plot(abs(e_temp(k,:)),[colors(mod(k,7)+1),’-’])
[H_temp]=text(n,e_temp(n),num2str(k,3));
set(H_temp,’FontSize’,font_size)
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’error’)

plot eye.m

function plot_eye(sub_non,item,type,pass,N_samples)

%this function plots the y, and estimated mean and variance in a eye pattern
%for the item (QOL or array) with pass (for array it is one)
%type is for normal of opt

clf
N_y=length(sub_non.array.y);
if strcmp(item,’array’)

if strcmp(type,’normal’)
hold on
plot(sub_non.array.y([N_y-N_samples+1:N_y]),’b.’)
hold off
for k=1:length(sub_non.array.y_SNR.y_symbol.mean)
hold on

plot(sub_non.array.y_SNR.y_symbol.mean(k),’ro’)
drawvar([real(sub_non.array.y_SNR.y_symbol.mean(k));...

;imag(sub_non.array.y_SNR.y_symbol.mean(k));0],...
sqrt(sub_non.array.y_SNR.y_symbol.var(k)),20,’r’)

hold off
end

end
if strcmp(type,’opt’)

hold on
plot(sub_non.array.y_opt([N_y-N_samples+1:N_y]),’b.’)
hold off
for k=1:length(sub_non.array.y_SNR.y_symbol_opt.mean)
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hold on
plot(sub_non.array.y_SNR.y_symbol_opt.mean(k),’ro’)
drawpolygon([1 0 0;0 0 -1;0 1 0],...

[real(sub_non.array.y_SNR.y_symbol_opt.mean(k));...
;0;imag(sub_non.array.y_SNR.y_symbol_opt.mean(k))],...
sqrt(sub_non.array.y_SNR.y_symbol_opt.var(k)),20,’r’)

hold off
end

end
end
if strcmp(item,’QOL’)

if strcmp(type,’normal’)
hold on
plot(sub_non.QOL.y(pass,[N_y-N_samples+1:N_y]),’b.’)
hold off
for k=1:length(sub_non.QOL.y_SNR.y_symbol.mean(:,pass))
hold on

plot(sub_non.QOL.y_SNR.y_symbol.mean(k,pass),’ro’)
drawpolygon([1 0 0;0 0 -1;0 1 0],...

[real(sub_non.QOL.y_SNR.y_symbol.mean(k,pass));...
;0;imag(sub_non.QOL.y_SNR.y_symbol.mean(k,pass))],...
sqrt(sub_non.QOL.y_SNR.y_symbol.var(k,pass)),20,’r’)

hold off
end

end
if strcmp(type,’opt’)

hold on
plot(sub_non.QOL.y_opt(pass,[N_y-N_samples+1:N_y]),’b.’)
hold off
for k=1:length(sub_non.QOL.y_SNR.y_symbol_opt.mean(:,pass))
hold on

plot(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,pass),’ro’)
drawpolygon([1 0 0;0 0 -1;0 1 0],...

[real(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,pass));...
;0;imag(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,pass))],...
sqrt(sub_non.QOL.y_SNR.y_symbol_opt.var(k,pass)),20,’r’)

hold off
end

end
end
axis(’equal’)
%axis(’square’)

plot eye para.m

function plot_eye_para(sub_non,type,color)

%this function plots the y, and estimated mean and variance in a eye pattern
%for the item (QOL or QOL) with pass (for QOL it is one)
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%type is for normal of opt

[m,n]=size(sub_non.QOL.y_SNR.y_symbol.mean);
if strcmp(type,’normal’)

for l=[[1:10],n]
for k=1:m
hold on

plot(sub_non.QOL.y_SNR.y_symbol.mean(k,l),[color,’o’])
drawpolygon([1 0 0;0 0 -1;0 1 0],...

[real(sub_non.QOL.y_SNR.y_symbol.mean(k,l));...
;0;imag(sub_non.QOL.y_SNR.y_symbol.mean(k,l))],...
sqrt(sub_non.QOL.y_SNR.y_symbol.var(k,l)),20,color)

hold off
end

end
end
if strcmp(type,’opt’)

for l=1:n
for k=1:m
hold on

plot(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,l),[color,’o’])
drawpolygon([1 0 0;0 0 -1;0 1 0],...

[real(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,l));...
;0;imag(sub_non.QOL.y_SNR.y_symbol_opt.mean(k,l))],...
sqrt(sub_non.QOL.y_SNR.y_symbol_opt.var(k,l)),20,color)

hold off
end

end
end
axis(’equal’)

plot signals pos.m

function plot_signals_pos(signals)

%this function plots the signals on the radiation plattern plots
%the numbering is signals,source

figure(3)
for k=1:length(signals)

signal_k=signals{k};
channel=signal_k.channel
for l=1:length(channel)

source_kl=channel{l};

hold on
switch (source_kl.type)

case(’farfield’)
angle_kl=source_kl.angle;
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x=angle_kl(1)*cos(angle_kl(2));
y=angle_kl(1)*sin(angle_kl(2));
plot3(x,y,0,’bx’)
text(x,y,0,[num2str(k,2),’,’num2str(l,2)]);

case(’nearfield’)
pos_kl=source_kl.pos
alpha=atan2(sqrt(pos_kl(1)^2+pos_kl(2)^2),pos_kl(3));
ki=atan2(pos_kl(2),pos_kl(1));
if ki<0

ki=ki+2*pi;
end
x=angle_kl(alpha)*cos(angle_kl(ki));
y=angle_kl(alpha)*sin(angle_kl(ki));
plot3(x,y,0,’bo’)
text(x,y,0,[num2str(k,2),’,’num2str(l,2)]);

end
hold off

end
end

plot W est QOL.m

function plot_W_est_QOL(sub_non)
N_imager=121
for k=[1:11]

mask=zeros(N_imager,1);
mask(sub_non.QOL.order([1:k]))=ones(k,1);
R_est=sub_non.QOL.R_est{k};
P_est=sub_non.QOL.P_est(:,k);
W_est(:,k)=cal_W_est(R_est,P_est,mask);

end
plot_weights(W_est);

plot weight noise.m

function plot_weigh_noise(sub_nons)

font_size=10;
colors=[’y’,’m’,’c’,’r’,’g’,’b’,’y’];

figure(1)
clf
for k=1:length(sub_nons)

hold on
sub_non=sub_nons{k};
plot(10*log10(sub_non.QOL.W_noise.mean),[colors(mod(k,7)+1),’-’])
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hold off
end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(weight noise mean)’)

figure(2)
clf
for k=1:length(sub_nons)

hold on
sub_non=sub_nons{k};
plot(10*log10(sub_non.QOL.W_noise.var),[colors(mod(k,7)+1),’-’])
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(weight noise variance)’)

plot weight noise cal.m

function plot_weigh_noise_cal(sub_non)

font_size=10;
colors=[’y’,’m’,’c’,’r’,’g’,’b’,’y’];

[m,n]=size(sub_non.QOL.W_noise.mean);
figure(1)
clf
for k=1:m

hold on
plot(10*log10(sub_non.QOL.W_noise.mean(k,:)),[colors(mod(k,6)+1),’-’])
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(weight noise mean)’)

figure(2)
clf
for k=1:m

hold on
plot(10*log10(sub_non.QOL.W_noise.var(k,:)),[colors(mod(k,6)+1),’-’])
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(weight noise variance)’)

figure(3)
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clf
for k=1:m

hold on
plot(10*log10(abs(sub_non.QOL.error_min(k,:))),[colors(mod(k,6)+1),’-’])
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(|Minimum Error|)’)

figure(4)
clf
for k=1:m

hold on
plot(10*log10(abs(sub_non.QOL.mu(k,:))),[colors(mod(k,6)+1),’-’])
hold off

end
axis(’square’)
xlabel(’number of signals’)
ylabel(’10log_{10}(mu)’)

plot weights.m

function plot_weights(weights,optional)

%this function plots the weight tracks
%optional.font_size default is 10
%optional.figure default is 8

font_size=10;
fig=8;

if nargin==2
if isfield(optional,’font_size’)

font_size=optional.font_size;
end
if isfield(optional,’figure’)

fig=optional.figure;
end

end

figure(fig)
clf

colors=[’y’,’m’,’c’,’r’,’g’,’b’,’y’];
[m,n]=size(weights);

for k=1:m
hold on
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plot(real(weights(k,:)),imag(weights(k,:)),[colors(mod(k,7)+1),’.’])
plot(real(weights(k,:)),imag(weights(k,:)),[colors(mod(k,7)+1),’:’])
hold off

end

for k=1:m
hold on
plot(real(weights(k,n)),imag(weights(k,n)),’wo’)
[H_temp]=text(real(weights(k,n)),imag(weights(k,n)),num2str(k,3));
set(H_temp,’FontSize’,font_size)
hold off

end
axis(’equal’)
xlabel(’Re\{W_k\}’)
ylabel(’Im\{W_k\}’)

slicer.m

function [data_guess]=get_data(sample,constell)

%this function performs a minium distance guess of the output data
% support for ’QPSK’ ’BPSK’ ’carrier’

switch(constell)
case(’QPSK’)

symbols=[1,j,-1,-j];
if angle(sample) <= pi/4 & angle(sample) >= -pi/4

data_guess=1;
elseif angle(sample) > pi/4 & angle(sample) < 3*pi/4

data_guess=j;
elseif angle(sample) < -pi/4 & angle(sample) > -3*pi/4

data_guess=-j;
else

data_guess=-1;
end

case(’BPSK’)
symbols=[1, -1]
if real(sample) > 0

data_guess=1;
else

data_guess=-1;
end

case(’carrier’)
symbols=[1, 1];
data_guess=1;

end

data_new=symbols(1+floor(length(symbols)*rand(1,1)));
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sub LMS array.m

function [output]=sub_LMS_array(arrayTF_signal,noise_TF,N_samples,signals,time_step,noise_pwr)

%this function does the LMS subset processing on array
%the output contians the weights, y, data, for the system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%initized variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N_s=length(signals);
[N_array,dumb]=size(noise_TF);
data=zeros(N_s,1);
y=0;
y_opt=0;
W=zeros(N_array,2);
W_opt=zeros(N_array,1);
P_est=zeros(N_array,1);
R_est=zeros(N_array);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%find desire signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
desire_signal=0;
for k=1:N_s

signal_k=signals{k};
if strcmp(signal_k.user,’desire’)

desire_signal=k;
end

end

if desire_signal==0
disp(’no desire user’)

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate R,P, Wopt and mu
%assume all signals are uncorrelated
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R=zeros(N_array,N_array);
for k=1:N_s

signal_k=signals{k};
TF_signal_k=arrayTF_signal{k};
[m_k,n_k]=size(TF_signal_k);
R=R+get_data_pwr(signal_k.constell)*(TF_signal_k*ones(n_k,1))*...

(TF_signal_k*ones(n_k,1))’;
if k==desire_signal

P=get_data_pwr(signal_k.constell)*(TF_signal_k*ones(n_k,1));
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end
end
if noise_pwr.array~=0

R=R+noise_pwr.array*eye(N_array);
end
W_opt=inv(R)*P;
mu=.05/trace(R);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for l=2:N_samples
%comments([’array LMS ’, num2str(l/N_samples,3)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%get data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time_now=(l-1)*time_step;
time_then=(l-2)*time_step;
for k=1:N_s

signal_k=signals{k};
if time_then<=floor(time_now/signal_k.T_data)*signal_k.T_data...

& time_now > floor(time_now/signal_k.T_data)*signal_k.T_data
data(k,l)=get_data(signal_k.constell);

else
data(k,l)=data(k,l-1);

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%modulation/demodulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
signal_temp=signals{desire_signal};
w_IF=signal_temp.w_RF;
d=zeros(N_array,1);
for k=1:N_s

signal_k=signals{k};

TF_signal_k=arrayTF_signal{k};
[m,n]=size(TF_signal_k);
d=d+TF_signal_k*data(k,l)*exp(signal_k.w_RF-w_IF)*...

ones(n,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k==desire_signal

P_est=P_est + abs(data(k,l))^2*(TF_signal_k)*...
exp(signal_k.w_RF-w_IF)*ones(n,1)/N_samples;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%noise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[m,n]=size(noise_TF);
noise_temp=sqrt(noise_pwr.array)*(randn(n,1)+j*randn(n,1))/sqrt(2);
noise=noise_TF*noise_temp;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%LMS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X=d+noise;
y(l)=W(:,l)’*X;
y_opt(l)=W_opt’*X;
e_l=data(desire_signal,l)-y(l);
e(l)=e_l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R_est=R_est+X*X’/N_samples;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

W(:,l+1)=W(:,l)+2*mu*e_l’*X;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
output.data=data;
output.e=e;
output.y=y;
output.y_opt=y_opt;
output.W_opt=W_opt;
output.W=W;
output.R=R;
output.R_est=R_est;
output.P=P;
output.P_est=P_est;

sub LMS QOL.m

function [output]=sub_LMS_QOL(QOLTF_signal,noise_TF,N_imager,N_samples,signals,time_step,noise_pwr,mask)

%this function does the LMS subset processing on QOL give the mask
%mu is .05/trace[R]
%the output contians the weights, y, data, for the system
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%initized variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N_s=length(signals);
data=zeros(N_s,1);
y=0;
y_opt=0;
W=zeros(N_imager,2);
W_opt=zeros(N_imager,1);
P_est=zeros(N_imager,1);
R_est=zeros(N_imager);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%find desire signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
desire_signal=0;
for k=1:N_s

signal_k=signals{k};

if strcmp(signal_k.user,’desire’)
desire_signal=k;

end
end

if desire_signal==0
disp(’no desire user’)

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate R,P, W_opt and mu
%assume all signals are uncorrelated
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R=zeros(N_imager,N_imager);
for k=1:N_s

signal_k=signals{k};
TF_signal_k=QOLTF_signal{k};
[m_k,n_k]=size(TF_signal_k);
R=R+get_data_pwr(signal_k.constell)*(TF_signal_k*ones(n_k,1))*...

(TF_signal_k*ones(n_k,1))’;
if k==desire_signal

P=get_data_pwr(signal_k.constell)*(TF_signal_k*ones(n_k,1));
end

end
if noise_pwr.lens~=0

R=R+noise_pwr.lens*noise_TF_QOL.lens*noise_TF_QOL.lens’;
end
if noise_pwr.detector~=0

for k=1:N_imager
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noise_TF_k=noise_TF_QOL.det{k};
R_temp(k,k)=noise_pwr.detector*sum(abs(noise_TF_k).^2);

end
R=R+R_temp;

end
if noise_pwr.imager~=0

R=R+noise_pwr.imager*eye(N_imager);
end
R_sub=diag(mask).’*R*diag(mask);
mu=.05/trace(R_sub);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculating W_opt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mask_pos=[];
for k=1:length(mask)

if mask(k)==1
mask_pos=[mask_pos,k];

end
end
R_reduce=R_sub(mask_pos,mask_pos);
R_reduce_inv=inv(R_reduce);
R_sub_inv=zeros(length(mask));
R_sub_inv(mask_pos,mask_pos)=R_reduce_inv;
W_opt=R_sub_inv*P;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for l=2:N_samples
% comments([’QOL LMS ’, num2str(l/N_samples,3)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%get data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time_now=(l-1)*time_step;
time_then=(l-2)*time_step;
for k=1:N_s

signal_k=signals{k};
if time_then<=floor(time_now/signal_k.T_data)*signal_k.T_data...

& time_now > floor(time_now/signal_k.T_data)*signal_k.T_data
data(k,l)=get_data(signal_k.constell);

else
data(k,l)=data(k,l-1);

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%modulation/demodulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
signal_temp=signals{desire_signal};
w_IF=signal_temp.w_RF;
d=zeros(N_imager,1);
for k=1:N_s

signal_k=signals{k};

TF_signal_k=QOLTF_signal{k};
[m,n]=size(TF_signal_k);
d=d+TF_signal_k*data(k,l)*exp(signal_k.w_RF-w_IF)*...

ones(n,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%save desire signal on max detector
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%if sum(mask)==1
% if k==desire_signal
% output.d(l)= mask’*TF_signal_k*data(k,l)*...
% exp(signal_k.w_RF-w_IF)*ones(n,1);
% end
%end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% if k==desire_signal
% P_est=P_est + abs(data(k,l))^2*(mask.*TF_signal_k)*...
% exp(signal_k.w_RF-w_IF)*ones(n,1)/N_samples;
% end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%noise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
noise=zeros(N_imager,1);
if noise_pwr.lens~=0

noise_TF_temp=noise_TF.lens;
[m,n]=size(noise_TF_temp);
noise_temp=sqrt(noise_pwr.lens)*(randn(n,1)+j*randn(n,1))/sqrt(2);
noise=noisel+noise_TF_temp*noise_temp;

end

if noise_pwr.detector~=0
for k=1:length(imager)

noise_TF_temp=noise_TF.det{k};
[m,n]=size(noise_TF_temp);
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noise_temp=sqrt(noise_pwr.detector)*(randn(n,1)+j*randn(n,1))/sqrt(2);
noise_QOL_temp(k,1)=noise_TF_temp*noise_temp;

end
noise=noise+noise_QOL_temp;
end

if noise_pwr.imager~=0
noise_TF_temp=noise_TF.imager;
[m,n]=size(noise_TF_temp);
noise_temp=sqrt(noise_pwr.imager)*(randn(n,1)+j*randn(n,1))/sqrt(2);
noise=noise+noise_TF_temp*noise_temp;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%noise on max detector
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%output.noise(l)=mask’*noise;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%LMS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X=(d.*mask)+(noise.*mask);
y(l)=(W(:,l).*mask)’*(X.*mask);
y_opt(l)=(W_opt.*mask)’*(X.*mask);
e_l=data(desire_signal,l)-y(l);
e(l)=e_l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%R_est=R_est+X*X’/N_samples;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

W(:,l+1)=W(:,l)+2*mu*e_l’*X;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
output.data=data;
output.e=e;
output.y=y;
output.y_opt=y_opt;
output.W_opt=W_opt;
output.W=W;
output.R=R;
output.R_est=R_est;
output.P=P;
output.P_est=P_est;
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W est SNR.m

function [SNR]=W_est_SNR(output,constell,desire_signal,N_sample,TF)

%this function estimates the SNR of y in two different ways
%BER and variance from data
%N_sample is the last N_sample of y to use for the estimation

if strcmp(constell,’QPSK’)
symbol=[1,-1,j,-j];

elseif strcmp(constell,’BPSK’)
symbol=[1,-1];

elseif strcmp(constell,’carrier’)
symbol=[1,1];

end
symbol_start=ones(length(symbol));
symbol_start_opt=ones(length(symbol));

err=0;
err_opt=0;
N_y=length(output.y);
for k=(N_y-N_sample+1):N_y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate y_signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y_s_est(k+N_sample-N_y)=output.W_est’*output.data(desire_signal,k)*TF;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate BER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_guess=slicer(output.y(k),constell);
if data_guess~=output.data(desire_signal,k)

err=err+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate eye diagram mean and variance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:length(symbol)

if output.data(desire_signal,k)==symbol(l)
y_symbol(l,symbol_start(l))=output.y(k);
symbol_start(l)=symbol_start(l)+1;

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

noise(k+N_sample-N_y)=output.y(k)-output.data(desire_signal,k);
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate noise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y_n_est=output.y([N_y-N_sample+1:N_y])-y_s_est;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate BER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.BER=err/N_sample;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate SNR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.y_SNR_est=(var(y_s_est)+mean(y_s_est)*mean(y_s_est)’)/...

(var(y_n_est)+mean(y_n_est)*mean(y_n_est)’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate SNR data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.data=get_data_pwr(constell)/(abs(mean(noise))^2+var(noise));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate y mean and variance on symbols
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:length(symbol)

temp=y_symbol(l,[1:symbol_start(l)-1]);
SNR.y_symbol.mean(l,1)=mean(temp);
SNR.y_symbol.var(l,1)=var(temp);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

weight noise.m

function [W_noise]=wieght_noise(output,N_sample,N_W)

[m,n]=size(output.W);
n=n-1;
W_var=var(output.W(:,[n-N_sample+1:n]).’).’;
W_noise.mean=sum(W_var)/N_W;
if N_W~=1

W_noise.var=sum(W_var’*W_var)/(N_W-1);
else

W_noise.var=0;
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end

win stats.m

function [stats]=win_stats(data,window)

%this function calculates the mean and variance for a windowed set of data
%out of the data vector. The window moves from the start of the data set
%to the end of the data set changing in size at the beginning. the last
%’window’ samples for each point is used. if data is
%a matrix, then the rows are operated on.

[m,n]=size(data);
for k=1:m

for l=1:n
if l-window < 0

start=1;
else

start=l-window+1;
end
stats.mean(k,l)=mean(data(k,[start:l]));
stats.var(k,l)=var(data(k,[start:l]));

end
end

y SNR.m

function [SNR]=y_SNR(output,constell,desire_signal,N_sample,TF)

%this function estimates the SNR of y in two different ways
%BER and variance from data
%N_sample is the last N_sample of y to use for the estimation

[m,n]=size(output.W);
n=n-1;
W.mean=mean(output.W(:,[n-N_sample+1:n]).’).’;
SNR.W_mean=W.mean;

if strcmp(constell,’QPSK’)
symbol=[1,-1,j,-j];

elseif strcmp(constell,’BPSK’)
symbol=[1,-1];

elseif strcmp(constell,’carrier’)
symbol=[1,1];

end
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symbol_start=ones(length(symbol));
symbol_start_opt=ones(length(symbol));

err=0;
err_opt=0;
N_y=length(output.y);
for k=(N_y-N_sample+1):N_y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate y_signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y_s_opt(k+N_sample-N_y)=output.W_opt’*output.data(desire_signal,k)*TF;
y_s_est(k+N_sample-N_y)=W.mean’*output.data(desire_signal,k)*TF;
y_s(k+N_sample-N_y)=output.W_opt’*output.data(desire_signal,k)*TF;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate BER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data_guess=slicer(output.y(k),constell);
if data_guess~=output.data(desire_signal,k)

err=err+1;
end
data_guess=slicer(output.y_opt(k),constell);
if data_guess~=output.data(desire_signal,k)

err_opt=err_opt+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate eye diagram mean and variance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:length(symbol)

if output.data(desire_signal,k)==symbol(l)
y_symbol(l,symbol_start(l))=output.y(k);
symbol_start(l)=symbol_start(l)+1;
y_symbol_opt(l,symbol_start(l))=output.y_opt(k);
symbol_start_opt(l)=symbol_start_opt(l)+1;

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

noise(k+N_sample-N_y)=output.y(k)-output.data(desire_signal,k);
noise_opt(k+N_sample-N_y)=output.y_opt(k)-output.data(desire_signal,k);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%estimate noise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y_n_opt=output.y_opt([N_y-N_sample+1:N_y])-y_s_opt;
y_n_est=output.y([N_y-N_sample+1:N_y])-y_s_est;
y_n=output.y([N_y-N_sample+1:N_y])-y_s;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate BER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.BER_opt=err_opt/N_sample;
SNR.BER=err/N_sample;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate SNR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.y_SNR=(var(y_s)+mean(y_s)*mean(y_s)’)/(var(y_n)+mean(y_n)*mean(y_n)’);
SNR.y_SNR_opt=(var(y_s_opt)+mean(y_s_opt)*mean(y_s_opt)’)/...

(var(y_n_opt)+mean(y_n_opt)*mean(y_n_opt)’);
SNR.y_SNR_est=(var(y_s_est)+mean(y_s_est)*mean(y_s_est)’)/...

(var(y_n_est)+mean(y_n_est)*mean(y_n_est)’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate SNR data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNR.data=get_data_pwr(constell)/(abs(mean(noise))^2+var(noise));
SNR.data_opt=get_data_pwr(constell)/(abs(mean(noise_opt))^2+var(noise_opt));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate y mean and variance on symbols
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for l=1:length(symbol)

temp=y_symbol(l,[1:symbol_start(l)-1]);
SNR.y_symbol.mean(l,1)=mean(temp);
SNR.y_symbol.var(l,1)=var(temp);
temp=y_symbol_opt(l,[1:symbol_start_opt(l)-1]);
SNR.y_symbol_opt.mean(l,1)=mean(temp);
SNR.y_symbol_opt.var(l,1)=var(temp);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

y SNR wiener.m

function [y_SNR]=y_SNR_wiener(output,TF,desire_signal,N_s)

[m,n]=size(output.W);
n=n-1;
W.mean=mean(output.W(:,[n-N_s+1:n]).’).’;

for k=n-N_s+1:n
y_s(-n+N_s+k)=W.mean’*TF*output.data(desire_signal,k);



292

end

y_n=output.y([n-N_s+1:n])-y_s;

y_s_pwr=var(y_s)+mean(y_s)*mean(y_s)’;
y_n_pwr=var(y_n)+mean(y_n)*mean(y_n)’;

y_SNR=y_s_pwr/y_n_pwr;


