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Dmitriyeva, Olga (Ph.D., Electrical Engineering) 

Mechanism of heat generation from loading gaseous hydrogen isotopes into palladium 

nanoparticles  

Thesis directed by Prof. Garret Moddel 

 

 I have carried out the study of hydrogen isotope reactions in the presence of palladium 

nanoparticles impregnated into oxide powder. My goal was to explain the mechanisms of heat 

generation in those systems as a result of exposure to deuterium gas. Some researchers have 

associated this heating with a nuclear reaction in the Pd lattice. While some earlier experiments 

showed a correlation between the generation of excess heat and helium production as possible 

evidence of a nuclear reaction, the results of that research have not been replicated by the other 

groups and the search for radiation was unsuccessful. Therefore, the unknown origin of the 

excess heat produced by these systems is of great interest.  

 I synthesized different types of Pd and Pt-impregnated oxide samples similar to those 

used by other research groups. I used different characterization techniques to confirm that the 

fabrication method I used is capable of producing Pd nanoparticles on the surface of alumina 

support. I used a custom built gas-loading system to pressurize the material with hydrogen and 

deuterium gas while measuring heat output as a result of these pressurizations. My initial study 

confirmed the excess heat generation in the presence of deuterium. However, the in-situ 

radiometry and alpha-particle measurements did not show any abnormal increase in counts above 

the background level. In the absence of nuclear reaction products, I decided to look for a 

conventional chemical process that could account for the excess heat generation.  
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 It was earlier suggested that Pd in its nanoparticle form catalyzes hydrogen/deuterium 

(H/D) exchange reactions in the material. To prove the chemical nature of the observed 

phenomena I demonstrated that the reaction can be either exo- or endothermic based on the water 

isotope trapped in the material and the type of gas provided to the system. The H/D exchange 

was confirmed by RGA, NMR and FTIR analysis. I quantified the amount of energy that can be 

released due to the H/D exchange and proved that the heat generated during the experiments can 

be fully accounted for by this chemical reaction. Based on these results I concluded that the 

origin of the excess heat generated during deuterium loading of Pd-nanoparticle materials is 

chemical rather than nuclear. 

 I also looked at which measurement artifacts can result in apparent heat generation. I 

suggested that the presence of a thermal gradient within the system can alter the temperature 

measurement baseline, which would then look like anomalous heating under gas pressure.  To 

test the hypothesis I experimentally enhanced thermal gradients in the gas-loading system and 

successfully demonstrated the effect. By using a commercially available finite element solver I 

matched experimental and simulated data to quantify the magnitude of the thermal gradient 

required to produce a measurable effect. Based on my observations I proposed a technique that 

would ensure the proper gas-loading system calibration and help to avoid any misinterpretation 

of the results. 
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CHAPTER I 

 

INTRODUCTION AND THESIS OUTLINE 

 

A. Introduction 

 According to the International Energy Outlook 2011 (IEO2011) reference case (U.S. 

Department of Energy, 2011) the world energy consumption is expected to grow by 53% from 

2008 to 2035. As a result of growing demand and limited supply conventional energy sources’ 

prices are on the rise. Once again we are in a search for alternative energy sources. Shifts from 

primary to alternative energy sources have happened before; the reason for the transition from 

wood to soft coal in the early 19
th

 century was economic: coal was cheap and abundant. These 

days society is looking for not only cost-effective, but also environmentally friendly and safe 

alternative energy sources that have an inexhaustible supply.   

 Alternative energy is a broad term usually applied to nuclear power and renewable 

sources such as solar, wind, hydro, and geothermal. My research interests lie within a couple of 

less common options. The two cases which I will discuss are (1) the investigation of the results 

from deuterium loading in palladium-based powdered materials associated with low energy 

nuclear reaction (LENR), and (2) the observation of a zero-point energy (ZPE) radiation from 

Casimir cavities as a potential vehicle for vacuum energy harvesting. 

1) Hydrogen isotopes loading into Pd 

In 1989 two electrochemists, Profs. Martin Fleischmann and Stanley Pons, ran an 

experiment that resulted in thermal energy production that could not be explained by 

conventional chemistry. The two scientists used an electrochemical cell with a Pd cathode 

submerged in a D2O + LiOD electrolyte (Fleischmann, et al., 1989). The process proposed to 

involve a nuclear fusion reaction between deuterons, resulting in helium production at low 
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radiation levels. The phenomenon was called cold fusion, or a low energy nuclear reaction 

(LENR).  The idea of harvesting clean energy in the absence of harmful nuclear products or 

waste was an attractive alternative to the known energy generation approaches. The 

announcement made by Fleischmann and Pons in 1989 resulted in a massive experimental effort 

undertaken by scientists around the world. After multiple unsuccessful replications and 

withdrawal of some positive results, a US Department of Energy (DOE) review panel statement 

was issued in 1989: “the evidence for the discovery of a new nuclear process was not persuasive 

enough to start a special program”.  The following DOE review, organized in 2004 to look at 

new research, reached similar conclusions, adding that, “internal inconsistencies and lack of 

predictability and reproducibility remain serious concerns” (U.S. Department of Energy, 2004). 

The statement issued by DOE reflected the skepticism of mainstream science towards the cold 

fusion phenomenon. From that point on the research was limited and only took place after the 

occasional financial infusion. In addition to the original Fleischmann-Pons electrochemical 

experiments, LENR research included: co-deposition, plasma glow-discharge, D2 and H2 gas-

loading in Pd and other transition metals, metal bombardment with energetic particles, bubble 

collapse of various metals in D2O using ultrasound, and more (Storms, 2007) (Storms, 2010).  

Despite the scientific community’s best efforts, poor reproducibility remained a problem. 

Scientists were in a search of an experiment that would produce consistent results in a repeatable 

manner. In recent years attention has been focused on gas-loading in a variety of Pd-nanoparticle 

materials, because they have consistently exhibited anomalous heat production. 

During gas-loading the material remains in a bulk or powdered form while deuterium is 

supplied in a gas form (Biberian, 2008). The advantages of gas-loading over electrochemical 

experiments are: 

http://en.wikipedia.org/wiki/US_Department_of_Energy
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 pressures are easily controlled, 

 operational temperatures can be high, 

 clean environment: the experiment is sealed in the vacuum chamber, 

 somewhat easier analysis: the gaseous reaction products can be analyzed with a residual 

gas analyzing (RGA) unit. 

The disadvantages are: 

 it is difficult to achieve very high pressures, 

 an advanced vacuum system is required, 

 hydrogen isotopes, pressurized at high temperatures, possess potential danger if handled 

without care. 

The most encouraging gas-loading results were presented by Arata et al. (Arata & Zhang, 

2008), where anomalous heat along with nuclear fusion products (
4
He) were observed. Arata 

used nano-Pd material in the form of a ZrO2+Pd mixture, and an alloy composed of Zr+Ni+Pd in 

powdered form. Figure I - 1 shows the heat measurement results done on the samples during the 

exposure of both materials to deuterium and hydrogen gases. The temperature change as a 

function of time is shown after the material made contact with the gas. The temperature change 

was monitored by two thermocouples: Tin is the reading from the probe installed inside the cell at 

the location of the sample, while Ts is the temperature of the outside surface of the cell. When 

gas was introduced into the system the amount of heat produced was apparently greater for the 

ZrO2+Pd sample than for the  Zr+Ni+Pd sample. The reaction in the presence of deuterium gas 

generated more heat than the reaction with hydrogen – the phenomenon known as an isotope 

effect.  
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Figure I - 1 Heat evolution after exposing ZrO2+Pd and Zr+Ni+Pd to hydrogen 

and deuterium (Arata & Zhang, 2008). 

 

 Figure I - 2 represents a quadrupole mass spectroscopy (QMS) analysis of the gas and the 

powdered sample. QMS is capable to distinguish between deuterium molecule and helium atom, 

where the conventional RGA would fail. However, no clear explanation on experimental 

protocol was supplied by the authors, besides the statement that deuterium exposures resulted in 

the clearly visible helium traces.  
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Figure I - 2 QMS mass spectroscope data: cases [A] and [B] show relative 

concentration of 4He found in the gas and the powder as a result of hydrogen 

exposure, while [C] and [D] show 4He concentration in the gas and the powder 

due to deuterium exposures (Arata & Zhang, 2008). 

 

Important details were missing from the report, which diminish the value of this work. 

No data were given on the QMS detector calibration, and there was no information on the time 

scale of the helium generation events or their correlation with the gas cycling. Still, the reported 
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results (even with the patches of missing information), generated a great deal of interest in nano-

materials.   

In the years that followed, several groups reported very similar results on Pd nanoparticle 

materials. A. Kitamura and his colleagues from Kobe University, Japan, in collaboration with A. 

Takahashi from Osaka University, Japan, constructed a system to replicate Arata’s results on heat 

and helium generation in nano-sized Pd powders, and to investigate the underlying physics. Pd-

Zr oxide nano-powder demonstrated an anomalous heating in the presence of deuterium, but 

“nothing other than steady background both in neutron counter and scintillation probe [used for 

the ionizing radiation measurements] was observed” (Kitamura, et al., 2008). Scientists from the 

Naval Research Laboratory, USA, reported exothermic heat generation during gas-loading 

experiments on Pd enriched zeolite and alumina powders using a high precision calorimeter 

(Kidwell, et al., 2009). Toyota’s Central Research and Development Laboratories Inc., Japan, 

used Pd-ZrO2 nanocomposites and reported anomalous heating in the presence of deuterium 

(Hioki, et al., 2009). 

All of the previously reported works has provided enough evidence that gas-loading 

systems are capable of producing excess heat in a repeatable manner, which can be studied and 

evaluated in a laboratory setup.  

2) Zero-point energy radiation detection 

In quantum mechanics the energy of the system at temperature T=0 K (or at its lowest 

quantized energy level) is called zero-point (ZP) energy. ZP energy is the energy that remains 

when all other energy is removed from a system.  The most frequently used examples are (i) the 

current noise in a resistively shunted Josephson junction, (ii) the fact that helium remains liquid 
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at absolute zero and atmospheric pressure, and (iii) the Casimir force, which is now 

experimentally measured to the very high precision.  

ZP radiation has a frequency-cubed dependence, and assuming that ZP fluctuations 

continue to the Planck frequency (10
43

 Hz), the density of ZP field is enormous. Different 

approaches were suggested for harvesting ZP energy to use it as a power source (Davis, et al., 

2006), (Moddel, 2009). 

 A recently issued patent (Haisch & Moddel, May 27, 2008) describes a method by which 

vacuum energy is extracted from gas flowing through a Casimir cavity. According to stochastic 

electrodynamics (SED) the ground state of an electron orbital is assumed to emit Larmor 

radiation, which would cause the electron to spiral inward if it were not balanced by absorption 

of ZP energy from the vacuum. Mode suppression of quantum vacuum radiation is known to take 

place in Casimir cavities, which gives a rise to already mentioned Casimir force.  

 Figure I - 3 shows a schematic representation of the vacuum energy extraction process. In 

the upper part of the loop gas is pumped first through a region surrounded by a radiation 

absorber, and then through a Casimir cavity. As the atoms enter the Casimir cavity their orbitals 

spin down in accordance with SED and release electromagnetic radiation (the process is depicted 

by the outward pointing arrows), that get absorbed by the absorbing media. On exiting the cavity 

at the top left, the ambient ZP field re-energizes the orbitals (depicted by the inward pointing 

arrows). The gas then flows through a pump and is re-circulated through the system. The system 

functions like a heat pump, pumping energy from an external source to a local absorber.   
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Figure I - 3 Schematic representation of the vacuum-energy extraction process. 

Gas circulates through the system. The electronic orbitals of the gas atoms spin 

down to a lower level as the gas enters the Casimir cavity, radiating the excess 

energy to the absorber. Upon exiting the cavity the orbitals are re-energized by the 

ambient zero-point field. In this way, energy is collected from the ambient zero-

point field and deposited on the absorber. 

 

To establish the feasibility of this energy-harvesting approach I carried out a series of 

experiments to test whether energy is, in fact, radiated from Casimir cavities when the 

appropriate gas flows through them. 

B. Thesis outline 

 In Chapter II I discuss the properties of nanomaterials. I hypothesize that the positive 

results reported by LENR research with Pd nanomaterials is a manifestation of the strong 

catalytic properties of Pd heterogeneous catalysts. 

 In Chapter III I describe the techniques I used to fabricate Pd and Pt nanomaterials that 

are used later in my experimental work. I discuss the characterization techniques I used to gather 

information on the structure and composition of the fabricated samples. 
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 In Chapter IV I describe the measurement methods I used throughout the experimental 

phase. 

 Chapter V is dedicated to the discussion of the heat measurements I did while 

pressurizing Pd-infused oxide powders with deuterium and hydrogen. In the absence of nuclear 

byproducts an H/D exchange chemical reaction was proposed to explain the heat production in 

Pd material in the presence of deuterium, but not hydrogen. 

 I proceed with a discussion of the H/D exchange in Chapter VI. I support the heat 

measurements with an extensive process characterization study. 

 The suggested concept of fuel, consisting of water isotopes trapped in the material that 

react with gas, is discussed in Chapter VII.  By measuring the material weight loss as a result of 

a bakeout I assessed the amount of water and the reaction’s energy content. I confirm that 

generated heat can be fully accounted for by the H/D exchange reaction. 

 In Chapter VIII I describe the study of measurement artifacts that can be misinterpreted 

as excess energy production during gas-loading experiments at elevated temperature.   

In Chapter IX I apply the H/D exchange theory to electrolytic experiments to quantify the 

H/D exchange contribution in excess heat generation.  

Conclusions and directions for future work are discussed in Chapter X.  

In Appendix - A, I describe the experimental work on detection of the zero-point energy 

radiation as a result of the gas flowing through the Casimir cavities. The Appendix - A contains a 

reprint of a paper published earlier. 
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CHAPTER II 

 

REVIEW OF NANO-CATALYSTS 

 

The anomalous effects described in the previous chapter were demonstrated in nano-Pd-

on-oxide materials, which are well known catalytic systems. Catalysis is a surface phenomenon, 

and hence an efficient catalyst must have a large surface area, implying that the active particles 

must be small. Small metal particles can be unstable and prone to sintering in order to reduce 

their surface area. Therefore, most heterogeneous catalysts consist of particles inside the pores of 

inert substrates such as alumina, silica, titania, magnesia, zinc oxide, zirconia, zeolite and others. 

Thus, Pd-impregnated alumina appears to be a suitable system to promote chemical reactions in 

the presence of hydrogen isotopes. 

Let us look closer at the important parameters to consider for a successful catalyst: 

 high activity per unit of volume, 

 sufficiently long lifetime before a catalyst is considered to be “dead” or needed to be 

reactivated, 

 cheap and reproducible synthesis. 

Obviously, a high volume manufacturer will impose more strict and detailed requirements 

on catalyst’s properties, but these three still will be valid. 

Metal catalysts (the system I was dealing with) are used in the fine-chemical industry to 

perform hydrogenations and oxidations. The ability of a metal catalyst to dissociate hydrogen 

and oxygen molecules is directly related to this study and will be discussed in great detail in 

Chapter V. 

Elements forming groups VIII and I-B of the periodic system are considered to be the 

most important metals for catalytic applications.  I was especially interested in Pd, Pt and Ni in 
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conjunction with LENR research. All three of these metals have face-centered cubic crystal 

structure (fcc). The reactivity properties of catalytic surface depend on the number of unsaturated 

bonds, available for reaction. An atom of fcc (100) surface would have four neighbors missing, 

which makes it more active than the atom in (111) orientation. However, there are other factors 

that come into play during the synthesis. The morphology of the particle determined by the 

surface energy of the particle itself and the oxide support, on which the particle is deposited. 

These two factors determine the thermodynamically most stable configuration and the surface 

planes that the particle will expose. 

Energy is needed to create a surface, because bonds need to be broken. Thus, in an ideal 

situation in free space, small metal particles will always want to agglomerate to minimize the 

surface energy. The oxide surface support is what prevents particles from clumping together.  

Minimization of the surface free energy is a driving mechanism of the surface processes. 

For Pd and other group VIII fcc metals the smallest free surface energy is associated with (111) 

crystal plane. For example, the surface free energy values for Pd at different crystal face 

orientation are (Vitos, et al., 1998): 

           J m 2            J m 2            J m 2 

However, in the presence of support, the interface energy also plays a role in metal 

particle formation. For example, for Pd particles on the surface of alumina the interface energy 

was found to be     J m-2 (Hansen, et al., 1999), which is higher than     ,      , or     . That 

means that Pd on alumina surface forms particles exhibiting (111) facets rather than spreading 

over the support, which was experimentally confirmed by the STM imaging (Hansen, et al., 

1999). I observed similar results on crystal plane orientation using XRD technique (discussed in 

Chapter III).  
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CHAPTER III 

 

PALLADIUM AND PLATINUM CATALYST FABRICATION AND CHARACTERIZATION 

 

A. Fabrication. 

Table 1 lists different catalysts that I used throughout my study. More than 20 batches were 

fabricated. Incipient wetness and ionic exchange methods were used to prepare samples of 

different concentration of Pd or Pt. I used different precursors and three different types of 

supports. In addition to the fabricated materials, I experimented with commercially available 

catalyst from Acros Organic. Samples showed some limited variation during gas loading 

experiments, however in regard to the phenomena investigated here, they all responded similarly.  

TABLE 1. List of the catalysts.  

Sample type Precursor Support 

type 1:  5% Pd-on-alumina  

(commercially available) 

 

Acros  Organic 

CAS:7440-05-3 

 

type 2:   2% Pd-on-zeolite  

 

Pd(NH3)4Cl2 molecular sieve  13X: Sigma-Aldrich 

283592 

type 3:   2%, 1%, 0.5% Pd-

on-alumina  

 

Pd(NH3)4Cl2 

Pd(ND3)4Cl2 

H2PdCl4 

 

80-200 mesh Al2O3 Fisher Scientific  

P/N: CAS 1344-28-1; 

high crystalline α-alumina: American 

Elements P/N AL-OX-O2-P.30UM 30-

50 μ particle size 

type 4:   2% Pt-on-alumina H2PtCl6 

 

80-200 mesh Al2O3 Fisher Scientific 

P/N: CAS 1344-28-1 



13 
 

Wet impregnation and ionic exchange methods are based on the loading of the high 

surface area oxide support with a catalytically active phase (precursor). The way the catalytic 

material is loaded into the support is a several step process that includes filling the pores of the 

support with liquid precursor followed by baking out the sample at elevated temperature. The 

chemical interactions between the solid support and the precursor may play a significant role in 

the quality of the resulting material (Chorkendoff & Niemantsverdriet, 2007). The precursor may 

be chosen based on the charge state of the hydroxyl groups on the surface of the support. For 

example, negatively charged PdCl4
2- 

or PtCl6
2-

 will exchange readily with basic OH groups in 

alumina. In the case of the zeolite the ionic-exchange takes place between the positive Pd
+
 ions 

and the sodium ions in the zeolite cage.  

For the catalyst’s synthesis I mostly used 80-200 mesh Al2O3. The blank alumina was 

baked in vacuum at 350° C for 12 hours to remove residual water. Samples containing different 

percentages of Pd by weight were fabricated by impregnating alumina powder with hot 

Pd(NH3)4Cl2  or H2PdCl4 in water, forming a slurry. This slurry was later dried either in air or in 

an argon atmosphere at room temperature without calcination. Prior to loading into the 

measurement apparatus, all the samples were baked in a vacuum oven at 120° C for 24 hours. 

This prebaking step results in 2% weight loss due to water evaporation, based on 

thermogravimetric analysis (TGA). Some water was still trapped in the material even after 

prebake. During the loading there was a 2-5 minutes period during which the samples were 

exposed to air, which resulted in an additional absorption of the moisture from air.  I will discuss 

this in more details in Chapter VI and VII. 

B. Nanocatalysts characterization 
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I carried out the material characterization to establish the basic understanding of the structure 

and composition of the fabricated samples. There are several standard methods for characterizing 

metals in the catalysts. The three most widely used are: X-ray diffraction, chemisorptions, and 

electron microscopy. The combination of these three techniques provides the information on the 

metal particles’ size distribution, dispersion, phase and predominant crystal structure. Another 

purpose for characterizing the material was to establish a correlation between the sample’s 

performance and structural features modification as a result of an experiment. 

a)  X-ray diffraction  

The primary purpose of the X-ray measurement was to identify the size of the Pd metal 

particles in alumina powder. All measurements were carried out at the US Geological Survey 

(courtesy of Dr. Alex Blum). The powdered sample was wetted with alcohol and dried on the 

surface of a polished Si wafer, forming a film. The wafer was loaded into the X-ray apparatus 

and scanned at angles           . Figure III - 1 shows the scan of 2% Pd by weight 

impregnated into highly crystalline alumina powder – type 2 sample from Table 1. The major 

peaks on the scan were identified as alumina and Pd of different facet formation which agrees 

with the study by Datye et al. (Datye, et al., 2000).  
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Figure III - 1 X-ray diffraction scan of 2%Pd impregnated alumina sample. 

 

The Pd (111) particles size information can be obtained from the full width at the half 

maximum peak intensity using the Scherrer equation (Scherrer, 1918) (Langford & Wilson, 

1978): 

                                                                   

where L is the particle size; K is the dimensionless shape factor, which has a typical value of 

about 0.9, but varies with the actual shape of the crystallite;          is the X-ray wavelength; 

    is the line broadening at half the maximum intensity (FWHM) in radians; and θ is the Bragg 

angle. For Pd (111) peak the particle size was found to be 11.7 nm. 

The value calculated using the Scherrer equation is usually an underestimate of the real 
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particle size, since it assumes negligible peak broadening from the other sources. Another 

ambiguity comes with the shape factor K, which is valid only if all crystallites are of the same 

size. A Bertaut-Warren-Averbach (BWA) analysis, which is based on Fourier analysis of X-ray 

diffraction peak shape, yields the crystallites thickness distribution and strain. The modified 

version of this method was developed by Drits et al. (Drits, et al., 1998) to measure the coherent 

scattering domain sizes and strains in minerals. Using this method my data was analyzed with 

MudMaster custom written software (Eberl, et al., 1996). The result of the particle size 

distribution is shown in Figure III - 2. The distribution shape seems to be trimodal (or may be 

even 4 modes) with peaks around 6, 13, and 26 nm. The multimodal distribution could be a result 

of multiple nucleation events during palladium crystallization. Indeed, the synthesis of Pd 

nanoparticles in alumina was a multistep process, as described earlier in the catalyst fabrication 

section. 
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Figure III - 2 MudMaster analysis result on  Pd(111) crystallite size distribution 

(courtesy of D. Eberl – US Geological Survey, Boulder, CO). 

 

b) Chemisorption 

I also used chemisorption (Wachs, 1992) to measure the Pd nanoparticle size and to see if 

it is changing as a result of my experiment.  Chemisorption measures the amount of gas required 

to form an adsorbed monolayer on a metal surface. By knowing a total number of absorbed 

molecules and the amount and type of the metal, the surface area and the size of the 

nanoparticles can be calculated. The most common gases used for chemisorption experiments are 

hydrogen, oxygen, and carbon monoxide. The success of the chemisorption method depends on 
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knowledge of the conditions under which gases adsorb on the metal. Hydrogen dissociates on the 

surface of metal, and thus adsorbs atomically, forming palladium hydride with stoichiometry 

ratio of one (adsorption stoichiometry is the number of the gas atoms bonded to one Pd atom). 

The accuracy of the CO chemisorption measurements is often disputed due to the unknown 

adsorption stoichiometry. CO on the surface of Pd can be linearly or bridge-bonded.  

The chemisorption measurement requires a metal surface to be free of contamination. 

Prior to the measurements my material was baked in-situ at 250°C and 390°C for 2 hours in the 

presence of hydrogen. After that the gas was evacuated and the temperature reduced to 40°C.  

The static volumetric chemisorption method was used to measure the particle size and 

dispersion. The measurements were done at Prof. J. Falconer’s Research facility at the Chemistry 

and Biological Engineering department at University of Colorado, Boulder (courtesy of Dr. Hans 

Funke). In the static volumetric method the pressure of a known gas is measured; then the gas is 

expanded into an evacuated known volume that contains a catalyst, and the pressure is measured 

again. The step is repeated several times for different pressures (in my case up to atmospheric 

pressure). The measured uptakes describe a dependency of the adsorbed volume vs. equilibrium 

pressure, known as an isotherm curve. Two different mechanisms contribute to the adsorption in 

the material. One is a chemisorptions, which is a strong bonding between gas molecules and 

active sites on the surface of the metallic particle (pressure increase should not affect the amount 

of the chemisorbed gas molecules); the second mechanism is a weak physiosorption, when gas is 

adsorbed on the surface of the substrate (generally this additional physisorption increases linearly 

as a function of gas pressure). I was interested in the amount of the chemisorbed gas, which can 

be extracted from the isotherm data by the extrapolation or bracketing methods (Quantachrome 

Instruments, 2007). Both methods evaluate the contribution of the chemi- and physiosorption to 
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the total adsorption on the surface of the Pd nanoparticles and alumina substrate. Using both 

methods would insure the accuracy of the characterization technique. This is if both methods 

were to give similar answers, but in the case of hydrogen adsorption, the bracketing method was 

giving consistently larger particle size values compared to extrapolation. This was due to the 

nature of the process of the PdH formation: at the temperatures and pressures used in the 

chemisorption experiment H2 gets absorbed not only on the surface but also in the bulk of the Pd 

metal. That is why the surface area was greatly overestimated using the extrapolation method and 

the results were also skewed using the bracketing method. The solution was to switch to CO gas 

exposures. I used two as an adsorption stoichiometry for CO (Canton, et al., 2002). The results 

were again rather scattered: the particle size was between 6.8 and 11.4 nm and the dispersion 

between 9.8 and 16.5%.  

To monitor the evolution of the particle size as a result of the multiple experimental runs, 

two samples were compared. One sample was fresh, and another one was exposed to more than 

40 experimental cycles (see Chapter V for detailed explanation on the experimental procedure). I 

expected that the Pd particle size would increase due to the particles’ agglomeration as a result of 

my experiments. The chemisorption measurements confirmed my hypothesis: the particles grew 

from 5.7 nm to 11.5 nm (the quantitative analysis may be off due to the issues described earlier, 

but the qualitative trend was confirmed). 

c) Transmission electron microscopy (TEM) 

TEM measurements were done to confirm the size of the Pd nanoparticles. TEM imaging 

was done in the Molecular, Cellular, and Development Biology center at University of Colorado, 

Boulder (courtesy of Troy Gould). Figure III - 3 (a) shows one of the several images of the 2% 
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Pd-impregnated alumina samples. ImageJ software was used to measure the diameter of the 

particles from the images. The particle size distribution is shown in Figure III - 3 (b).  

 

 

 

(a) (b) 

Figure III - 3 2% Pd-impregnated high crystalline alumina (a) TEM image shows 

the Pd nanoparticles as the dark spots on the lighter alumina surface, (b) Pd 

particle size distribution based on the measurements done from the TEM images. 

 

The distribution shape suggests several nucleation modes, similar to XRD. Based on the 

TEM, the peaks of the multimodal distribution are around 5.5, 8.5, and 11.5 nm. The main peak 

is around 5.5 nm. The TEM analysis has confirmed that my fabrication method results in the Pd 

nanoparticle formation on the surface of the oxide support with mean particle size in the order of 

5-6 nm. 

Chapter III conclusions  
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Material characterization was done using XRD, chemisorption and TEM imaging to establish 

a basic understanding of the catalyst’s structural features. I have confirmed that the fabrication 

method described in Chapter II was capable of producing Pd nanoparticles incorporated into 

alumina powder. Based on TEM analysis, the mean size of the metal nanoparticles was 5-6 nm. 

Chemisorption analysis showed agglomeration of nanoparticles as a result of multiple H2/D2 

exposures.  The significance of the last statement will be discussed in Chapter VII. 
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CHAPTER IV 

 

MEASUREMENT METHODS 

 

In the absence of a unified LENR theory, the question of possible reaction products is still 

unanswered.  A variety of measurement techniques were used to detect radiation or transmutation 

products (Storms, 2007), but what seems to unite all LENR experiments is the excess heat 

generation events. This fact explains why the majority of the experimental LENR work relies 

heavily on calorimetric measurements. 

A. Introduction to calorimetry 

Calorimetry is defined as the measurement of heat (Hemminger & Hohne, 1984) and is 

associated with a heat flux. By measuring heat exchange between two systems we can 

quantitatively assess the amount of energy (chemical, nuclear, electric) generated or absorbed 

inside the calorimeter. In the case of the gas-loading experiments the amount of released heat is 

usually small compared to the rather large applied power, which makes precise calorimetry very 

important. 

  The two systems involved in heat exchange are the measuring system, and its 

surroundings. The heat flux between the measuring system and its surroundings is mediated by 

thermal resistance. 

Three operational modes of calorimeters are available: 

 isothermal, 

 adiabatic, 

 isoperibol. 

Each of these operational modes is described by three parameters: 

 temperature of the surroundings, 
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 temperature of the measuring system, 

 thermal resistance between the measuring system and the surroundings. 

I worked in isoperibol operational mode, which is described by a constant temperature of 

the surroundings, with a possibly different temperature of the measuring system, and a finite 

non-zero thermal resistance between two. To satisfy the requirements of the constant 

surroundings’ temperature I used an isothermal oven capable of maintaining the stable 

temperature baseline within 0.01˚C. The oven contained a measuring system made up of a 

stainless steel vessel filled with reactive material. This set-up is described in more detail in the 

next section. 

B. Experimental apparatus 

I used two apparatuses for my gas-loading experiments, and two different types of the 

sample holders (vessels). The gas-loading experiments in one apparatus were completed in a 

range of temperatures from 40˚C to 390˚C, while the experiments completed in the other 

apparatus were done at 40˚C.  Figure IV - 1 shows the block diagram of the experimental set-up. 
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Figure IV - 1 Gas-loading system for excess heat measurements. 

 

The main components of my gas-loading apparatus were: 

 An isothermal chamber (an HP 5890A gas chromatograph oven) to provide constant 

temperature surroundings with a temperature baseline stable within 0.01˚C. The 

temperature uniformity across the oven was achieved by constant air flow produced 

by a heater and a fan on the back panel of the oven. The temperature of the oven 

could be set anywhere between 40˚C and 400˚C. 

 Stainless steel vessels to hold the material in the isothermal oven (Figure IV - 2). 

Temperature changes due to  reactions in the material were registered by either 

thermistors connected to the surface of the vessel (Sensor Scientific Inc. glass probe 
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10 kΩ thermistors  p/n: SP43A10310), or with resistance temperature devices 

(Omega RTD-NPT-72-E-MTP-HT) screwed into the bottom of the vessels. Figure IV 

- 2 shows the inside of the isothermal chamber where the vessels were attached to the 

gas line. Temperature changes that exceeded the oven’s background temperature 

fluctuations were associated with exothermic or endothermic heat generated in the 

system. 

 A gas line to connect the vessels to the gas-supply cylinders. Four different gases 

were supplied to the vessels. H2 and D2 were supplied through an oxygen-removing 

hydrogen purifier. The D2 gas was 99.9% pure and the H2 gas was 99.99% pure. Ar 

and He were supplied directly through the gas lines bypassing the purifier. The 

system could be pressurized up to 2.7x10
5
 Pa (2000 torr). Evacuation of the system 

was done using a turbo-molecular pump down to the 10
-5

 Pa (10
-7

 torr) level. With the 

valve to the pump closed, the stainless steel vacuum system would outgas to the 10
-4

 

Pa (10
-6

 torr) level. There was a section of the pipeline connected to the vessels that 

was shared by the gases. However, the pressure of the gas in the pipeline during the 

pressurization step was nine orders of magnitude higher than while evacuated, which 

made the residual gas contribution negligible. 

 Mass flow controllers to control gas flow, pressure gauges, and a residual gas 

analyzer (SRC RGA200) to collect the data on byproducts of the reaction were also 

used. 
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(a) (b) 

Figure IV - 2 Vessels containing material inside the isothermal chambers: (a) the 

high temperature set-up for experiments run up to 390˚C; (b) the low temperature 

set-up for experiments run at 40˚C. The temperature uniformity across the oven is 

achieved by constant air flow produced by a heater and a fan that can be seen at 

the back panel of the oven. 

 

A typical run consisted of (1) pressurization by a gas of choice, (2) a period of time when 

the vacuum system remained under pressure, and (3) an evacuation step. Heat production or 

consumption, as a result of the reaction with the gas, was determined from temperature changes 

in the vessel, whose transient temperature can deviate from the constant oven temperature 

baseline. Net positive temperature change as measured by the temperature sensors was 

considered as heating, and negative change as cooling. 

System control, temperature and pressure data acquisition were carried out with LabView 

software. 

C. Calibration (isoperibol calorimetry) 
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Heat released or consumed by the vacuum system during the gas-load/unload cycles 

resulted in temperature changes for the vessel containing the sample. These temperature changes 

(T[t]) were measured by the temperature sensors. Since the gas-loading apparatus was not a 

direct calorimetric set-up, additional calibration and data manipulation was done to convert the 

temperature change into power. The excess power generated by the vacuum system is described 

by the calorimetric equation: 

 
p C

dT
P C M k T

dt
    

where pC M  is the equivalent heat capacity of the system, Ck  is the heat transfer coefficient, and 

T  is the temperature change (Miles & Fleischmann, 2009). The pC M and Ck
 are parameters of 

the specific set-up and experimental protocol. Once determined for a given configuration, they 

can be used for subsequent runs on the same system.  

The vessel, filled with blank alumina powder, was pressurized with hydrogen. In this case 

the only heat source was the heat dissipated from the gas compression. The resulting temperature 

change was plotted over time and shown in Figure IV - 3.  
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Figure IV - 3 Experimental curve for the low-temperature system set-up: (a) the 

temperature change due to pressurization of the system up to 1200 torr. 

 

Using the known vessel parameters (volume and pressure) I linked the measured 

temperature change to the heat of the compression, which was 2.3 J. During pressurization some 

of the heat dissipated due to conduction. That data allowed me to calculate the heat transfer 

coefficient (  ).   

When pressurization was complete, it took a certain amount of time for the vessel to 

come back to thermal equilibrium with its surroundings (this is reflected in the cooling down 

portion of the temperature plot in Figure IV - 3). The cooling down process was governed by 

heat conduction and equivalent thermal mass (CpM) constants, and can be written as: 
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This differential equation can be rearranged to 

  

  
  

  

   
  , 

and when integrated becomes 

                 
  

   
 . 

The equation is in the form      and is shown in Figure IV - 4. To reduce the noise 

associated with the measurements I did 5
th

 order fit of the cooling down portion of the curve 

from Figure IV - 3 before proceeding with CpM calculations.  

  

Figure IV - 4 The cooling portion of the curve from Figure IV - 3 plotted as a 

natural logarithm of the temperature change over time: a linear fit determines the 

slope of a temperature decay. 
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The value of CpM was derived based on the temperature decay slope,             , 

where kc was calculated earlier. Tbaseline is the temperature of the vessel before the pressurization 

started. For the system that was equipped with vessels for the low temperature (40˚C) 

measurements, the calculated parameters were:         W K
-1 

and           J K
-1

. For 

the high-temperature measurement apparatus the coefficients were:         W K
-1 

and 

         J K
-1

.   

D. Evaluation of the measurement error bars 

Excess heat was calculated for each run by summing up heat released during 

pressurization step and heat consumed during evacuation which follows the chemical notion  

where exothermic heat is a negative value, while endothermic heat is  positive. The temperature 

change over time T(t) was converted into power change over time P(t) using the calibration 

coefficients calculated in the previous section. By integrating P(t) signal over time, I evaluated 

the amount of heat produced/consumed by the system. Integration was done over fixed time 

intervals: 4000 s during pressurization and 5000 s during evacuation. Second time interval was 

longer since desorption of the hydrogen isotopes is slower process compare to almost 

instantaneous absorption.  

Variation within the integration was calculated as a root mean square (RMS) of heat of 

desorption values from 20 different runs and was found to be 2.2 J.  

The systematic error was accounted for when calibration constants    and     were 

derived. Thus, the system is considered to be free of the systematic error. 

E. Radiometry and alpha particles measurements 

According to some LENR theories, alpha particle generation and energy release are the 

result of conventional deuteron fusion: 
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To test these theories, I measured radiation levels and alpha particle emission during gas 

pressurization cycles to trace possible nuclear products. Following the isotope effect 

assumptions, the nuclear products should have been released during the exposure of the material 

to deuterium gas, and not during exposure to hydrogen. 

a) X-ray measurements 

Using a Geiger counter (Ludlum Measurements model 2241, LND tube model 07-27) I 

tested 2%Pd-impregnated alumina in the presence of H2 and D2 gases to detect a radiation signal.  

The stainless steel vessel had a machined opening (see Figure IV - 5 [a]) through which 

the Geiger tube was inserted. The tube’s window was coplanar with the vessel’s inner wall and 

the detector was permanently secured to the stainless steel vessel with two-part epoxy (see 

Figure IV - 5 [b]). The vessel contained 6 g of 2%Pd-impregnated material.  
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(a) (b) 

Figure IV - 5 (a) The stainless steel vessel and the Geiger detector; (b) the 

stainless steel vessel with the Geiger detector inside the oven and ready for 

testing. 

 

The Geiger detector registered an increase in counts at about 2x10
4
 Pa (150 torr) during 

the initial pump down. The system was then pressurized with hydrogen and deuterium four times 

and pressurizations were done up to atmospheric pressure. The system was evacuated down to 

10
-5

 Pa between the runs.  Radiation bursts were always observed during the evacuation step for 

all four deuterium and hydrogen runs at about 2x10
4
 Pa pressure. Similar results were observed 

from the runs with an empty vessel (no material): the counts increase was observed only during 

the evacuation step at the 2x10
4
 Pa pressure. There was no increase registered during the 

pressurization step, when the gas was flowing into the system. Figure IV - 6 shows the radiation 

counts and the pressure change inside the vessel holding 6 g of material. An explanation for this 
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observed effect could be a leaking Geiger tube, with gas that was ionized when pressure dropped 

to the certain point. The question on why the same effect was not observed when the pressure 

was rising during the pressurization remains unanswered.  

Figure IV - 6 The radiation counts and deuterium pressure changes inside the 

vessel. The radiation spike was observed at 2x10
4
 Pa during the evacuation step. 

 

b) Alpha particles detection 

To measure alpha particle emission I used a Quad alpha spectrometer, Model 7404, from 

CANBERRA. Figure IV - 7 shows a view of (a) the spectrometer and (b) a sample holder against 

the detector.  
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(a) (b) 

Figure IV - 7 (a) The alpha spectrometer; (b) a sample holder with powdered 

sample against the detector. 

 

The 2%Pd-impregnated powder sample was evenly distributed over the one-inch Si wafer 

and installed inside the spectrometer. Since heavy alpha-particles attenuate over a short distance 

the sample had to be positioned in close proximity to the detector. To calculate the attenuation of 

the alpha particles of different energy in the hydrogen atmosphere at a working pressure of 

2.7x10
4
 Pa (200 torr) I used Bethe-Bloch formula (Bloch, 1933), which gives the rate of energy 

of heavy charged particles in a gas. The range of the particles is approximately proportional to 

      and inversely proportional to the density of the gas (Andrews, 2008). At a given pressure 

and room temperature the density of hydrogen is 11x10
-3

 kg/m
3
. Thus, the theoretical range of 

particles at 25˚C and 2.7x10
4
 Pa is             with the energy measured in MeV and the 

range measured in centimeters. Graphical representation is given in Figure IV - 8. Based on the 

data from Figure IV - 8 the attenuation range is more than 100 cm for 3 MeV particles.  In my 
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experiment the distance between the sample and the detector was 4 mm, which was short enough 

to neglect the energy attenuation in the gas. 

 

Figure IV - 8 The range of alpha particles in hydrogen at 2.7x10
4
 Pa and 25˚C, 

represented in terms of their initial energy. 

 

Deuterium and hydrogen gas were supplied to the system. The high-energy-resolution 

reverse-biased silicon detector was capable of registering alpha particles in the 3 to 8 MeV 

energy range with 11 keV FWHM resolution. The apparatus was calibrated in air with a Po-210 

test source that emitted alpha-particles at 5.3 MeV. The 2%Pd-impregnated alumina sample was 

then pressurized with deuterium and hydrogen while the spectrometer was running. Figure IV - 9 

shows the results from the deuterium and hydrogen runs superimposed over the calibration Po-

210 curve. While Po-210 showed a distinctive peak at 5.3 MeV, no alpha particles emission 

traces from the gas runs were seen in the 3 to 8 MeV range.  
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Figure IV - 9 The alpha-particles emission spectra from deuterium and hydrogen 

exposures of 2%Pd-impregnated alumina sample, and from the Po-210 source in 

air. 

 

Chapter IV conclusions 

In the absence of detectable nuclear reaction products, heat measurements were chosen as a 

main technique to study the phenomenon. I operated my gas-loading system as an isoperibol 

calorimeter. The necessary calibration was done to convert temperature changes into power. 
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CHAPTER V 

 

RESULTS:  HEAT MEASUREMENTS 

 

A. Excess heat generation and isotope effect 

I started my experimental work by confirming the excess heat production in Pd-

impregnated materials in the presence of deuterium. Using the set-up described in Chapter IV, I 

pressurized the material with either deuterium or hydrogen, while measuring the temperature 

change (Dmitriyeva, et al., 2012, Mechanisms for heat generation during deuterium and 

hydrogen loading of palladium nanostructures).  

The typical pressurization cycle consisted of 3 steps: (1) pressurization with hydrogen or 

deuterium, (2) the period of time while the system was under pressure and (3) an evacuation step. 

A conclusion on excess heat generation was made by comparing the amount of heat generated 

during the pressurization step to the amount of heat consumed during the evacuation step. The 

assumption was that any reversible heat released upon pressurization (heat of pressurization, heat 

of absorption/adsorption of hydrogen isotopes in material) would be compensated for upon 

evacuation. Any irreversible heat would result in a net energy excess/deficit, which I was 

interested in examining. 

Initially, the system was checked with alumina and zeolite powders, without any Pd 

added. In the presence of hydrogen and deuterium I found that the exothermic heat due to the 

work of pressurization (pV- work) and the endothermic heat (recovery of pV-work) during 

evacuation equally balanced one another, and no excess heat was produced.  

Figure V - 1 shows a typical run done with the 2% Pd-impregnated alumina powder in 

the presence of deuterium gas. A two-slope pressurization was needed to separate the process of 
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PdD formation (heat of loading  Qloading) from the heat of pressurization (pV-work). The first 

slope corresponds to a 0.5 sccm gas input flow, and the second slope to a 10 sccm input.  

 

Figure V - 1 Pressure and temperature change in the system. 

 

By looking at the area under the temperature curve that corresponds to the energy 

released or absorbed by the sample as a result of deuterium loading, it appears that there was 

excess heat generated by the material. The differences in the temperature signal between the 

vessel loaded with material and the reference (empty) are summarized in Table 2. 
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TABLE 2. Exothermic and endothermic heat generated during deuterium pressurization. 

Pressurization step Reference (empty) vessel Material loaded vessel 

 

Slow 

0-80 min 

 

The temperature of the empty 

vessel does not change 

because the heat of 

pressurization dissipates 

faster than it is generated. 

 

 

Heat of loading we call 

Qloading 

Fast 

80-100 min 

pV-work pV-work 

and extra heat we call Qexcess 

 

Constant pressure 

100-115 min 

No temperature change Excess heat, in the “tail”. 

Excess heat associated with 

the tail typically disappears 

after 3-4 cycles. 

 

Depressurization Endothermic heat due to 

recovery of  pV-work 

Endothermic heat due to 

recovery of pV-work and 

Qloading 

 

Based on the data from the Table 2 we can write the following equation for the 

exothermic and endothermic portions of heat generated in the material: 
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 ( )loading excessExothermic Heat Q pV work Q  
 

  ( )loadingEndothermic Heat Q pV work    

As for excess heat produced during the fast pressurization step we can say that the power 

generated is proportional to the slope of pressurization times a quantity F (the energy content of 

the “fuel”), which is shown as: 

 /excess

dp
Q time

dt
   

The fuel in the material can be exhausted or replenished (discussed further in Chapter VI).  

Along with nanoparticle agglomeration, this lead to a decrease in excess heat production over an 

increased number of runs. 

As mentioned above, the energy release, which was observed during the deuterium 

loading of Pd-impregnated material but not during hydrogen loading, is called an isotope effect. 

The isotope effect has been attributed to the nuclear nature of the excess heat generation due to 

deuteron-deuteron fusion inside the Pd lattice (Arata & Zhang, 2008). I ran an experiment with 

one of two identical samples subjected to hydrogen and the other to deuterium using the same 

two-step pressurization technique. The results are shown in Figure V - 2. 



41 
 

 

Figure V - 2 Pressure and temperature change in the system for deuterium and 

hydrogen pressurization. The time scale for the hydrogen run was split at the 

asterisk (*) in order to align the slow and fast pressurization intervals with 

corresponding intervals from the deuterium run. 

 

Heat from the PdD and PdH formation (Qloading) were similar. Endothermic heat, which 

consisted of ( )loadingQ pV work  , was the same for both materials. However, there was an 

isotope effect: extra heat was generated during the fast pressurization step with deuterium gas.  

B. Chemical reaction hypothesis 

In the absence of nuclear reaction products the question on the nature of the isotope effect 

and excess heat production remained unanswered. I decided to look for a conventional chemical 

process that could produce similar results.  Because catalytic materials are known to promote 

chemical reactions I assumed: (1) metallic nanoparticles (Pd, Pt) dissociate hydrogen isotopes 
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molecules to form metal hydride and (2) initiate a spillover when deuterium and hydrogen atoms 

are transferred from the metal to the oxide support, and (3) the remaining water that is trapped in 

the material along with the OH groups on the face of the alumina act as a fuel to support a 

hydrogen/deuterium (H/D) exchange reaction. The H/D exchange reaction is an exothermic 

reaction in which deuterium substitutes for a hydrogen atom in a chemical compound. An 

explanation of an anomalous heating and isotope effect using the concept of H/D exchange was 

first proposed by D. Kidwell and colleagues (Kidwell, et al., 2009). Figure V - 3 shows the 

schematic representation of the H/D exchange process.  

 

Figure V - 3 Schematic representation of the H/D exchange process: (1) 

deuterium is dissociated on the surface of a Pd nanoparticle forming PdD, (2) 

deuterium migrates to the oxide support surface where it (3) substitutes for 

hydrogen in water or hydroxyl group, releases hydrogen wich then recombines on 

the surface of palladium before leaving the system during the evacuation step. 
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Now let’s look closer at steps (1) and (2), focusing on the dissociation, adsorption and 

spillover mechanisms in heterogeneous catalysts. I will focus specifically on Pd-impregnated 

alumina, but the same mechanisms can also be applied to a Pt-on-oxide catalyst. 

1) The process of PdH (or PdD) formation is energetically preferable (the free Gibbs energy 

change is negative: ΔG < 0), thus, the hydrogen (deuterium) molecule will dissociate on 

the surface of Pd nanoparticle to form a layer of PdH (or PdD), which is an exothermic 

reaction.  I refer to this heat as Qloading. If I assume the gas-loading ratio of Pd and D/H to 

be 0.86 as described in the study done by Sakamoto et al. (Sakamoto, et al., 1996), then 

the energy released due to the PdD formation process is -15.7 kJ/mol, and the energy 

released due to the PdH formation is -18.4 kJ/mol. The potential energy diagram is shown 

in Figure V - 4.  

 

Figure V - 4 Potential energy diagram of hydrogen isotopes dissociation and PdH 

(or PdD) formation. H(D) in this notation means “either hydrogen or deuterium”. 
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2) The adsorbed hydrogen (deuterium) species can then move across the surface to interface 

with the alumina – a process called spillover. Spillover involves active species formed in 

one phase (activator) migrating to the surface of another phase (acceptor) that does not 

absorb otherwise (Conner & Falconer, 1995). In my case the activator is a metallic (Pd, 

Pt) nanoparticle on the surface of the acceptor, which is the alumina support. Movement 

across the surfaces can take place by forming equivalent bonds between the adsorbed 

species and the surface, and allowing the adsorbed species to reach the interface between 

the activating and accepting surface. Hydrogen (deuterium) is chemisorbed on a Pd 

surface, and physiosorbed on alumina. Since hydrogen (deuterium) species are bonded to 

the metal surface more strongly than to the alumina surface, the process of breaking one 

bond and creating another one with the accepting surface requires energy input and may 

make the process slightly endothermic (ΔG > 0). The potential energy diagram is shown 

in Figure V - 5. Diffusion across the accepting surface is expected to be a process with 

low-activation energy (Conner & Falconer, 1995). The potential energy diagram shown 

in Figure V - 6 displays hydrogen isotopes moving across the oxide support surface later 

engaged in a H/D exchange chemical reaction. 
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Figure V - 5 Potential energy diagram of hydrogen isotope spillover from metal to 

alumina. 

 

Figure V - 6 Potential energy diagram of hydrogen isotope migration on the 

surface of alumina.  

C. Calculation of heat of reaction 



46 
 

The heat of reaction is the change in the enthalpy of a chemical reaction that occurs at a 

constant pressure. It is a thermodynamic unit of measurement used to calculate the amount of 

energy per mole either emitted or produced in a reaction and is typically denoted by the unit 

kJ/mol. When calculating the enthalpy of reaction the enthalpies of formation for reactants and 

products are used. The enthalpy of formation is a function of temperature (and so is the enthalpy 

of reaction). The temperature dependence can be calculated from the specific heat capacity of the 

products and reactants. The specific heat capacity of materials depends upon the temperature. 

For a given phase of a material the heat capacity increases with temperature. The concept comes 

from statistical thermodynamics: as the temperature increases, molecules can exist in a larger 

number of states and access various energy levels of rotation and vibration. At a finite 

temperature, the vibrational and rotational degrees of freedom are not fully available but when 

the temperature increases so does the ability of the molecules to absorb energy (thus the specific 

heat capacity increases with the temperature). Heat capacity data can be found using the shomate 

equation: 

         
 

  
 

where T is the temperature in Kelvin and the quantities a, b, and c are constants which depend 

only on the material of interest and can be found in in thermodynamic tables. 

The enthalpy change of the reaction can be written as: 

                         

The derivative with respect to temperature can be written as: 

 
  

  
 
 

  
            

  
 
 

  
              

  
 
 
 

Using the heat capacity terms: 

http://chemwiki.ucdavis.edu/Physical_Chemistry/Thermodynamics/State_Functions/Enthalpy
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and integrating: 

  
  

  
 
 
          

and substituting             
  

   , the enthalpy of the reaction as a function of 

temperature can be written as: 

          
           

 

 
      

where              are calculated from the known a, b, and c coefficients for the products and 

the reactants of the reaction in the same way as   ; t = T(K)/1000;     is the enthalpy change 

for the reaction at standard conditions in units kJ/mol. 

Using the standard enthalpy of formation and shomate equation coefficients (Cox, et al., 

1989) (Chase, et al., 1985) (Ruscic, et al., 2006) (Gurvich, et al., 1989) I calculated the heat 

associated with possible H/D and reverse H/D exchange reactions at 40˚C, which is shown in 

Table 3. 

TABLE 3. Exothermic and endothermic heat associated with H/D exchange chemical 

reactions. 

Chemical reaction Heat (kJ/mol) 

OH + D = OD + H -5.03 

H2O + D2 = HDO + HD -4.59 

H2O + D2 = D2O + H2 -7.91 

OD + H = OH + D 5.03 

D2O + H2 = HDO + HD 3.43 

D2O + H2 = H2O + D2 7.91 
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As shown in the table, the reaction can be either exothermic (negative value) or 

endothermic (positive value). If the source of the anomalous heat in Pd nanosystems is the H/D 

exchange reaction, then by controlling the particular water isotope in the material and exposing it 

to either hydrogen or deuterium we should be able to demonstrate both exothermic and 

endothermic heat production in the system. Results are discussed in the following section. 

Chapter V conclusions 

I have confirmed the excess heat production and the isotope effect in Pd and Pt on 

alumina and zeolite supports. The excess heat is released during the fast pressurization step and 

proportional to the slope of pressurization times a quantity   - the energy content of the fuel. In 

the absence of a nuclear reaction product I looked at an H/D exchange reaction, which was a 

conventional chemical process that could explain the results. The heterogeneous catalyst 

provided a perfect environment for the  H/D reaction.  The oxide support is a source of the 

exchange sites (fuel: OH, OD, H2O, and D2O), while metallic nanoparticles ensure the delivery 

of the atomic hydrogen isotopes to the exchange sites through dissociation and spillover.  Based 

on the enthalpy of formation I expect both, exo- and endothermic exchange reactions to happen. 

The concept of fuel and the way it can be controlled within the material are described in full 

detail in the next two chapters. 
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CHAPTER VI 

 

H/D EXCHANGE AS A SOURCE OF CHEMICAL HEAT 

 

A. Water isotope experiment 

As stated in the previous chapter, the H/D exchange reaction can be either exothermic or 

endothermic based on which isotope is exchanged. Therefore, by controlling the particular 

isotope in the material and exposing it to either hydrogen or deuterium, I should be able to 

confirm both exothermic and endothermic heat production. The fact that material can generate or 

absorb heat based on a particular isotope concentration will prove that H/D exchange chemical 

reaction is indeed a driving mechanism for the excess heat production observed in LENR 

experiments. 

Two different approaches were taken when loading Pd into the alumina powder 

(Dmitriyeva, et al., 2012, Origin of excess heat generation during loading Pd-impregnted 

alumina powder with deuteriu and hydrogen). My goal was to make two materials: one rich in 

hydrogen with very little deuterium, and the other rich in deuterium with very little hydrogen. 

The H-rich material was virtually free of deuterons: the material was fabricated in H2O-based 

solution as described in Chapter III and any moisture absorbed from the air also came in H2O 

form.  I assumed that H-rich material was virtually 100% “protonated” (protium accounts for 

more than 99.98% of all the naturally occurring hydrogen).  

The D-rich material was fabricated from D-based chemicals in argon atmosphere; 

however, with all the precautions used to prevent exposure to air it was only partially 

“deuterated”. This partial deuteration was confirmed by nuclear magnetic resonance (NMR) 

measurements. The NMR showed the concentration ratio of the deuterons to the protons in D-

rich material to be close to 2.2. Based on this information the material was 70% deuterated.  
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  The fabricated materials were then loaded into the experimental apparatus and exposed to 

deuterium and hydrogen using the scheme presented in Table 4. During the loading there was a 

two-minute period during which the samples were exposed to air, which resulted in some 

contamination of the deuterium-based material by H2O.  

TABLE 4. Four types of experiments using different combinations of materials and gases, 

along with the expectation of exothermic or endothermic reaction in Pd-loaded alumina powder. 

 

Experiment number Material and gas Expected outcome 

1 H-rich material & H2 gas no heat 

2 H-rich material & D2 gas exothermic heat 

3 D-rich material & D2 gas no heat 

4 D-rich material & H2 gas endothermic het 

 

At this point I hypothesized that the isotope effect demonstrated in a number of the gas-

loading experiments described in the Introduction was a manifestation of the H/D exchange 

chemical reaction, where deuterium was introduced into material saturated with H2O and OH-

groups (experiment 2 in Table 4). As a result of the reversed H/D exchange an endothermic 

reaction should be observed during experiment 4 in Table 4. Little or no heat should be seen in 

experiments 1 and 3, where the material was prepared with the same isotope that was later 

introduced into the apparatus in gaseous form.   

Data from experiments 1 and 2 in Table 4 along with the reference data for the empty 

vessel are shown in Figure VI - 1. All the curves are for the second pressurization, after the 

palladium precursor was reduced in the presence of hydrogen to yield metallic palladium. 
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Figure VI - 1 Power in/out and pressure during hydrogen and deuterium runs on 

H-rich material as a function of time. The hydrogen (experiment 1) and deuterium 

(experiment 2) runs are both the second pressurization runs in a sequence of runs 

following the initial reduction runs. 

 

There are several differences in the signals generated by the empty reference vessel, the 

loaded vessel exposed to hydrogen, and the loaded vessel exposed to deuterium: 

1) loadingQ  for deuterium is close to loadingQ  for hydrogen when calculated as the areas 

underneath the curves in Figure VI - 1. For deuterium-loading this energy is (-12.9 J) and 

for hydrogen it is (-11.4 J). The amount of Pd by weight is 0.12 g. If we assume that the 

gas-loading ratio of Pd and D/H is 0.86 (Sakamoto, et al., 1996), then the maximum 
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possible energy released due to the PdD formation process is -16.6 J, and due to the PdH 

formation is -18.0 J. Exothermic heat is represented by negative values and endothermic 

heat by positive. 

2) During the faster pressurization step: 

i) Deuterium-loading shows significant excess heat production (-23.9 J),  

ii)  Hydrogen-loading shows only a pV work component, similar to the one 

generated with the reference vessel (-2.9 J). 

3) The double endothermic spike during pump-out is due to a discontinuity in the 

evacuation process at  2.7x10
3
 Pa that was introduced by collecting the RGA data 

(deloading of hydrogen and deuterium from Pd at 40° C occurred at approximately  

4x10
3
 Pa (Huang, et al., 2006). The heat associated with gas deloading from Pd is 13.4 J 

for the deuterium run and 12.9 J for the hydrogen run. 

Now I move to a discussion of experiments 3 and 4 on D-rich material from Table 4. 

Data from the second pressurization are shown in Figure VI - 2.  
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Figure VI - 2 Power in/out and pressure during deuterium and hydrogen runs on 

D-rich material as a function of time. Both the hydrogen (experiment 4) and 

deuterium (experiment 3) runs are the second pressurization runs in a sequence of 

runs following the initial reduction runs. 

 

The key points are:  

1) During the slower pressurization step the deuterium and hydrogen runs show loadingQ  

values that are close to each other (-15.3 J and -11.2 J respectively).  

2) During the faster pressurization step: 

i) The deuterium run still shows excess heat -9.7 J, but the absolute value is 

more than two times smaller than the value for the H-rich material (-23.9 J), as 

shown in Figure VI - 1.  
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ii) The hydrogen run shows endothermic heat during the faster pressurization 

step 5.4 J. The plot does not show a large endothermic dip because the heat of 

pressurization and the endothermic reaction heat are close in magnitude and 

almost compensate for each other.  

3) The double endothermic spike during pump-out is the same as discussed previously 

(10.4 J for deuterium run and 8.2 J for hydrogen run). 

Therefore, I have experimentally demonstrated a significant reduction of exothermic heat 

in D-rich material in the presence of deuterium (experiment 3 from Table 4) as well as 

endothermic heat production during the faster pressurization step (experiment 4 from Table 4). 

B. Effect of depleting and replenishing of fuel 

In a previous section I demonstrated that the material composition (whether fabricated 

with H-rich or D-rich water) affects the sign of excessQ . Based on the concept of H/D exchange I 

suggest that the fuel is of two types: it is either H2O and OH hydroxyl groups with its energy 

content, D
 
<0, or D2O and OD groups with its energy content, H >0 (subscript refers to the 

reacting gas).  

By using H-rich material and switching between deuterium and hydrogen gas I found that 

fuels can be depleted or replenished within the material during repeated gas-loading cycles. The 

quantitative data are shown in Figure VI - 3 for the faster pressurization step of three sets of gas-

loadings done with deuterium, hydrogen, and again with deuterium. 
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Figure VI - 3 Excess heat generated in H-rich material during deuterium and 

hydrogen pressurizations, as a function of run number. Data from the first run was 

omitted because heat generated during this run was dominated by the reduction of 

Pd to its metallic form. 

 

The following processes are evident in the data of Figure VI - 3: 

Depleting fuel D :  During the first set of deuterium runs (D2 - D7) I see that the excess 

heat tapers off with repeated runs. 

Generating fuel H : While D
 
fuel was depleted, the H  was generated. Switching to 

hydrogen in runs H1 - H5, I observe endothermic heat generation during the faster pressurization 
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step. As the number of hydrogen runs increases, the amount of the endothermic heat decreases in 

absolute value, indicating H fuel depletion. 

Replenishing fuel
D : After switching back to deuterium in runs D1 - D5 (second series), 

the system is recharged with the fuel 
D that supports the exothermic reaction. Notice that the 

excess heat levels recover only partially. 

C. Process characterization 

a)       RGA data on H/D exchange 

Residual gas analysis is an analytical technique used to identify the gaseous products 

present in a vacuum. A residual gas analyzer (RGA) is a mass spectrometer of small physical 

dimensions that can be connected directly to a vacuum system to analyze the gases inside the 

vacuum chamber. A small fraction of the gas molecules are ionized inside the RGA, and the 

resulting ions are separated, detected and measured according to their molecular masses. For 

each molecular mass the RGA gives partial pressure of the component. 

Both of my apparatuses were equipped with SRS RGA 200 units. RGA data was 

collected during evacuation, first by discrete sampling every 3 min at 2.7x10
3
 Pa through a 

capillary tube, and then every 5 min during pump-out when the pressure in the system was below 

20 Pa. 

The RGA data confirms the depleting and replenishing processes, as shown in Figures VI 

- 4 (a) and (b). These data were obtained during the evacuation step for the experimental runs of 

Figure VI - 3.  

The processes evident in the data of Figure VI - 3 give rise to the following effects in the 

RGA data of Figure VI - 4: 
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Depleting fuel
D :  From the first set of deuterium runs (D1 - D7) in Figure VI - 4 (a). I see 

the depletion of H2O from the material. At the same time, exchanged hydrogen is released as a 

result of this reaction, as shown in Figure VI - 4 (b).  

Generating fuel H : The D2O concentration increases during runs D1 - D7 as H2O is 

converted to D2O through H/D exchange. During the pump-out phase of each run only a fraction 

of this D2O is removed, and so it builds up in the system. 

Replenishing fuel D : The H2O concentration increases during runs H1 - H5 as D2O is 

converted to H2O and releases exchanged deuterium, as shown in Figure VI - 4 (b). As in the 

previous process only a fraction of the H2O is removed during the pump-out step, and so it builds 

up in the system. 
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(a) 

 

(b) 

 

Fig. VI - 4 RGA data showing: (a) water isotopes and (b) hydrogen gas isotopes 

as a function of deuterium and hydrogen run sequences. Data from the first run 

was omitted because heat generated during this run was dominated by the 

reduction of Pd to its metallic form. 
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 The ongoing chemical reaction depletes or enriches the material with either H2O or D2O, 

as shown in Figure VI - 4 (a). The change of the water isotope concentration in the three sets of 

runs with different gases shows this depletion or recharging process.  

b)   FTIR data on H/D exchange 

Fourier transform infrared spectroscopy (FTIR) is an analytical technique used to identify 

the components of the mix (gaseous, liquid or solid). The vibrational motions of the chemically 

bound constituents of matter have frequencies in the infrared regime. In the infrared experiment, 

the intensity of an IR beam is measured before and after it interacts with the sample as a function 

of frequency. Absorbance of the material at a certain frequency indicates the presence of certain 

chemical elements/composites. Also, based on the Beer-Lambert Law, the absorbance is directly 

proportional to the concentration of the elements in the mixture. Thus, by analyzing the FTIR 

spectrum, information about the elements/composites and their concentration in the mix can be 

derived.  

For my experiment I used a Nicolet 6700 FT-IR Spectrometer (courtesy of the Naval 

Research Laboratory, Washington DC). A 20 mg sample of Pd-impregnated alumina material 

was loaded into FTIR spectrometer using a custom-made holder, and exposed to hydrogen and 

deuterium at room temperature to collect the absorption spectra. 

Figure VI - 5 shows the change of absorbance as a result of deuterium exposures done on 

H-rich material. Absorbance of the H2O groups with O-H stretching vibrational modes around 

3360 cm
-1

 decreased while absorbance of the D2O groups with O-D stretching vibrational modes 

around 2400 cm
-1

 increased.  Same was true for bending modes: decrease of H2O absorbance at 

1650 cm
-1 

and increase of D2O absorbance at 1210 cm
-1

 (not shown on Figure VI-5). Thus, 

during deuterium runs the sample was depleted of fuel D
 
 (H2O and OH groups) and charged 
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with H  (D2O and DO groups). The small changes during the first eight deuterium runs were the 

result of the short 30 sec gas pulses, while the large changes during the last four runs were 

caused by long two hour deuterium exposures. 

 

Figure VI - 5 Change of absorbance as a result of D2 exposure to Pd-impregnated 

H-rich material. 

 

Figure VI - 6 shows a 3D image of the changing intensity of the transmitted IR signal 

during the two hours long deuterium run as a function of wavenumber. The transmittance 

increases around 3300 cm
-1

 for H2O groups and decreases around 2400 cm
-1

 for D2O, which 

means the light water was converted into heavy water in the presence of deuterium. The process 
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saturated after        min. By estimating the half distance between two adjacent Pd 

nanoparticles,        nm from the TEM image in Figure III - 3, I calculated a mean diffusion 

path of the H(D) atom on the surface of the alumina using following equation: 

   
  
 

  
 

The diffusion path Ds = 5.6x10
-20

 m
2
/s.  

 

 

Figure VI - 6 Time-resolved FTIR transmittance spectra of Pd-impregnated H-rich 

material exposed to D2 gas for two hours. 

 

FTIR measurements were also done with D-rich material, with the number of short and 

long hydrogen pulses. Results are shown in Figure VI - 7. The H2O absorbance did not change 
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much, possibly because the material was exposed to air and “contaminated” with protons during 

the loading step. However, the D2O absorbance visibly decreased during the hydrogen 

exposures, which indicated a depletion of the material from D2O - thus, the reverse H/D 

exchange. The last two curves shown in red are the deuterium exposures that were done after ten 

hydrogen runs to show that material was hydrogenated enough to start reacting with deuterium. 

The reverse change of absorbance can be explained by the fuel generation process in the same 

manner observed with RGA. 

Figure VI - 7 Change of absorbance as a result of H2 exposures done on Pd-

impregnated D-rich material. 
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c)   NMR data on H/D exchange 

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique used to 

determine the structure of mix or compound. In the presence of an external magnetic field the 

nucleus can exhibit more than one spin state and can move between these states by the 

absorption of electromagnetic radiation of a specific frequency. Thus, the NMR can distinguish 

the atoms within a molecule or collection of molecules. 

I used an NMR system (courtesy of the Naval Research Lab, Washington DC) to monitor 

the change of the number of protons and deuterons as a result of gas pressurizations. The H-rich 

and D-rich samples were pressurized with long (2 hours) and short (30 sec) pulses of deuterium 

and hydrogen inside the NMR system. Figure VI - 8 shows the results of D2 and H2 

pressurizations on H-rich material. The measurements were done continuously in the presence of 

the gas and while the system was evacuated. 



64 
 

 

Figure VI - 8 NMR scan representing the change of protium and deuterium 

concentration in Pd-impregnated H-rich material as a result of deuterium and 

hydrogen exposures. 

 

Five short deuterium pulses caused a slight upward shift in deuterium concentration 

corresponding to downward shift in hydrogen. Three long two-hour deuterium runs resulted in 

more pronounced shifts. During deuterium runs the sample was depleted of fuel D  and charged 

with H . Deuterium runs were followed by two hydrogen runs, which caused a change in 
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hydrogen and deuterium concentration again, but in the opposite direction now, indicating a 

reverse H/D exchange.  

Chapter VI conclusions 

Several mechanisms are responsible for heat generation in Pd-loaded alumina material at 

different stages of the gas-loading process. While two of them (heat of loading and heat 

associated with the work of pressurization) are reversible, there is an additional source of excess 

heat that can be either exothermic or endothermic.  

I fabricated different batches of material rich in protium or deuterium constituents. Using 

H-rich and D-rich material batches in combination with hydrogen and deuterium loading gases, I 

was able to demonstrate both exothermic and endothermic heat generation. I associated the 

particular water isotope provided to the system with a fuel, which engaged in an H/D exchange 

chemical reaction.  RGA, FTIR and NMR time-resolved measurements independently confirmed 

the H/D exchange in H-rich and D-rich materials as well as the fuel depletion or generation. 
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CHAPTER VII 

 

CONTROL OF HEAT GENERATION 

 

In previous chapters I discussed the isotope dependence of heat generation in Pd-

impregnated alumina and showed that Pd nanoparticles catalyze H/D exchange chemical 

reactions. One of the necessary reactants is a gas atom (deuterium or hydrogen), while the other 

reactant is a particular water isotope trapped in the material due to its hydroscopic nature. I 

called the water isotope fuel. This fuel can be supplied to the material in two ways: (1) the 

material can be enriched with a particular water isotope during the fabrication, or (2) by 

subsequent exposures to deuterium or hydrogen gas. The remaining question was to how to 

quantify the contribution of the H/D exchange in the overall heat production? One approach 

would be to look at the products of the reaction that occurred between the gas and the sample 

inside the vessel.  To make a quantitative analysis using this approach I would need to know how 

much gas was supplied to the system, and the amount and type of gas and water isotopes that 

were released due to the reaction. I could calculate the energy and then compare it to the 

experimentally measured heat. However, there are certain obstructions associated with this 

approach that can seriously affect the precision of the measurements. For example, any outgasing 

of the stainless steel material that makes up the vessels and pipes would skew the analysis of the 

water content.  I took a different approach to avoid these kinds of errors associated with 

measuring the reaction products and instead quantified the amount of fuel.  In this chapter I 

present an approach that allowed control of the amount of water absorbed in the material, while 

measuring generated heat in order to quantify the contribution of the H/D exchange reaction 

(Dmitriyeva, et al., 2012, Using bakeout to eliminate heat from H/D exchange during hydrogen 

isotope loading of Pd-impregnated alumina powder).  
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A. Bakeout experiment 

 The idea for this experiment was to eliminate the fuel from the material, and therefore 

stop the H/D chemical reaction. Since the fuel is a particular water isotope, then baking the 

sample in a vacuum at elevated temperature would deplete the water from the material and stop 

the heat generation or absorption in the presence of gas. The experimental procedure can be 

described in a multistep process: 

1) Heat generation/absorption  

Initially, the catalyst was tested in the presence of deuterium and hydrogen to make sure 

the H/D exchange reaction was taking place. Figure VII - 1, Part I shows the excess heat 

produced in 26 runs in which the reaction gas was switched from deuterium (first 16 runs – 

exothermic process) to hydrogen (subsequent 10 runs – endothermic process). The amount of 

heat was calculated as a difference between the energy released or absorbed by the system during 

pressurization and evacuation.  

2) Bakeout 

The system bakeout was completed by ramping up the temperature in 50˚C increments to 

390˚C, for a total time of about 35 hours. The bakeout was carried out in situ, so that the material 

was not exposed to the atmosphere between the bakeout and subsequent testing. 

3) Heat depletion  

Figure VII - 1, Part II shows the results of the following hydrogen and deuterium 

pressurizations. The first H2 exposure resulted in an increased amount of released heat. I suggest 

it was due to a chemical reaction between the gas and the surface states that were activated 

during the bakeout. However, the temperature measurements of the subsequent 20 runs showed a 
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significant decrease in the amount of heat generated by the system, with no difference between 

deuterium and hydrogen runs. For the subsequent runs RGA testing showed no evidence of H/D 

exchange reactions. 

4) Reabsorption of water from air 

  After it was unloaded from the apparatus, the material was placed on the lab scale to 

monitor the reabsorption of moisture from the air for the next 24 hours. On average my samples 

reabsorbed about 6% water by weight. Due to a delay in the transfer of the material to the scale, 

the percentage of absorbed water may be slightly underestimated. 

5) Recovery of heat production 

The material was loaded back into the apparatus and pressurized with deuterium. Figure 

VII - 1, Part III shows reactivation of the excess heat generation in the presence of deuterium. 

H/D exchange was also evident from RGA data (not shown). 
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Figure VII - 1 Heat generated by the material during deuterium and hydrogen 

pressurizations. 

 

B. Calculations 

a)      H/D exchange  

Knowing how much water was available for the H/D exchange reaction I calculated the 

amount of energy that could be generated by the sample in the presence of D2. 6% by weight of 

reabsorbed water is equal to 0.36 g. The enthalpy of the exchange reaction is 7.91 kJ/mol, which 

would result in 158.2 J of released heat. Based on the data presented in Figure VII - 1, Part I, I 

estimate that 158.7 J was generated.  

b)      Particle agglomeration 
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The agglomeration of Pd nanoparticles is a thermodynamically-driven process otherwise 

known as Ostwald ripening. Larger particles are more energetically stable than smaller particles 

due to a decrease in their overall surface area. Chemisorption analysis indicated an 

agglomeration of 5.7 nm particles into larger 11.5 nm particles as a result of more than 40 

experimental runs (Chapter III). I used the following values to calculate the change of surface 

area in the nanoparticles and the energy released from agglomeration: Pd mass = 0.12 g, density 

ρ = 12.02 g cm
-3

, Pd (111) surface energy             J m
-2

. I modeled nanoparticles as 

spheres that later agglomerated into larger spheres, therefore reducing the overall surface area. 

Based on my calculations, the change of surface area due to agglomeration was 2.65 m
2
 (reduced 

from 5.26 m
2
 to 2.61 m

2
). As a result, the estimated energy release was 5 J. 

Chapter VII conclusions 

While my earlier studies showed evidence of the H/D exchange in heterogeneous 

catalysts, the results of this chapter confirmed that the water isotopes trapped in absorptive 

material are entirely responsible for the exo- and endothermic heat generation events. I described 

a technique that allowed me to control the heat production by depleting the fuel (residual water) 

through in situ bakeout at an elevated temperature. The results of my experiment showed that a 

390˚C bakeout for at least 35 hours was sufficient. Allowing the material to reabsorb moisture 

from the air can also reactivate the reaction. Based on the material’s mass loss/gain after 

bakeout/reabsorbtion, I calculated the energy capacity of the H/D exchange reaction and 

confirmed that all observed heat can be accounted for by this chemical reaction. 
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CHAPTER VIII 

 

MEASUREMENT ARTIGACTS AS A SOURCE OF POSSIBLE MEASUREMENT 

ERROR 

 

    In Chapters VI and VII I demonstrated how the H/D exchange chemical reaction can 

explain the results of heat generation and absorption in heterogeneous catalysts at 40˚C. 

However, at temperatures above 200˚C I observed heating and cooling that could not be 

explained by conventional chemistry.  

Figure VIII - 1 shows an example of anomalous temperature shifts at 390˚C in the presence 

of hydrogen and deuterium. Based on the calibration coefficients derived in Chapter IV, the 

estimated power production was 50 mW. The effect was observed as long as the sample was 

under gas pressure (the longest run was 96 hours). The effect went away when the vessel was 

repositioned inside the oven, which gave rise to the question as to whether measurement artifacts 

could account for these observations. In this chapter I describe my investigation of anomalous 

heating and associated measurement artifacts. 
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Figure VIII - 1 Temperature changes due to hydrogen and deuterium 

pressurizations done on material at 390˚C. There is a visible temperature baseline 

shift, which corresponds to 50mW of apparent excess power generated inside the 

vessel. The baseline shift is similar for both gases.  

 

A. Hypothesis 

 The experiment was conducted in an isothermal oven. This is a high precision temperature 

control oven, with temperature variation kept within 10 mK. The sample vessel inside the oven 

went through gas pressurization/depressurization cycles to detect a temperature change due to the 

gas-loading process. The assumption in gas-loading experiments is that heat produced under gas 

pressure is an indication of a reaction inside the vessel. This is a valid assumption as long as a 

stable temperature baseline is established and temperature is uniform across the oven. However, 
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at an elevated temperature this uniformity is broken due to location-dependent variations in hot 

air flow from the oven heater. The effect becomes more noticeable as the temperature setting is 

raised. The variation can be a result of a partial blocking of hot air flow by plumbing and wiring 

associated with the vacuum system placed inside the oven. Local hot and cold spots are created 

as a result of this lack of uniformity. Because the stainless steel vessel is a poor heat conductor 

when it is evacuated, such hot and cold spots couple poorly to the temperature probe installed 

inside the vessel. However, when the vessel is pressurized, the presence of gas drastically 

changes the heat conduction inside it and causes the probe to couple more efficiently to the hot 

or cold spots in the oven than when under vacuum. This results in channeling of heat to or from 

the oven environment. This channeling effect can artificially shift the measurement baseline up 

or down, which can be mistaken for anomalous heating or anomalous cooling.  

 To test this hypothesis I artificially created and enhanced the hot and cold spot effect by 

placing a local heating or cooling element on the surface of the vessel that would later be 

pressurized with hydrogen, deuterium, helium, or argon. If this hypothesis is correct, the 

measurement baseline would shift upwards in the presence of the hot spot (dissipative resistor) 

when the vacuum system was pressurized, and in the presence of the cold spot (Peltier element) 

it would shift downwards. Moreover, the difference in the heat conduction coefficients of 

supplied gases would affect the magnitude of the baseline shift. While hydrogen, deuterium and 

helium have similar thermal conduction coefficients, argon’s thermal conductivity is ten times 

smaller. If my assumption was correct, an argon run would show a smaller baseline shift. The 

presence of material inside the vessel should also affect the conduction characteristics of the 

vacuum system, and thus the magnitude of a baseline shift. When evacuated, a loose powdered 

material is a poor heat conductor due to the spacing between the particles. When under pressure, 
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however, the gas establishes a thermally conductive channel between particles. I expected the 

effect to be the result of a combination of the different factors such as the powder’s packing 

density and the thermal conductivity of the sample. 

B. Temperature gradient emulation 

The hot spot was formed by placing a 150 Ω resistor on the surface of a vessel containing 

6 g of Pd-impregnated alumina powder. Figure VIII - 2 (a) shows the view inside the oven, with 

the resistor attached on the surface of the vessel. 

The oven was kept at 100˚C, and 1 W was dissipated in the resistor. In Figure VIII - 3 

plot (a) shows the results of the gas pressurizations carried out in the absence of an artificially 

created thermal gradient. When no power was dissipated through the resistor the only 

temperature changes during pressurization cycles were due to absorption/desorption of the 

hydrogen isotopes in the Pd and the gas compression/expansion. Since neither helium nor argon 

is absorbed in Pd, the runs with those gases showed only temperature change associated with gas 

compression/expansion. However, the picture changed drastically when I powered the resistor. 

Figure VIII - 3 plot (b) shows a visible baseline shift whenever the vacuum system was 

pressurized. The baseline shift was similar for the deuterium, hydrogen and helium runs and 

different for argon.  
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(a) (b) (c) 

Figure VIII - 2 The vessel inside the oven with a (a) dissipative resistor, (b) 

cooling element and (c) heat sleeve attached to its surfaces. 

 

The cold spot was formed by a Peltier element (TEC1-12706) held against the vessel 

surface as shown in Figure VIII - 2 (b). The oven temperature was set to 40˚C, and 0.1 W was 

dissipated through the Peltier element. I cycled hydrogen, deuterium, helium and argon through 

the vacuum system inside the oven, while having the Peltier element constantly on. The results 

are shown in Figure VIII - 3, plot (c). Each pressurization resulted in the downward shift of the 

temperature baseline. The magnitude of the shift depended on the gas used in the experiment.  
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Figure VIII - 3 Temperature changes due to gas-loading of Pd-impregnated 

alumina (a) in the absence of an artificially produced thermal gradient; (b) in the 

presence of a hot spot; (c) in the presence of a cold spot. Pressurizations were 

carried out with deuterium, hydrogen, helium and argon. 

 

Based on the information from the temperature measurements, I made the following 

conclusions: the magnitude of the shift depended on (1) the magnitude of the thermal gradient, 

(2) the thermal conductivity of the gas, (3) the presence of material inside the vessel. 

1) Increasing the local hot spot temperature resulted in an increased amount of heat 

available for channeling from/to the oven’s environment (and opposite for the cold spot), 
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affecting the magnitude of the baseline shift. I confirmed this hypothesis by dissipating 

different amount of power in the resistor. Doubling the power resulted in a doubling of 

the temperature baseline shift. 

2) Gases of higher thermal conductivity (hydrogen, deuterium and helium) showed greater 

temperature baseline shifts, as compared to less-conductive argon. However, the trend 

was qualitative than quantitative. Even though argon’s conduction coefficient is ten times 

smaller than that of helium, the baseline shift was only a factor of two smaller. I 

interpreted this as a mixed contribution of conductive and convective heat transfer 

mechanisms.  

3) The presence of a sample inside the vessel resulted in 45% increase in a baseline shift as 

compared to the shift observed from gas-loading in an empty vessel (results not shown). 

Three different materials were tested: Pd-impregnated alumina, un-impregnated alumina 

and Ni powder. Ni is three times more thermally conductive than alumina, but a simple 

proportionality between the thermal conductivity of the materials and the magnitude of 

the baseline shift was not observed. I suggest that some other material properties (e.g., 

powder density) also affected the heat conduction process. 

Using COMSOL commercial software for the finite element analysis I simulated heat 

conduction in the vessel as a result of a temperature gradient. I interpolated the hot spot 

experimental data to evaluate the magnitude of a temperature non-uniformity that could cause 

the 50 mW baseline shift shown in Figure VIII - 1. Figure VIII - 4 shows the result of the 

COMSOL simulation done with a stainless steel vessel of given geometry. The temperature of 

the surroundings was set to 390˚C. A heating stripe at 390.084˚C was simulated on the vessel’s 

surface. Due to heat transfer and losses the probe at the bottom of the vessel would read 390.060 
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˚C. Based on the simulations a 0.5 K/m temperature gradient would result in 50 mW of apparent 

heating under the gas pressure. I did not simulate the gas flow or the change of the heat transfer 

inside the vessel due to the presence of the gas, but rather used the data from the hot and cold 

spot experiments to scale the effect. More accurate approach would be simulating pressurization 

of the system in the presence of the temperature gradient by linking the heat transfer to the fluid 

dynamics of the gas. Such direct simulations of the measurement artifacts including convection 

of the gas inside the vessel can be done using the CFD COMSOL Module and may be a subject 

of a future work.  

 

(a) 

 

(b) 

Figure VIII - 4 COMSOL simulations of the temperature gradient as a result of 

the local heating around the neck of the vessel. (a) 3D simulation of the 

temperature gradient in the stainless steel vessel; (b) the temperature gradient in 

the vessel along z direction. 

 

In addition, I experimented with a heat sleeve (shown in Figure VIII - 2 [c]) that 

sometimes is used for LENR gas-loading experiments at elevated temperatures. I supplied 37 W 

of AC power to the heat sleeve. The heat sleeve created a temperature gradient across the 
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vacuum system and as a result, the baseline shifted during the gas pressurization step. This 

artificial shift is shown in Figure VIII - 5. The instability of the baseline was due to the room 

temperature variations, since the experiment was run with the oven shut off and opened to the 

ambient environment. The shifts due to the presence of the gas in the vacuum system 

corresponded to 1.2 W of apparent power production. The experiment with the heat sleeve 

provided a visual explanation of how the artificial shift of the temperature baseline could be 

mistaken for anomalous heating, when it is purely an artifact of temperature nonuniformities 

across the vacuum system.  

 

Figure VIII - 5 Temperature changes due to gas-loading of Pd-impregnated 

alumina in a vessel wrapped in heat sleeve. Pressurizations were done with 

hydrogen and helium. The experiment was carried out in an uncontrolled 

temperature environment, which explains why the temperature baseline is 



80 
 

unstable and the signal is noisy. Even with the noisy signal the temperature shifts 

are visible when gas is present in the system.  

 

Chapter VIII conclusions 

In this chapter I studied the influence of the temperature gradient on heat measurements 

during gas-loading experiments. Breaking the calorimetric requirements of the constant and 

uniform surrounding’s temperature gives rise to the temperature gradients, and creates local hot 

or cold spots across the oven. These local nonuniformities would not affect the measurements if 

the vessel inside the oven retained the same thermal properties during the entire test, but that is 

not the case for the gas-loading experiments. The presence of gas inside the vacuum system 

drastically changes the thermal conductivity of its elements, allowing stronger coupling to the 

hot or cold spots, and therefore altering the temperature measurement baseline. Using COMSOL 

commercial software for the finite element analysis I simulated heat conduction along the 

stainless steel vessel. By matching the simulations to the experimental data I was able to quantify 

the temperature gradient. According to the simulations for my system’s configuration the effect 

would become visible with a diminutive 0.024˚C temperature difference along the 4.5 cm long 

vessel wall and result in 50 mW of apparent heating. Since a number of LENR gas-loading 

experiments are run in elevated temperature conditions achieved by the local heating of the part 

of the vacuum system, this artifact can directly affect the measurements and cause the 

misinterpretation of the results. The way to account for this effect is to test the measurement 

system with the material present and an inert gas to identify potential measurement artifacts 

caused by temperature gradient. 
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CHAPTER IX 

 

APPLYING H/D EXCHANGE THEORY TO ELECTROLYTIC EXPERIMENTS 

 

In Chapters V-VII I discussed the mechanism of H/D exchange that involves hydrogen 

and water isotopes and can explain heat generation events in gas-loading experiments. The 

purpose of this study was to see if the same H/D exchange mechanism can explain excess heat 

production observed in electrochemical experiments.  

I based my calculations on the data provided privately by Professor John Dash’s group at 

Portland State University. 

The “closed cell” system schematic is presented in Figure IX - 1. In this setup the cell 

supposed to be isolated from the environment so that no products can escape the system. For this 

purpose Pt/Al2O3 pellets were used as a catalyst to recombine H2 (or D2) and O2 gases (products 

of the electrolysis) into water.    

The cell used by the group was not a calorimetric setup.  Instead, they used a two-cell 

system where the experimental cell contained a titanium cathode and a platinum anode, while the 

control cell contained a platinum cathode and a platinum anode.  Each electrode was crimped to 

a platinum wire.  Despite the presence of the recombiner both cells lost some mass. The 

composition of the lost mass was unknown. It could have been water vapor due to electrolyte 

evaporation at elevated temperatures or it could have been H2 (or D2) and O2 gases escaping 

before they recombined. The experimental cell was calibrated using the control where both the 

cathode and anode were made of inert platinum and no other processes except conventional 

calorimetric reactions were expected. The experimental cell showed the anomalous heat 

generation, and the goal of the exercise was to look at the possible chemical reactions that could 

account for this excess heat. 
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Figure IX - 1 The electrochemical cell. The electrolytic solution consists of 0.54M 

H2SO4 in D2O.  Positively charged cations travel towards the negatively charged 

cathode, where the reduction reaction occurs [electrons (e−), from the cathode 

being given to hydrogen (or deuterium) cations to form H2 (or D2) gas]. 

Negatively charged anions travel towards the positively charged anode where an 

oxidation reaction occurs, generating oxygen gas and giving electrons to the 

anode to complete the circuit. In the presence of a catalyzer (recombiner), H2 (or 

D2) reacts with O2 to form water and returns back to the solution.  

 

The cathode and anode in the experimental cell were submerged into a 130 ml solution of 

0.54 M sulfuric acid in heavy water (0.07 mol of H2SO4 in 6.93 mol of D2O). The experimental 
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cell was run at steady state for 25680 s and produced 0.59 W of estimated excess power, which is 

110.5% of the electrical power supplied to the cell. 

 The hydration reaction of the sulfuric acid in heavy water and water electrolysis resulted 

in the creation of positive cations and negative anions that traveled to the cathode or anode where 

they either recombined or oxidized, providing the cell with an electrical current. 

1) Knowing the hydrogen molar concentration in the electrolyte and assuming the hydrogen 

exists in the form of hydrones: HD2O
+
, H2DO

+
, H3O

+
, the energy of the exchange 

reaction is estimated as 0.07 mol x 7.91 kJ/mol = 554 J, which corresponds to 0.022 W of 

power. There is also a source of hydrogen in a form of water and hydroxyl groups trapped 

in the Pt/Al2O3 catalyst that is used as a recombiner. I hypothesize that 10 g of the 

catalyst would contain 6% water by weight based on the bakeout results from Chapter 

VII. Thus, the energy of the exchange reaction in the recombiner is estimated as 264 J, or 

0.01 W of power.  The remained question is: was this energy already accounted for as a 

part of a calibration routine when using a control cell? Both the experimental and control 

cells used the same electrolyte and the same Pt/Al2O3 catalyst. At this point I am going to 

assume that the H/D exchange in the electrolyte and the recombiner was a unique 

property of the experimental cell and resulted in 0.032 W of generated power. 

2) Another source of exothermic heat that differed from the control cell was the 

hydrogenation of the titanium cathode. This reaction is reversible and the process of 

deloading of hydrogen from Ti after the cell was shut off should result in heat absorption. 

However, we assumed that the measurements were stopped when the power to the cell 

was shut off and no temperature measurements were taken beyond that point. Knowing 
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the mass of the cathode and assuming its full hydrogenation:  Ti + 2H -> TiH2 the 

possible generated heat is 0.0124 mol x 133.874 kJ/mol = 1.66 kJ or 0.065 W of power. 

3) The mass loss was registered as a result of the electrolysis. The escaped products were 

unknown, however. If we assume that the electrolyte solution escaped the experimental 

cell in the form of water vapor after the hydrogen and oxygen recombined, then we can 

account for another 0.024 mol x 294.6 kJ/mol = 7.07 kJ or 0.275 W of power. 

Based on these calculations the total power for which we can account by implying known 

chemical processes in the electrochemical cell is 0.032 W + 0.065 W + 0.275W = 0.372 W. This 

number represents heat that presumably was not accounted for by the control cell. However, the 

number 0.38 W does not fully explain 0.59 W of observed excess heat. The H/D exchange can 

account for only 5.4% of this excess generated power. The scale of the energy production in 

electrochemical cells is magnitudes higher than in gas-loading systems. Thus, the contribution of 

H/D exchange is insignificant, and for the particular example discussed in this chapter it cannot 

explain the heat production results. 

Making sure the cell is closed to the environment and using calorimetric setup instead of a 

thermometry would improve the measurements and might result in different excess heat 

numbers. 
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CHAPTER X 

 

CONCLUSIONS AND FUTURE WORK 

 

A. Conclusions 

The purpose of my work was to study and explain the mechanisms of heat generation in 

Pd-impregnated oxide materials as a result of their exposure to hydrogen isotopes. Several 

mechanisms are responsible for heat generation at different stages of the gas-loading process. 

While two of them (heat of loading and heat associated with work of pressurization) are 

reversible, there is an additional source of excess heat that some researchers have associated with 

a low energy nuclear reaction. The experiments that I carried out provided insights into this 

excess heat generation mechanism, and proved it to be chemical rather than nuclear.  

The majority of my work was done with 2%Pd-impregnated alumina fabricated by 

incipient wetness impregnation. A combination of characterization methods showed that I 

synthesized nanoscale Pd clusters which were embedded into the alumina support. Oxide powder 

systems infused with Pd nanoparticles are well studied catalytic systems. I hypothesized that 

during deuterium and hydrogen gas-loading the catalyst promotes a chemical reaction under 

certain favorable conditions. If the observed reaction is indeed a manifestation of the catalytic 

nature of the Pd-impregnated alumina, than I should be able to demonstrate similar results using 

other heterogeneous catalysts. To prove my hypothesis, I fabricated samples using different 

supports (zeolite and silica) and different metallic inclusions (Pd and Pt). I also tested a 

commercially available ready-made Pd-on-alumina catalyst. The samples showed some limited 

variations during the gas-loading experiments. However, they all responded similarly with 

regards to the phenomena investigated here.  

I have grouped my conclusions under the four bullet points listed below: 
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 No radiation above the background or alpha-particle emission was observed from the gas-

loading of Pd-impregnated material, which led me to take a look at the conventional 

explanation of the excess heat generated by the material in the presence of deuterium. A 

hydrogen/deuterium (H/D) exchange chemical reaction was proposed to explain the 

excess heat generation phenomenon. The mechanism can be described as a multistep 

process: (1) deuterium gas dissociates on the surface of Pd nanoparticle, forming PdD, 

(2) deuterium atoms are transferred from the metal to the alumina support through a 

spillover process, and (3) the remaining water, which is trapped in the material along with 

hydroxyl groups on the surface of the alumina, engages in a H/D exothermic exchange 

reaction (when the hydrogen atoms are exchanged with deuterium).  The H/D exchange 

explains the isotope effect and an observed gradual reduction of the amount of produced 

heat with repeated gas exposures. Based on these observations I proposed the concept of 

chemical fuel, which is stored in the material and supports the chemical reaction in the 

presence of gas. 

 Chemical fuel can be of two types: H2O and OH groups or D2O and OD groups that are 

trapped in the material. My experiment with isotope materials proved that I can make a 

system not only generate, but also absorb heat –  all based on the type of fuel provided to 

the sample and the hydrogen isotope used for gas-loading. Different characterization 

techniques confirmed the presence of the two types of fuel, and transitioning between 

depletion and regeneration of each type of fuel. The fact that the reactions could be both 

endothermic and exothermic supported the hypothesis of the chemical nature of the 

observed phenomenon. If a nuclear reaction initiated under these conditions had been the 

cause for the excess heat, it would have been exothermic only. Furthermore, the reaction 
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would not depend on the water isotope used during the fabrication step, as long as Pd 

remained in the same form and concentration and was loaded with deuterium atoms. 

 A water isotope fuel can be controlled/exhausted by either continued gas cycling, which 

completes the H/D exchange, or by a bakeout at elevated temperature. The bakeout 

experiment demonstrated this elimination of the fuel, and as a result the heat generation 

stopped. The reaction was reactivated later through reabsorption of the water from 

ambient. Knowing the exact amount of the reabsorbed fuel allowed me to calculate its 

energy content and prove that all of the observed heat could be accounted for by the H/D 

exchange. I proposed the bakeout technique as a method to assess the energy released by 

the material due to a H/D exchange chemical reaction during the gas-loading 

experiments. 

Besides the conventional chemistry that can explain the results of the gas-loading 

experiments in heterogeneous catalysts, I looked at the other processes that can be mistaken for 

anomalous heating in the presence of gas:  

 There is a temperature measurement artifact associated with gas-loading experiments at 

elevated temperatures. This artifact is a result of the temperature gradients across the gas-

loading system. The ruling assumption of gas-loading experiments is that heat produced 

under the gas pressure is an indication of the reaction. However, the presence of gas 

significantly changes the heat conduction inside the system. Therefore, when placed 

under gas pressure, the heat transfer efficiency changes. This change in heat transfer in 

the presence of temperature gradients artificially shifts the temperature measurement 

baseline, which could then be mistaken for excess heating.  I have demonstrated how this 
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measurement artifact can alter the measurement baseline and proposed a technique that 

would ensure proper system calibration. 

B. Future work 

a)      Heat transfer simulation 

Coupling the experimental data to the software simulations is a powerful approach to 

study calorimetric systems. Commercially available finite element solvers and the simulation 

software package COMSOL can be used to model heat transfer inside the system via conduction, 

convection, and radiation. The Computational Fluid Dynamics (CFD) COMSOL multyphysics 

module does sophisticated fluid flow simulations, specifically: conjugate heat transfer with non-

isothermal flow. The software can be used to simulate the gas flow conditions inside the oven 

and experimental vessel to explain and predict the rise of the measurement artifacts as described 

in Chapter VIII. Hydrogen, argon or helium heat conduction coefficients can be assigned when 

simulating flow inside the vessel. Coupling the CFD physics to the Heat Transfer in Solids 

physics module in the software will allow to calculate the time resolved temperature change at 

any point of the vacuum system.  

b)     Ni-H system 

 I looked at a gas-loading system following multiple reports of anomalous heat generated 

by such systems in the presence of deuterium. However, there is another large cluster of work 

that has been done with Ni and NiCu alloy materials and hydrogen, and for which H/D exchange 

reaction does not provide an explanation.    Hydrogen, as a reaction gas, does not satisfy the 

condition for the exothermic reaction described in Table 4. Hydrogen exposure would produce 

either no heat if the material is saturated with H2O, or the reaction would be endothermic if D2O 
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is trapped in the sample. I do not dismiss the chemical explanation to the excess heat observed in 

Ni-H systems, but the details of the reaction are unknown.  

Ongoing research of Ni nanopowders includes two decades of experimental work done 

by F. Piantelli (Piantelli, 2012), (Focardi, et al., 1999). More recent results have been reported by 

F. Celani, who was experimenting with NiCu Constantan wires (Celani, et al., 2012). In 2009 the 

Electric Power Research Institute in Palo Alto, Calif., sponsored work of B. Ahern, who 

repeatedly observed anomalous heating of nano-Ni composite powders under hydrogen pressure. 

Ahern’s material was independently tested by the group of Japanese scientists from Kobe 

University, Osaka University, Technova Inc. and Santoku Corp., who confirmed the effect. As a 

result, the emphasis of their research was switched to Cu-Ni-ZrO2 powders and hydrogen loading 

instead of Pd-D2 (Sakoh, et al., 2012). Interestingly enough, the same material was tested in our 

laboratory using the protocol proposed by B. Ahern himself. I did not observe any anomalous 

heating; moreover, the results I obtained testing Ahern’s material initiated the study of the 

measurement artifact described in Chapter VIII.  

 The origin of a possible heat generation mechanism in Ni-H systems is unknown and 

worth looking into. The effort should be applied into careful calibration of the gas-loading 

system to avoid measurement artifacts, since excess energy generation events from Ni-H systems 

were reported at the elevated temperatures. To investigate the reaction products different 

characterization techniques could be used in the same manner described in Chapter VI. The fact 

that the presence of the nano-features is essential to a successful demonstration of heat 

production in the material makes one expect that the catalytic properties of Ni metal play a role 

in initiation of a reaction. 
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Abstract 

A recently issued patent [1] describes a method by which vacuum energy is extracted from gas flowing through a Casimir cavity. 

According to stochastic electrodynamics, the electronic orbitals in atoms are supported by the ambient zero-point (ZP) field. 

When the gas atoms are pumped into a Casimir cavity, where long-wavelength ZP field modes are excluded, the electrons spin 

down into lower energy orbitals and release energy in the process. This energy is collected in a local absorber. When the 

electrons exit the Casimir cavity they are re-energized to their original orbitals by the ambient ZP fields. The process is repeated 

to produce continuous power. In this way, the device functions like a heat pump for ZP energy, extracting it globally from the 

electromagnetic quantum vacuum and collecting it in a local absorber. This energy can be used for heating, or converted to 

electric power. 

 

We carried out a series of experiments to test whether energy is, in fact, radiated from Casimir cavities when the appropriate gas 

flows through them. The Casimir cavity devices we tested were nanopore polycarbonate membranes with submicron pores 

having a density of 3x108 pores/cm2. Gas was pumped through the membranes in a stainless steel vacuum system, and emitted 

energy was measured using a broadband pyroelectric detector and lock-in amplifier. Emission in the infrared was clearly 

observed. We analyzed the emission from different gases and cavities to determine its origin. None of the conventional 

thermodynamic models we applied to our data fully explain it, leaving open the possibility that it is due to Casimir-cavity-

induced emission from ZP fields. 
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1. Introduction 

Physical effects resulting from zero-point (ZP) energy are well established [2]. This has led to several 

proposals and reviews discussing the extraction of ZP energy to use as a power source [3] [4]. The 

extraction methods usually involve ZP energy in the form of electromagnetic ZP fields.  Our approach 

makes use of a Casimir cavity. It consists of two closely-spaced, parallel reflecting plates. Because the 

tangential electric field is reduced (to zero for a perfect conductor) at the boundaries, limits are placed on 

the ZP field modes between the plates, and those modes having wavelengths longer than twice the gap 

spacing are suppressed to a degree determined by the plate reflectivity. 

According to stochastic electrodynamics (SED), the energy of classical electron orbits in atoms is 

determined by a balance of emission and absorption of vacuum energy [5]. By this view of the atom, 

electrons emit a continuous stream of Larmor radiation as a result of the acceleration they experience in 

their orbits. As the electrons release energy their orbits would spin down were it not for absorption of 

vacuum energy from the ZP field. Accordingly, the orbital energies of atoms inside Casimir cavities 

should be shifted if the cavity spacing blocks the ZPF required to support a particular atomic orbital. An 

exploratory experiment to test for a shift in the molecular ground state of H2 gas flowing through a 1 µm 

Casimir cavity was carried out, but without a definitive result [6]. 

A suitable term for this is the “Casimir-Lamb shift” [7]. The energy levels of electron orbitals in atoms 

are determined by sets of quantum numbers. However the electromagnetic quantum vacuum can change 

these energies, as exhibited in the well known Lamb shift. In the case of the Lamb shift the nucleus of the 

atom (a single proton for hydrogen) slightly modifies the quantum vacuum in its vicinity. The result is 

that the 2P1/2 and 2S1/2  orbitals, which should have the same energy, are slightly shifted since they spread 

over slightly different distances from the nucleus, and hence experience a slightly different 

electromagnetic quantum vacuum. The electromagnetic quantum vacuum can be altered in a much more 

significant way in a Casimir cavity. Hence the term Casimir-Lamb shift.  

 In a 2008 patent [1] Haisch and Moddel describe a method to extract power from vacuum 

fluctuations that makes use this effect of Casimir cavities on electron orbitals. The process of atoms 
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flowing into and out from Casimir cavities is depicted in Figure 1. In the upper part of the loop gas is 

pumped first through a region surrounded by a radiation absorber, and then through a Casimir cavity. As 

the atoms enter the Casimir cavity their orbitals spin down and release electromagnetic radiation, depicted 

by the outward pointing arrows, that is extracted by the absorber. On exiting the cavity at the top left, the 

ambient ZPF re-energizes the orbitals, depicted by the inward pointing arrows. The gas then flows 

through a pump and is recirculated through the system. The system functions like a heat pump, pumping 

energy from an external source to a local absorber.   

 

 

Fig. 1. Schematic representation of the vacuum-energy extraction process. Gas circulates through the system. The electronic 

orbitals of the gas atoms spin down to a lower level as the gas enters the Casimir cavity, radiating the excess energy to the 

absorber. Upon exiting the cavity the orbitals are re-energized by the ambient zero-point field. In this way, energy is collected 

from the ambient zero-point field and deposited on the absorber. 

 

According to the initial analysis [1], for an electronic orbital to be suppressed inside a Casimir cavity 

its orbital frequency should match the frequency of a ZP field mode that is suppressed inside the cavity. 

For most atoms this corresponds to a Casimir-cavity gap spacing of less than 0.1 micron. So that the 

spacing is sufficiently large to be practically obtainable an atom with a relatively low-frequency outer 

orbital is required. The orbital frequency for large atoms like Xe, which has a relatively low-energy outer 

orbital, is lower than that for small atoms like He, where the outer orbital energy is larger. Therefore we 

expected that the emission would be stronger for a Casimir cavity having 0.1 µm gap and Xe gas, rather 

than for larger cavity spacings or smaller atoms. 
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In this paper we describe a test of the ZP energy harvesting concept. A series of experiments was 

carried out to measure radiation produced from gas flowing through Casimir cavities. The results and 

analysis are presented in the following sections. 

2. Experimental 

2.1. Choice of Casimir cavity 

To form Casimir cavities we used Whatman polycarbonate Nuclepore track-etched flexible membranes 

with pore sizes of 0.1, 0.2, and 0.4 µm. These membranes withstand 180° C temperature stress without 

any visible deformation, so that they can be easily coated with metal in our thermal evaporator. The 

membranes are 2.54 cm in diameter, which makes them easy to handle. Gold was thermally evaporated at 

two angles to enhance coverage of the pore walls. The coverage was confirmed by scanning electron 

microscope (SEM) inspection, as shown in Figure 2. We chose gold as a coating metal since it is 

commonly used in the field of Casimir force measurements [8].  

 

(a) 

 

(b) 

Fig. 2. SEM images of the Nanopore polycarbonate membrane coated with 70 nm of palladium metal, shown at two 

magnifications. In (a) the white line corresponds to a length of 2 µm, and in (b) to 0.1 µm. From (b) it can be seen that top surface 

and the upper parts of the sidewalls are covered with metal. 

Ideally, the metal coating should be highly reflective in the near-ultraviolet wavelength range to satisfy 

the Casimir cavity condition, since that range corresponds to twice the cavity spacing. However, 

modifications to the Casimir force formulation done by Lifshitz have shown that the effect occurs also for 

dielectric surfaces [9]. Our initial assumption was that if we were to see any quantum energy radiation 
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from the nanopore membrane it would be only for metal-coated filters, but we cannot exclude the 

possibility of observing radiation from uncoated filters, due to the Lifshitz formulation. Therefore we 

experimented with both, coated and uncoated membranes. 

2.2. Experimental apparatus 

We used a custom-machined copper holder, shown in Figure 3, to secure the filter inside the vacuum 

chamber.  

 

 

 

 

Fig. 3.  Copper holder with an uncoated nanopore polycarbonate membrane mounted in it. 

The experimental set up is shown in Figure 4. Gas entered into the vacuum chamber and passed 

through the filter. The main chamber was made of stainless steel and used copper gaskets for sealing. It 

was pumped by a mechanical pump and could achieve a base pressure of 10
-3

 torr. Before each 

experimental run the chamber was evacuated for 20 min.  
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Fig. 4. Measurement setup for detection of radiation.  

The flow was modulated by closing and opening the valve to the vacuum pump. We chose this 

approach, rather than modulating the input flow, to obtain a sufficiently small time constant, which is the 

inverse product of the volume and the gas flow at the given pressure. The volume of the main chamber 

was 320 cm
3
. In contrast, the volume of the gas line to the pump was only 4.6 cm

3
.  Therefore, we 

obtained an almost 100 times faster system response by modulating the flow from the vacuum pump side 

than we would have by modulating the input gas flow. The main chamber pressure remained virtually 

unchanged while the drop of the pressure in the vacuum line modulated the flow of gas through the 

membrane.  

A wide bandwidth SPH-49 pyroelectric detector from Spectrum Detectors Inc. was used for the 

radiative output measurements. The detector had a responsivity of 1.9 x 10
4
 V/W and could detect signals 

at the level of nanowatts. Since the detection was based on a bolometric effect, the spectral response of 

the detector was flat over a wide range of wavelengths. Our device had a chromium coating, so that its 

response was constant from 0.6 µm to 5 µm. To reduce noise the detector was mounted inside a grounded 

metal box. The pyroelectric detector was placed outside the chamber facing the sample through an 
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infrared-transparent ZrSe window. The distance between the sample and the detector was 9 cm. We 

looked for a difference in the detector output, as measured using the lock-in amplifier, between the flow-

on and flow-off conditions. Pressure inside the chamber was in the range of 1-10 torr. The modulation 

frequency for the ZPE experiment was 0.5 Hz.  

At such low pressure the mean-free path length of the gas atoms was comparable to the thickness of the 

membrane and greatly exceeded the pore diameter. Under these conditions the flow through the filter was 

not laminar and can be considered to be thermal random bouncing of atoms entering and exiting the 

cavities with some net drift flow induced by the opening and closing the valve to the pump. If we assume 

that the radiation was emitted every time the atom entered the cavity, we would not be able to correlate 

this emission with the reference signal that modulates the flow. On the other hand, if the atom that went 

into the pore (or another equivalent atom) bounced back and reabsorbed the radiation it had just shed, we 

need to account only for the signal from the atoms that went all the way through the filter due to the net 

flow. In this case the emitted radiation would have the on/off frequency measured with the lock-in 

amplifier. We have based our experiment on this assumption. 

3. Results and discussion 

Both coated and uncoated membranes were tested with four different gases (He, Ar, N2, and Xe). The 

measured radiation for filters with a 0.2 µm pore size is shown in Figure 5. The goal was to measure the 

effect of gas type on the radiation. We found clearly measureable radiation from the gases flowing into the 

membranes with Casimir cavities through them. However, one cannot jump to the conclusion that we 

found evidence for ZP energy extraction. Instead, we went to great lengths to investigate conventional 

mechanisms that might give rise to the observed signals. 

The original expectation was that ZP radiation would be strongest and most likely to be observed when 

using gold-coated filters because Casimir cavities are commonly formed from metals, and Xe gas because 

the lower frequency atomic orbital in Xe is a closer match to the suppressed ZP energy mode in our 

Casimir cavities than that for the lower-mass atomic gases. Any other gas in combination with either a 
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coated or uncoated filter would give a smaller signal, if any at all. The results we obtained directly 

contradict this. The highest radiated power was observed with He gas, the smallest atomic number among 

four gases, and with uncoated filter. A possible explanation of the observed phenomena is presented in the 

following sections. 

 

Fig. 5. Emitted radiation measured for N2, Ar, Xe and He gasses flowing through uncoated and gold coated polycarbonate 

filters having 0.2 µm pore size. 

3.1. Power balance and heat transfer 

To analyze the power balance of the system we calculated the power provided to the system and the 

radiated power measured by the detector. The power in was calculated as the product of the gas flow and 

the pressure drop across the membrane. For a 5 sccm flow and a pressure drop of 4 torr the resulting 

power is ~2 x 10
-5

 W. The radiated power measured over the area of the detector at these conditions was 

~10
-7 

W.  If we assume that the location of the radiation source is the filter surface, then we need to 

account for the distance of 9 cm that separates the filter from the detector and the solid angle of 2π over 
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which the power is radiated. The total power output would then have been two orders of magnitude 

higher, bringing the number up to ~4 x 10
-5

 W and making it higher than the power in. This would mean 

there was source of power inside the chamber in addition to that from gas pressure. In reality, the stainless 

steel walls of the main chamber reflected a substantial portion of the IR radiation striking the chamber 

walls, making it available for detection. We analyze this quantitatively in the section on the Joule-

Thomson model. At this point it appears that the power out was less than the power in and there is no 

need to invoke an additional power source, e.g., from ZP energy emission, inside the chamber.  

Since gases were flowing inside the chamber, we must consider not only purely radiative but also 

conductive and convective heat transfer mechanisms. Therefore, the differences in the heat conduction 

coefficients of gases and their diffusivity are likely to have contributed to the measured temperature 

variation. It can be seen from Figure 5 that the signal levels for the different gasses flowing through the 

uncoated membrane followed the order of the thermal conduction coefficients and diffusivity of the gases 

(highest for He, lowest for Xe with N2 and Ar in between).  However, this trend is qualitative, not 

quantitative. The difference in the thermal conduction coefficients for He and Xe is close to 30 (He: 0.142 

W/m/K, Ar: 0.018 W/m/K, N2: 0.024 W/m/K, Xe: 0.00565 W/m/K), but the difference in the detected 

signal from an uncoated membrane is an order of magnitude lower, as evident from Figure 5.   

For the case of metal-coated membranes, we introduce one more component into our heat transfer 

analysis. It is the thin gold film, which has a thermal conductivity of 30 times that of helium. An 

interesting observation is that with the gold-coated membrane we cannot distinguish between the signals 

from the different gases within measurement error, as shown in Figure 5. In this case the heat could have 

been conducted away through the metal film and further through the massive copper holder, and such heat 

transfer is no longer limited by the properties of the gases.  

One factor that likely affects the magnitude of the signal is the emissivity of the material. The gases 

that we used in our experiment do not emit thermal radiation in the range of interest [10]. The emissivity 

of the gold at long wavelengths is nearly zero (0.01 to 0.1 at 1.6 µm and longer), while the emissivity for 
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plastic materials is approximately 0.95. This could explain why we see higher signals from the uncoated 

polycarbonate filter compared to the gold-coated one, as shown in Figure 5. 

3.2.  Heat production inside the chamber: non-Casimir-cavity-induced mechanisms 

We examine several non-Casimir-cavity-induced mechanisms that might account for the observed 

radiation to see if there is a plausible explanation that requires only conventional thermodynamics. 

3.2.1. Joule-Thomson model 

 

To assess whether the Joule-Thomson effect [11] could be the source of the signal we first address 

whether we have observed it. In one of our modified experiments we were able to distinguish heating 

from cooling with the measurement system. 

We conducted a modified experiment where the filter was replaced by a 12.5 µm thick Mylar film 

having a single hole 3 mm in diameter.  The gas expanded through this hole into the gas line leading to 

the vacuum pump. The phase measured by the lock-in amplifier was positive and 180° off from the phase 

measured in the experiment with the nanopore filter, indicating cooling. This is how we knew the effect 

that we observed with gases flowing through the Casimir cavities was not due to the Joule-Thompson 

effect. 

The signal amplitudes for the different gases followed the sequence of the gases’ Joule-Thomson 

coefficients (highest for Xe). Based on literature values [12] Xe possesses the highest coefficient, 1.87 

ºC/atm at 1 atm, while He has the smallest, –0.0625 ºC/atm at 200 atm, with Ar (0.372 ºC/atm at 1 atm) 

and  N2 (0.2217 ºC/atm at 1 atm) in between. These numbers, however, are for pressures higher than in 

our experiment. We make that assumption that for the lower pressure these coefficients follow the same 

trend (Xe > Ar > N2 > He). In fact, the signal from He was so small we were not able to obtain reliable 

measurements from this gas.  

By knowing the pressure drop at the point of gas expansion, ~2 torr, and using the above values for the 

Joule-Thomson coefficients we calculated the associated temperature changes. For Xe gas this 

temperature drop was 4.9 x 10
-3

 ºC. Translating the detected signal to the temperature change using black 
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body spectrum calculations, the number comes out to be ~0.001 K. We noted earlier that not all the 

radiated power reaches the detector. Our calculated value for Joule-Thomson cooling is close to the 

measured one for the 3 mm hole assuming that we measure 20% of total emission, rather than the 

reduction by two orders of magnitude calculated earlier on the assumption that there was no reflection by 

the inner walls of the stainless steel chamber. 

3.2.2. Frictional losses model 

 

In this model we assume that our filter works as a passive element dissipating heat in analogy with a 

resistor in an electrical circuit. Using this analogy the gas flow is analogous to the current and the 

pressure drop across the filter is similar to the voltage drop across the resistor. The pressure drop depends 

linearly on gas flow and the slope is different for different gases, with Xe being the most “resistive” and 

He being the most “conductive”. These results are in agreement with the studies done by Roy and Raju on 

the gas flow through microchannels [13]. 

If these frictional losses are what produced the heating effect and gave rise to the detector signal, the 

power should depend quadratically on the gas flow (in the same way that electrical power depends 

quadratically on the electrical current passing through a passive element). In our case the power depends 

on the flow linearly. This does not automatically disqualify the frictional losses approach. Our system 

tended to stay in thermal equilibrium with the environment, with the gas in the chamber exchanging 

energy with the external environment through the walls and providing a channel for the heat/energy to 

escape. This may have affected the way power depends on the flow, causing it to show a more linear 

dependence.  

Looking now at the variation of radiant power over different gases, the fact that the largest pressure 

drop at a given flow rate was associated with Xe means that this gas should have dissipated more heat 

than any other gas according to the frictional losses model. However, taking the heat conduction into 

account can dramatically change the picture. The magnitude of the signal can be affected by thermal 

conductivity and diffusivity of the gases, which are the highest for He and lowest for Xe. That could 
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explain why we observed the most radiation from He and the least from Xe, even though the frictional 

losses model predicts the opposite outcome. 

Based on the lack of a quadratic power dependence on flow and the opposite gas order for frictional 

losses and measured power, it appears that the frictional losses model does not explain the observed 

behaviour. However, as noted above, it may be possible to explain the result if the heat conduction and 

diffusivity of the gases are included. To better assess whether these factors can account for the observed 

behaviour will take additional experimental and analytical investigation. 

3.2.3. Absorption/adsorption and release model 

 

When a gas is brought into contact with a solid, molecules are pulled from the gas and are either 

absorbed inside of the solid, or adsorbed on the outside, attached to the surface. The absorption/ 

adsorption process is exothermic. It may be possible that the heating we see is due to adsorption on the 

membrane when the gas pressure rises. In the absence of gas flow we would then observe desorption, 

which is an endothermic process. Adsorption is proportional to the pressure of the gas and the number of 

vacant sites for adsorption. The number of such sites depends on the surface area. We used three different 

pore size filters, 0.1 µm, 0.2 µm and 0.4 µm, which have surface area of 9.42 cm
2
, 18 cm

2
 and 12.56 cm

2
, 

respectively. Signal from these different filters measured at pressure of ~5 torr did not follow the expected 

trend of surface areas. Based on this result we have rejected the absorption/adsorption model as a possible 

explanation for the radiation we observed. 

3.2.4. Turbulence model 

 

Turbulence is another possible heat source.  The theory of energy dissipation in locally isotropic 

turbulence was developed in the early 1940s by Kolmogorov [14]. In our experiment the rate at which the 

gas flowed through the nanopore cavities was below 2 cm/s. The resulting Reynolds number is far below 

what would be required to cause turbulence at the exit. Also, the viscosities of the gases used in the 

experiment have values that are very close to each other (Ar: 2.1x10
-4

 poise, N2: 1.66x10
-4

 poise, Xe: 
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2.1x10
-4

 poise, He: 1.86x10
-4

 poise). This means that even if turbulence did cause the radiation from the 

filter it alone could not explain the differences in signal levels for the different gases.  

3.3. Heat production inside the chamber: Casimir cavity-induced model 

After failing to explain the observed radiation using conventional thermodynamics, we analyze the data 

as if the signal were the result of ZP energy emission. If we assume that each atom releases on the order 

of 10% of its energy, approximately 1eV per transaction upon entering the cavity, it is straightforward to 

calculate how much output power we should see from the gas flowing through a given nanopore filter. It 

is on the order of milliwatts, which is thousands times larger than the measured power, assuming that we 

detect at least 20% of emitted radiation. 

If the radiation is due to Casimir cavity effects there are several factors that are likely to have reduced 

the radiated power and would account for its being lower than expected: 

 The filters contain a range of nanopore sizes and shapes, as shown in Figure 2. Given that only a 

small fraction of the nanopores within the filter satisfy the Casimir cavity conditions, the number of 

atoms experiencing a large change in ZP field density was reduced substantially. Thus, the amount of 

power radiated by the atoms passing through the membrane was reduced. 

 Atoms may need to undergo a collision in order to radiate power. Since we were running our 

experiments at low pressure (several torr), the mean-free path length of the gas atoms inside the 

cavity is on the order of 10 µm, which exceeds the dimension of the cavity itself. This means a 

fraction of the atoms could have passed through the cavity undisturbed, retaining their electrons in 

their initial unperturbed states without radiating any power. 

Because the underlying SED theory is still under development, we cannot predict precisely what 

wavelengths of the ZPE field support the atomic orbitals, and hence what the optimum Casimir cavity 

dimensions are for shifting the orbitals. We cannot predict the emission wavelengths, and so the majority 

of the emission may lie outside the range of our detector.  There may be other factors that can influence 

the change in the orbital size inside the Casimir cavity. Therefore the fact that the measured power was far 
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below that expected from ZP energy-induced radiation does not disqualify that as a possible source for the 

observed radiation. 

4. Conclusions 

A clear infrared signal has been measured for gases flowing through polycarbonate Casimir cavity 

nanotubes, both when uncoated and when coated with gold. The signal was obtained for all gases tested, 

N2, Ar, Xe and He. In an attempt to explain the results in terms of conventional thermodynamics, we 

analyzed them to see if Joule-Thomson cooling, frictional heating, adsorption/absorption heating, or 

turbulence could account for the results. None of these clearly fit the data, but it is possible that a 

combination of effects could. At this point it appears that ZP energy extraction from the quantum vacuum 

remains a possible explanation for the observed radiation. More experimental work will be required to 

determine if this is the correct explanation. 
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