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Optical spectra are typically normalized per unit wavelength or per unit photon energy, yielding two
different expressions or curves. It is advantageous instead to normalize a spectrum to a constant
fractional bandwidth, providing a unique expression independent of whether the bandwidth is in dimen-
sions of wavelength or of photon energy. For the Sun, whereas a per-unit-wavelength spectrum peaks
in the green and a per-unit-photon-energy spectrum peaks in the IR, when the proposed normalization
is used, the output peaks in the red. This approach applies to any spectral source and provides curves
of constant spectral resolving power, as produced by many spectrometers. © 2001 Optical Society of
America
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1. Introduction

Optical spectra are commonly expressed in one of two
ways, per-unit-wavelength interval or per-unit-
photon-energy interval. Plots of these two expres-
sions exhibit substantially different shapes and peak
at different wavelengths. Because much of terres-
trial fauna, flora, and technology is sensitive to the
solar spectrum, its intensity distribution and peak
wavelength are significant. The conventional ways
of expressing spectra are described, and an alterna-
tive normalization for the spectral output of a black-
body is developed and generalized to any spectral
output. This approach yields a curve that is inde-
pendent of whether the scale is per-unit-wavelength
interval or per-unit-photon-energy interval and is
shown to correspond naturally to spectral resolution.

2. Constant-Interval Approach

Because the radiation from a spectrally continuous
source is distributed over the spectrum, as any inter-
val in the spectrum approaches zero the intensity at
that discrete point goes to zero. The intensity must
therefore be specified over defined intervals within
the spectrum. Typically, when this spectral inten-
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sity is considered as a function of photon energy, the
intervals are of photon energy \Dv or in the limit
\dv, where v is the optical radial frequency. The
dimensions of the function are then power density
per-unit photon energy. The constant-photon-
energy-interval spectral irradiance for a blackbody of
temperature T, expressed as a function of \v and of l,
s

dJv

\dv
5

1
4p2c2
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where k is the Boltzmann constant, c is the speed of
light, and wavelength l 5 2pcyv.1 It is worth em-
phasizing that in plotting Eq. ~1! one implicitly as-
sumes that the photon-energy interval \dv is
constant.

To a good approximation the spectral irradiance of
the Sun corresponds to that of a blackbody at a tem-
perature of 5800 K. This is plotted2 by use of Eq. ~1!
ersus photon energy as the leftmost curve in Fig. 1
nd versus wavelength as the rightmost curve in Fig.
. The peaks in these curves occur where

\v

kT
5

2p\c
kTl

5 2.822.

For a blackbody temperature of 5800 K this peak in
dJvy\dv occurs at a photon energy of 1.41 eV, corre-
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sponding to a wavelength of 879 nm, which is in the
near IR.

Usually, when the irradiance is considered as a
function of wavelength, the intervals are of wave-
length Dl or, in the limit, dl. The dimensions of the
function are then power density per-unit wavelength.
The constant-wavelength-interval spectral irradi-
ance for a blackbody of temperature T, expressed as
a function of l and of \v, is1

dJl

dl
5 4p2\c2 1

l5@exp~2p\cykTl! 2 1#

5
\

8p3c3

v5

exp~\vykT! 2 1
. (2)

In plotting Eq. ~2! one implicitly assumes that wave-
length interval dl is constant.

Equation ~2! is plotted versus wavelength as the

Fig. 2. Normalized spectral output for a
5800 K blackbody source approximating the
Sun versus wavelength. The rightmost
curve ~dJvy\dv! is intensity per-unit-photon
energy from Eq. ~1!, the leftmost curve ~dJly

l! is intensity per-unit wavelength from Eq.
2!, and the central curve J9 is intensity per-
nit fractional bandwidth from Eq. ~3!. The
espective wavelengths and heights of the
eaks are 879 nm and 2.81 kW cm22 eV21 for
Jvy\dv, 500 nm and 8.44 kW cm22 mm21 for

dJlydl, and 633 nm and 4.72 kW cm22 for J9.
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leftmost curve in Fig. 2 and versus photon energy as
the rightmost curve in Fig. 1. The peaks in these
curves occur where

2p\c
kTl

5
\v

kT
5 4.965.

For T 5 5800 K, this peak of dJlydl occurs at a
photon energy of 2.48 eV, corresponding to a wave-
length of 500 nm, which is in the green.

We are left with the disconcerting result that the
shape of a spectrum and the position of its peak de-
pend on whether the irradiance is considered over a
constant interval of photon energy or of wavelength.3
The difference in spectral shapes is due to the fact
that, with increasing wavelength, intervals of con-
stant wavelength correspond to increasingly narrow
intervals of photon energy.
Fig. 1. Normalized spectral output for a
5800 K blackbody source approximating the
Sun versus photon energy. The leftmost
curve ~dJvy\dv! is intensity per-unit-photon
energy from Eq. ~1!, the rightmost curve
~dJlydl! is intensity per-unit wavelength
rom Eq. ~2! and the central curve J9 is in-
ensity per-unit fractional bandwidth from
q. ~3!. The respective photon energies and
eights of the peaks are 1.41 eV and 2.81 kW
m22 eV21 for dJvy\dv, 2.48 eV and 8.44 kW

cm22 mm21 for dJlydl, and 1.96 eV and 4.72
kW cm22 for J9.
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3. Constant-Fractional-Bandwidth Approach

It is desirable to find a unique expression for the
spectrum that is independent of whether the inter-
vals under consideration are of photon energy or of
wavelength. Furthermore, this approach should
correspond naturally to how a spectrum is measured.
I present a method that provides a spectrum having
a unique peak position and then justify the approach.

Instead of the constant photon-energy interval of
Eq. ~1!, an interval having a constant fractional band-
width of the spectrum can be chosen. The fractional
bandwidth is Dvyv or, in the limit, dvyv. The term
\dv in Eq. ~1! is replaced by \dvy\v. The resulting
expression for the irradiance per unit fractional pho-
ton energy, dJvy~\dvy\v!, expressed as a function of
v and of l, is

J9 5
\

4p2c2

v4

exp~\vykT! 2 1

5 4p2\c2 1
l4@exp~2p\cykTl! 2 1#

. (3)

As with the above constant-photon-energy-interval
case, instead of the constant wavelength interval of
Eq. ~2!, an interval with a constant fractional band-
width of the spectrum can be chosen. The term dl in
Eq. ~2! is replaced by Dlyl or, in the limit, dlyl. The
resulting expression for the irradiance per-unit frac-
tional wavelength, dJly~dlyl!, is identical to Eq. ~3!.

Thus curves of the irradiance per-unit fractional
hoton energy, dJvy~\dvy\v!, and per-unit fractional

wavelength, dJly~dlyl!, have the same shape and
the same peak wavelength. The J9 of Eq. ~3! may
therefore be identified as a general expression for
blackbody irradiance per unit fractional bandwidth.
The dimensions for J9 are simply power density.

Equation ~3! is plotted as the central curves in Figs.
1 and 2. The peak of J9 occurs where

2p\c
kTl

5
\v

kT
5 3.921.

For T 5 5800 K this peak is at a photon energy of 1.96
eV, corresponding to a wavelength of 633 nm, which
is in the red.4

This equivalence of irradiance per unit fractional
photon energy and per unit fractional wavelength for
blackbody radiation generalizes to any spectrum.
This can be shown by taking the derivative of both
sides of v 5 2pcyl. The result is dvyv 5 2dlyl.
Replacing 6dv by the interval Dv and 6dl by the
interval Dl yields the general result

Dvyv 5 Dlyl. (4)

Thus the fractional photon energy is equivalent to the
fractional wavelength at any part of a spectrum.

4. Discussion

From the discussion above, expressing the irradiance
per-unit fractional bandwidth appears to be advan-
tageous. A unique expression is obtained whether
the spectrum is considered over wavelength or over
photon energy. I now examine whether this ap-
proach is consistent with how a spectrum is mea-
sured using common instruments.

The conventional way to define the chromatic dis-
crimination of a detector is in terms of the chromatic
resolving power lyDl,5 where Dl is the smallest re-
solvable wavelength difference measurable at a mean
wavelength l. This resolving power is just the re-
ciprocal of the fractional bandwidth. Thus there is a
natural link between the spectral discrimination of a
detector and the spectral output of a source when the
output is expressed per constant interval of the frac-
tional bandwidth.

For a grating spectrometer the chromatic resolving
power is

lyDl 5 umuN, (5)

here m is the order number for the diffraction ~con-
tant for a particular measurement! and N is the
umber of grooves illuminated uniformly on the grat-

ng.6 Therefore, for a grating spectrometer, lyDl
nd hence the fractional bandwidth are constant.
For a prism spectrometer a similar argument can

e made within limits. The prism chromatic resolv-
ng power is

l

Dl
5 tUdn

dl
U , (6)

where t is the greatest thickness of the prism through
hich the rays pass and n is the refractive index.6

Within a limited spectral range the dispersion is of-
ten close to being constant, and, consequently, dnydl
is approximately constant. Therefore, to the extent
that the dispersion is constant within the spectral
range of interest, for a prism spectrometer, lyDl and

ence the fractional bandwidth are constant.
When measuring the solar spectrum with conven-

ional spectrometers, one obtains the constant-
ractional-bandwidth curve J9 of Fig. 2 rather than
he more commonly plotted constant-wavelength-
nterval curve dJlydl. It appears to be advanta-

geous to leave the curve in its natural form, per-unit
fractional bandwidth, rather than renormalizing the
data per-unit wavelength.

Obtaining the integrated irradiance over a finite
interval of the spectrum is straightforward. If the
integration is over wavelength, one must integrate
~J9yl!dl, or, if the integration is over photon energy,
one must integrate ~J9yv!dv.

5. Conclusions

Any optical spectrum can be expressed as irradiance
per-unit fractional bandwidth rather than per-unit
wavelength or per-unit photon energy ~or frequency!.
With this normalization an expression for the spec-
tral output of a source then corresponds to constant
spectral resolving power. The relative magnitude at
each point in these spectra is directly proportional to
20 January 2001 y Vol. 40, No. 3 y APPLIED OPTICS 415
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that which would be measured with common spec-
trally resolving detectors.

Furthermore, expressions of irradiance per-unit
fractional bandwidth provide unambiguous curves
that do not depend on whether the output is consid-
ered per-unit wavelength or per-unit photon energy
and simply have dimensions of power density. For
the case of the Sun this approach yields a spectrum
that peaks in the red at a wavelength of 633 nm.

The author thanks Kelvin Wagner and W. Thomas
Cathey for helpful comments on constant-fractional-
bandwidth normalization.
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