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ABSTRACT  

Electrochemical reduction and oxidation of PEDOT:PSS are used to modulate the channel current in organic 
electrochemical transistors (OECTs). In addition to changing PEDOT conductivity over more than 4 orders of 
magnitude, these redox reactions cause a shift in the PEDOT:PSS absorption spectrum. In this work we have used this 
shift in the absorption spectrum to make spatially and temporally resolved measurements of the redox state of 
PEDOT:PSS. By applying these measurements to the PEDOT:PSS in an OECT channel, we have shown that the redox 
state of the PEDOT:PSS is not constant along the channel during transistor operation. Furthermore, we have shown that 
the time constant of the optical transition is significantly larger near the transistor source than it is near the transistor 
drain. These results are not considered in existing models of the OECT transient response, and they may lead to a better 
understanding of geometry-performance relationships in OECTs.  

Keywords: Organic electrochemical transistors, PEDOT:PSS, electrochromism, organic electronics, iontronics, 
biosensors 
 

1. INTRODUCTION  
The biocompatibility1 and exceptional transconductance of OECTs2 make these devices promising for a number of high 
sensitivity biosensing applications. For instance, they have been used in vitro to detect epithelial cell integrity after 
exposure to various toxins3, complementary DNA strands with concentrations down to 10 pm4, and acetylcholine 
concentrations5. Additionally, they have been used in vivo as bioresorbable electrocardiographic recording devices6 and 
as sensors to detect epileptic activity in rat brains7. For such applications, both high transconductance and high speed 
operation are needed. Therefore, a detailed model of the transient response of an OECT is necessary in order to correctly 
interpret the measured signal. However, such a model does not currently exist in the literature. In this paper, we will 
demonstrate a method that can be used to obtain data that will inform such a model. To demonstrate this method, we will 
begin with an introduction about OECT operation, modeling, and characterization. Then we will discuss our methods for 
making spatially and temporally resolved measurements of the hole density in OECTs. And, finally, we will discuss our 
results obtained using this method. 

1.1  OECT operation 

 The functional element of an OECT is a conducting channel made of poly(3,4-ethylene-
dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a highly-conductive, degenerately doped organic semiconductor. 
PEDOT:PSS can have conductivities greater than 1000 S/cm8; however, when the PEDOT is electrochemically reduced 
to its neutral state, according to equation (1), its conductivity can drop by more than 4 orders of magnitude.  
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5. CONCLUSION 
 
In conclusion, we have demonstrated a novel method for characterizing OECTs. We have shown that we can use 
spatially and temporally resolved optical measurements to obtain conductivity profiles along the OECT channel and that 
the conductivity change occurs faster near the source than it does near the drain. Although we have not associated our 
results with a quantitative model, we have shown the utility of using these methods. Ultimately, these methods will be an 
important tool in improving our existing understanding of OECTs because they provide data that cannot be obtained via 
electrical measurements alone, and they will help inform an improved model of the transient response in OECTs.   
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