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ABSTRACT  

For holographic photopolymer media, the “formula limit” concept enables facile calculation of the fraction of writing 
chemistry that is usefully patterned, and the fraction that is wasted.  This provides a quantitative context to compare the 
performance of a diverse range of media formulations from the literature, using only information already reported in the 
original works.  Finally, this analysis is extended to estimate the scope of achievable future performance improvements.  
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INTRODUCTION  
In holographic photopolymers, optically driven diffusion generates refractive index modulations, via compositional 
modulations of an initially homogeneous mixture of two index-contrasting components.  This diffusive mechanism is 
“self-processing” i.e. does not require a wet chemical processing step, in contrast to other photopolymer patterning 
techniques (e.g. solvent wash for photoresist or micro-stereolithography).  This makes it an appealing material platform 
for applications which require thick media layers that are not suitable for wet processing. 

These include applications in which the recorded index modulations serve either as images (e.g. data storage, display 
holography) or as optical elements (e.g. custom GRIN components, integrated optical devices).  All of these applications 
are characterized by simultaneous stringent requirements on both optical properties (achievable index modulation, 
sensitivity) and mechanical and process properties (cheap, stable, mechanically rugged). 

This set of simultaneous requirements means that materials design involves a series of delicately balanced tradeoffs [1].  
For example, increasing the volume fraction of the writing chemistry (as opposed to the inert binder or host matrix) will 
increase the index modulation of recorded features (the “signal” term) but will also increase recording-induced optical 
scatter (often the dominant “noise” term).  Furthermore, it will also increase the recording-induced volume shrinkage, 
which leads to distortion of recorded features, especially in thick samples. 

Thus, good “signal-to-noise” recording performance is achieved through, first, maximizing the index-contrast benefit 
achieved per bond converted, and second, minimizing the shrinkage and scatter penalties accrued per bond converted.  
The index-contrast benefit is typically pursued via synthesis of monomers containing a large number of index-
contrasting groups per reactive group, within the constraints imposed by solubility in the organic matrix and diffusivity 
[2].   The scatter penalty per bond converted can be minimized by adjusting the recording kinetics to suppress the self-
amplification of so-called parasitic or noise gratings, which are typically the dominant source of recording-induced 
scatter [3].  Finally, the shrinkage penalty per bond converted can be minimized by using ring-opening writing 
polymerizations, in which this shrinkage is partially compensated by a volume increase due to ring-opening [4] [5]. 

This brief discussion hints at the proliferation of diverse design strategies pursued in holographic photopolymer media 
over the last two decades, further illustrated schematically in Figure 1.  We will show below that the “formula limit” 
concept enables quantitatively meaningful comparisons among these various media formulations, in terms of the 
achievable recording fidelity.  It should be emphasized that this formula limit can be calculated using only readily 
available data about the media components, and does not require the development of a comprehensive quantitative 
reaction/diffusion model.  To show the ease and utility of this calculation, we perform it for a range of significant 
formulations from the literature.  This calculation also enables an estimate of how much further improvement in index 
modulation is possible for this class of media. 
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Thus, an upper bound on achievable Δn is given by a hypothetical optimized material with equal volume fractions of two 
perfectly counter-diffusing components with n = 1.4 and 1.7, yielding a usable Δn of ~ 0.15.  Surprisingly, existing 
media formulations, with reported Δn as high as 0.04 to 0.05, are already within a factor of ~3 of this theoretical upper 
bound, and thus relatively small future improvements in Δn can be expected.  This analysis affords a better 
understanding of the application space for diffusion-driven photopolymers, and highlights the growing importance of 
design strategies which address other aspects of performance, such as matrix-tethered functional groups for increased 
spatial and temporal control of photopolymerizations. 
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