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High Strain Composites are thin, carbon fiber reinforced polymer (CFRP) laminates that
are designed to operate at strains higher than 1% under bending. Their failure properties are
significantly different than those of thick laminates, including relatively high tensile strains and
thickness dependence. We present a model to capture such behavior by taking into account
the brittle nature of carbon fibers, quantified through an experimentally derived weakest
link Weibull model. Instead of fully resolving the composite micromechanics, we analyze the
composite as a combination of independent critical elements, so that failure of one of such
elements results in catastrophic failure of the laminate. This paper presents the details of the
model, as well as the experimental results used to characterize the fiber failure properties. The
model is then applied to two different loading cases: pure tension as a simple example, and the
more interesting case of bending with non-uniform curvature. After fitting to experiments, our
model is able to capture the thickness dependence observed in Column Bending Test results.

I. Introduction

The use of carbon fiber composites is becoming increasingly widespread in deployable space structures. They are
often used in strain energy based architectures (see Figure 1), which are an alternative to traditional designs that use
complex mechanical elements. The stored strain energy allows for autonomous self-deployment, without the requirement
of any external mechanical actuation. In order to improve the packaging ratio of these structures, recent designs are
focusing on High Strain Composites (HSC), a class of composite materials designed to operate at strains higher than 1%
in bending [1]. They are very thin laminates whose failure properties are significantly different from those of traditional
composites. In addition to the high bending strains that they can sustain, two main differences are observed. First, when
subjected to bending, HSCs fail in tension as opposed to failure due to microbuckling on the compression side [2].
This is attributed to the phenomenon known as shear stabilization [3–5], in which shear of the matrix between fibers
in tension and compression is sufficiently high to increase the local loading necessary for the fibers to microbuckle.
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Second, their failure under bending shows a dependency on the laminate thickness, with the failure strain increasing
with decreasing thickness [6]. Several experimental and analytical studies have focused on the failure of HSCs [6–13],
but the precise mechanics leading to their failure, particularly under bending is still not well understood.

Fig. 1 Strain energy based elements used in deployable space structures : (a) spacecraft structure prototype [14]; and (b) deployable reflector [15]

We hypothesize that the reason for the thickness dependence of HSCs under bending, as well as the high strains
observed in experiments, is due to the material properties of carbon fibers. Carbon fibers are brittle materials, and as
such their failure is probabilistic in nature, determined by the presence of flaws. As a result, the failure of carbon fibers
is volume-dependent and results in a wide range of possible tensile strengths. In the case of traditional composites, this
effect of volume dependency of carbon fibers can be neglected, since at very large volumes of loaded fibers this variation
becomes negligible. This is not the case for HSCs under bending, due to the small thickness and the concentrated region
in which folding takes place. The goal of the present study is to incorporate the probabilistic nature of brittle failure in
the modeling of HSCs by using a Weibull-type probability distribution to describe the behavior of such fibers.

The structure of this paper is as follows. Section II provides a background of the Weibull probabilistic distribution,
which is used to describe the failure of carbon fibers in tension. Section III describes the testing campaign undertaken to
characterize the failure parameters used in the Weibull-type failure description of IM7 fibers. In Section IV, we explain
the failure model for a laminate made of IM7 fibers utilizing the parameters obtained from Section III. We do so with
help of an example of a laminate subjected to tensile loading. We then apply this failure model to a laminate subjected
to the Column Bending Test, which is the standard procedure to experimentally characterize the failure properties of
HSCs under bending. We do so by utilizing the theory of elastica to predict strains and failure probabilities throughout
the bent laminate.

II. Background

The brittleness of carbon fibers has been studied in depth [16–21]. It arises from internal flaws such as cracks,
impurities, and misoriented crystallites. Brittle behavior is modeled using the ’Fiber Weak Link’(FWL) theory, which
considers the fiber to be a chain of independent links, which will fail when the weakest of those links fails. Since
the internal flaw is likely to be larger for a specimen of greater size, the fiber strength is gauge length dependent. As
a result, composites made of carbon fibers exhibit size effects [21, 22]. In addition, the variation in internal flaws
between different fibers is responsible for a considerable spread in the tensile strength of carbon fibers. This calls for a
probabilistic approach to model their failure, and so the weakest link theory is often combined with a Weibull power law
description of survival probability - also known as weakest link Weibull model [23].

Using the weakest link Weibull model, the failure probability of a fiber subjected to a given stress is given by the
Weibull distribution:

P(σ,V) = 1 − exp
(
−

V
V0

(
σ

σ0

)m)
. (1)
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Here, P is the probability of failure of a single fiber of volume V subjected to a uniform tensile stress σ. The
two normalizing values, V0 and σ0 are reference values. Physically, V0 is the volume of fiber used to experimentally
characterize their failure, and σ0 represents the reference stress for which a fiber of volume of V0 has a probability
of failure P = 1 − exp(−1) ≈ 0.632. The exponent m is the Weibull modulus; it is material dependent, and typically
varies between 3 and 8 for carbon fibers [20, 24]. Physically, it represents the spread of possible failure stresses of
the carbon fiber, thus accounting for the variation in flaw sizes for different fibers. Higher values of m indicate that
defects are evenly distributed throughout the fibers, thereby resulting in most fibers failing at nearly the same stress.
Lower values of m indicate that defects are fewer and more scattered, resulting in a large spread for the failure stress.
This effect is shown in Figure 2, where for a value of m = 100, we can see that most fibers are likely to fail around
σ = σ0. As m decreases, the probable range of failure stresses for a fiber increases. Naito et. al [20] have shown that
for polyacrylonitrile (PAN) and pitch based carbon fibers, an increase in tensile modulus and mean tensile strength is
directly related to a decrease in Weibull modulus m.

Fig. 2 Typical response of Weibull distribution function for different values of m.

Since carbon fibers form the backbone of CFRPs, it is essential to take the statistical distribution of the internal
flaws into account to determine the failure of the laminates, especially for applications in which loading is concentrated
in a small volume of the laminate. Several studies on CFRPs have focused on the application of Weibull probability
distribution to evaluate failure of laminates [25–31]. Some of these models attempted to fit the Weibull parameters to
evaluate the failure strength of laminates for a variety of applications such as investigating the effect of variation of strain
rates and temperatures [26], evaluating hoop stress utilizing NOL ring tests [27], and failure due to fatigue [31] . Park et
al. developed an analytical model [28] utilizing an improved continuum damage mechanics model incorporating five
Weibull parameters. Others developed analytical models based on Weibull distribution for single fibers, and performed
numerous experiments to validate their model [25, 29]. This study is one such extension of the Weibull probability
model for single carbon fibers to evaluate the failure of a bent laminate subjected to the Column Bending Test.

III. Testing of IM7 Fibers to Evaluate Failure in Tension

In this study, we will focus on the failure properties of IM7 fibers, obtained through tensile testing on single filaments.
IM7 is a high strength, intermediate modulus, PAN based aerospace grade carbon fiber; its manufacturer-provided
properties [32] are detailed in Table 1 .

Tensile Strength (12K tow) 5654 MPa
Longitudinal Tensile Modulus, Et 276 GPa
Tensile Failure Strain, ε f 1.9 %
Filament Diameter, df 5.2 µm
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Table 1 Properties of IM7 provided by the manufacturer - Hexcel [32].

The tests followed the ASTM D3379 standard (Standard Test Method for Tensile Strength and Young’s Modulus for
High-Modulus Single-Filament Materials, withdrawn, but with no replacement) [33]. A total of one hundred fibers
were tested using an Instron 5969 with a 10 N load cell. The gauge length of each fiber was 30 mm and a uniform
displacement rate of 1 mm/min was applied to each fiber until failure was observed. The stress was calculated using the
nominal cross sectional area, calculated using the nominal, df = 5.2 µm. The strain was directly obtained from the
gauge length. The typical response of a fiber is shown in Figure 3. The initial flat region prior to 0 % strain corresponds
to the release of slack in the fiber, which was introduced to avoid breakage while manipulating the sample prior to the
test. The response shows a slight stiffening as the strain increases, followed by sudden failure.

Fig. 3 Representative result of the tensile test of a single fiber.

The results of all tests performed are shown in Figure 4 as stress versus strain at failure. The material properties
provided by Hexcel were also used to obtain the nominal axial stiffness given by E f πrf 2, which is represented by the
dashed line in Figure 4. The deviations in stiffness are likely due to the different levels of stiffening of the fibers under
tensile loading, as well as variations in the cross sectional area, since not all fibers have the same radius. For further
computations, the strain at failure was the preferred value to characterize the failure of the fibers, since it is directly
obtained from the gauge length and the test data, and does not rely on the cross sectional radius.

Rewriting the Weibull model in terms of strain yields:

P(ε,V) = 1 − exp

(
−

V
V0

(
ε

ε0

)m′)
. (2)

After basic rearrangement, we get:

log
(
log

1
1 − P

)
= m′ log ε − m′ log ε0 . (3)

This is a linear relationship of the form y = αx + β, where y = log
(
log 1

1−P

)
and x = log ε. The equation can be fit

to the experimental results, yielding ε0 = exp
(
−
β

m′

)
and m′ = α. The probability of failure Pi for the i-th fiber strength

was estimated [34] using:
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Fig. 4 Results of all tests conducted on IM7 fibers. The line shows the nominal axial stiffness, E A, calculated using values provided by the
manufacturer.

Pi =
i − 0.5

N
. (4)

The results are shown in Figure 5. For a reference volume of V0 = 6.37 × 10−4 mm3, we find m′ = 4.983 and
ε0 = 1.8402%.

Fig. 5 Test results conducted on single IM7 fibers, expressed as a linear relationship.

IV. Analysis of Failure Probability for Bending of High Strain Composites

We now present a model that used the experimentally-obtained probabilistic description of single fiber failure to
predict the failure of laminates. Our analysis is able to show dependence of failure strain on the variation in thickness for
an HSC specimen under bending. It is important to emphasize that this analysis only deals with the probability of fiber

5

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n 
A

ug
us

t 1
3,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

02
08

 



failure in tension; failure in compression, and in particular the suppression of microbuckling due to shear stabilization in
very thin laminates needs to be addressed in parallel.

A. Failure Model

Previous models such as those of Ibnabdeljalil and Curtin [35] have considered it as a valid assumption to have
the whole laminate follow the weakest link theory, i.e. once a sufficiently large element of the laminate fails, the
crack propagates and the entire laminate fails. The main issue with this approach is determining the size of the
characteristic element responsible for failure, as well as its failure probability as a function of the applied loading. As a
first approximation, we assume that there exists a characteristic volume V∗ that controls the weakest link theory for
the laminate. We assume this characteristic volume V∗ to be a cuboid of size V∗ = Lx Ly Lz , where the direction z is
aligned with the fibers. Henceforth, this cuboid would be referred to as the critical failure element. For this critical
failure element, there will be a critical fiber failure density, ρ∗, which is the percentage of fibers that need to break within
V∗ to cause a catastrophic failure of the element, and therefore the laminate. Instead of modeling the micromechanics of
the composite, as some of the studies referenced in Section II, here we follow a simplified approach in which we find
these two parameters V∗ and ρ∗ by fitting to experimental values. As such, we avoid modeling the micromechanics at
the fiber level, and we assume that the fibers are completely independent, i.e. breakage of one fiber has no effect on the
fibers surrounding it. Instead, it is assumed that fitting the required values of V∗ and ρ∗ to experiments would take that
effect into account in a phenomenological way. In reality, the failure of one fiber results in an increase in loading in the
surrounding fibers [36–39], and so our value of ρ∗ might not agree with the density of broken fibers in a real specimen
at the point of failure [40].

To illustrate the above, let us consider a specimen subjected to tensile loading, i.e. a uniform strain state throughout
the specimen. Consider the length, width, and thickness to be 30 mm, 25.4 mm and 1 mm respectively, with the fibers
aligned with the length. This size is typical of an HSC subjected to the Column Bending Test. Since all the critical
failure elements are subjected to the same strain, the probability of failure of each critical failure element, Pf ,V ∗ , has the
same value throughout the specimen. The probability of failure of the laminate, Pf ,lam, in this case is given by:

Pf ,lam = 1 −
(
Ps,V ∗

)nV ∗ inlam = 1 −
(
1 − Pf ,V ∗

)nV ∗ inlam , (5)

where Ps,V ∗ represents the probability that the critical failure element survives and nV ∗inlam represents the number of
critical failure elements in the laminate. For a specimen of volume V , the value nV ∗inlam is given by:

nV ∗inlam =
V
V∗

. (6)

Figure 6 shows a range of Pf ,V ∗ that result in Pf ,lam > 0.5 for this specific laminate under tension, as a function
of nV ∗inlam. It was observed that holding V constant and varying V∗ gave the same results as vice versa, and thus
for this case, V was held constant while V∗ was the parameter that varied. The dashed line represents a V∗ value
corresponding to Lx = Ly = Lz = 25 rf . Here, rf is the radius of the fiber (2.6µm for IM7 fibers as shown earlier in
Table 1). Furthermore, let us assume ρ∗ = 0.03. These specific values for V∗ and ρ∗ were obtained from two sources:
literature and numerical experiments. Previous numerical studies of the micromechanics of uniaxial composites [38, 39]
have shown that the influence of a broken fiber extends up to a distance of about 40 rf . Although our model assumes the
fibers to be independent, this particular region of increased stress concentration serves as a great reference value in
conducting numerical experiments that were performed to obtain a range of acceptable values for the parameters V∗

and ρ∗. The results are shown in Figure 9. Furthermore, it was seen that this particular set of parameters provided an
excellent fit for an analysis considering the bending loading in a Column Bending Test, which will be discussed later in
Section IV.B.
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Fig. 6 Probability of failure of a laminate as a function of number of critical failure elements, for different values of the probability of failure of
the element (Pf ,V ∗ ). We focus on the range of Pf ,V ∗ that results in Pf , lam > 0.5 for a laminate under pure tensile loading of length, width and
thickness equal 30 mm, 25.4 mm and 1 mm respectively. The dashed line represents aV ∗ value corresponding to Lx = Ly = Lz = 25 r f .

We now focus on calculating the value of the probability of failure of the critical element, Pf ,V ∗ , as a function of the
applied loading and the material parameters. In order to do so, we first evaluate the probability of failure of a single fiber
of length Lz , that we denote as Pf ,1 f iber . This represents the probability that a fiber would fail in the region contained
in a given critical failure element. To further simplify the analysis, we assume the strain to be constant within a given
critical failure element. This assumption is true in the case of pure tension, and will lead to some error in more complex
loading states. It results in Pf ,1 f iber having the same value for all fibers within that element; a different element could
have a different Pf ,1 f iber depending on the loading state within the laminate. In order to evaluate Pf ,1 f iber , first let us
consider a total of n f fibers inside a critical failure element of characteristic volume V∗. Thus, we have:

n f =
Lx Ly Vf

π r2 , (7)

where Vf represents the volume fraction of the fibers in the laminate and Lx Ly represents the cross-sectional area of
the critical failure element. The above equation for n f assumes unidirectional fibers. For other architectures, similar
calculations adjusting for the ratio of fibers aligned in a given direction could be obtained. If the given critical fiber
failure density is ρ∗, we can obtain the critical number of fibers that need to fail to cause catastrophic failure of the
critical element as n f ,cr = n f ρ

∗. For most of our calculations (unless specified), we round off both n f and n f ,cr , since
we need integer numbers for our analysis.

The probability of one fiber breaking in a given critical failure element under strain ε is given by Equation 8:

Pf ,1 f iber = 1 − exp

(
−

Lzπr2

V0

(
ε

ε0

)m′)
, (8)

where V = Lzπr2 represents the volume of the fiber and V0, ε0 and m′ are the reference values obtained from single
fiber testing, as described in Section III.

Figure 7 shows the probability of failure of one fiber, Pf ,1 f iber , under pure tensile loading, as a function of the
applied strain, ε, and the length of the fiber, Lz . The scale on the right indicates logarithm (with base 10) of Pf ,1 f iber .
The plot shows that the probability of failure increases not only with the applied strain, but also with the length
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considered (Lz), since an increase in fiber volume results in a greater number of flaws. However, Pf ,1 f iber is much
more sensitive to strain compared to Lz , due to the exponent m′ = 4.983 on the strain in Equation 8.

Fig. 7 Contour plot of probability of failure of one fiber, Pf ,1 f iber , as a function of strain in the fiber (ε) and length of the fiber, Lz . The scale
indicates the logarithm (with base 10) of the probability of failure of one fiber.

Once we have obtained the probability of failure of a fiber, Pf ,1 f iber , we can evaluate the probability of failure of
the critical failure element, Pf ,V ∗ . In order to do so, assuming that the fibers are independent, we can represent the
number of fibers failing by a binomial distribution function, X ≈ B(n, p), which models the probability Pr(X = k) of
having exactly k successes out of n total trials, each one with probability p. In our case, p is the probability of failure of
a single fiber, p = Pf ,1 f iber , the number of trials is the number of fibers, n = n f , and the k successes will be the failed
fibers. The probability of failure of the critical element is therefore given by the probability of having at least n f ,cr

fibers failing, that is:

Pf ,V ∗ = Pr(X ≥ n f ,cr ) = Pr(X = n f ,cr ) + Pr(X = n f ,cr + 1) + Pr(X = n f ,cr + 2) + ... (9)

However, solving Equation 9 directly is numerically expensive. As an alternative, we use the accumulative binomial,
given by the regularized incomplete beta function, Ix(a, b). In particular, the probability of a binomial B(n, p) being less
than k, is given by:

Pr(B(n, p) ≤ k) = I1−p(n − k, k + 1) . (10)

This calculation is more efficient than Equation 9, and the incomplete beta function is available as a built-in function
in most mathematical packages.

Equation 10 provides the probability of having less than a given number of failures. In that case, the volume V∗ will
survive if there are less than n f ,cr − 1 failures, and will fail in all other cases. This means, V∗ will break only when we
have more than n f ,cr fibers failing, out of n f total fibers, each one with a probability Pf 1 f iber . Mathematically, this can
be represented as:

Ps,V ∗ = Pr
(

B(n f , Pf 1 f iber ) ≤ n f ,cr − 1
)
= I1−Pf 1 f iber

(n f − n f ,cr + 1, n f ,cr ) , (11)
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and so the probability of V∗ failing is the opposite:

Pf ,V ∗ = 1 − Pr
(

B(n f , Pf 1 f iber ) ≤ n f ,cr − 1
)
= 1 − I1−Pf 1 f iber

(n f − n f ,cr + 1, n f ,cr ) , (12)

where I1−Pf 1 f iber
(n f −n f ,cr +1, n f ,cr ) is the incomplete beta function, Ix(a, b), with x = 1−Pf 1 f iber , a = n f −n f ,cr +1

and b = n f ,cr .

To illustrate the method, let us consider again the same laminate under pure tension. Figure 8(a) and (b) show
the predictions obtained from Equations 8 and 12, respectively. The range of values considered has been chosen so
that the analysis yields the same range probability of failure of the laminate shown in Figure 6. The dashed line in
Figure 8 corresponds to a total number of fibers within the critical failure element n f = 119, obtained by substituting
our reference parameter Lx = Ly = Lz = 25 rf in Eqn. 7. The figures are useful to identify that values in the range of
Pf ,V ∗ ∈

[
3 × 10−7, 1 × 10−6] and Pf ,1 f iber ∈

[
2.4 × 10−4, 4 × 10−4] , yield the desired range of Pf ,lam > 0.5 for the

failure of the laminate. It is important to clarify that to obtain these results, the critical numbers of fibers n f ,cr has not
been rounded off to an integer value in order to obtain a smooth plot.

Fig. 8 (a) Probability of failure Pf ,V ∗ of the same critical failure element considered in Figure 6, as a function of number of fibers within the
element n f , for different values of Pf ,1 f iber , and (b) Probability of failure of one fiber Pf ,1 f iber as a function of number of fibers within the
failure element n f , for different values of strain in the fiber. The probability of failure of one fiber Pf ,1 f iber as well as the strain values in the two
plots yield values of Pf ,V ∗ in a range that result in Pf , lam > 0.5 for a laminate of length, width, and thickness equal 30 mm, 25.4 mm and 1 mm
respectively.

It is important to highlight that the failure strain in tension predicted by the model for the reference parameters
Lx = Ly = Lz = 25 rf and ρ∗ = 0.03 lies between 1.2% and 1.3%, which is lower than the manufacturer specified
strain of 1.9%. However, the previous values correspond to an example with a given set of values of the two key
parameters, V∗ and ρ∗, which have been fitted to CBT data, as will be explained in Section IV.B. Figure 9 shows a more
thorough exploration of the design space, in the form of a contour plot of the applied strain ε [%] necessary to achieve
a probability of failure of the laminate Pf ,lam = 90%, for different values of V∗ and ρ∗. The saw-like phenomenon
observed in the plot is due to the discrete nature of the model, which relies on integer numbers for both n f and n f ,cr .
The results obtained from this plot help illustrate that there are several values of the two input parameters(V∗ and ρ∗)
that result in the same required applied strain, for the case of pure tension. The model will require calibration taking
into account data from a wide range of geometries and loading cases before it can be used for the analysis of a structure
under realistic conditions.
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Fig. 9 Contour plot of failure strain, for a laminate subjected to uniform tensile loading, predicted by the model as a function of the two parameters
V ∗ and ρ∗ . The specimen has a length, width and thickness of 30 mm, 25.4 mm and 1 mm respectively. The scale indicates the failure strain
predicted by the model for a given set of parametersV ∗ and ρ∗ to achieve Pf , lam = 90%.

B. Application to a Column Bending Test Specimen

We now apply the model to a specimen in the Column Bending Test. In this case, the strain at every point will be
equal to:

ε = κz , (13)

where κ is the curvature of the specimen, and z is the distance to the neutral axis, which will be assumed to remain at
the geometric centroid of the laminate.

Since the curvature in CBT specimens is not constant along the arclength, it is necessary to account for its variation
to obtain an accurate value for the probability of failure. In order to do so, the behavior of the coupon has been modeled
using Euler’s theory of elastica, which is a large deformation theory that is able to capture the large scale deflection of
structural elements.

Assuming that the specimen is inextensible, we use the constitutive relationship between moment and curvature
given by:

M(s) = EIκ(s) = EIβ′(s) (14)

where M(s) represents the bending moment at every point along the arclength parameter s, E represents the Young’s
modulus of the HSC specimen, I represents the area moment of inertia of the bent specimen, κ(s) is the curvature at
every point along the arclength, and β represents the angle between a vector tangent to the coupon and the vertical axis at
every point along the curve. We will assume that both E and I are constant, since it has been shown previously [8] that
variation of bending stiffness due to fiber non-linearity does not have much of an impact on the curvature. Considering l
to be the length of each rigid arm used in CBT, the differential equations for the position co-ordinates x(s) and y(s) can
be given in terms of the angle β(s) as:
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Fig. 10 Representation of the elastica. Here, s is the arclength parameter and β represents the angle between the a vector tangent to the coupon and
the vertical axis at every point along the curve.

dx
ds
= sin β , (15)

dy
ds
= cos β . (16)

For the geometry of the problem, the bending moment can be expressed as:

EI
dβ
ds
= M = P

(
x + l sin

φ

2

)
(17)

where x is the horizontal distance to the loading axis, P is the external load, and φ is the angle of the rigid arm with the
vertical axis.

The above equations have been integrated numerically in Matlab using the ‘ode45’ function. For this problem, the
boundary conditions are θmidpoint = 0, x0 = 0 and y0 = 0. A shooting algorithm has been implemented here which
helps evaluate the value of the applied loading necessary to satisfy the condition θmidpoint = 0. This boundary condition
was used because no other condition can be expressed as an initial boundary condition. The numerical integration
provides the shape of the specimen as well as the distribution of curvature across the arclength, κ(s) for each applied
vertical displacement δ of the testing machine. The bending moment can then be calculated as either Px(s) or EIκ(s).

Once the curvature is calculated, the representative strain of each critical element is calculated using Equation 13.
Since now the strain is different at each point, the values of the probability of failure of the critical elements, Pf ,V ∗ , will
also be different, and the probability of failure of the laminate is calculated as:

Pf ,lam = 1 −
∏

nV ∗−in−lam

Ps,V ∗ = 1 −
∏

nV ∗−in−lam

(1 − Pf ,V ∗ ) (18)

which only takes into account the elements on the tension side.

Figure 11 shows the results from three representative values of thickness t and freelength ls as probability of failure
of the laminate versus nominal bending strain on the laminate, obtained using the maximum curvature of the elastica at
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each point of the test. The parameters used here for the model are the same as before (i.e., Lx = Ly = Lz = 25 rf and
ρ∗ = 0.03). The dashed vertical line represents the manufacturer specified failure strain for IM-7 fibers. The results
show that for the same nominal strain, the probabilities of failure are very different and there is a clear dependence of
thickness and the freelength on the probability of failure. For the same value of nominal strain, specimens having lower
thickness and a lower free length have a lower probability of failure.

Fig. 11 Probability of failure of the laminate as a function of maximum nominal strain obtained from the elastica. The straight dashed line
corresponds to the manufacturer specified failure strain of 1.9 %. The parameters utilized in the model are Lx = Ly = Lz = 25 r f and ρ∗ = 0.03.

Two important differences between these results and the case for tension must be highlighted. First, since the strain
is not constant through V∗, the value at the centroid of the element is used as a representative value. Second, High Strain
Composites tested using the Column Bending Test method often have very small thickness, well below one millimeter.
In such cases, the size of the critical failure element (Lx = Ly = Lz = 25rf ) is of the same order of magnitude as the
thickness dimension of the portion under tension, and so the number of elements across the thickness is very small (e.g.
a specimen of 0.5 mm thickness would have approximately 4 elements on the tensile side).

Finally, Figure 12 compares our model with experimental CBT data. The dots correspond to experiments using HSC
laminates made of IM7 fibers and PMT-F7 matrix. The values are presented as nominal strain, κt2 , versus the thickness of
the laminate. The error bars indicate variation in both variables. The thinnest samples, with t ≈ 141 µm, did not break;
the reported curvature represents the maximum curvature applied during the test. The failure curvatures were obtained
using image processing of test images, as well as results from the closed form solution commonly used to model the
Column Bending Test [8]. The model uses the same parameters as in previous plots, i.e. Lx = Ly = Lz = 25 rf and
ρ∗ = 0.03. The two prediction curves correspond to the nominal strain that results in a probability of failure of the
laminate of Pf ,lam = 80% and Pf ,lam = 95% . We can see that, despite the strong simplification and assumptions, the
proposed probabilistic model is able to capture the thickness dependency of failure strain for an HSC.
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Fig. 12 Results of Column Bending Tests conducted on High Strain Composites of different thicknesses. The gray region represents test data of the
thinnest HSCs with t ≈ 141 µm, which did not break when subjected to the maximum possible extension of the testing machine. The proposed model
is able to capture the thickness dependence of failure strain utilizing the set of parameters Lx = Ly = Lz = 25 r f and ρ∗ = 0.03.

Conclusions and Future Work

We have presented a model that incorporates the probabilistic nature of the failure of carbon fibers to capture some
key elements of the failure of High Strain Composites. However, the current iteration of the model rests on several
important assumptions, whose validity need to be addressed.

First, we have neglected the non-linearity of the fibers, which was noticeable in Figure 3. A constitutive model
that takes into account the nonlinearity [41, 42] will result in a shift of the neutral axis, and changes in the strain at the
critical elements. Second, we have very few critical failure elements across the thickness. Thus, evaluating the failure
strain at the midpoint of the critical failure element, and considering it to be a constant value throughout the thickness
dimension of that element, is a very strong assumption. This is true especially for very thin HSCs, since they have a
rapidly decreasing strain gradient across the thickness. The validity of this assumption needs to be verified through
parametric studies and further comparison with experiments. Finally, different sets of values of V∗ and ρ∗ can result in
the same macroscopic failure properties. Figure 13 presents the same experimental results and predictions as Fig. 12,
adding a new prediction obtained with Lx = Ly = Lz = 30 rf and ρ∗ = 0.025, which provides a very similar prediction.
This was also apparent in the tension predictions presented in Fig. 7.
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Fig. 13 Results of Column Bending Tests conducted on High Strain Composites of different thicknesses. The gray region represents test data of the
thinnest HSCs with t ≈ 141 µm, which did not break when subjected to the maximum possible extension of the testing machine. The predictions
correspond to two different set of values ofV ∗ and ρ∗.

It is clear that, in order to obtain reliable values of the two model parameters, it will be necessary to obtain additional
experimental data, and fit the model to different geometries and loading conditions. Furthermore, the critical element
V∗ does not need to have equal dimensions. In particular, the length along the fiber direction, Lz , can be different from
the cross sectional dimensions, Lx = Ly . While Lz influences the probability of failure of a single fiber, Lx and Ly

determine the number of fibers in V∗, and so decoupling them will in practice add an additional parameter to the model.
We are currently in the process of providing new experimental results, such as more CBT cases, and tensile loading with
different thicknesses and gauge lengths.
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