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Thin composite laminates show higher flexural strength than expected based on their
tensile and compressive properties. We analyze how shear stiffening, due to different buckling
amplitudes along the thickness, result in delayed compressive failure. We use an analytical
model to homogenize the energy of the laminate during microbuckling, and we use energy
minimization to determine the onset-of-instability. We explore to different loading cases,
constrained compression and bending, and we compare them to the case of an infinite laminate
under pure compression. Our model predicts a significant increase in buckling load due to
in-plane shear. The results also show clear thickness dependence, with amuch higher predicted
buckling load for thin samples.

I. Introduction
High strain composites are a class composite materials designed to operate at strains higher than 1% in bending [1].

This makes them very useful in the design of deployable space structures that rely on elastic deformation of structural
elements during stowage, such as booms [2–4], antennas [5], and hinges for telescopes [6]. They often consist of very
thin laminates of carbon fiber reinforced epoxy, and their bending failure properties are fundamentally different from
those of thick composites, such that traditional failure models significantly underpredict their failure curvature. A series
of recent studies have focused on developing the Column Bending Test as a standarized experimental procedure to
characterize the bending failure properties of high strain composites at large curvatures [7–9]. However, the specific
micromechanics of thin laminates are not well understood, and reliable predictive tools have not been developed yet. As
a result, designs rely on experimental data that is hard to extend to fibers and laminate architectures.

Figure 1 shows experimental results on the failure of IM7 unidirectional carbon fibers, with a fiber volume fraction
of approximately Vf = 51% and different thicknesses. They have been obtained using the Column Bending Test, and the
results show the nominal bending strain at failure as a function of the laminate thickness. The results highlight three of
the main differences with respect to traditional composites. First, there is a very clear dependence on the thickness,
with the failure strain increasing as the thickness decreases. Second, the nominal strain at failure for specimens with
t < 500 µm are higher than the ultimate elongation at failure reported by the manufacturer, ε = 1.6% − 1.9%. Finally,
the samples failed in tension, see Figure 1(e), while bending of composites usually results in microbuckling failure on
the compression side [10, 11]. The development of a failure criteria for high strain composites requires explaining the
micromechanics leading to these differences.

The current hypothesis requires the combination of several factors that, while not important for thick laminates,
have a big influence in the case of thin composites. First, the tensile stress is localized in very small regions, due to
the small gauge length and the shift in neutral axis caused by the nonlinearity of the fibers. This, combined with the
probabilistic nature of carbon fiber failure [12], explains why the tension side can sustain strains higher than the value
expected from tensile tests. Second, microbuckling failure in compression is inhibited due to a phenomena called shear
stabilization [7, 13]: in thin specimens the fibers in the compression and tension sides are very close to each other. In
order to buckle, the fibers will need to significantly shear the matrix between them and the fibers in tension, which
increases the load necessary for the onset-of-instability, in practice stabilizing the compressed fibers.

Figure 2 presents an schematic of the scenario, including the tensile and compression failure curves, as well as the
failure envelope. Thick laminates fail in compression, at a roughly constant strain, while thin laminates, such as those in
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Fig. 1 Experimental results on unidirectional IM7 laminates. (a) Nominal strain at failure as a function of
laminate thickness. The curvatures were assessed using a geometrical closed form approximate solution, as well
as image processing of test images. (b-c) The thinnest samples, with t ≈ 141 µm, did not break; the reported
curvature represents the maximum curvature applied during the test. (d-e) The rest of samples failed in tension.

Figure 1(a), fail in tension. This requires a given thickness in which the most critical mechanism shifts, and which
would in fact provide a mechanics-based criteria to determine what constitutes a thin laminate, at least for the purpose of
bending failure. The goal of this paper is to provide insight on the micromechanics leading to shear stiffening. This will
be done through homogenization-based micromechanical modeling. We consider the case of bending, which inspired
the research, as well as compression in which buckling is artificially constrained in one the surfaces of the laminate, in
order to create the conditions leading to shear between fibers with different buckling amplitude.
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Fig. 2 Schematic of the hypothesized failure mechanisms in the bending of high strain composites, showing
two different regimes: thin laminates, in which tension is the dominant failure mechanisms, and thick laminates,
which fail in compression.

II. Analytical modeling
The modeling of microbuckling often follows the pioneering work of Rosen [14], considering the energy of fibers

and matrix independently, and determining the onset of instability through energy minimization. In our case, the main
difference with studies of microbuckling under pure compression is that the buckling amplitude is not constant through
the specimen [15–18]. The shearing of the matrix between fibers with different buckling amplitude is the main physical
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phenomena behind shear stabilization, and as such it is important to model the behavior of the composite through
the thickness. A similar approach was followed by the authors in a previous work developed in a large deformation
setting [19].

We consider a laminate with unidirectional fibers, parallel to the X1 direction, with infinite width extending in the
X2 and finite thickness t extending in the X3 direction. The fibers are assumed to be perfectly parallel cylinders of radius
r , and the volume fraction is Vf . The boundary conditions are such that one at the face X3 = 0 all displacement in the
X2 and X3 is constrained.

The matrix is assumed to be isotropic, with Young’s modulus Em and Poisson’s ratio νm. The fibers are transversely
istropic, with properties given by the stiffnesses E f 1, E f 2 = E f 3, shear moduli G f 12 = G f 13 and G f 23, ad Poisson’s
ratios νf 12 = νf 13 and νf 23.

The laminate experiences an applied strain εa(X3) in the fiber direction, which can potentially vary through the
thickness, in order to model combinations of bending and pure compression. At any given point this strain can result in
pure compression of the laminate, εc , or equivalent shortening due to the microbuckling, εb , with:

εa(X3) = εc(X3) + εb(X3) , (1)

which implies that we do not assume that fibers go into pure bending once they buckle. The buckled fibers are assumed
to follow a sine wave, constrained in the X1 − X2 plane, with profile:

v = a(X3) sin
πX1
λ

, (2)

where the wavelength λ is assumed to be the same for all buckled fibers in the laminate. The strain due to bending, εb ,
is the result of the difference between the wavelength, λ, and the arc-length of the buckle, Lb:

εb =
λ − Lb

Lb
, (3)

where Lb is calculated as:

Lb =

∫ λ

0

√
1 +

(
a2 π2

λ2 sin
πx
λ

)2
dx . (4)

Once the geometry of the buckled fibers is defined, it is possible to calculate the strain energy of each component of
the composite. The strain energy density of the laminate, W , is calculated as the sum of the energy of the matrix and the
fibers:

W = Wm +W f . (5)

The strain of the fibers will be the sum of the energy due to pure compression of the fibers, and the energy due to
microbuckling:

W f = W f ,c +W f ,b . (6)

The compression component can be calculated from εc as an integral along the thickness, due to the fact that the
strain is not necessarily constant:

W f ,c =
Vf

t

∫ t

0

1
2

E f 1 ε
2
c(X3) dX3 . (7)
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The bending component is calculated from the buckled shape of the fibers. We assume that, due to the small
displacements, the curvature of the buckled beam can be approximated as:

κ(X1,X3) =
∂2v(X1,X3)

∂X2
3

= −
a(X3) π

2

λ2 sin
π X1
λ

. (8)

The strain energy of a given fiber, integrated over the wavelength of the buckled geometry, is equal to:

W1 f ,b =

∫ λ

0

1
2
κ(X1,X3)

2 E1 f I dX1 =
a2(X3) π

4

4λ3 , (9)

where I is the second moment of inertia of the fiber, I = π r4/4.

The strain energy density due to the buckled fibers is obtained dividing by the volume of one fiber, and accounting
for the fiber volume fraction:

W f ,b = Vf

W1, f b

π r2 λ
. (10)

The energy density of the matrix can also be considered the sum of two terms: the energy due to the compression of
the laminate, Wm,c , and the energy due to the buckled fibers, Wm,b, which corresponds to the shearing of the matrix.
For the first term, we use an expression similar to Equation 7:

Wm,c =
1 − Vf

t

∫ t

0

1
2

Em ε
2
c(X3) dX3 . (11)

The energy due to the buckling of the fibers is due to two different shear terms:

Wm,b = Wm,12 +Wm,23 , (12)

where Wm,12, due to shear in the X1 − X2 plane between fibers with the same buckling amplitude, is the term observed in
buckling under pure compression, and Wm,23, due to shear in the X2 − X3 plane between fibers with different buckling
amplitude, is the term that results in shear stiffening. The corresponding shear terms, for the homogenized composite
(as opposed to local strains within the matrix at the microscopic scale) are given by:

γ12 =
∂v

∂X1
=

a π
λ

cos
π X1
λ

, (13)

γ23 =
∂v

∂X3
=

da
dX3

sin
π X1
λ

, (14)

where the term da/dX3 is calculated numerically.

The corresponding energy density terms are then:

Wm,12 =
1
λ t

∫ t

0

∫ λ

0

1
2

Ĝm,12 γ
2
12 dX1 dX3 =

∫ t

0

Ĝm,12 a2 π2

4 λ2 t
dX3 , (15)

Wm,23 =
1
λ t

∫ t

0

∫ λ

0

1
2

Ĝm,23 γ
2
23 dX1 dX3 =

∫ t

0

Ĝm,23

4 t

(
da

dX3

)2
dX3 , (16)

where Ĝm,i j is the matrix contribution to the laminate shear stiffness Gi j , which takes into account not only the matrix
properties, but also the properties of the fiber and the geometry at the microstructure level. In the limit of matrix and
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fiber with the same properties, Gm = G f , then Ĝm,i j = (1 − Vf )Gi j , due to simple rule of mixtures. In the limit of a
rigid fiber, where all the strain energy is on the fiber, then Gm,i j = Gi j .

The independent variables of the problem are the wavelength, λ, and the amount of applied strain that goes into
pure compression at every point, εc(X3). The value of the variables is found through energy minimization, using the
command fminsearchbnd in Matlab. The value of εc is discretized over a set of equispaced points along the thickness.
The same discretization is used to define the profile of the applied loading, εa.

III. Results

A. Material properties
During our simulations, we use the properties of IM7 fibers and PMTF7, which were used to obtain the results in

Fig. 1. The properties use for both components are listed in Table 1. The volume fraction is Vf = 55%.

Matrix properties
Young’s modulus, Em 3.496 GPa
Poisson’s ratio, νm 0.37

Fiber properties
Radius, r 2.6 µm
Axial stiffnes, E f 1 276 GPa
Tranverse stiffnes, E f 2 = E f 3 13.8 GPa
Axial shear stiffness, G f 12 = G f 13 9.5 GPa
Transverse shear stiffness, G f 23 5.52 GPa
Possion ratio, νf 12 = νf 13 0.22
Possion ratio, νf 23 0.25

Table 1 Fiber and matrix properties.

The properties of the laminate are obtained using the following set of equations [20]:

E1 = E f 1 Vf + Em (1 − Vf ) (17)

η =

E f 2
Em
− 1

E f 2
Em
+ 2

(18)

E2 = E3 = Em

1 + 2 ηVf

1 − ηVf
(19)

ν12 = ν13 = νf 12 Vf + νm
(
1 − Vf

)
(20)

S3 = 0.49247 − 0.47603 Vf − 0.02748 V2
f (21)

G12 = Gm

1 + Vf

(
1 − Gm

G f 12

)
Gm

G f 12
+ S3 (1 − Gm

G f 12

(22)

η4 =
3 − 4 νm + Gm

G f 23

4 (1 − νm)
(23)

G23 = Gm
V f + η4 (1 − V f )

η4 (1 − Vf ) + Vf
Gm

G f 23

(24)
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We will assume that Ĝm,i j = (1 − Vf /2)Gi j , which is the intermediate case between the two limits described in
Section II. For clarity, compressive strain is presented as positive.

We will consider two different loading cases. The first one is compression in which microbuckling is artificially
constrained on the layer with X3 = 0, see Figure 3. This case does not correspond to any realistic scenario, but allows us
to study the effect of shear stiffening when the laminate is under constant loading, and to decouple the relationship
between thickness and applied strain. The second case corresponds to the more realistic case of bending of the laminate,
in which the strain is a linear function of the distance to the neutral surface, assumed to be at the center.

X
1

X
2

X
3

u
1
, u

2
, u

3
 free

u
1
 free

u
2
 = u

3
 = 0

u
1
, u

2
, u

3
 periodic

u
1
, u

2
, u

3
 periodic

Fig. 3 Schematic of the model user for constrained compression, including boundary conditions on each face.

B. Constrained compression
Figure 4 shows the strain energy, as a function of the applied strain, of three possible cases: the linear response,

with no buckling allowed; buckling with no constraints; and buckling when one face is constrained, resulting in shear
stiffening, for increasing values of the thickness. The results clearly show that the constrain results in an increase of the
strain necessary to cause and instability, with a clear thickness dependence.

Fig. 4 Strained energy of different laminates under pure and constrained compression, as a function of the
applied strain.

Figure5 shows results from the same calculations, expressed as stress-strain, where the stress has been calculated as
σ = ∂W

∂ε . The axis have been chosen to focus on the instability-onset. The data shows how shear stabilization result in
an increase of close to 1% in the buckling applied strain. Even if models following the approach of Rosen [14] have
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been shown to overestimate the buckling load, we believe that

Fig. 5 Stress-strain relationship of different laminates under pure and constrained compression.

C. Bending
We now consider the case of bending. The applied strain varies now linearly across the arc-length, with a maximum

applied strain at the out surface of ε = 2κ
t , where κ is the curvature. The results have been normalized to eliminate the

thickness dependence, so that different laminates can be compared. Figure 6 shows the results, as normalized bending
moment (M/t) versus the strain at the surface of the laminate (ε = κt/2). Again, we see a significant increase of the
load necessary to cause microbuckling, even for laminates of moderate thickness. The vertical dashed line corresponds
to our prediction for microbuckling under pure compression, with no constraints.

Fig. 6 Normalized moment versus surface strain, for different laminates under bending.
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IV. Discussion and conclusions
We have presented a model for the microbuckling of thin buckling, which can apply different compression at

different sections of the laminate, as well as directly inhibit buckling. This allows us to explore different conditions lead
to shear stabilization, and compare it directly with buckling under pure compression. We have used it to explore the
influence of the thickness for a given choice of laminate. Our results indicate that in-plane shear strain between layers
with different buckling amplitude results in an increase in the load necessary to cause buckling, and that this increase is
more pronounced for thin laminates.

We are currently working on developing finite element simulations at the micromechanics scale, which could be
used to verify our model, not only at the macroscopic level (wavelength and buckling load), but also on local fields, such
as maximum stress in either fiber or matrix. Experimental validation is also important. This could be achieved in the
bending case, although since the specimens fail in tension before microbuckling takes place, complete validation in the
thin range is complicated.

Several improvements and refinements could be incorporated, such as including fiber non-linearity, as well as initial
imperfections and other geometries. Finally, it is important to highlight that this work should be combined with an
analysis of the tensile failure of High Strain Composites, since it is the interplay between both phenomena what is going
to determine the failure of the laminate, which is key prediction missing when considering the use of HSCs in industrial
applications.
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