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We investigate the influence of curvature and topology on crystalline dimpled patterns on the surface of
generic elastic bilayers. Our numerical analysis predicts that the total number of defects created by
adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal, and toroidal surfaces
over a wide range of system sizes. However, both the localization of individual defects and the orientation
of defect chains depend strongly on the local Gaussian curvature and its gradients across a surface. Our
results imply that curvature and topology can be utilized to pattern defects in elastic materials, thus
promising improved control over hierarchical bending, buckling, or folding processes. Generally, this study
suggests that bilayer systems provide an inexpensive yet valuable experimental test bed for exploring the
effects of geometrically induced forces on assemblies of topological charges.
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Topological defects and geometric frustration are intrinsic
to two-dimensional (2D) curved crystals [1]. The minimal
number of defects in a periodic polygonal tiling is dictated
byEuler’s theorem [2],which relates the surface geometry to
the total topological defect charge. The hexagonal soccer-
ball tiling is a canonical example, requiring 12 pentagonal
defects that are also realized in C60 fullerenes [3]. However,
large 2D crystals often exhibit defect numbers that go
substantially beyond the minimal topological requirement
[4]. These excess defects aggregate in moleculelike chains
[5–7] that relieve elastic energy costs arising from a
mismatch between the crystal symmetry and the curvature
of the underlying manifold [8,9]. The aggregation of
curvature-induced defects plays an essential role in various
physical processes, from the classic Thomson problem of
distributing discrete electric charges onto a sphere [10] to the
assembly of virus capsules [11] and the fabrication of
colloidosomes [12], toroidal carbon nanotubes [13], and
spherical fullerenes from graphene [14]. Over the past
decade, considerable progress has been made in under-
standing crystal formation in spherical [6,7,15] and more
complex geometries [12,16–19]. Yet, empirical tests of
theoretical concepts have remained restricted [5,20,21] to
paraboloids ormean-curvature surfaces, owing to the lack of
tractable experimental model systems.
Here, we show through theory and simulations that

curved elastic bilayers offer a promising test bed to study
defect crystallography in arbitrary 2D geometries. Building
on a recently derived and experimentally validated scalar
field theory [22], we first confirm that the pattern formation
process induced by buckling of curved elastic films adhered
to a softer substrate reproduces previously established

results for spherical crystals [6,23]. Subsequently, we
demonstrate how curvature and topology determine defect
localization on surfaces with nonconstant curvature. For
typical experimental parameters [23], our analysis reveals
the emergence of previously unrecognized robust super-
structures, suggesting the usage of topology and geometry
to control defect aggregation.
Our elastic bilayer system consists of a thin stiff film

adhered to a soft curved substrate. Recent experiments
[23–25] with spherical substrates showed that, under weak
compression, such films can develop a buckled surface
topography comprising a crystalline quilted pattern (Fig. 1).
The experimental patterns are described quantitatively
by a generalized Swift-Hohenberg theory [22], which is

FIG. 1. Buckling-induced crystalline surface patterns on a thin
film of thickness h adhered to a soft core (top), obtained by
minimization of Eq. (1), and their dual hexagonal Voronoi
tessellations (bottom) for different surface geometries: (a) sphere
(R=h ¼ 70), (b) ellipsoid (Rx ¼ 2Ry ¼ 2Rz ¼ 110h), and (c) to-
rus (r=h ¼ 16; R=h ¼ 80). The color bar represents the surface
elevation. The outlined surface domain in (b) highlights a
representative chain of defects. Voronoi cells are color coded
by their coordination number Z.
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employed here to obtain predictions for more general
geometries. Measuring lengths in units of film thickness
h and focusing on leading-order effects, the theory relates
the normal displacement field u of the deformed film to the
minimum of the energy functional [22]

E ¼ k
2

Z
ω
dω
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γ0ð∇uÞ2 þ 1

12
ð△uÞ2 þ au2 þ c

2
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where k ¼ Ef=ð1 − ν2Þ, and Ef is the Young’s modulus of
the film with undeformed surface element dω. The Poisson’s
ratio ν is assumed to be equal for the film and substrate.
The nonlinear term ΓðuÞ ¼ 1=2½ð1 − νÞbαβ∇αu∇βuþ
2νHð∇uÞ2�uþH½4H2 − ð3 − νÞK�u3 represents stretching
forces, with surface gradient ∇ and Laplace-Beltrami
operator△. The traceH of the curvature tensor bαβ defines
the mean curvature and K denotes the Gaussian curvature.
Periodic undulating patterns form on the surface when the
film stress exceeds the critical buckling stress, correspond-
ing toa < ac ¼ 3γ20where γ0 defines the patternwavelength
λ ¼ 2π=

ffiffiffiffiffiffiffiffiffiffi
6jγ0j

p
, while the amplitude is controlled by c [22].

The curvature-dependent ΓðuÞ term determines the sym-
metry of the patterns. In the planar case with ΓðuÞ ¼ 0,
Eq. (1) reduces to the Swift-Hohenberg model [26] and
minimization of Eq. (1) produces stripe patterns. For
jΓðuÞj > 0, the symmetry u → −u is broken, causing a
transition to hexagonal dimple patterns [22]. A systematic
derivation [22] specified all parameters in Eq. (1) in terms of
known material and geometric quantities, so that our
predictions can be directly compared to future experiments.
Our simulations use the material parameters of Ref. [22] for
the hexagonal phase with λ ∼ 9.1 throughout.
We analyze Eq. (1) for spheres of radius R, prolate

ellipsoids of principal axis Rx ¼ 2Ry ¼ 2Rz, and tori with
aspect ratio r=R between major axis R and minor axis r
(Fig. 1). For each geometry, we choose a=ac ≈ 0.98 and

add small random perturbations to the originally unde-
formed film (u0 ≡ 0). We then minimize Eq. (1) numeri-
cally using a custom-made finite element method [27].
From the stationary displacement field, the dimple cent-
roids are identified as lattice points and the corresponding
Voronoi tessellations are constructed (Fig. 1). We define the
topological charge s ¼ 6 − Z for each lattice point, where
Z is the coordination number. Probability density functions
(PDFs) and statistical averages are obtained from simu-
lations with different random initial conditions but other-
wise identical parameters.
Since the total number of lattice units N is proportional

to the surface area,
ffiffiffiffi
N

p
is a geometry-independent measure

of the system size. We now characterize the total number of
defects Nd and find that it grows linearly with

ffiffiffiffi
N

p
for all

geometries [Fig. 2(a)], while generally exceeding the Euler
bound for the minimal number of defects. For example, the
case with the 12 topologically required defects of charge
s ¼ þ1 (positive disclinations) can only be observed for
small spheres, whereas Nd increases linearly with slope
m ¼ 4.5� 0.6 above the critical size

ffiffiffiffiffiffi
Nc

p ¼ 14.2� 3.6
[Fig. 2(a)]. In terms of the reduced radius ρ ¼ R=λ, Nc
corresponds to a critical value ρ� ∼ 4.3, in good agreement
with experiments [23].
The increase of Nd with system size can be explained as

follows. Each disclination imposes a set change of
Gaussian curvature, independently of

ffiffiffiffi
N

p
. If the mismatch

with the substrate’s target curvature becomes too large,
additional defects are introduced to screen curvature,
thereby lowering the total elastic energy [9,28]. To preserve
the total charge, excess defects appear as neutral pairs of
opposite charge called dislocations. For large systems,
defects typically form longer chains classified as either
neutral pleats or charged scars [5]. For spheres, the number
of excess dislocations per scar is predicted to grow linearly
above ρc with slope ≈0.41ρ [9,28]. This scaling has been
experimentally verified in colloidal crystals [6], and agrees
with our simulations [solid line in the inset of Fig. 2(a)],

FIG. 2. (a) The total number of defects grows linearly with
ffiffiffiffi
N

p
, where N is total number of lattice units, exhibiting similar slopes for

all geometries (solid line: linear fit for spheres). Inset: Excess dislocations on spheres were predicted [6] to increase linearly with reduced
radius ρ ¼ R=λ for colloidal crystals (solid line). For comparison, the best-fit power law ðρ − ρcÞβ with ρc ¼ 4.5� 0.4 and β ¼
0.67� 0.08 is also shown (dashed line). (b)–(d) The total defect charge grows differently with integrated Gaussian curvature I for
different geometries. The gray shading represents the conditional PDFs of the total charge Q for a given value of I. The red dashed line
corresponds to linear growth I ¼ ðπ=3ÞQ. Dark regions in the surface sketches illustrate integration domains.
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although a power law ∼ðρ − ρcÞβ with ρc ¼ 4.5� 0.4 and
β ¼ 0.67� 0.08 also fits our data well [Fig. 2(a), inset]
[29]. These findings illustrate that geometry-induced defect
formation is insensitive to the details of the lattice inter-
actions [30], corroborating that elastic buckling patterns
can provide a viable model to study generic aspects of
curved crystals.
The screening effect of dislocations and its dependence on

geometry become manifest in the relationship between
Gaussian curvature and topological charge [5,23]. The
Euler and Gauss-Bonnet theorems connect the sum
of topological charges si for all elements, Q ¼ P

isi, with
the surface integral of the Gaussian curvature,
I ¼ R

A KdA ¼ π=3
P

isi ¼ 2πχ, where χ is the Euler char-
acteristic of the surface.Howwell this relationship is satisfied
over a subregion of the surface provides insight into the
geometry dependence of defect localization. For spheres, our
results are consistent with the Gauss-Bonnet theorem; Q
increases linearly with I [Fig. 2(b)]. By contrast, for
ellipsoidal geometries, Q grows faster than I near the poles
(jϕj ¼ π=2) and there is an accumulation of positive charges
inhigh-curvature regions [Fig. 2(c)].Although tori require no
topological charge (χ ¼ 0), our simulations predict the
creation of defects that help the dimpled crystal comply
with the curved substrate geometry [16]. In the outer region
of the torus, where Gaussian curvature is positive, we find
thatQ grows faster than linearlywith I, which is qualitatively
similar to the ellipsoidal case but with larger spread.
Another striking phenomenon is the curvature-induced

localization and segregation of oppositely charged defects.
For ellipsoids, we find that the PDF for angular position of
positively charged disclinations increases strongly towards
the poles, where for the chosen aspect ratio the local
Gaussian curvature is equivalent to that of a smaller sphere
with 2.6 times lower equivalent size. This explains why
isolated defects can be found at the poles of even relatively
large ellipsoids [Fig. 3(a)]. With increasing size, additional
scars and pleats appear. Their centroid positions cluster in
the equator region around ϕ ¼ 0 [Fig. 3(b)], where the
curvature is low and thus cannot support isolated discli-
nations. To study the orientations of these extended defect
“molecules,” we measure the orientation angle α enclosed
by the end-to-end vector v and the tangent t along lines
with θ ¼ const. We find no significant orientational order
for positive or neutral chains [Figs. 3(b)–3(d)], consistent
with earlier simulations based on an inflation packing
algorithm [31].
Tori, in contrast to ellipsoids, contain regions of positive

and negative curvature and are more prone to striped
patterns. To identify the conditions for the pure crystal
phase, we recall that hexagonal patterns require jΓðuÞj > 0
in Eq. (1), whereas local stripe solutions emerge otherwise
[22]. The phase boundary at the onset of instability, a ¼ ac,
can be estimated by parametrizing the torus using the
standard coordinates ðϕ; θÞ, then assuming a striped pattern
symmetric along θ, and finally inserting uðθ;ϕÞ≡ uðϕÞ

into the condition ΓðuÞ ¼ 0. Solving for ϕ, we find (see
Ref. [32] for the derivation details)

ϕc ≈�cos−1
�
−

R
rð1þ νÞ

�
; ð2Þ

which is independent of the system size and holds as long
as R; r ≫ λ. For rubberlike materials (ν ≈ 0.5) solutions
�ϕc ∈ ½ðπ=2Þ; π� exist only for aspect ratios r=R > 2=3.
We thus expect striped patterns to dominate near the inner
rim of thick tori. Estimates of ϕc for a < ac can be obtained
similarly from isolines of the normalized symmetry-
breaking contribution to the energy density γðr=R;ϕÞ ¼
ð1þ r=R cosϕÞð1þ νÞ − ν [32]. To verify our predictions,
we measured ϕc in simulations for tori with 0.2 ≤ r=R ≤
0.8 and a=ac ¼ 0.98 (see Ref. [32]), and find good
agreement with the isoline γ ¼ 0.42 [Fig. 4(a) and addi-
tional data in Ref. [32]]. The existence of a pure hexagonal
phase for r=R < 2=3 provides a design guideline to study
toroidal crystals in future experiments.
Focusing on crystalline patterns on slender tori with

r=R ¼ 0.2, our simulations show that defect localization is
strongly controlled by the interplay of Gaussian curvature
and topology. The requirement of a vanishing net charge
implies that positive and negative disclinations appear in
pairs. Their spatial arrangement can be rationalized with an
electrostatic analogy [17], in which defects are interpreted
as charged particles and curvature acts as an electric field.
In this picture, positive disclinations are attracted to regions

FIG. 3. Curvature-induced defect localization on ellipsoids.
(a) Isolated pentagonal þ1 defects accumulate in high curvature
regions; p is the average number of single defects per ellipsoid.
(b) Although defect chains form preferentially near the equator
(jϕj ¼ 0) their orientation angles α, measured relative to the
tangent vectors t, show no significant ordering. (c),(d) Voronoi
tessellations for Rx=h ¼ 40 and Rx=h ¼ 160. Ellipsoids with
Rx=h ≥ 110 show a weak alignment of the lattices along lines
ϕ ¼ 0 (elements with the same lattice orientation are connected
by solid black lines).
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of positive Gaussian curvature at the outer rim of the torus
(ϕ ¼ 0), whereas negative disclinations migrate to the inner
region (jϕj ¼ π). This geometry-induced separation of
charges is directly reflected in the PDF of the individual
disclinations [Fig. 4(b)]. Analogously to the ellipsoidal
case, the total number of isolated disclinations [see the
average numbers p and n for positive and negative charges
in Fig. 4(b)] decreases with system size, as defects tend to
aggregate in chains [Figs. 4(e) and 4(f)]. Interestingly, we
find that the electrostatic analogy extends to defect chains:
positive scars screen Gaussian curvature on the outer rim;
negative scars appear in the inner region; and neutral pleats
concentrate in the regions of vanishing Gaussian curvature,
jϕj ¼ π=2 [Fig. 4(c)]. Defect chains also become oriented
by geometric forces. Measuring the orientation angle α of a
chain relative to the tangent vector t along the ϕ direction
[Fig. 4(a)], we find that charged scars preferentially align
parallel to the equatorial lines such that α ∼ π=2, whereas
neutral pleats tend to orient vertically with α ∼ 0 [Fig. 4(c)].
This ordering can be understood qualitatively by consid-
ering the end points of a defect chain. For scars, both end
points have the same charge and therefore migrate to
regions of same Gaussian curvature (ϕ ∼ 0 for positively
charged end points, ϕ ∼ π for negatively charged ones),
effectively orienting the scar perpendicular (α ¼ π=2) to
lines ϕ ¼ const. By contrast, pleats have oppositely
charged ends and hence mimic electric dipoles that become
oriented by curvature to achieve α ¼ 0.
Remarkably, our simulations reveal that defects not only

orient and segregate in the torus curvature field—they also
break the rotational symmetry of the toroidal crystal in
favor of an emergent discrete symmetry. More precisely, by

analyzing the lattice structure on large tori, we find that the
hexagonal elements arrange along an undulating periodic
deformation pattern [highlighted in Fig. 4(f) by the black
lines connecting the centroids of elements with the same
lattice orientation]. This superstructure still carries a
fingerprint of the underlying toroidal geometry: geodesics
gðϕÞ ¼ (ϕ; θðϕÞ) on a torus are solutions of [35]

dθ
dϕ

¼ cr

ðRþ r cosϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ r cosϕÞ2 − c2

p : ð3Þ

where c is a constant obeying Claireaut’s geodesic relation
c ¼ ðRþ r cosϕÞ sinψ , with ψ denoting the angle between
the tangent g0 and t [35]. Integrating Eq. (3) numerically, we
find that the lattice deformation follows a geodesic passing
through ϕ ¼ 1.68 at its highest point with ψ ¼ π=2 [dashed
green line in Fig. 4(f)]. The phase θ0, found by matching the
phase of the geodesic with that of the lattice, varies between
samples. The integrated absolute Gaussian curvature along
this curve is minimal among all geodesics that do not wind
around the ϕ coordinate. We therefore hypothesize that
alignment along a geodesic of minimal absolute Gaussian
curvature yields an energetically favorable crystal structure,
for at least those lattice parts close to where the geodesic
remain nearly straight—much like wrapping a torus with an
inextensible ribbon. If this geometric argument is correct, the
superstructure should become independent of the lattice size,
asR=h increases. To test this hypothesis, we simulated system
sizes R=h ∈ f80; 120; 160g, and measured the angular dis-
tance Δθ between positive scars near the outer rim. These
simulations indeed reveal a peak in the PDF PðΔθÞ near π=4,
which corresponds to one-quarter of the geodesicwavelength,

FIG. 4. Defect localization and superstructures on tori. (a) At the onset of instability, a ¼ ac, pure hexagonal phases are stable only for
tori with r=R < 2=3 (dashed line, Eq. 2), while striped patterns occur at angles ϕ > ϕc for larger aspect ratios. Simulations for
a=ac ¼ 0.98 agree well with the isoline estimates of the symmetry-breaking terms in the energy density, γðr=R;ϕÞ ¼ C, with C ¼ 0.42
(solid line). (b) Isolated penta- and heptagonal defects segregate; p and n are the average numbers of positive and negative disclinations
per torus. (c) Orientations of charged scars and neutral pleats correlate strongly with their transversal centroid position jϕj. (d) Defect
positions are also strongly correlated along θ. (e),(f) While this positional ordering is less prominent in small systems [(e), R=h ¼ 40], it
becomes apparent for larger systems [(f) R=h ¼ 160]. The toroidal superstructure (elements with the same lattice orientation are
connected by solid black lines) follows geodesics of minimal integrated absolute Gaussian curvature (dashed green line).
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independently of system size [Fig. 4(d), black curves].
Moreover, negative scars on the inside of the torus appear
in phase with positive scars (Δθ ¼ 0), while neutral pleats
arrange between scars (Δθ ∼ π=8). Thus, thegeometric lattice
superstructure also controls defect-chain localization.
A significant advantage of elastic surface crystals over

fluid-based systems is their fabrication versatility, which
enables the exploration of arbitrary geometries and topol-
ogies. Of particular biomedical and nanotechnological rel-
evance are toroidal geometries that are difficult to achieve in a
colloidal suspension. Important realizations include torovi-
ruses [12] and carbon nanotori [13], whose electromagnetic
properties are affected by defects [36,37]. Our results show
that spatially varying curvature can lead to emergent super-
structures that determine defect localization. Since defects
trigger secondary instabilities [38], this previously unrecog-
nized phenomenon may be also exploited to control hierar-
chical buckling and folding. More generally, our analysis
implies that elastic surface crystals provide a rich model
system for studying the profound interplay between geo-
metric forces and topological charges.
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