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a b s t r a c t

The isotropy of different numerical simulations of fiber reinforced elastomers has been explored by
explicitly applying stretch in different loading directions, in models with representative volume elements
(RVEs) spanning a wide range of fiber volume fractions and system sizes. The results show that the
homogenized response is not the same for all loading directions, and that the corresponding dependance
takes the form of a sine. The anisotropy decreases with the RVE size, and so it can be used to asses if the
scales can be separated in a given model. Considering the average response over all loading directions
greatly reduces the variation between different RVEs, which can be used to improve the accuracy of the
simulations in a way that is significantly more efficient than increasing the size of the RVE. The simu-
lations have also shown a good correlation between the isotropy of each representative volume element
at low and high values of the applied stretch. The result of linear simulations can therefore be used as an
efficient indication of the anisotropy expected at high deformations.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber-reinforced composites are widely used in industry due to
their high stiffness-to-weight and strength-to-weight ratio. In
addition to their application as structural elements, in recent
years new elastomer-based composites have been proposed in
systems that exploit the mechanics of large deformations, with
examples ranging from strain sensing [32] to deployable struc-
tures [18] and shape memory composites [7]. This new set of
constituent materials, loading conditions and application re-
quirements have made necessary the development of new tools to
predict the mechanical response of fiber composites in the
nonlinear regime [27].

A set of such tools are analytical homogenization techniques.
Following the pioneering work of Ponte Casta~neda [26], several
studies have provided increasingly refined homogenization models
for the nonlinear behavior of fiber-composites [3,4,21,1,20]. How-
ever, this is a very complicated problem, where the possibility of
obtaining simple closed form solutions is limited to a certain set of
constituents and microstructure geometries. In addition, such
models can only provide the homogenized response, and are un-
able to study the microscopic strain and stress fields.
The other option is numerical-based homogenization [22],
which is widely used in the study of both linear and nonlinear
composites [10,13,2,31]. This approach is based on the existence of
a representative volume element (RVE) in which the microstruc-
ture and size are such that its overall response is the same as that of
the real material. This is called separation of scales between the
microscopic and macroscopic scales, and is only strictly true in the
case in which the size of the RVE is mathematically infinite, that is,
extremely large compared to the fiber dimension. The main prob-
lem is, therefore, establishing the minimum element size that
provides a sufficiently accurate prediction of the response of the
ideal composite, as well as bounding the associated error [28].
Several authors have provided estimates for this critical size in the
case of composites with linearly elastic properties [5,11,14]. In the
case of nonlinear composites, the critical size of the RVE depends
not only on the source of nonlinearity, but also on the criteria used
to establish if the different realizations of the RVE, with increasing
size, have converged to the behavior of the ideal, infinite composite
[15,30,25,8,9,23,12], the most common being the convergence of
the homogenized mechanical response, that is, the macroscopic
average stiffness, as the model size increases.

Another possible criteria is the requirement that, since a com-
posite of infinite size and randommicrostructure must be isotropic,
the response of the numerical model should be isotropic too. De-
viations from this ideal behavior are therefore a numerical artifact
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due to the finite size of the model. The RVE size is considered to be
sufficiently large, then, when its mechanical response is close to
isotropic. This is commonly assessed by looking at the coaxility of
the strain and stress tensors [19]. However, and to the author's
knowledge, there are no published studies in which the isotropy is
explicitly explored by systematically varying the loading direction.
This provides a direct measure of the RVE anisotropy, that can be
explored as a function of its size and fiber volume fraction. The fact
that the level of isotropy of a given microstructure might change as
the applied loading increases, as it happens with nonlinear com-
posites, has also seldom been addressed in the existing literature.

The goal of this work is to study the isotropy associated to the
RVE size at lowand high strains, as well as the relationship between
isotropy and convergence of the homogenized response as the size
of the RVE increases. We will focus on two-dimensional RVEs, with
parallel fibers, that are transversely isotropic in the plane perpen-
dicular to the fiber direction. There are two main reasons to choose
this simplified geometry. First, it is a particularly interesting case
since the mechanical properties are dominated by the matrix, and
the evolution of the fiber arrangement as the loading increases
significantly affects the nonlinear response. Second, we will make
use of the fact that the response of an incompressible material
under plane strain can be defined with only two parameters,
namely the principal stretch, l, and the angle of the corresponding
principal direction, q, in order to explicitly explore the isotropy of
the RVEs: for all realizations of our model, the same value of l will
be applied at several values of q, which provides the homogenized
stiffness as a function of the loading direction. The numerical model
will be presented in Section 2. The results for small and large strain
loading will be presented in Section 3, followed by a summary and
discussion of the main findings in Section 4.

2. Computational model

Numerical homogenization is performed through a series of
finite element simulations with the commercial package Abaqus.
The RVEs are loaded applying a macroscopic deformation gradient
F through a combination of dummy nodes and periodic boundary
conditions. The total strain energy of each RVE is used to calculate a
homogenized strain energy density W:

W ¼

Z
Af

Wf dAf þ
Z
Am

WmdAm

Af þ Am
(1)

where Wi and Ai are the strain energy density and area of either
fiber, f, andmatrix,m. The rest of this section provides details on the
parameters, microstructure and boundary conditions of the model.
A very similar model has been verified with experimental results of
carbon fiber composites with a soft silicone matrix [17].

2.1. Geometrical and material parameters

We consider an idealized composite with cylindrical fibers of
radius r, extending perfectly parallel in the X1 direction and with a
random distribution within the X2�X3 plane. The composite is
therefore transversely isotropic, i.e. isotropic in the plane perpen-
dicular to the fiber direction. The fiber volume fraction is Vf. In the
simulations presented here we assume plane strain to reduce the
geometry to a square two-dimensional RVE of side length
L2 ¼ L3 ¼ dr, with Nf ¼ Vfd

2/p fibers. Assuming generalized plane
strain yields the same results, since the extreme stiffness of the
fibers with respect to the matrix prevents any stretching in the X1
direction. A schematic of the model is shown in Fig. 1.
Both fiber and matrix are modeled as incompressible hypere-
lastic Neo-Hookean materials, with strain energy density Wi ¼ mi/
2(I1�3), where mi is the linear shear stiffness of the component i and
I1 is the first invariant of the Cauchy-Green deformation gradient
C ¼ F0F, defined in function of the principal stretches li as
I1 ¼ P3

i¼1l
2
i [24]. The bonding between both components is

assumed to be perfect. The ratio of stiffness between fibers and
matrix is taken so that the fibers behave as rigid, mf/mm ¼ 10000.
Linear quadrilateral elements CPE4H are used for both components,
with hybrid formulation to account for incompressibility. An
average element size of 0.1r has been chosen after a parametric
mesh size study.

2.2. Boundary conditions and loading

Periodic boundary conditions are applied in all faces of the RVE
using the command EQUATION in Abaqus. This requires the mesh
to be identical in all opposite faces of the RVE. The conditions can be
summarized as:

uðL2;X3Þ � uð0;X3Þ ¼ u
2

uðX2; L3Þ � uðX2;0Þ ¼ u
3 (2)

where u
i
j ¼ FijLj, Lj is the length of the RVE in the j-th direction, and

F is the applied deformation gradient, Fij ¼ vxi=vXj. Using the
spectral theorem, the Cauchy-Green deformation gradient can be
expressed as a function of the principal stretches li and principal
directions ni as

C ¼
X3
1

lini5ni (3)

The condition of plain strain imposes l1 ¼ 1, n1 ¼ [1 0 0]. The
additional restraint due to incompressibility implies that all
possible deformations are defined by a single principal stretch,
l2 ¼ 1/l3 ¼ l, and a direction q, n1 ¼ ½0 cosq sinq � and
n2 ¼ ½0 �sinq cosq �. Equation (3) is then used to calculate C, and
the deformation gradient is obtained solving the equation F0F ¼ C.

The components of u
i
can therefore be obtained from the desired

principal stretch and direction, and imposed to the model through
auxiliary dummy nodes. However, imposing the four displacements
often leads to numerical errors, since even small rounding errors
result in a violation of the incompressibility condition. In practice,
this is resolved by allowing free expansion in the X3 direction.
Analysis of the results show that the resultant displacement is
basically equal to F33L3, as expected.

2.3. Fiber arrangement

For a given set of values of d and Vf, the microstructure is fully
described by the position of the center of the fibers within the RVE.
These are obtained through a random sequential adsorption algo-
rithm [6]. This is is a hard-core process, i.e. a Poisson process in
which a limitation on theminimum distance between the centers is
introduced: the positions are obtained randomly, and rejected if the
distance to any of the already allocated fibers is less than a given
limit. In this work, an unless noted otherwise, the minimum dis-
tance adopted is 1.1 times the diameter. Additionally, a fiber is also
rejected if the distance between its center to the edge of the RVE is
in the [0.9r,1.1r] interval. The goal of both conditions is creating a
geometry that can be easily meshed.

It is possible that a given fiber distribution reaches a jammed
configuration [29], in which no new fibers can be added without
violating the non-overlap restriction. For this reason, if after 1000



Fig. 1. Representative volume element (RVE) in the (a) undeformed and (b) deformed configuration. The example has Vf ¼ 0.3 and d ¼ 30, and the loading is characterized by l ¼ 1.5
and q ¼ p/12.

Table 1
Number of fibers for the values of d and Vf considered in the study.

Vf

0.1 0.2 0.3 0.4

d 10 3 6 10 13
20 13 25 38 51
30 29 57 86 115
40 51 102 153 204
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attempts a new fiber has not been accepted, the microstructure is
discarded and the algorithm starts from zero.

3. Results

The results will be presented using the ratio between homog-
enized strain energy density of the composite and the first invariant
of the applied deformation, W=ðI1 � 3Þ. In the small strain regime,
this is an approximation of the homogenized shear stiffness, m. This
is also true in Neo-Hookean materials at all strains, since
W ¼ m(I1�3). A previous study [16] has shown that the nonlinear
behavior of composites with Neo-Hookean components with
moderate fiber concentration is itself very similar to a Neo-
Hookean solid, even at moderately high strains. Furthermore,
even if the behavior of the composite deviates from a Neo-Hookean
material, the ratio provides a simple and physically meaningful
description of the response.

Four different values of both the volume fraction, Vf, and the size
parameter, d ¼ r/L, have been used in the present study. For each
combination of the two, ten different realizations of the micro-
structure are created, and for each model the loading direction q is
varied in the range q¼ [0,p], as summarized in Fig. 2. The results are
presented as statistical quantities at two different levels. First, the
anisotropy of a particular RVE is given by the mean or expected
value (Eq), standard deviation (SDq) and coefficient of variation
(CVq ¼ Eq/SDq) of the response over a given interval of q. Once the
Fig. 2. Schematic of the process followed to obtain statistics of the results. For each
RVE size and volume fraction, several realizations have been created. For each reali-
zation, RVEi, the loading is applied in different directions. The corresponding average
and coefficient of variations are Eq and CVq. The average and variation over all the RVEs
with the same size and volume fraction is given by ERVE and CVRVE.
response of each RVE is identified, it is then possible to consider the
mean and coefficient of variation within different RVEs of the same
size and volume fraction, ERVE and CVRVE respectively.

It should be noted that the values of L used in the study are not
exactly equal to dr, but the closest value giving an integer number of
fibers, so that the fiber volume fraction is strictly enforced. Table 1
summarizes the geometries considered; for each combination of Vf

and d, ten different realizations of the RVE have been created and
studied. An example of a simulation is shown in Fig. 3, corre-
sponding to a RVE with Vf ¼ 0.3 and d ¼ 30. The applied loading is
l ¼ 1.5 and q ¼ p/4.
Fig. 3. Example of Abaqus simulation with Vf ¼ 0.3 and L ¼ 30, with loading l ¼ 1.5 in
the direction q ¼ p/4. Color represents the strain energy density, as a multiple of the
shear modulus of the matrix, mm.



Fig. 4. Response to a deformation of l ¼ 1.01 as a function of the loading angle q for the
ten different realizations with Vf ¼ 0.3, d ¼ 30.
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3.1. Linear response

A first set of results have been obtained applying a deforma-
tion of l ¼ 1.01, which in the case of a composite with Neo-
Hookean components is within the initial linear regimen. We
can calculate the initial shear stiffness mq as a function of the
direction of the applied loading, q, which in all cases can be
expressed as mq ¼ emþ Dmsinð4qþ q0Þ. The values of the mean
shear stiffness, em, the amplitude of the variation, Dm, and the
phase, q0, vary within different RVEs with identical sizes and
concentrations, see Fig. 4.

For each of the different realizations we can calculate the mean
or expected value (Eq), standard deviation (SDq) and coefficient of
variation (CVq ¼ Eq/SDq) of mq over the interval q ¼ [0,p]. For a sine,
Fig. 5. Expected value em ¼ Eq½mq � and coefficient of variation CVq[mq] fo
the expressions simplify to Eq½mq� ¼ em and SDq½mq� ¼ Dm=
ffiffiffi
2

p
. The

values of q have been discretized using p/12 intervals; differences
with a discretization in p/24 intervals, as shown in Fig. 4, are of the
order of 1%. It should be noted that, given the sinusoidal depen-
dance with q, then one simply has that E½mq� ¼ mg þ mgþp=4, for any
value of g, which greatly reduces the computational cost.

Fig. 5 shows the value of the expected value Eq[mq] and the co-
efficient of variation CVq[mq] of the response of each of the RVEs
considered. As expected, the predicted stiffness converges as the
size of the numerical model increases, and the anisotropy of each
RVE decreases. The coefficient of variation also shows how the
dispersion between different realizations, i.e. the anisotropy, is
higher for systems with high fiber density. In both cases there is
convergence as d increases, as expected in a problem with sepa-
ration of scales.

We consider now that each RVE provides a single prediction of
the behavior of the composite, emq ¼ Eq½mq�, which has been obtained
taking into account a range of loading directions q. Our goal is then
to obtain an average of this prediction for all realizations of the RVE,
ERVE½emq�, as well as the corresponding coefficient of variation,
CVRVE½emq�, which describes the variation in response between RVEs
with the same fiber volume fractions and size. It is particularly
interesting to compare the prediction considering the full variation
of angle q ¼ [0,p], with predictions obtained considering only the
loading in a single direction, that is, for a given value of q. Fig. 6
shows how considering the average response over q improves the
convergence of the response, as well as greatly decreases the
variation between different RVEs. This means that the prediction
obtained this way will be much more robust with respect to dif-
ferences in the particular fiber arrangement of the model. Due to
the sinusoidal nature of the response, emq ¼ Eq½mq� can be obtained
with just two simulations at g and g þ p/4, for any g, a computa-
tional cost much smaller than the increase inmodel size required to
achieve the same improvements with a single loading direction.
Fig. 6 can also be used as a guideline to choose a RVE size. Although
this choice would depend on the given application, it is readily
apparent that for dense systems, a system size of d ¼ 20 already
presents a significant reduction in the expected spread between
different RVEs.
r all realizations of RVEs with fiber volume fraction Vf and size d.



Fig. 6. Expected value ERVE ½mqp � and coefficient of variation CVRVE ½mqp � for different realizations of RVEs with fiber volume fraction Vf and size d. Each curve has been calculated using
a different loading direction, p.

Fig. 7. Response to a deformation of l ¼ 1.5 as a function of the loading angle q for the
ten different realizations with Vf ¼ 0.3, d ¼ 30.
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3.2. Nonlinear regime

In order to study the evolution of the anisotropy in the nonlinear
regime, we now consider a maximum principal stretch of l ¼ 1.5,
applied over the same range of directions q. This value has been
chosen as being themaximum deformation inwhich the cases with
Vf ¼ 0.4 convergewithout the need of numerical techniques such as
remeshing or numerical viscous damping, which could affect the
response by a small but noticeable amount. It is also sufficient for
possible practical applications, since it is well beyond the failure
stretch observed experimentally in fiber reinforced elastomers [17].
In this case the response is simply defined as W=ðI1 � 3Þ, since at
hight strains the response might deviate from that of a Neo-
Hookean material [16].

Fig. 7 shows the response of all RVEs with Vf ¼ 0.3 and d ¼ 30
when the applied deformation is l¼ 1.5, as a function of the loading
direction q. In this case the anisotropy no longer takes the form of a
sine with respect to q, although some similarities can be observed
with the response at l ¼ 1.01 for the same RVEs presented in Fig. 4.

The evolution of the response as the loading increases is shown
in Fig. 8, a comparison of expected value and coefficient of variation
of the homogenized response for all realizations of the RVEs, ERVE
and CVRVE, for three different values of the applied stretch l. For all
parameters the response at different loading stages are very similar,
both in the expected value and in the variation between different
RVEs. Again, a significant decrease in the coefficient of variation is
observed after d ¼ 20, specially for systems with a dense concen-
tration of fibers.

We now compare the anisotropy of each individual RVE at small
and high strains, characterized in both cases by the corresponding
coefficient of variation over the loading direction, CVq[mq] and
CVq½W=ðI1 � 3Þ�, respectively. A close relationship between the two
would make it possible to predict anisotropy at high strains using
simulations in the linear regime. This is a computationally very
efficient way to evaluate the suitability of a given realization of the
RVE, particularly since at low strains the coefficient of variation can
be calculated with just two simulations, thanks to the sinusoidal
dependance on q, which is no longer true for high values of the
stretch. Fig. 9 shows how the coefficient of variation at l ¼ 1.01 and
l ¼ 1.5 are reasonably correlated for all values of Vf and d, with a
Pearson's coefficient of 0.84, which means that an analysis in the
linear regime is a good indication of the anisotropy expected a high
deformations. Furthermore, the figure shows that when large de-
viations from correlation take place, they consist on cases in which
the anisotropy is higher at large strains, so the results for low
deformation serve as a useful lower bound.



Fig. 8. Expected value ERVE ½mqp � and coefficient of variation CVRVE ½mqp � for different realizations of RVEs with fiber volume fraction Vf and size d. Each curve corresponds to a different
loading stretch, l.
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4. Summary and discussion

The isotropy of RVEs for fiber reinforced elastomers has been
studied with numerical simulations in which the same stretch has
been applied in several different directions. Ten different re-
alizations of different sizes and fiber concentrations have been
Fig. 9. Coefficient of variation of responses in the linear regime, l ¼ 1.01, and the
nonlinear regime, l ¼ 1.5, over all volume fraction and system sizes. The line corre-
sponds to equal coefficient of variation at both strains. The correlation coefficient is
0.84.
considered, and in all cases the macroscopic response of the model
showed a clear dependance on the loading direction, q. The varia-
tion of the homogenized response over q has then been used to
define the anisotropy of each realization of the RVE.

Two main findings have been presented. The first one is the fact
that in the linear regime, the response as a function of the loading
direction has a sinusoidal shape, and that considering the mean
value of such sine provides a prediction for the response of the real
composite that is muchmore robust than that obtained considering
the response in a given, fixed direction. This is able to provide a
reduction in computational cost, since the expected value of a sine
can be calculated using just two loading directions. The evolution of
the anisotropy with respect to the system size can also be used to
verify that there is separation of scales. Furthermore, the fact that
the phase of every sine is different implies that this variation is not
purely an effect of the boundary conditions or the way the micro-
structure of the different RVEs are obtained.

Second, anisotropy in the linear regime correlates reasonably
well with the anisotropy in the nonlinear regime. This means that
the results from linear simulations can be used to provide a
reasonable prediction of the isotropy expected at high de-
formations, with the subsequent save in computational costs.

The study has made use of the convenient fact that, due to
incompressibility, all two-dimensional deformations are equivalent
to shear, and can be parameterized by the magnitude of the main
principal stretch, l, and its direction, q. However, in the case of
compressible composites, this is no longer true, since there is no
longer an unique relation between the two principal stretches. In
this case it will be necessary to consider different deformation
modes, such as tension, pure and simple shear or biaxial tension. In
particular, it would be interesting to study if the level of isotropy of
a given RVE is roughly the same for all loading conditions, or if a
given microstructure might show different levels of anisotropy as a
function of the loading type.

In addition, the present approach could also be used to study
composites with anisotropic behavior, such as the cases of material
properties or microstructure dependant on the fabrication process.



F. L�opez Jim�enez / Composites Part B 87 (2016) 33e39 39
In that case it will necessary to compare the anisotropy observed in
the numerical model with that expected in the ideal composite.
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