
Composites: Part B 59 (2014) 173–180
Contents lists available at ScienceDirect

Composites: Part B

journal homepage: www.elsevier .com/locate /composi tesb
Modeling of soft composites under three-dimensional loading
1359-8368/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compositesb.2013.11.020

⇑ Tel.: +33 686178830.
E-mail address: lopez@lms.polytechnique.fr
F. López Jiménez ⇑
Laboratoire de Mécanique des Solides, UMR CNRS 7649, École Polytechnique, 91128 Palaiseau Cedex, France
a r t i c l e i n f o

Article history:
Received 21 June 2013
Received in revised form 19 September 2013
Accepted 12 November 2013
Available online 25 November 2013

Keywords:
A. Fibers
B. Mechanical properties
C. Finite element analysis (FEA)
a b s t r a c t

The finite deformation response of fiber-reinforced hyperelastic solids under three-dimensional loading
is studied through finite element simulations. The composites are modeled using representative volume
elements with random fiber arrangement and periodic boundary conditions. Different matrices and
volume fractions are considered. It is found that the shear stiffness of composites with Neo-Hookean
components depends on the direction of the applied deformation even when the fibers are not stretched,
which indicates a clear dependance on not only the I1 and I4 invariants, but also on I5. This anisotropy
increases with the fiber concentration. The effect of using an Ogden matrix with increased nonlinearity
is also discussed. Finally, the simulations are compared with suitable homogenization techniques
available in the literature. A prediction using two different values of the shear stiffness is able to
accurately model the response regardless of the loading direction.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Soft solids reinforced with significantly stiffer fibers are used in
technological applications (car tires, carbon fiber-reinforced
elastomers) and can also be found in biological tissue (cornea,
arterial walls). The difference in stiffness between the two compo-
nents can reach several orders of magnitude, which leads to
micromechanics not observed in traditional fiber composites, such
as significant changes in the fiber orientation.

Phenomenological models for the large deformation of fiber
reinforced solids usually follow the framework of Spencer [24],
considering a homogeneous solid whose strain energy density fW
is the sum of two terms:

fW ðI1; I2; I3; I4; I5Þ ¼ fW isoðI1; I2; I3Þ þ fW anisoðI4; I5Þ ð1Þ

where the first term represents an isotropic material, and the
second term takes into account the anisotropy introduced by
the presence of the fiber reinforcements. The invariants I1 to I3

are the invariants of the average Cauchy-Green deformation gradi-
ent C ¼ FTF. These three invariants are isotropic, as opposed to the
fourth and fifth: I4 ¼ NTCN measures the stretch in the fiber
direction, defined by the vector N, while I5 ¼ NTCCN depends on
the fiber stretch and shear and has no straightforward physical
interpretation. In most models each term in Eq. (1) depends on a
single invariant, fW iso ¼ fW isoðI1Þ and fW aniso ¼ fW anisoðI4Þ.

Determining the function fW for matrix-dominated deforma-
tions is particularly difficult. It is not equal to the strain energy
density of the bulk matrix under the same macroscopic deforma-
tion, since it needs to take into account the effect of the inclusions,
ranging from stress concentrations to possible changes in micro-
structure as a result of finite deformations. This is sometimes
achieved by fitting experimental results under different loading
conditions to the force–displacement relationships obtained from
Eq. (1) [20,21]. When the experimental data available is not suffi-
cient, as in the case of fiber reinforced elastomers, models found
in the literature often use simple geometrical approximations
based on periodic microstructures [5,8].

Estimates for the in-plane response of hyperelastic fiber-rein-
forced solids with particular microstructures using the second-
order homogenization scheme have been presented by Ponte
Castañeda and co-workers [16,1]. deBotton [3,4] produced esti-
mates for sequentially-coated composites, obtained by successive
lamination of the previous composite with thin layers of the matrix
phase. These analytical predictions have been compared with finite
element simulations [18] with good agreement up to moderate
values of the volume fraction. Lopez-Pamies and Idiart [15] have
recently proposed an iterative homogenization technique and used
it to produce estimates for the three-dimensional response of fiber
reinforced elastomers with a random distribution of parallel fibers.
This is particularly interesting to model the in-plane buckling of
such composites under bending [11,9], since such instabilities
result in complex three-dimensional deformation of the material.
The applicability of these predictions to three-dimensional loading
has not yet been contrasted numerically or experimentally.

This paper presents a series of numerical simulations in two-
dimensional and three-dimensional representative volume
elements (RVEs) of fiber-reinforced elastomers, with different fiber
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Table 1
Parameters of the Ogden hyperelastic energy functions.

Matrix 1 Matrix 2 Matrix 3

a1 2 1.2 2.5
l1=lm 1 0.8 1.01
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volume fractions and loading directions. The results are compared
to current homogenization models, whose hypothesis and range of
validity are discussed. In particular, it will be shown that the shear
stiffness of the composite depends on the loading direction, even
within the linear regime.
a2 0 1 5
l2=lm 0 0.2 0.02
a3 0 0 �1
l3=lm 0 0 �1
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2. Computational model

The composite is idealized as a soft hyperelastic solid reinforced
with perfectly parallel cylindrical fibers several orders of magni-
tude stiffer than the matrix. All the fibers have the same radius r.
The fiber volume fraction is Vf , and four values ranging from 0.2
to 0.5 are considered. It is assumed that no voids exist in the com-
posite, and bonding between fibers and matrix is perfect. The
strain softening reported by López Jiménez and Pellegrino [11] is
therefore neglected here.

A series of 2D and 3D finite element simulations on representa-
tive volume elements (RVEs) have been performed using the com-
mercial package Abaqus. Schematics of the geometry and reference
systems for the models are shown in Fig. 1. The RVEs are square in
the plane perpendicular to the fiber direction, L2 ¼ L3 ¼ L, and have
length L1 along the fiber direction.

The following subsections give details on the model, such as
material properties used for each component, fiber arrangement,
size of the RVE and boundary conditions.
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Fig. 2. Response of the three matrices to uniaxial tension: (a) strain energy density
normalized by the initial shear stiffness vs. elongation and (b) nominal stress
normalized by initial shear stiffness vs. elongation.
2.1. Material properties

The fibers are modeled as a Neo-Hookean material with elastic
shear modulus lf . The Poisson’s ratio is taken as mf ¼ 0:3, although
the simulations show that the fibers behave as a rigid body, and so
the results are insensitive to the value of mf . The matrix has been
modeled as an incompressible Ogden hyperelastic solid [19], in
which the strain energy Wm takes the form:

Wm ¼
XN

i¼1

2li

a2
i

kai
1 þ kai

2 þ kai
3 � 3

� �
ð2Þ

In order to check the effect of the large strain behavior of the
matrix, three different combinations of N and ai have been consid-
ered. The first one, N ¼ 1 and a ¼ 2, corresponds to a Neo-Hookean
material. The other two are respectively softer and stiffer at large
elongations; the values are shown in Table 1, and the response of
all three matrices to uniaxial tension is shown in Fig. 2. The elastic
shear modulus is lm ¼

PN
i¼1li. It is assumed that lm � lf , which is

the case of typical elastomers reinforced with materials such as
steel or carbon fibers, as well as several biological tissues. In this
case, the results can be scaled by lm, see Section 4.1.
Fig. 1. Representative volume elements (RVEs) used in: (a) two-dimensional and
(b) three-dimensional simulations.
2.2. Boundary conditions and applied loading

Periodic boundary conditions are applied in all faces of the RVE
using the command EQUATION in Abaqus. This requires the mesh
to be identical in all opposite faces of the RVE. The conditions
can be summarized as:
uðL1;X2;X3Þ � uð0;X2;X3Þ ¼ u
1

uðX1; L2;X3Þ � uðX1;0;X3Þ ¼ u
2

uðX1;X2; L3Þ � uðX1;X2;0Þ ¼ u
3

ð3Þ
where u
i

j ¼ FijLj; Lj is the length of the RVE in the jth direction, and F
is the applied deformation gradient, Fij ¼ @xi=@Xj.

The components of u
i

are the displacements of auxiliary dummy
nodes, in which displacement or loadings can be imposed. Due to
the high difference in stiffness between fibers and matrix, the
response of the composite is dominated by the fiber behavior for
any deformation involving stretching of the fibers, I4–1. Since
the goal is to study the dependance on other invariants, loading
will be limited to cases in which no stretching is imposed on the
fibers.
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2.3. Model size

The number of fibers in the RVE must be sufficient to ensure
that the mechanical properties predicted by the model do not
depend on the particular fiber arrangement, and are therefore rep-
resentative of the limit case of an infinite composite. In addition,
nonlinear elasticity requires larger RVE sizes than the linear case.
Khisaeva and Ostoja-Starzewski [7] performed numerical studies
showing very good approximations for a RVE size of L=d ¼ 16,
where d is the fiber diameter and L ¼ L2 ¼ L3. These results were
later confirmed in by Moraleda et al. [18], and are therefore used
here. Table 2 shows the number of fibers and RVE size as a function
of the fiber volume fraction.

Regarding the out of plane direction, the simulations show that
due to the periodic boundary conditions all microscopic fields are
invariant with respect to the X3 coordinate, even for three-dimen-
sional loading. The value of L3 is therefore arbitrary, and no differ-
ence in the results can be observed once the models have more
than four elements in the X3 direction.

In all cases it is implicitly assumed that the composite will
remain in its principal solution under the applied loading. If insta-
bilities were induced, then the response of the model would
strongly depend on the ratio between its size and the instability
wavelengths [17,2,23].

2.4. Fiber arrangement

Since the composite is idealized as having perfectly parallel
fibers, their arrangement is fully described by the position of the
centers in a square, two-dimensional RVE. They are initially dis-
tributed following a hard-core process. This is a Poisson process
in which a limitation on the minimum distance between the cen-
ters is introduced: the positions are obtained randomly, and
rejected if the distance to any of the already allocated fibers is less
than a given limit. In this work, the minimum distance adopted is
1.1 times the diameter. Additionally, a fiber is also rejected if the
distance between its center to the edge of the RVE is in the [0.9r,
1.1r] interval. The goal of both conditions is creating a geometry
that can be easily meshed.

High volume fractions might reach the jamming limit, given by
Tanemura [25] as 0.547 and further lowered by the imposed addi-
tional restrictions. If after 1000 attempts a new fiber has not been
accepted, the last attempted position is accepted even if it overlaps
with other fibers. In such cases the Random Sequential Adsorption
[22] algorithm is used. It is an iterative process that tries to mini-
mize a potential E, which in this case is defined as:

E ¼
X

i

X
j

dij 10þ 100r
dij

� �
þ 100

X
i

di ð4Þ

where dij is the distance between the ith and jth fibers, and dij and di

are equal to one if the restrictions to the location of the fibers are
not satisfied by the ith and jth fibers, or by the ith fiber and the
edges of the RVE, respectively.

Once this potential is defined, the algorithm works as follows:
In every iteration a fiber is picked randomly, and a small random
displacement is assigned. The potential E0 is calculated for this
new configuration. The displacement is accepted according to the
probability:
Table 2
Number of fibers and value of L=r for the four fiber volume fractions Vf considered.

Vf 0.2 0.3 0.4 0.5
Number of fibers 65 100 130 160
L=d 15.98 16.18 15.98 15.85
P ¼
1 if DE 6 0

e
E�E0

A if DE > 0

(
ð5Þ

where DE ¼ E0 � E and A is a parameter that controls how fast the
system evolves. This means that the algorithm would accept some
of the displacements in which the energy increases slightly, but
almost none producing a large increment. The iterations are
repeated until the energy of the system reaches E ¼ 0, correspond-
ing to a configuration where all restrictions are satisfied. Examples
of the fiber arrangements obtained for Vf ¼ 0:2 and Vf ¼ 0:5 are
shown in Fig. 3.
2.5. Mesh

The two-dimensional fiber arrangement is meshed with a com-
bination of triangle elements in the fibers and rectangular quadri-
lateral elements in the matrix. This mesh is then transported in the
fiber direction, producing a three-dimensional mesh consisting of
triangular and rectangular prisms.

Regarding the type of elements, the fibers are modeled using
linear triangular elements for plane strain (CPE3) in 2D models
or triangular prisms (C3D6) in 3D models. Since the matrix is mod-
eled as an incompressible material, it requires the use of elements
with hybrid formulation. Linear quadrilateral elements produced
the same results as second order triangular elements with better
convergence, and so CPE4H are used in 2D simulations and
C3D8H for 3D cases.

A parametric study of the mesh size produced different results
for each type of RVE considered. In the two-dimensional simula-
tions, the applied loading leads to significant changes in the rela-
tive position of the fibers, and a very fine mesh is required to
achieve convergence. As a rough estimate, at least four matrix ele-
ments are needed between the closest fibers. An average element
size of 0.05r has been chosen, producing models with 415000–
480000 elements and 320000–445000 nodes.

In the three-dimensional loadings the mesh is not as fine, in or-
der to reduce the computational cost. The models in this study
have an average element size of 0.075r and four elements in the
X1 direction, resulting in models with 730000–850000 elements
and 720000–980000 nodes.
3. Homogenization based models

This section presents a brief summary of basic notation in
homogenization theory, as well as the main results from the works
used for comparison with the simulations. A complete review of
homogenization is beyond the scope of this work. The reader is
referred to the articles referenced here and in Section 1.
(a) (b)
Fig. 3. Fiber arrangement of RVEs with: (a) Vf ¼ 0:2 and (b) Vf ¼ 0:5.
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Fig. 4. Response of a composite with Neo-Hookean matrix and Vf fiber volume
fraction to in-plane shear (shear in the X2 � X3 plane): (a) strain energy density
normalized by the initial matrix shear stiffness vs. principal stretch and (b) nominal
stress normalized by the initial matrix shear stiffness vs. principal stretch. The
results for fiber–matrix stiffness ratios between k ¼ 103 and k ¼ 105 overlap into a
single line.
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The macroscopic response of a fiber-reinforced material is
usually described by the relation between its average stress S
and the average deformation gradient F [6]:

S ¼ @W

@F
ð6Þ

Here, the effective stored-energy function W is defined as:

WðFÞ ¼ min
F2KðFÞ

1
V

Z
V

WðF;XÞdX ð7Þ

where V is the volume of the composite, and KðFÞ is the set of
admissible deformation gradients F consistent with the average
condition:

F ¼ 1
V

Z
V

FðXÞdX ð8Þ

Homogenization techniques aim to provide the strain energy
density fW F

� �
of a homogeneous solid that servers as an estimate

for the effective stored-energy function W of a composite, as a
function of its microstructure and the material properties of its
components.

deBotton et al. [3,4] and Lopez-Pamies and Idiart [15] have
made use of iterative techniques based on solutions for coated
laminates. The corresponding estimate of the real material strain
energy, fW SCC , is an exact solution for the assumed composite
geometry. The result reads as follows:

fW SCC ¼ ~lHSðI1 � 3Þ þ
~ln � ~lHS

2

ffiffiffiffi
I4

p
þ 2

� � ffiffiffiffi
I4

p
� 1

� �2

ffiffiffiffi
I4

p ð9Þ

where ~ln is the stiffness of the fiber-dominated response:

~ln ¼ ð1� Vf Þlm þ Vf lf ð10Þ

and the linear shear stiffness ~lHS coincides with the Hashin–Shtrikman
(H–S) lower bound for the initial shear moduli of transversely isotropic
materials with incompressible components:

~lHS ¼
ð1� Vf Þlm þ ð1þ Vf Þlf

ð1þ Vf Þlm þ ð1� Vf Þlf
lm ð11Þ

If the fibers are not stretched, I4 ¼ 1, Eq. (9) depends only on I1,
which means that the shear stiffness of the composite, ~lHS, does
not depend on the loading direction.

The solution in Eq. (9) can be utilized within the iterated
homogenization framework [14] to generate in turn a solution
for fiber-reinforced Neo-Hookean materials with fibers of circular
cross section and polydisperse sizes, i.e. of infinitely many diame-
ters. The resulting effective stored-energy function depends on
I1; I4 and I5, and reads as follows [13]:

fW IH ¼
~lIH

2
ðI1 � 3Þ þ

~ln � ~lIH

2
2ffiffiffiffi
I4

p � 3

 !
þ

~ln � ~lHS

2
I4

�
~lIH � ~lHS

2
I5

I4
ð12Þ

where

~lIH ¼ ð1� Vf Þ2 1þ 2ð2� Vf ÞVf

ð1� Vf Þ2
lf

lm
þ

l2
f

l2
m

 !
lm

2
� ð1� Vf Þ2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1� Vf Þ2
lf

lm
þ 1þ

2 2� Vf

� �
Vf

ð1� Vf Þ2
lf

lm
þ

l2
f

l2
m

 !vuut
�

lf �mum

2
ð13Þ

If the fibers are not stretched, Eq. (12) reduces to:
fW IHðI4 ¼ 1Þ ¼
~lIH

2
ðI1 � 3Þ �

~lIH � ~lHS

2
ðI5 � 1Þ ð14Þ

Due to the dependance on I5 the material exhibits different
behavior depending on the loading direction. In particular, the
stiffness for in-plane shear (shear in the X2 � X3 shear) is ~lIH , while
for out-of-plane shear (planes X1 � X2 and X1 � X3) it is equal to
~lHS.
4. Results

As explained in Section 2.2, this study focuses on cases in which
the fibers are not stretched, I4 ¼ 1. The simulations show that in
that case the strain energy in the matrix is orders of magnitude
higher than the strain energy in the fibers.

All loadings are characterized by the macroscopic applied aver-
age deformation gradient, F, or the corresponding principal
stretches and invariants. The results are presented normalized by
either the initial shear stiffness of the matrix, lm, or by the strain
energy density of the matrix material under the same macroscopic
deformation, Wm. Two main cases are considered: shear in the
X2 � X3 plane (in-plane shear, for which the two-dimensional RVEs
are used) and shear in the X1 � X3 plane (out-of-plane shear), plus
combinations of the two.
4.1. In-plane shear

Due to the high fiber stiffness and the incompressibility of the
elastomeric matrix, the composite can be approximated as an
incompressible solid. Stretching and shearing in the X2 � X3 plane
are therefore equivalent, and they both can be expressed with the
same principal stretches k1 ¼ 1=k3 ¼ k; k2 ¼ 1. The results
presented here correspond to elongation in the X2 direction.

The value of k for each volume fraction is at least three times
the elongation at failure observed experimentally [10]. Simulations
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Fig. 6. Response of a composite with Ogden matrix and Vf fiber volume fraction to
in-plane shear (shear in the X2 � X3 plane): (a) strain energy density normalized by
the initial matrix shear stiffness vs. principal stretch and (b) nominal stress
normalized by the initial matrix shear stiffness vs. principal stretch.
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considering different values of k ¼ lf =lm are shown in Fig. 4. The
results overlap for the range of typical elastomers and reinforcing
fibers (k > 1000), and even for k ¼ 100 only small differences can
be seen at high fiber volume fractions. The reason is that the high
stiffness of the inclusions makes them behave as rigid bodies, and
so lm is the only stiffness playing a role in the material. In the rest
of this article, it is assumed that k P 1000, and the results are pre-
sented scaled by lm.

The numerical results are compared to the homogenization
models in Fig. 5. The Hashin–Shtrikman bound underestimates
the composite stiffness, and the difference increases with the fiber
concentration, up to 30% when Vf ¼ 0:5. The iterative homogeniza-
tion provides a much closer agreement for low volume fractions,
and even for Vf ¼ 0:5 the error is of about only 15%. This suggests
that polydispersity is inconsequential for small and moderate fiber
concentrations.

The effect of the matrix behavior is shown in Fig. 6, where sim-
ulations with all three Ogden matrices are compared. As expected,
the deviations increase with the fiber volume fraction, due to the
higher strain concentrations between closely packed fibers.

The strain energy density of the composite normalized by the
strain energy density of the corresponding matrix material sub-
jected to the same macroscopic deformation is shown Fig. 7. Devi-
ations from a constant value imply dependance on I2 or higher
order terms of I1. These are much more prominent for models with
an Ogden matrix.

Finally, the numerical model is also useful to study fields at the
microscopic level. Fig. 8 shows how regions with high strain energy
density tend to appear between closely packed fibers and aligned
with the stretch direction, with maximum values of the local
principal stretches well over ten times higher than the macro-
scopic applied loading.
4

5

4.2. Out-of-plane shear

In the case of the three-dimensional loadings only the strain
energy density will be plotted. The effect of the Ogden matrices
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Fig. 5. Response of a composite with Neo-Hookean matrix and Vf fiber volume
fraction to in-plane shear (shear in the X2 � X3 plane): (a) strain energy density
normalized by the initial matrix shear stiffness vs. principal stretch and (b) nominal
stress normalized by the initial matrix shear stiffness vs. principal stretch.

1 1.2 1.4 1.6
1

2

3

Fig. 7. Response of a composite with Ogden matrix and Vf fiber volume fraction to
in-plane shear (shear in the X2 � X3 plane): strain energy density normalized by the
strain energy density of the corresponding matrix material subjected to the same
macroscopic deformation vs. principal stretch.
is basically the same as that shown in Fig. 6, and it is also omitted
for conciseness.

The deformation gradient consists on shear in the X1 � X3 plane,
which due to the condition I4 ¼ 1 results in rotation of the fibers h,
see Fig. 9. Additionally, incompressibility results in a slight expan-
sion in the X2 and X3 directions. A similar deformation state takes
place during fiber microbuckling.

The corresponding macroscopic deformation gradient for a
transversely isotropic solid is:

F ¼
cosðhÞ 0 0
0 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðhÞ

p
0

sinðhÞ 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðhÞ

p
0B@

1CA ð15Þ



Fig. 8. Strain energy density of a composite with Neo-Hookean matrix under in-
plane shear (shear in the X2 � X3 plane), normalized by the initial matrix shear
stiffness (logarithmic scale): (a) Vf ¼ 0:5; k1 ¼ 1:3 and (b) Vf ¼ 0:2; k1 ¼ 1:6.

Fig. 9. Schematic of the response of a composite to out-of-plane shear (shear in the
X1 � X3 plane): (a) undeformed configuration and (b) deformed configuration,
showing that a microscopic level the deformation consists on rotation of the fibers
and shear in the matrix.
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Fig. 10. Response of a composite with Neo-Hookean matrix and Vf fiber volume
fraction to out-of-plane shear (shear in the X1 � X3 plane): strain energy density
normalized by the initial matrix shear stiffness vs. principal stretch.

Fig. 11. Strain energy density of a composite with Neo-Hookean matrix under out-
of-plane shear (shear in the X1 � X3 plane), normalized by the initial matrix shear
stiffness (cross section, logarithmic scale): (a) Vf ¼ 0:5; h ¼ p=4 and (b)
Vf ¼ 0:2; h ¼ p=4.
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The simulations results deviate slightly from Eq. (15) due to the
microstructure of the RVEs not being completely transversely
isotropic, and so the values of ~F have been calculated from the
displacement of the dummy nodes, u

i
in Eq. (3). The applied shear

is @dx1=@dX1 ¼ @dx3=@dX1 ¼
ffiffiffi
2
p

=2, corresponding to h ¼ p=4,
which is beyond the shear observed in the folding microbuckling
of soft fiber composites when fiber failure takes place [12].

In this case the Hashin–Shtrikman lower bound and the
iterative homogenization prediction are almost identical, and pro-
vide a good prediction of the numerical results, see Fig. 10. Only at
high fiber concentrations the predictions underestimate the strain
energy density, with 10% difference at Vf ¼ 0:5.

The effect of the shear direction can also be observed in the
micromechanics of the composite. In the case of out-of-plane shear
the fibers rotate without changing their relative position, see
Fig. 11. This results in a more homogeneous strain density field,
which in turn leads to an overall softer response.
4.3. Comparison of in-plane and out-of-plane shear

The previous simulations have shown that the composite exhib-
its different behavior depending on the orientation of the applied
shear. In order to better compare the results, the strain energy
density of the composite normalized by the strain energy density
of the matrix subjected to the same macroscopic deformation is
plotted in Fig. 12 as a function of the I1 invariant. It is clear that
the response depends on the direction of the applied shear,
specially for high fiber volume fractions. Since the first three
invariants are isotropic, and I4 ¼ 1 throughout the simulations,
the anisotropy must depend on the fifth invariant, I5. Additionally,
the response to out-of-plane shear is very close to that of a Neo-
Hookean material, with fW=Wm close to constant at all fiber
volume fractions and values of I1, while for in-plane shear some
dependance on I2 or higher order terms of I2 is observed at high
strains.

Although the composite initial shear stiffness ~l as a function of
the fiber volume fraction and the loading direction can be inferred
from Fig. 12, it is seen more clearly in Fig. 13, where it is compared
with the homogenization predictions, ~lHS and ~li. The results show
how starting from a common value for the dilute limit, the initial
shear stiffness of both cases grow apart as the fiber concentration
increases. The homogenization predictions are very close to the
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Fig. 12. Strain energy density of a composite with Neo-Hookean matrix and fiber
volume fraction Vf under in-plane and out-of-plane shear, normalized by the strain
energy density of the matrix subjected to the same macroscopic deformation vs.
first invariant.
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Fig. 13. Initial shear stiffness of a composite with Neo-Hookean matrix fiber
volume fractions Vf under in-plane and out-of-plane shear loading, normalized by
the matrix shear stiffness vs. fiber volume fraction.
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Fig. 14. Strain energy density of a composite with Neo-Hookean matrix and fiber
volume fraction Vf under combined in-plane and out-of-plane shear (strain mixity
b), normalized by the initial matrix shear stiffness vs. principal stretch: (a) Vf ¼ 0:4
and (b) Vf ¼ 0:5.
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corresponding numerical values; in order to accurately capture the
behavior of the material, models needs to distinguish between
both deformation modes through the dependance on I5.
4.4. Combined in-plane and out-of-plane shear

The dependance on the loading direction is further explored
with simulations combining in-plane and out-of-plane shear. The
imposed deformation is @dx3=@dX2 ¼ d23 and @dx3=@dX1 ¼ d13, plus
the restraints I3 ¼ I4 ¼ 1. The corresponding average deformation
gradient is:

F ¼
1� d2

13

� �1=2
0 0

0 1� d2
13

� ��1=4
0

d13 d23 1� d2
13

� ��1=4

0BBB@
1CCCA ð16Þ

Defining the shear mixity as b ¼ arctan d13=d23ð Þ, in-plane and
out-of-plane shear correspond to b ¼ 0 and b ¼ p=2, respectively.
Numerical results for intermediate values, b ¼ p=6 and b ¼ p=3,
are compared with the predictions of the iterative diluted
homogenization scheme. The agreement is very close for concen-
trations up to Vf ¼ 0:4, see Fig. 14. Even at Vf ¼ 0:5 and b ¼ p=6
the disagreement is below 10%.

5. Discussion

The behavior of fiber-reinforced elastomers under three-dimen-
sional loading has been studied through finite element models. The
simulations use a set of two- and three-dimensional representative
volume element with random fiber arrangement and periodic
boundary conditions. The fibers are several orders of magnitude
stiffer than the matrix, which is modeled as either a Neo-Hookean
or Ogden hyperelastic material.

The simulations have focused on cases with no fiber stretching,
I4 ¼ 1. It has been found that the response to in-plane and out-of-
plane shear is different, even at the linear regime, and that the
difference increases with the fiber concentration. Since the first
three invariants are isotropic, and the fourth invariant remains
constant during the simulations, the anisotropy depends on the
fifth invariant, I5. This deviation from a Neo-Hookean response
for composites under shear is even more clear when the matrix
is an Ogden hyperelastic solid with increased nonlinearity at high
strains.

These results have been compared with two different homoge-
nization based models. The shear response for laminated compos-
ites coincides with the Hashin–Shtrikman lower bound, and
provides a very good prediction for the response to out-of-plane
shear, but underestimates the in-plane shear stiffness. This can in
turn be predicted with a new scheme using iterative dilute homog-
enization. A model combining both predictions with a linear
dependance on I5 is able to capture both cases, as well as others
in which both shear loadings are combined. Additional simula-
tions, currently in progress, will be able to confirm this depen-
dance, and determine if the small deviations observed at high
fiber volume fractions can be attributed to higher order depen-
dance on the strain invariants.
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