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Failure of Carbon Fibers at
a Crease in a Fiber-Reinforced
Silicone Sheet
Thin sheets of unidirectional carbon fibers embedded in a silicone matrix can be folded
to very high curvatures, as elastic microbuckles with a half-wavelength on the order of
1 mm decrease the maximum strain in the fibers near the compression surface. This paper
shows that probabilistic failure models derived from tension tests on individual fibers can
be used to predict accurately the value of the outer surface curvature of the sheet, at
which a small percentage of fibers break when a crease is formed in the sheet. The most
accurate results are obtained by using a strain-based Weibull distribution of the failure
probability in tension. [DOI: 10.1115/1.4007082]

1 Introduction

Carbon fiber composites are attractive for aerospace applica-
tions due to their high stiffness to density ratio and their high ther-
mal stability, but their applicability to deployable structures has
been limited by their brittle behavior. Recently, an alternative
type of composite material has been developed, in which the fibers
are embedded in a matrix that is many orders of magnitude softer
than the fibers. It has been shown that deployable structures made
of these materials can be packaged tightly. Examples of structures
based around this approach are the elastic memory composite
hinges developed by Francis et al. [1], where the carbon fibers are
embedded in a shape-memory polymer, and the deployable reflec-
tor concept proposed by Datashvili et al. [2], consisting of a
triaxial-weave carbon fiber fabric with a silicone matrix. A strik-
ing property is that localized creases can be introduced in thin
sheets of these materials, leaving little or no damage when the
creases are removed. Murphey et al. [3] have explained that the
fibers in the compression region of the sheet form a series of elas-
tic microbuckles and, through this mechanism, they can be sub-
jected to a large geometric strain, while the material strain in the
fibers is actually relatively small. The present authors [4] have
recently shown that the shearing of the matrix between the fibers
induces such high strains and, hence, damage in the matrix and/or
matrix-fiber interface that the bending stiffness of the composite
sheet significantly decreases when the sheet is subjected to cyclic
bending.

However, one important effect that has yet to be understood is
the onset of failure in the fibers. A simple estimate of the maxi-
mum bending strains in the most heavily buckled fibers, based on
estimated buckle wavelength and amplitude combined with the
tensile failure strain of the fibers, leads to vastly over-conservative
predictions. We show in this paper that, by adopting a Weibull-
type probabilistic description of the brittle failure of carbon fibers
under pure tension, one can estimate quite accurately their failure
curvature probability. We apply these results to the folding of
composites of uniaxial carbon fibers in a silicone matrix and
obtain accurate estimates for the probability of fiber failure for
different degrees of tightness of the fold.

The layout of the paper is as follows. Following a review of
the relevant literature in Sec. 2, Sec. 3 obtains analytical expres-
sions for the probability of failure of carbon fibers in bending.
Sections 4 and 5 present the results of tensile and bending tests on

HexTow AS4 carbon fibers; it is shown that the probability
distribution obtained from the tension tests can be used to gener-
ate, with good accuracy, the failure probability distribution for
the bending tests. These results are then applied in Sec. 6 to com-
posite sheets of unidirectional AS4 fibers in a silicone matrix; the
predictions obtained from our theory are compared with experi-
mental observations. Section 7 summarizes our findings and con-
cludes the paper.

2 Background

Carbon fibers are brittle materials whose strength is controlled
by the distribution and size of flaws. The failure process, known
as the Reynolds-Sharp mechanism [5], consists of an initial flaw
forming a crack that is driven by the shear stress acting on misor-
iented graphite planes [6]. Because of the variation in flaw size
and the orientation of graphite planes, there is considerable spread
in the tensile strength of carbon fibers, and so standard weak link
theory is used to model their probability of failure [7]. The failure
probability P of a fiber subject to uniform tensile stress r is given
by the Weibull distribution

P r;Vð Þ ¼ 1� exp � V

V0

r
r0

� �m� �
(1)

where V is the volume of the fiber, V0 is the volume of the fiber
used to characterize the material, r0 is a reference stress for which
a fiber of volume V0 has a probability of failure of
P ¼ 1� exp �1ð Þ � 0:632, and m is the Weibull modulus, whose
value controls the spread of strength variation. For carbon fibers,
m usually lies between 3 and 8 [8,9]; the values of m have been
increasing through the years as a result of improvements in fiber
manufacturing.

The failure of fibers subject to bending was first studied by Sin-
clair [10], who introduced a test that consists in forming a loop
with a single fiber and then pulling the ends until the fiber fails.
Sinclair’s original test measured the shortening of the fiber, which
was then related to curvature by assuming that the shape of the
looped fiber is given by the elastica. Sinclair’s tests on glass fibers
showed that the tensile strength under bending (defined as the
maximum stress in the outermost surface of the fiber) is typically
more than double the tensile strength under pure tension.

The Sinclair loop test has become one of the standard ways to
test the bending properties of fibers. Due to the difficulty of per-
forming a pure compression test [11], it is also used to analyze
their compression behavior. The response during the loop test of-
ten shows softening at large strains [12], and Jones and Johnson
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[13] showed that the shape of the fibers during the test deviates
from the shape predicted by the elastica, due to softening at large
curvatures. This nonlinearity differs from the observations in Ref.
[14], and it is usually explained as the result of buckling of the
graphite layers on the compression side of a fiber. Its dependence
on the type of fiber precursor, heat treatment temperature, and
microstructure has been extensively studied [15–18]. Observa-
tions of a shift in the neutral axis of bending using X-ray diffrac-
tion [19] have confirmed that the two moduli have different
values, with the ratio between the two varying greatly, depending
on the type of fiber.

Studies of the flexural failure of carbon fibers have focused on
the mean and standard deviation of properties, such as the maxi-
mum bending stress or strain. Recent studies [20,21] have charac-
terized the failure probability of several types of carbon fiber
under three-point bending or the loop test using Weibull distribu-
tions, but the connection between tensile and flexural failure of
carbon fibers has not been investigated.

Turning to the behavior of thin sheets of uniaxial carbon fibers
embedded in a soft matrix, analytical expressions for estimating
the wavelength and amplitude of the microbuckled fibers were
obtained by Francis et al. [22,23]. These authors assumed that the
buckles can be described by the sine function

y ¼ a sin
px

k
(2)

where a is the amplitude and k the half-wavelength, defined as
corresponding to a phase of p radians. They determined the fol-
lowing expression for the initial buckle wavelength k0 from
energy considerations, assuming plane sections to remain plane.
They also assumed the fibers to have a circular cross-section with
radius R and to be arranged according to a square lattice with
spacing b ¼ R

ffiffiffiffiffiffiffiffiffiffi
p=Vf

p
and obtained

k0 ¼
9p3Vf t

2EI

8R2 log 3t
b

� �
G

 !1
4

(3)

where Vf is the fiber volume fraction, t the thickness of the sheet,
E and I the modulus and second moment of area of the fibers, and
G the shear modulus of the matrix.

3 Analysis of Failure Probability in Bending

When the stress is not uniform and it is reasonable to assume that
failure in compression is ductile, the probability of failure is obtained
by integration of Eq. (1) over the volume, where r is tensile, Vt,

P ¼ 1� exp � 1

rm
0 V0

ð
Vt

rmdV

� �
(4)

It should be noted that the assumption of ductile behavior in
compression is based on a somewhat simplified interpretation of
the body of existing evidence, which indicates that compressive
failure depends on the type of fiber and the manufacturing process
[11,18,24].

Consider a circular fiber of radius R and total length L subject
to a bending curvature j ¼ jðsÞ. Assuming the stress-strain rela-
tionship to be linear in the tensile region, the curvature and tensile
stress are related by

r ¼ Etjg (5)

where g is the distance from the neutral axis and Et the tensile
modulus. Substituting into Eq. (4) gives

P ¼ 1� exp � 1

rm
0 V0

ðL

0

ð
At

Etj sð Þgð ÞmdAds

� �
(6)

where At is the area of section under tension.

Next, it is assumed that the position of the neutral axis does not
depend on j. Hence, the two integrals in Eq. (6) can be evaluated
independently and so the probability of failure is expressed as

P ¼ 1� exp � 2

mþ 1

ðEtjmaxÞm

rm
0 V0

I1I2

� �
(7)

where jmax is the maximum curvature along the fiber and the
quantities I1, I2 are defined as

I1 ¼
ðL

0

j sð Þ
jmax

����
����
m

ds
(8)

I2 ¼
ðnn

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

q
� gn

� �mþ1

dn (9)

where gn and nn define the position of the neutral axis (see Fig. 1).
The value of I1 depends only on the curvature of the fiber and

the value of the Weibull modulus m. There are several situations

in which jðsÞ scales with jmax, and so the ratio
j sð Þ
jmax

is a particu-

larly convenient choice. This is the case for the fiber loop test and
the three-point bending test, two common experiments used to
calculate the failure properties of carbon fibers under bending, as
well as for the case of fiber microbuckling in composites with a
soft matrix. The value of I2 has a constant value for a given type
of fiber.

Note that the above analysis does not require the neutral axis to
pass through the center of the fiber. If the tensile and compressive
moduli, Et;Ec, have different (but constant) values, we can solve
for ðnn; gnÞ as a function of Et=Ec by setting the axial force result-
ant equal to zero, which leads to

p
2

1� Et

Ec

� �
þ arcsin

gn

R

� 	
þ gnnn

R2


 �
1þ Et

Ec

� �
¼ 0 (10)

with

n2
n þ g2

n ¼ R2 (11)

For example, values of Et

Ec
equal to 1.5, 2, and 5 correspond to a

shift of the neutral axis by 0.16, 0.27, and 0.59 times the radius,
respectively.

4 Tensile Failure of AS4 Fibers

The failure probability in the tension of AS4 fibers has been
investigated. AS4 is a polyacrylonitrile (PAN)-based, high

Fig. 1 Position of neutral axis in the fiber cross section for
Et > Ec
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strength, high strain fiber produced by Hexcel. Its properties are
given in Table 1.

A total of 99 fibers with a gauge length L¼ 20 mm were tested
following the American Society for Testing and Materials
(ASTM) D 3379-89 standard (see also Ref. [25]), using an Instron
5569 testing machine with a 10-N load cell. Retro-reflective strips
were attached at the ends of the gauge length to measure the fiber
strain with an Epsilon LE01 laser extensometer. A uniform dis-
placement rate of 0.5 mm/min was applied until the fiber failed.

Figure 2(a) shows a plot (with the natural logarithm of the fail-
ure probability on the vertical axis) of the results obtained from
these tests. The stress at failure, obtained by dividing the maxi-
mum force by the fiber cross-sectional area (assuming a diameter
of exactly 7.1 lm; see Table 1) has been normalized by r0, calcu-
lated as explained in Sec. 2. The reference volume V0 was calcu-
lated as pR2L ¼ 7:92� 10�4mm3. The probability of failure Pi

for the i-th strength was estimated from [26]

Pi ¼
i� 0:5

N
(12)

where N is the sample size. Two test results were discarded as
clear outliers.

A Weibull distribution, Eq. (1), was then fitted to the experi-
mental results using least squares to obtain the Weibull modulus
m ¼ 8:86 and reference stress r0 ¼ 4:68 GPa.

An alternative approach is to consider the strain at failure,
which is a more direct outcome of the experiments, and to deter-
mine the Weibull modulus for the probability of failure in terms
of strain. Then, Eq. (1) becomes

P e;Vð Þ ¼ 1� exp � V

V0

e
e0

� �m0
 !

(13)

Both the experimental results and the Weibull fit have been
plotted in Fig. 2(b), and it is interesting to note that, in this case,
the Weibull modulus is m0 ¼ 10:397 with e0 ¼ 1:898.

The discrepancy between the two approaches can be explained
by noting that the longitudinal modulus of each fiber, defined as
the ratio between stress and strain at failure, has an average value
of 237.61 GPa, with a standard deviation of 6.96%. Since the
actual modulus is unlikely to vary to such an extent, a more likely
explanation is that the calculation of the failure stress is affected
by variations in the fiber diameter, whereas the failure strain has
been measured directly. It should be noted that a variation of 5%
in fiber diameter would explain a variation of up to 10% in the
calculated stiffness. This range of values agrees with the standard
deviation of the fiber diameter, which typically ranges from
3.07% to 7.66% [9].

5 Bending Failure of AS4 Fibers

In this section, we compare the failure probability in bending,
obtained by carrying out direct loop tests on individual fibers,
with predictions based on the approach presented in Sec. 3.

5.1 Loop Tests. The bending failure tests followed a proce-
dure similar to the Sinclair loop test [10]. A loop was formed with
a single fiber and was placed between two glass surfaces lubri-
cated with a drop of light mineral oil. One end of the loop was
held fixed, while the other end was attached to a slider. Moving
the slider had the effect of increasing the distance between the
two ends; thus, increasing the curvature of the loop. The tests
were performed under a Nikon Eclipse LV100 microscope with a
Nikon DS-Fi1 digital camera. A video of the complete test was
recorded, and the last frame before failure was used to calculate
the radius of curvature at failure, rf , by computing the least-
squares best fit to several points near A in Fig. 3. This test was
done on 58 fibers.

It should be noted that the curvature at failure is not exactly 1
rf

,
since the test configuration permits an out-of-plane displacement
of the fiber; hence, the shape of the fiber at failure is helical. The
pitch of the helix at the point of highest curvature is approxi-
mately h=p, where h is the vertical distance between points B
and B0. This distance can be measured by focusing the microscope
on either B or B0, and it was found to be approximately 50 lm.
Hence, the failure curvature is given by

j ¼ rf

r2
f þ ðh=pÞ

2
(14)

Table 1 AS4 properties provided by Hexcel

Longitudinal tensile modulus, Et 231 GPa
Tensile strength 4.433 GPa
Tensile failure strain, ef 1.8%
Radius, R 3.55 lm

Fig. 2 Weibull fit to probability of tensile failure for AS4 fibers
versus (a) applied stress and (b) strain Fig. 3 Example of image used to measure rf
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Two important differences between the loop test and the tensile
test should be mentioned. First, the curvature is not constant along
the fiber and, hence, the failure curvature has been defined as the
measured maximum curvature of the fiber. Second, the test config-
uration determines its own intrinsic fiber length, which decreases
as the maximum curvature increases. In other words, in the ten-
sion test, we could arbitrarily choose the specimen length, but
here it is determined by the test itself.

Assuming these effects to be small, in Fig. 4, we have plotted
the failure curvature normalized by j0 ¼ 12:349 mm�1 versus the
failure probability determined from Eq. (11). These results can
be closely approximated with a straight line, indicating that a
Weibull distribution with modulus mb ¼ 6:182 provides a reason-
ably accurate representation of the experimental results.

5.2 Analysis of Loop Test Results. PAN-based fibers of
modulus similar to AS4 have a similar compressive and tensile
elastic modulus [24]. Hence, it will be assumed that the neutral
axis passes through the centroid, gn ¼ 0.

If it is further assumed that the two moduli remain constant at
larger strains and hence that the two-dimensional solution for the
shape of the fiber during the loop test is given by the elastica [27].
The shape of the elastica can be determined by integrating the fol-
lowing equations:

dt1
ds
¼ jt2 (15)

dt2
ds
¼ �jt1 (16)

dx

ds
¼ t1 (17)

dy

ds
¼ t2 (18)

where ti is the i-th component of the tangent vector. Also,

j ¼ M

EI
¼ F H þ yð Þ

EI
(19)

where M is the bending moment, F the end force, and H the dis-
tance from the line of action of F to the point of maximum curva-
ture (see Fig. 5). The values of H and F to form a stable loop (i.e.,
with M¼ 0, when s!1) can be obtained from

H ¼ 4

jmax

(20)

F ¼ j2
maxEI

4
(21)

jðsÞ was computed from the values of xðsÞ and yðsÞ that had been
obtained by numerical integration of Eqs. (15)–(18); it has been
plotted in Fig. 6(a). Figure 6(b) shows plots of the integral I1, cal-
culated from Eq. (8) for different values of mb. This plot shows
that I1 converges much faster than j decays and so, since in the
present case mb ¼ 6:18, a good accuracy could be achieved by
integrating only up to point B.

The probability of failure in the loop test can be calculated as a
function of the maximum curvature, jmax, using Eq. (7), with the
value of I1 obtained as above and I2 obtained from Eq. (9).

The experimental results in Fig. 2 have been replotted in Fig. 7
together with the analytical predictions obtained in the way
described above and using both the stress-based, m, and strain-
based, m0, Weibull moduli obtained from the tension tests. Three
vertical lines have been added to the plot for reference. They cor-
respond to the curvatures at which the maximum strain in the
fibers is ef , 1:5� ef , and 2:0� ef , where ef ¼ 1:8% is the mean
tensile failure strain given by the manufacturer. Note that the first
vertical line, j ¼ 5:07mm�1, occurs well before any bending fail-
ures are actually observed.

The distribution of experimental results in Fig. 7 show non-
smoothness as well as jumps, particularly in the range
P ¼ 0� 20%. These discontinuities are attributed to the fact that
the loop tests require more manipulation of the fibers than the ten-
sile test, which results in some fibers failing prematurely. Overall,
both sets of predictions provide an accurate estimate of the maxi-
mum curvature for small values of the failure probability. The
strain-based Weibull modulus, m0, provides a much closer fit to
the full range of experimental measurements, thus confirming the
conjecture made in Sec. 4 that the strain-based modulus captures
more accurately the actual diameter of the fibers.

It is concluded that the Weibull moduli for tensile failure pro-
vide good predictions for the probability of bending failure in the
loop test, with m0 providing a more accurate description of the

Fig. 4 Weibull fit of probability of failure in bending versus
applied curvature for AS4 fibers; j0 ¼ 12:349 mm�1

Fig. 5 Elastica

Fig. 6 Curvature j and value of I1 for different values of m as a
function of the arc length s

011020-4 / Vol. 80, JANUARY 2013 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/13/2015 Terms of Use: http://asme.org/terms



probability distribution. In Sec. 6, they will be used to carry out
an analysis of the failure probability of fibers at a localized crease
in thin sheets of fiber-silicone composites.

6 Creasing of Composite Sheets

This section applies the results of Sec. 5 to the study of fiber
failure at a crease in a thin sheet made of unidirectional fibers em-
bedded in a silicone matrix. The macroscopic curvature at which
the fibers in the sheet begin to fail is measured experimentally and
then compared to the predictions.

6.1 Experiments. The sheets used in these experiments were
produced by L’Garde using 12 K unidirectional tows of AS4 fibers
and a silicone rubber with initial elastic modulus of 1 MPa and
shear modulus of 0.27 MPa. The sheets had a thickness of
0.54 mm and a fiber volume fraction Vf ¼ 35%. For this particular
combination of materials and fiber volume fraction, microbuck-
ling starts at very low curvatures of the sheet and the initial wave-
length is k0 � 1:5 mm. As the sheet is folded more tightly, the
amplitude of the buckles increases and the wavelength decreases.
A view of the buckled fibers is shown in Fig. 8.

In order to determine a quantitative relation between curvature
and fiber damage, 18 strips with a width of 5 mm were folded
under a Nikon ShuttlePix digital microscope. From the images,
the curvature of the outer (tensile) surface of the strip could be
measured (see Fig. 9(a)). As the curvature increases, the geometry
of the outer surface tends to deviate from a cylinder, as the outer
edges of the sheet form a three-dimensional curve with maximum
curvature higher than the rest of the sheet. However, these higher
curvatures occur only in a relatively small boundary layer (see
Fig. 9(b)) and were not measured, because failure is usually
observed away from the edges.

After the specimens had been folded, they were flattened and
the compression side was observed under a Nikon Eclipse LV100
microscope to look for broken fibers. The length of each line of
broken fibers (see Fig. 10) was measured and compared to the
total width of the strip to obtain the percentage of fibers on the
compressive surface that had failed under the applied curvature.
No attempt was made to observe if any internal fibers had failed.

6.2 Analysis. It has been shown in Sec. 5.2 that, in the case
of the loop test, the probability of bending failure of the Hexcel
AS4 fibers can be computed with Eq. (7). Since the same fibers
have been used to construct the strips tested in Secs. 4 and 5, the
same approach can be used to estimate the probability of failure
of the fibers in the strips.

The integral I1 in Eq. (8) has to be calculated for the buckled
shape of the fibers given by E. (2) [22,23]. The length of fiber in

Fig. 7 Failure probability versus maximum curvature for loop
test; the two sets of predictions are based on the stress- and
strain-based Weibull moduli for tensile failure

Fig. 8 Fiber microbuckling on compression side of 0.54-mm-
thick sheet

Fig. 9 Examples of curvature measurement: (a) j ¼ 0:83 mm�1;
(b) j ¼ 1:25 mm�1 showing also edge waviness

Fig. 10 Measurement of broken fibers after creasing
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the crease can be expressed as L ¼ nk, where n is the number of
buckles to be considered and k is the half-wavelength of the
buckled fiber. To calculate I1, we express j and ds as

j ¼ y00

½1þ ðy0Þ2�
3
2

(22)

ds ¼ ½1þ ðy0Þ2�
1
2dx (23)

where ðÞ0 ¼ dðÞ=dx. The maximum curvature of the fiber is given
by

jmax ¼
ap2

k2
(24)

and finally we introduce the variable x̂ ¼ x
k. Hence, I1 is calculated

as follows:

I1 ¼
ðL

0

sin
px

k

��� ���m

1þ a

k
p cos

px

k

� 	2
� �3m

2

ds

¼ nk
ð1

0

sin px̂j jm

1þ a

k
p cos px̂

� 	2
� �3m�1

2

dx̂ (25)

It should be noted that this integral depends only on m, k,
and a. The value of m has already been determined in Sec. 5; the
latter two parameters are a function of the applied curvature and
can be determined as follows.

To determine k, we will assume, for simplicity, the extreme
case, where the neutral surface coincides with the tension surface
of the creased sheet. Consider the deformation of a sheet of initial
length k0. Assuming plane sections to remain plane (an assump-
tion consistent with Refs. [22] and [23]), the half wavelength of
the buckled fibers on the compression side of the sheet is equal to
(see Fig. 11)

k ¼ k0ð1� jtÞ (26)

where k0 is obtained from Eq. (3).
Once k is known, a can be calculated by assuming that the

buckled fibers do not carry any axial force, and hence, their axial
length is constant. This yields the equation

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

k
p cos px̂

� 	2
r

dx̂ ¼ 1

1� jt
(27)

which can be solved for a.

Lastly, the number of buckled half-waves depends on both the
wavelength of the microbuckles and the length of sheet over
which the crease extends. Since, in the experiments, the imposed
kink angle was p radians, n will be the first integer that satisfies
the condition

n � p
jk0

(28)

6.3 Results. We have predicted the probability of failure for
a fiber that lies on the compression side of a sheet of thickness
t¼ 0.54 mm with a crease of p radians. The predictions were
obtained from Eq. (7) as follows. For the material used for our
experiments, the initial wavelength k0¼ 1.57 mm was obtained
from Eq. (3). This value is in good agreement with the observed
experimental wavelength reported in Sec. 6.1. Then, for any given
curvature j, Eqs. (19) and (20), respectively, provided the values
of k and a. The value of I1 was obtained from Eq. (18) and I2

from Eq. (9).
The predicted probability of failure has been plotted in Fig. 12

together with the results from the tests described in Sec. 6.1. The
model provides a good prediction for the curvature at which dam-
age starts taking place, j � 0:9 mm�1, and also provides a good
lower bound for the amount of damage as the curvature of the
crease is increased.

The spread in experimental results in Fig. 12 may be due to the
three-dimensional features of the fold and also to the fact that the
failure of one fiber affects the state of neighboring ones.

6.4 More General Cases. The results presented thus far
have been for a specific sheet, in order to demonstrate the accu-
racy achieved by the present model. Readers interested in poten-
tial applications of silicone-reinforced carbon fiber composites
will want to know how tightly thin sheets of different thicknesses
and with a variety of fiber and matrix properties can be packaged
with little or no damage. Answers to such questions can be
obtained from Fig. 13, where it has been assumed that a failure
probability of 1% in the most compressed layer of fibers is accept-
able. For any value of k0, which is computed from Eq. (3) for any
given set of material/geometric properties of the sheet, this plot
provides the value of jt and also the corresponding value of the
maximum strain in the fibers, emax, reached at the point of maxi-
mum curvature of the buckled fibers. In computing the probability
of failure, it has been assumed that there is only one buckle, in
order to eliminate the dependence on the thickness t, and the
remaining parameters have been left unchanged from the previous
study; in particular, we have used the strain-based Weibull modu-
lus m0 ¼ 10:397.

Fig. 11 Kinematics of bending deformation for a segment of
composite sheet of initial length k0, subject to a curvature j.
The neutral surface is assumed to coincide with the tension
surface.

Fig. 12 Probability of failure for fibers on compression side of
0.54-mm-thick sheet with a fold of p radians with curvature j
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In Fig. 13, it is interesting to note that the smallest value of emax

is 2.93%, which is 63% higher than the failure strain of the fibers
in Table 1.

7 Discussion and Conclusion

This paper has presented a study of the failure of carbon fibers,
linking their failure probability under pure tension to failure under
bending. The results of this study were applied to the creasing of
thin sheets of composite materials of unidirectional fibers embed-
ded in a silicone matrix. It has been shown that probabilistic fail-
ure models derived from tension tests on individual fibers can be
used to predict accurately the outer surface curvature of the sheet
at which a small percentage of fibers break when a crease is
formed in the sheet.

The most accurate results were obtained using a strain-based
Weibull distribution of the failure probability in tension, which,
for the case of Hexcel AS4 fibers, was determined to have a mod-
ulus m0 ¼ 10:397. The corresponding failure probability for fibers
under bending can be calculated from

P ¼ 1� exp � 2

m0 þ 1

ðEtjmaxÞm
0

rm0
0 V0

I1I2

 !
(29)

where

I1 ¼
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0

j sð Þ
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����
����
m0

ds

I2 ¼
ðnn

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � n2

q
� gn

� �m0þ1

dn

The validity of this approach was confirmed by comparing the
maximum curvatures measured from loop tests on 58 fibers to pre-
dictions in which the failure probability was computed from Eq.
(21), and the curvature of the fiber was assumed to vary according
to an elastica curve.

The same probability distribution was then used to calculate the
fiber failure probability in a composite sheet made of unidirec-
tional carbon fibers in a silicone matrix. Assuming that the outer
surface of the sheet does not stretch, the buckling wavelength and
amplitude of the innermost fibers were estimated as functions of
the curvature of the crease from Eqs. (19) and (20), with the initial
buckling wavelength given by Eq. (3). With this assumption, and
also assuming that a single buckle will be responsible for fiber
failure, the integral I1 has the expression

I1 ¼ k
ð1

0

sin px̂j jm
0

1þ a

k
p cos px̂

� 	2
� �3m0�1

2

dx̂ (30)

Again, the validity of this approach was checked against direct
measurements of percentages of failed fibers on the inner surface
of thin sheets that had been creased by different amounts.

The results of the present study could have major implications
in the design of space structures made of carbon-fiber silicone
composites, as the results in Fig. 13 show that thin sheets made of
these materials can be subjected to localized curvatures that are at
least 63% higher than the curvature limits that would be calcu-
lated by using the failure strain of the fibers provided by the sup-
plier, if it is accepted that only 1% of fibers on the most
compressed surface of the sheet are allowed to break. It should
also be noted that there are other cases in which unexpectedly
high fiber strains have been observed in thin composite plates
[28]; it may be possible to explain these observations by an
approach analogous to that presented here.
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Nomenclature

a ¼ amplitude of fiber microbuckle
A ¼ fiber cross-sectional area

Ac ¼ area of fiber section under compression
At ¼ area of fiber section under tension
E ¼ Young’s modulus

Ec ¼ compressive Young’s modulus of fiber
Et ¼ tensile Young’s modulus of fiber
F ¼ end force on looped fiber
G ¼ shear modulus of matrix
h ¼ out-of-plane distance between points of looped fiber
H ¼ distance from line of action of F to point of maximum

curvature of looped fiber
I ¼ second moment of area of fiber

I1, I2 ¼ integrals to calculate Weibull failure probability
L ¼ length of fiber

m;m0 ¼ stress-, strain-based Weibull modulus of tensile failure
mB ¼ Weibull modulus of bending failure
M ¼ bending moment
n ¼ number of buckles in microbuckled fiber
N ¼ sample size
P ¼ probability of failure
R ¼ fiber radius
rf ¼ fiber radius of curvature at failure
s ¼ curvilinear coordinate along fiber
t ¼ thickness of sheet

V ¼ volume of tested fiber
V0 ¼ normalizing Weibull fiber volume
Vf ¼ fiber volume fraction
e ¼ strain

e0 ¼ normalizing Weibull strain
ef ¼ fiber tensile failure strain
k ¼ half-wave length of fiber microbuckle

k0 ¼ initial half-wave length of fiber microbuckle
j ¼ curvature of fiber, curvature of sheet
r ¼ stress

r0 ¼ normalizing Weibull stress
n, g ¼ coordinate system in fiber cross-section
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