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We present an analysis of the Solar Sail Tubular Mast (SSTM), an ultra-lightweight
deployable boom architecture. The mast consists of High Strain Composite tape springs
configured in a truss structure such that it is flattenable and rollable. We performed finite
element simulations to rationalize the effect of different geometry parameters on the boom’s
stiffness and buckling behavior under axial, bending, and torsion loading conditions. Closed
form approximations for bending stiffness and buckling moment in bending in terms of key
design variables were developed. These analytical models were also used to constrain the design
space by evaluating a large number of boom designs against design requirements, allowing
designers to optimize mass efficiency and performance. The effect of uniformly scaling the
boom cross-section diameter and other design variables is also explored.

I. Nomenclature

𝑊𝑙 = longeron width, m
𝑊𝑏 = batten width, m
𝑆𝑐 = cross-section scaling factor
𝑁𝑏 = number of battens
𝐿 = boom length, m
𝐶 = characteristic length for axial buckling with a force through a fixed point, m
𝐸𝐼 = bending stiffness, Nm2

𝑃 = point load, N
𝑀 = applied moment, Nm
𝑃𝑐𝑟 = axial critical buckling load, N
𝑀𝑐𝑟 = critical buckling moment, Nm
𝛽 = angle between the solar sail tension vector and the mast, radians
𝑘 = dimensionless buckling parameter
𝜆𝐿 = effective length for buckling
𝜙 = dimensionless shear compliance parameter
𝜅𝑠 = shear correction coefficient
𝐺𝐴 = shear rigidity, N
𝜃 = beam deflection angle, radians
𝜖 = strain, m/m
𝑦 = distance from the bending axis, m
𝑙 = bay length, m
𝑡 = longeron thickness, m
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𝑟 = longeron radius of curvature, m
𝛼 = longeron half subtended angle, radians
𝐸𝐴 = axial stiffness, N
𝛿 = displacement, m
𝐺𝐽 = torsional stiffness, Nm2/rad
𝐴 = cross-section area, m
𝜇𝐵 = bending performance metric, N3/5m4/5kg−1

II. Introduction
Space structures often rely on deployable booms to support and deploy large structural elements in space, including

solar arrays, antennas, and sails [1, 2]. Several designs leverage slender curved shells such as tape springs that can
be folded elastically for stowage and that deploy by releasing the stored strain energy, without the need for external
actuation. Examples include the Storable Tubular Extendible Member (STEM) boom [3], the Triangular Retractable and
Collapsible (TRAC) [4], and the double-omega boom [1]. The different cross-sections of all these designs determine the
allowable curvature and therefore their stowed volume, as well as their mechanical performance. For example, open
cross-sections tend to have higher bending stiffness for the same weight per unit length, while closed cross-sections
exhibit larger torsional stiffness and strength. As such, different applications favor different designs, based on the
expected loading conditions.

Solar sails, including the Advanced Composite Solar Sail System (ACS3) launched in early 2024, use deployable
booms to deploy and tension the sail. Solar sails able to provide sufficient thrust for space exploration missions require
very large deployed surfaces, extremely low mass, and small stowage volume. At the same time, the booms need to
provide sufficient axial, torsional, and bending stiffness and strength, which is difficult for large systems. Successful
solar sail demonstrations have thus far been limited to a maximum surface area of 200 m2 for IKAROS [5], with an area
of 80 m2 for the ACS3. However, future mission concepts, including the Solar Polar Orbiter [6], the High Inclination
Solar Mission [7], and the Solar Polar Imager [8], require solar sail areas up to 10,000 m2. These mission concepts raise
the need for new, significantly longer, boom designs which maintain low mass and packaging volume.

The Solar Sail Tubular Mast (SSTM) [9] design is proposed for boom lengths on the order of tens of meters. The
SSTM uses a similar cross-section shape and design principals to the Trussed Collapsible Tubular Mast (TCTM)
previously designed by Opterus [10], while reducing weight by using a trussed rather than a solid cross-section. This
work is a continuation on previous work by the authors, presented at the AIAA Scitech 2024 Forum [11].

In this paper, we present a combined finite element and analytical approach to evaluate and predict the SSTM’s
properties, with a focus on designing the boom to solar sail system requirements. Section III includes a brief review of
Phase I SSTM design and testing, and discusses the composite layup configuration and changes for the Phase II boom
cross-section. In Section IV, we use a combination of finite element simulations and analytical models to characterize
the boom’s stiffness and buckling behavior in terms of geometric design variables. This analysis is used in Section V
to evaluate the mass efficiency and performance of potential boom designs, as well as the scalability of the SSTM
architecture. Section VI summarizes our findings and discusses plans for future research.

III. Boom Design

A. Previous boom design and need for improvement
The initial Phase I SSTM design, shown in Fig. 1, is similar to the Trussed TCTM [10], using the same cross-section

and design principles while reducing weight. It is essentially a flattenable rolling tape-spring boom where the longerons
and battens were offset to enable more compact flattening and rolling. It consists of six curved longerons, connected
through flat battens. Two flanges extend on the sides. In contrast with open cross-section booms, SSTM is inherently
high in torsional stiffness due to its closed cross section. Because of this, and the lower torsional stiffness requirement
of long booms, diagonal elements are omitted to save mass. The remaining longeron and batten tape-springs form a
frame that remains stiff in shear and torsion.
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Fig. 1 The Phase I SSTM boom in deployed and rolled configurations.

All elements in the boom are built using High Strain Composites [12]. Figure 2 identifies all regions though color.
All layups are a combination of ultra-thin unidirectional and plain-weave laminas, all with intermediate modulus fibers,
with the stacking sequence designed based on the specific role of each element. The longerons run continuously through
the structure and provide axial stiffness. Battens run perpendicular to the longerons and function to improve hoop
stiffness and help maintain the cross-sectional shape to keep the longerons in proper position. They also increase the
torsional stiffness. The flanges extend on the sides and help consolidate the structure and connect the battens and
longerons on the top and bottom halves of the mast.

Fig. 2 Definition of Regions of the SSTM Boom.

Two prototypes with the same length (72 inches, 1.83 m), 15 battens, and different width of longerons and battens
were built and tested under compression and bending, see Fig. 3. The results showed that the buckling initiates in the
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longerons with lowest curvature, which are a result of using a non-symmetric cross section so that the longerons do not
align when the mast is rolled and stowed. One of the goals of the new design is to achieve a new cross section in which
all longerons have the same radius of curvature.

Fig. 3 (a) Pictures of the buckling on the boom, showing buckling of a longeron extending over approximately
six bays. (b) Results of two tests for axial compression on prototype 1.

B. Phase II Boom Design
The new mast is different only in its cross section, which is shown in Figure 4. The new cross section is skewed (i.e.,

the top and bottom battens are not parallel to the midline) to achieve the same radius curvature, 𝑅, in all longerons.
The cross-section skewness of also allows the longerons to offset while flattened, which helps reduce volume and
material strain while stowed. One of the main goals of the present study is to rationalize the effect of scaling the size
of the cross-section, while keeping other geometry parameters constant. The dimensions of the cross-section will be
described by the radius of the longerons, which can then be compared to their width to understand the relationship
between longeron curvature and slenderness. While the Phase I SSTM prototypes were under 2 m in length, we aim to
manufacture and test a 27 m Phase II boom prototype in future work.

Fig. 4 Image of the new cross section, with the longerons highlighted in red. The design is skewed to achieve
same curvature in all longerons.
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C. Laminate Properties
Ultra-thin, high-strain, intermediate-modulus carbon fiber composites are used for all elements of the SSTM due to

their high stiffness to mass ratio, and ability to withstand high strains when the boom is folded [12, 13]. Layups consist
of both uni-directional (UD) and plain-weave (PW) laminas. After some simulations to compare the performance of
different layups, a nominal symmetric layup of two UD laminas between two PW laminas is used for both the longerons
and battens. Reducing the total number of plies below four leads to drastically reduced stiffness, particularly in torsion.
Initial linear finite element analyses found that increasing the number of longeron plies improved stiffness marginally,
but with a large weight gain. Increasing the number of plies in the battens did not provide a notable improvement in
stiffness. Nonlinear Riks finite element results also suggest that increasing the number of PW plies can lead to very low
first buckling modes, with long stable postbuckling period. The orientation of the PW plies was also evaluated, and a
PW orientation of ±45◦ with respect to the mast’s main axis was found to provide marginally higher stiffness than 0/90◦
orientation.

IV. Boom Analysis
We have explored the design space for the SSTM using finite element (FE) simulations under the different expected

loading conditions, with an emphasis on failure due to buckling. Finite element data and observations are then used to
develop analytical models for boom properties in terms of design variables. This both reduces computational time, and
develop a deeper understand the underlying mechanisms behind the response of the structure.

All FE simulations are performed using the commercial finite element package Abaqus, using quadrilateral reduced
shell (S4R) elements. Composite laminate layups are modeled using homogenized properties for each ply. This
work relies primarily on linear response and linear eigenbuckling analyses, with some nonlinear Riks analyses used
to check for the effect of geometric nonlinearity. The Abaqus finite element model is built using a Python script,
such that varying combinations of geometric design variables can be explored. In particular, this analysis focuses on
characterizing the boom in terms of the cross-section scale factor (𝑆𝑐), longeron width (𝑊𝑙), batten width (𝑊𝑏) and
number of battens (𝑁𝑏). Note that the radius of curvature of the longerons scales with the cross-section, while the
longeron width scales independently, as long as they can fit within the curved regions in the cross-section. A scaling
factor of 𝑆𝑐 =1 corresponds to a flange-to-flange diameter of 0.2 m. In this section, we aim to understand the mechanics,
and perform simulations varying the parameters with respect to a small set of nominal designs, which are similar to the
boom designs used in Phase I of this study. A more thorough exploration of the design space will be presented in Section V.

The loading conditions considered in this study are compression, bending around the 𝑦-axis, and torsion. In all cases,
we will compare the effect that changes in geometry have not only on stiffness and strength, but also on performance
metrics often used to characterize the performance of deployable masts [14].

A. Axial Compression

1. Axial Loading Conditions
Axial compression is imparted on the mast by sail tension through cables. The tension vector is oriented at an angle

𝛽 from the boom, which depends on the mission phase, temperature, and the sail’s angle and distance relative to the sun
(or other light source) [15]. This loading case can be modeled as a force vector which intersects the vertical plane at a
characteristic length, 𝐶, from the tip of the boom, as illustrated in Fig. 5 [16].

For the truss-like SSTM boom design, buckling is the expected failure mode under axial loading. For a load vector
through a fixed point, the effective length, 𝜆𝐿 depends on the ratio, 𝐶/𝐿, between the characteristic length, 𝐶 and the
boom length, 𝐿 [15]. The value of 𝜆𝐿 can be determined by solving the following equation [16]:

tan(𝜆𝐿) = 𝜆𝐿(1 − 𝐶/𝐿) (1)

and the first critical buckling load, 𝑃𝑐𝑟 is given by:

𝜆 =

√︂
𝑃𝑐𝑟

𝐸𝐼
(2)
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Fig. 5 Sail tension vector at an angle 𝛽 from the boom, and the resultant axial force vector through a fixed point
at a length 𝐶 from the tip of the boom [15].

where 𝐸𝐼 is the boom’s bending stiffness [16].

2. Euler-Bernoulli and Timoshenko Beam Models
Equation (2) for the axial critical buckling load relies on the assumption that the SSTM behaves as an Euler-Bernoulli

beam, in which the cross section remains perpendicular to the neutral axis [16]. However, Abaqus FE simulations of
the SSTM boom in bending reveals significant shear deformation and rotation of the cross-section with respect to the
neutral axis, as illustrated in Fig. 5(b). This behavior is attributed to truss-like nature of the SSTM architecture, and
contradicts Euler-Bernoulli beam assumptions. Unlike the Euler-Bernoulli beam model, the Timoshenko beam model
[17] relaxes the constraints on shear deformation as shown in Fig. 6(a). Furthermore, the sail tension loading vector has
a shear as well as an axial component, which may exasperate differences between the Euler-Bernoulli and Timoshenko
beam models.

(a) (b)

Fig. 6 (a) Schematics for the Euler-Bernoulli and Timoshenko beam models, and (b) shear deformation visible
in the SSTM cross-section during cantilever bending

The axial buckling critical load for a Timoshenko beam takes the form [18]:

𝑃𝑐𝑟 , 𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 =
𝑃𝑐𝑟 , 𝐸𝑢𝑙𝑒𝑟

1 + 𝜋2𝜙/𝑏
(3)
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where 𝑏 is an additional constant which depends on boundary conditions. The dimensionless parameter 𝜙 depends on
the shear compliance of the beam, and is defined as:

𝜙 =
12𝐸𝐼

(𝜅𝑠𝐺𝐴)𝐿2 (4)

where 𝐺𝐴 is the beam’s shear rigidity, and 𝜅𝑠 is the shear correction coefficient. While closed-form solutions exist
to estimate 𝜅𝑠𝐺𝐴 for homogeneous beam sections, such as a rectangular or circular beam, estimating 𝜅𝑠𝐺𝐴 for the
SSTM is more complex. Here, we take advantage of the lack of shear forces in a beam under pure bending conditions.
Bending stiffness can be estimated using simulations of the SSTM boom in pure bending, and the 𝜅𝑠𝐺𝐴 term can be
back-calculated from the boom’s tip deflection in simulations of cantilever bending, where we expect the same bending
stiffness but also the effect of the shear compliance.

3. Global and Local Axial Buckling Modes
Another important consideration for axial compression is whether the resulting buckling modes are local or global.

Global buckling modes are those expected for a slender beam, and can generally be predicted using classical beam
theory as discussed above. Local modes, by contrast, may involve only some components of the overall structure, and
cannot be predicted by modeling the SSTM as a homogenized beam. Local modes may be periodic along the length of
the boom, or localized to a single element, for example a longeron. Linear eigenbuckling simulations conducted on the
SSTM show that for short beams, the lowest buckling load is associated with localized modes, while for long beams
global modes dominate. For long beams, however, higher-order mode shapes show a combination of both global and
local buckling modes, as illustrated in Fig. 7. A comparison of the local periodic mode characteristic of short SSTM
architectures, and the local components of combined high-order modes for long beams reveals qualitative similarities.
For a given mast design, the load required to initiate local buckling is independent of boom length.

Fig. 7 (a) Local axial buckling mode shape for a 1.524 m length boom compared to (b) a combined local and
global buckling mode for a 27 m boom.

Global axial mode shapes appear qualitatively similar to the well-known shapes expected for Euler-Bernoulli
buckling, particularly for the first mode. As an example, mode shapes for fixed-free boundary conditions from a linear
eigenbuckling analysis in Abaqus are shown in Fig. 8. Expected mode shapes for an Euler-Bernoulli beam are plotted
next to the mode shapes from Abaqus for comparison. Due to the anisotropy of the SSTM, bending stiffness is higher
about the y-axis than about the x-axis. The lowest global buckling mode is therefore driven by the bending stiffness
about the x-axis, 𝐸𝐼𝑋, while higher mode shapes can depend on 𝐸𝐼𝑌 .

4. Testing the Validity of the Euler-Bernoulli and Timoshenko Beam Models for Estimating Axial Buckling Loads
In order to test the applicability of the Euler-Bernoulli and Timoshenko beam models, axial buckling finite element

simulations were performed for a SSTM of various lengths and boundary conditions. While the SSTM’s bending
stiffness, 𝐸𝐼, is independent of boom length, the value of 𝜅𝑠𝐺𝐴 does vary with length, due to the effect of boundary
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Fig. 8 Global buckling mode shapes for the SSTM boom under axial compression with fixed-free boundary
conditions. Mode shapes from finite element analysis (black) are overlayed with exact solutions for mode shapes
expected of an Euler-Bernoulli beam (dashed red). Each mode shape is displayed from two perspectives, facing
the y-z and x-z planes.

conditions. We therefore compare two values of 𝜅𝑠𝐺𝐴, one based on a 1.524 m boom, referred to as the "short" beam
model, while the second is based on a 27 m boom, referred to as the "long" beam model.

Figure 9 shows FE data plotted against expected axial buckling loads according to the Euler-Bernoulli and Timoshenko
beam models, as a function of the boom length. Figure 9(a) shows results for fixed-fixed boundary conditions, while
Fig. 9(b) shows results for fixed-free boundary conditions.

Fig. 9 Comparison of the Euler-Bernoulli and Timoshenko beam buckling models plotted against Abaqus FE
Results for (a) fixed-fixed boundary conditions and (b) fixed-free boundary conditions.

Several key observations can be made from Fig. 9. First, the FE results for axial buckling loads fall between the
predictions from the two Timoshenko models, with the "short" 1.524 m model providing a closer approximation. Second,
the local buckling load is independent of boom length. For fixed-fixed boundary conditions, the transition from local to
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global buckling occurs at approximately 11 m, while for fixed-free conditions global buckling begins to dominate at
just 𝐿 = 3 m. It is also clear that, especially for fixed-fixed conditions, the Euler-Bernoulli model fails to accurately
predict the local-global transition. Finally, there is a larger gap between the Euler-Bernoulli and Timoshenko models for
fixed-fixed boundary conditions compared to fixed-free conditions, which can be interpreted as a result of the different
effective lengths between both boundary conditions. Our results suggest that, for the 27 m boom prototype which is the
goal of this project, the Euler-Bernoulli model provides a reasonable estimate for axial critical load under fixed-free
boundary conditions.

From Murphey, [15], we anticipate characteristic length ratio up to 𝐶/𝐿 ≈ 1.7 due to solar sail tension. While
neither fixed-fixed nor fixed-free boundary conditions accurately reflect loading due to sail tension, fixed-free conditions
serve as a conservative estimate for critical buckling load. Since finite element results closely match predictions using
the Euler-Bernoulli beam model with fixed-fixed conditions, we conclude that the Euler-Bernoulli model provides a
reasonable estimate of the boom’s buckling response at a length of 27 m.

Modeling the sail tension loading vector on a detailed FE model of the boom is computationally expensive, and still
may not provide useful results unless the entire sail-boom system is included. Instead, system-level model with the
boom represented as a simple Euler-Bernoulli beam is used. From the system-level model, we can define minimum
bending stiffness for the boom in order to avoid axial buckling.

B. Bending Stiffness and Critical Buckling Moment

1. Bending Stiffness
Bending stiffness influences not only the axial buckling behavior of the boom, but tip deflection in bending as well.

Estimating and understanding the bending stiffness for the SSM is therefore a critical design step. In order to reduce
computational time on large FE simulations, we aim to develop an analytical model for SSTM bending stiffness in terms
of the boom design parameters: cross-section scale factor (𝑆𝑐), longeron width (𝑊𝑙), batten width (𝑊𝑏) and number of
battens (𝑁𝑏).

To simplify the analysis, we assume that the boom’s bending stiffness is carried by the longerons and flanges, with
negligible contributions from the battens. It should be noted that this also neglects the region where the longerons and
battens overlap, which probably have a larger influence. We then apply the parallel axis theorem to develop expressions
for the boom’s bending stiffness about the x and y axes. Because each longeron is a thin open curved section, the second
moment of area of each individual longeron is several orders of magnitude smaller than the second moment of area
of the entire boom, and can be neglected. Bending stiffness is then driven by the area of each longeron and flange
multiplied by the square of their distance from the bending axis. For bending about the x-axis, the longeron area scales
linearly with longeron width, 𝑊𝑙 , and the distance from the x-axis scales linearly with the cross-section scaling factor,
𝑆𝑐. The bending stiffness for bending about the x-axis can therefore be written as:

𝐸𝐼𝑋 ≈ 𝐶 ·𝑊𝑙𝑆𝑐
2 (5)

where the constant 𝐶 depends on the geometry of the cross-section and the properties of the laminate. For bending
about the y-axis, the flanges are also taken into consideration. Both the flange width and distance between the flanges
and the y-axis scale linearly with the cross-section scaling factor, 𝑆𝑐. Therefore, the expression for bending stiffness
about the y-axis takes the form:

𝐸𝐼𝑌 ≈ 𝐶1 ·𝑊𝑙𝑆𝑐
2 + 𝐶2 · 𝑆𝑐3 (6)

where 𝐶1 and 𝐶2 are again constants that capture the effect of the specific cross-section geometry and the material
properties. The constants in equations Eq. (5) and Eq. (6) are estimated by fitting the analytical expressions to finite
element results for the boom’s bending stiffness. This is achieved by running a linear analysis with the boom under pure
bending. The tip deflection angle, 𝜃, is then used to estimate the bending stiffness using the well-known relationship for
pure bending:
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𝐸𝐼 =
𝑀𝐿

2𝜃
(7)

where 𝑀 is the moment applied to the boom in pure bending, and 𝐿 is the boom length. After using finite element data
to calibrate the analytical expressions at a range of longeron width and cross-section scaling factor values, we arrive at
the following expressions:

𝐸𝐼𝑋 ≈ 3.36𝑒5 ·𝑊𝑙𝑆𝑐
2 (8)

𝐸𝐼𝑌 ≈ 4.5𝑒5 ·𝑊𝑙𝑆𝑐
2 + 2.1𝑒3 · 𝑆𝑐3 (9)

in which it is assumed that 𝑊𝑙 is expressed in meters and 𝐸𝐼 in Nm2. From the equations above, it is clear that the
bending stiffness about the y-axis is larger than the bending stiffness about the x-axis. This anisotropy is not surprising,
given the SSTM cross-section shape. The ratio between 𝐸𝐼𝑌 and 𝐸𝐼𝑋 can be estimated by dividing Eq. (9) by Eq. (8),
and neglecting the small contribution from flanges, giving a ratio of 𝐸𝐼𝑌

𝐸𝐼𝑋
≈ 1.34.

Figure 10 provide a visual comparison of the analytical expressions for bending stiffness against Abaqus FE results.
Each plot shows the dependency of bending stiffness on each of the four boom design parameters. These results show
that our simplified model provides a reasonable approximation of the FE results, with drastically less computational time.
Furthermore, the observation that bending stiffness is independent of boom length, and can be closely approximated
using only the longeron width and cross-section scale serves to simplify the design process.

2. Buckling Critical Moments in Bending
A system-level model of the boom and sail can provide a maximum expected bending moment on the boom. The

boom can then be designed such that the critical buckling moment due to bending is larger than the maximum expected
moment. We aim to develop an analytical expression for the critical buckling moment using the same approach as we
did with bending stiffness. Observations of FE eigenvalue buckling results in preliminary designs revealed that local
buckling modes dominate in bending. In particular, the longeron furthest from the neutral axis exhibits periodic local
buckling over several bays closest to the clamped root, as shown in Fig. 11. Eigen buckling simulations also indicate
that the critical buckling moment is the same for both cantilever and pure bending cases. The first mode shape for pure
bending is also characterized by a single periodic longeron buckle, but is not limited to the clamped end because the
moment is constant along the boom. The first critical buckling moment is also observed to be constant with respect to
boom length for 1.524 m< 𝐿 < 27 m.

We now aim to develop and analytical closed form expression for the bending moment at which the longeron furthest
from the bending axis buckles. For a beam under pure bending with an applied moment 𝑀, compressive strain at a
distance 𝑦 from the bending axis is given by:

𝜖 =
−𝑀𝑦

(𝐸𝐼)𝑏𝑜𝑜𝑚
(10)

where (𝐸𝐼)𝑏𝑜𝑜𝑚 is the boom’s bending stiffness. To approximate the axial compressive force on a single longeron, the
strain in Eq. (10) is multiplied by the axial stiffness of the longeron, which in our case can be also be approximated as
1
6 (𝐸𝐴)𝑏𝑜𝑜𝑚. At the moment of buckling, this compressive force is equal to the compressive force required to buckle the
longeron furthest from the bending axis. The axial buckling load for a single longeron using Euler-Bernoulli beam
theory is:

𝑃𝑐𝑟 ≈ (𝐸𝐼)𝑙
𝑘2𝑙2

(11)

where (𝐸𝐼)𝑙 is the longeron bending stiffness, 𝑙 is the longeron length, and the 𝑘 parameter is determined by boundary
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Fig. 10 Bending stiffness from Abaqus FE simulations compared to analytical models for 𝐸𝐼𝑋 and 𝐸𝐼𝑌 for
varying (a) cross-section scale, (b) longeron width, (c) batten Width, and (d) number of battens.

conditions. Setting the resulting compressive force from Eq. (10) equal to Eq. (11) and rearranging for the critical
buckling moment results in the following expression:

𝑀𝑐𝑟 ≈ 6𝜋2 · 1
𝑘2

(𝐸𝐼)𝑏𝑜𝑜𝑚 (𝐸𝐼)𝑙
(𝐸𝐴)𝑏𝑜𝑜𝑚𝑙2𝑦

(12)

Next, we can approximate each term in Eq. (12) using boom design variables. The distance of the furthest longeron
from the bending axis, 𝑦, scales linearly with the cross-section scaling factor, 𝑆𝑐. The bending stiffness of the entire
boom, (𝐸𝐼)𝑏𝑜𝑜𝑚, is approximated analytically by Eq. (8) and Eq. (9). The axial stiffness of the boom, (𝐸𝐴)𝑏𝑜𝑜𝑚 can
be similarly approximated by assuming the axial stiffness is dominated by the longerons. Therefore, the boom axial
stiffness scales linearly with longeron width, 𝑊𝑙 . The bending stiffness of each longeron can be estimated using the
expression for the second moment of area for a thin open section from [19]:

(𝐸𝐼)𝑙 ≈ 𝑟3𝑡𝛼

(
1
2

sin 2𝛼
𝛼

+ 1 − 2
sin2 𝛼

𝛼2

)
(13)

where 𝑡 is the longeron thickness, and 𝛼 and 𝑟 are half the subtended angle and radius of curvature of the shallow-curved
longeron, respectively (see Fig. 12). Because the radius of curvature of the longerons scales with the cross-section
scaling factor, 𝑆𝑐, and the longeron width, 𝑊𝑙 , scales independently, the half subtended angle 𝛼 is proportional
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Fig. 11 A typical buckling mode shape for the SSTM in cantilever bending about the x-axis, localized to a single
longeron near the clamped root of the boom.

to the ratio between longeron width and the cross-section scaling factor, 𝑊𝑙

𝑆𝑐
. To simplify the model, the term,

𝑓 (𝛼) =

(
1
2

sin 2𝛼
𝛼

+ 1 − 2 sin2 𝛼

𝛼2

)
can be approximated closely within the expected range of our design variables as

𝑓 (𝛼) ≈ 𝑔(𝑊𝑙/𝑆𝑐) = 4𝑒3 ·
(
𝑊𝑙

𝑆𝑐

)3.93
.

Fig. 12 A longeron cross-section shown in red, defined by it’s radius, r, and half subtended angle, 𝛼.

The longeron length variable, 𝑙, in equation Eq. (12), is not immediately obvious, due to the fact that each longeron
is not independent, but is connected to the rest of the boom structure via the battens. As an approximation, we will use
the bay length, or length between battens, such that:

𝑙2 ≈ (𝐿/𝑁𝑏 −𝑊𝑏)2 (14)

where 𝑁𝑏 is the total number of battens, 𝐿 is the total boom length, and 𝑊𝑏 is the width of each batten. For classical
Euler buckling, the parameter 𝑘2 depends on the boundary conditions. For the case of a single longeron buckling, the
boundary conditions are unclear. However, observations of the buckling modes in bending reveal that longeron buckling
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occurs periodically over the span of one or more battens. If the buckling mode is periodic over 𝐵 bays, then the effective
length is 𝑘𝐿 = 𝐵𝐿. While we do not provide an explicit expression for 𝑘 in terms of design variables, we can make
informed guesses as to which design variables increase or decrease 𝑘 . We assume that increasing the batten width, or
increasing the number of battens per unit length will both increase 𝑘 , while increasing the cross-section scaling factor
may reduce 𝑘 . Substituting each term in Eq. (12) with approximations using only the design variables, we arrive at the
following expression for critical buckling moment:

𝑀𝑐𝑟 ≈ 𝐶 · 1
𝑘2 (𝑊𝑏, 𝑁𝑏, 𝑆𝑐)

·
𝑊4.93

𝑙
𝑆𝑐−0.93

(𝐿/𝑁𝑏 −𝑊𝑏)2 (15)

where 𝐶 is a constant, and 𝑘 (𝑊𝑏, 𝑁𝑏, 𝑆𝑐) is a function of batten width, number of battens, and cross-section scale factor.
Due to uncertainties introduced by the 𝑘 term in particular, we modified to model such that each design variable is
raised to some exponent. Exponent values were then calculated by minimizing the sum of squared errors between the
analytical model and Abaqus data for critical buckling moment, for a wide range of values of the design variables. The
result are two analytical expressions for the critical buckling moment about the x-axis and y-axis respectively:

𝑀𝑐𝑟 ,𝑋 ≈ 8.84𝑒5 · 𝑆𝑐−1.22 ·𝑊2.90
𝑙

·𝑊0.36
𝑏 · (𝐿/𝑁𝑏)−1.04 (16)

𝑀𝑐𝑟 ,𝑌 ≈ 2.02𝑒5 · 𝑆𝑐−0.78 ·𝑊2.11
𝑙 ·𝑊0.60

𝑏 · (𝐿/𝑁𝑏)−1.04 (17)

Several differences between Eq. (15), Eq. (16) and Eq. (17) are noteworthy. First, the cross-section scale factor
exponent differs significantly between Eq. (16) and Eq. (17). This difference can be partially explained by the contribution
of the flange, which scales linearly with the cross-section and only contributes to bending about the y-axis. The larger
negative exponent on the cross-section scale term in Eq. (16) compared to the prediction from Eq. (15) indicates that the
cross-section scale does have some small influence on the 𝑘2 boundary condition term. Another notable difference is
that the exponent for longeron width is smaller in both Eq. (16) and Eq. (17) than predicted by Eq. (15). A potential
explanation for this discrepancy could be a more complex interaction between the longerons, flanges and battens which
is not captured by our analysis. Longeron width also appears to have a larger influence on the critical buckling moment
for bending about the x-axis compared to bending about the y-axis. By contrast, batten width has a stronger influence on
bending critical moment for bending about the y-axis. In general, the bending critical moment increases with batten
width. As anticipated, the boom length per batten, or bay length, is inversely proportional to the bending critical
moment.

The analytical models for bending critical moment are compared in Fig. 13 to FE data collected using Abaqus.
For most cases, the 1st buckling mode is characterized by periodic local longeron buckling. However, for some cases
involving small cross-section scales, or large numbers of battens, the lowest mode is global. Because the closed form
approximation is based on the assumption of periodic local longeron buckling, global modes are not predicted. When
local buckling is the lowest mode, the model provides a reasonable estimate within the design variable ranges considered.

C. Cantilever Bending and Tip Deflection
Tension applied orthogonally to the tip of the SSTM due to solar pressure and subsequent sail bellowing can be

modeled as cantilever bending, with the boom fixed at the root and free at the tip. The amount of expected boom
deflection at the tip is the primary design concern. Additionally, we examine out-of-plane bending due to the anisotropy
of the SSTM cross-section. Under the Timoshenko beam model, tip deflection for a cantilever beam with tip load 𝑃 is
given by [17]:

𝛿𝑡𝑖 𝑝 =
𝑃𝐿3

3𝐸𝐼
+ 𝑃𝐿

𝜅𝑠𝐺𝐴
. (18)

The 𝑃𝐿3

3𝐸𝐼
term defines tip deflection for a Euler-Bernoulli beam, and thus the two beam models converge when

3𝐸𝐼

𝐿2𝜅𝑠𝐺𝐴
<< 1 (Ref.[18]). Tip deflection for the SSTM is calculated using a linear Abaqus FE simulation with a

small tip load. However, it is unclear from a cantilever analysis how much the boom deflection is influenced by
bending stiffness, or the Timoshenko term 𝜅𝑠𝐺𝐴. Because pure bending conditions should involve no shear forces, the
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Fig. 13 Bending critical buckling moment from Abaqus FE simulations compared to analytical models for
𝑀𝑐𝑟 ,𝑋 and 𝑀𝑐𝑟 ,𝑌 for varying (a) cross-section scale, (b) longeron width, (c) batten Width, and (d) number of
battens.

pure bending response is independent of 𝜅𝑠𝐺𝐴. Pure bending FE simulations in Abaqus are therefore used to eval-
uate the bending stiffness of a given SSTM design, and the 𝜅𝑠𝐺𝐴 can be back-calculated from the cantilever tip deflection.

Some out-of-plane deflection is also expected for cantilever bending due to the anisotropy of the SSTM cross-section,
with 𝐸𝐼𝑌/𝐸𝐼𝑋 ≈ 1.34. Both linear and nonlinear FE simulations showed that for bending about the y-axis, the ratio
between tip deflection in the y-axis and x-axis is approximately 1/8. While the out-of-plane deflection is relatively
small, it could be significant with regards to the system-level boom-sail interaction.

D. Torsion

1. Torsional Stiffness
A third important loading condition to consider is torsion caused by rotation of the deployer with respect to the mast.

This can be modeled as a torque applied to the tip of the boom though sail cable tension, with the root of the boom fixed
to the deployer.

Torsional stiffness, 𝐺𝐽, is a homogenized beam parameter that relates applied torque to the rotation angle of the
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beam cross-section. While we do not have a specific requirement for the SSTM’s torsional stiffness, it is important to
develop an understanding of which design variables influence torsional stiffness. We therefore used linear simulations to
estimate the torsional stiffness for various combinations of SSTM design variables. Figure 14 shows the influence
of each of the four primary design variables on the boom’s torsional stiffness. Two designs are plotted as examples
to demonstrate overall trends across a wider range of design variables. Design 1, plotted in red, is representative of
designs with larger cross-sections and wider battens, while Design 2 represents designs with smaller cross-sections and
narrower battens.

We observe several trends from Fig. 14. First, both the batten width and number of battens appear to scale
quasi-linearly with torsional stiffness , while longeron width appears to scale exponentially. This result is unsurprising,
given the truss-like architecture of the SSTM. The influence of the cross-section scale on torsional stiffness, however, is
less clear. For Design 2 with narrow longerons, small changes to the scale have little effect on torsional stiffness, while
for Design 1 with wider longerons, increasing the scale reduces torsional stiffness. Torsional stiffness also depends on
boom length, with a roughly 20% drop in torsional stiffness from a 1.524 m boom to a 27 m boom.

Fig. 14 Torsional stiffness from Abaqus FE simulations for varying (a) cross-section scale, (b) longeron width,
(c) batten width, and (d) number of battens.
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2. Buckling Moments Under Torsion
Torsion loading conditions may also lead to buckling of the SSTM structure. Linear eigenvalue buckling FE

simulations are used again here to understand the influence of each design variable on the torsion buckling critical
moment, with examples plotted in Fig. 15.

As was the case for torsional stiffness, the torsion buckling moment increases quasi-linearly with batten with and
number of battens. Conversely, the cross-section scale is clearly inversely proportional to the torsion critical moment. The
influence of longeron width is more complex, and appears not to be independent of the rest of the structure. For example,
Design 1 results indicate that the torsion buckling moment decreases significantly for longeron widths less than 0.4”.
However, for Design 2, increasing longeron width from 0.5” to 0.8” has a less drastic impact on the buckling moment.
For both designs, the increase to the buckling moment gained more longeron width diminishes as longeron width increases.

Fig. 15 Torsion critical buckling moment from Abaqus FE simulations for varying (a) cross-section scale, (b)
longeron width, (c) batten Width, and (d) number of battens.

Buckling mode shapes for the SSTM under torsion involve interactions between the longerons and battens, and
are more complex than axial or bending mode shapes. Mode shapes generally fall into one of two categories, either a
periodic twisting mode over the entire boom, or a highly localized mode involving a single longeron near the tip where
torque is applied. Examples of each type of mode shape are shown in Fig. 16.
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Fig. 16 Two common buckling mode shapes for the SSTM under torsion. (a) Shows the mode shape localized to
a single longeron near the tip where torque is applied, and (b) shows the periodic mode characterized by global
twisting.

Longeron width appears to have the largest contribution to mode shape among the SSTM design variables. For
small longeron widths, roughly less than 0.4”, the localized longeron mode is observed, while for longeron widths
greater 0.4”, the global twisting mode is most common. Critical torsion moments are significantly smaller for localized
longeron modes, compared to twisting modes. This also matches the observation that torsion buckling mode drops-off
sharply for longeron widths less than 0.4”.

While a closed form approximation for the torsion buckling moment would serve as a useful design tool, current
efforts have not yet resulted in an expression with sufficient agreement to FE results. Rather than utilizing an over-fitted,
and potentially misleading, model we chose rely on the trends shown in Fig. 15 to inform design decisions. FE
simulations can then be run on individual designs in order to evaluate the torsion buckling moment.

V. Mass Efficiency and Performance Results
The boom analysis in Section IV is intended to facilitate the design of an SSTM boom prototype for fabrication

and testing. The finite element and analytical models for boom mechanics are used to evaluate different boom designs
against design requirements. Design requirements for bending stiffness, bending critical buckling moment, tip deflection
in bending, and critical torsion moment were calculated from a system-level model of the mast and sail, and are shown
in Table 1.

We aimed to identify combinations of boom design variables which meet these design requirements, while
minimizing boom mass per length. We also consider a bending performance metric, which can be used to compare
different boom types, and is defined as:

𝜇𝐵 =
((𝐸𝐼)𝑀2

𝑐𝑟 )1/5

𝑤
(19)

where 𝑀𝑐𝑟 is the critical buckling moment under pure bending, 𝐸𝐼 is the bending stiffness, and 𝑤 is the weight per unit
length [14].

A. Constraining the Design Space and Minimizing Boom Mass
The closed form approximations for bending stiffness and critical buckling moment introduced in sections IV.B.1

and IV.B.2 are used to evaluate a large number of design variable combinations with much less computational time
than FE methods. Analytical bending stiffness and bending critical moment estimates, as well as the boom’s mass
per length, are used to estimate the boom’s bending performance using Eq. 19. Because torsion and tip deflection
requirements require finite element analysis for each combination of parameters, these requirements are evaluated after
first constraining the design space using bending stiffness and bending buckling requirements.
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Table 1 SSTM boom design requirements

Property Requirement
Boom length 𝐿 = 27 m
Bending stiffness 𝐸𝐼𝑌 ≥ 3337 Nm2

Bending critical buckling moment 𝑀cr,Y ≥ 0.26 Nm
Torsion critical buckling moment 𝑀cr ≥ 0.08 Nm
Cantilever tip deflection (at 0.26 Nm moment) 𝛿 ≤ 10 cm
Mass per unit length 𝑤 ≤ 50 g/m

We evaluated a wide range of design variables in order to identify boom designs which meet the requirements
in Table 1. In particular, we considered cross-section scales between 0.3 and 2, longeron and batten widths from
0.25” − 1.5”, and between 10 and 1000 battens. The mass per unit length and bending performance metric were
calculated for each combination of design variables. To visualize the design space, designs which meet both the stiffness
and bending buckling requirements are plotted in blue in Fig. 17, while those which failed one or both requirements are
plotted in red. From Fig. 17, the design space is bound on the left by the bending stiffness requirement, and bound
on the bottom by the bending buckling moment requirement. Our design target of 𝑤 ≤ 50 g/m further constrains
the design space. It is important to note that two designs that coincidentally have the same bending performance
and weight per length, and therefore are close to each other in the plot, could nevertheless differ significantly in their
geometry and other performance metrics. Also, designs to the right of the orange dashed line may not meet bend-
ing stiffness requirement, although all cases to the left of this line do not meet the minimum bending stiffness requirement.

A shortlist of design candidates was then selected from within this design space, and Abaqus FE simulations were
used to evaluate the torsion critical moment, and tip deflection under cantilever bending. It was found that tip deflections
for these designs was always well within the design requirement of 𝛿 ≤ 10𝑐𝑚. However, torsion was revealed to be a
limiting factor in terms of mass minimization. Among the shortlist of design candidates, those which did meet the
torsion requirement are plotted in green, while those which did not are plotted in red. The design was then refined
further. Refined designs currently under consideration are plotted as cyan triangles. An example of a refined design
candidate is shown in Fig. 18, with design variables listed in Table 2. Finite element simulations were used to validate
the accuracy of our analytical models for bending stiffness and bending critical moment. Bending stiffness analytical
predictions matched FE results with errors between 1-2.5%, while bending critical moment predictions different from
FE results by up to 14%. However, given the design requirements in Table 1, buckling in torsion appears to be the
limiting factor rather than buckling in bending.

B. Evaluating the Scalability of the SSTM Boom
The analytical models for bending stiffness and critical buckling moment introduced in Sections IV.B.1 and IV.B.2

are are also used to evaluate the effect of cross-section scaling on the boom’s bending performance and weight per
length. Fig. 19(a) shows the effect of scaling the cross-section diameter for constant ratios between the longeron
width and scale, while Fig. 19(b) illustrates the effect of changing the longeron width for a given cross-section scale.
Comparing both figures reveals that while increasing the cross-section scale and longeron width both increase bending
performance, increasing only the longeron width provides a larger gain in performance for a smaller gain in mass per
length. Note that we assume a minimum longeron width of 𝑊𝑙 ≥0.25" based on manufacturing capabilities. There is
also a maximum value for the longeron width, 𝑊𝑙 ≤ 0.9525𝑆𝑐 m, since the longerons need to fit within the curved
regions of the cross-section.

Fig. 19(c) shows the influence of the width and number of battens on performance and weight, for a given
boom cross-section. Because batten scaling depends significantly on the boom cross-section, we plot two different
cross-sections, one with smaller longerons, plotted in blue, and one with larger longerons plotted in red. For both
cross-sections, increasing the number of battens initially improves bending performance. However, beyond a point,
increasing the number of battens further reduces performance. The optimal number and width of battens for a given
cross-section shape can be expressed in terms of the percent of the boom length occupied by battens, or the number of
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Fig. 17 Mass per unit length plotted against bending performance with select designs highlighted

Fig. 18 Boom design candidate visualized in Abaqus

Table 2 Boom Design Candidate Properties

Property Value
Flange-to-flange distance 5.9 in
Longeron width 0.4 in
Batten width 0.25 in
Number of battens 180
𝑤 38.4 g/m
𝐸𝐼𝑌 (FE) 3392 Nm2

Bending 𝑀cr,Y (FE) 4.5 Nm
Torsion 𝑀cr (FE) 0.104 Nm
Tip deflection at M=0.26Nm (FE) 2.4 cm
𝜇𝐵𝑌 (FE) 241

battens times batten width divided by boom length. For the cross-section with smaller longerons, 19% coverage leads to
maximum performance, while for larger longerons maximum performance is achieved at 48% coverage.
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Fig. 19 Boom bending performance plotted against mass per unit length evaluating (a) the effect of uniformly
scaling the boom cross-section for constant ratios between the longeron width and scaling factor, (b) the effect
of increasing longeron width given a constant scaling factor, and (c) the effect of increased batten width and
number of battens which also depends significantly on longeron width.

VI. Conclusions and Plans for Future Research
This work presented finite element simulations and approximate closed form solutions for bending stiffness and

bending critical buckling moment, which served to constrain the design space for the SSTM. These models provide
insight into which design variables influence homogenized beam properties, as well as the underlying mechanism behind
more complex behavior like periodic local longeron buckling. A scalability study revealed that increasing longeron
width improves the boom’s bending performance with a lower weight cost than scaling the entire cross-section.

Analysis of axial buckling revealed that global buckling modes occur at significantly lower loads than local modes
for a target boom length of 27 m. Results also showed that the SSTM undergoes non-negligible shear deformation, and
thus the Timoshenko beam model better predicts FE results than the more often used Euler-Bernoulli model. However,
it was found that for the mast lenght and boundary conditions of interest, the Euler-Bernoulli model converges with the
Timoshenko model and agrees with FE results. This gives us confidence that we can use the boom bending stiffness and
the expected 𝐶/𝐿 ratio determined by the sail vector angle to predict the boom’s axial buckling response.

For cantilever bending, shear deformation of the SSTM means that tip deflection is greater than would be predicted
by bending stiffness alone using the Euler-Bernoulli beam model. With the Timoshenko beam model, tip deflection
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can be more accurately predicted. Anisotropy of the beam leads to out-of-plane deflection. However, expected tip
deflections for current design candidates are well within requirements from the system-level model.

While the analytical model presented here for the critical buckling moment in bending for the SSTM served as a
helpful design guideline, the model could be further refined to predict boom behavior at a wider range of design variables.
However, for the expected bending moments and torsional moments on the SSTM from system-level models, torsion
becomes the limiting factor. That is to say, designs which meet torsion requirements also meet moment requirements.
Thus, priority is not placed on refining the model for bending buckling moments.

Upon selecting a small number of boom design candidates, we plan to conduct more thorough FE analyses on
the SSTM model. In particular, we are interested in evaluating combined loading scenarios, modeling more realistic
boundary conditions, and looking for nonlinear buckling behavior. Refining boundary conditions includes both the
manor in which load is transferred from sail tension to the mast, as well as the interface between the boom and the
deployer. Thus far, the design has relied largely on linear eigenbuckling FE results. We plan to run additional nonlinear
FE analyses, particularly for combined loading, to determine whether any nonlinear material or structural effects reduce
stiffness or critical buckling loads. This could also include seeding initial geometric imperfections in the FE model,
which may indicate the need for additional knockdown factors to be applied for the design.
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