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This paper introduces a design framework for elastically deformable hinges consisting of two parallel flat flexures,

focusing on the case where the hinge is folded by 180 deg in the stowed configuration. The authors first consider

architectures in which the flexures are staggered to avoid contact so that they can be modeled independently using

Euler’s elastica. They next focus on the nonstaggered case when folding can result in contact between the flexures,

which they study through finite element simulations. The paper provides a set of design guidelines by rationalizing the

relationshipbetweenhingedimensions and the allowable curvature in the flexurematerial. Formost hinge geometries

applicable to deployable structures, the authors find a simple requirement for the minimum flexure length as a

function of the allowable curvature in the material, Lh > 10:7∕κm. Their analysis also provides insight into the

reaction forces necessary to keep the hinge in the folded configuration, which is useful in determining the deployment

dynamics and the constraints necessary to secure the panel in place during stowage. Experimental prototypes show

good agreement with the numerical predictions.

I. Introduction

S PACE structures often require the deployment of different com-
ponents, such as solar panels and antennas, due to the volume

constraints imposed by the launch vehicle [1,2]. Several designs
make use of flexible structural elements that can be folded elasti-
cally during storage and then deployed by releasing the stored strain
energy without the need for external actuation. Inspired by the
carpenter tape [3], they often consist of thin shells with curved
cross-sections [4], see Fig. 1a, which can be coiled compactly in
the longitudinal direction after the cross-section is flattened. When
these structures are designed so that curvature is highly localized in
a relatively small region [5–7], see Figs. 1b–1d, these flexures act as
elastic hinges, serving the same function as mechanical hinges [8,9]
while potentially reducing complexity and weight.
Elastic flexure hinges for deployable space structures need to

satisfy three main requirements. First, they need to achieve the
stowed configuration without exceeding the elastic strain limit of

the material [10], which is a significant deviation from flexures used
in complaint mechanisms that typically undergo limited rotations
[11–13]. Second, they need to provide a smooth deployment path that
does not damage the payload or significantly disturb the attitude
dynamics of the spacecraft. Finally, they must achieve a sufficiently
high natural frequency in the deployed configuration to avoid pos-
sible resonance. These three requirements often drive the design in
opposite directions. For example, increasing the slenderness of the
hinge elements enables higher packaging ratios during stowage but
decreases the deployed natural frequency.
Most of the published studies on flexure hinges focus on the

deployment process, either by characterizing the moment-curvature
relationship under static loading or through dynamic experiments,
including the effect of inertia and damping [5,14–18]. In contrast,
relatively few studies have systematically explored the balance
between designs favoring compaction during stowage and those
favoring stiffness after deployment. The influence of geometry and
material properties is often studied through numerical simulations
[19–23] which only consider a small variation to the initial design
[24] with results that are hard to generalize.
In contrast, this study is part of an attempt by us to rationalize the

interplay of material and geometric parameters in elastic hinges. We
focus on the case of parallel flat flexures for three reasons. First, flat
flexures are a reasonable yet still complex first step in characterizing
the design space, as there are fewer varying geometric parameters.
Second, this analysis still provides insight into the more complex case
of curved shells, once they are flattened. Previous work by us on the
deployed dynamics of the flat flexure hinge [25] has already been
extended to curved shells with excellent numerical and experimental
agreement [26]. Finally, the flat flexure hingemay have the potential to
fulfill the stiffness and compaction requirements, particularly for
small-scale applications likeCubeSats [27], wheremanufacturing ease
and precision are also important. This manuscript focuses on the
requirements imposed by the need for the flexure to safely fold during
stowage and can be seen as a companion to the previous study that
characterized the dynamics of the deployed hinge [25]. Combining the
results from both studies helps guide a preliminary design to best
satisfy the opposing set of requirements.
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The paper is organized as follows. Section II explains the hinge
design in detail, defining the geometric parameters to be explored.
Section III explains the analytical and numerical framework used to
characterize the folded geometry and the strain on the flexures for both
noncontact and contact cases. Section IV carries out a detailed dis-
cussion of the analysis results and verifies the accuracy with prototype
comparisons. Finally, Sec. V concludes this paper with a discussion of
how these results could be used and possible future extensions.

II. Flat-Flexure Hinge Design

This section explains the proposed hinge design, which comple-
ments the lightweight sandwich panel architecture commonly used for

space structures. The panels need to retain symmetry in the thickness
direction to preventwarping or bendingdue to thermal stresses.Hence,
functional layers are attached to either side of the panel. Examples of
functional layers include reflective panels, solar panels, or electronic
panels for antennas. The flat-flexure hinges can conveniently integrate
with the panel by placing high-strain composite (HSC) strips at the
interface between the structural and functional layer; see Fig. 2. The
simplistic nature of the hinge integration omits the need for an inter-
mediate metal bracket, improving the thermal stability of the system
and easing the scalability for hinge integration. Two different folded
configurations can be obtained depending on how the two flexures
are placed. If the two flexures are staggered in the width direction, see

Fig. 1 Examples of HSC flexure geometries for space structures: a) coilable booms [4] and b) tape spring hinge [5]. Applications in c) high precision
deployment [6] and d) large antenna design [7].

Fig. 2 Perspective views of a) staggered and b) nonstaggered hinge design, c) side view showing the flexure integration to the panel, and d,e) the folded
cross-sections.
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Figs. 2a and 2d, therewill be no contact between the two flexureswhen
folded. On the other hand, when flexures are not staggered, folded
flexures can come into contactwith each other, as illustrated inFigs. 2b
and 2e. A nonstaggered flexure design can double the hinge width
compared to the staggered design, increasing the overall stiffness of the
hinge. In both cases, the sandwiched HSC layers are continued inside
the panel tomaintain a uniformpanel thickness tp. Previousworkbyus
[25] focused on the deployed configuration, deriving closed-form
relations for the natural frequency of the hinge-panel system. The
proceeding sections will explore frameworks to evaluate the compac-
tion criteria.
To understand the mechanics of folding a flat-flexure hinge, we

consider two identical panels of length Lp and widthWp. The panels
are connected using two flat flexures that areΔ apart, having a length
Lh, widthWh, and thicknessh. Folding one panel by 180 deg results in
a symmetric plane parallel to x–z plane marked by the dashed line in
Figs. 2d and 2e. The compaction level is parameterized by dmeasured
from the symmetry plane to the inner flexure.We can observe the outer
flexure isd� Δ away from the symmetry plane. The panels need to be
stacked on top of each other for optimum packaging. If two neighbor-
ing panels are foldedon topof eachother (linear z folding),d is set tobe
the thickness of the functional layer. In other cases, such as a three-
dimensional array of panels, d needs to be adjusted based on the
number of panels stacked between a flexure hinge.
When folded, flatHSC flexures undergo inextensible bending, that

is, zero strain at the neutral axis, and only result in curvatures in
κz direction. The curvature profile is uniform along the z direction,
and therefore only a unit width (Wh � 1) is analyzed using one-
dimensional beam elements. The beam stiffness is estimated,
D � D11, from the ABD matrix for a given HSC laminate using
conventional laminate theory. This analysis neglects the contribution
of shear and out-of-plane stresses and is only intended as a first-
estimate design guideline.

III. Geometric Analysis on Folded State

Wewill first consider the case of staggered flexures, which can be
modeled as two independent flexures because they do not interact
with each other and can be solved with an analytical formulation
based on Euler’s elastica [28].We then use finite element simulations
to study the case of nonstaggered flexures when contact is essential
and compare the results to those of the staggered architecture.

A. Elastica Analysis for Folding Without Contact

We start by using Euler’s elastica to model a single flexure, which
is idealized as a slender element undergoing small strains but large
deflections. Leveraging the symmetry in the problem, it is sufficient
to model only half of the flexure Lh∕2; see Fig. 3. The curvilinear
coordinate s measured from the panel base parameterizes the beam
profile. The deformed shape is expressed using the local angle
profile: θ�s� � −�dy∕dx��s�. We assume the panel remains horizon-
tal in the compacted state, providing the boundary condition
θ�0� � 0. The vertical position Y0 indicates the level of compaction,
which in the stowed configuration will equal d (for the innermost
flexure) or d� Δ (for the outermost flexure). The symmetry of the
system imposes θ�Lh∕2� � π∕2 and zero horizontal reaction forces.
The beam is subjected to a vertical force F at the supports, fixed end
moment M1 at the panel, and M2 at the symmetry line. The folding

results in maximum projection lengths Lx and Ly in the horizontal
and vertical directions, respectively.
Equilibrium of moments provides a relationship between the

boundary conditions:

M2 � FLx �M1 (1)

The moment at any arbitrary point s along the beam is

M�s� � M1 � Fx�s� (2)

The problem can be solved using the elastica equations to integrate
the angle

θ�s� �
s

0

κ�ξ� dξ �
s

0

M�ξ�
D

dξ (3)

with initial condition θ�0� � 0. Here, ξ is the integrationvariable, and
κ is the local curvature. The x�s� and y�s� coordinates can be obtained
by integrating the local angle,

x�s� �
s

0

cos θ�ξ� dξ (4)

y�s� �
s

0

sin θ�ξ� dξ� Y0 (5)

subjected to boundary conditions x�0� � 0 and y�0� � Y0. In addi-
tion, the flexure must satisfy the boundary condition θ�Lh∕2� � π∕2
and y�Lh∕2� � 0. These boundary conditions are satisfied through a
shooting algorithm that guesses the value of F and M1.
The problem can be transformed into a nondimensional form

by scaling the lengths with Lh∕2 and the forces and moments with
the bending stiffnessD; see Eqs. (6–9). Nondimensional parameters

are marked with a hat; for example, M̂ is the nondimensional form of
the bending momentM:

ŝ � s

�Lh∕2�
(6)

F̂ � F�Lh∕2�2
D

(7)

M̂ � M�Lh∕2�
D

(8)

κ̂ � κ�Lh∕2� (9)

A MATLAB® script using the numerical integrator ode45 is used
to solve the set of coupled differential equations [Eqs. (3–5)]. Figure 4

illustrates the geometric profiles obtained for various Ŷ0 values. Note

Fig. 3 Schematic of elastica problem for the HSC strip bending, includ-
ing lengths and reaction forces. Fig. 4 Beam profiles obtained by solving the elastica equations.
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that the profiles are dimensionless; therefore, the results (geometry,
forces, and moments) can be scaled using the corresponding length
and stiffness values.

B. Finite Element Analysis for Folding with Contact

Next, we performed a series of finite element simulations using the
commercial software package ABAQUS to model the nonstaggered
case where the two flexures can come into contact when folded. The
same assumptions from the previous elastica analysis are carried
forward; only half the flexure is modeled due to symmetry. The
problem can be modeled with beam elements (B21) of thickness h
having isotropic material properties (E0 and ν). The beams are
assembled at a distance Δ apart from each other, and a Multi-point
constraint (MPC) is used to tie the edge nodes to a reference point to
maintain the constant spacing and angle throughout the analysis; see
Fig 5a. Note that the translation and rotation degrees of freedom are
tied to the reference point. The opposite edges of the beams are
assigned with symmetric boundary conditions (no displacement in
the vertical direction and no rotation).Hard and frictionless contact is
defined between the two beams. The analysis is carried out in two
stages: first, obtaining the folded configuration and then varying the
compaction level. In the first step, the reference point is rotated by
π∕2 and translated by a desired amount to achieve the folded state
d � 0; see Fig. 5b. Next, the reference point is translated while
maintaining the same boundary angle to achieve different d − Δ
configurations. Rigid-body motions are constrained by fixing the
horizontal displacement of the reference point. Figure 5 illustrates the
case when Lh∕2 � 10 mm,Δ � 1 mm. Taking inspiration from the
elastica analysis, the results are nondimensionalized using Lh∕2
and D � E0h

3∕�12�1 − ν2��.

C. Hinge Prototype

The analytical and finite element (FE) models of the folding hinge
are based on several assumptions, such as zero flexure thickness, no
friction when in contact, perfectly flat flexures, and perfect alignment
during fabrication. In reality, all these assumptions might not hold
true. To assess the validity of the mentioned analysis, a simple
prototype of the hinge is made using acrylic plates and HSC strips.
Three different thicknesses of acrylic plates are used: 1.5, 3.0, and
6.0mm (to aid visualization, plates will appear clear, colored red, and
green, respectively), with different stacking orders to create a range of
d − Δ values. The HSC strips are made of a single ply of carbon fiber
prepregs (T300-1k plain-weave fibers with EX1515 epoxy) having a
thickness of h � 0:12 mm. The strips are cut with fibers directed at
�45 degwith respect to the hinge direction and the strip width is set
at Wh � 25:4 mm. Flexures are aligned and attached to the acrylic
plates using adhesive tapes in the unfolded state and then folded and
secured using four bolts on the plate edges; see Fig. 6.

IV. Results and Discussion

A. Nondimensional Elastica Analysis

In this section, we first explore the findings from the generalized
elastica analysis, which can be applied to the staggered two-flexure
hinge by reintroducing parameters Ŷ0;inner � d̂ and Ŷ0;outer � d̂� Δ̂.
First, we investigate the stowed volume requirement of the

elastically deformable hinge, which is of critical importance for a
deployable satellite. As illustrated in Fig. 3, the folded hinge
needs a minimum clearance of Lx and 2Ly in horizontal and vertical
directions, respectively. The dimensionless dependence of these
clearances as a function of the compaction level Ŷ0 is plotted in

Fig. 5 FE modeling of non-staggered flexures. a) initial configuration, b) folding to θ � 0 and d � 0, c) increasing d at θ � 0.

Fig. 6 Hinge prototype made out of acrylic plates and HSC flexures: a) staggered design and b) nonstaggered design.
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Fig. 7a. If the minimum clearance is not met, undesirable
deformations can occur, triggering flexure failure. We observe a
maximum horizontal projection around 0.85 times the beam length
at high compaction level Ŷ0 � 0:1, which gradually drops to less
than 0.3 times the beam length when Ŷ0 ≈ 0:9. On the other hand,
we observe a low vertical projection around L̂y ≈ 0:2 at high com-

paction, which increases with Ŷ0. When Ŷ0 > 0:457, the vertical
projection is equal to the compaction (L̂y � Ŷ0), the highest extru-
sion point is at the panel boundary s � 0, and the flexures are
contained within the panel thickness. Special care should be allo-
cated for cases when Ŷ0 < 0:457 because the flexures protrude out
from the panel boundary. The relations have been quantified with
fittings, which can be found in the Appendix.

Next, we look at the variation of reaction force F̂ and moment M̂1

for each compaction level; see Fig. 7b. At low Ŷ0 values, the flexure
would need a downward force and a clockwise moment exerted
through the panels. As Ŷ0 increases, the magnitude of the force and

moment decrease. At Ŷ0 ≈ 0:457, the moment becomes zero corre-
sponding to the case of a pinned flexure purely under a compressive
force. This is an important geometric configuration discussed in the

vertical projection length L̂y. Further investigations reveal that the
opposite force and moment results in negative curvatures at the base
of the beam, bending it outward when Ŷ0 < 0:457. However, the
beam deforms inward after M1 direction flips, making the highest

vertical projection at the base for Ŷ0 > 0:457. As Ŷ0 increases, we
meet the next point of interest when F̂ � 0. The flexure experiences a
pure bending moment, constant along the arc length, resulting in a
constant curvature, that is, the deformed shape is a quarter-circle. In
this configuration, Ŷ0 � L̂x � L̂y is the radius of the quarter circle,
equal to �2∕π� ≈ 0:637 because the arc length of the quarter-circle is

L̂h � 1. As Ŷ0 increases further, the reaction force becomes negative,
while the reaction moment keeps increasing.
We now focus on the normalized curvature κ̂ along the flexure arc

length ŝ. The normalized curvatures for all possible Ŷ0 configurations

can be represented in a contour map; see Fig. 8a. For lower Ŷ0, the
base of the flexure has a negative curvature, while the symmetry point
has a positive curvature. This observation is consistent with the
previous discussion, where the zero-curvature contour (shown in
white) represents the inflection points, and the curvature becomes

positive at Ŷ0 ≈ 0:457. We track the maximum curvature values (red
dashed line), which remains at the symmetry point (ŝ � 1) in
Ŷ0 < �2∕π� ≈ 0:637. Constant curvature is observed at Ŷ0 � 0:637,

where the beam has the minimum bending energy. At higher Ŷ0,
higher curvatures are observed at the beam base (ŝ � 0). Although
the force becomes negative in this range, it is interesting to note that
the curvatures remain positive due to the more dominant effect of the
reaction moment.
Flexure failure will likely occur at the maximum curvature point,

extracted onto Fig. 8b. Because this relation is unique to all geom-
etries resulting from two flexures, we can define a maximum curva-
ture functionG�Ŷ0�. The functionG�Ŷ0� is fitted to a polynomial and
rational function; see Appendix. Next, we apply the generalized
results discussed previously to the specific case of flat flexure hinge
design by considering the case of two flexures.

B. Compaction Limit of Flat Flexures

For the hinge to survive the folded state, the flexures should not
undergo strains larger than the critical strain εcr. If the tensile and
compressive responses are assumed to be identical, the critical strains
are proportional to the critical curvature; in the case of an isotropic
material, κcr � 2εcr∕h, where h is the thickness of each flexure,
while in a composite, κcr � 2εcr∕tc, where tc is the distance from the
neutral axis to the ply that fails first. The geometric parameters

Fig. 7 Elastica results for different compaction levels: a) horizontal and

vertical projection and b) normalized forces and moments.

Fig. 8 Identifying critical curvatures by plotting a) normalized curvature contours along the arc length for different Ŷ0. Maximum curvature profile is

highlighted by the dashed line. b) Maximum curvature G variation for different Ŷ0.
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d;Δ; Lh and h should be selected such that the maximum curvatures
are below the critical values. Note that the analysis only accounts for
possible failure due to the bending of the flexure and neglects the
contribution of the normal stresses due to the reaction forces.As such,
it should be treated as an initial step in the design process.
Figure 8b shows the maximum curvature values for any flexure

that does not undergo contact, ergo, staggered design. The two

flexures will have offset values of Ŷ0 � d̂ for the inner flexure and

Ŷ0 � d̂� Δ̂ for the outer flexure, as shown by the two vertical lines
in Fig. 8b. The maximum curvature on the hinge will then be κ̂m;s,
which is defined as

κ̂m;s � max�G�d̂�; G�d̂� Δ̂�� (10)

Figure 9a shows the maximum curvature on the hinge κ̂m;s as a

contour map based on the values of Δ̂ and d̂. The global minimum for

a two-flexure hinge is obtained when Δ̂ ≈ 0 (so that both flexures are

basically overlapping) and Ŷ0 � 0:637. As Δ̂ increases, the maxi-

mum normalized curvature depends on the corresponding d̂ value. If

d̂� Δ̂ < 0:637, the inner flexurewill always have higher normalized

curvature, while for d̂ > 0:637, the outer flexure will always be
critical. In all other configurations, the maximum normalized curva-
ture can occur in either flexure, and κ̂m;s is minimized when

G�d̂� � G�d̂� Δ̂�. The relation also indicates the critical location
of maximum strain, which is either the point of connection to the
panel (for Ŷ0 < 0:637) or the midpoint (for Ŷ0 > 0:637). This infor-
mation is useful during fabrication to reinforce or focus fabrication
precision on critical points.
Next, we consider designs where the flexures are in contact. A

series of finite element simulations are performed, with Lh∕2 �
10 mm, h � 0:1 mm, E0 � 106 MPa, and ν � 0:3 (note that the
value of the stiffness is not important because we are scaling
the forces/moments with the corresponding D). We vary the panel
separationΔ using 30 equidistant points between 0 and 5mm, mean-

ing 0 ≤ Δ̂ ≤ 0:5 in nondimensional form. For each Δ configuration,
d values are varied between �0; �0:8 − Δ�� at 100 equidistant points.
All extracted data are nondimensionalized following Eqs. (6–9). A
similar concave curvature map is observed when the flexures are in

contact κ̂m;ns, but with a nonlinear dependence on the Δ̂ axis and a

drastic curvature increase at high d̂ − Δ̂ combinations.
Comparing the normalized contour maps for noncontact and con-

tact hinges, we identify regions that result in the lowest curvature, and
hence the strain, depending on the specific combination of d̂ − Δ̂
values. To highlight the comparison, we plot the ratio between the
maximum curvature on each case κ̂m;ns∕κ̂m;s in Fig. 10a. When the
curvature ratios are larger than one, nonstaggered design results in
higher curvatures compared to staggered design and vice versa. To
provide further insight into this behavior, we investigate several point
cases plotting the deformed geometry and the curvature distribution
for nonstaggered (blue) and staggered (red) designs; see Figs. 10b–
10f (inner flexures are solid lines, and outer flexures are dashed lines).
In the staggered casewhere no contact occurs, the highest curvature is

recorded at either ŝ � 0 (the attachment to the panel) or ŝ � 1 (the
symmetry point). In contrast, geometric constraints are imposed on
the two flexures to share the same curvature profile when they are in
contact, modifying both deformed profiles. As a result, the highest
curvature can take place at any point of the arc length.
We first consider cases with high d̂ values, where contact between

the flexures results in significantly higher curvatures, up to three
times that of the noncontact design. Figure 10b shows that the inner
flexure needs to bend tightly to fit inside the envelope of the outer
flexure, and high curvatures are observed between the base and the
point where contact between the flexures begins. The curvatures are
significantly lower near the center of the flexure.
We observe the opposite behavior in the next highlighted region,

where themaximum curvature ratio is less than 1. In this case, the two
beams are in contact for a shorter length, and therefore the inner
flexure has sufficient length to smoothly reconfigurewithout causing
major curvature changes, as shown in Figs. 10c and 10f.Additionally,
contact helps to reduce the critical curvature of the inner flexure,
resulting in an overall reduction of the maximum curvature of up to
20%. We observe a special case in between the two mentioned
regions, where the contact changes the deformed profile but still
maintains the same maximum curvature, that is, when the values of
the contour plot are equal to 1. Interestingly, even if the maximum
curvatures are the same for both designs, they take place at different
points of the arc length; see Fig. 10d. Both designs are equally
desirable from a curvature standpoint; however, a more compact
folded configuration can be obtainedwhen the flexures are in contact.
This will be addressed in detail in the next section.
Another interesting feature appears at the bottom of the contour

map, around Δ̂ � 0:05–0:14 and d̂ � 0, where the curvature contour
again becomes 1. As opposed to the previous case, plotting the
deformed shapes reveals that, in this case, both cases have the same
geometry; see Fig. 10e. In this limited parameter window, the inner
flexure is contained inside the outer beamwithout any contact. This is
the only window where nonstaggered hinges can be folded without
contact between them, except for point contact at the symmetry edge.

For all other Δ̂ or d̂ combinations in nonstaggered design, contact in a
finite region is inevitable as seen in Fig. 10f.
The mentioned analysis uses nondimensional variables, in which

all lengths are scaled by Lh, providing a comprehensive study of all
possible geometries. However, the design of a hinge is often drivenby
a priori knowledge of the values of Δ (given by the thickness of the
panels) and κm (given by the failure properties of the flexure
material), with the other parameters to be decided based on the
analysis. Exploring the effect of changing Lh and d in Figs. 9 and
10 can be complex, as it changes both axis values and the contour
values. Hence, we replot the same data in Figs. 11a and 11b by
changing the normalization parameter toΔ. The maximum curvature
contours 1∕κmΔ are plotted as a function of the level of compaction
d∕Δ andminimum flexure lengthLh∕Δ. To increase the clarity of the
contour map, the horizontal axis has been plotted in logarithmic scale
for d∕Δ < 5. Both cases (contact and noncontact) show a similar
behavior with slight changes in the contour values, which is visual-
ized in Fig. 11c.

Fig. 9 Maximum normalized curvature contours as a function of d̂ and Δ for a) staggered and b) nonstaggered flexure hinges.
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The dependence of the flexure length Lh on the distance between
panels in the stowed configuration d can be understood by following
the path of the contour lines of constant nondimensional maximum
curvature 1∕κmΔ in Fig. 11. When the stowed configuration is very
compact, that is, d∕Δ ≈ 0, the minimum hinge length that provides
constant curvatures is approximately constant, Lh ≈ L0

h; that is, the
contour lines are approximately horizontal. As d increases, the
required flexure length reaches a minimum value L	

h ≈ L0
h∕2 at d	.

Further increasing d results in an increase of Lh, with all contour lines
converging. Setting the hinge design at d	; L	

h results in the shorter
flexure for a given combination of panel thickness andmaterial failure
κmΔ. This can be considered the optimum design point if the goal is to
increase the natural frequency of the first resonance mode when the
structure is deployed [25]. It should be noted that these optimumpoints

correspond to the case G�d̂� � G�d̂� Δ̂�, discussed previously.
The optimum design parameters L	 and d	 are shown in Figs. 12a

and 12b with linear fittings. Overall, noncontact flexures can provide
the shortest hinges. It is interesting to note that both noncontact and
contact hinges have the same length requirement at low compaction
levels (L0

h). Neglecting the zone d > d	 where curvatures drastically
increase, we can provide a general length requirement for the flexures
to safely fold without failing in bending as

Lh ≥
10:70

κm
(11)

C. Stowed Hinge Clearances

Next, we move on to the dimensions of the flexures in the stowed
configuration, which are quantified by the two lengths L̂x and L̂y.

Figures 13a and 13b plots the dependence of L̂x and L̂y for non-
contact flexures, and Figs. 13c and 13d plots that for contacting

flexures, as d̂–Δ̂ parameters are varied. For the noncontact case,

the horizontal distance is only dependent on d̂, suggesting it is
dominated by the inner flexure. Contact between the flexures short-
ens the overall horizontal projection around by 10–40%, depending
on the region; see Fig 13e. The vertical projection is dependent on

both d̂ and Δ̂. Contact between the flexures helps reduce L̂y for all

cases except for low Δ̂ and 0:1 < d̂ < 0:4; see Fig. 13f. These plots
provide design guidelines that can be used to choose geometry based
on the required geometry constraints during stowage.

D. Experimental Demonstration

Several design cases were replicated using prototypes to validate the
numerical results obtained before. Table 1 indicates the different geom-
etries explored and the expected maximum curvatures from Fig. 11.
Self-similarity of the geometry is used throughout this analysis,

which is first verified through the prototypes. We consider two
designs with the same Δ̂ � 0:1 and d̂ � 0, but the values of Lh

andΔ differ by a factor of 2; see Fig. 14.When the deformed profiles
are scaled by Lh and overlayed on top of each other, we observe the
same geometry, verifying the scalability of the results.
We now consider six different point case designs and compare the

deformed shapes against predicted geometries from the analysis. In all
the cases, hinge length is set atLh � 60 mm. Figure 15 showspictures
of the stowed configuration for the six designs, with the predicted
shape overlayed. In all cases, we observe excellent agreement between
the shape of the flexures in the prototypes and our predictions.

Fig. 10 Comparing the compaction limit for staggered and non-staggered hinges. a) Visualizes maximum curvature ratios and b–f) plots the deformed
profiles and the curvature distributions for point cases shown in a.
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Fig. 11 κm curvature contours forLh andd variation for a) staggeredandb) nonstaggered flexures.L
0
h,L

�
h, andd

� are shown for 1∕�κm;sΔ� � 3 contour.
c) Contour ratios from parts a and b.

Fig. 12 a) minimum length requirements L0
h and L�

h and b) corresponding compaction level d� for each curvature level.
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E. Reaction Forces and Moments on Panel

We finally use our framework to characterize the reaction forces
and moments that the flexures exert on the panels, with two goals.
First, these reactions are the initial conditions that need to be con-
sidered to analyze the deployment dynamics of the panels due to
the stored strain energy in the flexure. Second, understanding the
reactions is necessary to design the locking mechanisms that safely
hold the panels during the stowed period.
Using the same symmetry assumptions, the flexures exert a force

Fpanel and a momentMpanel on the panel, defined as positive when in
the outward and clockwise directions, respectively; see Fig. 16a. The
evolution of the reactions over different geometries can be visualized
by plotting contours on the same nondimensional axes as before.

Note that the reaction forces and moments are also nondimensional-

ized following Eqs. (7) and (8). For low values of d̂ − Δ̂, both non-
contact and contact hinges produce an outward reaction force, while

for larger d̂ − Δ̂, the direction flips; see Figs. 7b and 7d. A similar
response is observed for the reaction moments where the values are
initially counterclockwise and later become clockwise; see Figs. 7c
and 7e. The change in the direction of the reactions can be rational-
ized by considering again Fig. 7b, which shows the evolution of

Fig. 13 Contour plots of L̂x (left) and L̂y (right) as a function of Δ̂ and d̂ for a,b) staggered, c,d) nonstaggered, and e,f) ratio between the two cases.

Table 1 Design cases for the prototypes

Type Lh, mm Δ, mm d, mm
Lh

2Δ
d

Δ
1

κmΔ κm, mm−1

Noncontact 60 3.0 0 10.0 0 1.9 0.18
60 6.0 6.0 5.0 1.0 1.2 0.14
60 9.0 6.0 3.3 0.7 0.8 0.14

Contact 60 3.0 0 10.0 0 1.9 0.18
60 6.0 6.0 5.0 1.0 1.5 0.11
60 9.0 6.0 3.3 0.7 0.6 0.19
120 3.0 0 20 0 3.8 0.09

Fig. 14 Self-similarity of the geometry for two cases a)Lh � 60:0 mm,
Δ � 3:0 mm, d � 0; b) Lh � 120:0 mm, Δ � 6:0 mm, d � 0; and
c) both cases overlapped with first scaled by a factor of 2.
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reaction forces and moments on a single flexure as a function of the
geometry of the stowed configuration.
We can combine the information in Figs. 16b–16e to identify three

distinct regions in the design space based on the changes in sign in the
forces and moments. These regions are shown in Figs. 17a and 17b
for the noncontact and contact cases, respectively. For both architec-
tures, there is a region with positive force and negative moment
(region C1) for low values of both d̂ and Δ̂. As we move away from
the origin, we transition first to a region with positive force and
moment (region C3), followed by negative force and positive
moment (region C5). The lines delineating these regions are different

for both architectures and correspond to geometries that result in zero
reaction moment (labeled as C2) and zero reaction force (labeled as
C4). Figure 17c presents schematics for each case, including both the
reaction forces and moments, as well as the expected direction of the
initial displacement during deployment. The illustration only offers
insight into the initial conditions for the dynamics, and the sub-
sequent deployment would need to consider both the inertia of the
panel and the response of the flexures as they deploy.
The initial forces and moments shown in Figs. 16 and 17 also offer

insight into how to secure the panels in the folded configuration.
Assuming themirroring panel (not shown in the illustration) provides

Fig. 15 Comparing the prototype geometry against the predicted shapes (dashed lines) for a,c,e) staggered and b,d,f) nonstaggered cases.

Fig. 16 Normalized reaction force and moment exerted on the panel. a) sign convention, b,c) staggered case and d,e) non-staggered case.
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outward reaction forces through contact, cases C4 and C5 can be
stably folded using a downward force exerted at the free edge of the
panel. However, for regions C1, C2, and C3, the securing force needs
to be applied at the base of the hinge or through multiple points.
Figure 18 further visualizes this concept, where prototypes are

allowed to freely deformby a small amount from the fully folded state
while being held away from the hinge. The flexure length is fixed at
Lh � 60 mm, and Δ and d are varied to explore different regions in
Fig. 17. The three samples in Figs. 18a–18c have two flexures have

the two flexures in contact and, based on the d̂–Δ̂ combinations,

belong to C1, C3, and C5, respectively. Excellent agreement is
observed between the prototypes and the predictions. The final
sample, Fig. 18d, has the same geometry as Fig. 18c, but the flexures
are not in contact. We observe that the response is significantly
different and now belongs to C1, as predicted by the analytic model.

V. Conclusions

This paper has presented a compaction study on a simplified hinge
architecture, which uses two parallel flat flexures that can smoothly

Fig. 17 Different regions where the direction of panel force and moment change for a) staggered and b) nonstaggered hinges; c–f) the initial motion in
each region.

Fig. 18 Initial panel motion under a gripping force at panel end for a–c) nonstaggered and d) staggered hinges.
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and easily integrate with flat panels. The authors have explored two
different hinge architectures. First, they assumed the flexures are
staggered along thewidth so that they do not contact each other when
folded, and the geometry can be solved analytically using elastica
theory. The analytic relations shed light on the self-similarity of the
folded shapes, providing us the opportunity to explore the full design
spectrum. They then considered the case of nonstaggered flexures so
that they come in contact with each other in the stowed configuration.
A series of finite element simulations were conducted, and the results
were transformed to the same nondimensional format.
The flexures, when folded, should only undergo elastic strains

without causing plastic strains or material fracture. The authors
explore the variation of flexure curvatures as a function of hinge
parameters and compaction levels for both noncontact and contact
cases. Their results show that for low d̂–Δ̂ combinations contact

helps to reduce the maximum curvature, while for large d̂–Δ̂ combi-
nations, contact between the flexures increases their maximum cur-
vature. The authors have obtained a rule of thumb for estimating the
hinge length as a function of the maximum allowable curvatures,
Lh > 10:7∕κm, which is valid for most geometries of interest for
deployable structures. Theyhave also found an optimumvalue for the
compaction level, d � d	, that can reduce the length almost by half
when compared to other geometries.
The authors also estimated the effect of the geometry of the system

on the size of the flexures when folded, which is characterized by
their projection lengths Lx and Ly. This provides an estimate of the
clearance required for the hinge in the folded state. They observe that
contact between the flexures helps reduce the projection lengths,
resulting in a more compact stowed configuration. Finally, they
studied the reaction force and moment applied on the panel by the

folded flexures. At low d̂–Δ̂ combinations, an outward force and a
counterclockwise moment are applied on the panel for both contact

and noncontact cases. As d̂–Δ̂ parameters increase, the forces and
moments reduce and flip in sign. The authors identify different
response regions based on the direction of force and moment and
show that the initial deployment dynamics may significantly vary
based on the selected parameters and the presence of contact between
the flexures.
This compaction limit study for flat flexures was simplified

because bending the flexures only resulted in a single curvature
profile κz. Therefore, one could limit the critical analysis to bending
in the x–y plane and neglect the contribution of transverse compo-
nents. On the other hand, folding a curved shell flexurewill result in a
much more complex curvature distribution. For example, the flexure
centerwill be flattened and folded, the edgewill remain at the original
curvature, and everywhere in between will have varying curvature
profiles based on D11 and D22 of the HSC layup. The authors are
currently extending the analysis into the curved shell domain, taking
inspiration from the flat flexure results.
This paper provides a general guideline to address the safe stowage

limit of a flat flexure hinge that complements the authors’ previous
work on the deployed dynamics for the same hinge architecture [25].
When combined together, they form a flexure-based hinge design
framework that can obtain the balance between flexure stiffness and
compliance. This framework, for the first time, enables the designers
to efficiently explore the complete parameter space and choose geo-
metric and material combinations for a specific requirement. Once
the design is close to being final, high-fidelity simulations and
experimental validation should be conducted. The authors are work-
ing on experimentally demonstrating the flat flexure fabrication
process and the hinge deployment characteristics [29]. This archi-
tecture is useful for cases with low panel mass, such as CubeSats or
microsatellites, where the hinge stiffness requirement can be relaxed
compared to compliance.

Appendix: Fittings for Elastica Results

The curve fittings extracted from the elastica analysis is presented
here. The projection lengths in Fig. 7a can be approximated as:

L̂x;fit � −0:883Ŷ3
0 � 0:125Ŷ2

0 − 0:068Ŷ0 � 0:857 (A1)

L̂y;fit�Ŷ0 < 0:457� � 1:142Ŷ3
0 � 0:023Ŷ2

0 � 0:305Ŷ0 � 0:204

(A2)

L̂y;fit�Ŷ0 > 0:457� � Ŷ0 (A3)

Force and moments for Fig. 7b are

F̂ � 5495Ŷ2
049540Ŷ0 − 33820

Ŷ3
0 � 4927Ŷ2

0 − 1153Ŷ0 − 3397
(A4)

M̂ � 6853Ŷ2
07079Ŷ0 − 4796

Ŷ3
0 � 3724Ŷ2

0 − 2677Ŷ0 − 1501
(A5)

Maximum curvature profile for Fig. 8b are

G�Ŷ0 < 0:6366� � 0:3905Ŷ2
0 − 6:176Ŷ0 � 5:348 (A6)

G�Ŷ0 > 0:6366� � −95:44Ŷ2
0 � 170Ŷ0 − 57:59

Ŷ3
0 − 1:47Ŷ2

0 − 20:99Ŷ0 � 21:52
(A7)
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