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Elastically deformable hinges or deployable booms commonly follow architectures with face-skin layers only,

cutting out the core to facilitate folding. This significantly reduces the shear stiffness of the hinge, whichmight reduce

the first resonance frequency of the structure. We rationalize the free vibration of the system and the interplay

between shearing and bending deformation by deriving an analytical formulation using Timoshenko’s beam theory.

The framework is derived for a general beamand applied to a case of two flexures of arbitrary geometrywith no core.

Investigating the specific geometry of flat flexures reveals the existence of two nondimensional length ratios that

capture the interplay between inertia, bending stiffness, and shear stiffness of the hinge. Our model explains the

dependence of the frequency on the parameters of the system, as well as the dimensions that determine the transition

between bending- and shear-dominated vibrationmodes. Comparisonwith finite element simulations shows that our

analytic framework is able to predict the first natural frequency with less than 1% error. Additionally, an

experimental validation was carried out using steel flexures and acrylic panels, showing good agreement with the

predictions.

Nomenclature

A = axial stiffness of a single flexure, N
ai = distance between the two tape-springs, m
D = bending stiffness of a single flexure, N ⋅m2

DT = bending stiffness of Timoshenko beam, N ⋅m2

E = Young’s modulus, N ⋅m−2

F = force vector
fi = natural frequency for ith mode, Hz
GT = shear stiffness of Timoshenko beam, N
H = mode shapes normalized by cantilever beam solution
h = flat flexure thickness, m
K = stiffness matrix
Lh = hinge length, m
Lp = panel length, m
M = bending moment, N ⋅m

M = mass matrix
m = mass of the panel, kg
Q = shear force, N ⋅m
R = tape-spring radius, m
R� = nondimensional parameter from length scales
t = tape-spring thickness, m
tp = panel thickness, m
Ui = translation (where i is equal to δ) and rotation (where i is

equal to θ) components of the mode shape
v = beam deflection, m
v 0 = slope of the beam
Wh = hinge width, m
Wp = panel width, m
yc = tape-spring neutral axis, m
α, γ = reordered terms of R� for Taylor expansion
β = length ratio equal to βxβy
βx = length ratio equal to Lh∕Lp

βy = length ratio equal to Δ∕h
Δ = distance between the neutral axes of two flexures, m
δ = panel translation, m
θ = angle of panel rotation, rad
ξ = bending to shear parameter
φ = tape-spring angle, rad
ρ = density, kg ⋅m−3

ω = angular frequency, rad ⋅ s−1

I. Introduction

T HE design of space structures is limited by the weight and
volume constraints of the launch vehicle and often uses hinges

to stow and deploy large elements such as solar panels, radar, tele-
scopes, and antennas [1]. Several designs use mechanical hinges,
actuated externally or through rotational springs [2–5]. An alternative
is the use of structural elements that can fold elastically without
failure. These elements use the strain energy stored during stowage
to drive deployment, and reduce parasitic weight and complexities
due to friction. Furthermore, they can be built from the samematerial
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as the rest of the structural support (e.g., thin carbon fiber composite
laminates), avoiding strains due to mismatch in mechanical and
thermal properties.
Several designs for elastically deformable deployable structures

use booms made with thin shells that can be flattened and rolled, and
whose structural performance (e.g., the relative stiffness under differ-
ent loadings) can be tuned by controlling the geometry of the cross
section [6]; see Fig. 1a. In these architectures, the whole boom is
deformed during stowage. Alternatively, it is possible to design
structures in which folding is localized in a small region, either by
cutting sections out of a thin tube [7,8] (see Fig. 1b) or by bonding
two flexible elements [9,10] (see Fig. 1c). The flexible elements
allowing folding are usually curved thin shells, such as tape-springs,
because they can be flattened and bent to a tight radius while
providing high bending stiffness in the deployed state [11–13]. An
example of a spacecraft using this architecture is DLR’s Eu:CROPIS,
where four 0.8 m × 0.8 m solar panels were deployed using glass
fiber reinforced polymer tape-spring hinges [14]; see Fig. 1a. Many
studies investigate possible extensions of this approach to CubeSat
missions [15,16] and precision deployments [13], as well as using
novel materials to enhance performance, such as shape memory
alloys for controlled release [17,18] or elastomer-based composites
for higher compaction [19].
Because they operate in microgravity, the main requirement for

deployable space structures is not the response to loading; rather, it
is to survive launch accelerations, successfully deploy, and achieve a
natural frequency higher than expected excitations to avoid resonance
[20]. This last requirement is particularly important for elastically
foldable hinges because, by design, they are compliant.However,most
of the work on the dynamics of flexure-based hinges has centered on
their deployment dynamics [21–26]. There are comparatively fewer
studies performing modal analysis, and they usually focus on exper-
imentally or numerically characterizing the first resonance frequency
of a single design instead of providing general guidelines [16,17,
27–31]. A general understanding of the design space would be par-
ticularly useful for hinges with two thin flexures, such as those shown
in Fig. 1, because the absence of a core structure results in significant
shear compliance, which can be the driving deformation mode for the
first resonance frequency [32].
Flexure systems have been used in vibration testing apparatus

as the support platform. However, studies predicting the natural
frequencies often ignore the coupling effects between different
degrees-of-freedom and vibration modes [33,34]. In particular, the
coupling between bending and shear modes of the tape-spring hinges
has been previously observed experimentally [25] and therefore
needs to be accounted for. This paper addresses this challenge by
rationalizing how the material and geometrical parameters of an

elastic flexure connected to a rigid panel dictate not only the value
of the first resonance frequency but also the interplay between bend-
ing- and shear-dominated vibration modes. We assume the response
does not change along the width direction, so that the system can be
modeled as a two-dimensional (2-D) structure and use Timoshenko’s
beam theory [35] to account for both bending and shear compliance at
the flexible beam.We identify two nondimensional length ratios that
govern the response and divide the design space into regions of well-
defined and distinct behavior. Furthermore, our closed-form solution
for the frequency and vibrationalmodes allows us to explore different
limit cases of the geometry, which we can relate to well-understood
systems such as a cantilever beam with a point mass. However, the
2-D simplification restricts the analysis from finding out-of-plane
modes, such as torsion, which might be critical for certain designs.
This study does not consider torsional modes because the out-of-
plane deformation can easily be decoupled and solved as a stand-
alone problem.
The paper proceeds as follows: first, Sec. II presents our model;

then Sec. III provides insight into the influence of each parameter
through an in-depth parametric study and analysis of the limit cases.
Themodel is validated in Sec. IVusing finite element simulations and
experiments. Section V shows that our model can be readily applied
to nonflat geometries, and Sec. VI concludes the paper with a
discussion of the findings.

II. Derivation of Natural Frequency

This section will describe our modeling framework to rationalize
the free vibration of a panel connected to a flexure hinge with both
bending and shear compliance.We first present a general formulation
valid for any cross section. Later, we will apply it to the specific case
of two thin flexures, as shown in Fig. 1.

A. General Solution

We consider a rigid panel with length Lp, width Wp, and thick-
ness tp, which is attached to a fixed boundary through a flexible
hinge of length Lh and widthWh; see Fig. 2a. We consider that the
hinge can either bend or shear within the x − y plane, so that we
describe the vibration of the panel through two degrees of freedom
(DOFs): vertical translation δ and rotation around its point of
connection to the hinge θ; see Figs. 2b and 2c. Because we do
not consider out-of-plane deformations for the panel, the flexure
can be modeled as a Timoshenko beam of bending stiffnessDT and
shear stiffness GT . The panel mass is uniformly distributed with a
total value of m. We assume that the mass of the hinge can be
neglected.

Fig. 1 Flexible deployable booms: a) CTM, SHEARLESS, TRAC [6] (Image: NASA) and b) tape-spring [8] (reprinted with permission from
the authors); c) flexure hinge designed for high-precision deployments [10] (reprinted with permission from the authors); d) Eu:CROPIS satellite using
tape-spring hinges [14] (image: ESA).
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We write the two-degree-of-freedom equation of motion for this
system as

M �x� Kx � F (1)

where the DOFs are x � �δ; θ�T , the applied forces are F �
�Fδ;Mθ�T , and the stiffness matrix is

K � Kδδ Kδθ

Kθδ Kθθ
(2)

and the mass matrix is

M � mδδ mδθ

mθδ mθθ
(3)

1. Stiffness Matrix

The hinge is subjected to force F1 and momentM1 as reactions at
the fixed boundary, and to forceF2 andmomentM2 at the connection
with the panel; see Fig. 3a. The vertical deflection of the neutral axis
of the hinge is v�x�. The components of the stiffness matrix are the
values ofF2 andM2 required to induce a unit value of each of the two
degrees of freedom, which are equal to the value of the displacement
and rotation of the hinge at the end, δ � v�Lh� and θ � v 0�Lh�,
respectively.
Following Timoshenko’s beam theory, we assume that plane

sections remain plane while not necessarily perpendicular to the

neutral axis due to shear deformation [35]. Shear strain is assumed
to be constant along the hinge length. We consider small deforma-
tions and linear elasticity. The slope of the beam deflection can then
be calculated as

v 0�x� � −
Q�x�
GT

�
x

0

M�s�
DT

ds (4)

where s is a dummy variable with M�s� being the internal bending
moment at a point s and Q�x� is the internal shear force at a point x;
see Fig. 3b.
We integrate Eq. (4) to obtain v�x�, with boundary conditions

v�0� � v 0�0� � 0 at the clamped end and two possible sets of
boundary conditions at the other end: δ � v�Lh� � 1 and θ �
v 0�Lh� � 0, or δ � v�Lh� � 0 and θ � v 0�Lh� � 1; see Figs. 3c
and 3d. This results in the values ofF2 andM2 necessary to build the
stiffness matrix:

K�
F2;δ�1;θ�0 M2;δ�1;θ�0

F2;δ�0;θ�1 M2;δ�0;θ�1

�

12DT

L3
hξ

−6DT

L2
hξ

−6DT

L2
hξ

4DT�3DT �GTL
2
h�

GTL
3
hξ

(5)

where ξ � ��12DT∕GTL
2
h� � 1� is a nondimensional parameter

indicating the ratio of bending stiffness versus shear stiffness. We

Fig. 3 Free body diagram for a) external loads on the hinge and b) internal bendingmoment and shear force; c-d) schematics of the hinge and boundary
conditions used to calculate the stiffness terms.

Fig. 2 a) Rigid panel connected to a flexure hinge. Degrees of freedom considered in x − y plane: b) translation δ and c) rotation θ.
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can recover the Euler–Bernoulli case (no shear deformation) by
taking the limit of GT → ∞, which results in ξ � 1.

2. Mass Matrix

The mass matrix M is obtained by calculating the reaction force
and moment for unit accelerations in pure translation (�δ � 1, �θ � 0)
and pure rotation (�δ � 0, �θ � 1) of the panel. Figure 4 shows the
inertia forces and moments for each case if the DOFs are defined at
the center of the mass of the panel (in blue) and at the panel edge
transferring to the beam (in black). Note that the translation and
rotation terms are coupled for the two modes. For example, a unit
acceleration in the translational DOFwould impose a force ofm�δ and
no moment if the DOF was defined at the center of the mass. In our
case, because the DOFs are defined at the end of the panel, achieving
the same acceleration requires the same force and an additional
moment of m�δLp∕2 to maintain �θ � 0. The resulting mass matrix
is therefore non-diagonal:

M � m
mLp

2
mLp

2

mL2
p

3

(6)

3. Free Vibration of the System

For free vibration, we solve the equation of motion, Eq. (1), with
F � �0; 0�T and x � �uδ; uθ�Teiωt. Substituting themass and stiffness
matrix we obtain the following:

−mω2 � 12DT

L3
hξ

−
mLp

2
ω2 −

6DT

L2
hξ

−
mLp

2
ω2 −

6DT

L2
hξ

−
mL2

p

3
ω2 � 4DT�3DT �GTL

2
h�

GTL
3
hξ

uδ

uθ
� 0

0

(7)

Equation (7) has a nontrivial solution when the matrix is singular,
so we find the resonant frequencies by making the determinant equal
to zero, which yields

f1 �
1

2π

12DTR
−

mL3
hξ

f2 �
1

2π

12DTR
�

mL3
hξ

(8)

with mode shapes

Uδ

Lh

Uθ 1

�
1

2
1�Lp

Lh

R−

�1−R−�

Uδ

Lh

Uθ 2

�
1

2
1�Lp

Lh

R�

�1−R��
�9�

where the translation is scaled by the hinge length and the subscripts
indicate the first and secondmode. The difference between themodes
is defined by the parameter

R� � 2� �3� ξ�
2

L2
h

L2
p

� 3Lh

Lp

� 2� �3� ξ�
2

L2
h

L2
p

� 3Lh

Lp

2

− ξ
L2
h

L2
p

(10)

which is a function of the ratio of panel and hinge length, Lh∕Lp,
respectively, and the nondimensional parameter ξ.

B. Hinge with Two Flexures

Next, we focus on a specialized case of a hinge consisting of two
thin flexures where the neutral axes are separated by a distance Δ.
This can be idealized as a beam with two flanges and no web or core
and captures the behavior of the examples shown in Figs. 1b and 1c.
We assume each of the individual layers behaves as aEuler–Bernoulli
beam, and the lack of corematerial results in a significant reduction of
the hinge’s shear stiffness. Let the axial and bending stiffness of each
layer be A and D, respectively. The hinge bending stiffness DT is
calculated using the parallel axis theorem:

DT � 2D 1� AΔ2

4D
(11)

To obtain the shear stiffness GT , we impose a pure translation
motion of δ � 1 and θ � 0 and allow the two flexures to deform
independently. The fixed-end moments/forces can be calculated for
the Timoshenko hinge by solving Eq. (4), which yields

FT � 12DT

L3
hξ

MT � −6DT

L2
hξ

(12)

The same end forces/moments can be calculated by considering
the individual fixed-end moments for the Euler–Bernoulli beam, as
shown in Fig 5. Equating either the moment or the force will result in
the shear stiffness for the hinge:

FT � 12DT

L3
hξ

� 2
12D

L3
h

MT � −6DT

L2
hξ

� 2
6D

L2
h

(13)

which yield the same relationship, which include the shear stiffness
GT as part of the ratio ξ. We can then obtain an expression for the
shear modulus of the hinge as

GT � 96D2

L2
hAΔ2

1� AΔ2

4D
(14)

It should be noted that the shear stiffness does not depend on the
shearmodulus of thematerial becausewe are treating the hinge as two
thin and stiff elements with nothing to enforce shear stiffness, similar
to a sandwich panel with no core or an I-beam with no web. Shear
deformation of the hinge therefore corresponds to bending of the two
flexures with respect to their respective neutral surfaces, and not with
respect to the neutral surface of the hinge. The expression for the
shear stiffness in Eq. (14) is therefore very different from the usual
treatment in derivations using Timoshenko beam theory [35].

Fig. 4 Inertia terms for the a) translation and b) rotation degree of freedom. Blue color is at panel center and black color is at hinge connection point.

Fig. 5 Estimation of shearmodulus for two flexures by imposing a pure
shear deformation of δ � 1, θ � 0.
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Using the results from Eqs. (11) and (14), we can also rewrite the
nondimensional ratio ξ as the following:

ξ � 1� AΔ2

4D
(15)

and the two natural frequencies as

f1 �
1

2π

24DR−

mL3
h

f2 �
1

2π

24DR�

mL3
h

(16)

Equations (15) and (16) are valid for a hinge design with flexures of
arbitrary cross section, including tape-springs and other transversely
curved elements. They can also be used to model designs in which
flexures are staggered across the width to avoid collision during stow-
age, as long as there is an equal number of flexures on each side [14].

C. Hinge with Two Flat Flexures

We can further specialize the analysis when the two flexures are
flat. If plane stress Young’s modulus of the material is E, then the
bending and axial stiffness of each flexure can be expressed as

D � 1

12
EWhh

3 A � EWhh (17)

where Wh is the width of the flexures, which can be, in principle,
different than the width of the panel, Wp.
The rest of the terms simplify as

DT � EWhh
3

6
1� 3Δ2

h2
(18)

GT � 2EWhh
5

3L2
hΔ2

1� 3Δ2

h2
(19)

ξ � 1� 3Δ2

h2
(20)

The two natural frequencies can therefore be expressed as

f1 �
1

2π

2EWhh
3R−

mL3
h

f2 �
1

2π

2EWhh
3R�

mL3
h

(21)

In this case, ξ depends only on the geometry of the hinge, and the
only stiffness term is E, which does not play a role in the parameter
R�. As a result, the vibrational modes are entirely determined by
simple geometric relationships, whichwill be explored in detail in the
following section.

III. Parametric Study

In this section, we study the dependence of each of the parameters
on the natural frequency of the system for the case of two flat flexures
at a distance Δ. We will particularly focus on obtaining a description
of possible scalings and identifying limit cases.
We start with Eq. (21), in which the dependence on Young’s

modulus E, flexure width Wh, and panel mass m can easily be
identified as

f ∝
EWh

m
(22)

However, the dependence of the rest of the parameters (Δ, h, Lp,
and Lh) is more complex because they appear multiple times within
R� and ξ. To illustrate the complexity of the dependencies, we plot
the two natural frequencies as a function of each of the parameters
(see Fig. 6), considering variations with respect to a point designwith
Δ � 10 mm, h � 0.1 mm, Lh � 10 mm, Lp � 100 mm, m �
1 kg,Wh � 100 mm, and E � 10 MPa, marked with a star on each
plot. We observe increasing thickness h increases the first natural

Fig. 6 Frequencies formode 1 andmode 2 as a function of a) h, b)Δ, c)Lp, and d)Lh. Each parameter was variedwhile keeping others fixed at the point
design (marked by a star on each plot).
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frequency at a rate of f1 ∝ h1.5 with a slight dip in the 1–10 mm
range. On the other hand, increasing Δ does not increase the natural
frequency for the first mode. However, decreasing Δ drops the
frequency from 0.2 Hz to 0.01 Hz and again saturates to a constant
value. Similarly, we observe different power law relations for Lp and
Lh with transitions in the behavior at different values. Further explo-
ration of the behavior not presented here shows that the transition
points move as the point design values are changed. Althoughwe can
explain someof the observedbehavior intuitively (e.g., increasing the
value ofΔ does not affect the first mode once it is dominated by shear
deformation), their exact power law and nonlinearity are not clear.
Understanding the nonlinear coupling behavior of these parameters is
important for design and performance optimization of the hinge. For
example, we can retain similar frequency performance even if the
panel length is increased to 1 m or the flexure gap Δ is decreased to
around 0.001 m. It is important to mention that the results shown in
Fig. 6 aim to be an exploration of the parameter space, which might
not align with a realistic design for a deployable structure. For
example, cases with Δ ≥ Lh would not be able to be folded like the
structures in Fig. 1. Our model is able to accurately capture the first
vibrational mode even for such geometries, as shown by comparison
to finite element simulations in which the flexures are modeled
independently; see Sec. IV.C.1.
The nonlinear behavior in Eq. (21) is a result of the R� term. To

rationalize it, we define the length ratios βx � �Lh∕Lp� and βy �
�Δ∕h� and their product as β � βxβy. Doing so, we can rewrite
Eq. (10) as

R� � 2� 3βx � 2β2x �
3

2
β2xβ

2
y

× 1 � 1 −
1� 3β2y β2x

2� 3βx � 2β2x �
3

2
β2xβ

2
y

2
(23)

Figure 7a shows the values of R� obtained for different combina-
tions of βx and βy, but plotted as a function of β. Each color
corresponds to a different quadrant in the βx − βy plane; see Fig. 7b.
For additional clarity, we plot dashed lines corresponding to βx �

f0.1; 1; 10g in blue and βy � f0.1; 1; 10g in red. The representative
shapes for the evolution of R� for the case constant βy (blue) and
constant βx (red) are sketched in Fig. 7c. The red lines scale linearly in
the log scale with increasing β and saturate after a transition point
(β1). The second mode shows the opposite behavior: it starts off at a
constant value that later transfers to a linear dependence at the same
transition point. The blue curve, which represents a constant βx,
initially starts at a constant value R−

1 , shifts to a log-linear behavior
at β2, and then again saturates after the transition point. The second
mode has only a single transition at β3.
To understand the different regimes and the corresponding tran-

sition points, we can further simplify Eq. (23), which is in the form of
R� � α�1 � �1 − γ�12�, using the binomial theorem. The higher-
order terms of the Taylor expansion can be neglected when γ < 1,
which yields the approximation �1 − γ�12 ≈ �1 − �1∕2�γ�. Hence we
have

R− ≈
αγ

2
� �1� 3β2y�β2x

4� 6βx � 4β2x � 3β2xβ
2
y

(24)

R� ≈ 2α −
αγ

2
≈ 2α � 4� 6βx � 4β2x � 3β2xβ

2
y (25)

We can verify that 0 < γmax < 0.25 for all possible combinations
of βx and βy, so that the error for our approximation, R�

error �
�jR� − R�

approxj∕R��, is bounded by 6.7% (which is the value of
the error when γ � 0.25). Figure 8 shows the error for values of βx
and βy in the 0.001 to 1000 range, which shows that the higher values
of the error are observed in the quadrant where βx < 1 and βy > 1.
In order to rationalize the different regimes and transitions within

them, we will study the behavior of Eq. (25) in the limit cases
associated with the different regions in the βx, βy plane.

A. Case I: βx ≪ 1 & βy ≪ 1

First, we look at the quadrant where both βx and βy are smaller than
one, resulting in β ≪ 1 (pink region in Fig. 7). In Eqs. (24) and (25),
the terms containing βx and βy become negligible compared to the
other competing terms and R� reduce to

Fig. 7 a) Behavior of R� for βx and βy in the 0.01 to 100 range, plotted as a function of β; b) color and line coding for corresponding βx or βy values;
c) characteristic behaviors observed for constant βx (blue) and constant βy (red).
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R− ≈
β2x
4

R� ≈ 4 (26)

The preceding simplification rationalizes the different behaviors
observed when varying βx versus βy in Fig. 7c, and the saturation
values R−

1 ≈ �β2x∕4� and R�
1 � R�

2 ≈ 4. Substituting the above
results in Eq. (21), the frequencies can be approximated as

f1 ≈
1

2π

EWhh
3

2mL2
pLh

f2 ≈
1

2π

8EWhh
3

mL3
h

(27)

Physically, this region represents the case of a long panel attached
to a very short hinge, and the distance between the flexures is smaller
than their thickness (i.e., two flexures with basically no offset that are
staggered along thewidth). In this configuration, the bending to shear
parameter is ξ � 1� 3β2y ≈ 1, and the hinge acts similar to a Euler–
Bernoulli beam with twice the width because both flexures are
basically equivalent to each other. Hence,Δ does not have any impact
on the natural frequency.

B. Case II: βx ≪ 1 & βy ≫ 1

Next, we focus on the case where βy ≫ 1, while the other ratio is
still βx ≪ 1 (blue region in Fig. 7). This again corresponds to a very
long panel connected to a short hinge, but now the distance between
the flexures is much larger than their thickness, and so the shear
stiffness is lower than the bending stiffness (ξ ≫ 1). Here, we have
two possible cases depending on the magnitude of the two length
scales, which can be distinguished based on the value of β � βxβy.

1. Case II - A (β ≪ 1)

We first consider the region where β ≪ 1, which implies
�1∕βx� ≫ βy ≫ 1. In this case, we can consider that contributions
from both the βx and β terms are small, which yields

R− ≈
3β2xβ

2
y

4
R� ≈ 4 (28)

Compared to Case I, only R− term changes in this region with the
transition occurring at βy � 1. For the constant βx curve in Fig. 7c,
this transition point corresponds to β � β2 � βx. The frequencies
can then be approximated as

f1 ≈
1

2π

3EWhhΔ2

2mL2
pLh

f2 ≈
1

2π

8EWhh
3

mL3
h

(29)

As the flexure spacing is increased, Δ influences the bending
stiffness following the parallel axis theorem and appears in the
frequency term. However, the second mode does not depend on Δ,
suggesting a pure shear deformation mode, which will be verified
later by investigating the mode shapes.

2. Case II - B (β ≫ 1)

We now consider the case where β ≫ 1, which can be seen as a
continuous transition from Case I to Case II-A, so that βy keeps
increasing until βy ≫ �1∕βx� ≫ 1. In this case, we only neglect the
contribution of βx, and we obtain

R− ≈
3β2xβ

2
y

3β2xβ
2
y

� 1 R� ≈ 3β2xβ
2
y (30)

We observe that both R− and R� terms change, flipping their
behavior compared to Case II-A. This transition occurs at β � β3 �
1 with the saturation value R−

3 ≈ 1. The frequency terms become

f1 ≈
1

2π

2EWhh
3

mL3
h

f2 ≈
1

2π

6EWhhΔ2

mL2
pLh

(31)

Aswe continue to increase the flexure spacing, the first and second
frequency terms flip, with the first mode becoming shear dominated
independent of flexure spacing Δ.

C. Case III: βx ≫ 1 & βy ≪ 1

Next, we move on to the green quadrant in Fig. 7b, which repre-
sents a point mass (i.e., a very short panel) attached to a long Euler–
Bernoulli hinge (i.e., hinge separation is smaller than the thickness).
Again we have two possible scenarios of β < 1 and β > 1, but in both
cases only the βx terms are significant, yielding

R− ≈
β2x

6βx � 4β2x
� 1

6
βx
� 4

≈ 0.25 R� ≈ 4β2x (32)

Compared to Case I, R− and R� terms flip their behavior, as
apparent from the constant βy curve. This transition occurs at βx �
1 or β � β1 � βy, and the first mode saturates at R−

2 ≈ 0.25. The
frequency terms become

f1 ≈
1

2π

EWhh
3

2mL3
h

f2 ≈
1

2π

8EWhh
3

mL2
pLh

(33)

Because this case is similar to a cantilever Euler–Bernoulli beam
(because ξ ≈ 1)with a pointmass at the tip (because the hinge ismuch
longer than the panel, Lp ≪ Lh), we can compare our solution to the
natural frequency of a beam-concentrated mass system. We consider
a beam with twice the width of the flexures, EI � �1∕12�E�2Wh�h3,
and the first frequency for a cantilever is the same as the first
frequency of our system:

fcantilever �
1

2π

3EI

mL3
h

� f1 (34)

Fig. 8 Approximation error using binomial theorem for a) R− and b) R�.
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D. Case IV: βx ≫ 1 & βy ≫ 1

The final quadrant corresponds to the casewhen both length scales
are greater than one. The limit case for this region represents a point
mass (hinge longer than the mass) attached to a hinge with high
bending stiffness and low shear stiffness (ξ ≫ 1). In this case, the β
terms become significant and we can approximate R� as

R− ≈
3β2xβ

2
y

3β2xβ
2
y

� 1 R� ≈ 3β2xβ
2
y (35)

This is the same behavior as Case II-A, and therefore the constant
βy lines remain the same. However, constant βx curves passing
through Case III transitions at βy � 1 or β � β3 � βy in Fig. 7c.
The frequency terms are

f1 ≈
1

2π

2EWhh
3

mL3
h

f2 ≈
1

2π

6EWhhΔ2

mL2
pLh

(36)

E. Summary of All Cases

We summarize the parameter dependency derived from the pre-
ceding analysis in Fig. 9. The dashed lines indicate the transition
boundaries. The first vibrational mode has four characteristic behav-
iors whereas the second mode has three. With this insight, we can go
back to the previous example in Fig. 6 and explain the parameter
dependence. The red star in Fig. 9 represents the point design case,
and the two arrows indicate the four possible parameter sweeping
directions: vertical direction for changes in h or Δ, and horizontal
direction for changes in Lh or Lp. Upon increasing the thickness h,
two transition boundaries are crossed for the first mode, whereas the
second mode is met only with a single boundary, as observed in
Fig. 6a. For the hinge length Lh, only one transition boundary is
crossed for both modes, as observed in Fig. 6c. Similarly, we can
explain the behavior of all the parameters, as well as all the slopes
reported in Fig. 6 for all possible parameter variations.

F. Vibrational Mode Shapes

In Sec. II, Eq. (9), we derived an analytic equation for the mode
shapes that only depends on the hinge geometry. We extend the
previous analysis to obtain some intuition regarding the modes in
all the regions of the βx − βy design space and compare it to the
behavior expected based on the relative magnitude of the stiffness of
the hinge (bending versus shear) and the inertia of the panel (trans-
lational versus rotational).

Because the modes are characterized by the ratio between the two
components, we define

Hi�R�� � Uθ;i

~Uδ;i

(37)

where Uθ;i is the rotational component of the ith mode, and ~Uδ;i �
�3Uδ;i∕2Lh� is a normalization of the displacement component δ.
The prefactor 3∕2 in the normalization corresponds to the ratio of
rotation to deflection of a Euler–Bernoulli cantilever beam with a
mass at the tip. With this normalization, we expect to recoverH1 ≈ 1
for the case of a cantilevered beam with point mass (βx ≫ 1 and
βy ≪ 1), suggesting the mode is independent of the shear stiffness of
the beam. This is indeed confirmed in Fig. 10a, where we plot the
variation of H1. When we increase βy while keeping βx ≫ 1, we
move into a zone of H1 ≈ 0. This corresponds to a pure translation
mode dependent only on the shear stiffness of the beam. In the region
βx ≪ 1 and βy ≪ 1, we observe the panel rotation to be significant
compared to its translation. For βx ≪ 1 and βy ≫ 1, the mode shape
is a combination of translation and rotation.
Similarly, we plot the second mode shapes H2 in Fig. 10b, which

shows a surprising dependence only on the inertial term βx. Further-
more, we observe that the ratio of rotation to translation is equal to
either −βx or −1.33βx for all possible scenarios. That is, when the
panel inertia is much higher, we should expect larger positive trans-
lations compared to smaller negative rotations and vice versa.
Although we were able to distinguish the roles of shear and bending
stiffness in the first mode, similar insight cannot be claimed for the
second mode because the mode shapes are more complicated and
likely involve both deformations.

IV. Experimental and Numerical Validation

In this section,wecompare andvalidate the analytic derivationswith
numerical results from high-fidelity simulations and experiments.

A. Experimental Setup

We prototype a representative hinge geometry using spring steel
flexures and acrylic plates. The acrylic is laser cut to be 76.2 mm by
76.2 mm squares. All flexures have the same width of 76.2 mm and
the same thickness of 0.127 mm, while the length was varied, as
shown in Table 2. The steel flexures are attached to the acrylic plates
using through-bolts and nuts; see Fig. 11a. Different hinge geom-
etries are obtained by varying the hinge length (Lh) and the thickness
of the core acrylic layer (which changes Δ as well as the panel mass,
m). It should be noted that the prototypes are not designed to be

Fig. 9 Summary of frequency terms for a) mode 1 and b) mode 2. The dashed lines indicate the transition boundaries. The red star indicates the point
design case in Fig. 6.
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stowed and deployed without plastic deformation; they are only
representative of the deployed configuration.
The prototype is mounted vertically by the top panel; see Fig. 11b,

and a three-axis ADXL345 accelerometer (2g range, 230400 baud
rate) is attached to the bottom panel. The bottom panel is lightly
excited by tapping with an impact hammer and the acceleration
profiles are recorded; see Fig. 11c. A fast Fourier transform is applied
to the out-of-plane (y) acceleration profile to identify the natural
frequencies; see Fig. 11d. A minimum of six tests are averaged for
each geometry. Varying the geometry of the flexures and the panel

allows us to explore both bending-dominated and shear-dominated
modes; see Figs. 11e and 11f.

B. Finite Element Modeling

Here, we carry out two types of finite element simulations, both of
them using the commercial software package ABAQUS/Standard.
First, we consider a 2-D model that replicates the same assump-

tions used in our analytical formulation, including plane strain. Four-
node plane strain elements (CPE4) are used for both hinge and panel;
see Fig. 12. Amodal analysis is carried out for small deflections. The

Fig. 11 a) Prototype fabrication and b) the experimental setup; c) a sample case of the recorded acceleration; d) natural frequencies identified through
FFT; examples of e) bending- and f) shear-dominated modes.

Fig. 10 Hi as a function of βx and βy for a) i � 1 and b) i � 2 with illustrations of expected deformations.
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deformation of the panel is suppressed by defining a rigid body
constraint. The hinge is fixed at one edge and connected to the panel
using tie constraints with rotational degrees fixed. The inertia of the
system accounts for both panel mass and the hingemass, whereas the
analytic model neglects the latter contribution.
We have also conducted simulations with a higher-fidelity three-

dimensional (3-D) model, which will be used to identify possible
phenomena present in the experiments that cannot be captured by the
assumptions of our analytical formulation. Solid elements (C3D8R)
are used for the panel and plane stress shells (S4R) for the flexures.
Solid-to-shell coupling is defined at the shell–solid intersection,
while one panel edge is fixed to prevent rigid body motions. In this
case, we do not define a rigid body constraint on the panel and use
realistic material properties shown in Table 1. This model shows out-
of-plane torsionalmodes in addition to the in-planemodes from the 2-
D analysis, as well as deformation of the acrylic; see Fig. 12.

C. Results

1. Validating the Analytic Model

We compare the analytic model against the 2-D finite element
model for a total of 400 different configurations on the βx − βy
parameter space. The dimensions Lh � 100 mm, h � 0.1 mm,
and Wh � 1 mm are fixed while Δ � �0.001–10� mm and Lp �
�1–10; 000� mm are varied to sweep the βx − βy space in four orders
ofmagnitude.We set thematerial property toE0 � 1 × 107 MPa and
ν � 0.3 to limit the minimum frequency in the order of 0.01 Hz. The
sameplane strain condition is imposed on the analyticmodel by using

the effective stiffness E � �E0∕1 − ν2�. The mass of the panel is set
at 100 g and mass of the hinge is set at 0.1 g in the finite element
method (FEM). The panel thickness in the FEM is set to be 12 mm,
while the analytic model assumes the panel to be infinitely thin.
The relative error between the analytic model and FEM is calcu-

lated as

ferror �
jfanalytic − fFEMj

fFEM
(38)

Figure 13 plots the ferror contours on the βx − βy space for the first
two modes. The first mode shows an excellent agreement for all βx −
βy values with less than 1% error for all cases studied. When we
consider the second mode, we again observe excellent agreement in
the prediction when βx < 1, i.e., when the panel length is longer than
the hinge. As the panel length decreases, we observe significant
deviations between the 2-D FEM and the analytic model. Closer
inspections reveal that as the panel length decreases, the inertia of the
hinge becomes more relevant. This is apparent in Fig. 13, in which
FEM is able to find mode shapes for the hinges with no panel
accelerations. At βy � 0.01, FEM finds amodewhere the point mass
rotates without changing its center of mass, and at βy � 100, the
flexures bend without moving the panel. The analytic model fails to
recognize these modes because the hinge inertia is neglected, and
only twoDOFs are considered for the flexures (rotation and displace-
ment at one end), which neglects any other possible deformation
modes (e.g., the sinusoidal deflection typical of higher modes in a
cantilever). Nevertheless, the comparison confirms the validity of the
analyticmodel to predict the first resonance frequency for all possible
configurations.

2. Comparison with Experiments

Next we compare the experimental observations from the steel
hinge prototypes against the analytical predictions and 3-D finite
element simulations. Note that the 2-D FEM results are not presented
here because they agreewith the analytic prediction with an accuracy

Fig. 12 Primary deformation modes from 2-D and 3-D finite element models.

Fig. 13 Contour plot of the relative error ferror as a function of βx − βy for a) mode 1 and b) mode 2.

Table 1 Material properties for 3-D finite
element model

Spring steel flexures Acrylic plate

E, GPa 200 3.3
ν 0.29 0.3

ρ, kgm−3 7800 1220
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of 0.1% for the selected geometries (βy ≥ 1). The length parameters
are set to the prototype dimensions h � 0.127 mm,Wh � 76.2 mm,
and Lp � 76.2 mm. The rest of the parameters for each experiment
are shown in Table 2. The mass includes the mass of the acrylic
panels, mass of steel that is sandwiched between the acrylic (exclud-
ing hinge region), and mass of the tightening bolts. Both models
assume the total mass to be uniformly distributed through the panel.
The experimental natural frequencies are describedwith the average

and standard deviation of all tests of the samegeometry. The variations
between tests are negligible, with standard deviation in the order of
0.1 Hz. Figure 14a visualizes the experimental observations and
analytic and FEM predictions as a function of βx when βy � 12.5.
In this case, all other parameters arekept constant; hence, the frequency
change is dependent only on the length of the hinge. The three cases
with βx > 1 all have an excellent agreement. However, as the hinge
length is shortened, analytic values tend to overpredict the natural
frequency. Both FEM and experiments are closer, which can be
explained by effects not captured through our analytical formulation,
such as the bending of the acrylic panel. As a further source of possible
error, theFEMassumes the acrylic panel tobeone solid block,whereas
in reality, it is composed of several thinner layers sandwiching metal
flexures. Next, Fig. 14b compares the frequencies as a function of βy
for constant βx � 1. In this case, Δ is increased by adding a thicker
acrylic core, which increases the panel mass and explains the non-
monotonic evolution of the frequency. We observe a good agreement
between the experiments and the numerical predictions.

V. Extension to Other Geometries

The parametric study revealed the existence of clear regions in the
βx − βy plane corresponding to different excitation modes for the flat
flexure. In this section, we illustrate how this model can be extended
to an arbitrary geometry by considering an equivalent flat flexure
with the same stiffness.

Let us consider a tape-spring flexure geometry with constant
radius R, thickness t, and subtended angle φ. The bending and axial
stiffness are estimated as [36]

D � EtφR3

2
1� sin�φ�

φ
− 2

sin2�φ∕2�
�φ∕2�2 (39)

A � ERφt (40)

We consider two hinge architectures: case A, when the two tape-
springs are facing each other, and case B, when facing the opposite
direction, as shown in Fig. 15a. Herewe assume the horizontal region
of each tape-spring is fixed at a distance a1 and a2 from each other for
case A and B, respectively. Conversely, a different study can be
carried out in which the tape-spring distance also changes. For the
current study, we can calculate Δ � ai � 2yc. Here yc describes the
position of the neutral axis of the tape-spring and is given by

yc � R 1 −
sin�φ∕2�
�φ∕2� (41)

The natural frequencies of the tape-spring hinge can be estimated
by substituting the stiffness A,D andΔ in Eq. (16). Furthermore, we
can extend the parametric investigation in Sec. III by finding an
equivalent flat flexure geometry of width Wh 0 and thickness h 0 that
has the same bending and shear stiffness. Using Eq. (17), we obtain

h 0 � R 6 1� sin�φ�
φ

− 2
sin2�φ∕2�
�φ∕2�2 (42)

Wh 0 � φt

6�1� �sin�φ�∕φ� − 2�sin2�φ∕2�∕�φ∕2�2��
(43)

Table 2 Experimental data and natural frequency comparison

Case Lh, mm Δ, mm tpanel, mm m, g βx βy β Analytic, Hz FEM, Hz Experiment, Hz Errora %

1 152.4 1.588 7.938 84.05 2.00 12.5 25.00 2.40 2.23 2.58 � 0.03 7.50
2 127.0 1.588 7.938 84.05 1.67 12.5 20.83 3.14 3.00 3.05 � 0.07 2.87
3 101.6 1.588 7.938 84.05 1.33 12.5 16.67 4.38 4.22 4.07 � 0.04 7.08
4 76.2 1.588 7.938 84.05 1.00 12.5 12.50 6.73 6.54 5.90 � 0.05 12.33
5 50.8 1.588 7.938 84.05 0.67 12.5 8.33 12.28 11.96 9.52 � 0.06 22.48
6 25.4 1.588 7.938 84.05 0.33 12.5 4.17 33.7 23.2 26.14 � 0.09 22.43
7 76.2 0.127 6.350 73.55 1.00 1.0 1.00 3.33 3.04 3.59 � 0.04 7.81
8 76.2 3.175 9.525 116.20 1.00 25.0 25.00 5.32 5.15 5.09 � 0.04 4.32
9 76.2 6.350 12.70 137.50 1.00 50.0 50.00 5.80 5.62 5.19 � 0.14 10.52

aError between analytic prediction and experimental observation

Fig. 14 Comparison of first mode natural frequency between experiments, analytic equation and 3-D FEM as a function of a) βx (when βy � 12.5) and
b) βy (when βx � 1.0).
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Nowwe can study the influence of the tape-spring geometry on the
modal behavior, which takes place only as part of the βy parameter:

βy�R;φ; t� �
ai � R�1 − �sin�φ∕2�∕�φ∕2���

6�1� �sin�φ�∕φ� − 2�sin2�φ∕2�∕�φ∕2�2��
(44)

We consider a point design of R0 � 20 mm, t0 � 1 mm, ai0 �
40 mm, and φ0 � 60 deg and modify the tape-spring geometry by
individually varying R � �1–100� mm, t � �0.001–10� mm, and
φ � �30–330� degrees. Figure 15b visualizes the dependencies on
βy for each geometric parameter for the two separate cases. The
arrows indicate the direction in which the geometric parameter is
increased. The geometry of the tape-spring does not affect the βx, so
different βx values are plotted for each case for visualization clarity.
We observe that βy of the tape-spring hinge decreases when

increasing R and φ, while unaffected by the thickness t. The natural
frequencies and parameter dependencies for each βx − βy region can
be estimated using the properties of the equivalent cross section, h 0
andWh 0 , using the understanding of the system summarized in Fig. 9.
For example, tape-spring thickness only appears in Wh 0 and affects
the natural frequency as f ∝ Wh 0

p
∝ t
p

.
The preceding analysis is specific for the case of two tape-springs

that are kept at a constant gap a1 and a2. A similar analysis can be
carried out when the flexure positions are also changed or for other
cross-sectional geometries. Furthermore, the same approach can be
used for systems deploying masses different from the homogeneous
panel considered in our study. In this case, it would be necessary to
find a panel with equivalent inertia properties to those of the
deployed mass.

VI. Conclusions

This paper has studied the free vibration dynamics of a flexible
hingewith shear compliance attached to a rigid panel.We idealize the
structure as a two-degree-of-freedom 2-D system and account for
both bending and shear stiffness in the hinge by modeling it as a
Timoshenko beam. We provide a closed-form solution for both
natural frequency and vibration modes and specialize the solution
for the case of a hinge composed by two flat flexures.We identify two
length scales, βx and βy, that control the dynamics of the system. This

parameterization allows us to divide the design space into regions
with distinct response and understand the influence of each parameter
on both the natural frequency and the vibration modes. The accuracy
of our formulation was confirmed through comparisons with a 2-D
finite element model, with less than 1% difference in the prediction
of the first natural frequency. For the second mode, the hinge inertia
becomes significant for βx > 1, which is not captured in the analytic
model. We have also performed experiments with prototypes of
different geometries, with good agreement with our model. Some
of the differences can be explained as due to the finite stiffness of
the panel, which is observed in high-fidelity 3-D finite element
simulations.
Our formulation provides not only a closed-form estimate for the

first natural frequency but also insight into how the properties of the
system drive the interplay between bending and shearing modes
commonly observed in elastically folding deployable elements. Par-
ticularly interesting for new designs, it explains which change in
parameters will have the larger effect on a given geometry. For
example, it is possible to identify atwhich point increasing the flexure
separation does not increase the natural frequency, due to the appear-
ance of shearingmodes, as a function of the other system parameters.
Furthermore, we have shown that the framework can be easily
extended to curved geometries, with an example case of tape-
spring–based hinges.
The results presented in this paper will play a key role in enabling

the design of flexure-based hinges for deployable structures, yet
some questions remain open. First, the geometry of the flexures
needs to allow folding so that the structure can act as a hinge. This
results in a new set of requirements that often drive the design in the
opposite direction from those derived frommodal analysis (e.g., long
flexures make the hinge easier to fold but reduce the natural fre-
quency). The authors are currently working on a manuscript address-
ing this aspect of the design. Second, the model has not considered
torsional modes, the inertia of the hinge, or the stiffness of the panel.
The three-dimensional simulations and the experiments show that, in
some cases, these idealizations have a significant effect. Finally, we
plan to extend our work to the case of a structure deploying several
panels, either in an accordion-like architecture or through more
complex connectivity.
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