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The column bending test (CBT) is an experimental method to measure the moment–curvature behavior and failure

curvature of high-strain composites (HSCs), designed to apply a relatively constant bendingmoment through a sample

up to very high curvatures. In this paper, we first calculate the errors involved in the simplified geometric analysis used

to model the CBT by considering two different effects: variations in the bending moment through the sample and

nonlinearities in the material response of the fibers. The first effect, modeled using Euler’s elastica, results in a set of

design guidelines for the test geometry (i.e., length of the grips and the specimens) in order to achievemoderate errors in

momentandcurvaturepredictions.Thenonlinearity in the fiberbehavior (tension stiffeningandcompressionsoftening)

doesnot have a strong effect on the curvature but produces significant variations in the bending stiffness ofHSCs aswell

as the maximum strain observed in the fibers due to the shift in the neutral axis. This indicates that accounting for the

nonlinear behavior of fibers is necessary in order to accurately predict the failure properties of HSCs under bending.

Nomenclature

Ael = value of variable A predicted by the elastica solution
Ag = value of variable A predicted by the geometry-based

closed-form solution
a = horizontal distance between center and ends of the

coupon
D11 = bending stiffness in the fiber direction
D110 = initial bending stiffness
dinitial = distance between pins when the specimen is straight
dtest = distance between pins during the test
Ef = nonlinear fiber stiffness, varying as a function of

applied strain ε
Ef;0 = initial fiber stiffness

E0 = initial composite stiffness
L = total length of the setup
l = effective length of the rigid fixture arm
ls = free length of specimen

M = bending moment
Mmax = maximum moment occurring at the center of the bent

specimen
Mmin = minimum moment occurring at the coupon edges
N = normal axial force
P = load applied to the fixture by the testing machine
R = radius of curvature of the bent coupon
r = effective moment arc length
s = arclength along the specimen
t = specimen thickness
Vf = fiber volume fraction in the composite

xm = boundary condition at the symmetry point
yna = position of neutral axis
β = angle between vertical axis and tangent vector at every

point of bent coupon
γ = nonlinear material parameter, determined empirically
Δx = horizontal distance between joint and point where

specimen leaves rigid arms, for zero applied curvature
Δy = vertical distance between joint and point where speci-

men leaves rigid arms, for zero applied curvature
δ = vertical displacement of testing machine
ε = nominal strain assuming neutral axis remains at center

of the specimen
εC;cr = critical compressive strain, where instantaneous modu-

lus becomes zero
ζκ = correction factor for curvature
ζD = correction factor for bending stiffness
θ = initial angle of fixture arm
κ = curvature of bent specimen
ξ = ratio of total size of rigid arms to specimen freelength
σc = homogenized stress in the composite laminate
ϕ = change in fixture arm angle due to deflection of testing

machine

I. Introduction

S EVERAL designs of deployable space structures are based on
the elastic deformation of structural elements during stowage,

and the subsequent deployment by releasing the stored strain energy.
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Examples include continuous longeronmasts [1], antenna booms [2],
spring-back reflectors [3], large deployable antennas [4], tape-spring
trusses [5], and deployable solar arrays [6]. To further increase their
packaging efficiency, these architectures require materials able to
achieve large curvatures during stowage. Of particular interest are
high-strain composites (HSCs) [7], a class of fiber composite struc-
tures designed to operate at strains higher than 1% when subjected
to bending. These are often thin unidirectional carbon fiber laminates
or FlexLams [8], laminates with [�45∕0∕�45] orientation to
reinforce buckling and loading in the nonzero directions. Despite
their promising mechanical properties, the application of HSCs is
hindered by the lack of analytical and numerical tools able to reliably
and accurately predict their failure curvature [9]. The reason is the
combination of complex micromechanics controlling laminate fail-
ure [10], size effects on thin laminates [11], and time-dependent
behavior after the long stowage periods expected in a space mission
[12–14]. To shed light on the unique failure properties of HSCs,
several recent studies have focused on the testing of their large
curvature bending behavior [9,15–39]. A key goal of this experimen-
tal campaign is the development of a reliable and well-characterized
testing procedure.
The experimental determination of the high-curvature bending

behavior of HSCs, including their failure curvature, requires a test
able to subject thin composite laminates to very high curvatures,
sometimes in the range κ > 0.4 mm−1 (i.e., radius of curvature in the
order of a few millimeters). Traditional bending testing techniques,
such as three- and four-point bending, are designed for small deflec-
tions in the linear regime. Even if the analysis of the test was
expanded to account for large deflections, these setups have difficulty
achieving the very small radius of curvature necessary to produce
failure in thin composite laminates. Several alternative techniques
have been explored. The large-deformation four-point bending test is
able to produce the required high curvatures, but the abrupt transition
of the stress state at the grips leads to premature failure of the coupons
[18]. The platen test has also been used to test the failure curvature of
thin composite laminates [16], but the moment distribution through-
out the specimen is highly nonuniform, leading to large errors in the
processing of results unless the large deformation behavior is mod-
eled correctly. Yu and Hanna developed an apparatus able to apply
pure bending on thin sheets, but with limitations on the possible
maximum strain achieved [40].
The column bending test (CBT) [20,22–26] is able to overcome

these shortcomings, loading the coupons with a nearly constant
bending moment that results in failure close to the center of the
coupon. The setup can be seen in Fig. 1. It uses pins and ball bearings
to turn the vertical displacement of the testing machine into rotation
of the grips, resulting in bending of the coupon. If the coupon is
sufficiently shorter compared to the length of the arms, the variation
of the bendingmoment within the specimen is small, which results in
close to uniform curvature, and makes it possible to analyze the test
using simple geometric arguments. The error of this approximation
depends on the geometry of the arms and the composite coupon,

which in turn depend on the thickness of the specimen and the desired
maximum bending strain during the test. As a result, sometimes the
variations of curvature within coupons are significant [28,41].
The objective of the present study is to evaluate the validity of the

assumptions used to process the results of the CBT test and provide a
series of testing recommendations. In particular, we compare the
maximum curvature calculated assuming constant curvature through
the specimen, with the prediction obtained analyzing the test using
Euler’s elastica theory, which models the behavior of slender bodies
subjected to large deflections. Our results provide the error between
both predictions as a function of the ratio between the two main
geometry parameters of the test (size of the grips and free length of the
tested coupon), and they can be used to determine when a simple
geometrical analysis is able to produce an accurate prediction of the
maximum curvature in the specimens. Finally, we also explore the
effect of material nonlinearity in the laminate by quantifying the shift
of neutral axis and its effect on stresses and strains.
The structure of the paper is as follows: Section II provides a

background of the CBT. Section III explains the model used to
capture possible nonlinearities in the fiber behavior. In Sec. IV, we
then explain the elastica theory that is used to predict the variations in
curvature across the specimen. SectionVdiscusses the comparison of
moment–curvature predictions obtained through the closed-form
solution, and the elastica theory for various cases of softening
observed in HSCs, and finally Sec. VII discusses the effects of
softening on the local stresses and strains in the fiber.

II. Column Bending Test

The main objective of the CBT is to obtain the moment versus
curvature behavior in the geometrically nonlinear regime for thin
composite laminates. The slope of moment versus curvature curve
provides the value of bending stiffness (D11) for a particular choice of
layup as a function of the applied curvature, revealing possible
material nonlinearities. The test also provides the failure curvature
of the material, which is one of the main parameters necessary for the
design of deployable space structures using HSCs. The goal of this
section is to review the experimental setup, and the closed-form that
can be developed assuming constant curvature in the sample.

A. Description of the Experimental Setup

The CBT is designed to characterize the bending behavior of thin
coupons at large curvatures in a universal testing machine. The rigid
arms holding the specimen are connected through ball bearings to two
rotary shafts to reduce friction, which remain horizontal and parallel
during the test (see Fig. 1). Each of the shafts is connected to a
U-shaped clevis, which are in turn attached to the testing machine.
As the cross-head of the testingmachinemoves down, the shafts move
closer together, and the rigid arms rotate. The grip holding the speci-
men is one side of the rigid arms, next to the joint connection. Since the
loads observed in the test are usually small, friction is usually sufficient
to prevent the specimen from slipping, but it is important to reduce the

Fig. 1 Image of the experimental setup used in the column bending test.
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effect of gravity. Two strategies are commonly used for the same. First,

the fixture is sometimes builtwith polymers through rapid prototyping.

Second, the fixture can be designed using arms that are symmetric

around their connection to the shaft, so that they are balanced in the

absence of loading. Due to symmetry, lack of gravity effects, and the
pinned boundary conditions, there is no reaction moment on the grip.

In either case, it is important to ensure that the specimen remains flat

and that the reaction forces are not able to bend the grips, since that

would distort the initial angle of the specimen. The bendingmoment in

the specimen is equal to the vertical force on the grips, which is

recorded by the testing machine times the horizontal distance from

specimen to the pins. This greatly simplifies the calculation of the
bendingmoment. Curvature is often calculated using the displacement

of the cross-head and geometric considerations, although other studies

have used noncontact image-basedmethods to directly track curvature

and strain [13,26].
If the specimen is initially straight and aligned with the loading

axis, the loading will first compress the coupon until buckling takes
place, resulting in bending of the specimen. To reduce this initial

buckling and to ensure that the coupon bends in a previously deter-

mined direction, two alternatives can be used. First, the test can be

started with the coupon already bent, introducing a small initial

curvature. Alternatively, the coupons are offset from the loading axis

(i.e., the pinned joints where the arms meet the U-shaped clevis) by a

small distance, so that a small bending moment is introduced at the
beginning of the test. Regardless of the approach followed, as the test

progresses, the distance between sample and loading axis increases

rapidly, and the axial and shear loading in the coupon can be

neglected compared to the bending moment.

B. Geometric Analysis

During the CBT, the bending moment along the coupon varies

linearlywith the distance to the loading axis, with theminimum at the

grip and the maximum and the center of the specimen. If the relative

difference between both distances is small and thematerial properties

are linear, it is possible to assume that the bending moment and

therefore the curvature are close to constant along the arc length. It

is also assumed that the length of the specimen remains constant
during the test, since the compressive loading is negligible compared

to the bending moment. This greatly simplifies the analysis, and it is

possible to provide a closed-form estimation of the maximum curva-

ture and bending moment. The main objective of this paper is to

explore the regimewhere this assumption yields accurate results. The

geometric closed-form solution has already been previously dis-

cussed [23,26,28], but it will be also presented here for completion.
In Fig. 2, ls represents the free length of the samples between the

rigid arms or gauge length (assumed to be constant during the test),

l represents the effective length of the rigid fixture arm (i.e., the

distance between sample and pin), θ represents the initial angle of the
fixture arm, and ϕ represents the change in fixture arm angle due to

deflection during the test. The testing machine provides a vertical

displacement δ and records the load applied to the fixture, P. The
effective moment arc length is denoted by r, a represents the hori-

zontal component of the distance between center and end of the

coupon, and R represents the radius of curvature of the bent coupon,

which is assumed to be constant.
From Fig. 2a, we can see that the position of the pinned joint and

the position from where the specimen leaves the rigid arm are offset.

This distance is given byΔx. As mentioned above, this offset param-

eter helps ensure that the specimen always bends in the desired

direction as the test proceeds. We assume that the specimen leaves

the rigid arm at a perfect 90° angle. As a result of this assumption, the

sumof the angles bywhich the two rigid arms rotate �ϕ� is equal to the
angle subtended by the arc at the center of the assumed circle. This

greatly simplifies the calculations, since curvature can now be

obtained using the radius of curvature �R�, freelength �ls�, and the

central angle �ϕ�.
To evaluate the central angle �ϕ�, we can make use of the fact that

the change in distance between the pin joints is equal to δ (see Fig. 2).
At the beginning of the test, the distance between the grips is equal to

dinitial � 2l cos θ� ls (1)

Once the test starts and each of the arms undergoes an angular

rotation of ϕ∕2 as a result of the vertical displacement δ, the vertical
distance between the shafts is given by

dtest � 2R sin�ϕ∕2� � 2l cos�θ� ϕ∕2� (2)

Upon applying dinitial � dtest � δ, we obtained an equation for ϕ,
as a function of the geometry of the test and the applied displace-

ment δ:

δ

ls
� 1 −

2

ϕ
sin

ϕ

2
� 2

l

ls
cos θ − cos θ� ϕ

2
(3)

The above equation is transcendental and requires a numerical

solution. As mentioned above, the curvature can now be obtained

using the definition of curvature, κ � 1∕R, and the formula for

arclength of a circle, ls � Rϕ, yielding

κ � ϕ

ls
(4)

Fig. 2 Geometry of the column bending test: a) initial test geometry, b) angles, and c) distances in the test setup when a displacement δ is applied.
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Assuming that the neutral axis always remains at the center of the
specimen during bending, the strain can be calculated using the
curvature κ and thickness t and is given by

ε � κt

2
� ϕt

2ls
(5)

To compute the maximum moment Mmax, we first calculate the
effective moment arm length r. As seen from Fig. 2c, the distance r
is given by

r � a� l sin θ� ϕ

2
(6)

From Fig. 2c, we can also see that

a � R − R cos
ϕ

2
(7)

Substituting the expression of a in the expression for r and
dividing it by s, we obtain

r

s
� 1

ϕ
1 − cos

ϕ

2
� l

s
sin θ� ϕ

2
(8)

Themaximummoment occurs at the center of the specimen and is
given by

Mmax � Pr (9)

The minimummoment occurs at the coupon edges near the grips.
It is given by

Mmin � Pl sin θ� ϕ

2
(10)

Next, we consider two ways in which the reality could deviate
from this simplified geometric analysis. First, the effect of material
nonlinearities is discussed. After that, the effect of nonconstant
bending moment along the arc-length of the specimen is discussed
by utilizing the theory of elastica.

III. Stiffness Nonlinearity in High-Strain Composites

The nano-structure of carbon fiber consists of sheets of carbon
atoms, which are not completely alignedwith the fiber direction. As a
result, carbon fibers are inherently nonlinear [42]: they stiffen under
tension, as the sheets rotate to align with the fiber direction, and
soften under compression. The same behavior can be observed in
carbon fiber laminates loaded under tension [43] or bending [30,36].
Several constitutive relationships have been proposed to determine
andmodel this nonlinear behavior [43–47].Herewe use the empirical
approach proposed by Van Dreumel and Kamp [48], which found
that adding a quadratic dependence to the stress–strain relationship
resulted in a very good approximation formost carbon fibers. Assum-
ing that the nonlinearity is the same in tension and compression, the
modulus of the fibers, Ef, is given by

Ef�ε� � Ef;0�1� γε� (11)

whereEf;0 is the initial stiffness of the fiber, ε is the applied strain, and
γ is a parameter that determines the level of nonlinearity. In our case,
for tensile stiffnening, we have that γ > 0.
In addition to the nonlinearity inherent to the response of the

fibers, there are other possible reasons for a laminate to exhibit
nonlinear behavior. These include possible plastic and viscous
behavior of the matrix, geometric nonlinearity due to initial fiber
waviness, as well as rearrangement of the microstructure due to
complex the fiber architecture, particularly in woven laminates.
However, previous research has shown that, assuming the same

quadratic behavior in Eq. (11) for the mechanical response of the

laminate, and not just the fibers, can be used to accurately character-

ize the bending behavior of thin laminates [17,19]. We follow the

same approach and assume that the stress–strain relationship in the

direction of bending is given by

σc � E0ε�
E0γε

2

2
(12)

where σc is the stress in the laminate, considered as an average (i.e.,

homogenized) value, E0 is the initial longitudinal modulus of the

laminate, and γ is again a parameter describing the nonlinearity of

the mechanical response. This constitutive relationship is shown in

Fig. 3 for different values of γ.
As expected, the resulting stress–strain relationship shows stiffen-

ing during tension and softening during compression, which in the

case of bending results in a shift of the neutral axis to the tensile side.

Furthermore, according to this constitutive model, there also exists a

critical compressive strain (εC;cr � −1∕γ) where the instantaneous

modulus becomes zero (markedwith a star symbol in Fig. 3). Beyond

this point, the modulus becomes negative, until eventually tension is

observed on the compression side (see Fig. 3). This is a limitation of

our simple empirical model, which is not able to capture the compli-

cated compressive behavior of carbon fibers, which after a softening

region exhibits a plateau of constant stress that can reach extremely

large deformations [47,49]. To avoid presenting nonphysical results,

the analysis presented in Secs. V and VII will indicate the point in

which εC;cr is reached at any point in the laminate.

Utilizing the above assumptions, we can develop a simplified

expression for the moment–curvature relationship, the bending stiff-

ness in the fiber direction (D11), and the expression that quantifies the

shift in neutral axis. To do so, we first utilize the equilibrium of

internal forces through the thickness to determine the position of the

neutral axis. This is given by

N �
t∕2

−t∕2
σcdy � 0 (13)

Here, the laminate stress σc is a function of the strain ε given by the
constitutive relationship, Eq. (12). We need to determine the strain as

a function of the thickness coordinate in order to establish the

equilibrium of the forces through the thickness. Using Euler–Ber-

noulli theory, we obtain the relation

ε � κ�y − yna� (14)

where κ is the curvature and yna is the position of the neutral axis.

Solving Eqs. (12–14) gives the expression for the neutral axis. This is

given by

yna �
6 − 36 − 3t2γ2κ2

6γκ
(15)

Fig. 3 Normalized stress vs strain for four different values of the
parameter γ describing fiber nonlinearity.
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The bending moment per unit width can be evaluated using the
following relation:

M �
t∕2

−t∕2
σc�y − yna� dy � 0 (16)

Utilizing the expression for stress from Eq. (12), strain from
Eq. (14), and neutral axis from Eq. (15), we obtain the following
expression for the bending moment:

M � 1

72
E0κt

3 36 − 3t2γ2κ2 (17)

The bending stiffness D11 is given by

D11 �
∂M
∂κ

� E0t
3�6 − t2γ2κ2�

12 36 − 3t2γ2κ2
(18)

Having established the moment versus curvature relationship in
Eq. (17), we observe the trend resulting from three different possible
normalizations. Figure 4 plots the expression for normalized
moment as a function of nominal strain (κt∕2), curvature (κ), and
nominal strain scaled by 2γ (γκt), respectively. Despite the non-
standard normalization of the bendingmoment, the results in Fig. 4a
are useful because the softening is governed simply by γ,with no
thickness dependence, and so it illustrates the nominal strain at
which the behavior deviates from linear for different levels of
material softening. We can also see that as γ increases, the critical
strain (εC;cr) is obtained at a lower nominal strain value. Figure 4b

shows the bending moment normalized by the initial bending stiff-

ness, D110 � E0t
3∕12, as a function of curvature. In this case, the

softening is controlled by the parameters γt, and so it can be used as
a direct design guideline for picking a given combination of lam-
inate thickness and type of fibers (i.e., a given value of γ). The
normalization in Fig. 4c incorporates the softening into the normal-
ized strain (γκt), allowing for all previous results to collapse into a
single master curve.

IV. Analysis Using Elastica Theory

The closed-form solution based on the geometric analysis pre-
sented in Sec. II.B assumes a small variation of bending moment
across the arclength of the specimen, so that the curvature can be
assumed to be constant. If this is not true, the behavior of the coupon
needs to be modeled using Euler’s theory of elastica, which accounts
for large-scale deflection of slender structural elements. We use the
same geometry presented in Fig. 2, and for our analysis, Δx is
considered to be zero, since it has been shown that it plays a relatively
minor role in the moment–curvature response [35]. This not only
simplifies the analysis but leaves only two independent length param-
eters, the length of the arms, l, and the free length of the sample, ls, so
that the solution is self-similar.
Assuming that the specimen is inextensible, we utilize the con-

stitutive equation

M�s� � 1

72
E0t

3κ�s� 36 − 3t2γ2κ�s�2

� 1

72
E0t

3β 0�s� 36 − 3t2γ2β 0�s�2 (19)

where M�s� represents the bending moment per unit width at every
point along the arclength s, E0 represents the initial Young’s modu-
lus, κ�s� is the curvature along the arclength, and β represents the
angle between the vector tangent to the coupon and the vertical axis at
every point along the curve. In the case of no-softening, γ � 0, we
recover the familiar expression

M�s� � D110κ�s� �
E0t

3

12
β 0�s� � E0t

3

12

dβ

ds
(20)

The differential equations for the position coordinates x�s� and
y�s� can be given in terms of the angle β�s� as

dx

ds
� sin β (21)

dy

ds
� cos β (22)

For the geometry of the problem, equilibrium of bending moment
yields

1

72
E0t

3
dβ

ds
36 − 3t2γ2

dβ

ds

2

� M � P x� l sin
ϕ

2
(23)

The above equation can be integrated numerically in MATLAB
using the “ode45” command. The boundary conditions are x�0� � 0
and y�0� � 0 at the initial point and θ�ls∕2� � 0 and x�ls∕2� � xm at
the symmetry point, where xm represents the imposed x-coordinates
of the midpoint of the specimen, used to describe the evolution of the
test. Since not of all of the conditions can be expressed as initial
boundary conditions, a shooting algorithm has been implemented,
which calculates the applied loading, as well as the angle rotated by
the rigid arms (ϕ∕2) necessary to satisfy the conditions θmidpoint � 0

and xmidpoint � xm. The numerical integration provides the shape of

the specimen for each applied vertical displacement δ, as well as the
distribution of curvature across the arclength, κ�s�.

V. Comparison of Moment–Curvature Predictions

We now compare the prediction for the bending moment, curva-
ture, and bending stiffness provided by the closed-form equation
obtained through the simplified geometric analysis, and the numeri-
cal integration of the elastica, for varying degrees of softening of the
bent specimen. A preliminary analysis, not using the theory of
elastica, was presented previously in [24]. For this study, the thick-
ness of the specimen is normalized by ls, and a range of t∕ls �
f0.005; 0.03g has been used, based on typical values reported in

a) b) c)

Fig. 4 Plots for normalized moment as a function of a) nominal strain (kt∕2), b) curvature (κ), and c) nominal strain scaled by 2γ (γκt).
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literature as used to test HSC to failure under bending. The values for
γ were chosen to vary between 20 and 30, representative of values
reported in the literature [21]. Thus, three values for γt∕ls were
obtained using the above parameters (0.1, 0.5, and 0.9) and are used
to represent different ranges of softening. Moreover, for all the cases,
it is assumed that Δx � 0, so the only geometric parameters that
appear in the problem are l and ls. We define the total arclength of the
setup from joint to joint, including the grips, as

L � 2l� ls (24)

Several normalizations have been incorporated here in order to
make our results general. First, the curvature has been normalized by
ls. The normalized variable κls represents the approximate angle
subtended by the bent specimen (in fact, it would be equal to be
subtended angle if the curvaturewas constant). Themoment has been
normalized in two ways—first, by the initial bending stiffness D110.
This helps obtain a linearized version of the curvature, and the value
would be exactly equal to the curvature if the material was linearly
elastic. The second normalization for the moment is given by
Mls∕D110. In the case of a linearly elastic material, it is equal to
the normalization of the curvature, κls. This particular normalization
helps obtain a nondimensionalmoment so that our results incorporate
all possible cases of the initial bending stiffness and the coupon free
length. The nonlinear bending stiffness D11 has been normalized by
the linear bending stiffness (which is also the initial bending stiff-
ness),D110. The test displacement has been normalized by L, so that
the quantity δ∕L represents the relative test displacement with respect
to the total arclength L such that the test displacement value does not
depend on the coupon free length or the size of the rigid arms. The

theoretical range for δ∕L is [0,1], with δ∕L � 0 corresponding to the
two pins overlapping. The arclength along the specimen, s, has been
normalized by ls, so that it varies in the [0, 1] interval.
The geometry of the test can then be defined by a single parameter,

the normalized free length ξ, defined as

ξ � 2l

ls
(25)

which describes the ratio of the combined length of the rigid arms, 2l,
with respect to the specimen freelength, ls. Larger values of ξ
correspond to rigid arms that are relatively longer compared to the
specimen freelength.
The maximum curvature predicted by elastica as well as the geo-

metric analysis for different values of ξ is presented in Fig. 5, as a
function of the normalized vertical displacement during the test, δ∕L.
The results clearly show that the prediction provided by the closed-
form solution based on geometric considerations is more accurate for
large values of ξ, which correspond to cases in which the length of the
arms is large compared to the coupons. It can alsobe seen that softening
plays a greater role for small values of ξ, where the deviations between
the various elastica solutions and the closed-form solution are much
higher, compared to cases involving larger values of ξ, where the
differences between various cases of softening and the nonsoftening
elastica solution, as well as the closed-form solution, are negligible.
The curvatures presented in Fig. 5 represent the maximum curva-

ture along the arclength of the sample, which due to symmetry takes
place in the middle point, where the bending moment is maximum.
Figure 6 presents the nondimensional curvature as a function of the
arclength of the sample, for the same three values of ξ and applied

a) b) c)

Fig. 5 Curvature as a function of the applied vertical displacement, δ∕L, predicted by the geometric solution and the integration of the elastica, for
a) ξ � 0.5, b) ξ � 2, and c) ξ � 8.

a) b) c)

Fig. 6 Variation of the curvature along the arclength for a) ξ � 0.5, δ∕L � 0.15; b) ξ � 2, δ∕L � 0.25; and c) ξ � 8, δ∕L � 0.35.
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vertical displacements of δ∕L � 0.15, δ∕L � 0.25, and δ∕L � 0.35
for ξ � 0.5, ξ � 2, and ξ � 8, respectively. Thesevalues of δ∕Lwere

chosen for being very close to the test displacement value resulting in

zero stiffness in the compression side of the laminate, for the case

with the highest softening considered, γt∕ls � 0.9.
Figures 7a–7c show the maximum moment predicted by the

elastica, and the closed-form solution, as a function of the maximum

curvature on the specimen (obtained at the center of the specimen).

The points on the line y � x represent a linear relation between the

normalizedmomentM∕D110 and the curvature κ. For different values
of softening, the elastica curves deviate from this straight line due to

material nonlinearity. In the case of the closed-form solution, devia-

tions are a combination of material softening and errors due to the

assumption of the constant curvature.We can see that the errors in the

closed-form solution (i.e., the relative difference between the closed-

form solution and its corresponding elastica solution) reduce as ξ is
increased. As mentioned earlier, the differences are induced mainly

due to error in curvature prediction (and not the moment). This has

further implications in the calculation of the bending stiffness of the

specimen. From the plots, we can observe the difference in the slopes

of the two solutions, which is indicative of the error in the bending

stiffness predicted by the closed-form solution. For higher values of

ξ, the slopes converge, indicating a relatively smaller error in bending

stiffness.

Figures 7d–7f show the normalized bending stiffness at the center

of the specimen, predicted by the elastica and the closed-form

solution, as a function of the normalized vertical displacement during

the test, δ∕L. The calculation of the moment requires the force as an

external input. We assume that the force obtained from the elastica

predictions is the true value, and we use that for both the elastica and

closed-form solutions calculations of the moment, for a given value

of the softening. This is the same process that would be followed

when processing experiments,where both the force and displacement

can be directly obtained from the testing machine. The bending

stiffness given by ∂M∕∂κ is then evaluated numerically for each

moment–curvature combination.

Figures 7g–7i show themaximummoment predicted by the elastica

and the closed-form solution for the same values of ξ as before, as a
function of the normalized vertical displacement during the test, δ∕L.
The results show a relatively small difference between the two pre-

dictions, indicating that the errors in bending stiffness (∂M∕∂κ) occur
mainly due to curvature and not the moment. Also, softening plays a

a) b) c)

d) e) f)

g) h) i)

Fig. 7 Normalized moment, bending stiffness, and nondimensional moment as a function of curvature and applied vertical displacement. respectively,
predicted by the geometric solution and the integration of the elastica for ξ � 0.5 (left), ξ � 2 (center), and ξ � 8 (right).
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more important role for smaller values of ξ, where its effects are
relatively amplified compared to the larger values, similar to curvature.
Figure 8a shows the error in the prediction of maximum curvature

value, defined as �κmax;el − κmax;g�∕κmax;el, where κmax;el and κmax;g

are the maximum curvature predicted by the elastica and the closed-
formgeometric solution, respectively. Figure 8b shows a similar error
plot for the bending stiffness at the center of the specimen. They have
been evaluated in the same way as described previously in the
explanation pertaining to Fig. 7. For a given test displacement, the
error in bending stiffness at the center of the specimen is given by
�D11;el −D11;g�∕D11;el, where D11;el and D11;g are the bending stiff-

ness predicted by the elastica and the closed-formgeometric solution,
respectively, both calculated at the center of the specimen.
For all values of ξ, the errors slightly increase with the applied

displacement, with the effect being more pronounced for smaller
values of ξ. For curvature, the error is bounded by 5% for ξ ≥ 8 and by
12% for ξ ≥ 2, but it can be significant for low values of ξ. For
bending stiffness, the error is bounded by 10% for ξ ≥ 8 and by 25%
for ξ ≥ 2. All the curvatures and the bending stiffnesses have been
computed until the value where the fiber modulus becomes zero, and
this value is quite low for cases involving high softening, i.e., for high
values of γt. This imposes a restriction on the δ∕L value up to which
the elastica solution for softening can be computed, thereby explain-
ing the lower δ∕L value for the same ξ in Fig. 8. Another observation
that results from the plot is that, for smaller values of ξ, softening
plays a greater role in the errors involved compared to larger values of
ξ. Figure 8 can therefore be used to determine if a given combination
of grips and coupon length can be accurately modeled using the
simplified geometric analysis, or if it is necessary to consider curva-
ture and the bending stiffness variations.

VI. Correction Factor to Improve the Accuracy of
Moment–Curvature Predictions

The previous section characterized the errors that result from the
constant curvature assumption used for the closed-form solution that
models the CBT. This section provides a correction factor to account
for errors incurredwhen assuming constant curvature. The correction
factors will be defined as the ratio between the geometrically exact
results obtained through the elastica and those assuming a circle:

ζκ ξ;
δ

L
� κmax;el

κmax;g

(26)

ζD ξ;
δ

L
� �∂M∕∂κ�el

�∂M∕∂κ�g
(27)

where ζκ and ζD represent the correction factors for curvature and
the bending stiffness, respectively, and κmax;el and κmax;g are the

maximum curvatures predicted by the elastica and the closed-form
geometric solution, respectively. Additionally, �∂M∕∂κ�el and
�∂M∕∂κ�g represent the bending stiffness predicted by the elastica

and the geometric closed-form solution, respectively. The correc-
tion factors ζκ and ζD are dependent on the parameters ξ and δ∕L.
This is due to the fact that these correction factors are derived from
the errors in curvature and bending stiffness, which are themselves
functions of ξ and δ∕L.
To obtain a closed-form approximation to the correction factors

that does not require solving the nonlinear system of equations
governing the Elastica, a fitting was done individually for each of
these functions. CBT testing reported in literature typically involves ξ
values between 1 and 4. To obtain an accurate fit, 500 equally spaced
ξ values were chosen between 0.5 and 8, and correction factors were
obtained for each of these using Eqs. (26) and (27) for the case
involving no softening.
A parabolic fit was used to capture the variation of the correction

factor as a function of δ
L for each value of ξ. The coefficients of these

parabolas were recorded, so as to identify the function that accurately
captures the values of these coefficients as a function of ξ. An
analytical function for each of the correction factors was then
obtained. The MATLAB curve fitting tool was used for this purpose.
The correction factor function for curvature can be given by

ζκ ξ;
δ

L
� a�ξ� δ

L

2

� b�ξ� δ

L
� c�ξ� (28)

with parameters

a�ξ� � 0.04ξ−0.45 − 0.01 (29)

b�ξ� � 0.03ξ−0.6 − 0.005 (30)

c�ξ� � 0.13ξ−0.6 � 1 (31)

The correction factor function for bending stiffness can be given by

ζD ξ;
δ

L
� a�ξ� δ

L

2

� b�ξ� δ

L
� c�ξ� (32)

with parameters

a�ξ� � 0.15ξ − 0.125

ξ2 − 0.35ξ� 0.3
(33)

b�ξ� � 0.1ξ−0.8 − 0.01 (34)

c�ξ� � 0.13ξ−0.6 � 1 (35)

a) b)

Fig. 8 Error in the prediction of maximum curvature and bending stiffness by the closed-form geometric solution, as a function of the applied vertical
displacement, δ∕L, and ξ � 2l∕ls.
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The error between the closed-form expressions in Eqs. (28) and
(32) and the exact values for the correction factor is shown in Fig. 9.
The errors between the analytical equations and the computed values
are within 2%, thereby indicating the validity of the closed-form
approximation to the correction factors for the desired range of ξ
values between 0.5 and 8. For comparison, the errors are around 20%
without the correction factor for ξ � 0.5, as observed from Fig. 8.

VII. Effect of Softening on theLocal Stresses andStrains
in the Fibers

In the previous section, themain emphasiswas to explore the effect
of variation of the ratio of rigid arms to the specimen freelength, ξ,
and the role it plays in the errors involving computation of curvatures
for a thin laminate subjected to flexure, aswell as to address the errors
associatedwith it. Here,we look at curvature as away to obtain strain.
When there is softening, there is a shift in the neutral axis, such that
the maximum strain is no longer κt∕2. This could have a significant
effect even if the change of curvature is not so pronounced. In this
section, we calculate the maximum strains as well as the stresses in
the compressive and tensile side, for softening.
It should be noted that all the plots have been plotted against

nominal strain (κt∕2). Doing so eliminates any dependency on thick-
ness, so that all the results hold true regardless of the thickness of the
specimen, and the only parameter that varies is γ. Since γ is an
empirical parameter whose precise value requires complex testing
methodologies, it is essential to understand its role in the softening of
a thin laminate subjected to flexure. Previous studies [21] have shown
that γ typically varies between 20 and 30 for unidirectional laminates
with intermediate modulus carbon fibers.
Figure 10a shows the shift in neutral axis that occurs as a result of

varying γ. For a nominal strain of 2%, which is representative of the
value atwhich thin specimens fail, the shift in neutral axis is seen to be
6.7, 8.5, and 10.32%,with respect to half the thickness, for γ values of
20, 25, and 30, respectively. This shift in neutral axis is responsible
for the variations in stresses and strains on the tension and compres-
sion side.
Figure 10b shows the variation in real strain as a function of

nominal strain, κt∕2. The displacement of the neutral surface toward

the tension side due to the material nonlinearity results in increased
strains in the compression side and reduced strains in the tensile side
of the specimen. For a nominal strain of 2%, the compression side
experiences strains of 2.135, 2.17, and 2.206% for γ values of 20, 25,
and 30, respectively, whereas the tension side experiences strains of
1.865, 1.83, and 1.794%, respectively, for the same values of γ.
Figure 10c shows the variation of maximum stresses as a function

of nominal strain, κt∕2, where both stresses are plotted as absolute
values. Here, the shift in the neutral axis is compounded with the

material nonlinearity, γε2∕2, and so the difference between tensile
and compressive stresses is more pronounced than the difference in
strains. As an example, an error of 2.85% is observed in the normal-
ized stress, for γ values of 20 and 30, at a nominal strain of 2% for
tension. In contrast, an error of 13.75% is observed for the normalized
stress in compression, for the same γ values of 20 and 30, at a nominal
strain of 2%. Thus, we can infer that variation of γ plays a relatively
minor role for evaluation of tensile stresses, whereas it plays a
significant role for the evaluation of compressive stresses.
It is important to remember that both σc and ε are calculated as stress

and strain in the curvature direction, and they are defined in an average
sense, without differentiating between fiber and matrix or taking into
account stress concentrations in the fibers due to failure of nearby
fibers [10,50] or in the matrix due to complex geometry [51,52].

VIII. Conclusions

We have analyzed the CBT, which is used for evaluating the
bending behavior of thin composite flexures under large curvature,
focusing on the effect of two possible sources of nonlinearity: varia-
tions in the bendingmoment along the sample, and nonlinearmaterial
behavior (softening in bending) of the laminate. Both phenomena are
described through two nondimensional parameters, so that results are
applicable to a wide range of conditions. The geometry of the test is
described through ξ, which measures the ratio between the total size
of the rigid arms and the specimen freelength, while the material
nonlinearity is described by γ, the coefficient for a quadratic term in
the stress–strain relationship of the laminate. Both parameters are
used tomodel the test through a nonlinear elastica formulation,which
is then compared with a simple geometric analysis that assumes
constant curvature along the specimen arclength.
Our results provide guidelines to choose test dimensions that

minimize the effects of geometric nonlinearities. We also calculate
the expected error in the simplified formulation, as compared to the
elastica solution, as a function of the value of ξ and γ. Overall, the
simplified geometric analysis of the CBT provides fairly accurate
results for large grip sizes, particularly when the combined length of
both grips is at least twice the coupon freelength, where the error is
around 11%. Two correction factors are provided, so that the results
of tests with large nonlinearity can be analyzed without the need of
solving the elastica formulation. They have been obtained through
fitting to the elastica results and are valid for awide range of values of
ξ and γ, which have been chosen based on the literature.
The present analysis also shows that the effect of the material

nonlinearity at the microscale (e.g., changes in maximum stress)
can be significantly larger than its effect on macroscopic properties
(e.g., moment–curvature relationship). This suggests that a precise

Fig. 9 Comparing the error in correction factor values for both curva-
ture and bending stiffness w.r.t. the elastica solution.

Fig. 10 Comparison of a) shift in neutral axis, b) real strains, and c) real stresses, as a function of varying γ.
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description of the mechanical response of the fibers might be
necessary when predicting the failure of high-strain composites
through modeling at the micromechanic scale, even in cases when
it is not necessary to predict the bending stiffness of the laminate.
This includes testing of individual fibers to account for their behav-
ior beyond the initial stiffness, but also characterizing matrix prop-
erties and fiber architecture as additional sources of nonlinearity in
the mechanical response of the laminate.
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