
Leo Radzihovsky, Spring 2016

PHYS 5260: Quantum Mechanics - II

Homework Set 2

Issued January 25, 2016
Due February 8, 2016

Reading Assignment: Shankar, Ch.17

1. Anharmonic oscillator

Consider an anharmonic oscillator with a small quartic perturbing nonlinearity, H1 =
λx4.

(a) Use time-independent perturbation theory to show that the lowest (nontrivial)
order expression for the n-th excited state is given by En = ~ω(n + 1/2) +
3~2λ

4m2ω2 [1 + 2n+ 2n2].

(b) Argue that no matter how small λ is, the perturbation expansion will break down
for some large enough n. What is the physical reason?

Hint: You might find it useful to use the 2nd quantized notation of creation and
annihilation operators (rather than working in the coordinate representation).

2. Consider a spin-1/2 particle with a gyromagnetic ratio γ in a magnetic field B =
B⊥r̂⊥ + B0ẑ, characterized by a purely Zeeman Hamiltonian H = −µ · B (ignore
orbital degrees of freedom).

(a) By using a convenient choice of quantization axis of S, find the spectrum by
solving this problem exactly. Also find the corresponding exact spinor eigenstates
in the basis with ẑ as the quantization axis.

Hint: You can do the latter by either directly diagonalizingH or by an appropriate
unitary rotation from the eigenstates expressed in basis with quantization axis
along B to the basis with quantization axis along ẑ.

(b) Treating B⊥ as a perturbation calculate the first- and second-order shifts in the
spectrum and first-order shift in the corresponding eigenstates.

(c) Compare your results in (b) to the Taylor expansion (to appropriate order) of the
exact results for the energy and the eigenstates found in (a).

Hint: To simplify the algebra, it is convenient (but not necessary) to pick B⊥

along x̂, namely choose a vanishing azimuthal angle.



3. Prove the Thomas-Reiche-Kuhn sum rule

∑

n′

(En′ −En)|〈n′|x|n〉|2 =
~

2

2m
, (1)

where |n〉 and |n′〉 are exact eigenstates of H = p2/2m+ V (x).

Hint: Eliminate the En′ − En factor in favor of the Hamiltonian operator H . This
should allow you to reverse our usual insertion of a complete set of states, thereby
considerably simplifying the expression.

Test the sum rule on the nth state of a harmonic oscillator.

4. Band structure

A fairly good model of electrons in a crystalline solid is of independent particles confined
to a macroscopic box, moving in the presence of a periodic potential of positively
charged ions. The corresponding single-electron Hamiltonian is H = p2/2m+Vions(x).
For simple (e.g., alkali) metals, to zeroth order one can even simply ignore the periodic
potential, approximating electron waves by plane-waves (with L → ∞, and periodic
boundary conditions with normalization 1/

√
L), i.e., by familiar plane waves with a

quadratic spectrum E0

k = ~
2k2/2m.

(a) Use a non-degenerate perturbation theory to compute the correction to this
quadratic spectrum to second-order and the eigenfunctions to first-order in the
periodic potential Vions(x). Write down your answer for a generic periodic poten-
tial Vion(x), expressing it in terms of the Fourier coefficients VQn

of the periodic
potential; Qn = nQ1 is the nth Fourier wavevector, with n running over integers
and Q1 is the elementary smallest wavevector characterizing Vion(x).

You obviously need not compute the infinite sum (particularly that you do not
know the Fourier coefficients), but please simplify the expression as much as
possible.

(b) Specialize this result to a single harmonic periodic potential, i.e., with just two
values of Qn = ±Q1, e.g., just taking the periodic potential to be Vions(x) =
V1 cos(Q1x).

(c) By examining your expression above, note that for some values of k, the above
nondegenerate perturbation theory breaks down. Find these special values k∗

±
for

which this breakdown happens.

Using the property of the nonperturbed, free particle spectrum, E0

k , and the
nature of the perturbing Hamiltonian, explain mathematically and physically why
the breakdown takes place. Drawing pictures might be useful for the former, and
thinking about interference of (electron) waves scattered by the periodic potential
for the latter.

(d) Sketch the resulting Ek, indicating the location of special k points.



(e) Apply a lowest order (1st order in Vions) degenerate perturbation theory to com-
pute the perturbed energies and eigenstates right at these special k points, where
the non-degenerate perturbation theory breaks down.

Hint: There are only two such k points.

(f) Now that you know exactly what happens right at these special k points and
far away from them (where nondegenerate perturbation theory is valid), make
an educated guess of what happens to the spectrum around the special k points,
sketching it for all values of k.

Hint: The spectrum must be continuous away from these special values of k. For
your “cultural” information the form of the resulting spectrum is sufficient to
then explain why some materials are metals and some are insulations and the
difference between their physical properties.

5. Consider a spin-1 particle characterized by a Hamiltonian H = AS2

z +B(S2

x−S2

y), with
B ≪ A.

(a) Compute the spectrum and the eigenstates to 0th order in B. Sketch the spec-
trum.

(b) Treating B term as a perturbation, compute its effects on all the eigenstates
(spinors) and the spectrum to 1st order in B.

Sketch the spectrum, showing how it changes from A = B = 0 to A 6= 0, B = 0,
to A 6= 0, B 6= 0, labeling all the states, and the corresponding energies.

6. Anisotropic 2D harmonic oscillator

(a) Consider a two-dimensional isotropic harmonic oscillator with H0 = p2
x

2m
+

p2
y

2m
+

1

2
mω2(x2 + y2).

i. Find its spectrum Enx,ny
and eigenfunctions ψnx,ny

(x, y).

ii. Sketch the spectrum, labeling lowest few states (not just, possibly degenerate,
energy levels) by unique quantum numbers.

(b) Consider a rotational symmetry-breaking perturbation H1 = λxy to the above
Hamiltonian, such that the total H = H0 +H1.

i. Use perturbation theory to compute the shifts in the energy of the ground
state and the first excited states to 2nd and 1st orders in λ, respectively. Also
compute the eigenstates for the ground state and the lowest excited states to
1st and 0th orders in λ, respectively.
Hint: You might find it useful to use the 2nd quantized notation of creation
and annihilation operators (rather than working in the coordinate represen-
tation).

ii. Sketch the spectra for these lowest states for λ 6= 0, comparing them with the
isotropic case of λ = 0, and clearly labeling them by corresponding quantum
numbers.



iii. Find the exact spectrum Enx,ny
(λ) and eigenfunctions ψnx,ny

(x, y). Verify the
agreement of the Taylor expansion of Enx,ny

(λ) to the appropriate order in λ
with the above perturbative results.


