Announcements:

- lecture 11 is posted
- homework 7 solutions are posted
- homework 8 is due Fri, March 11
- reading for this week is:
 Ch 6, 7 in TZD

Wave nature of matter:

electron diffraction Davisson-Germer experiment

deBroglie matter waves

 $\Delta x \Delta p > \frac{\hbar}{2}$ $\Delta E \Delta t > \frac{\hbar}{2}$

• wavefunction and its interpretation

 $P(r,t) = |\psi(r,t)|^2$ - probability density

• Heisenberg uncertainty principle

<u>Today</u>

Schrödinger's equation

- the equation
- free particle
- general properties

Erwin Schrödinger (1887 – 1961)

Imaginary number i

Q: What is the correct expression for i⁶⁵

A: (c) because every multiple of 4 is gets you back to 1

 $(i^{1} = i, i^{2} = -1, i^{3} = -i, i^{4} = 1)$

Complex numbers

Q: What is the correct expression for:

 $(6 + 7 i) \times (2 - 3 i)$?

- c) -8 4 I
- d) +12 + 14 I
- e) none of the above

A: (b) any complex number can be expressed as (a + i b): $(6 + 7 i) \times (2 - 3 i) = 12 - 18 i + 14 i - 21 i^{2}$

Complex numbers

- Q: One can draw complex numbers in the complex plane. Which is the correct for the complex conjugate of
 - 3 2 i ?

A: (a) complex conjugate is 3 + 2i, obtained by changing $i \rightarrow -i$

Complex numbers summary

Plane waves in different forms

- solutions to EM wave equation: $\frac{\partial^2 \vec{E}}{\partial t^2} = c^2 \frac{\partial^2 \vec{E}}{\partial x^2}$
- real forms: $E_1(x,t) = A\cos(kx \omega t) + B\cos(kx + \omega t)$ $E_2(x,t) = A\sin(kx - \omega t) + B\sin(kx + \omega t)$
- complex form: $E_3(x,t) = Ce^{i(kx-\omega t)} + De^{i(-kx-\omega t)}$ (just reshuffling of coefficients)
- plug into wave equation to get: $\omega^2 = c^2 k^2 \iff E^2 = c^2 p^2$
- relativistic dispersion for a massless particle (photon)

Schrödinger's equation

ingredients:

 $_{\circ}$ free particle: E = p²/2m, with $\psi = e^{i(p\cdot r - Et)/\hbar}$ instead of E = pc (for photon)

 \circ linear in $\Psi(r,t)$ (superposition): if ψ_1 and ψ_2 are solutions so is $\psi = c_1 \psi_1 + c_2 \psi_2$

• Schrodinger's wave equation: $i\hbar \frac{\partial \psi}{\partial t} = H\psi$

Erwin Schrödinger (1887 - 1961)

• 1d:

• where $H = \frac{p^2}{2m} + V(r)$ is the Hamiltonian of the system

 $= -\frac{\hbar^2}{2m}\nabla^2 + V(r)$

compare to EM wave eqn:

 $\frac{\partial^2 \vec{E}}{\partial t^2} = c^2 \frac{\partial^2 \vec{E}}{\partial z^2}$

 $= -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V$ $(x)\psi$

kinetic energy + ^{potential} energy

Compare Schrodinger's and EM waves

•
$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi$$
 vs $\frac{\partial^2 \vec{E}}{\partial t^2} = c^2 \frac{\partial^2 \vec{E}}{\partial x^2}$

- both are linear equations \rightarrow superposition/interference
- $E = p^2/2m$ (dispersion/spreads) vs E = pc $i\hbar \frac{\partial}{\partial t} \rightarrow E$, $-i\hbar \frac{\partial}{\partial x} \rightarrow p_x \rightarrow that's$ why one time and two space derivatives
- $|\psi|^2 = probability density for finding a particle at x,t$
- $|E|^2$ = light intensity = probability density of finding a photon at x,t
- Ψ complex single function vs E is a real 3 component vector

Operators and observables in QM

• Operators O: \circ position: x • momentum: $p = -i\hbar \nabla = -i\hbar \frac{\partial}{\partial x}$ • energy: $H = \frac{p^2}{2m} + V(r)$ $= -\frac{\hbar^2}{2m}\nabla^2 + V(r) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(r)$ • Observables of O in state ψ : $\langle \psi | O | \psi \rangle = \int d^3 r \psi^* O \psi$ ſ ſ 2

$$\circ \quad \langle \psi | x | \psi \rangle = \int dx \psi^* x \psi = \int dx x |\psi|$$

$$\circ \ \langle \psi | p | \psi \rangle = -i \int dx \psi^* \frac{d}{dx} \psi$$

Single vs ensemble measurements

- $\Psi(x,t)$ is deterministically determined by V(x) from S. Eqn ... BUT ...
- <u>measurement of 0 in a single experiment:</u>

(interaction with a classical system) can essentially be anything (any of the eigenvalues of O) allowed by nonzero $\Psi(x)$

e.g., for $\psi(x)$ *, measurement of x can find any value, but most likely value is* x_1 *and* $\langle x \rangle \approx (x_1 + x_2)/2$

• measurement of O in an ensemble of (many) experiments:

 X_1

X₂

obtain average value of O using $P(x) = |\psi(x)|^2$

$$\langle \psi | O | \psi \rangle = \int d^3 r \psi^* O \psi$$

Wave-function interpretation

X

Q: What is not true about a particle in a potential well (black) described by the wave-function (red) displayed here $\psi(x) = |V(x)|$

- a) more likely to be found in the left than in the right well
- b) in a measurement can in principle be found in any position
- c) probability of being found at some x is 1
- d) cannot be found on top of the hill since it does not have enough energy and energy is conserved
- e) if it is found to be in the right well, a little later it can be found in the left well
- A: (d) Although the probability (after many many measurements) is low, in any one measurement it can indeed be found anywhere $\Psi \neq 0$

Value of observables

Q: For a particle described by a wavefunction below what is the average value of the potential energy $V(x) = V_0 x^2$ found after many measurements

A: (d) The probability density is constant, $P = |\psi|^2 = \frac{1}{2}$, which when used to average (integrate from -1 < x < 1) $V_0 x^2$ gives $V_0/3$.

Value of observables

Q: For a particle described by a wavefunction below what is the highest value of potential energy $V(x) = V_0 x^{2}$, that can be found in any one measurement of V(x) via a measurement of x ?

A: (d) In any one measurement, the value of V(x) observable can be anything allowed by the wavefunction. Thus, the maximum one that can be found is for x=1, giving $V(1) = V_0$.

Two classes of problems

- <u>Time evolution</u> of $\psi(r,t)$ with initial $\psi(r,0)$ noneigenstate:
 - evolves according to time dependent Schrodinger's Eqn $i\hbar \frac{\partial \psi}{\partial t} = H\psi$
 - e.g., particle oscillating in a well:

cf randomly plucking a string:

<u>Eigenstates:</u>

cf plucking a single note:

• take $\psi(r,t) = e^{-iEt/\hbar}\psi_E(r)$

lacksim lacksim

• from $\psi_{\text{E}}(r),$ we then obtain $\psi(r,t)$ (if needed)

Two types of eigenstate problems

Discrete eigenstates (standing waves)

• standing waves on a violin string:

only certain values of $k=\pi n/L$ and ω are allowed due to boundary conditions (location of nodes of clamped ends); same for other musical instruments

• standing EM waves in a microwave oven:

• standing Schrodinger matter waves in a potential well:

Standing vs free waves

electron bound in atom:

boundary conditions ⇒ standing waves only certain energies allowed quantized energies

free electron:

no boundary conditions ⇒ traveling waves any energy allowed continuum of energies **Schrodinger's cat: macroscopic QM**

• particle in double-well potential: in superposition of left and right wells, $\psi = \psi_L + \psi_R$

• "cat" in a superposition of a dead and alive states: have been created in a number of systems

