Lecture 12 Schrodinger’s Equation

Announcements:

* lecture 11 is posted
* homework 7 solutions are posted
* homework 8 is due Fri, March 11

* reading for this weeK is:
- Ch 6, 7 inTZD



Last Time

recall lecture | 1:

Wave nature of matter:
« electron diffraction Davisson-Germer experiment

 deBroglie matter waves ,n__ﬁ.f\f\.\

« wavefunction and its interpretation
P(r,t) = [P(r,1)|2 - probability density

- Heisenberg uncertainty principle  Axap >0 AEAt> f



Today

Schradingers equation

« tThe equation

. free particle

» general properties ——

Erwin Schrodinger
(1887 — 1961)



clicker question Imaginary number i

Q: What is the correct expression for i

a) +1

e) +651

A: (c) because every multiple of 4 is gets you back to 1

(il=i i2=-1,P3=-ii# =1)



clicker question Complex numbers

Q: What is the correct expression for:

(6 +7i)x(2-3i)7?

a) +8 + 4 i

c) -8 -41

d) +12 + 14 1

e) none of the above

A: (b) any complex number can be expressed as (a + i b):
(6 +7i)x(2-3i)=12-18i+141i- 2112



clicker question Complex numbers

Q: One can draw complex numbers in the complex plane.
Which is the correct for the complex conjugate of

3-2i7?

3.1..

D\ | ComlaPlu A

A: (a) complex conjugate is 3 + 2 i, obtained by changing i 2> -i



Complex numbers summary

(IA:I.ITI} |‘ X [*l 1n¢

z (complex number)
=3+ 2i

20+
i-/
A 1 1 I
1 2 3

2=+ 1y =

where

r = Re{z} the real part

Yy = Iln{z} the imaginary part

|Z| — \/1-2 + y2 the magnitude of z

(b — atan2(y, x)

|z|(cos ¢ + isin @) = |z|e’“5
z=1x—1y = |z|(cos ¢ — isin @) = |z|]e*?




Plane waves in different forms

O?FE  ,0°E
. solutions to EM wave equation: 52 — ¢ 532

- real forms: Fy(x,1) Acos(kx — wt) + B cos(kx + wt)
Es(x,t) = Asin(kx — wt) 4+ Bsin(kz + wt)

. complex form: Fs(x,t) = Cetlhz—wt) | peil—kz—wt)
(just reshuffling of coefficients)

e plug intfo wave equation to get: w? = ¢? k? &= [2 = ¢? p?

. relativistic dispersion for a massless particle (photon)



Schrodinger’s equation

« ingredients:

- free particle: E = p2/2m, with ) = ¢
instead of E = pc (for photon)

i(p-r—FEt)/h

Erwin Schrédinger

o linear in Y(r,t) (superposition): (1887 —1961)
if Y; and Y, are solutions so is Y = c;Y; + Y,
o . 0y
. Schrodingers wave equation: ©/1—— 5 = = H
2
. where H — g—m LV (r) is the Hamiltonian of the system
h _,
kinetic + potential compare fo EM wave iqn:
. 1d- energy energy 82 62 E
— C —
o2 Ox?
LOU W 9% v

@t 2m 0x? - Vi)Y



Compare Schrodinger’s and EM waves

2 2 — —
T A s Vi) vs OE _ 20

ot 2m Ox2 a2 ¢ a2

. both are linear equations =2 superposition/interference
. E = p2/2m (dispersion/spreads) vs E=pc

0 L 0
Zh@ — F, —Zﬁﬁ— — Dz > thats why one time and two space

t derivatives
. IQ[? = probability density for finding a particle at x,t
. [EF? = light intensity = probability density of finding a photon at x,t

« Y complex single function vs E is a real 3 component vector



Operators and observables in QM

« Operators O:
o position: x

. .0
- momentum: p = —thV = —ih
, Ox
- energy: [ — Y v
2m
W, W2 92
— —%V +V(T)__2m8x2 ‘I—V(T‘)

.« Observables of O in state Y (Y|O|Y) = /dSTWO%b

o (Plalp) = / Az o) — / dzzli

d
o (iph) = —i [ do* 2



Single vs ensemble measurements

. Y(X,t) is deterministically determined by V(x) from S. Eqn
. BUT ..

« measurement of O in a single experiment:
(interaction with a classical system)

can essentially be anything (any of the eigenvalues of O) allowed
by nonzero W(x)

e.g., for Y(x), measurement of x can find any value, but most

likely value is x; and <x> = (x;+X5)/2 J‘/’\(X)/\

X X2

> X

 measurement of O in an ensemble of (many) experiments:

obtain average value of O using P(x) = IY(x)/[?
wiolw) = [ drvou



clicker question Wave-function interpretation

Q: What is not true about a particle in a potential well (black) described
by the wave-function (red) displayed here
y (red) display W(x) V(x)

% X
a) more likely to be found in the left than in the right well

b) in a measurement can in principle be found in any position

c) probability of being found at some x is 1

d) cannot be found on top of the hill since it does

e) if it is found to be in the right well, a little later it can

be found in the left well

A: (d) Although the probability (after many many measurements) is low, in
any one measurement it can indeed be found anywhere Y # O



clicker question Value of observables

Q: For a particle described by a wavefunction below what is the average
value of the potential energy V(x) = V, x? found after many measurements

Wix)

1/v2

X

—— S
.y 1

(@) Vo, ()0, (c)10V,, (&) Vo/2,  (F) none

A: (d) The probability density is constant P = |y|%= ’% , which when used
fo average (integrate from -1 < x < 1) V,, x? gives V,/3.



clicker question Value of observables

Q: For a particle described by a wavefunction below what is the highest
value of potential energy V(x) =V, x?- that can be found in any one
measurement of V(x) via a measurement of x ?

(/JA(x)

1/v2

B I I

.y 1

(b) 0, (c)10V,, (d)Vo/3, (e)Vo/2, (F) none

A: (d) In any one measurement the value of V(x) observable can be
anything allowed by the wavefunction. Thus, the maximum one that can
be found is for x=1, giving V(1) =V, .



Two classes of problems

« Time evolution of Y(r,t) with initial Y(r,0) noneigenstate:

- evolves according to time dependent Schrodingers Egn

By

o e.qg., particle oscillating in a well:

cf randomly plucking a string: /\‘ \/

 Eigenstates:

cf plucking a single note: /\.

take (1, ) = e P g (r)
« == fime-independent Schrodinger Eqgn: EYvgp = HYp

. from Wc(r), we then obtain Y(r,t) (if needed)



Two types of eigenstate problems

Possible states given by: h? 82?7D E

specified by V(x) I (932‘2 | V(x)wE — EwE

« Extended states: vix) that allows particle > x = oo

o free particle, (V=0): V(x)—mr)

o particle moving near a barrier:
Vix)

o particle moving above a well: P(r)
o Bound states: confined Vi(x)
o potential well: ~|"\/]*
W(r)

Some V(x) allow both
extended and bound states:




Discrete eigenstates (standing waves)

. standing waves on a violin string:
only certain values of k=rrin/L and w are allowed due fo boundary
conditions (location of nodes of clamped ends); same for other
musical insfruments

. standing EM waves in a microwave oven:

o 1 4r

o 0 3

L A

« standing Schrodinger matter waves in a potential well:




electron bound in atom:

only certain energies allowed quantized energies

Energy —»

Standing vs free waves

c

boundary conditions

= sfanding waves

lonization occurs y,

n=5
n=4
n=3

T+

Paschen
series

n=2

series

free electron:

no boundary conditions
= fraveling waves

any energy allowed
continuum of energies



Schrodinger’s cat: macroscopic QM

o particle in double-well potential: in superposition of left
and right wells, Y=y, + Yy,

. "cat” in a superposition of a dead and alive states:
have been created in a number of systems




