Atomic structure of matter

Announcements:

- review session Fri 4-5:30pm
- lecture 8 is posted
- homework 3 solutions are posted
- homework 4 due Fri, Feb 11
- reading for this week is:
 Ch 3 in TZD

<u>Last Time</u>

recall lecture 7:

Relativity:

time dilation

$$\Rightarrow t = \frac{t'}{\sqrt{1 - v^2/c^2}} > t'$$

- length contration
- Lorentz transformation

$$\longrightarrow \frac{\ell = \ell' \sqrt{1 - v^2/c^2} < \ell'}{x' = \gamma(x - vt)}$$
nation
$$\frac{t'}{t'} = \gamma(t - \frac{v}{c^2}x)$$

relativistic mechanics:

• energy
$$\longrightarrow E = \frac{m_0 c^2}{\sqrt{1 - v^2/c^2}}$$

• momentum $\longrightarrow p = \frac{m_0 v}{\sqrt{1 - v^2/c^2}}$ $m_o = m(u=0)$

Course overview

Modern Physics: (relativistic quantum f

- established during 1900–1920
- exotic and counter-intuitive
- now common place in all modern GPS, electronics (cell phones, iPo throughout science, e.g., physics,

 quantum physics (Bohr, Heiseberg, Einstein, Schrodinger, ...)
 what are the laws of nature for very small things, like electron, proton, photon,...a tiny electrical circuits in you i-Pod?

Today

Fundamentals of matter:

- structure of matter: atoms
- structure of atoms: electrons, protons, neutrons
- experimental evidence

<u>Atoms</u>

- basic unit of matter "invisible" in Greek, postulated more than 2000 years ago
 early evidence for existence:
 - chemical reactions (Dalton 1800): $C + O \rightarrow CO, 2H + O \rightarrow H_2O$
 - Brownian motion (Brown 1827, Einstein 1905, Perrin 1909)
 - *kinetic theory of gases:* $PV = N k_B T$ (Avagadro number $N_A=6x10^{23}=1$ mole) $dp/dt = 2mv_x/(2L/v_x) = F = A P$, $3/2 k_B T = \frac{1}{2}mv^2$

o first "seen" via STM 1950's, now regularly manipulated and made useful

Molecules, macroscopic materials

• form molecules: H_2O , O_2 , H_2 , $C_6H_{12}O_6$, DNA, ... • solids, liquids, gases:

Ρ

...and much, much more

 magnets, superconductors, superfluids, liquid crystals, rubber, colloids, glasses, conductors, insulators,...

Crystals

• very large number (230) of periodic atomic structures

graphene

Particle	Mass	Size	Charge	discovered	
Electron (e)	9.1 x 10 ⁻³¹ kg = 0.5 MeV	point-like no known substructure	-е = 1.6 х 10 ⁻¹⁹ С	J.J.Thomson* (CRT) 1897 R. Millikan* (oil drop) 1909	
Proton (p)	1.673 x 10 ⁻²⁷ kg = 935 MeV ≈ 1GeV	10 ⁻¹⁵ m = Fermi	+e	Rutherford 1919	
Neutron (n)	1.675 x 10 ⁻²⁷ kg = 939 MeV ≈ 1GeV	10 ⁻¹⁵ m = Fermi	0	Chadwick 1932	

charge is quantized in units of e, exactly

J. J. Thomson experiment

- discovery of the electron (1897)
- measured e/m ratio:
 - $\circ mv^2/r = evB \rightarrow e/m = v/rB$
 - v=E/B from balance of electric and magnetic forces (eE = evB)

1856-1940

Robert Millikan experiment

• measured electron's charge \rightarrow charge quantization (1909)

$$\circ q_{drop}E - m_{drop}g = F_{drag}$$
$$= (6\pi r\eta)v$$

 $\circ \rightarrow q_{drop} = m_{drop} g/E$ (find m_{drop} by measuring v in air)

• all charges in the universe are multiples (simple fractions) of e

Atomic and mass numbers

atomic number Z = number of p's (= e's in neutral atom)
mass number A = #p + #n: m_A≈ Am_H (#n -> isotopes)

Atom	#e	#р	#n	Z	A	mass (u)
Hydrogen ('H)	I	I	0	I	I	I
Helium (⁴He)	2	2	2	2	4	4
Helium (³ He)	2	2	I	2	3	3
Carbon (¹² C)	6	6	6	6	12	12

• atomic mass unit: $u = 1/12 \text{ of } a \text{ mass of } {}^{12}C \text{ atom}$ $1 u = 1 \text{ gram/N}_A \approx m_{proton} (N_A = 6x10^{23} = 1 \text{ mole})$ • isotopes: same #p but different #n, e.g. $\frac{1}{1}H$ $\frac{2}{1}H$ $\frac{3}{1}H$

Periodic table of elements

- atomic number Z = number of p's (= e's in neutral atom)
- mass number A = $\#p + \#n: m_A \approx Am_H (\#n \rightarrow isotopes)$
- Mendeleev's table of elements (1869): <u>http://www.ptable.com/</u>

clicker question

Number of atoms inside you

Q: Estimate (within a factor of 100) the number of atoms inside your body

- a) 100 trillion (10¹⁴)
 b) No idea, as there is too many to count
 c) 1000 x Avagadro number → approximately 10²⁶
 d) None of the above
- A: 12 gram chunk of carbon has N_A of C atoms in it, so you (≈ 50kg ≈ 50,000g) have 5000 times more