Physics 1230: Light and Color

- Prof. Leo Radzihovsky (lecturer)
- Gamow Tower F623 303–492–5436
- radzihov@colorado.edu
- office hours: T, Th 3-4pm

Susanna Todaro (TA/grader) Help Room, Duane Physics <u>susanna.todaro@colorado.edu</u> M, W 3-4pm

http://www.colorado.edu/physics/phys1230/

clicker question

Flat mirror reflection

Which shows the correct location, orientation, and size for the image?

Spherical mirrors

Announcements:

- lectures 5 is posted on the class website
- midterm 1 solutions are posted
- homework 5 is posted on D2L
 due Thurs, March 6 in homework box in Help Room
 solutions will be posted on D2L
- reading for this week is:
 - $_{\circ}$ Ch. 3 in SL

Concave solar concentrator

Recall

Last time

<u>recall lecture 5:</u> Image formation: mirrors & mirages

- real and virtual images
- image due to reflection: plane mirror

- image due to refraction: mirage, rainbow, sun columns
- optical illusions

<u>Today</u>

Spherical mirrors

- convex and concave mirrors
 - \circ ray tracing
 - \circ image formation
 - applications

Concave solar concentrator

Mirrors everywhere

Concave solar concentrator

Convex traffic safety mirror

Flat mirrors review

- Recall ray tracing of a flat mirror: *normal* and law of *reflection*
- There are "special" rays that are sufficient for locating the image
- The <u>virtual</u> image is in the same place regardless of the location of the viewer
- The image is called <u>virtual</u> because no real rays reach the image, and it cannot be seen by putting a screen at its position

Virtual vs real image

Virtual image:

The light appears to come from the virtual image, but in fact does not come from there.

Real image:

The light comes from the image (rather than appearing to come from there). You may need a screen to see it.

Spherical mirrors

Convex traffic safety mirror

Normal to a surface

What is the *normal* to a *curved* surface and how is it used to find reflected rays?

- draw a tangent line to the curve (tangent plane to the surface)
- the normal is perpendicular to that line at the point
- with normal in place reflected and refracted rays are given as for the flat interface

Convex vs concave spherical mirrors

Metal bowls have both a convex and a concave mirror (though not very good ones)

Convex traffic safety mirror

Concave solar concentrator

Convex:

- make something *smaller*
- looks *far* away
- lets you see a wide angle
- bike mirrors, car mirrors

Concave:

- make something bigger
- looks closer
- you can't see much around you
- makeup mirrors

Convex vs concave spherical mirrors

- Spherical mirrors are drawn in two dimensions, so you have to imagine the 3D mirror that this line represents
- Both convex and concave mirrors obey the same law of reflection, but they make different kinds of images

Ray tracing for spherical mirrors

- radius of curvature (R): radius of the sphere the mirror is "cut from"
- center of curvature (C): center of the sphere
- focal point (F): point where rays from a distance appear to converge; half way between the surface and the center of curvature
- paraxial rays: rays coming onto the mirror close to the axis
- $f = OF = \frac{1}{2} OC$: focal length

Sources of paraxial rays

 The rays coming from a distance source can be considered approximately paraxial (parallel, close to axis) when they reach a mirror

• The rays from a nearby source, such as a candle or bare light bulb, cannot be considered paraxial

Convex mirrors

Image formation in spherical mirrors

recall plane mirror:

- reflected rays extrapolated behind mirror
- intersection found to locate image

Special rays: convex mirror

 $f = OF = \frac{1}{2} OC > 0$

<u>Rule 1:</u>

All rays incident parallel to the axis are reflected so that they appear to be coming from the focal point, F.

Special rays: convex mirror

 $f = OF = \frac{1}{2} OC > 0$

<u>Rule 2:</u>

All rays that (when extended) pass through C are reflected back on themselves

Special rays: convex mirror

 $f = OF = \frac{1}{2} OC > 0$

<u>Rule 3:</u>

All rays that (when extended) pass through F are reflected back parallel to the axis

Three rules of ray tracing: convex mirror

<u>Ray 1 rule:</u>

All rays incident *parallel* to the axis (line connecting C and F) are reflected so that they appear to be coming from the focal point, F.

<u>Rule 2:</u>

All rays aimed at the <u>center</u> <u>point</u>, C are reflected back on themselves

<u>Rule 3:</u>

All rays aimed at the <u>focal point</u>, F are reflected back parallel to the axis (line connecting C and F)

strictly valid only for paraxial rays; others cause blurring

<u>(use a ruler)</u>

What does the observer see in the mirror?

All other rays intersect at image:

Image properties:

- virtual
- right-side up
- closer to the mirror than object
- smaller than the object

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

What does the observer see in the mirror?

<u>object Q (star) at "infinity"</u> imaged at F:

<u>Image properties:</u>

- virtual
- right-side up
- closer to the mirror than object
- smaller than the object

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

Compare to flat mirror

- the same distance from to the mirror as the object
- the same size as the object

clicker question

- Q: The image formed in a convex mirror is smaller than the object. This would make a convex mirror useful for which application?
- a) Makeup or shaving mirror
- b) Wide-angle mirror, on a car or at a blind intersection
- c) A mirror in a clothing store dressing room

Because the image is smaller than the object, convex mirrors reflect from wider angles than flat mirrors

Convex mirror art

anamorphic art

M.C. Escher's "Hand with reflecting globe"

Archimedes' idea (see pg.104-105 SL text)

power from Sun: 1 kilowatt/meter²

Concave mirrors

Special rays: concave mirror

<u>Rule 1:</u>

All rays incident parallel to the axis are reflected so that they pass through the focal point, F.

Special rays: concave mirror

<u>*Rule 2:*</u> All rays that pass through C are reflected back on themselves.

Special rays: concave mirror

Rule 3:

All rays that pass through F are reflected back parallel to the axis.

clicker question Concave mirror reflection

Q: Using ray tracing rules, which is the correct reflected ray for the incoming ray parallel to the axis?

<u>case 1:</u> object between focus F and mirror

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

<u>case 2:</u> object between focus F and center of curvature C

<u>Image properties:</u>

- real
- upside down
- further from the mirror than the object
- larger than the object -> magnification

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

<u>case 3:</u> object past the center of curvature C

Image properties:

- real
- upside down
- closer to the mirror than the object
- smaller than the object

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

<u>case 3:</u> object past the center of curvature C

Image properties:

- real
- upside down
- closer to the mirror than the object
- smaller than the object

- Draw in the rays and extrapolate back past the mirror
- Intersection of rays locates the image

Summary of spherical mirrors

Spherical aberration

• The nonparaxial (outer) rays have different focal point than the paraxial (inner) rays, leading to a blurry image

 <u>Parabolic</u> mirror has no spherical aberration

Application of concave mirrors

focus sun's rays at a focal point F to convert into heat

Application of concave mirrors

light beam emitter (flashlight) -> produces collimated light

- What if we put a light source at the focal point of a concave mirror?
- All the rays emitted go through the focal point, and are therefore reflected parallel to the axis of the mirror -> *flashlight*

<u>Application of concave mirrors</u> *radio* telescope antennas

Parallel rays from a distance source are reflected from a large dish and focused onto a receiver at the focal point

clicker question

Concave mirror reflection

- Q: The inside of a spoon bowl is a concave surface with a radius of curvature of a couple of inches. If you hold it about a foot from your face, what will your face look like?
- a) Normal size, upside down
- b) Normal size, right side up
- c) Smaller, upside down
- d) Smaller, right side up

