Physics 1230: Light and Color

- Prof. Leo Radzihovsky (lecturer)
- Gamow Tower F623 303–492–5436
- radzihov@colorado.edu
- office hours: T, Th 3-4pm

Susanna Todaro (TA/grader) Help Room, Duane Physics <u>susanna.todaro@colorado.edu</u> M, W 3-4pm

http://www.colorado.edu/physics/phys1230/

Light vs EM radiation

Q: What is the relation of light and EM radiation

a) Light and EM radiation are the same thing
b) Light is EM radiation in a frequency range that human eye can see, from 400nm - 700nm

c) They have nothing to do with each other

Interference

Q: When two identical waves with intensity, I, added in-phase, what is the intensity?

a) the same, I b) double, 2I c) 4 times as big, 4I

A: The amplitude is twice as big, but the intensity (which is a square of the amplitude, $I_{tot} = E_{tot}^2 = (2E)^2 = 4E^2 = 4I$

lecture 4

Light propagation: ray optics

Announcements:

- lecture 3 is posted on the class website
- homework 3 is posted on D2L
 due Tuesday, Feb 5 in homework box in Help Room
 solutions will be posted on D2L
- reading for this week is:
 - $_{\circ}$ Ch. 2 in SL
- remember to bring your clicker to every class
 register it (once)
 - $_{\circ}$ set it to frequency BA

<u>Last Time</u>

recall lecture 3: Fundamentals of EM waves

- EM waves in vacuum
- properties of light: wavelength, frequency, speed,...
- electromagnetic spectrum
- blackbody radiation
- color
- quantum picture of light: photons

Recall

Properties of EM waves

snap shot (fixed t)

- frequency (color): f = v (Hz), $2\pi f = \omega$
- wavelength (color): λ (m), $2\pi/\lambda = k$
- speed c (3x10⁸ m/s): c = f λ
- amplitude (brightness): I=E²
- polarization
- phase (position): φ

Light Passing Through Crossed Polarizers

Recall

Solar radiation spectrum

Recall Bohr's picture of atomic emission/absorption

• electron's discrete transition between a set of allowed "orbits":

• wavelength of emitted/absorbed photon:

$$\frac{1}{\lambda} = R\left(\frac{1}{n'^2} - \frac{1}{n^2}\right), \quad n > n', \text{ both integers}$$

Rydberg constant R = 0.001 Å⁻¹

Balmer series of Hydrogen (n' \rightarrow n = 2):

Q: Before today's class I have

a) not prepared at all, didn't read the text nor notes
b) not prepared at all, but last time I read Ch.1
c) read Ch.2, and last time read Ch.1, but not the notes
d) read Ch.2 and the notes and last time read Ch.1
e) not prepared at all, but wanted to and will start now

A: read Ch.2, the notes and last time read Ch.1

<u>Today</u> Light propagation: ray optics

- from wave to ray picture
- shadows and apertures
- scattering
- reflection
- refraction
- diffraction
- absorption

Ray picture of light: geometric optics

ray: OK if d >> λ

wave:

Ray picture of light: geometric optics

OK only if d >> λ

Light travels in straight line through homogeneous medium

Luminous sources of light

A shadow from each light source

shadows from two light sources:

FIGURE 2.2

Two light sources throw two shadows. Their overlap, reached by no ray from either source, is the umbra. The penumbra is illuminated by rays, such as ray *a*, from only one of the sources.

shadows from extended light source "solar eclipse":

Solar eclipse (Moon shadowing the Sun):

Lunar eclipse (Earth shadowing the Moon):

umbra only few 100 km

Phases of the moon vs lunar eclipse

Phases repeat every month (29 days) due to looking at the sun-illuminated half of the moon from different angles

Lunar eclipse (earth shadowing the moon) is rare because moon's orbit is tilted by 5° relative to earth's, so most of the time moon, earth and sun are not lined up

OK only if d >> λ

Aperture

similar triangles: $a/d_a = s/d_s \rightarrow s = d_s(a/d_a)$

Shadows

Shadows

Notice that a shadow on the wall is the same situation, flipped

How do you see this?

300,000 km/sec = 186,000 mi/sec = 1 foot/nanosec (sound is 343 m/s = 1,126 feet/second) How do you see this?

Light needs to bounce off something to get to your eye e.g., fog, dust, an object, etc.

clicker question Specular and diffuse reflections

Q: What is the difference between a reflection by a white piece of paper and a mirror?

a) A white piece of paper does not reflect light
 b) A mirror is smooth and so reflects specularly, at a single angle. A paper is rough and so reflects at many angles in all directions

c) They reflect the same way

A: specular reflection by mirror and diffuse reflection by piece of paper

smooth surface -> specular reflection: $\theta_{incident} = \theta_{reflection}$

Smooth Water Surface

Wavy Water Surface

Scattering of light to see it

Light rays are invisible unless they enter directly into our eye or are scattered by smoke, fog or some object into your eye! <u>That's how we see non-luminous objects</u>

Bob sees Alex's nose because a reflected light ray enters Bob's eye!

Non-luminous sources of light

seeing non-luminous objects:

Each point "emits" a diverging bundle of rays

Non-luminous sources of light

seeing non-luminous objects:

Each point "emits" a diverging bundle of rays

Why sky is blue, sunset red?

Blue scatters most strongly **Red** scatters least strongly

• blue sky:

Light from the sky is strongest scattered -> blue

S $\approx 1/\lambda^4$ Bercent Scattering of Direct Sunlight Rayleigh scattering gives the atmosphere its blue color 450 500 600 esn 660 wavelength

• red sunset:

At sunset (sun on horizon) direct light is non-scattered -> red

Luminous source through aperture

Image of aperture

similar triangles: $a/d_a = s/d_s \rightarrow s = d_s(a/d_a)$

Non-luminous source through pinhole: camera

only "one" ray from each point makes it through pinhole -> <u>image of the object</u>

... but much dimmer

APPLET http://micro.magnet.fsu.edu/primer/java/speedoflight/index.html

Refraction

<u>Snell's law:</u>

 $n_1 \sin\theta_1 = n_2 \sin\theta_2$

for $n_1 < n_2$ slow down from 1 to 2

 $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$
<u>Medium Index n</u>

- Vacuum 1 (exactly)
- Air 1.0003
- Water 1.33
- Glass 1.5
- Diamond 2.4

<u>Snell's law:</u>

 $n_1 \sin\theta_1 = n_2 \sin\theta_2$

for n₁ < n₂ slow down from 1 to 2

$\sin \theta_1$	_	v_1		λ_1
$\sin \theta_2$	=	$\overline{v_2}$	=	$\overline{\lambda_2}$

Refraction

Refraction and reflection

Refraction and reflection

Total internal reflection

optical fiber – a "wire" for lights

Refraction through atmosphere

optical illusion

Thin film refraction & interference

oil film on water:

Prism: refraction and dispersion

Dispersion: different wavelenths (colors) refract at different angles: $1 < n_{red} < n_{blue} < n_{UV}$ (for glass)

A prism spreads out the overlapping wavelengths of white light into different spatial locations where they can be seen as colors

Prism and rainbow

Dispersion: different wavelenths (colors) refract at different angles: $1 < n_{red} < n_{blue} < n_{UV}$ (for glass)

A prism spreads out the overlapping wavelengths of white light into different spatial locations where they can be seen as colors

Wavelength in nanometers (billionths of a meter)

Prism and rainbow

Dispersion: different wavelenths (colors) refract at different angles: $1 < n_{red} < n_{blue} < n_{UV}$ (for glass)

A prism spreads out the overlapping wavelengths of white light into different spatial locations where they can be seen as colors

rainbow

water drop

Interference

- Q: In vacuum, how does the speed of light depend on frequency and wavelength?
 - a) Faster for higher frequencies and shorter wavelengthsb) Independent of the frequency and wavelengthc) Slower for higher frequencies and shorter wavelengths
- A: In vacuum speed of light is independent of color (frequency/wavelength). In a medium v = c/n depends on color 🔀 rainbow, prism

Rainbow

Q: How do we see a rainbow?

Pink Floyd is slightly wrong.

The colors are spread inside the prism as well as outside.

The colors start to spread inside the raindrop.

clicker question **Dispersion: prism and rainbow**

Q: Where does blue come out of prism, compared to red?

A: In glass blue slows down more than red

 $1 < n_{red} < n_{blue} < n_{UV}$ (for glass)

Refracted dispersive images

Refracted dispersive images

water drop

rainbow

Refracted dispersive images

Rainbow

Q: How do we see a rainbow?

Double-rainbow

Q: How do we see two rainbows?

Diamond's brilliance

Diamonds

- Diamond has a very high index of refraction leading to a small critical angle for total internal reflection
- Diamonds are cut such that most light entering will hit a back facet at more than the critical angle, reflecting many times before returning out the front
- This long path through the diamond leads to a lot of dispersion, spreading the colors out

Colors by absorption and reflection

Object's color is determined by the frequencies of illuminating light that it reflects back into your eyes. Colors that its molecules absorb are the colors you do not see. Black = all frequencies are absorbed, none reflected White = none of the frequencies are absorbed, all reflected

Absorption of light

• sun light absorption by atmosphere:

absorption by medium -> heat

Wavelength (nm)

Absorption of light

sun light absorption and earth emission

- Sunlight power is constant at 1000 W/m² (UV and x-ray output varies)
- Earth's temperature is a balance between sunlight in and infrared radiation out
- Carbon dioxide blocks infrared going out and has a warming effect

Absorption of light

• Absorption and Fraunhofer lines:

Balmer series of Hydrogen (n' \rightarrow n = 2):

clicker question

Double-rainbow

Q: How do you get double-rainbow?

a) Magic

b) Double-reflection within droplets, before light comes out toward you

c) Inteference from multiple droplets d) No idea

A: Light reflects twice inside the water droplet before coming out toward your eyes

clicker question

Double-rainbow

Q: How do you get double-rainbow?

A: Light reflects twice inside the water droplet before coming out toward your eyes

Diffraction

Breakdown of ray optics:

• d = 5λ

Diffraction

Breakdown of ray optics: single slit, with $d \approx \lambda$

slits

 $d \gg \lambda \qquad \qquad d \approx \lambda$ $Wide \ slit$

Reflection in more detail

- light travels in straight line in a homogeneous medium
- reflection takes place when medium changes abruptly to one with different speed
- large change in speed -> strong reflection no speed change -> no reflection
 - . string analogy: tied to a wall vs tied to a heavy rope
 - . full reflection from vanity mirror
 - . partial reflection from a glass or half-silvered mirror
 - . colored reflection from gold, aluminum, silver mirrors

Reflection: RADAR

- RADAR = RAdio Detection And Ranging: (microwaves 1cm 1m 300MHz - 30GHz)
 measures time to reflect EM waves
 - . infers distance (to object) = speed x time
 - . infers speed of moving object from change in wavelength of reflected light

Reflection: SONAR

• SONAR measures time to reflect sound waves

. infers distance (to object) = speed x time

. infers speed of moving object from change in wavelength of reflected light

Elizabeth Morales

clicker question

Reflection from metals

Q: Metals reflect all light colors with frequency

a) Smaller than plasma frequency

- b) Larger than plasma frequency
- c) All frequencies
- d) At the plasma frequency

A: Smaller than the plasma frequency, because at these smaller frequencies electrons can keep up with oscillating electric field of EM and cancel it out, thereby not letting it transmit, thereby "forcing" it to fully reflect

Light in a transparent medium

Why light slows down in a medium (glass, water, air, ...)

- EM wave makes electrons bound in atoms oscillate like in an antenna
- Oscillating atoms reemitted light, causing slower partial transmission

Reflection: mirror

- silver 99% reflection
- glass protects silver from scratching (only 4% reflection)

Multiple reflections

FIGURE 2.42

A single mirror can form several images of a candle. If both the candle and the viewer's eye are held close to the glass surface, the better glass reflectivity at grazing incidence makes the extra images brighter.

Why are metals (e.g. silver) good reflectors of light?

- in a metal electrons are free to move, not attached to to individual atoms -> good conductor of electricity
- in response to EM wave, electrons move to screen, cancel out EM electric field -> no transmission of light
- oscillating free electrons generate strong reflection, > 99%

transmitted

• works for $\omega < \omega_{\text{plasma}}$, otherwise too fast to follow EM

Why are metals (e.g. silver) good reflectors of light?

- Visible light frequency 10¹⁴ Hz
- Ionosphere plasma frequency 10⁸ Hz
- TV, FM
- AM radio

- **10⁸ Hz or 100MHz**
- 10⁶ Hz or 1000kHz

Waves reflect from mirrors or the ionosphere if their frequency is **less** than the plasma frequency.

Why are metals (e.g. silver) good reflectors of light?

incident

reflected

Metal	Plasma frequency	Color of metal	
Silver	above visible	white - since reflects all colors	
Gold	in the blue	yellow - since reflects red and green	
Copper	in the blue-green	reddish - since transmits blue & green	1
_		Cald Silver	

Reflection from ionosphere

Extends 40–200 miles above the earth's surface Composed of electrically charged gas particles Plasma frequency: 10⁸ Hz AM radio frequencies: 10⁶ Hz

