Physics 1230: Light and Color

- Prof. Leo Radzihovsky (lecturer)
- Gamow Tower F623 303–492–5436
- radzihov@colorado.edu
- office hours: T, Th 3-4pm

Susanna Todaro (TA/grader) Help Room, Duane Physics <u>susanna.todaro@colorado.edu</u> M, W 3-4pm

http://www.colorado.edu/physics/phys1230/

lecture 3

Fundamental properties of light

Announcements:

- lecture 2 is posted on the class website
- homework 2 is posted on D2L
 due Tuesday, Jan 28 in homework box in Help Room
 solutions will be posted on D2L
- reading for this week is:
 Ch. 2 in SL
- remember to bring your clicker to every class
 register it (once)
 - $_{\circ}$ set it to frequency BA

Fire up the iClickers

- swap clicker code to BA
- hold down on/off switch for 4 seconds
- flashing blue light: hit BA
- should see GREEN light and you're ready to go

clicker question Coulomb force between charges

Q: What's the direction of the force between the charges?

A: c) The force on +q due to -q is to the left. The force on -q due to +q is to the right.

Last Time

recall lecture 2:

What is light?

- charges -> electric and magnetic fields
- accelerating charges -> electromagnetic waves
- electromagnetic spectrum
- generating different types of EM radiation

Recall Electromagnetic radiation generators

• EM wave generated by oscillating electrical currents -> send signal (radio antenna, garage door opener, remote control, ...)

tv, radio antennas

Atacama Large Millimeter Array

Recall Electromagnetic radiation sensors

 EM wave exerts oscillating force on charges (electrons) in matter (radio antenna, your eyes, ...) -> ac current -> image (speaker sound, brain, tv, lcd,...)

Atacama Large Millimeter Array

tv, radio antennas

Today

Fundamentals of EM waves

- EM waves in vacuum
- properties of light: wavelength, frequency, speed,...
- electromagnetic spectrum
- blackbody radiation
- color
- quantum picture of light: photons

EM-waves in what?

- <u>Sound wave</u> propagates through air, with velocity (330 m/sec) relative to <u>air</u>
- <u>Water waves</u> propagates through water, with velocity relative to <u>water</u>
- <u>"The wave</u>" propagates through a crowd in a stadium, with velocity relative to the <u>crowd</u>
- <u>Electromagnetic wave</u> propagates through what??? What is "moving"/oscillating?

*Etker...*so it was (incorrectly) thought in 19th century before Einstein

Michelson & Morley (1887): there is no Ether!

Distance, speed, time

Q: It takes 4 hours going at 50 miles/hr to get to Aspen from Boulder. How far is Aspen?

- a) 10 miles away
- b) 150 miles away
- c) 200 miles away
- d) Not enough information

A: c) distance = speed x time, i.e., d = v td = 50 mi/hr x 4 hrs = 200 miles

Waves primer: basics

• periodic (spatially-temporally extended) disturbance

e.g., sound, water, stadium, EM waves (in gas, liquid, solid, people, vacuum)

frequency: f (Hz) <-> period in <u>time</u> T = 1/f (seconds)
wavelength: λ (meters) period is <u>space</u>
phase speed (velocity): v_ρ = f λ (meters/second)

Waves primer: basics

• periodic (spatially-temporally extended) disturbance

e.g., sound, water, stadium, EM waves (in gas, liquid, solid, people, vacuum)

- wavelength (color): λ (m), $2\pi/\lambda = k$ (wavevector)
- frequency (color): f = v (Hz), $2\pi f = \omega$ (angular frequency)
- speed c (3x10⁸ m/s): c = f $\lambda \iff \omega = c k$
- amplitude (brightness): Intensity $I = E^2$
- phase (position): φ

- wavelength (color): λ (m)
- frequency (color): f = v (Hz)
- speed c (3x10⁸ m/s): c = f λ
- amplitude (brightness): Intensity $I = E^2$
- phase (position): φ

- wavelength (color): λ (m)
- frequency (color): f = v (Hz)
- speed c (3x10⁸ m/s): c = f λ
- amplitude (brightness): I=E²
- phase (position): φ
- polarization

Light Passing Through Crossed Polarizers

Liquid-crystal display applications

Properties of EM waves

For *periodic* waves, we can identify a *speed*, v, by **Speed = distance/time Speed = Wavelength/Period Speed = Wavelength x frequency** $v = f \lambda$

$$c = f \lambda$$
 or $f = c/\lambda$ or $\lambda = c/f$

So knowing the **frequency**, we can calculate the **wavelength** Or knowing the **wavelength**, we can calculate the **frequency For light waves, the speed in air or vacuum is 3 x 10⁸ meters/sec** inside medium n: $c \rightarrow v=c/n$, $\lambda_n = \lambda/n$ (n > 1)

Interference

• key wave property: *interference*

 constructive destructive

Mathematics of interference (I)

- wave interference: $I_{12} = \mathcal{E}_{12}^2 = (\mathcal{E}_1 + \mathcal{E}_2)^2$ = $\mathcal{E}_1^2 + \mathcal{E}_2^2 + 2\mathcal{E}_1\mathcal{E}_2$ = $I_1 + I_2 + 2\mathcal{E}_1\mathcal{E}_2 \neq I_1 + I_2$
 - adding two phase-shifted waves:

constructive interference

destructive interference

Mathematics of interference (I)

- wave interference: $I_{12} = \mathcal{E}_{12}^2 = (\mathcal{E}_1 + \mathcal{E}_2)^2$ = $\mathcal{E}_1^2 + \mathcal{E}_2^2 + 2\mathcal{E}_1\mathcal{E}_2$ = $I_1 + I_2 + 2\mathcal{E}_1\mathcal{E}_2 \neq I_1 + I_2$
 - o adding two phase-shifted waves:

 $= \cos^2 kx + \cos^2 kx + 2\cos^2 kx$

constructive interference

destructive interference

 $= \cos^2 kx + \cos^2 kx - 2\cos^2 kx$

Mathematics of interference (II)

- wave interference: $I_{12} = \mathcal{E}_{12}^2 = (\mathcal{E}_1 + \mathcal{E}_2)^2$ = $\mathcal{E}_1^2 + \mathcal{E}_2^2 + 2\mathcal{E}_1\mathcal{E}_2$ = $I_1 + I_2 + 2\mathcal{E}_1\mathcal{E}_2 \neq I_1 + I_2$
 - $_{\circ}$ adding two different wavelengths, λ_{1} , λ_{2} waves:

beating phenomena (tuning piano, FM modulation,...)

Phet simulations

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html

Electromagnetic radiation and speed of light

Electromagnetic waves critical to life as we know it!

- Communications radio, TV, cell phones, portable phones
- Food prep microwaves
- Vision visible light
- AM radio 530 to 1600 kHz.
- FM is 88 to 108 MHz.
- TV is 54-206 MHz (each station gets 6 MHz band (Station 1, 54-60 MHz))
- Microwaves same thing but few x 10⁹ Hz (oscillaitons/s).

Blackbody radiation

• "black" body radiates: hot oven, poker, Sun, glowing coal, CMB,...

- $T_{CMB} = 3K$, Big Bang, 13.3 billion years ago, cooled from 3000K
- independent of material, just T: shorter λ higher T

• determines Earth's average temperature: 100 W/ft²

 $A = \pi r^2$

clicker question Blackbody radiation of the Sun

Q: The Sun is approximately a blackbody radiator as can be seen from its emitted spectrum below. Estimate Sun's T from its spectrum below

A: The peak is roughly at around 6×10^{-7} m, which using $\lambda T=3 \times 10^{-3}$ -> $T_{sun} \approx 5000$ Kelvin

Solar radiation spectrum 100 Watts/ft²

Temperature - energy

• Thermal energy = $k_B T$

- L. Boltzmann 1844–1906
- Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{ J/K} = 8.6 \times 10^{-5} \text{ eV/K}$
- 1 eV = 12000 Kelvin

What we see: eye is a band-pass filter

Images at different frequencies

Images at different frequencies

Millimeter Wave Scanning

Incandescent light bulbs

Incandescent light bulbs

Filament with *current* of electrons which hit into atoms causing light to be emitted

Incandescent light bulbs

- A continuous light source
- Almost 90% of its emission is invisible to the human eye, producing heat and wasting energy

Fluorescent light bulbs

Fluorescent bulbs have a lower current and power usage for the same light output in the visible range. How do they do this?

Fluorescent light bulbs

The atoms inside a fluorescent bulb have *ultraviolet* resonant frequencies

Fluorescent light bulbs

Because the phosphors emit at very specific resonant frequencies, the spectrum is not continuous

Fluorescent light bulbs: neon lights

Produced the same way, but with a different set of atoms in the tube to produce the different colors

Incandescent vs fluorescent light bulbs

Light emitting diodes (LEDs)

- A semiconductor system
- Charges are initially separated
- An applied current pushes them "up the hill", where they can recombine and emit light

<u>What is color?</u>

Color is our brain's interpretation of light of different wavelengths/frequencies entering our eyes

The speed of light in <u>empty</u> space is the same for all wavelengths

Atomic spectra

• observed emission/absorption spectra for Hydrogen:

• Balmer-Rydberg formula (n' -> n=2):

$$rac{1}{\lambda} = R\left(rac{1}{n'^2} - rac{1}{n^2}
ight), \quad n > n', ext{ both integers}$$

Rydberg constant R = 0.001 Å⁻¹

light emission due to de-excitation from n' -> n=2

Bohr-Rutherford's picture of atoms

planetary semi-classical model (1913) inspired by Rutherford's scattering

Niels Bohr 1885-1962

Bohr's picture of atomic emission/absorption (1)

• electron's discrete transition between a set of allowed "orbits":

• energies of emitted/absorbed photon:

$$rac{1}{\lambda} = R\left(rac{1}{n'^2} - rac{1}{n^2}
ight), \quad n > n', ext{ both integers}$$

Rydberg constant R = 0.001 Å⁻¹

Balmer series of Hydrogen (n' \rightarrow n = 2):

Bohr's picture of atomic emission/absorption (2)

• electron's discrete transition between a set of allowed "orbits":

Balmer series of Hydrogen (n' \rightarrow n=2 transitions):