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Preface

The reader is holding the third volume of a three-volume textbook on solid-
state physics. This book is the outgrowth of the courses I have taught for
many years at E6tvos University, Budapest, for undergraduate and graduate
students under the titles Solid-State Physics and Modern Solid-State Physics.

The main motivation for the publication of my lecture notes as a book
was that none of the truly numerous textbooks covered all those areas that
I felt should be included in a multi-semester course. Especially, if the course
strives to present solid-state physics in a unified structure and aims at dis-
cussing not only classic chapters of the subject matter but also (in more or
less detail) problems that are of great interest for today’s researcher as well.
Besides, the book presents a much larger material than what can be covered
in a two- or three-semester course. In the first part of the first volume the
analysis of crystal symmetries and structure goes into details that certainly
cannot be included in a usual course on solid-state physics. The same applies,
among others, to the discussion of the methods used in the determination of
band structure, the properties of Fermi liquids and non-Fermi liquids, and the
theory of unconventional superconductors in the present and third volumes.
These parts can be assigned as supplementary reading for interested students
or can be discussed in advanced courses.

The line of development and the order of the chapters are based on the
prerequisites for understanding each part. Therefore, a gradual shift can be
observed in the style of the book. While the intermediate steps of calculations
are presented in considerable detail and explanations are also more lengthy in
the first and second volumes, they are much sparser and more concise in the
third one, thus that volume relies more on the individual work of the students.
On account of the prerequisites, certain topics have to be revisited. This is why
magnetic properties are treated in three and superconductivity in two parts.
The magnetism of individual atoms is presented in an introductory chapter of
the first volume. The structure and dynamics of magnetically ordered systems
built up of localized moments are best discussed after lattice vibrations, along
the same lines. Magnetism is then revisited in the third volume, where the
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role of electron—electron interactions is discussed in more detail. Similarly, the
phenomenological description of superconductivity is presented in this volume
after the analysis of the transport properties of normal metals, in contrast to
them, while the microscopic theory is outlined later, in the third volume, when
the effects of interactions are discussed.

Separating the material into three similar-sized volumes is a necessity in
view of the size of the material — but it also reflects the internal logical struc-
ture of the subject matter. At those universities where the basic course in
solid-state physics runs for three semesters, working through one volume per
semester is a natural schedule. In this case the discussion of the electron
gas — which is traditionally part of the introduction — is left for the second
semester. This choice is particularly suited to curricula in which the course
on solid-state physics is held parallel with quantum mechanics or statistical
physics. If the lecturer feels more comfortable with the traditional approach,
the discussion of the Drude model presented in this volume can be moved to
the beginning of the whole course. Nevertheless, the discussion of the Sommer-
feld model should be postponed until students have familiarized themselves
with the fundamentals of statistical physics. For the same reason, the lecturer
may prefer to change the order of other chapters as well. This is, to a large
extent, up to the personal preferences of the lecturer.

In presenting the field of solid-state physics, special emphasis has been
laid on discussing the physical phenomena that can be observed in solids.
Nevertheless, I have tried to give — or at least outline — the theoretical inter-
pretation for each phenomenon, too. As is common practice for textbooks, I
have omitted precise references that would give the publication data of the
discussed results. I have made exceptions only for figures taken directly from
published articles. At the end of each chapter I have listed textbooks and
review articles only that present further details and references pertaining to
the subject matter of the chapter in question. The first chapter of the first
volume contains a longer list of textbooks and series on solid-state physics.

Bulky as it might be, this three-volume treatise presents only the funda-
mentals of solid-state physics. Today, when articles about condensed matter
physics fill tens of thousands of pages every year in Physical Review alone, it
would be obviously overambitious to aim at more. Therefore, building on the
foundations presented in this series, students will have to acquire a substan-
tial amount of extra knowledge before they can understand the subtleties of
the topics in the forefront of today’s research. Nevertheless, at the end of the
third volume students will also appreciate the number of open questions and
the necessity of further research.

A certain knowledge of quantum mechanics is a prerequisite for study-
ing solid-state physics. Various techniques of quantum mechanics — above
all field-theoretical methods and methods employed in solving many-body
problems — play an important role in present-day solid-state physics. Some
essential details are listed in one of the appendices of the third volume; how-
ever, I have omitted more complicated calculations that would have required
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the application of the modern apparatus of many-body problems. This is
especially true for the third volume, where central research topics of present-
day solid-state physics are discussed, in which the theoretical interpretation
of experimental results is often impossible without some extremely complex
mathematical formulation.

The selection of topics obviously bears the stamp of the author’s own
research interest, too. This explains why the discussion of certain important
fields — such as the mechanical properties of solids, surface phenomena, or
amorphous systems, to name but a few — have been omitted.

T have used the International System of Units (SI) and have given the equa-
tions of electromagnetism in rationalized form. Since nonrationalized equa-
tions as well as gaussian CGS (and other) units are still widely used in the
solid-state physics literature, the corresponding formulas and units are in-
dicated at the appropriate places. In addition to the fundamental physical
constants used in solid-state physics, the commonest conversion factors are
also listed in Appendix A of the first volume. I deviated from the recom-
mended notation in the case of the Boltzmann constant using kg instead of
k — reserving the latter for the wave number, which plays a central role in
solid-state physics.

To give an impression of the usual values of the quantities occurring in
solid-state physics, typical calculated values or measured data are often tabu-
lated. To provide the most precise data available, I have relied on the Landolt—
Bornstein series, the CRC Handbook of Chemistry and Physics, and other
renowned sources. Since these data are for information only, I have not indi-
cated either their error or in many cases the measurement temperature, and
I have not mentioned when different measurement methods lead to slightly
disparate results. As a rule of thumb, the error is usually smaller than or on
the order of the last digit.

I would like to thank all my colleagues who read certain chapters and
improved the text through their suggestions and criticism. Particular thanks
go to professors Gyorgy Mihaly and Attila Virosztek for reading the whole
manuscript. I am grateful to F. I. B. (Tito) Williams for reading the present
volume and for his comments. In spite of all efforts, some mistakes have cer-
tainly remained in the book. Obviously, the author alone bears the responsi-
bility for them.

Special thanks are due to Karoly Hértlein for his careful work in drawing
the majority of the figures and to Karlo Penc for drawing a few figures. The
figures presenting experimental results are reproduced with the permission of
the authors or the publishers.

Finally, I am indebted to my family, my wife and children, for their patience
during all those years when I spent evenings and weekends in writing this book.

Budapest, Hungary Jend Soélyom
November 2010
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Electron—Electron Interaction and Correlations

Throughout Volume 2 the electronic properties of solids were studied in the
independent electron approximation. The spectrum of Bloch electrons was
calculated in the presence of a periodic one-particle potential V(7),! which
could incorporate the contribution of electron—electron interaction at a mean-
field level, and the states of the many-body system were obtained by filling
the electronic bands successively with independent particles. The interactions
with impurities and lattice vibrations could be given a simple interpretation in
this picture and we were able to understand some (e.g., transport and optical)
properties of insulators, metals, and semiconductors.

One notable exception to this independent electron treatment was made
in Volume 1, when covalent bonding was studied. In order to get a physical
picture of the nature of this type of bond, we computed the possible states
of two interacting electrons. This led to the concept of exchange interaction,
which proved to be extremely important in understanding the magnetic prop-
erties of solids. However, when magnetically ordered systems were considered
in Chapter 14, instead of treating the electron—electron interaction in its full
complexity, localized spins were assumed and the effects of their interaction
were discussed.

This simplistic, one-particle approach was adopted out of necessity, since
a serious treatment of electron—electron interaction can only be done by us-
ing techniques of the many-body problem. In this volume, we go beyond the
independent electron approximation and will study how electron—electron in-
teraction influences the properties of solids. These calculations will also help
us to understand under what circumstances the single-particle picture is ap-
plicable to real solids.

In this chapter we first give the Hamiltonian of the electron—electron inter-
action in various forms. Then we discuss a few simple approximation schemes
that allow us to calculate the ground-state energy and excitation energies of

! Tn Volume 2 the notation U(r) was used for the potential. In this volume V (r)
stands for the one-particle potential and the notation U(r) is reserved for the
two-particle interaction. The subscript e—e will be dropped from Ue_e.

J. Sélyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9 1, (©) Springer-Verlag Berlin Heidelberg 2010



2 28 Electron—Electron Interaction and Correlations

the electron system. It will also be pointed out that the Pauli exclusion prin-
ciple and the electron—electron interaction give rise to spatial and temporal
correlations between electrons that cannot be understood in the one-particle
approximation. During these studies second quantization (summarized briefly
in Appendix H) will often be used. Only knowledge of the elements of the
many-body problem will be supposed, as presented in Appendix K. The in-
terested reader can find further details in textbooks on the subject.

28.1 Models of the Interacting Electron System

To study the effects of electron—electron interaction, the straightforward ap-
proach would be to solve the Schrodinger equation as a many-variable dif-
ferential equation for the total Hamiltonian of the many-particle system that
includes the Coulomb interaction between electrons. It turns out that the
formalism of second quantization is better adapted to this problem. In this
approach the complete set of Bloch or Wannier states (or plane waves if the
periodic potential of the lattice can be neglected) is taken as a basis set and
one writes the many-particle states of the system as well as the Hamiltonian in
terms of the creation and annihilation operators of these one-particle states.
Depending on the representation used we arrive at different formulations.

28.1.1 The Hamiltonian

Since we wish to understand how electron—electron interaction influences the
properties of solids, we will, in what follows, assume that the ions sit rigidly
in their equilibrium positions on a regular lattice; their vibrations will be
neglected. The Coulomb interaction between ions gives only an additive con-
stant to the total energy that will be omitted. Thus, if the relativistic effect
of spin—orbit coupling is neglected, the Hamiltonian to be considered contains
in addition to the kinetic energy of N, electrons the interaction with the ions
and the direct Coulomb repulsion between electrons:

N, N N
e h2 ) o ) ;
H:; <_2’rneVi> “l‘i:ZlVion(”‘i)‘Fi Z U(’I"Z'—’l“j)7 (28.1.1)

i,j=1
i#]

where Vi, (7;) is the potential created by the ions and

1 2 52
= R (28.1.2)
471'60 |’I"i - ’I"j| |’I"z' — ’I"j|

U(’I“i - 7']')

describes the electronic Coulomb repulsion. Our task is to solve the Schrédin-
ger equation

HW(Tl,Sl,TQ,SQ, e ,’I"Ne,SNe) = Eq/(’l”l,sl,’l"g,SQ, ooy TN, SNe) . (2813)
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For later convenience the spin variable s; has been written out explicitly in
the wavefunction, although the total Hamiltonian is spin independent in the
absence of spin—orbit coupling.

So far the ionic potential has not been specified. If bare nuclei with charge
Ze are considered, then

Vvion i) = 28.1.4
(rs) 471'60 Z \rL ( )

Zé?
" R

and N, is the total number of electrons. However, significant simplification
can be achieved by treating the localized core electrons differently from the
delocalized valence electrons lying in bands close to the Fermi energy and
participating in the chemical bonding. The effect of electrons on deep levels
can be incorporated into the potential of the ions by identifying Ze with the
ionic charge. Using this effective ionic potential in (28.1.1), N, is just the
number of electrons in the valence bands.? In some cases an average potential
coming from the electron—electron interaction in the valence bands is also in-
cluded in the one-particle potential. In this case, naturally, only the deviation
from this average should be considered in the two-particle interaction, and
the one-particle term has to be evaluated self-consistently.

In a perturbative approach, the one-particle potential is usually incorpo-
rated into the unperturbed Hamiltonian

TYL | HL |

Ne

HO::§:<—V'>+-§:vgn : (28.1.5)

i=1

and the electron—electron interaction is treated as a perturbation,

Hi=Hee=12 Z —7;) (28.1.6)
7,7=1
i#]

Both the one-particle potential due to ions and the two-particle term of

the Hamiltonian describing the interaction between electrons can be given in
terms of the number-density operator of electrons,

Ne
= d(r—mri). (28.1.7)

For the one-particle potential we have

Ne
ZVion(m) = /Vion(r)n(r) dr. (28.1.8)

2 Contrary to the convention used in semiconductors, in our subsequent treatment
of solids bands occupied by electrons that participate in the formation of metallic
or covalent bonds will be called valence bands.
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When both the potential and the number-density operator are written in
Fourier representation, we have

ZVm ) =5 ZVIOH —q), (28.1.9)

where the summation goes over the Brillouin zone, and

Ne
n(q) = /n(r)e‘i‘” dr=> e a7, (28.1.10)
i=1

%

We have to take into account that there is no self-interaction in the two-
particle term. That is why the term ¢ = j is missing in the third term on the
right-hand side of (28.1.1). We therefore obtain

Ne
z Z U(ri — ) [/ drdr’U(r — " )n(r)n(r’) — NeU(O)} . (28.1.11)
izl

In case of spin-independent interactions, the interaction between particles at
sites 7 and 7’ is weighted by the number density at these sites. The second
term containing the potential at » = 7’ serves to eliminate the self-interaction.
This term is infinitely large for Coulomb interaction, but in fact it only cancels
a divergent contribution in the first term. In Fourier representation we have

Ne

1

3D Ulri—r) =5 Ula)[n(-a)n(a) — Ne]. (28.1.12)

ij=1
ij?fj !

If the bare Coulomb potential is used, then according to (C.1.63) the Fourier

transform appearing here is

Ug)=—7%=—%". (28.1.13)

28.1.2 Second-Quantized Form of the Hamiltonian

When a complete (orthonormal) set of single-particle states {¢x(7)} is taken
where k denotes all quantum numbers except spin, a complete set of states
for the many-body system can be obtained by forming totally antisymmetric
combinations, Slater determinants, from the single-particle states. An arbi-
trary state of the many-particle system can then be written as a linear com-
bination of Slater determinants. The Slater determinants themselves can be
constructed unequivocally once we know which one-particle states are present;
in other words, which states are occupied. That is why the wavefunction can
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be given in the occupation-number representation. The operators acting on
the many-particle states can then be given in second-quantized form by spec-
ifying how the occupation of single-particle states is changed. For this reason
a creation operator CLU acting in Fock space is introduced, which adds an
electron in the one-particle state (orbital) ¢y () with spin o to the system.
Its adjoint, the annihilation operator ¢, , removes a particle from this state.
The number operator CLUC,W counts the number of particles in the particu-
lar single-particle state ¢y (r) with spin . The total Hamiltonian containing
the kinetic energy of electrons, the one-particle potential, and the electron—
electron interaction can be written in terms of these operators according to
(H.2.25) in the form

H=> Hucl,Clo + 3 Y UktmnClhyClysCprgrCoo » (28.1.14)
klo klm/n
where .
Hy = /gi),’;(r) [— o v?+ Vion(r)] ¢, (r)dr (28.1.15)
and
Ubimn = //dr dr’ ¢p(r)o; (PU(r — 1), ("), (7). (28.1.16)

This shows that the electron—electron interaction can be considered as a col-
lision process in which two electrons are scattered from their initial states
into some final states. This was supposed already earlier when the interaction
between electrons was depicted in Fig. 6.5.

A different, perhaps more transparent, form is obtained when the field
operators defined in (H.2.15) by the expressions

Do) =Y dirnbel, . Ua(r) = d(r)sey, (28.1.17)
k k

are used. Here 7, is the wavefunction of the spin state with quantum number
0. These states are conveniently given by the spinors

m = (é) n = (?) (28.1.18)

and nl is their adjoint. They satisfy the orthogonality relationship
15, (50, (51) = 00,0, - (28.1.19)

The creation operator CLU adds a particle of quantum numbers k£ and o to
the system, whereas the field operator 1/3}7(7') adds a particle to the system at
site 7 with spin ¢, and 1, () removes an electron at site 7. The Hamiltonian
then takes the form
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M= Z/drqﬂ [ 5=V + Vion(r) | 1)

o A ) (28.1.20)
+1 Z //dr Ar Pl ()L, (P YU (r — )i, (7)), (7).

When the addition of an electron to the system at point r is represented by
an oriented line starting at r and the removal of an electron by an oriented
line ending at 7, the interaction between electrons can be represented by the
diagram shown in Fig. 28.1.

’

r

Fig. 28.1. Diagrammatic representation of the electron—electron interaction. Solid
lines denote the electrons annihilated and created at positions  and r’. The wavy
line indicates the interaction potential between r and r’

Owing to the anticommutation relation of the field operators [see (H.2.17)],

[1720(7‘)7 ,(;2/(7,1)} + = (500/6(7" - T‘/) y (28121)
the interaction Hamiltonian can be written as

Heo=1 [Z / dr dr’ 1 (), (1)U (1 — 2, ()i, () — NLU(0)

(28.1.22)
This is nothing other than the second-quantized form of (28.1.11), since the
density of electrons can readily be expressed by the field operators as

= 3Dk ), (r). (28.1.23)

In what follows, different choices will be made for the single-particle basis
functions leading to somewhat different forms of the Hamiltonian.

28.1.3 The Homogeneous Electron Gas

For the sake of simplicity we will often suppose that the potential Vig,(7)
created by positive ions can be replaced by a spatially uniform constant 1/,
as if the charge of the ions had been smeared out uniformly.> The details of
the interaction with ions are thus neglected in this model, and we concentrate

3 This model is often referred to as the jellium model.
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on phenomena caused by the interaction between electrons. The uniformly
smeared positive ions are kept only to satisfy charge neutrality. The inter-
action of electrons with the positive background gives a negative constant
contribution to energy. A constant but positive contribution arises from the
Coulomb repulsion between ions themselves. Vj is the sum of these terms. Its
value is fixed by the charge neutrality requirement.

When this uniform background is added to the kinetic energy, the eigen-
functions of the one-particle Hamiltonian

h2
B 2me

H (r) = vV, (28.1.24)

are plane waves indexed by the wave vector k and spin quantum number o,

1 .
bro(T) = We"“"na : (28.1.25)

just as in the empty-lattice approximation. Their energy is ¢, = 6;0) + Vo,

where 5560) = h%k?/(2me) is the energy of free particles.

The operators c;rw and ¢, create and annihilate, respectively, these states.
The noninteracting Hamiltonian, the first term of (28.1.14), has only diagonal
elements:

Ho = €1ChoCro - (28.1.26)
ko
and the total unperturbed energy of the system, described by a single Slater
determinant, is equal to the sum of the energies of the occupied one-particle
states.
The Hamiltonian of the electron—electron interaction takes the simple form

1
Hee = 5 > " U(@)Ch s 400k — qor € Ch (28.1.27)
kk'q

in the plane-wave basis. Since the homogeneous electron gas is invariant under
arbitrary translations, the total momentum is conserved. When two particles
with wave vectors k and k' interact, they are scattered into states with wave
vectors k + q and k' — q.

We make two further remarks about the Hamiltonian. First, the value of
Vb has not yet been fixed. We know that it represents some average of the
electron-ion and ion-ion Coulomb interactions. It follows from the charge
neutrality of the system that — apart from a sign difference — it has to be
identical to the ¢ = 0 component of the electron—electron interaction. For this
reason, when studying the homogeneous electron gas, we neglect 1}, provided
the g = 0 Fourier component is eliminated from the electron—electron interac-
tion. The bare interaction between electrons is the Coulomb repulsion, whose
Fourier transform U(q) is given in (28.1.13). Therefore, we will use
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~2
Ulq) = 47;28 (1= 46q,0) (28.1.28)

for the electron—electron interaction in the homogeneous electron gas.

Second, one has to pay attention to the fact that the Coulomb interaction
is long ranged and cannot be treated as a weak perturbation. Certain processes
have to be summed up to infinite order or self-consistent procedures have to
be applied.

28.1.4 Interaction Between Bloch Electrons

Although the homogeneous electron gas gives a qualitatively correct picture
of the effects of electron—electron interaction, this approximation is rather
drastic and the results may be quantitatively correct only for the simplest
alkali metals. For other metals, where the Fermi surface is not spherical, the
effect of the ion potential Vi, () has to be treated more accurately. One
possibility is to choose Bloch functions — the solutions of the single-particle
problem in the presence of the periodic lattice potential — as the complete set of
single-particle basis states. Denoting the creation and annihilation operators
of a Bloch electron in state ¥,k (r) with energy e by ¢’ and ¢

nko nko nko?’
respectively, these operators diagonalize the noninteracting Hamiltonian Hy:

HO = Z EnkO'CILk:a'an:a' . (28129)

nko

The Hamiltonian of the electron—electron interaction then takes the form

Hefe:% Z an’(nhk17n27k27n&7k1an/2ak/2)
{nz‘a}xj/ki} (28.1.30)

T
x Cn’lkiacnékég’cngkgo’Cnlklo' ’

where the strength of the interaction is given by
Uaa’ (nh kl, no, kg, n'l, /1, TL/Q, k:/Q) = //d’l’ d'l"/ w;kl/lk/lg(r)/ll):’ékéal (’I"/)

X U(’I" - TI)ankga/ (,’QI)’L/}nlkla(r) .
(28.1.31)

The scattering between electrons is not restricted to electrons in the same
band; there might be interband processes as well. Thus, in general, the cou-
pling strength should be indexed by four band indices and three wave vectors
— if conservation of quasimomentum is taken into account — and it may de-
pend on the spin variables, too. If electrons on completely filled deep levels
are incorporated into the ion cores, it is sufficient to consider explicitly only
the delocalized electrons of the valence bands. With this assumption we may
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arrive at a model in which only a single band is retained. In what follows we
will often make this simplification and the band index n; will be neglected.
We remark that such a simplified model cannot be valid for transition metals.
Their physical properties are determined not solely by the electrons in the 4s
(5s) bands. The 3d (4d) bands may play an equally important role.

Since the electron—electron interaction depends on the difference of the
spatial coordinates of electrons, the conservation of quasimomentum as given
in (6.2.42) has to be satisfied. This can be checked simply by using the Bloch
theorem valid for the single-particle wavefunctions i, ks (7). To see this the in-
teraction is written in Fourier representation and the integral over the volume
of the sample is replaced by a sum over the primitive cells and the integral
is performed within the cells. When the spatial coordinate r is written as
r = R,, + 7, where 7 is inside the primitive cell, and the known translational
property of Bloch functions is exploited,

Uyor (K1, ko, K, KY) (28.1.32)

_Z / drz / &7 e ki By, (F)e e By, ()
Tn v
ZU 1 (F+Rm 7T’7R 1k2 nl/}kga( ) kR m/lz[}lcla'(;’\;)

== Z > U@ oo (k1, k2,4, G, G')oky ey 494G Oy ka—gG
4 GG

where G and G’ are reciprocal-lattice vectors and

Iaa’ (klv k27 q, G7 GI) = N2 //d:’\: d:’:/ ¢121+q+G0( )ka q+G'o’ (N/)

X T o (F ) g (7). (28.1.33)

Electrons with wave vectors k; and ko are scattered into states with wave
vectors k1 + q and ko — q, respectively. If necessary, these wave vectors are
reduced into the first Brillouin zone by G or G’. In the summations over
G and G’ in (28.1.32) only that single term contributes through which this
reduction is achieved. As before, processes for which no reduction is needed,
e., G = G' = 0, are called normal processes, while the others are called
umklapp processes. Their appearance is an important new feature compared
to the homogeneous electron gas, where momentum conservation is rigorously
valid.
If umklapp processes can be neglected, the Hamiltonian of interacting
Bloch electrons,

E E / T

H= gk‘ﬂckacka 2V U ‘70 k k )Ck-i-qack/ qa’ck’ Cho
k:k'
oo’

(28.1.34)
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has a form similar to that of the homogeneous electron gas [compare this
expression with (28.1.26) and (28.1.27)], except that here the calculated band
energies of Bloch electrons have to be used in the kinetic energy and the
interaction potential is multiplied by the factor I,,(k,k’, q). Incorporating
this factor into the potential U we will use

H Z Eko'cko'ck:a' QV Z Ck+q0- qo/ck/o_/cko. (281.35)
kk/

O'U

as the Hamiltonian of a general interacting electron system.

28.1.5 The Hubbard Model

As has been discussed in Chapter 17, an alternative choice for the complete
set of single-particle states is provided by the Wannier functions ¢, (r — R;).
The creation and annihilation operators of the Wannier states, CIM and ¢, .,
add or remove the nth localized state at lattice point R;. However, since the
Wannier states are not eigenstates of the one-particle Schrodinger equation for
electrons moving in a periodic potential, the unperturbed second-quantized
Hamiltonian H is not diagonal, when these states are used as a basis. As has
been shown in (17.5.19),

Ho =D tnijChinCpio (28.1.36)
n,o ij

where

o = [ onr - Ry |-

Usually the Wannier functions are localized to the neighborhood of the lattice
sites and their overlap is small beyond nearest neighbors. Therefore, in most
cases it is sufficient to restrict the summation over the lattice sites in Hy to
nearest-neighbor lattice points.

The interaction between electrons appears in the form

Z Z Z Zgngn? m’ mwcng,cn irot Contit (28.1.38)

mnm/n’ oo’ iji’j’

+wmwﬂ%W—&Mr (28.1.37)

where
mnn'm’ _ v — R)U(r — 7'
o // Pm ?n U ) (28.1.39)
G (1" — Rj1 )¢y (r — Ryy) drdr’ .

In this representation, too, the interaction can be interpreted as a collision in
which two electrons in different Wannier states are scattered into two other
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Wannier states. In the most general case the four sites R;, R;, Ry, and Ry
may be different. Two electrons from different sites may be scattered to a
third and fourth site. In the physically most relevant processes, however, far
away sites are not involved. This is not trivial since the terms with i = ¢/ and
j = 7’ correspond to Coulomb repulsion between electrons at sites ¢ and j,
and this interaction is long ranged. However, as will be seen later in the next
chapter, the interaction dynamically rearranges the occupied electron states
and screens the long-range Coulomb repulsion. Thus the interaction between
Wannier states can be taken to be short ranged.

The interaction is rather complicated even if it is supposed to act domi-
nantly between electrons on the same site. Separating the terms corresponding
to Wannier states with identical and different spin indices, and the terms in-
volving spin flip,

Heo=13 Z{ > Ui mio i, —o (28.1.40)

mm/’

E : i i

+ |: = Jmm )nmianm’ia - Jmm’Cmiacmi,facm’ﬁfacm’ia ’
m#m/

where nmm = CIm'ame is the number operator. The term containing U,,.,,,» =

U“mlzn m'm corresponds to the intra-atomic Coulomb interaction and the term

with Jym = UZTZZ” mm’ s due to exchange. Assuming that their strength is

independent of the band index m we arrive at

Hefe = %UH Z Z NmicNm/i,—o + %(UH - J) Z Z NmicNm’ic

ic mm’ o m#m/’

7%‘]2 Z C;rniacmi,—ac;rn/i,—acm’ig . (28141)

w0 mm/’

For the sake of simplicity we will take one nondegenerate Wannier state
per atom. Then the only surviving term is the intra-atomic Coulomb repul-
sion between electrons of opposite spins. The exchange term is missing. The
Hamiltonian then reduces to

H=> ticlci L Z” -
9o (28.1.42)

= Z t’LJ i ]O‘ + UH anTn’Ll
ijo
It follows from the anticommutation rules for fermion operators that

n? =ni,, (28.1.43)

and therefore the Hamiltonian can be written in the equivalent form:
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H= Z (tij UH(SU) Cio ]o +3 UH Z Ni oMo’ - (28144)

ijo oo’

This model in which the Coulomb repulsion is taken into account only between
electrons on the same site is the Hubbard model.* Despite its simple form, the
model cannot be solved exactly, except in one dimension, when electrons hop
along a chain only. Although the approximate solutions obtained in higher
dimensions are in qualitative agreement with some magnetic properties of
transition metals and give a qualitatively correct description of the metal—
insulator transition due to interaction, it is not clear at all whether a more
reliable solution of the model, to which many efforts have been devoted, would
reproduce the experimentally observed features or whether a more general
model with many more parameters would be necessary to understand these
phenomena.

One possibility for going beyond the Hubbard model is to include the
Coulomb interaction between electrons on nearest-neighbor sites. This is the
extended Hubbard model or t-U-V model with Hamiltonian

H= Ztlj Cio ]cr + Un anTnzl +V Z NigNjo’ , (28145)

ijo (ijyoo’

where (ij) denotes that ¢ and j are nearest neighbors. When a site is singly
occupied with a spin-up or spin-down electron, it has a magnetic moment. Ex-
change between neighboring singly occupied sites leads to a usual Heisenberg-
like coupling with a J on the order of 2 /Uz. When this term is included in the
Hubbard model with an independent coupling J, the so-called ¢t-U—-J model
defined by

H=> tijcl, J(,JrUHZmelJrJZS .S, (28.1.46)

ijo (i5)

is obtained. A special case of that is the t—J model. When U is much larger
than the bandwidth, which is the other characteristic energy scale of the
model, doubly occupied sites are practically forbidden. The on-site Coulomb
repulsion can then be omitted from the Hamiltonian,

H=> tijclc;u+TY Si-8;, (28.1.47)

ijo (i5)

keeping in mind that only empty and singly occupied sites are allowed.? The
physics of these models will be discussed in later chapters. Since the original

4 J. HUBBARD, 1963. The model is named after Hubbard although the same model
was proposed by M. C. GUTzZWILLER and J. KANAMORI at the same time to
describe the magnetic properties of transition metals.

® Note that also three-site terms of the form c;-r’ac;70,cj,ack’_(7 and

c;r’oc;_acj’_ockyg appear in the effective Hamiltonian as the doubly occu-
pied sites are eliminated.
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Hubbard model is the simplest interacting electron model defined on a lattice
and one of the most studied models of solid-state physics, we will often refer
to it in what follows.

The Hubbard model has been defined in the Wannier representation. It
could be given in terms of the creation and annihilation operators of Bloch
states using (17.5.6) and (17.5.20) that relate the creation and annihilation
operators in Bloch and Wannier representations, respectively. It becomes

Un
H= Zskc,tacka tv Z c,t+chL,_qlck,lckT , (28.1.48)
ko kk'q

where N is the number of lattice sites. In an alternative form, starting from
(28.1.44),

Un
H= Zskclgcka tonN Z c};+qac,t,_qo,ck,0,ckg . (28.1.49)
ko kkz’q

The term containing Uy drops out of the kinetic energy if the operators are
arranged in the order as they appear here in the interaction.
Introducing a coupling U via

N
Un=Us; (28.1.50)

the Hubbard model can be written in the Bloch representation as

U
H = Zskc;wc,w + o Z cLJrqch,_qU,ck,a,ckd . (28.1.51)
ko kk',q
oo

Comparison of (28.1.51) with (28.1.34) shows that the choice of a local in-
teraction in the Hubbard model corresponds to a momentum-independent
U(q)I,o(k,k',q) = U, in sharp contrast to the strong g dependence in the
homogeneous electron gas. This is because the screening of the long-range
Coulomb interaction, to be discussed in the next chapter, has already been
taken into account in the Hubbard model, when only on-site interaction is
included.

We have derived two forms for the interaction. One, (28.1.34), is given in
terms of Bloch states and the other, (28.1.38), in terms of Wannier states.
They can be used in principle equivalently to get a full description of the
effects of interaction. In practical calculations, however, approximations have
to be made. The more appropriate representation — Bloch or Wannier — of the
electron states and the most adequate approximation scheme for studying the
physical properties of a given system depend on the band structure. It turns
out that the interaction is treated more easily in terms of delocalized Bloch
states when the behavior of simple metals with a single broad valence band
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is studied. On the other hand, when the properties of transition metals are
treated, where the band states formed from 3d (4d) electronic levels are im-
portant, the description in terms of Wannier states may be more convenient.
Accordingly, in what follows, we will frequently treat the homogeneous elec-
tron gas, since it gives a qualitatively correct physical picture of the effects of
interaction. However, when we want to get a simple description of the mag-
netic properties of transition metals, the Hubbard model will be considered.

28.2 Normal Fermi Systems

We know that the one-particle states with wave vector within the Fermi sphere
are completely filled in the ground state of noninteracting fermions and the
states outside the Fermi sphere are empty. One might think that the Fermi
edge, the discontinuity in the momentum distribution function, which is a
characteristic feature of the ground state of a free fermion system, will be
smeared out by processes in which electrons inside the Fermi sphere are scat-
tered outside, leaving holes behind. In reality quite often though not always,
this is not the case: A discontinuity remains in the momentum distribution
function. To illustrate this, we calculate the momentum distribution, the av-
erage number of electrons with wave vector k and spin ¢ in the ground state
|@) of the interacting system,

(o) = (| chp can 7)), (28.2.1)

in perturbation theory for the Hubbard model.
According to (G.1.10) the perturbed wavefunction can be written to first
order in the electron—electron interaction in the form

)= s) + 1 Y :

T T
c c Cp. 1 Cpr |PRS)
k ko—ql k2| Ok ;
i Eky + Eky — Ekytq — Eka—q 1+q1"k2—ql "ka| "k1T

(28.2.2)
where |Prg) denotes the wavefunction of the unperturbed Fermi sea. The
perturbed wavefunction clearly shows that configurations with two holes in
the Fermi sphere and two occupied states outside the Fermi sphere appear
with nonzero probability in the ground state of the interacting system.

We consider first the case |k| > k. A nonvanishing perturbative correction
to the momentum distribution is obtained only if — depending on the spin —
either kq + q or ks — q is equal to k. The conditions that k; and ko are inside
the Fermi sphere, while k; 4+ ko — k is outside, can be expressed by the Fermi
distribution function. Thus we find

<nk0>|k\>kF - <U>2 Z [1 = folCuysa—)] foler)foler) . (28.2.3)

V) & ekt ks =k — Ehitho—k)
1R2
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For wave numbers inside the Fermi sphere it is more convenient to calculate
<Q7|c;fwc,w|w> by writing it as 1 — <W|ckgc;rw|¢>. In lowest order, the mean
occupation of state k is reduced from unity owing to processes in which two
electrons are kicked out of the Fermi sea into states k1 and ks, and holes with
wave vectors k and ki + ko — k are left behind. The contribution of these
processes gives

<nk0>|k|<kp —1_ (U)2 Z f0(€k1+k2—k) [1 — fo(ekl)] [1 — f0(5k2)} .

4 (€k + €kytho—k — Eky — Eky)?

kiko

(28.2.4)

These rather cumbersome expressions can be evaluated analytically in an

isotropic model if the sums over k; are replaced by integrals. Figure 28.2 shows

the region of integration allowed by the Fermi distribution functions for ko —

at fixed values of k1 — when k is right on the Fermi surface, infinitesimally
above or below it.

Fig. 28.2. Allowed values of k2 (shaded region) in the integral determining the
momentum distribution: (a) for wave vector k right outside the Fermi surface, when
k1 has to be within the Fermi sphere; (b) for wave vector k right inside the Fermi
surface, when ki has to be outside the Fermi sphere

Performing first the integral over ks in cylindrical coordinates using k1 —k
as the axis, and then the integral over ki, again in cylindrical coordinates,
using now the direction of k as the axis, we get

2
(Moo k=kp+s = 5 [Up(er)]” (In2 — 1) (28.2.5)
for wave vectors infinitesimally outside the Fermi sphere. For k inside the
Fermi sphere we have
2
(Mo )k=ke—s = 1 — £[Up(er)]” (In2+ 1). (28.2.6)

The momentum distribution is not continuous as we cross the Fermi surface.
A finite jump is found which is somewhat smaller than unity and depends on
the strength of the interaction:



16 28 Electron—Electron Interaction and Correlations

(Mo ) k=kp—6 — (Mko ) k=kp+s = 1 — HUP(EF)]QIHZ. (28.2.7)

For a general k away from the Fermi surface, the integrals can be evaluated
numerically. The momentum distribution is shown in Fig. 28.3.

<Npe>

0 ; k
0 kg

Fig. 28.3. Momentum distribution for an interacting, but normal Fermi system

In higher orders of perturbation theory more and more holes are created
inside the Fermi sphere, while more and more electrons occupy states outside.
Nevertheless, it can be shown using methods of the many-body theory that a
sharp discontinuity, a sharp finite jump — known as the Fermi edge — survives
in the momentum distribution function of both the uniform electron gas and
the Hubbard model even if all perturbative corrections are summed up to
infinite order. The results of Compton scattering experiments on alkali metals,
i.e., the inelastic scattering of photons, can be interpreted by assuming a value
0.5 for the discontinuity in the momentum distribution. This is reasonably
close to the values between 0.6 and 0.8 valid for the homogeneous electron gas
at densities characteristic of metals.

Although the particles are interacting, a Fermi surface may be defined in
k-space as the locus of points where the momentum distribution is discontin-
uous. In isotropic systems this discontinuity appears exactly at the Fermi mo-
mentum kp of the unperturbed system, which means that in isotropic systems
the interaction does not distort the spherical Fermi surface. In more realistic
models, where the periodic potential of the ions gives rise to a nonspherical
Fermi surface, the electron—electron interaction may modify its shape. How-
ever, according to the Luttinger theorem the k-space volume of the Fermi
surface defined by the discontinuity is unaffected by the interaction.

The existence of a sharp Fermi edge and the Luttinger theorem stating
the conservation of the volume enclosed by the Fermi surface can be proven
quite generally, provided that perturbation theory is applicable and the per-
turbation series converges. Fermi systems for which this assumption is valid
are called normal Fermi systems. Their perturbed ground state can be ob-
tained from the noninteracting ground state by turning on the interaction
adiabatically. This is the case for ordinary metals.

There are systems, however, in which the interaction cannot be treated in
perturbation theory. This is the case, for example, in one-dimensional systems.
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To demonstrate the breakdown of the perturbation series we calculate the first
nonvanishing correction to the momentum distribution for k > kg applying
(28.2.3) to a one-dimensional model. A nonvanishing correction is obtained if
k1 and ko are in the range (—kp, kr) and ki + ko — k is outside this range.
These requirements can be satisfied if k; is in the neighborhood of +kr and
ko in the neighborhood of —kpr or vice versa. For the sake of simplicity the
dispersion curve is approximated by a linear dependence in the neighborhood
of the Fermi points kr and —kp in a range of width 2k, that is we choose the
energy vs. momentum relation in the form

h’UF(k—k‘F) for kp — ke <k <kp+ ke,
€ = (28.2.8)

—hvp(k + kr) for —kp—ke<k<—kp+k.,

where vg is the Fermi velocity. Performing the integrals we get

kp dk —kF-‘rkcdk 0( i (k Ek k))
—kp — + Ko —
o = 2 2 71 / 72 3 :
(Mo ) k> ke = 2U / o 27 [2hwr (k1 — k)]?
kr—kc —kp
kg
U\’ 1
., (thp) / by (28.2.9)

krp—ke

AN ke
—2 1 ).
<4wth) " (k: - kp)

As k tends to kg this second-order correction diverges logarithmically, indicat-
ing that the perturbative approach is not applicable to one-dimensional sys-
tems. As we will see later, the physical properties of one-dimensional fermion
systems differ substantially from that of normal systems due to the absence of
a sharp Fermi surface. Later we will also encounter three-dimensional fermion
systems with no Fermi edge. These systems, too, exhibit novel properties. In
the next few chapters, however, we will first consider the properties of normal
systems, where the perturbative approach is applicable.

28.3 Simple Approximate Treatments of the Interaction

The correct treatment of electron—electron interaction is a difficult task and
most of this volume is devoted to this problem. In this introductory chapter
the simplest approximation methods are presented.

We have seen in Chapter 14 that the magnetic properties of solids can
be understood qualitatively rather well if the effects of the environment on
a given spin — the influence of other, neighboring spins — are taken into ac-
count approximately as a mean, self-consistently determined effective field.
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A similar approach could be used for electrons by assuming that the electrons
feel an effective one-particle potential created by the others. However, this
effective field has to be calculated with much more care due to the fermionic
nature of electrons. After presenting the methods, they will be applied to the
homogeneous electron gas and the Hubbard model. The latter problem will
be elaborated in more detail in the next chapter and in Chapter 33.

28.3.1 Hartree Approximation

As early as 1929 D. R. HARTREE proposed a simple approach by which a
self-consistent effective potential can be defined. He assumed that the elec-
tron system can be fully characterized by the number density ne(r), and the
electrons do not feel each other individually, only through the Coulomb po-
tential created by the charge density p(r) = —ene(r). The Coulomb potential
at point r is

o olr) = — /dr’ ) € /dr’ ”e(rl)q, (28.3.1)

~ 4re lr—7| 4re lr —r

and thus the effective one-particle Hartree potential is

Vi(r) = —epe.(r) = & / dr’ |:e(r;),| : (28.3.2)

For a general two-particle interaction U(r — ') the Hartree potential is
Va(r) = /dr’U(r —7r")ne(r’). (28.3.3)

The total effective potential Vog(7) acting on the electrons includes the exter-
nal potential Vi, (7) due to ions, thus

Vert(1) = Vion (7)) + Vir(7) . (28.3.4)

The number density n.(r) appearing in (28.3.1) or (28.3.3) has to be cal-
culated self-consistently from the ground-state wavefunction ¥ of the many-
electron system as the expectation value of the number-density operator n(r)
defined in (28.1.7):

Ne

Z(S(r —7;)

i=1

) = (n(e) = (¥

¢> . (28.3.5)

In this approach the total Hamiltonian is the sum of one-particle contribu-
tions, which themselves are the sum of the kinetic energy and the one-particle
potential:

Ne 2
H=> [— h Vi+ Veﬁ(ri)] . (28.3.6)
i=1 €

2m,



28.3 Simple Approximate Treatments of the Interaction 19

The wavefunction of the many-body system can then be constructed from
solutions of the one-particle Schrédinger equation

P00+ Var)r() = exin(r) . (83)

The quantum number A of the single-particle states is not specified yet, al-
though we know that in a system that is invariant under discrete translations
of the lattice, the wave vector k, the band index n, and the spin quantum
number o could be used. The solution of this single-particle problem does not
pose a problem of principle. The complete orthonormal set of single-particle
eigenfunctions and the corresponding energies can be computed.

Let us suppose that the first, second, ..., Nth electron occupies the state
Brr,00 (T1551), Prg,00(T2,82)5 -+ -5 Pan, on, (TNes SN, ), Tespectively. The wave-
function ¢, . (74, s;) denotes the product of the spatial and spin functions,

by, (ri)n,, (s:) - (28.3.8)

Of course, owing to the Pauli exclusion principle, all these states have to have
different quantum numbers.

In the Hartree approximation, the many-body wavefunction Wy is written
as a product of the wavefunctions of the occupied single-particle states,

UH = Or1,00(T1,51)Prg,00 (T2, 52) - P, on, (TN, SN.) - (28.3.9)

Substituting this wavefunction into (28.3.5), the self-consistency requirement
for the density leads to

Ne
na(r) =Y [ der [dta. [ dn 63, 0,008,060+ B3, (E0)
=1

XO(r —=1i)dx, 0, (§1)0x,.0,(&2) - Dry on, (ENL) (28.3.10)

where &; is a short-hand notation for r; and s;, and integration over §; implies
integration over the spatial variable and summation over the spin variable.
Using the orthonormality relation (28.1.19) of the spin functions, one obtains
readily that for a spin-independent quantity like the electron density the prod-
uct of the spin functions in (28.3.10) gives unity. Integration over the spatial
variables can be performed using the orthonormality of the single-particle
wavefunctions. We then get

Ne
ne(r) = Z/d’fl/drz E /d?“Ne x, (r1)da, (r2) - 93, (TN)
i=1

X d(r — ri)¢)\1 (7"1)%2 (rg)-- ¢>\Ne (rn.)

|2, (r) [ (28.3.11)
=1
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The total electron density is obtained by summing the contributions of the
N, occupied one-particle states. If we were to use it in the Hartree potential,
self-interaction would be included, while it should be excluded on physical
grounds. The procedure has to be refined. An electron in state \; feels only
the potentials generated by the N, — 1 other electrons, that is, the effective
potential acting on that electron is

Vigg(1) = Vion( ~22:/c1 /1o, (r (28.3.12)
]751

rfr’|

and the single-particle wavefunctions have to be calculated from the equations

h2
B 2me

éx; (1) + Vion(r) o, ()

(28.3.13)
~QZ/d /|T:_ o o, (1) =ex, o, (T)
J#Z

known as the Hartree equations. For a general two-particle interaction they
have the form

2m QS ( ) + Mon( )¢>\7 (’l”)
Ne (28.3.14)
+ Z /dr/U(T - T/)|¢>\j (TI)|2¢M (1) =exox(r).
j=1
J7#i

Note that the Hartree equations are not usual Schrodinger equations. The
third term of the left-hand side depends on the quantum numbers of the state
to be calculated, and the system of equations has to be solved self-consistently.
In many-body systems, where N, is large, the full number density given in
(28.3.11) may be used in the Hartree potential, since inclusion of the i = j
term would give only a negligible shift of the energies.

28.3.2 Hartree Approximation as a Mean-Field Theory

In the Hartree approximation electrons move in an effective, self-consistent
potential (28.3.12) created by the others. It should not surprise us that this
approximation is in fact a mean-field theory (MFT) of the electron gas in the
sense MFT was introduced in Chapter 14 in the study of magnetic properties
of solids. Since that treatment shows better what is neglected in the approxi-
mation, we will rederive the Hartree equations following standard mean-field
theory.
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The idea behind this approximation is that fluctuations are weak for some
quantities and so the mean-square deviations from the expectation values of
the corresponding operators can be neglected. When this method is applied
to fermions, we may assume that certain pairs of fermion operators could be
replaced by their expectation values in the Hamiltonian, but these expectation
values have to be determined self-consistently. In order to get the total energy
of the system correctly, a term containing only expectation values has to be
added to the energy. Of course, one has to be careful in choosing the operators
that are to be replaced by their expectation values. The choice depends on
the system or more precisely on the nature of the state under study.

According to (28.1.11) the electron—electron interaction can be written in
terms of the electron densities at sites » and =/, more precisely the strength of
the interaction U(r — 7') has to be multiplied by the densities and integrated
over the volume of the sample. Leaving out the constant term that eliminates
self-interaction, we have

Ne
1Y Ulri—7r) =1 / dr dr'U(r — r')n(r)n(r') . (28.3.15)
ij=1
1#j
In normal Fermi systems, where there are no anomalous, symmetry-breaking
averages, the natural choice is to approximate the number-density operator
by its expectation value, supposing that density fluctuations can be neglected.
The standard procedure of neglecting [n(r) — (n(r))][n(r’) — (n(r’))] leads to

Ne
1Y Ulri—rj)~ / drdr'U(r — r')n(r)(n(r"))
ij=1 (28.3.16)

7 -3 //dr dr'U(r —7')(n(r))(n(r")) -

The first term on the right-hand side can be written in an equivalent form by
substituting (28.1.7) for n(r) and we have

Ne
> / dr'U(r; — ") {n(r")). (28.3.17)
i=1
Making use of this expression in (28.1.1) gives
Ne hQ
" 2
HaY [_mvi T Vien(r) + / ar'U(rs — ') (n()

_l_é //dr dr'U(r — 7.’)<n(r)><n(7“/)>

for the mean-field Hamiltonian. The first term is indeed the sum of one-particle
terms with the effective potential given in (28.3.3) and (28.3.4). The physical

(28.3.18)
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meaning of the constant correction term will be discussed later. The Hartree
equations are the eigenvalue equations of this one-particle problem:

Hip (1)oa (1) = exoa(r) | (28.3.19)

Me

HO () — ;iw  Vien(r) + /dr/ Ulr —)(n(r)),  (28.3.20)

and the density <n(r)> = ne(r) has to be calculated self-consistently using
(28.3.11) or, more precisely, an expression where self-interaction is omitted.

When the same mean-field approximation is applied to the Hamiltonian
(28.1.20) written in terms of the field operators, we have

=3 [ 40 [ 59 i) )
+3 [[arar db@ue - )G, @) essa
Z//drdr Ulr = 1/) (L, () (r') ) (G (), (1))
This can be written in the form
=Y [ard e i, )
gy [ [arar U )L () ) )

with the one-particle Hamiltonian

h2

HD () = — V() + 3 / &' Ulr — ) (D, (), ().

(28.3.23)

The Hamiltonian takes an even simpler form when it is written in terms

of the creation and annihilation operators of the one-particle states ¢y (7).

The creation operator cia adds a particle with spatial wavefunction ¢ ()

and spin o to the system. Its adjoint, the annihilation operator c, , removes

a particle with quantum numbers A and o. Since ¢, (r) is an eigenfunction

of the one-particle problem, the full Hamiltonian becomes diagonal in the
Hartree approximation:

Hu=» exclotro — 3 / drdr'U(r — ') (n(r)){n()).  (28.3.24)

Ao
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It is important to note that while the summation in the first term of (28.3.24)
goes over all allowed quantum numbers, while the summation in the density
[see (28.3.11)], that is in the effective field generated by the other electrons,
goes over the occupied states only.

In the presence of a realistic periodic potential Vi, (1), this coupled set of
nonlinear equations can be solved only numerically for the N, occupied states.
The homogeneous electron gas is an exception. Due to charge neutrality, the
mean potential created by the uniform electron density cancels exactly the
potential of the uniform positive background,

Vo — e o(r) =0. (28.3.25)

Then the Hartree equations are identical to the Schrédinger equation of free
electrons and the plane waves ¢y (r) = ¢* " //V are their solutions. In con-
sequence, the energies of the single-particle states are

) _ h2k?

£k = &, (28.3.26)

2me
Thus, the interaction — if treated in the Hartree approximation — gives no
contribution to the energy of the homogeneous electron gas. For a general

two-particle interaction U and a uniform background potential 1}, all energy
levels are shifted by the same amount:

(0) / ’ ’
€ e +V —l—/drlir—r Ne(T
BTk ’ ( ne(r) (28.3.27)

= L Vo + U(q = O)ne,

where 1, is the uniform density of particles and it is multiplied by the g =0
Fourier component of the interparticle interaction.

28.3.3 Hartree Equations Derived from the Variational Principle

We note before going on that the Hartree equations can be derived from the
variational principle of quantum mechanics. Instead of choosing the potential
approximately — as was done in (28.3.1) — a variational ansatz is made for the
wavefunction and we require that the total energy of the electron system

(H)

F=00= "

(28.3.28)

be minimum, where

i=1

H = Z [— gz Vi T Vien(ri) Z F— r]J (28.3.29)
]751
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As the simplest choice, we write the many-body wavefunction as the product
of unknown single-particle wavefunctions in the form given in (28.3.9). One
readily obtains

(W|H|¥) = Z/olrgbA [

~2N

+5 Y [[arar "‘” ' 62, ()

Zjl

+ Vion(7) ¢>\i(7')
(28.3.30)

To get the energy minimum, one has to minimize this quantity with the con-
straint that the single-particle wavefunctions are orthogonal,

/ dr @3, (1), (1) = 0, n; - (28.3.31)
This constraint can be enforced by introducing a set of Lagrange multipliers.

The optimum wavefunctions are the solutions of the variational problem

b
3%,

[<H> — & /dr o3, (7')|2} =0. (28.3.32)

This yields precisely the Hartree equations given in (28.3.13) and the Lagrange
multipliers are equal to the single-particle energies.

28.3.4 Hartree—Fock Approximation

The effect of the other electrons is taken into account in the Hartree approx-
imation rather crudely. A better approximation can be achieved if a better
form is assumed for the variational wavefunction. The most obvious problem
with the Hartree approximation is that — although each single-particle state is
occupied by at most one electron in agreement with the Pauli exclusion prin-
ciple — the indistinguishability of electrons has not been taken into account.

If states @, 015 Pryo0y -+ -5 Pan,.on, are occupied, one cannot tell which
electron occupies which state. All possible distributions among the states have
to be allowed for, and the many-body wavefunction is a linear combination of
all allowed configurations. Since electrons are fermions, the total wavefunction
has to be completely antisymmetric, i.e., it has to change sign whenever the
spatial and spin variables of any two electrons are exchanged:

@(...,ri,si7...,rj7sj,...) = —W(...,’I‘j78j,...7’l"i,8i,...). (28333)

The wavefunction satisfying this requirement can be written in a compact
form as a Slater determinant:
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¢)\1,01(T17‘91) ¢/\1,01(T2782) ¢/\1,01(TN07SN0)
Uyp = 1 ¢A2,U2(r1351) ¢>\2,U2(T2352) s ¢>\2,U2(TNe75Ne)
N . . :
(ZSXNS,UNQ (rla 31) (b/\Ne,oNe (T2a 52) cee (b/\Ne,UNe (TNev SNe)
(28.3.34)

This is a natural generalization of the two-particle Slater determinant intro-
duced in Chapter 4.

Evaluating the expectation value of the energy with this wavefunction, we
get

Ne 2
EHF = <H> = Z/d’l‘ (b;l (T) |:_2h7neV2 + V}on(r) ¢>\i ('I")

~2 N
/M))\
/d’r’/d /| |(;5 (7 )| (28.3.35)

1]1
~2N

/ dr / v 0oy O3, ()03, ()0, (), ().

z_]l

Unlike in the Hartree approximation, there is no need here to impose the
restriction j # 4, since contributions coming from the j = i terms cancel
each other in the last two terms. To get the optimum wavefunctions that at
the same time satisfy the orthogonality condition, the constraints are again
enforced by the method of Lagrange multipliers. Independent variation with
respect to ¢, and ¢} leads to

h2

e
_ 2 ,O5, (T ( ) L
Z/d ’f’ _ ,,,/| ¢)\J (r)60i70']' = EAi(ZS)\i (T‘) .

(28.3.36)
These equations are referred to as the Hartree—Fock equations. For a general
two-particle interaction we find

h2
2m

63, (1) + Vion (r)éa, ( +Z/dTUT—T)|¢A( N2, (r)

- Z / AU — )65, (7)), ()b, ()., = En,o0, (1)
j=1

(28.3.37)
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As in the Hartree approximation, the values of the Lagrange multipliers at the
minimum give the energy eigenvalues. They are denoted by €, to distinguish
them from the energies obtained in the Hartree approximation. The new term
compared to the Hartree approximation is due to the indistinguishability of
the particles, i.e., the quantum mechanical exchange. For this reason, this
term is called exchange term or Fock term after V. FOCK, who derived it first
in 1930.% The factor do,,0, appears because only particles with identical spins
can be exchanged. Of course, similar to the Hartree equations, these equations
have to be solved self-consistently.

The local Hartree potential introduced in (28.3.3) can be written in terms
of the single-particle wavefunctions in the form

Ne
r)=>)_ /dr’ Ur —r")|ox, (r)]. (28.3.38)
j=1

In contrast to the Hartree term, the exchange term can be written only in
terms of a nonlocal exchange potential Vi (r, ') defined by

Ne
- dr'U(r — )¢5, (1) oy, (r)de, 0,01, ( Va(r, 7)oy, (r') dr
Zl/ A A X / As

(28.3.39)
The Hartree-Fock equations are then equivalent to the nonlocal Schrédinger
equations

/ Higp(r,r')pa, (7') dr’ = &5, (7). (28.3.40)

where

V2 + Vien(r) + Via(r) [ 8(r — ') + Vi(r, 7') . (28.3.41)

i) = [ - o

2Me

28.3.5 Hartree—Fock Approximation as a Mean-Field Theory

The Hartree approximation could be interpreted as a mean-field theory. One
of the density operators in the interaction was replaced by its expectation
value. This is, however, not the only possible choice for a mean-field-like in-
teraction. When the interaction part of (28.1.20) is written in terms of the
field operators, we have

Moo= 165 [ [anart il )= b i) (28342

where we used the bare Coulomb interaction. This expression contains four
operators, and one could choose other combinations than the local densities

6 The Hartree term is also called direct term.
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that could be approximated by their mean value. We may suppose that the
nonlocal quantity, the expectation value of wT (r )1/) (7) describing a process
in which the particles are added and removed at different positions, is also
finite. Then, in addition to the term corresponding to the Hartree approxima-
tion a new term appears in the Hamiltonian,

NJQZ//“‘” ol W"(r»d}w(r’). (28.3.43)

r— |

The factor 1/2 in the original Hamiltonian has disappeared since there are
two ways to arrive at such terms. The negative sign arises because the order
of two field operators had to be interchanged. Mean-field theory is, however,
more subtle than simply replacing some quantities by their average. The total
energy is obtained correctly when a term containing the product of averages
is added. In the present case a term

5y / / drdr' U(r — )4 ()b, (W)L ()b, () (28.3.44)

oo’

has to be added to the total energy.

In a homogeneous, isotropic, unpolarized system, the expectation value
<1/Aji,(r’)1/30(r)> depends on |r — 7/|; it is nonvanishing only if ¢ = ¢’ and its
value is spin independent. We will see in Chapter 33 that this is not true
any more in broken-symmetry phases such as in a polarized electron gas or
in charge-density- or spin-density-wave states. The superconducting state to
be discussed in Chapter 34 is even more delicate. It can be described by a
mean-field-like generalized Hartree—Fock theory in which an anomalous aver-
age takes nonvanishing value.

By adding the new terms with o = ¢’ to the Hamiltonian of the Hartree
approximation, the total Hamiltonian can be written in a form analogous to
(28.3.22) with a nonlocal spin-dependent term in the one-particle part:

HHF_Z//drdr O YHGL, (7)), () (28.3.45)
3 [[arar v - )0 006, ) e

oo’

E)

o(r))

Y [[arar vt = )65, ) ().

where

<w< Ny (r))

r — /|

Higg, (r.7') = Hid(r —v') — : (28.3.46)

or for a general electron—electron interaction,
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h2
2Me

+3 far" Ut =) (0L 0 ()| atr )
~U(r — )DL (), (r)) . (28.3.47)

To prove the equivalence to the Hartree-Fock approximation we take the
solutions of the nonlocal Schrodinger equation

Hitdo(r.1) = | = 5 4 Vi)

/Hglz‘a'(rv 7'/)(,75)\“7(7'/) d’l'/ = gAia¢>\m(7’) (28348)

as basis functions. The field operators can be expanded in terms of the creation
and annihilation operators, ci\a and c, , of these states in analogy to (28.1.17)
as

pi(r) Z%Hg ek, Z% W)y, - (28.3.49)

Since the only nonvanishing average is that of the number operator ci[\ac/\a
when no symmetry is broken, HHFU(T‘,T‘/) is identical to Hg%(r —7') of
(28.3.41) and this eigenvalue problem is indeed identical to the Hartree-Fock
equations.

Alternatively one could start with the Hamiltonian (28.1.35) written in
terms of the creation and annihilation operators of the single-particle states
of the noninteracting system:

:
H = Zskc,wc,m 2VZU )kt a0k —qo Crr ot Chr - (28.3.50)
kk'q

/
oo

In normal metals, where the ground state does not break any symmetry of
the Hamiltonian — i.e., it is neither superconducting nor does it show a static
charge or spin density — the only nonvanishing average of the product of two
fermion operators is the number of electrons with wave vector k and spin o:

(chotho) = folex) - (28.3.51)

It would seem natural to single out the ¢ = 0 term in the interaction and to
write the four-fermion product after a rearrangement of the operators in the
form

CLUCkaCL,U,Ck,U, = (c;rcacka - <C;rcacko> + <C;rcacka>)
x (CZ:’J’Ck’o’ - <CL/O'/ck,O'/> + <CL’U’Ck’U’>) '

If fluctuations, i.e., terms of second order in the deviation from the mean
value, are neglected, we have

(28.3.52)
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ot ~ T T i T
CkoCh/o' ' o Cleo Ckacka<ck'a’ck’a’> + <ckack0>ck’a/ck’(ﬂ

(28.3.53)
- <CLack0><CL/o’ck/o’> '
Substituting this into the Hamiltonian gives
H Z |:€k + Z U Ck’a’ck’a > Ckacko
(28.3.54)

This is exactly the result of the Hartree approximation. We can go beyond that
if we choose the operator products that are approximated by their expectation
values differently. After a change of the order of two operators (this leads to
a factor —1 when g # 0) the following identical transformation can be made:

CTk-s-quchuqa'Ck’g'Cka = fc;rc+qgck,g,c;fc,7qa,cko (28.3.55)
= (C}::+qock’a’ - <CI1;:+qack’a’> + <C}Lc+qack’o’>)
% (el qorho = (Ol qornr) + (b goraa)) -
Again neglecting fluctuations,

i i ~ _ T t _ t t
Ck+qoCr’' —qo' Ck' o' Cleo Ck+qgck,a,<ck,_qo,cka> <ck+qgck,a,>ck,_qa,ckg
1 t
+H{Ch s g0 o) (b —qor Cho ) - (28.3.56)

The expectation values give finite contribution only when k = k' — q and
o =o'. IfU(q) is an even function of g, the Hamiltonian in this approximation
takes the form

HHF—Z [€k+VZU Ck’ ’Ck’a>
Z U Ck’ Ck'o’>:| CkoCho

7 Z U(q = 0)<C;rc’0’ck’a’><cLUCkU> (28357)
kk'
Z Ulk Ck' k' ><C}Lcacka> :
kk'

The operator part of Hyp is diagonal in the quantum numbers and the
coeflicient of the particle-number operator is
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~ 1
Eho =€k + = Z U(g=0){ch.cur) — v %: UK —k){cl, ),
(28.3.58)
where in the ground state
1 for k| < kp,
{ehrocos) = | ,l (28.3.59)
0 for |k'| > kp.
Thus N )
Eko = —ZU(q=0)— — Uk — k). 28.3.60
ko =cr+ 3 UW@=0)— |k'§<:k ( ) ( )
F

Note that (28.3.58) allows for a simple generalization of the Hartree—Fock
approximation to finite temperatures. The ground-state average of the occu-
pation number should be replaced by the Fermi distribution function. This
approach is self-consistent if the energy in the Fermi distribution function
contains already the finite-temperature corrections, that is

1 , ~

=ek+ = Z Ulg=0folGro) = Y UK — k) foEro). (28.3.61)
k/ ! k/

It is due to this self-consistency requirement that the single-particle energy

may become spin dependent.

28.3.6 Quasiparticles in the Hartree—Fock Approximation

When the Hartree-Fock Hamiltonian is written in terms of the creation and
annihilation operators of the optimal single-particle states, it takes the par-
ticularly simple form

Hitr = 3 8000 (28.3.62)
Ao
Z//drdrUrfr)@)T( . ( ><wT (7))
Y [ [arar v =)L ) ().

The first part is the Hamiltonian of a free fermion gas with one-particle energy
€x;0- To understand the physical meaning of these eigenvalues we calculate
the energy needed to remove a particle of index [ with quantum numbers A,
and oy from the solid. The Hamiltonian H’ of this (N, — 1)-particle system is
easily obtained from the Hamiltonian H of the N-particle system:

~2

H =H— l (28.3.63)

-]
J;ﬁl
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The self-consistent solutions of the Hartree—Fock equations with this Hamil-
tonian differ from the wavefunctions of the Ne-particle system. For a large
enough system, however, the relaxation of the wavefunction is on the or-
der of 1/N,. If the system was originally described by a Slater-determinant
wavefunction (28.3.34), a good approximation for the wavefunction of the
N, — 1-particle system is obtained by deleting simply the appropriate row and
column of the Slater determinant, leaving the single-particle wavefunctions
unchanged.” That is we choose

Oa (1) oo Ox(rim1)  da(Tie) oo o (Ta)
Oan(T1) oo Ox(rim1)  dan(Tign) oo dan(ray)

U= hr L, (11) - baa (Pit) D7, (Prs1) - O, (P |
' ¢>\L+1(r1) ¢Az+1 (7'[_1) ¢>\z+1 (Tl—i-l) s ¢>\L+1 (rNe)

Pan, (1) -+ Dan, (Ti-1) Py, (P141) - Dy, (TNL)

(28.3.64)
where the spin variables and quantum numbers are not written out explicitly
for the sake of brevity. The energy difference between the two states,

AE = (I|H'|W) — (Pur[H|Var) , (28.3.65)

gives the energy needed to remove the particle with quantum number J;.

When (28.3.35) is used for the energy of the system with N, particles, this
energy difference is equal to the contribution of all terms that contain the
one-particle wavefunction with quantum number A;, that is

2
_AE:/dr¢§l(r) { 2h

QZ/ /d"‘” o Jon (P (28.3.66)

+‘/10n( ) (bkl(r)

e 1
& ; / dr / ' b, 03, (1165, ()0, (), ).

It follows from the Hartree—Fock equations that the right-hand side is exactly
equal to the eigenvalue €),, and so

AE = —&,,. (28.3.67)

This shows that the eigenvalues of the Hartree—Fock equations have a simple
physical meaning: they give the energy needed to remove a particle with the

" This approximation may give incorrect result in quantum chemistry calculations
for atoms or molecules, where the number of electrons is not large.
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given quantum number. In other words, the Hartree-Fock energy of an oc-
cupied orbital is the negative of the ionization energy for the corresponding
state. Similarly, one can calculate the energy needed to add a particle to the
system. The solutions of the Hartree—Fock equations provide a complete basis
set, not only for the wavefunctions and energies of occupied orbitals but also
for the wavefunctions and energies of unoccupied, virtual states. These eigen-
values are equal to the energies needed to add a particle to an unoccupied
orbital. This result is known as Koopmans’ theorem.® It implies that if an
electron is excited from the state with quantum number ); into the state with
quantum number A, the excitation energy is

AE =2y, — &y, - (28.3.68)

The energy €, needed to add a particle to the interacting system is modi-
fied, renormalized, compared to the energy e, of a free particle. The effect of
interaction with the other particles is incorporated into this modified single-
particle energy. The elementary excitations of the interacting system are not
bare electrons but quasiparticles having energy €,,. When this energy is writ-
ten in the form

Exo = Exo + o, (28.3.69)

the correction X, is called the self-energy.

The interesting physical properties of the system can be explained in terms
of quasiparticles. One has to take into account, however, that the concept of
quasiparticles can be used only when a small number of them are excited. Only
in this limit can one write the excitation energy of a state as the sum of the
energies of independent quasiparticles. When a large number of quasiparticles
are present in the system, the interaction between them becomes important.
This interaction and how it influences the properties of normal Fermi systems
will be discussed in more detail in Chapter 32, in the framework of Landau’s
theory of Fermi liquids. Here we only show that the ground-state energy of the
interacting system is not equal to the sum of the energies of N, quasiparticles.

28.3.7 Total Energy in the Hartree—Fock Approximation

The total ground-state energy can be calculated as the expectation value of
the Hamiltonian. Staring from the expression given in (28.3.57) we get

1
Fup = Z [ak + v Z U(g= O)<c£,a/ck,a/>
ko Ko (28.3.70)

1
B W Z U(k/ B k)<ch’oCk’o>:| <clT<:ack:0'> '
k/

8 T. KooPMANS, 1934. TJaLLING CHARLES KooPMANS (1910-1985) was awarded
the 1975 Nobel Memorial Prize in economic sciences.
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If the quasiparticle energy €, given in (28.3.58) is used instead of the bare
energy, we find

EHF = Z |:gkc, - Z U Ck, ’Ck" >

ko k/cr’

1
7 Z U(kl o k)<c;rc/ock:’0'>:| <CLUCk0> '
k/

(28.3.71)

Since the self-energy is
1
Z Ulg=0){cl .cpn) — 7O UK - k)(chicnn)  (28.3.72)
k/

in the Hartree—Fock approximation, the total energy can be written either as

EHF = Z (gk” - %Zk”)<c;rco’cka> (28373)
ko
or as
Bur = 3 (66 + 1 50r) (cho o) (28874
ko

When the energies of occupied quasiparticle states are summed, the correction
coming from two-particle interactions appears in the energy of both quasipar-
ticles, and thus twice in the sum. This double counting is corrected in (28.3.73)
by subtracting half of the self-energy. Alternatively, when the bare energies
are summed, only half of the self-energy has to be added for each occupied
state.

28.3.8 Hartree—Fock Theory of the Uniform Electron Gas

The Hartree-Fock equations can in general be solved only numerically. The
homogeneous electron gas, where Vi, (7) is uniform in space and the Hartree
term is compensated exactly by the potential of the positive background, is
an exception. It is readily seen that plane waves are self-consistent solutions
of the Hartree-Fock equations, but the quasiparticle energies differ from the
free electron energies due to the Fock term.

Assuming that the one-particle states that fill the Fermi sphere in the
ground state are plane waves, the same plane waves are indeed eigenfunctions
of the Hartree-Fock equations

) = Y [ S et = ()
|k’ | <kp
(28.3.75)

with eigenvalues
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21.2
- 2k 1 Z / o—ilk—k)-(r—r") (28.3.76)
ome V |7"_rl|
|k |<kp

Since exchange is possible only between electrons of the same spin, each wave
vector k' has to be taken once. Recognizing that the second term on the
right-hand side is a sum of the k — k' Fourier components of the Coulomb
potential we indeed recover the result derived in (28.3.60). Note that the
uniform positive background precisely cancels the ¢ = 0 component of the
potential. Substitution of (C.1.63) into (28.3.76) gives

_ RE? 1

kT ome  V |k k|2
|k | <kp

(28.3.77)

Comparison of the second term of (28.3.75) with (28.3.39) shows that the
exchange potential is

1 €2 ik

AN ik"-(r—r")

Vi(r, ') = =1 > rErh =) (28.3.78)
|k,|<kp

The summation can be performed with the aid of (C.2.29) yielding

e% kg sinkp|r — r'| — kp|r — v’ coskg|r — 7/
272 (kp|r —r/|)*
_ézk‘% jl (k‘F|’I" - ’I‘/|)

272 (kp|lr —r'])2 "’

Velr — ') = —

(28.3.79)

where ji(x) = (sinz — xcosx)/az? is the first-order spherical Bessel function
of the first kind. At short distances a 1/|r — 7’| dependence resembling the
Coulomb potential is obtained, while the exchange potential decays to zero
much faster at large distances oscillating with wavelength 1/kp.

Another picture for the exchange potential is obtained if the Fock term is
written in the form

_ 4;0 / dr'pHrF(_r;:|)¢>\i (r), (28.3.80)
where
pur(r,r’) = ez ( o3, (r )(b)\j (T)égi,g.. (28.3.81)
(r)9,, (r) ?

In this representation the effect of exchange is manifested in an induced charge
density around the electrons. In the homogeneous electron gas, where the
solutions are plane waves,

pur (7, 7") Z ei(k—k):(r=r") (28.3.82)
\k’\<kF
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Integration over the Fermi sphere gives

k_(,,fT/)ﬁsin kplr —r'| — kg|lr — | cos kg|r — 7/|
272 (kp|r —r'|)3

ik-(rfrl)ﬁjl(kF|r _T/D

272 kplr — |

pur(r, ') = e ¢’

=ee (28.3.83)
One can interpret this result by saying that the electrons create positively
charged holes around themselves with an oscillatory charge density that dies
off rather fast. We will return to this problem when correlations between
electrons will be studied.

To calculate the dispersion curve of quasiparticles the sum in (28.3.77) is
replaced by an integral over the Fermi sphere. The integral can be evaluated
exactly using (C.2.31) with the result

- Wk tr? dk’ 1
kT ome (2m)3 |k — k|2
‘k/|<kF
21.2
_E 2 (R (28.3.84)
2me T kg
k2 2 k
= (kF> EF — ;CQICFF (kF> ,
where )
1 1—=x 1+«
Flz) =~ 1 . 28.3.85
(@)=g+— I ‘ -z ( )

The function F(z), which will appear at various places, is plotted in Fig.
28.4. Note that F'(z) is a smooth function, although its derivative is weakly,
logarithmically singular at z = 1.

F(z)
1

0 T
0 1

Fig. 28.4. Variation of F(z) as a function of x

Electronic energies are often given in the literature in hartree (E}) or
rydberg (Ry),’

9 Hartree energy (1 FE, = &*/ag) is the atomic unit of energy. Tt is conveniently
used in the atomic system of units, where the charge and mass of electron, h, and



36 28 Electron—Electron Interaction and Correlations

2 h?
1B, =—= 5 = 27.211eV, (28.3.86)
apg  Meag
and 1Ry = 13.606eV. When the Fermi energy is expressed in terms of the

Bohr radius,

R*kE 1 5 €2
= = — — 2 . .
EF B) . Q(kpao) 0 5 ( 8.3 87)
and so
_ 1 , (k) 2 k| é
= |= —) - = Fl— || — 28.3.
€k [Q(kFao) </€F> WkFaO <kF>‘| a (28.3.88)

If the electron density is expressed in terms of the Wigner—Seitz radius rg,*°

or in terms of the dimensionless quantity rs = 7o /ag,

1797\ fag\? & 1.842
- (= ) £ o By, 98.3.89
°r 2(4> (7‘0> ag 72 : ( )

_ |us42 (kNP 1222 e
£ = — — _
k ’I”s2 kF Ts kF
This dispersion curve is displayed in Fig. 28.5 for a relatively large density
(rs = 2), which is close to the electron density in aluminum.

and so
By . (28.3.90)

/ 1 ke

Fig. 28.5. The dispersion relation of quasiparticles in the Hartree—Fock approxi-
mation for an electron gas with density r« = 2. Dashed line shows the dispersion

relation in the free electron gas

The energy correction is largest for the k = 0 state. Its value is

the Bohr radius are taken to be unity, and hence the Hartree energy is also unity.
1Ry is the binding energy of the electron in the ground state of the hydrogen
atom, it is half of the hartree energy.

10 The Wigner-Seitz radius, the radius of the sphere belonging to an electron, was
introduced in Chapter 16. Its relationship to kr is given in (16.2.31).
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-9 1/3 ~9
e R IR T
T ™ ag T\ 4 ro Qo Ts
(28.3.91)
The shift is only half that much for electrons with wave number kg, whereas
there is practically no energy shift for particles with large momentum. The

energy spread of occupied states is thus

~ - RPEZ 1. 1.842 0.611 50.111 16.623
Ekp —Ek=0 = 2mF+;€2k‘F = < ) + . )Ehz ( 2 + )eV.

s s s Ts

(28.3.92)
The Hartree—Fock approximation of the electron—electron interaction gives
a substantial increase of the bandwidth of occupied states in the uniform
electron gas compared to the free electron model. For typical metallic electron
densities, this width could easily double or increase by an even larger factor.
We do not see any sign of such an increase in experiments. The bandwidth of
occupied states is on the order of a few electron volts in the conduction band
of simple metals, in rough agreement with free electron calculations.

It is even worse that the Hartree—Fock approximation yields an absolutely
wrong result for the effective mass of electrons. To calculate the effective mass
we redefine it in a somewhat different, though equivalent form. Taking a wave
vector kg on the Fermi surface, the quasiparticle energy £g is expanded about
the Fermi energy. For small deviations, to linear order

~ - 0€;
B =k + [ Z2)  (k—ko). (28.3.93)
ok ) 1.,
In isotropic systems, where the energy depends only on the magnitude of k,
-~ 0g;
o=+ (S5) (k- k). (28.3.94)
ok ) 1.

For free electrons with a quadratic dispersion relation this expansion gives
h2kp

Me

Ex = €F + (k‘ — k‘F) . (28395)
When the expansion of the quasiparticle energy is written in a similar form
with an effective mass m*, comparison of the two expressions gives

1 1 0gy,
— = | = . 28.3.
m*  h2kp (ak >k7F (28.3.96)

Due to the singular derivative of F'(z) at = 1, the derivative of the single-
particle energy 02y /0k diverges logarithmically at k = kp, and the effective
mass vanishes on the Fermi surface in the Hartree—Fock approximation. The
Sommerfeld expansion cannot be applied in this case and the electronic heat
capacity would show a T'/InT temperature dependence instead of being pro-
portional to T
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These results are in contradiction with observations in metals. This is a
consequence of treating the long-range Coulomb interaction in a mean-field
approximation. Correlations beyond the Hartree—Fock approximation screen
the Coulomb repulsion in metals making the electron—electron interaction
effectively short ranged. This will be discussed in the next chapter.

28.3.9 Hartree—Fock Theory of the Hubbard Model

The Hamiltonian of the Hubbard model is chosen usually in the form

H= Z t"] 10 ]0’ + UH Znﬂnzl (28397)

ijo

as given in (28.1.42). Ounly electrons with opposite spins interact in this model.
They cannot be exchanged, so the Fock term gives no contribution. There
is, however, a Hartree term. Employing the usual decoupling procedure the
product of the number operators can be approximated by

nipnp & nip(nag) + (rapnag — (i) (nay) - (28.3.98)
Thus
H= Ztlj CiocCio + Un Z Ni,—o nz o —Un Z nzT nzl) (28399)
ijo io

The energy of the electron at site ¢ with spin ¢ is shifted by Un(n; _»). If
this energy shift is site dependent, e.g., it oscillates in space, the spin density
may exhibit antiferromagnetic modulation. We will return to this problem in
Chapter 33. In a translationally invariant solution, the one-particle energies
ek (they are obtained by Fourier transformation from the hopping matrix
elements) are shifted by the same amount. The quasiparticle energies are

Eko = €k + Un(ni,—o) - (28.3.100)
If the average number of particles per unit volume
1 N
(no) = 17 ;<ni,a> = 37 (i) (28.3.101)

is used instead of the number of particles per site, we find
Ero = +U(n_s), (28.3.102)

where the coupling constant U defined in (28.1.50) appears in place of Uy of
the Hubbard model. The mean number of electrons with spin o can be written
in terms of the momentum distribution or Fermi distribution function in the
form
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1 ~
7740- NZ nk:o‘ :N;fO(gko‘)a
1 ~
Vzk: nk'o - V§f0(5k0)7

where the shifted single-particle energies appear in the argument. This energy
shift and the common chemical potential for up- and down-spin electrons have
to be calculated self-consistently for a fixed total number N, of electrons from

(28.3.103)

- U .
€kt =€k + v Zfo(ﬁkl)7
. . (28.3.104)
5ki =€k + V Zf()(ng)v
k

and from the requirement

> (ko) = Zfo Zko) = Ne. (28.3.105)
ko

The unpolarized state in which € = &) is always a self-consistent solution
of these equations. Later, in Chapter 33, we will return to these equations and
will study the problem of when this unpolarized state becomes unstable.

28.4 Spatial and Temporal Correlations

Electrons fill the single-particle states independently in the Hartree approxi-
mation. There is no correlation between them. In the Hartree-Fock approxi-
mation, electrons still occupy single-particle states, but the requirement that
the wavefunction has to be fully antisymmetric leads to an exchange interac-
tion between electrons if their spins are parallel. The Pauli exclusion can be
interpreted as an effective short-range repulsion through which electrons cre-
ate a hole around themselves. This gives rise to spatial, distance-dependent
correlations between electrons. We expect that dynamical, time-dependent
correlations will also appear when we go beyond the Hartree—Fock approxi-
mation.

28.4.1 The n-Particle Density Matrix

An arbitrary one-particle operator, which is the sum of terms acting on indi-
vidual electrons, can be expressed analogous to (28.1.8) as

_ / Fr)n(r)dr. (28.4.1)
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Its expectation value can be written in terms of the ground-state wavefunction
U(ry,re,...,ry,) of the many-particle system in the form

Ne Ne
£( i)>: [ drydrey o dry W (ry, r, TN
<; 'S ;// / T1ATr2 TN. 1,72 TN.

X f(ri)¥(ri,r2,...,7N,) (28.4.2)
= [fonatrar,
where
Ne
ne(r) = ; // .. /dr1 drg - -dry V" (ry,7,...,7N.) (28.4.3)

X o(r—r)¥(ri,ra,...,TN.)

is the electron density defined in (28.3.5). Using the fully antisymmetric prop-
erty of the wavefunction this expression reduces to

ne(r) = N, /drz -~-/drNe @ (r, 7y, ..., 7). (28.4.4)

In the Hartree-Fock approximation, where the many-particle wavefunction
is a Slater determinant built up from single-particle functions ¢y, (r), the
determinant can be expanded using the functions in the first column:

1
P(r,ra,...,Tn,) = \/7]\,—6
where the subdeterminants ¥; defined in (28.3.64) describe the state of an

N, — l-particle system. It is easily seen, using the orthonormality of these
functions, that

(63, (M) T = 65, (M) T + -], (28.4.5)

ne(r) = 3 63,(r)6, (), (25.46)

in agreement with (28.3.11). Of course, the index A; includes here the spin
quantum number as well.

When two-particle operators are considered and self-interaction is ex-
cluded, then in analogy to (28.1.11) we find

Ne
1> falrir) =3 {//drl dra fo(ry, r2)n(r)n(re) — Nefz("“l,"“l)} :
G
Zi]#j
(28.4.7)
One has to be careful in taking the expectation value since — due to correla-

tions — the expectation value of the product of the densities at positions 71
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and 75 is not equal to the product of the mean values. Therefore, the expecta-
tion value of two-particle operators can be expressed in terms of the so-called
two-particle density matrix as

Ne

§< > f2(7°iﬂ“j)> :/ fa(r1,m2)pa(r1,m5) dry drs, (28.4.8)
ig=1
i#]

where
N, 2
pa(ri,re) = 9 drs--- [dry, [#(ry, 72, rn )] (28.4.9)

The density no(r) and the two-particle density matrix pa(ri,r2) are ob-
tained from the absolute square of the many-body wavefunction by integrating
over all its variables, except for one or two. The generalization of this prescrip-
tion leads to the n-particle density matrix p,. It is defined by

) Jar |
PP, .. Ty) = dry,41--- [ dry,
(r ) (n> i N (28.4.10)

2

)

X |W(r1,r2,...,r7l,rn+1,...,rNe)

that is, the absolute square of the wavefunction of the many-body system is
integrated over the variables of N, — n particles. For the sake of brevity, only
the integration over the spatial variables is explicitly displayed. For particles
with spin, a summation over the spin variables is implied.

Although, following common usage, p,(r1,...,7,) was called n-particle
density matrix, this quantity is in fact the diagonal element of the n-particle
density matrix defined via

N,
pn(T1,~-77‘n,7’/1,~--,7°;¢)—(n drpqr--- [dry,
ro / 28.4.11
XU (T, T Todd, - - s TNL) ( )
XWU(ry, Ty . . T, Tpg1---,TN,)

where the variables which are not integrated over are different in ¥* and V.
The simplest case is the one-particle density matrix:

pl('r,r’):Ne/drg.../drNeW*(r',rg,m,...,rNe)

XWU(r,re,r3,...,TN.).

(28.4.12)

For a Slater-determinant wavefunction we get

Ne
pr(rr) =Y 65, (e, (r). (28.4.13)
i=1
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Note that if the system is in a mixed state and cannot be described by a
wavefunction, the one-particle density matrix is defined as

pr(r ) = 37 a3, ()6, (1) (28.4.14)

where the summation goes over a complete set of states and pj, is the statisti-
cal weight of the state with index )\;, i.e., the probability of finding the system
in this particular state. The expectation value of a one-particle operator can
be calculated by evaluating the integral

<Zf(7°i)> = /f(r)p(r)dr, (28.4.15)
where p(r) is the diagonal element of the one-particle density matrix,

1) = 3 a3, ()65, (1) (28.4.16)

In the homogeneous electron gas, where all plane-wave states within the
Fermi sphere (|k| < kp) are filled with particles of both spin orientations,

2 : ,
pl(r,r’)zv D ek (28.4.17)
|k|<kF

This expression can readily be evaluated exactly by replacing the sum by an
integral. Making use of (C.2.29) we get

, 1 [sinkp|lr —r'| kpcoskg|r —r'|
Pl(”ﬂ“):*g 3 /12
T |r — 7’| |r — 7’|
_ , (28.4.18)
_ g, Jilkelr — ')
¢ kplr — 1|

Note that in second quantization the one-particle density matrix can be
written in terms of the field operators

) =Y d,(r), i) =>4l (28.4.19)
() = <w \@z}*(r');z}(r)‘ w> . (28.4.20)

As a natural generalization of this expression one can define the spin-resolved
one-particle density matrix via

Prog: (7,1!) = <gv ‘zﬁj,,(r')zﬁg(r)’ u7> . (28.4.21)

When the spin quantum numbers are separated from the quantum numbers
of the spatial part of the wavefunction and only the latter are denoted by \;,
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proo (1) =Y 63, (r)éy, (r)do0 (28.4.22)
i
where the summation goes over the occupied single-particle states. For plane
waves, we get the spin-dependent generalization of (28.4.18):

1 sinkp|r — 7| — kp|r — 7’| cos kp|r — 7/|

212 r— /|3 door - (28.4.23)

Ploo’ (T r )

The two-particle density matrix is defined by

pa(r1,me; 7y, 7h) = AN(Ne — 1) /drg -~-/drNe (28.4.24)
XU (r,rh e, PN )P (P, T2, T3, TN

where again the spin variables are not displayed for simplicity. The single-
particle density matrix is obtained from this expression by a further integra-
tion:

/pg(’l"l,’l”g;'l”‘/17’l"2) d’l"Q = %(Ne — 1)p1(’l"1,’l”/1) . (28425)

On the other hand, in the limit 1 = v} and ro = r}, we get back the quantity
p2(r1,72) used to calculate the expectation value of two-particle operators.
We remark that the two-particle density matrix, too, can be given in terms
of the field operators:

pa(ry,ras i, wh) = 1 <y7 W(r;)w(rgmm)zﬁ(rz)‘ ¢> . (28.4.26)

One can show with the aid of the orthonormality of the single-particle
functions ¢y, (r) that

Ne
p2(r1,re;ry, ) = Z [ ¢A (2) 93, (7'1)¢>\ (r2)

= 63,163, (r5)6, (r)on, (ra)] (28.4.27)

= 3lpi(ri, m)pi(ra,m3) — pr(ra, ma)pa(ra, )]
if the wavefunction has a Slater-determinant form. The diagonal elements can
be written as

Ne

pariira) =% 3 [65,(11)65, (12)6x, (r1)on, (r2)

ij=1

= ¢, (r1)@3, (r2) 9, (r1)on, (rz)} (28.4.28)
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Using the expression derived earlier for p; (r,7’) for the homogeneous electron
gas, an explicit expression can be obtained for pa(ri,r2):

(1,7 )—lnz 1_2 sin kp|ry — ro| — kp|r1 — 72| cos kp|ry — 7ol 2
pP2(T1,T2) = 2% 2 (kF|’I"1 _,’,2|)3
(28.4.29)

A factor 1/2 in front of the second term in the brackets arises because only
electrons with identical spins contribute.

28.4.2 Pair Distribution Functions

We have seen in Chapter 2 that the short- or long-range order appearing in
the spatial arrangement of atoms can be characterized by the pair distribution
function or the structure factor which is the Fourier transform of the density—
density correlation function. Here, repeating partly what has been learned
there, we will consider electronic correlations and will demonstrate that the
two-particle density matrix can be related to the pair distribution function
and the density—density correlation function.
Starting with the expression

p2(r,r') = $N(N. — 1) /dr3 .../drNe|W(r,r',r3, . .,rNe)’2 (28.4.30)

for the two-particle density matrix it is easy to show that

Ne
pa(r, ') = ;< > e —r)i(r — rj)> : (28.4.31)
ij=1
i#j
which is the two-particle probability density function defined in (2.1.4) apart
from a factor 1/2. Here (---) denotes the ground-state average or thermal
average, depending on whether the correlations are studied at 7' = 0 or at
finite temperatures. For spatially homogeneous systems it can be written as

Ne
p2(r,r') = 21//d7"”< Z Sr—r" —r)é(r —r" — rj)>

ij=1
L7 (28.4.32)
LN
= W< Z (5(’)“—’)“/4—?"]‘ —’T‘Z')>.
ij=1
i#£]

Following the approach outlined in Chapter 2 one can introduce the pair
distribution function, which is the conditional probability of finding a particle
at position 7’ provided that there is already a particle at position 7. Defined
according to (2.1.13) by
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glr — ') = A‘;< i Sr—7' 47— ri)> , (28.4.33)

¢ Yig=1

i3

the pair distribution function is normalized in such a way that it tends to unity
for large distances. It differs from the two-particle density matrix precisely in
this normalization:

pa(r,r’) =1 <J‘\i>2 g(r—r'). (28.4.34)

The pair correlation function is obtained from the pair distribution function
by subtracting unity, to express the fact that there are no correlations at large
distances.!!

The density—density correlation function is defined by

I(r,r') = —(n(r)n(r")), (28.4.35)

where n(r) is given in (28.1.7). In a spatially homogeneous system, where cor-
relations depend only on the distance between 7 and 7', it is more convenient
to use the equivalent form

Ir—r')= Nie / (n(r —r")n(r' —r"))dr". (28.4.36)

Substitution of (28.1.7) into this expression gives

Ne
Lir—7r')= Nie/ Z (6(r =" —r)é(r" =" —7;))dr”

i,j=1
. . (28.4.37)
= Z (0(r —7"+7; — 7).
€i=1

It is in this form that the density—density correlation function was defined
in (2.1.16). It differs from the pair distribution function not only in the nor-
malization factor but also in the inclusion of the terms i = j. To derive their
relationship we separate the terms i = j in (28.4.37). This gives

<Z5(r7"+7‘j m)>

i#] (28.4.38)

11(7'77'/):5(7'77°’)+Ni

e

e

79 =r').

=§(r—71')+

1 The pair distribution function itself is often called pair correlation function in the
literature.
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The same relationship could have been derived simply by expressing both
I'(r—7'") and g(r — ') in terms of the field operators. Substituting (28.1.23)
into (28.4.35) we have

D(r =) = — S (@), (03], (), (). (28.4.39)

Moving the operator 1&0(1“) to the right of the operators standing behind it,
taking into account the anticommutation rules of fermion operators given in
(28.1.21), and using the fact that

> (W), (r) = 37 (28.4.40)

we get

D(r—v') = 8(r — ') + NK ST (G (1), (1), (). (28.4.41)

oo’

The second term on the right-hand side describes the correlation between two
different particles, since the two annihilation operators stand next to each
other. It is proportional to the diagonal element of the two-particle density
matrix [see (28.4.26)] which is related to the two-particle distribution function
via (28.4.34). Hence

D {BEE)L (), (7)), (7))

)

and (28.4.38) is indeed recovered.

Sometimes it is of interest to study the probability of finding an electron
with identical or opposite spin around an electron with spin o. The spin-
resolved density—density correlations are described by the quantities

oo

(28.4.42)

glr —v') =

Looi(r,7') = %@a(r)na/ (), (28.4.43)

e

where the number-density operator for electrons with spin o is

g (1) = 95 (r)d, (1), (28.4.44)

while the properly normalized spin-resolved pair distribution functions are
defined by

(5 )L, ()b, (P, (7))
<nc,(7‘)><ng/(r’)> .

Joor (T, 7)) = (28.4.45)
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The relationship between these functions can be obtained by an appropriate
reordering of the operators using the anticommutation rules. It is readily seen
that

<no (T)><no’ (TJ)>

Iooi(r, ") = —L8,00(r —7') +
Ne

n

Goor (7, 7). (28.4.46)

(na(r))

In unpolarized systems where Ny = N| = N,/2, only the relative spin
matters. The correlations between electrons with identical or opposite spins
are described by

Ly(r,r') = NK > (na(mna ().

Ve v (28.4.47)
ri(rr')= A (ne(rin_q(r")),
and
I(r,e')y=L(r, 7))+ Ti(r, 7). (28.4.48)

The pair distribution functions for electrons with identical and opposite spins
are

gri(r,r’) =gy (r,r') = gy (r,r'),

(28.4.49)
g”(r, T/) = ng(T» ’l"/) =g (r, 'r'l) .
In a homogeneous system we then find
N,
Ly(r —r') = d(r =) + 29 (r =),
N (28.4.50)
_py = € _ !
I'i(r—7" ngJ_('r r'),
and
glr—7)=%[gtr—7r)+g.(r —1")]. (28.4.51)

Since the volume integral of both I (r — ') and I, (r — ') is equal to N, /2,
the pair distribution functions satisfy the relations

N,

—= [ [1=gy(r)]dr=1,
2 H (28.4.52)
2; 1—gi(r)]dr=0.

28.4.3 Correlations in the Homogeneous Electron Gas

The general expressions derived in the previous sections will now be applied to
study correlations in the homogeneous electron gas at 7' = 0. In the Hartree
approximation, where the self-energy due to electron—electron interaction is



48 28 Electron—Electron Interaction and Correlations

canceled exactly by the uniform positive background, there are no correlations
between electrons; the pair distribution function is unity independently of the
distance and the pair correlation function vanishes identically. Correlations
first appear in the Fock approximation.

Our starting point is (28.4.34) that relates the pair distribution function
to the two-particle density matrix:

glr —v') =2 (]‘;)2 pa(r,r) . (28.4.53)

Since the Hartree-Fock wavefunction is a single Slater determinant, (28.4.27)
can be applied. Displaying the spin variables explicitly in the single-particle
functions for later convenience, the pair distribution function takes the form

v 2
s =)= (5] L[S h,e, (D ), ()
¢/ A

io#i,)\joj
G0 (1 8)8%, o, (1,8 )by, (7, 8) D, (7 s')} . (28.4.54)

Here \; denotes the quantum numbers characterizing the spatial part of the
wavefunction.

In an unpolarized electron gas the properly normalized pair distribution
functions of electrons with identical or opposite spins take analogous forms

V2
grr(r — 7'/) =4 () Z [¢§\i,T(rv 8)¢f\j,T(r’a s')qﬁ,\m(r, 5)¢>\jm(7’/» SI)

Ne
i
— Pr (e s)x, 1 (' 8y, 1 (7, 8)dy, 4 (s ) (28.4.55)
and
g (r—7r") = < ) Z |:¢>\“T r,s gb/\ l('r 5)¢>\ (s s)gb)\ l(r s')
Py

- (;SKi’T(r,s)(;ﬁjj,l(r',s/)qﬁAj’i(ns)(zﬁ)\i’T(r/,s/)} . (28.4.56)
The single-particle states being plane waves one finds

N —4 AR 1 i(ki—kj)-(r—7")
gr(r—r') = N. WZ —€

kik]‘
_ 2 ik;-(r—r') ?
“1- (o)

where naturally the summation goes over the N,/2 wave vectors inside the
Fermi sphere. The same sum appears here as in the one-particle density ma-
trix. The relation between the two quantities should not surprise us. Accord-
ing to (28.4.27) the two-particle density matrix can be expressed through the

(28.4.57)
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one-particle density matrix if the wavefunction is a single Slater determinant.
Taking into account that the quantity in (28.4.17) is normalized by the vol-
ume whereas the number of electrons appears in (28.4.57), from (28.4.18) we
get

2 ik, - jl(kFT)
=y ek = . 28.4.
Ne y ¢ 3 k‘FT ( 8 58)

Thus the spatial correlations between electrons with parallel spins are given
in the Hartree—Fock approximation by the radial distribution function

. _ . 2
sin kpr — kpr cos kFr} (28.4.59)

(kpr)?

When g1, is calculated, the second term of (28.4.56) gives no contribution
owing to the orthogonality of the spin functions and we find

V%1 /N2

The spatial variations of the radial distribution functions are plotted in
Fig. 28.6. The amplitude of the oscillatory term is so small that it can hardly
be seen.

gm(r)=1—9{

gy () 9y(1)

kTO""'k}T’
% 1 2 3 a4 s f

Fig. 28.6. Spatial variation of the radial distribution functions for electrons of
parallel and antiparallel spin orientations in the Hartree-Fock approximation

The minimum appearing at » = 0 in the radial distribution function of
electrons with identical spins is a consequence of the Pauli principle. Electrons
occupying orthogonal states repel each other and

lim g;1(r) =0, (28.4.61)

as can be shown mathematically rigorously. Moreover, for electrons interacting
with the slowly decaying Coulomb repulsion, the Kimball relation'?

. dgpp(r) 1
}11% o m }11% g11(r) (28.4.62)

12 J. C. KiMBALL, 1973.
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holds, and hence also the derivative of the radial distribution function has to
vanish at r = 0,
lim 2911 _ (28.4.63)

r—0 dr
This relationship is valid for spin-polarized systems as well. Since this is a
consequence of quantum mechanical exchange between fermions, the dip in
the radial distribution function at short distances is called an exchange hole
or Fermi hole. The parallel-spin radial distribution function calculated with
the Hartree—Fock wavefunction is in agreement with these exact results.
The radial distribution function for electrons with opposite spins has to
satisfy the generalized Kimball relation
d r 1
lim ggilr() = ol g (). (28.4.64)
which follows from the slow 1/r dependence of the Coulomb repulsion. Al-
though g1 () does not vanish at » = 0, the Coulomb repulsion leads to a dip
around r = 0, known as the Coulomb hole. This relationship is not obeyed
in the Hartree—Fock approximation and the Coulomb hole appears only when
corrections beyond the Hartree—Fock approximation are taken into account.
The Fermi and Coulomb holes are seen in Fig. 28.7 where the results of Monte
Carlo simulations are plotted for the spin-resolved radial distribution functions
at two different densities.

12
ggg’(T/r())
0.8 -

04

1
0O 05 1 15 2 25 0 05 1 15 2 25

/n

Fig. 28.7. “Exact” radial distribution functions of the homogeneous electron gas
at two different densities calculated using Monte Carlo methods [Reprinted with
permission from G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994). (©) (1994)
by the American Physical Society]

In a dense electron gas, for small values of the dimensionless 7y, where the
kinetic energy is more important than the Coulomb repulsion, the Coulomb
hole is smaller than the Fermi hole. On the other hand, in a dilute electron
gas, for large values of rg, where the Coulomb repulsion is more important
than the kinetic energy of electrons, the Coulomb and Fermi holes become
comparable.
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28.4.4 The Structure Factor

We know from Chapter 8 that the Fourier transform of the density—density
correlation function, I'(q), can be directly measured by diffraction techniques.
Taking (28.4.37) for the density—density correlation function, its Fourier trans-
form with respect to r — r’ is

I'(q) = / I(r—re =) q(r —¢') (28.4.65)
1 Ne . ,
=7 / < Z S(r—r' +r;— ri)>e_lq‘(’"_” ) d(r — ')
i,j=1
— 1< i e—iq~(m—m)> = 1< %c: e—laTi % eiQ~7‘j> .
Ne i,=1 Ne i=1 j=1
This expression can be written as
I(@) = 3 (n(a)n(-a) (28.4.66)

where n(q) is the Fourier transform of the operator of the electron density.

If the ground state of the system is denoted by |¥y) and a complete set of
many-body states |&,,) is inserted between the operators n(q) and n(—q) =
n*(q), we get

I'(q) = Ni S~ [(@oln(q)| @) . (28.4.67)

It is easily seen from (28.4.65) that I'(q) has a sharp peak at g = 0, since
it is exactly true that
I'(qg=0)=N.,. (28.4.68)

The static structure factor S(q) is defined by separating this peak:
I'(q) = Nedg,o + S(q) - (28.4.69)

At finite temperatures, where the spectral representation of I'(q) is

11

I'(q) = N7 e

2
)

(n|n(q) W)

(28.4.70)

the peak at g = 0 is still a sharp Dirac delta peak.
As shown in Chapter 2, the structure factor and the pair correlation func-
tion are related via

S(q)—1= % / [g(r —7/) —1]e" e q(r —¢') (28.4.71)

or inverting the transformation,
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1 . /

A T _ ig-(r—r")
glr—r)—1= N Eq [S(q) —1]e . (28.4.72)

In isotropic systems, after integration over the angles and using the relation-
ship between the electron density and the Fermi wave number we find

AR, sin gr
S(q)—1= B /r [g(r) —1] o dr (28.4.73)
or 5 ,
1= [ P[S(g) - 1] L. 28.4.74
g(r) 2/ [S(a) 1] = = da (28.4.74)

The structure factor of the homogeneous electron gas can be computed in
the Hartree—Fock approximation at T' = 0 by inserting the expression derived
earlier for the pair distribution function. We get

3
3 1
q_<q>7 q<2kF7

Sur(q) = { 4hr 16 (28.4.75)

1, q>2kF.

Since there is no correlation between electrons of opposite spins in the Hartree—
Fock approximation, this form of the structure factor is due entirely to the
Pauli exclusion of electrons with parallel spins.

An alternative derivation of this result starts from (28.4.66). Inserting

(@) = ChyCriqo (28.4.76)
ko

for the Fourier transform of the electron density in second quantization we
find

1 .
_ E E i
F(q) - Ne < Ck'o”ck'+qa/c;rcack—qo'>

k'c’ ko

1
_ i T
- ﬁe < Z Z ck'a’ck’+qa/ck+qacko'> .

k'c’ ko

(28.4.77)

This gives, as it should, the total number of particles at ¢ = 0. Separating this
term, the remaining part is the static structure factor. Only the terms k' = k
and ¢’ = o contribute to it. The state with wave vector k has to be occupied
in the ground state, while the state with k 4+ g has to be empty originally.
When the structure factor is evaluated for a noninteracting Fermi sea, the k
vectors have to be inside the Fermi sphere about the origin, but outside the
Fermi sphere drawn about the tip of vector —q. This region is displayed in
Fig. 28.8.
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Fig. 28.8. The region in k-space (shaded region) that gives nonvanishing contribu-
tion to the structure factor

The restrictions on the k vectors can be expressed in the form
2
S(q) = 5 D_ foler) [1 — folera)] (28.4.78)
e
k

The factor of 2 comes from the spin. When the sum is replaced by an integral,
the volume of the nonoverlapping regions of the displaced Fermi spheres can
easily be obtained using cylindrical coordinates with the axis fixed by the
vector q. The expression for S(q) then reduces to (28.4.75).

28.4.5 Dynamical Correlations Between Electrons

The time-dependent density—density correlation function is a straightforward
generalization of the static correlation function. It is defined by

L(rt,r' ) = NKe<n(r,t)n(r',t’)>, (28.4.79)

where
Ne

n(r,t)=> 6(r—mri(t)), (28.4.80)

i=1
and the time dependence of an operator O is defined as usual in the Heisenberg

picture via ‘ '
O(t) = T/ h Qe 1Mt/ (28.4.81)

For electrons moving in a spatially uniform time-independent potential the
correlation function depends on r — v’ and ¢t — t’, and so

Ne
I(r,t) = ]\1[< > dr—ri(t) + rj(()))> . (28.4.82)

i,j=1
I'(r,t) can be decomposed into two parts:

I'(r,t) = Lseie(r, t) + Ipaic(T, 1) . (28.4.83)
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The first part, the self-correlation function, contains the terms ¢ = j:

Tae(r, 1) < Z S5(r )+ rz(()))> (28.4.84)

and describes how the position of an electron at time ¢ correlates with its
initial position. The terms i # j describe the dynamical correlations between
different particles:

Ne
Ipair(r,t) = ]\1,< Z S(r—mri(t) + rj(O))> . (28.4.85)
1;‘375:]'1

The Fourier transform with respect to the spatial variable is

1
with
Ne
= eriami(®), (28.4.87)
i=1

The time dependence can be given explicitly if a complete set of eigenstates
of the total Hamiltonian are inserted between n(q,t) and n(—q,0). We have

(q.t) = Ni S @oln(g, 1) o) (o (— g, 0) 0)

! (28.4.88)
2 i m—
— FZ|<W()|n(q)|!pm>| e (E EO)t/h.
Taking the Fourier transform with respect to time we find
2 h

The dynamical structure factor S(g,w) is defined in analogy to the static
structure factor by removing the forward scattering (g = 0), elastic [0(w)]
component from I'(q,w):

I'(q,w) = 27 Nedg06(w) + S(q,w). (28.4.90)

Thus!?

S(q,w 727Th

()| @) |* 6(hw — By + Eo), q#0. (28.4.91)

13 Quite often in the literature, the dynamical structure factor is defined without
the factor 27 /Ne.
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At finite temperatures, where the thermal average has to be taken and not
the ground-state expectation value,

2mh 1 _
S(q.w) = 5 D 7 P [Waln(@)| @) 67w — By + E,) . (28.4.92)

The static structure factor is obtained by integrating over frequency:

o0

S(q) = / %‘:S(q,w) : (28.4.93)

— 00

The dynamical structure factor of the homogeneous electron gas can be
calculated more conveniently by starting from the expression where the densi-
ties are written in terms of the field operators. As a natural generalization of
(28.4.39) the dynamical density—density correlation function takes the form

Pt ) = < S0 (e, 0, (r 1)L (0, () (28.4.04)

When the field operators are expressed in terms of the creation and annihila-
tion operators of plane-wave states we find

1
F(qﬂ t) = N< Z Z C-‘];;(T(t)ck,_;'_qo- (t)c-ll;:,-f—qa" Ck/o"> (28495)
€ ko k'o’

for the spatial Fourier transform of the dynamical density—density correlation
function. It is a straightforward generalization of (28.4.77) and could have
been obtained by using

n(q,t) = chy ()0 g0 (t) (28.4.96)
ko

in (28.4.86). We will evaluate it for the filled Fermi sea as the ground state.
Although the Coulomb repulsion is neglected in this approximation, the quan-
tum mechanical exchange is taken into account.

For free electrons the time dependence of the creation and annihilation
operators is

c;rw(t) = c,ereiE’“’t/h7 Cho () = ckae_is’“t/h. (28.4.97)

Only the terms k = k' and 0 = ¢’ give contribution for g # 0, and so
1 (e —
S(a,t) = 7 > foler)[1 = folersq)]eErmonealt/h, (28.4.98)
e
ko

The Fourier transform with respect to time gives
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1 T
S(g:w) = 3 D foler) [1 = folersa)] /el(ﬁwgk_‘g’“*"”/hdt
" o0 (28.4.99)

= 2]7\;j ZfO(c"fk:) [1 — f0(€k+q)] 5(71/_,‘) — €ktq + Ek,) )
¢ ko

At temperature T' = 0, the state annihilated by cg, has to be inside the
Fermi sphere, while the state created by cx4q40 has to be outside. Therefore,
€k+q > €k and the dynamical structure factor is finite only if w > 0. As long
as q¢ < 2kg, both the electron and the hole can be created in the neighborhood
of the Fermi surface with vanishingly small excitation energies. The largest
energy of the electron—hole pair for a fixed ¢ is

h2 (kg + q)? B h2 k3 B hkrq n h2q?

hwmax =
2Me 2Me Me 2Me

=hupg+¢eq.  (28.4.100)

This is attained when k is on the Fermi surface and q lies in the same direction
as k. Hence, as shown in Fig. 28.9, in this range of wave vectors, the electron—
hole pair excitations give a broad continuum that goes from zero to Awmyax.

(8k+q_8k)/sp3 N

0 o S

0 1

Fig. 28.9. The continuum of electron—hole pair excitations in a three-dimensional
free electron gas

When g > 2kp, the continuum of excitations does not start at zero energy.
The lower boundary is obtained when k is on the Fermi surface and q is
oppositely oriented to k. We have

) R -

hwmin = = —h . 28.4.101
2me 2me K vrd (28.4.101)

The dynamical structure factor of the noninteracting electron gas can be
calculated exactly at T' = 0 if the sum over k is converted to an integral. Con-
veniently we choose cylindrical coordinates where the z-axis is in the direction
of q. For ¢ < 2k we find
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3mh hw
— 0 < hw < hvpq —
2 hvpq - < WPq ~ g,
2
S(q,w) = 3mh ke 1— fw—¢q hopq — 24 < hw < hvpq + e ,
dep q hvpq
0 hvpq +¢e4 < hw,
(28.4.102)
while in the range ¢ > 2kp
0 0 <hw <eq — hvrg,

2
S(q,w) = @k—F [1 — (M> 1 gq — hopq < hw < g4 + hvpg,
481:‘ q
0 €qt+ hvpq < hw .
(28.4.103)
Figure 28.10 shows the w dependence of the dynamical structure factor at a
few fixed values of ¢. In all cases a broad, featureless maximum is seen.

S(q,w) S(q,w)
q/k=02 0871 qlk,=1
1 L
0471
0 + + hw/eg 0 + + } hw/eg
0 0.2 0.4 0 1 2 3
S(g,w) S(q,w)
0.4 qlkp=2 qlkp=3
0.2 1
0.2
0 ; hole; 0 ; ; hwleg
0 4 8 0 6 12

Fig. 28.10. Frequency dependence of the dynamical structure factor of the non-
interacting electron gas at four different ¢ values. The density of the electron gas
corresponds to rs = 3

Expression (28.4.99) for the dynamical structure factor is valid also at finite
temperatures if fo(eg) is the finite-temperature Fermi distribution function.
S(g,w) is then nonvanishing for negative frequencies as well. It can be easily
shown with the aid of (28.4.92) that

S(q, —w) = e P S(q,w). (28.4.104)
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The foregoing calculations were done for noninteracting electrons. All the
results are still valid for isotropic electron systems characterized by an effective
mass m*, if the electron mass m, is replaced with m™* in all expressions derived
above.

28.4.6 Dynamical Structure Factor and Scattering Cross Section

It was shown in Chapter 8 that the intensity of the beam diffracted from a
system of identical atoms is proportional to |fx|?, where

fre =) e K (28.4.105)

and K = k — k' is the change in the wave vector of the scattered particle
(photons, neutrons, etc.).

Later, in Chapter 13 and in Appendix E, it was shown in connection with
the study of lattice vibrations that the double differential cross section is
proportional to

S(K,w) = / dteiwtz<e*iK~’"m<t>e1K"‘"<°>>, (28.4.106)

where K = k — k' and hw = FE; — Fy, ie., the K and w variables of the
measured dynamical structure factor are related to the change in the wave
vector and energy during the scattering process.

It follows from the Van Hove formula that this result is generally valid for
scattering on solids whenever the interaction between the incoming radiation
and the particles of the medium located at r,, can be given by a potential

Hine = »_V(r—mm). (28.4.107)

Then the double differential cross section is proportional to the spatial and
temporal Fourier transform of the density—density correlation function, which
is exactly the dynamical structure factor discussed above:

d?o
df2de

x S(K,e/h). (28.4.108)

If the system has sharply defined excitations, then sharp peaks appear at
the corresponding energies in the dynamical structure factor, and hence in the
scattering cross section. Conversely, sharp peaks in the dynamical structure
factor imply the existence of well-defined excitations, as has been seen for
phonons and magnons. In contrast to this behavior, when a beam is scattered
by a noninteracting electron system, no sharp peaks appear in the energy
dependence. The broad peak in the dynamical structure factor and in the
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energy distribution of the scattered beam is due to the fact that the energy of
the created electron—hole pair can vary in a wide range for a fixed wave vector.
We will see later that the dynamical structure factor is strongly modified by
the interaction. When the interaction is strong enough a relatively sharp peak
may appear indicating that relatively well-defined collective excitations are
formed.

28.4.7 Magnetic Correlations

In an external magnetic field, the energy and the number of up- and down-spin
electrons are no longer the same. Spin polarization also occurs when the spin-
rotation symmetry is broken spontaneously. In such systems the spin-resolved
density—density correlation functions defined in (28.4.43) or the spin-resolved
pair distribution functions defined in (28.4.45) have to be studied. It follows
from (28.4.46) that for spatially uniform systems

NeNg’

Joor(r —1'). (28.4.109)

Tyo(r—7') = S 2 S(r—7r")+
n

e €

The polarization can be conveniently characterized by the quantity

NeT — Nel ny—n|
— — , 28.4.110
‘ Nep +Nep  mp+my ( )

that is
N, N,

IO, m=gp

The spin-resolved density—density correlation functions can then be written
as

ny = —<(1-0). (28.4.111)

it ) = Sty (6) N,

2
ry(r—r)= 1;7%(7" —7')+ (1?) %gu(r —r'),

(28.4.112)
/ 1 - CQ
Iij(r—r') = 1 ng(r,,,)
/ 1 - CZ
Lyy(r—r') = — Vgu(T*T)
and
1 2 1-¢\?
glr —7') = <J2FC) gri(r —r') + (2C> g (r—r')
(28.4.113)

1— 2
+ 4C 911 (r = 7))+ g1 (r —7")].
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In order to study dynamical correlations in a magnetically polarized sys-
tem, the spin-resolved dynamical density—density correlation functions

Facr’ (Ta ta ’I”/, t/) = % <7’La- (7’, t)na/(r/7 t/)>
° (28.4.114)

= % <'(&J;(’I"7 t)qﬁg(’f', t)’lZJj;, (’I"/, t/)’@[}g, ('r/, t/)>

have to be studied. In a spatially uniform system, the spatial Fourier transform
is

I'5or(q,t) = <’ng(q,t)ng/(—q,0)>

f )
< Z ko (1)t g0 (t)ck'+qa"3k/a'> .

kk’

(28.4.115)

Zl= 2=

The dynamical structure factor is obtained by separating the term g = 0,

Neo’ Neo"
Fao”(qv t) =N,

g 800+ So0r(q.t). 28.4.116
Ne Ne Qa0+ (q ) ( )

The g # 0 term describes the propagation of an electron—hole pair created at
t = 0. It is the probability amplitude of finding the pair at a later time ¢. For
noninteracting electrons, this contribution is finite only when the electrons
have identical spins and k = k. Taking into account that the hole is inside
the Fermi sea while the electron is outside,

1 .
Sa(f’ (q7 t) = 600’ ﬁ Z fO (Eko) [1 - fO (Ek—&-qa)} el(skv_sk+qa)t/h ) (28'4'117)
¢k

from which we get

27h
SJU’ (qvw) = 50’0’NL Z fO(gka) [1 - fO(‘skJrqo’)](s(hw - 5k+qcr + 5k:a)
¢k

(28.4.118)
for the Fourier transform with respect to time.
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Electronic Response to External Perturbations

The transport and optical properties of solids are due primarily to the elec-
tron system and to a lesser extent to the ions. These properties were discussed
in Chapters 24 and 25 without taking the interaction between electrons into
account, although its role may be important in some cases. In this chapter we
will study the response of the interacting electron system to external pertur-
bations, to an applied electromagnetic field. We will consider first the effect of
an external scalar potential and will derive general expressions that relate the
dielectric function to the density—density response function and the dynami-
cal structure factor introduced in the previous chapter. This will then allow
us to get approximate expressions for the frequency and wave number depen-
dence of the dielectric function. The study of the redistribution of electrons
induced by an external charge will lead to a proper description of screening in
metals. It will be shown that the optical conductivity can be calculated from
the current—current correlation function. Finally, by studying the response of
the electron system to an external magnetic field, we will be able to derive
an approximate expression for the wave number- and frequency-dependent
susceptibility which is the magnetic analog of the dielectric function.

29.1 The Dielectric Function

When a solid is exposed to an external electric field varying in space and time,
the relationship between the electric displacement D and the electric field F
is not local in space, though it is causal in time. The permittivity must then
be expressed in an integral form. The relationship

¢
Dy(r,t) = /dr’ /dt’ eap(r — 7't —t")Es(r' 1) (29.1.1)
-0

given in (16.1.50) is valid for isotropic systems. In a crystalline material we
have

J. Sélyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9 2, (©) Springer-Verlag Berlin Heidelberg 2010
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t
Do (r,t) = Z/dr’ /dt'eag(r,’r/,t —tEg(r',t'), (29.1.2)
B —0

where e,5(r,7',t — t') depends on 7 and r’ separately, not just on their dif-
ference. Hence its Fourier transform contains two momentum variables:

caplq, g, t—t') = //dr Ar'eqp(r, v’ t —t')e 1 ame1a T (29.1.3)

However, if the position vectors are written as » = R, + u and ' = R,,, + u’
where w and «' are in the primitive cell around the lattice points R,, and
R,,, respectively, the dielectric tensor depends on u, u/, and R,, — R,, only,
owing to the discrete translational invariance of the crystal, and ¢’ may differ
from —q by a reciprocal-lattice vector G. Taking the Fourier transform with
respect to time the relationship

D, (q,w) = ZZeaﬁ(q, —q—G,w)Es(q + G,w) (29.1.4)
G B

is obtained between the Fourier components of the fields. The terms with
G # 0 take into account the variations of the fields over atomic distances
and yield the so-called local-field corrections. These corrections are usually
small and can be neglected, so that the system can be assumed to have full
translational symmetry. We then arrive at the usual expression

Dalq,w) =Y €ap(q,w)Ep(q,w). (29.1.5)
5

But, even after this simplification the dielectric function depends on the direc-
tion of propagation of the electromagnetic field relative to the crystallographic
axes. In what follows we will forget about this and will consider the properties
of isotropic materials only.

Decomposing the electric field and the electric displacement into compo-
nents parallel and perpendicular to the direction of q, their relationship in the
general case can be written as

D”(qaw) = GH(Q,W)EH(Q,UJ) ) DL(q,W) = €L(qaw)EL(qaw)? (2916)
which means that

q-E(q,w qx E(q,w
D(qaw) = 6|(q7("})q(2)q + el(qaw)qQ() Xdq, (2917)

i.e., the permittivity tensor has the general form

eaﬁ(tbw) = eH(qaw)Cja(jﬁ + eJ_(Q7w) (6116 - (ja(jﬁ) ) (29-1-8)
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where . is the o component of the unit vector q that points in the direction
of q. The dielectric function is related to the longitudinal component ¢|(q,w)
by

&(q,w) = ¢(q,w)/eo . (29.1.9)

The dielectric function has been studied previously in Chapter 16 in the frame-
work of the Drude model. The results derived there are, however, valid only
in the long-wavelength limit, owing to the approximations inherent to that
model. A better approximation will be applied here with the primary aim of
studying the role of the electron—electron interaction. This will help us to get
a better understanding of how electrons influence each other.

29.1.1 Dielectric Response of the Electron System

In order to obtain the dielectric function, we will study what happens in an
originally homogeneous electron gas with a neutralizing background when ex-
ternal charges with a spatially inhomogeneous, time-dependent charge density
Pext (T, 1) are introduced into it. The external charge is related to the electric
displacement via Maxwell’s third equation (Gauss’s law):

div D(r,t) = pext(r,1) . (29.1.10)

The Coulomb interaction between the external charges and the electrons of
the system gives rise to a redistribution of the electrons and induces a charge
density pinda(7,t) in the originally homogeneous and neutral system. The elec-
tric field F is generated by the total charge density, the sum of external and
induced charges,

p(r,t) = pext (T, ) + pina(T, 1), (29.1.11)

and their relationship is given by

eodiv E(r,t) = p(r,t). (29.1.12)
This field is the negative gradient of the scalar potential ¢(r),

E(r,t) = —grad p(r,t). (29.1.13)

In analogy to this relationship an external potential eyt () can be introduced
that is generated by the external charge. It is defined by

D(r,t) = —eg grad pext (7, ) . (29.1.14)
Taking the Fourier transforms of the fields and potentials we find
E(q,w) = —iqp(q,w), D(q,w) = —i€0qpext(q,w) . (29.1.15)

It follows from (29.1.5) that a simple relationship exists between the two
potentials:
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€
0(q,w) = et (q,w) = Pext (G, w) - (29.1.16)

 e(qw) er(q,w)

Substitution of (29.1.13) and (29.1.14) into (29.1.12) and (29.1.10), respec-
tively, gives

€0 V2 QO(T‘7 t) = _p(rv t) ) (29 1 17)
€0 V2 Pext (’I‘, t) = —Pext (T, t) .

When these relationships are written for the Fourier transforms, they reduce
to

c0q’p(q,w) = p(q,w),

, (29.1.18)

€0q" Pext (@, W) = pext (q, W) -

Comparison of these equations with (29.1.16) yields
_ et (@, 29.1.19
p(qvw) €r(q’w>p t(q w) ( )

which can be written as
1 in 9
_ Aaw) ) palaw) (29.1.20)
&(q,w)  pext(q,w) Pext (q,w)

If the external charge is expressed in terms of the external potential using

(29.1.18), we find
L L pwlew) (29.1.21)
6r(qv w) 6(J(]2 @ext(qa (.U)

It is often more convenient to use the external, induced, and total num-
ber densities, next(r), nina(r), and n(r), respectively, instead of the corre-
sponding charge densities, where p;(r) = —en;(r). Similarly, the quantity
Vi(r) = —ep;(r) will be used instead of ¢; for both the external and the
total potentials. When (29.1.17) is rewritten in terms of these quantities, the
Fourier transforms satisfy the relations

e? 4me?
V(q,OJ) = ﬁn(qﬂ»d) = Tn(q7w)7
o T (20.1.22)
e _ dme
Vext(q,w) = @next(q,w) = anext(q;w)~
The dielectric function can then be expressed as
€? Nina(q,w) 472 nina(q,w)

=1+ ———"—==1+ — 29.1.23
Er(qvw) 50(12 ‘/ext(qaw) q2 ‘/ext(qaw) ( )

We introduce the quantity I7(q,w) defined by
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Nind(q, w) = 11(q, w)Vexi (g, w) . (29.1.24)

It has a simple physical interpretation. It tells how the electron system re-
sponds to the external perturbing potential and how the spatial distribution
of electrons is modified in the presence of Vix(g,w). For this reason the quan-
tity II(qg,w) is called a response function. The inverse of the dielectric function
can be written in terms of it as

1 4>
—— =1+ —
&(q,w) q

Thus, the calculation of the dielectric function reduces to calculating this
response function.

I(q,w). (29.1.25)

29.1.2 Density—Density Response Function

The function I7(q,w) was defined by (29.1.24) as the proportionality factor
between the charge induced in an interacting electron system and the external
perturbing potential. The Hamiltonian of this perturbation can be written in
analogy to (28.1.8) in the form

Hi(t) = ZVext(ri,t) = /Vext(r,t)n(r) dr. (29.1.26)

Hence the potential couples to the electron density. In terms of the Fourier
transforms we have

Hu(t) = % > Ve t)n(—q). (29.1.27)

If the external perturbation is weak and the induced density ninq(q,w) is
proportional to the external perturbation, IT(g,w) can be calculated using
linear response theory as a generalized susceptibility. Since the external po-
tential couples to the density and the system responds by modifying its den-
sity, the quantity to be considered, IT(q,w), is the Fourier transform of the
density—density response function, also known as the retarded density—density
correlation function,

(vt —t) = —%H(t - t’)< [n(r,t),n(r',t')] _> 7 (29.1.28)

that is

1

n(g,w) =~ / d(t—t’)ei“(t_t/)_5(t_tl)%<[n(q,t),n(—q,t’)]7>, (29.1.29)
0

where ¢ is a positive infinitesimal. As discussed in Appendix J [see (J.1.53),
(J.1.54), (J.1.55), and (J.1.56)] it ensures the adiabatic switching on of the
perturbation and hence the correct analytic properties.
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The thermal average can be calculated in terms of the matrix elements
between the complete set of many-body eigenstates |¥,) of the Hamiltonian
that includes the interaction between electrons but not the external pertur-
bation. Using the completeness relation we obtain the spectral representation
of the response function:

e BEn
@l 1) (ol ) 2)

i
H(rr',t—t) = =50t —t) > ——

mn

— (T () W) (T I, 1) | ) | - (20.1.30)

The time dependence of the operators can be explicitly given in terms of the
eigenvalues F,,. Interchanging the labels n and m in the second term, the
Fourier transform of the response function is

e PEn e BEm n n(—
II(q,w) = 12( . ) (U |n(@) W) (Wi I (—q) [P

Vs 2 Z fw = B + En +10
1 (e 0B o B\ (@, |n(q)|P,,)[?

1 B _ 29.1.31
v%( Z Z )m-Em+En+i5 | !

It will prove convenient to consider the spin-resolved response functions,
i.e., the response of electrons with spin ¢ to a perturbation that couples to
electrons with spin ¢’. For this we define the response function

My (7t — 1) = 7%9(15 - t/)<[n0(r,t),ngz (r’,t’)]_> (29.1.32)
and its Fourier transform with respect to the spatial variable,
Moo (gt — ) = —-0(t - t')i<[na(q t),n0r(—q,t")] > (29.1.33)
) h V ) 9 ) _ />

where the second-quantized form of the Fourier transform of the density of
electrons with spin o is

No(@,t) =Y chy () g0 (t) - (29.1.34)
k

Thus I1,,/(q,t — t') describes the propagation of an electron—hole pair with
momentum q and spin ¢’ that is created at time ¢’. It gives the probability of
finding this pair at a later time ¢ with the same momentum and spin o. This
propagation can be represented pictorially by the diagram shown in Fig. 29.1.

In the simplest case, when the electron—hole pair does not interact with the
other electrons of the Fermi sea during its propagation, we get the response
function I1j of free electrons. In reality, the electron and the hole can take part
in a variety of scattering processes due to electron—electron interaction. This
is represented in the diagram by the shaded circle. Although strictly speak-
ing the Feynman diagram technique can be used only for the causal Green
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Fig. 29.1. Diagrammatic representation of the density—density response function
as the propagation of an electron—hole pair

functions, diagrams can help to visualize the contributions to the retarded
response function as well. Figure 29.2 shows a few low-order processes in the
propagation of electron—hole pairs. The wavy lines represent the interaction.

o L D
> L D

oo e > <o
< o>

Fig. 29.2. Low-order scattering processes that can occur during the propagation of
an electron—hole pair

29.1.3 Relationship to the Dynamical Structure Factor

The dielectric function is related not only to the density—density response func-
tion but also to the dynamical structure factor via the fluctuation—dissipation
theorem. To show this we start from (J.1.90). Applying this relation to the
dynamical structure factor, taking into account that it is normalized by the
number of particles and not by the volume, we obtain

2h |4

or, if IT(q,w) is expressed through the dielectric function via (29.1.25),

2h \%4 (]2I 1

- . 29.1.36
1 — e—Bhw N 4ne2 o e(q,w) ( )

S(q,w) - -
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The retarded response function II being analytic in the upper half of the
complex w plane, the real and imaginary parts satisfy the Kramers—Kronig
relation

o0
1 Im I7 !
Rell(q.w) = ~p [ TI@) 4
T w —w

(29.1.37)
1 N, S (q w') ahu
= ’ 1—e P du' .
orh V. w—w ( ¢ ) n
Taking both the real and imaginary parts, the full response function can be
written in the form

i% r S(Q7w/) (
2rh V w—w' 416

— 00

II(q,w) = —e ) du’ (29.1.38)

Substituting (28.4.92) into this expression we recover the spectral representa-
tion of the response function given in (29.1.31).
Since S(g,w) satisfies (28.4.104), the response function can be written as

1 1
1_ ﬁhw /
(g,w) = 2T hV /Sq, )( ¢ )[w Wil wtw +1id

(29.1.39)

Inserting this into (29.1.25) we get
1 Aré® 1 N, [ ,
-1 Fhe 2 Ve —Bhw
alqw) @ 2mhV / e )
0

« 1 1 dw’
— w.
w—w +10 wt+w +1id

(29.1.40)

At T = 0, where the dynamical structure factor is given by (28.4.91), we find

1 4mé? 1 2
—1 0z w,,
oy =1 L @) )
i 1
— 29.1.41
x {M—E Y Eo+1 hw+Em—E0+i<5} (29.141)
47T€ 1 2(En, — Eo)
W
7 v 2@l G Ty

29.1.4 Self-Consistent Treatment of the Interaction

The response function IT(g,w) has to be calculated for an unperturbed system,
in which, however, the internal interactions between the constituents have to
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be taken into account in their full complexity. This requires to solve a compli-
cated many-body problem. The difficulties can partially be circumvented by
applying a self-consistent approach.

The full potential felt by the electrons is not the external potential @ey but
© = ext/€r weakened by the dielectric function. Similarly, for the quantity
V = —ep we have V' = Vi /€. The internal electric field is the negative
gradient of this potential. Since €, is related to the internal dynamics of the
electron system, the weakening of the external potential inside the system
can be interpreted as arising from the screening effect of the dynamically
rearranged charges. For this reason ¢ and V are called screened potentials.

When Vey is replaced in (29.1.23) with Ve, we have

1 4e? 1 npalq,w)
=1+ , 29.1.42
e(q,w) ¢ &lqw) Vigw) ( )
from which after simple manipulations we obtain
47Té2 Nind (q7 UJ)
&(q,w)=1-— —_— 29.1.43
(g.) ? Vigw) ( )
If the function II(q,w) is defined by
Nind(q,w) = ﬁ(q,w)V(q,w) (29.1.44)
as the response to the screened potential, the dielectric function is
4mé? ~
(g w)=1— 7; I(q,w). (29.1.45)

Comparison with (29.1.25) gives the following relationship between II(g,w)
and I1(q,w):

_ (g, ) _ Il(q,w)
M) =17 (4ré /@) (q,w0)  &(@w)’ (29-1.46)

and the inverse dielectric function can be written as

=1+ Uett(q,w) I (q,w) (29.1.47)

e(q,w)
with
(4me? /q?) 1 4rme?

Uenr(g:w) = — ) ae  a@e) & (29.1.48)

Comparison of (29.1.25) with (29.1.47) shows that the dielectric properties
of the interacting electron system can be described in two ways. Either the
bare Coulomb coupling 47é2/¢? and the full response function I7T is used, or
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the Coulomb interaction is assumed to be screened and then only the response
II to the screened potential has to be considered. This latter approach is
more convenient because the screened interaction is short ranged and does
not contain the singularities characteristic of the Coulomb potential.

The self-consistent approach can be visualized by the diagrams used to
represent the propagation of electron—hole pairs. Let us remark that some of
the diagrams seen in Fig. 29.2 can be separated into two disjoint parts by
removing a single interaction line. The initial point corresponding to the op-
erator n(g,t) and the final point corresponding to n(—q,t’) appear in the two
distinct pieces. These are called reducible or improper diagrams. A diagram
which cannot be broken into unconnected parts by cutting a single interaction
line is called irreducible or proper. Such processes are shown in Fig. 29.3.

< <J D> <>

Fig. 29.3. Irreducible electron—hole propagation processes which do not fall into
distinct parts by cutting a single interaction line

The reducible diagrams (some low-order ones can be seen in Fig. 29.2) can
clearly be constructed by connecting irreducible diagrams by interaction lines
in a sequence. If the sum of the contribution of all irreducible diagrams is

denoted by I1(q,w), then the full response function is the sum of a geometric
progression:

(q.w) = f(g,w) + ﬁ(q,w)4’;f T(q.w)

~ 4dme? ~ 4me? ~
+ H(q,w)ﬁﬂ(q,w)?ﬂ(qw) 4+ (29.1.49)
(q,w)

T - (42l (qw)

Comparing this expression with (29.1.46) we see that I appearing in the self-
consistent approach is in fact the contribution of the irreducible diagrams.!
A self-consistent potential can also be introduced for Bloch electrons
interacting with a general potential U(q). The internal dynamics of the system
gives rise to screening and the effective interaction between the particles is

Uett(g,w) = Ula) (29.1.50)

1 U(g)(q,w)

! For this reason IT is sometimes called irreducible polarization function or
irreducible polarization insertion.
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The relation between the full response function and the irreducible one is then

__ Hew)
1-U(q)ll(q,w)

1I(q,w) (29.1.51)

29.2 Dielectric Function of the Uniform Electron Gas

Having written down general expressions for the dielectric function and the
response function I7(g,w) of an interacting electron system, we will now at-
tempt to compute its explicit form, its ¢ and w dependence. The full panoply
of many-body theory would be needed if the electron—electron interaction is
to be taken into account in its complexity. A reasonable approximate form
can be obtained much simpler in the self-consistent treatment when the irre-
ducible part of the response function, I7(q,w), is approximated by I1y(q,w),
the response function of noninteracting electrons. This latter quantity can
be evaluated exactly and can be written in a closed form. Before presenting
this result it is useful to get acquainted with a simple semiclassical approach.
Finally corrections beyond the self-consistent approach will be considered.

29.2.1 Thomas—Fermi Approximation

When the electron system is exposed to a static (time-independent), spa-
tially slowly varying external potential, both the induced charge and the full
(screened) potential V(r) are also slowly varying in space. We may assume
in the spirit of the semiclassical approximation that a local, spatially varying
energy €x(r) can be defined, which is the bare energy of an electron shifted
by the potential at the position 7 of the electron:

Fe(r) = e+ V(r). (29.2.1)

This is shown schematically in Fig. 29.4.

gk("')

Fig. 29.4. Local displacement of the electron energy in the presence of a spatially
slowly varying potential
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Since the chemical potential is constant in space in thermal equilibrium,
the Fermi momentum has to vary in space together with the spatial variation
of the potential V(r) in accordance with the relation

W2k (r)
_ , 929.2.2
p= " D V() (20.2.2)
It then follows that
2Mee Vir)Y?
hp(r) = ¥ [u— V(r)'? = ke [1 - ()} : (29.2.3)

The electron density has to exhibit a similar spatial variation since accord-
ing to (16.2.25) there is a unique relationship between the electron density and
the Fermi momentum:

ne(r) = = —
o(r) 32 32 ]
For weak external potentials a first-order expansion,

ki 1_%@ _ﬁ_mekl:
2 p

_ kp(r) R [1 _ V(T)]M_ (29.2.4)

ne(r) = (29.2.5)

~ 3n2

T 3w2 mw2R2 (r),

gives satisfactory results. One can recognize in the coefficient of V(r) the
electronic density of states at the Fermi energy, and so the induced electron
density is given by

Nind (1) = —p(ep)V (r). (29.2.6)

This result has a simple interpretation. When the external potential shifts
locally and rigidly, by the same amount, all electron energies, the number
of states that are pushed above the chemical potential and become empty is
exactly equal to the number of states in a range of width V(7) around the
Fermi energy.

The foregoing calculation was done at temperature T' = 0. The same result
is valid at finite temperatures, too. To show this we make use of the fact that
at finite temperature the occupation of electron states is given by the Fermi
distribution function fo(gx (7)), and the local electron density is

no(r) = ész()(ac(r)). (20.2.7)

The change in the electron density due to the external perturbation, i.e., the
induced electron density, is given by the difference

ina(r) = 7 3 Jo(Elr)) — 3 3 folew)
1’“’ ko (29.2.8)
- @ Z/dk [foEr(r)) — foler)]-
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If the external potential is weak compared to the Fermi energy, the function
fo(Ek(r)) = fo(er, +V (7)) can be expanded in powers of V(7). To linear order
in the potential we find

Nind(T) = (2;)5 ;/dk afaof(ik)‘/(r). (29.2.9)

If the integral over k is converted to an integral over energy and the tempe-
rature-dependent corrections in the Sommerfeld expansion [see (16.2.77)] are
neglected, the leading term in the expansion gives precisely (29.2.6).

When the Fourier transforms are used,

nind(q) = —p(er)V(q) - (29.2.10)

Thus in this approximation, known as the Thomas—Fermi approximation,® a
g-independent response function is obtained:

1I(q,w) = —p(er) (29.2.11)

which means that the electrons respond locally to the slowly varying external
perturbation. By substituting this into (29.1.45) the dielectric function reduces
to

47é?

2
(@) =1+ = 7p(er) = 1+ q’qf—f : (20.2.12)
where the Thomas—Fermi wave number grrp has been introduced with the

definition

gty = 4mép(er). (29.2.13)

Its physical meaning will become clear later on.

This result for the long-wavelength limit of the dielectric function is a good
approximation for metals. The singularity at ¢ = 0 is simply the consequence
of the fact that a homogeneous electric field cannot be maintained in metals
in thermal equilibrium.

29.2.2 The RPA

The Thomas—Fermi approach that relies on the semiclassical approximation
is valid only for long-wavelength perturbations. It is in this limit that IT
is equal to the negative of the density of states at the Fermi energy. For
shorter wavelengths a better approximation is needed. When working with
the screened potential and the response to it, one might argue that screening
takes into account at least in part the interaction between electrons; moreover,
the screened interaction is much weaker than the bare Coulomb interaction
and short ranged.? Therefore, replacing IT by its zeroth-order expression, ITj,

2 1. H. THoMas, 1927 and E. FERMI, 1928.
3 As we will see, the 1/¢* singularity of the Fourier transform of the Coulomb
interaction vanishes when the screened interaction is considered.
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might be justified. In this approximation, which for historical reasons is called
the RPA,* we have

Ho(q,w)

M) = T (a2 ) (g )

(29.2.14)

i.e., the full response is a geometric series whose first term, Iy, corresponds
to the free propagation of an electron—hole pair, without scattering processes.
The diagram corresponding to Iy is a simple bubble, also known as the po-
larization bubble. The higher order terms correspond to a special subset of
all possible scattering processes. The electron—hole pair is annihilated in an
interaction process creating another electron—hole pair. In the diagrammatic
representation, the RPA corresponds to a series of bubbles shown in Fig. 29.5.

O+ O e

Fig. 29.5. Graphical representation of the propagation of an interacting electron—
hole pair in the RPA

The effective interaction obtained in this approximation,

Uett(q,w) = Ula) (29.2.15)

- 1-U(q)Iy(q,w)’

can be represented by the diagrams depicted in Fig. 29.6. An infinite series
of bubbles appears in the intermediate states. Thus, in the RPA, the effective
interaction is mediated by subsequent electron—hole pairs.

3 3

Fig. 29.6. Processes contributing to the screening of the interaction U in the RPA

When this approximation is applied to the dielectric function, it follows
from (29.1.44) and (29.1.45) that in the RPA

Nind(q,w) = o(q,w)V(q,w) (29.2.16)
and i
e

P (qw) =1- o ho(@,w). (29.2.17)

4 Acronym for random phase approximation.
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29.2.3 The Lindhard Dielectric Function

We will now show that Iy can be calculated exactly in closed form and a
simple expression can be obtained for the dielectric function in the RPA. The
formulas will be derived in two ways: first using elementary considerations of
quantum mechanics and then applying the formalism of many-body theory.
At a later stage, the results will be generalized to Bloch electrons moving
through the periodic potential of the lattice.

Since the Fourier components belonging to different ¢ and w values are
not mixed in the dielectric response, it is sufficient to consider the change in
the electron density caused by a potential

V(r,t) = % [V(q)ei(q'r_m)e& + V*(q)e_i(q""_m)eét} (29.2.18)
that varies periodically both in space and in time. The infinitesimally small
positive § ensures the adiabatic switching on of the perturbation.

We will consider a plane-wave state w,(co) (r) = e*7/\/V of the unperturbed
system and study its time evolution due to the disturbance. The perturbed
wavefunction ¥ (r,t) can be expanded in terms of a complete set of states. It
is convenient to choose the eigenfunctions of the unperturbed Hamiltonian as
this basis set, which in our case means an expansion in terms of plane waves:

Y1) = o By (r)e iowt/n, (29.2.19)
=

In the leading, linear order, the perturbing potential mixes the state ’(/J,(co) only

with the states 1/1,(3 q and 1/},(607) a The perturbed wavefunction can therefore be
looked for in the form

Ur(r,1) = 07 ()R g g (DU g (e w1

© ' (29.2.20)
+ ak_q(t)wqu(r)e_ls’“*qt/h .
The coefficient of the first term was chosen to be unity, since the coefficients
ay (t) will be evaluated in lowest order of perturbation theory.
Using (G.2.7) we find

t
i .
Aktq(t) =~ / (U)o Ha () [ el Crramewits/h gy, (29.2.21)

where the perturbing Hamiltonian H;(¢) has the same form as (29.1.26),
except that here the screened potential V' has to be used instead of V.

If the space and time dependence of the perturbing potential is given by
(29.2.18), the integration over the time variable ¢; can be performed. We get
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1 V( ) i(€rtq— sk)t/h —iwt 6t

t 29.2.22
ktalt) = 7 hw — egyq + ek +10 ( )
Similar calculation yields
ot
i i _
anmalt) = —5 [ (O ey
(29.2.23)
1 V*(q)ei(ek,,q—ek)t/ﬁeiwteﬁt
TV —hw—cep g tertio
The perturbed wavefunction can thus be written as
i(g-r—wt) 0t
_ o (0) N —ient/h 1 Vi(gq)e e
t) = k 14+ —
wk(ra ) ’L/)k (T)e + V hw — hiq +en +15 (29 , 24)

1 V*( ) —i(q~r—wt) ot
R p—— qat+ek+io |’

The contribution of electrons with momentum hk to the induced electron
density is

mina(k,r, ) = [[oa(r, 0" = o ()] - (29.2.25)

The total induced electron density is obtained by summing over the occupied
states

mina(r ) =2 > [ 0" = [ ()] (29.2.26)

|k|<kp

The factor 2 comes from the two spin orientations. Inserting (29.2.24) into
this expression, taking into account the normalization factor 1/ V'V of plane
waves and keeping only the terms linear in V(q), we find

V*( ) —i(gr—wt) ot N V(q)ei(q'r_“’t)eét
hw—éepyqgter—10 —Tw—ep_g+ep—1id

Nind (7, 1) = V2 Z

|k|<kp

V(q)ei(q‘r—wt)eét V*(q>e—i(q-r—wt)e(5t

— + |-
hw—éeprqgter+i0  —hw—ep_q+er+1id

+ (29.2.27)

The Fourier components with both g and —q [V*(q) = V(—q)| appear in
the above expression due to our choice (29.2.18) of the potential. When only
the terms proportional to V(q) exp(ig - r) are collected,

2 V(q)ei(q‘r—wt)eét V(q)ei(q‘r—wt)eét
V2 Z —ﬁw—&‘k_q+€k—i5 M—€k+q+€k+i6 '
(29.2.28)
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If the summation variable k is changed in the first term to k+gq, the state with
k + q has to be occupied. This condition can be expressed by an appropriately
chosen Fermi distribution function. We then get

fO 5k:+q
n r,t)
1nd V2 Z — —en + Ehtq — i

) i(q-rfwt)ezst

29.2.29
foler)V(g)el(ar—0et i

M*€k+q+5k+i(s

+

It follows from this expression that the Fourier transform of the induced
density is

2 Jol(er) = fo(ertq)
v hw—sk+q+ek+16

Nind (g, w) = V(q). (29.2.30)

Comparison with (29.2.16) gives

_ 2 foler) — fo(er+q)
To(qw) = Vv hw—&‘k.;_q—ké"k—l—i(s'

(29.2.31)

Note that the term i in the denominator originates from the factor e®

describing the adiabatic switching on of the external perturbation, and it
ensures the correct analytic properties of ITp(gq,w) and of the dielectric func-
tion in the complex w plane. By inserting this expression into (29.2.17) we
find

4me? 2 fo(er) — foleriq)
q? v m_€k+q+5k+16

e(gw)=1- (29.2.32)

This is known as the Lindhard dielectric function,® and the response function
IIy(q,w) itself is called the Lindhard function.

29.2.4 Alternative Derivation of the Lindhard Function

The response function I of the noninteracting electron system and hence the
dielectric function can be calculated even more simply in second quantization.
For this we evaluate the spin-resolved generalization of the response function,
the quantity I1,,+ defined in (29.1.33), for noninteracting electrons.

The first term of the commutator in (29.1.33),

> <Clg(t)0k+qg(t)021+qa/(t’)cklc,/(t’)> : (29.2.33)
kk’

describes the propagation of an electron—hole pair from time # when it is
created until time ¢ when the pair is annihilated. Apart from the trivial case

5 J. LINDHARD, 1954.
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g = 0, the hole with momentum k' and spin ¢’ created at ¢’ has to be filled
at t by the electron with momentum k and spin o. Hence only the terms with
k' = k and ¢’ = o give finite contributions. The electron-hole pair can be
created only if the state with wave vector k is occupied in the ground state,
while the state with k+ g has to be empty. These requirements can be written
concisely by the Fermi distribution functions fo(egs) and 1 — fo(€x4q0). The
time dependence of the operators can be evaluated using (28.4.97). Thus we
find that

3 <c£0(t)ck g o () (t’)> (29.2.34)
kk’
— Sy Z eiska(tft’)/hefisuqa(tft’)/hfo(gka) [1 _ fo(gkﬂg)} )
k

As a retarded response function (the retardation is ensured by the Heaviside
step function) the Fourier transform I7°(q,w) with respect to time has to
be analytic in the upper complex half-plane. This can be achieved by incor-
porating a factor exp(—d|t — ¢'|) with infinitesimal 6, which is equivalent to
switching on the perturbation adiabatically. The Fourier transform is then

/0(t )it t) ik —har) (=) R =0lt=| (4 _ ¢/

_ /ei(hw—akJqu—i—ek(,+i6)(t—t')/h d(t —#) (29.2.35)
0

B in
hw — €ptqo + €ko + 10

Since the response function is defined in (29.1.33) with a prefactor —i/hAV,
the first term of the commutator yields

1
— €k+qo + Eko + i0 .

%600/ Zk: fo(eko) [1 = fo(ektqo)] — (29.2.36)

Analogously, the second term of the commutator,
S~ (g () )k (Ve 0 (0) - (20.2.37)
kk/

again gives finite contribution only if ' = k and ¢’/ = o. However, now the
state with quantum number k has to be empty while the state with wave
vector k 4+ q has to be occupied. Thus,

> (b saor Voo () (Vs g (1)) (20.2.38)
kk’

= 0y0 Z ei5k+qa(t’7t)/he*15ka(t’ft)/hfo (5k+q0) [1 _ f0(5k0)] .
k
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Multiplying it with the step function and incorporating the factor that
describes the adiabatic turning on, the Fourier transform of this expression
with respect to time gives

ih
— €ktqo T ko + i’

Ooo Z fo(ektqo)[1 = fo(ero)] e (29.2.39)
%

Multiplying by the prefactor —i/AV and subtracting the contributions of the
two terms of the commutator, we find

1 fo(eko) = fo(Ek+qo)

oo (q,w) = 060r — — 29.2.40
00 (@) % - hw — €ktgo + Eke + 16 ( )

If the single-particle energies are spin independent, summation over the spin
variables gives back the Lindhard function for the polarization bubble

2 Jfoler) — fo(er1q)

11, = 29.2.41
and the usual form of the Lindhard dielectric function is recovered:
4me? 2 —
elqw) = 1— TE2 5~ Jolow) = folGk+a) (29.2.42)

2V = ﬁw—&k+q—|—5k—|—i5'
By a change of variables k — —k — g in (29.2.39) the second term of the
commutator could be written in the form
ih
hw + €ktqo — Eko +10

50’0’ Z fO(Eka) []- - f0(5k+qa)] (29243)
k

since the electron energy is an even function of the wave number. Multiplying
this expression by —i/AV and combining it with (29.2.36) the spin-resolved
response function can be written as

HOO’O'/ (qa w) = 600/% zk: f0(€ka) [1 - f0(5k+qa)] (29244)

1 1

X — .
|:hw—€k+qo-+€kg— +16 hbd+5k+q0' _Eka'—’_ia

The term that contains the product of the two Fermi distribution functions
gives vanishing contribution. This can again be shown by a change of variables
k — —k — q. While the product of the Fermi distribution functions remains
unchanged, the expression in the square bracket changes sign; thus, there is
complete cancelation when the sum over k is performed and the expression
then simplifies to
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1
HO(TO" (q, w) - 60’0” V ; fO(EkU) (29245)
« |: 1 1 :l
hw — €ktqo + ko +10  hw + Egtqo — ke +10 |

while the Lindhard dielectric function can be written as

47re 2
algw)=1-—73 Z folew) (29.2.46)

1 1
X — .
[hw—sk+q+5k+i§ hw+€k+q—€k—|—i5}

29.2.5 Explicit Form of the Lindhard Dielectric Function

The dielectric function €,(q,w) can be decomposed into real and imaginary
parts:

&(q,w) =e(q,w) +ie(q,w). (29.2.47)
Taking the expression given in (29.2.42) and using (C.3.3) we find

4776 2 fo(e) — foler+q)
- 2 29.2.48
61(q,w) q . 5k+q + €k ( )
and
4722 2
(g, w) = 2V [foe) — fo(Ehtq)]0(hw — ekrqg + k). (29.2.49)
k

On the other hand, if the form given in (29.2.46) is used, we obtain

e1(q,w) = 47;6 ’ Zfo €k) (29.2.50)
y [ 1 B 1
hw — (€k+q — k) Tw+ (Ekrq — Ek)
and
4m2e2 2
e(q,w) = v > folew) [6(hw — exrq +€r) — 0(hw — ek + Er1q)].

k
(29.2.51)

It is readily seen from these expressions that the real part of the dielectric
function is even in w, while the imaginary part is an odd function of w.

The summation can be performed exactly in both the real and the imag-
inary parts at temperature 7" = 0 if it is transformed into an integral in
k-space. Using (29.2.50) for the real part and integrating first over the angle
0 between k and q and then over the length of k, we find
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2 (1 % hw 2 hw + h
g =14 T [ L ke [ (e b\ T oeg te
g2 12 4q hvpq hw — hupq + €4

2
1— hw — &4 In Tw — hvpq — &q (29.2.52)
hwrq hw + hopg — €4
with e, = h?¢*/2m., and grp is the Thomas-Fermi wave number defined in

(29.2.13).
In the static case the dielectric function simplifies to

+

2 2
gre |1 | kr q q + 2kp
r =1l+=|-+—(1-—% |1 . 29.2.
e (q) + 2 [2+2q< 4k%> n‘q_sz (29.2.53)
For later convenience this is written in the form
PPy 4me?
&(q) =1+ q—QF(q/QkF) =1+ 7 p(er)F(q/2kr) (29.2.54)

where the function F(x) is defined in (28.3.85). Here it appears with the
argument x = ¢/2kgp. Making use of the fact that F(z) ~ 1 for small values
of x, as can be seen in Fig. 28.4, the result of the Thomas—Fermi approxima-
tion is recovered in the long-wavelength limit. This is not surprising since we
know that the Thomas—Fermi approximation is applicable for spatially slowly
varying potentials. Recalling that the derivative of F(x) is logarithmically
singular at = 1, it follows that the derivative of the dielectric function is
also logarithmically singular at ¢ = 2kp. This has — as will be seen — serious
implications. Among others this gives rise to the Friedel oscillations of the
screening charge.
According to (29.2.49) the imaginary part is finite only at those w values
for which Aw is equal to the excitation energy of an electron—hole pair, i.e.,
h2 h2q2

hw =c¢ —cp=—q k+ .
k+q k meq e

(29.2.55)

This is quite natural since the imaginary part is related to the energy dis-
sipation and the electron system can absorb energy from the external field
through electron—hole pair excitations. We saw already in Fig. 28.9 that these
excitations form a broad continuum. Knowing that e3(g,w) is an odd function
of w, we list the results for w > 0 only. One has to distinguish three frequency
ranges. For ¢ < 2kp

T hw ¢ap

2 hvgq qf2

_J K hw—e4\ 2] ¢
e(qw)=q LI |y “q d1r hvpq — 4 < hw < hopg + €4,
4 q hopq 7

0 < hw < hvrq — &g,

0 hopq + g4 < hw,
(29.2.56)
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while for ¢ > 2kp

0

™ kp hw —e\ | ¢
S BN P e iTF
@0 =1717 l < horg > ]

2 gq — hvpq < hw < g, + hvpg,
0

0 < hw < g4 — horg,

gq + hvpqg < hw.

(29.2.57)
Figure 29.7 shows the frequency dependence of the real and imaginary
parts of the dielectric function for positive w for small, intermediate, and
large values of ¢q/kp.

A6 qlkp=02
s\
404N\
// \
/ \
’ \
0K i hole hwle
1
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0 ' ; hwleg 0 : > hw/ep
\f 0.11 W

Fig. 29.7. Frequency dependence of the real and imaginary parts of the dielectric
function of the electron gas for small, intermediate, and large values of the wave
number. The results are shown for a typical metallic electron density, rs = 3

As a retarded function, I7(q,w) is analytic in the upper half-plane. Hence,
it has to satisfy the Kramers—Kronig relations given in (J.1.70):

o0

1 1 1 1

. 1=-P / do' Tm ———— (29.2.58)
e(q,w) T e(q,w)w —w

Re

and

Im;:lP/dw' 1 —Re ! L
Er(qaw> a Er(

. 929.2.
] e (29.2.59)

We also note that since the dielectric function establishes a causal rela-
tionship between the electric displacement and the electric field, the Kramers—
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Kronig relations are valid between the real and imaginary parts of the dielec-
tric function as well. These relations were given in (16.1.65).

29.2.6 Corrections Beyond the RPA

If we wish to go beyond the RPA, the methods of many-body theory have to
be used. There are several possibilities for that. One of them is to calculate
II(q,w) up to a given order of perturbation theory. Another is to select an
infinite set of irreducible diagrams for the two-particle Green function accord-
ing to some physical considerations and to sum up their contributions. For
this let us notice that there is a large class of processes in which the electron
and the hole of the pair propagate independently of one another in the sense
that although they interact with the other electrons of the Fermi sea, there
are no intermediate scattering processes that would couple the electron to the
hole either directly or indirectly. Such processes are displayed in Fig. 29.8.

Lo d e
T T

Fig. 29.8. Scattering processes during the propagation of the electron—hole pair that
lead to the renormalization of the energy of the electron and the hole separately

These processes have a simple physical interpretation: the electron and the
hole propagating in the system are not bare particles but quasiparticles. Their
energy is not €44 and g, respectively; it is renormalized by the interaction
with the rest of the electron system. The first two diagrams correspond to the
simplest Hartree and Fock corrections to the energy, but higher order processes
should also be taken into account. When only such self-energy corrections are
considered, the dielectric function still has a Lindhard-like form; however the
energy of quasiparticles £ appears in place of e, the energy of free electrons.
We then have

_ 4mE? 2 fo(Ek) — fo(Ek+q)
2V - hw_gk.l,-q—i_gk_'_ié.

(g w) =1 (29.2.60)

This approximation is called the renormalized RPA.
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A further possibility is to use the equation-of-motion method explained
briefly in Appendix J. That method relies on solving the equation of motion

%‘i’ﬂ = %[H,n(q,t)]_ (29.2.61)
for the Fourier transform of the operator of electron density given in second-
quantized form in (28.4.96), where H denotes the total Hamiltonian of the
system that includes, besides the kinetic energy and the interaction given in
(28.1.34), the external potential Veyy (7, t). This last term, which is treated as
a perturbation, is used in one of the equivalent forms. It is written either in
real space in terms of the field operators or in momentum space in terms of
the Fourier transforms of the potential and density. The Fourier transform of
the density can also be expressed in terms of the creation and annihilation
operators. Thus we have

Hit) =Y / B8 (7 Ve ()0, () dr

1
== > Vexi(q,t)n(—q) (29.2.62)

1 i
= v Z Vext (@, t)cllc+qgckg
kqo

Once the equation of motion is solved for n(g,t), the induced charge is its
expectation value:

nina(q,t) = (n(q, 1)). (29.2.63)

As known from our earlier calculations, and it follows also from the derivation
given in Appendix J, in a noninteracting system the electron density induced
by the external potential is

nind(q7w) = Ho(qvw)‘/ext(q7w) (29264)

with the known Ily. If the external potential is generated by an external
charge,

47é?

Nind(q,w) = HO([LW)anext(q)w) . (29.2.65)

New, more complicated terms appear on the right-hand side of the equa-
tion of motion when the electron—electron interaction is taken into account.
Depending on the treatment of these terms different approximation schemes
are obtained; some details of which can be found in Appendix J. Here we
present only the results, motivating them by using a simple approach.

If the interacting electron system is treated in the RPA,

_ HO(qaw)
1 — (4me2 /q*)11o(q,w)

Nind (g, w) Vext(q,w) = Iy(q,w)V(q,w), (29.2.66)
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where V(q,w) = Vext(q,w)/€e:(q,w) is the screened potential. Combining this
expression with the first equation of (29.1.22) we have

4mre?
Nind (qv (U) = HO(qv w) an(qv QJ)

S (29.2.67)
4me
= HO(Qaw)qT [next (qv w) + nind(qvw)} .

This expression is similar to (29.2.65) which is valid for noninteracting elec-
trons except that the induced electron density is found to be proportional to
the total density. We know that owing to exchange and correlations, electrons
repel other electrons from their close vicinity creating Fermi and Coulomb
holes around themselves. Therefore, a presumably better approximation can
be achieved by assuming that the electron system does not react to the full
charge, but to a charge corrected by the local field. If so, then only an effective
particle density

Net(q, w) = Next (¢, w) + [1 — G(q)] nina(q, w) (29.2.68)

should appear on the right-hand side of (29.2.67). The quantity G(q) is the
so-called local-field factor and accounts for the short-range exchange and cor-
relation effects not present in the RPA. With this assumption the dielectric
function takes the form

Lo, 4> Iy(q,w)
e(q,w) ¢ 1—(4me?/¢?)[1 - G(q)|Ho(q,w)

(29.2.69)

This expression shows that G(q) weakens the screening.

The local-field factor has to be determined using physical considerations.
Depending on its choice different approximation schemes are obtained. Using
the equation-of-motion method for the screening charge, as explained in
Appendix J, J. HUBBARD (1957) proposed the expression

1q2

@ =sz+m

(29.2.70)

Somewhat later K. S. SINGwI and A. SJIOLANDER (1967) have shown that a
better approximation can be achieved if G(q) is chosen in the form

G(@) = [ dr1=g(r)]ir(ar). (20271)

where g(r) is the pair distribution function and j; is the first-order spherical
Bessel function. The RPA corresponds to completely neglecting this local-field
correction.
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29.2.7 Effect of Finite Relaxation Time

Until now the electron states have been assumed to have infinite lifetime.
Although the states near the Fermi energy have a rather long lifetime if only
the electron—electron interaction is taken into account, impurities that are
unavoidably present in the sample or interaction with phonons can give rise
to a substantial shortening of the lifetime. Here, we will consider the effect of
the finite lifetime on the dielectric function in the semiclassical approximation.
The induced charge will be determined using the nonstationary Boltzmann
equation in an improved relaxation-time approximation.

We assume a space- and time-dependent external perturbation described
by a periodically varying scalar potential

o(r,t) = p(q)e! @t (29.2.72)

The force acting on the electron is

F = —¢E = egrad o(r) = ieqp(q)e! (@™~ | (29.2.73)
or, when expressed in terms of V(q) = —ey(q),
F = —iqV(q)e!(@m—t) (29.2.74)

This perturbation gives rise to a periodically varying term in the distribution
function which can be written as

fk,7,t) = fo(no) + fi(k)el@m—«b) (29.2.75)

where fo(no) is the distribution function corresponding to the uniform charge
density ng. However, when the effect of collisions is treated in the relaxation-
time approximation of the Boltzmann equation, we should take into account
that the electron density relaxes to its local equilibrium value n(r, t) and not to
its uniform equilibrium value ng. Thus, when the explicit time dependence of
the distribution function is kept in the Boltzmann equation [see (24.2.16)] and
this improved relaxation-time approximation is used for the collision integral,
we have

0 0 0 -
8—{ + ”’“87{ + %F(m)a—i = I = holn(r,t)] fO[T"(T’ Uy (29.2.76)

If the difference between distribution functions belonging to the local equilib-
rium density and the uniform density is denoted by

Onfo = fo(n) = fo(no), (29.2.77)
the Boltzmann equation linearized in f; takes the form
of1 ofr 1 Ofo _ fi | dafo

—— +vp=—+ -F(r,t)

7 o T F . (29.2.78)

ok T T
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The equilibrium distribution function fy depends on k through the energy
only. Making use of the periodic spatial and temporal variation of the distri-
bution function and using (29.2.74) for the force we have

ofe _ N1 n Snfo

—lwfi +ig-vef1 —iq- 'Uk:V(Q)E = . (29.2.79)
The formal solution of this equation yields
. 0
iq - v;gﬂ/(q)% + 6.0
Ji= . (29.2.80)

1 —iwr +iq - vgT

The induced number density is obtained by summing the contributions of all
occupied states, that is by summing f; over the k vectors within the Fermi
sphere:

Nind :é > Alk). (29.2.81)
|k|<kp

The distribution function changes significantly, however, only in the neighbor-
hood of the Fermi energy. This is seen when the second term in the numerator
of (29.2.80) is rewritten using the expansion

dfo Oe
——_—0n,
Oe On
where 6n is the induced particle density. We know from the Thomas—Fermi
approximation that for long-wavelength disturbances

dnfo = fo(n) — fo(no) = (29.2.82)

on
—_— = — 29.2.
9% p(er), (29.2.83)
and thus o
Snfo=— 0 i 29.2.84
fo= e 9 i 2028

Averaging first over the angle between g and vg on the Fermi surface yields
Ofo(k) wi/T w—vpq+1i/T
ve =V 1 1
<f1>ae (q) e + 20pq n w+qu+i/7—

nina 0fo(k) 1 n w—vpq+i/T
pler) Oe 2iqupT w+tovpq+i/T )’

(29.2.85)

Then the integral over the length of k is performed by converting it to an
integral over energy. It is readily obtained that

w+i/T w—vpq+1/T
ind — -V 1 1 -
tind (@)(er) [ * 2vrq " <w+vFCI+1/T
Nind <w—qu+i/r>
In .

2iqupT w4 vpq+1i/T

(29.2.86)
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The solution of this equation for nj,q leads to the following expression for the
response function I7:

1
~ + 2upq

w+i/T In (w —qu+i/T>

w4 vpq+1i/T

11 = — 29.2.
(qaw) p(EF) 1/7_ W — vpq + 1/7_ ( 9 87)
1+ In -
20p(q w4 vpq +1i/7
The dielectric function then takes the form
w+i/T w—vpq+i/T
47é? ! 20pq In w4+ vpq+1i/T
e(q,w) =14+ ——pl(er) ] Lk (29.2.88)
q i/t (w—qu—i-l/T)
1+ In -
2upq w+ovpg+1i/T

In the static, w — 0 limit the semiclassical Thomas—Fermi result is recov-
ered, while in the long-wavelength, ¢ — 0 limit we find
2

T Neq
I7 =% 29.2.89
where n. = ki /372 is the electron density. It then follows that
4 52
a(w)=1— ——eC (29.2.90)

mew(w +1/7)

This expression is identical to the result derived for the frequency-dependent
dielectric function in the Drude model [see (16.1.68)]. This has been used in
Chapter 25 to study the optical properties of metals. To get a more accurate
expression with a better ¢ dependence than the Thomas—Fermi result, a quan-
tum mechanical treatment is needed. We note that the naive approximation in
which the polarization bubble of the RPA is calculated for an electron and a
hole with finite lifetime 7 would yield a Lindhard-like expression where w + id
is replaced with w +1/7, i.e.,

_ £k) — fo(Ektq)
5 I 0 q 29.2.91
(q,w) = Ilp(q,w +i/7) = Vzhw_gk+q+5k+l/7 ( )

We know from our earlier considerations that this approach does not give a
physically correct result since in a periodically driven system relaxation is
toward local equilibrium and not toward thermodynamic equilibrium. When

this is taken into account, one finds the so-called Lindhard-Mermin® form for
the dielectric function

47 é? [1 + i/(wr)}ﬁo(q,w +i/7)
¢* 1+i/(wr)[o(g,w +1/7)/1Io(g,0)]
In the 7 — oo limit the Lindhard form of the dielectric function (29.2.32) is

recovered. This expression also yields the correct static limit and the known
expression for the frequency-dependent conductivity.

Er(qaw) =1-

(29.2.92)

5 N. D. MERMIN, 1970.
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29.3 Static Screening

One essential feature of the above-derived result for the dielectric function is
its 1/¢* divergence in the long-wavelength (g — 0) limit. As a consequence of
that, the electronic charge distribution is drastically modified if an external
charge is introduced into a simple metal. We show below that the induced
charge screens completely the external charge.

The potential created by a pointlike external charge @ is

Q

Ameor

Pext (1) (29.3.1)

Equation (C.1.63) implies that the Fourier transform of the potential is

pext(a) = % (20.3.2)

This potential gives rise to an inhomogeneous charge distribution in the vicin-
ity of the external charge. In the static case, the Fourier transform of the
induced number density is given according to (29.1.24) by

e@
" 1(q). (29.3.3)

Nind(q) = I1(q)Vext (@) = —ell(q)pext(q) = —

If the density—density response function is expressed in terms of the dielectric
function using (29.1.25) we get

o]
Nind\q) = — 1-—- 29.3.4
@=7 " g (29.3.4)

or, if the irreducible polarization function is used,

eQ  1(q)

Nind (q) = R R (29.3.5)

1——II

e (9)

The total induced charge, the volume integral of the induced charge density
pind (1) = —enina(r), is equal to the ¢ = 0 Fourier component of the induced
charge density. If )} (q) remains finite in the limit ¢ — 0, which is the case in
the homogeneous electron gas and in metals as well,

@ (q)
Qina = —¢ gii%nind(q) = QEL%T =-Q. (29.3.6)
1——=1II
e (q)

The sign of the total induced charge is opposite to that of the external charge
and they are equal in magnitude; hence, screening is indeed complete in
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metals. In semiconductors, where there are mobile carriers, but I (q) vanishes
at ¢ = 0 owing to the absence of low-energy electron—hole pair excitations,
screening is not complete.

In what follows we will show, calculating the spatial variation of the screen-
ing charge and the screened potential, that in metals, where screening is com-
plete, screening of the long-range Coulomb potential leads to a short-range
effective interaction.

29.3.1 Thomas—Fermi Screening

It follows from (29.1.16) that the Fourier transform of the screened potential
around a charge @ introduced into a metal is

_ 1 _ 1 @
w0 = D= S

(29.3.7)

The Thomas-Fermi approximation for the dielectric function [see (29.2.12)]
gives
Q

(¢ + ¢ip)
which shows that the 1/¢? singularity of the Coulomb potential is removed
by the screening effect of the electrons.

The spatial variation of the screened potential can be obtained by taking
the inverse Fourier transform. According to (C.1.62)

e(q) = (29.3.8)

1 Q ig-r Q —qTF
= — —_ I = ", 29.3.9
#(r) \% zq: eo(q? + q%F)e 471'607‘6 ( )

This is the well-known Yukawa potential of nuclear physics. The spatial vari-
ation of the induced charge is given according to (29.2.6) by

Pind (1) = —enina(r) = —e2p(er)p(r) = —e2p(sp)4&e*‘””. (29.3.10)
TeT

If the prefactor is expressed in terms of the Thomas—Fermi wave number, we
find

2
Pind(T) = —%CJTT%—‘ITF’“ . (29.3.11)

The total induced charge is its volume integral

3 2
Qind = /pind(T‘) dr = —4Q %Je_QTFT'4WT2 dr
/s r
0

o0

\4
= —C)/gje_ﬂc dx = —Q7 (29.3.12)

0
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as has already been demonstrated generally. The redistribution of the electric
charge is so drastic that the screened potential decreases exponentially fast.
The characteristic screening length is 1/grg; the external charge is practically
not felt at distances larger than a few times 1/¢rr.

Before estimating the screening length for metals we note that this type of
exponential screening of external charges is well known in the Debye—Hiickel
theory of electrolytes, which are classical, nondegenerate charged systems, but
their screening length is essentially different from that in degenerate systems.
According to the classical Maxwell-Boltzmann distribution applicable to elec-
trolytes and also to nondegenerate semiconductors, the density of particles
varies as

n(r) = nee”V(M/ksT (29.3.13)

when the energy is changed locally by an amount V(7). This expression can
be expanded to linear order if the potential is weak, and the change in the
particle density is given by

Te

knT

Nind (1) = — V(r). (29.3.14)
Comparison of this expression with (29.2.6) shows that the response of classi-
cal particles is given by n./kpT instead of the density of states p(er). Using
this in the dielectric function an expression similar to the Thomas—Fermi ap-
proximation is obtained, where screening is characterized by the Debye—Hiickel
wave number defined via

Nee? 4mnee

q2 = =
bH €0 kBT kBT

2

(29.3.15)

The inverse of this wave number is the Debye length which was introduced
and used already in Chapter 27 where the properties of semiconductors were
studied.

For the degenerate electron gas, where the Fermi distribution function
applies, the density of states of the three-dimensional free electron gas is used
in (29.2.13) to estimate the screening length. Comparing grr to the Fermi
momentum and expressing kp with the radius ry of the Wigner—Seitz sphere
available for an electron or with the dimensionless rg, we find

q?FF_47Té2mek‘F_ 16 2/3 To 16 28 20.3.16
WK e \32) a \32) ™ (20:5:10)

from which
grr = 0.815 kprl/?. (29.3.17)

The typical range for 7y is between 1.8 and 6 in metals. This implies that grp
is of the same order as k. Since the inverse of kr is on the order of atomic
distances, screening occurs on the same length scale in metals.
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29.3.2 Friedel Oscillations

The Thomas—Fermi approximation gives only a crude picture of the spatial
variation of the screening charge since screening occurs on the atomic scale
while the approximation is applicable for long-wavelength variations only. We
have therefore to consider how the result changes when the Lindhard function
with its correct g dependence is used for Ily and not its ¢ — 0 limit.

For that one would have to repeat the calculation of the induced charge by
inserting the Lindhard form of the dielectric function into (29.3.4), and then
taking the inverse Fourier transform of ni,q(q). Unfortunately, this inverse
Fourier transform cannot be calculated exactly. Therefore, we apply a differ-
ent procedure used already in Chapter 16 when we studied the scattering of
electrons by an impurity. Equation (16.4.44) shows already that at distances
far from the impurity, outside the range of the atomic potential, the induced
density decays as 1/r3 and it is modulated by an oscillatory function. These
oscillations will be discussed further here.

When the incoming particle is described by a plane wave and the scattering
center by a potential V(r), it follows from (16.4.4) that the wavefunction
satisfies the equation

1 ..

Ur(r) = Welk T+ /dr'G(r — YV (r" ) e(r), (29.3.18)

where —_—

m el r—7r
Gr—-r)=—-——— 29.3.19
(r=79) 2h? |r — /| ( )

is the Green function of free electrons. The first iteration gives
LTS / ’ / N pik (7 =)

r)=—=e"" |1+ [dr'G(r — ")V (r")e™" T 29.3.20
() = T | (r V() (20.3.20)

When the change in the electron density is calculated from this expression up
to first order in the potential, we get

nind(r):% > /dr’V('r’) (29.3.21)

|k|<kF
« |:G(T _ T/)eilc~(r/—r) + G*(T _ T/)e—ilc~(r/—r) 7
where the factor 2 comes from the two spin orientations. Using (29.3.19) for

the Green function, replacing the sum by an integral, and performing first the
integration over the angular variable, we have

kg
e . — ' 2cos L
0

273 klr — /| |r — /|

(29.3.22)
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Performing then the integral over k gives

2mekd
Nina(T) = th‘F /dr’V(r’)g(2kF|7' —7'|), (29.3.23)
where )
gla) = Z22 0T (29.3.24)
x

If the potential V(r) varies slowly in space compared to the inverse of 2kp
over which this oscillatory function decays, then the local relationship (29.2.6)
found in the Thomas—Fermi approximation holds true between the induced
charge density and the perturbing potential. If, on the other hand, the screened
potential is short ranged, as is the case in metals, then asymptotically, beyond
the screening length, the induced charge density decays as

cos 2kpr
Nina (1) ~ ﬁ , (29.3.25)
as has already been seen in (16.4.44). This slowly decaying oscillation is the
consequence of the weak (logarithmic) singularity in the derivative of the
Lindhard function at ¢ = 2kg. Physically it is due to the sharp Fermi edge in
the momentum distribution of electrons. The wavelength of the oscillation is
determined by 1/2kp.

It can be shown using a somewhat more rigorous calculation that asymp-
totically, far from the impurity, only the ¢ = 2k Fourier components of the
bare external potential Voxy = —ewext and of the dielectric function play a
role, and the induced charge density is given by the expression

€2 Yext (2kp) cos 2kpr

pind("') ~ _EP(EF) 6?(2]4;];‘)

29.3.26
= (20.3.26)
It is interesting to note that the induced charge is not proportional to the
2kr Fourier component of the screened potential; the square of the dielectric
function appears in the denominator. Inserting the Fourier transform of the
Coulomb potential of the localized charge ) and using the Lindhard function,

we find
Q £ cos 2kpr

Cdm (1+€2/2)2 43

Pind("’) ~ (29327)

29.4 Dielectric Function of Metals and Semiconductors

In the foregoing, the Lindhard function and the dielectric function have been
calculated for electrons moving in a uniform background. Plane-wave wave-
functions and a quadratic dispersion relation have been assumed. The result
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obtained may be valid for simple metals where the contribution of the fully
occupied bands lying deep below and the completely empty bands lying far
above the Fermi energy can be neglected, and the main contribution to the
dielectric function comes from electrons of a single partially filled conduction
band. If the states of this band can be characterized by a scalar effective mass
m™, then the results derived above are still valid with the proviso that m*
and the corresponding Fermi velocity are used instead of m. and vg of free
electrons.

The calculations can be extended to solids with more complicated, realistic
band structure. We will see that metals, where the Fermi energy lies inside
the conduction bands, and semiconductors, where the Fermi energy lies inside
the gap between the valence and conduction bands, have essentially different
dielectric functions.

29.4.1 Dielectric Function of Bloch Electrons

To calculate the dielectric function of the system of Bloch electrons we repeat
our earlier derivation of the Lindhard function but now we start with a Bloch
state 1/17(1(2 (r) of wave vector k in the nth band. The periodically varying
external field (29.2.18) couples this state only to those states whose wave
vector is k + q or k — q, though they may be in any band. For this reason,
generalizing the trial function given in (29.2.20), the perturbed state is sought
in the form

Ynio(r, 1) = P ()T 1N g (D90 4 o (7)o o wrat/

n

+ 3 g,y (r)e i wnmat/h (29.4.1)

The coefficient qyn/k+q(t) can be determined using the formulas of
perturbation theory. To lowest order we find

1 V(q) <w£0) ‘eiq-r|,¢)£33>ei(5n/k+q7snk)t/hefiwte<5t

1V k+q
« k+q( ) \a hw — En/k+q + ek + id ( )
and
* (0) —ig-r |, 1, (O i(e,/n0—Enk )t/ iwt 5t
1V kgl LT, e ke e'“re
Cnnk—q(t) = — (@)Wl Yur) . (29.4.3)

\%4 —hw — En'k—q t Enk + i

Thus, the perturbed wavefunction is
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Ynk(7,1) = e kH/P [zbfﬁj (r) (29.4.4)

0y —iwtyd
Z ’k+q|elq T‘|,l)[} > iwt 0t ’(/} 0) (r)
V - 5n’k:+q + enk + i0 n'k+aq

—ig-r|,,(O\ iwt 5t
@ JeT T [ el )
+ = Z 75,&) ek p + Enk ¥ 1(5 wn/qu(r) .

The essential difference compared to the earlier result for plane waves is that
an extra factor appears besides V(q), the matrix element of e*9" between
wfl and 1/)( /ktq- Using the Bloch form of the electron wavefunction and the
lattice periodicity of u,g(7), the matrix element can be written as

ig-r 1 *
el !1/,7(32> = /un,k+q(r)unk(r) dr, (29.4.5)

v

<wr(33c+q

where the integration goes over the volume v of the elementary cell.

The induced density is obtained by summing the absolute square of the
wavefunction over all occupied states. Taking its Fourier transform and keep-
ing only the terms proportional to V(q), the expression for the polariza-
tion function is rather similar to (29.2.41) and the dielectric function has
a Lindhard-like form,

2 Z fO Enk fO(En k+q ’<w(0) 1q 'r|w >’

/
— Enktq T Enk F16 T k+ql®

€r (q7 w) -
k'rm’

(29.4.6)
however, it contains the absolute square of the matrix element (29.4.5) and
besides the summation over k one has to sum over the band indices.

In the extended-zone scheme, the states belonging to different zones can
be distinguished by an appropriate vector G of the reciprocal lattice. Then
the dielectric function can be written in the form

4re® 1 fo(ekta) — fo(Erktq+a)
q2 Vv UFI,{U — Ek+4q+ G’ + Ek+G + i (2947)

kGG’
* |(Vrsqre et [Vrra) ‘2 :

er(q,w) =1-

29.4.2 Dielectric Constant of Semiconductors

Expression (29.4.6) derived for arbitrary band structure will now be used to
calculate the dielectric constant of semiconductors. As has been mentioned
already, transitions between the valence and conduction bands play an impor-
tant role in their optical properties. When their dielectric function is calcu-
lated, the states of at least two bands have to be considered. Those terms give
a finite contribution in (29.4.6), where the state 7,/17(10,3 is in the valence band and
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1/)2% +q in the conduction band or vice versa. To evaluate the matrix element

we consider the double commutator

[ eam]_ o] (29.4.8)

The lattice-periodic potential in H commutes with ¢9”, but the operator
of kinetic energy does not. Writing explicitly —(h? /2me)V2 for the kinetic
energy it is readily seen that

hQ . . hQ 2
H— V2,e“1"} ,elq"‘] =1L o, (29.4.9)

2me Me

Alternatively, the diagonal matrix element of the double commutator for
state 1/)(0 with energy e,k can be calculated by inserting a complete set of

intermediate states ¢(,k, Due to quasimomentum conservation the matrix
elements appearing in this expression are nonvanishing only for those inter-
mediate states whose wave vector is equivalent to k + q. We get

(vl

[Hoeam]_emar] o)) (29.4.10)
=D (R [HETT U o) (Vi gle ™[0

=S @Rt H | g le T [ )

_Z< 7(:(;<:)| _lqr|w(’k+q>< n’k+q|H lqr|¢(0)>

n'

+ 3 (T [k s ) (ke gl
"Ll
. 2
= Z(ank — En'ktq) ‘<w$3€+q|elq.r|w7(l(;c)>‘

+Z(5nk_5n’k q ’< 533@ q| —lq’l'w7(33>’

n'

Comparison of the two expressions yields

Z [(En/kJrq — Enk) ‘< ’k+q|€1q r|w(0)>‘
(29.4.11)

2
0 _ig- 0
+ (Sn/k_q — 5nk) ‘<¢7(L/L7q|e iq r|w7(1k)>‘ } = 2¢4.
When the dielectric constant, the value of the dielectric function at ¢ = 0, is

considered, the energy difference in the direct transitions between the valence
and conduction bands can be approximated by the direct gap,
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En'k+q — Enk = Eg, (29412)

when k is in the valence band and k + q in the conduction band. This is used
both in (29.4.11) and in the energy denominator of (29.4.6). The sum over
the k vectors in the valence and conduction bands gives

47é? 2n, Eq Ane%h?

=14+ — 29.4.13
¢ e & i m*e2 ( )

Er(q,O) ~ 1 +

for the dielectric constant where n, is the electron density in the valence band.
When the density is expressed in terms of the plasma frequency with the help
of (16.1.69), we obtain

e:(q,0) =1+ (mp>2 (29.4.14)

€g

The 1/¢? singularity characteristic for metals does not appear in semicon-
ductors and the dielectric constant is finite in the limit ¢ — 0 owing to the
finite gap, the forbidden region around the Fermi energy. As a consequence
screening is not complete in semiconductors.

The direct gap is about 4 eV in both Ge and Si, and the plasmon energy is
about hwp, ~ 16 eV. This would give €, ~ 17 for the dielectric constant in good
agreement with the experimental values. As mentioned already in Chapter 20,
€; &~ 12 in silicon and ¢, ~ 16 in germanium.

29.5 Dielectric Function in Special Cases

A very interesting development of the last decades was the discovery of a
large class of materials — some of them exist in nature, others could only be
synthesized artificially — in which the motion of electrons is confined by the
overlap of the wavefunctions of neighboring atoms to only one or two spatial
dimensions. This is equivalent to saying that e depends in fact on only one
or two components of the wave vector. For simplicity we will consider systems
where a scalar effective mass can be used, i.e., the dispersion relation has the
form 22 B2 1+ )
T x Y
= S or €k = Y . (29.5.1)
The dielectric function will be computed for such systems in the RPA. The
response function [Ty is still defined by (29.2.41), but its value, which can
be given in closed form for both one- and two-dimensional systems,” depends
strongly on the dimensionality of the phase space. Finally we will discuss
the case when the Fermi surface has a nesting property. Even though the
motion of the electrons is not restricted to one or two directions, a singularity
characteristic of one-dimensional systems appears in the dielectric function.

€k

" The results will be given by replacing the effective mass with the electron mass.



98 29 Electronic Response to External Perturbations

29.5.1 Dielectric Function of the Two-Dimensional Electron Gas

The dielectric function of the two-dimensional electron gas will be written in

analogy to (29.2.54) in the form
47re?

q2

e&(q,w) =1+ p2d(er) Faq(q,w), (29.5.2)
where paq(er) = me/mh? is the density of states of the two-dimensional elec-
tron gas. In a strictly two-dimensional system, solution of the Poisson equa-
tion gives U(q) = 2mé%/q for the Fourier transform of the Coulomb poten-
tial. Nonetheless, we use the choice given above since we are considering a
truly three-dimensional system, in which, however, the electrons can propa-
gate with high probability in two directions only. We first consider the region
of momenta ¢ < 2kp where hvpg > £4. One has to distinguish again three
frequency ranges. Separating Fbq(q,w) into real and imaginary parts in the
form F' +1iF", in the low-frequency range 0 < fiw < hvpqg — €, we have

Fa(q,w) =1 (29.5.3)
and
1/2 1/2
Fa(q,w) = [(Agor)? — (g4 — Tw)”] _ [(Agor)? — (g4 + hw)”]
24 2e4 2e4
(29.5.4)
For intermediate frequencies satisfying Avrq — ¢4 < fiw < hwpg + €4 we find
+ hw)? — (hqop)?]
Fa(qw) =1~ L& )~ (have)’] (29.5.5)
2¢e,
and 1o
hque)? — (g4 — hw)?
Yy (grw) — [an)” = (&g~ he)” | (29.5.6)

2eq

Finally, at high frequencies where hvrg + ¢, < hw we have

[(eq + hw)® — (haue)”]"* | [(hw — =)* ~ (hqor)?]

F; =1-
2d(qaw) 25(1 25q

(29.5.7)

and
Fii(q,w) =0. (29.5.8)
Similar expressions are obtained for ¢ > 2kp where ¢, > hvpq. At low

frequencies, in the range 0 < hw < g, — hvpg,

[(eq + hw)2 - (hqvp)2]1/2 [(Eq — hw)2 — (hqu)Q] 12
2eq4 - 2eq4

Féd(va) =1-
(29.5.9)
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and
Fil(q,w) =0, (29.5.10)

in the intermediate frequency range ¢, — hvpq < hw < g4 + hvpg we find

[ (2q + hw)? — (hque)?) "

2eq4

Fiy(qw)=1- (29.5.11)

and
1/2

[(hque)? — (g4 — hw)® ]

2e,

Fay(q,w)

, (29.5.12)

while in the high-frequency range e, + hvrq < hw

: (e 1)® = (hgoe)?] " [(eg = hw)® — (hqur)?]"
F2d(Qa w) =1- +
2e4 2eq
(29.5.13)
and

Fyy(g,w) = 0. (29.5.14)

In the static limit, the function F'(q) takes the form

1 for ¢q < 2kp,

F: = 29.5.15
2a(0) 1—+/1—(2kp/q)? for q>2kp. ( )

29.5.2 Dielectric Function of the One-Dimensional Electron Gas

The polarization function of a one-dimensional electron gas is again given by
(29.2.31). If ¢ < 2kp, two regions, kr —q < k < kp and —kp — ¢ < k < —kp
(see Fig. 29.9), give finite contribution in the integral. Otherwise either both
Fermi distribution functions take unit value or both vanish.

e R q<2kg
—kp—q —kg —q 0 kp—q kg

fessss o ! ; } e q>2kp
—ke—4 —q kp—q —kp 0 .

Fig. 29.9. The “Fermi spheres” belonging to the wave numbers k£ and k£ + ¢. Only
the regions covered once give finite contributions to the Lindhard function
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We get
L7 1 L 1
Re I, = — dk - — dk
e Io(g,w) 7r / hw — h2qk/me —eq, 7 / hw — h2gk/me — &4
kr—q —kr—q

1 me hvpg +¢e4 — hw
= —— In|———|—-In
w h2q hvpq — g4 —
_ LIme In (hvpq +€4)? — (hw)?
~ wh?q | (hopg —eq)? — (hw)?

hvpq — e4 + hw }
hqu+6q+hw

(29.5.16)

for the real part. If ¢ > 2kp, the integration goes over two full “Fermi spheres”.
We then have

L f 1 e 1

Re I1 =— [ dk - = dk

e Iholg,w) 7r/ hw—h2qk/me —eq 7 / Tw — h2qk/me — g4
—kr —kr—q

_ 1me{ln‘ hvpq + €4 — hw ‘—ln‘ hvpq — €4 — hw }

7w h2q —hvpq +¢e4 — hw —hvpq — g — hw
_ _% ;’;“; In ’ EZZEZ i Z;z — EZ;E . (29.5.17)
The imaginary part, too, can be easily calculated yielding
0 for 0<hw < hvpq —¢gq4,
Tm Mo (g, w) = 4 — ET,;’F for hvpg—ey < hw < horg+24,  (29.5.18)
0 for hvpq+eq < hw.
We can write again the response function in the form
ITy(q,w) = —pra(er) Fra(g, w) , (29.5.19)
where o
p1d(er) = m (29.5.20)

is the density of states of the one-dimensional electron gas at the Fermi energy
and

ke | (wpg +&g)” — (Tw)?
Re F: = — . 29.5.21
€ 1d(qaw) 2(] (h’UFq _ 5q)2 _ (hw)g ( )
In the static limit, this quantity reduces to
k 2k
Fia(q) = Fln‘ il q’ . (29.5.22)

The results obtained for F(z) with = ¢/2kp for the one-, two-, and three-
dimensional cases are plotted in Fig. 29.10.
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F(x)

0

1
: '
0 1 2k

Fig. 29.10. ¢ dependence of the static density—density response function in the
one-, two-, and three-dimensional electron gas

The function F'(z) displays stronger and stronger singularities at = 1
(¢ = 2kp) as the dimensionality decreases. It is continuous in the two- and
three-dimensional cases and only its derivative is singular at x = 1. The
function F' itself is singular at this point in the one-dimensional case. The
reason for this singular behavior is easy to find when we look at (29.2.31).
As described by the Fermi distribution functions, the hole with wave vec-
tor k has to be created inside the Fermi sphere and the electron with k + ¢q
outside or the role of the electron and the hole can be interchanged. When
two Fermi spheres shifted by a vector —q are drawn as in Fig. 29.11, the
integrand vanishes outside the shaded region. The region inside the Fermi
sphere around the origin appears with weight 41 in the integrand, whereas
the region inside the Fermi sphere around the tip of the vector —q with
weight —1.

Fig. 29.11. The regions of integration giving nonvanishing contribution to the
Lindhard function

Taking w = 0 at a fixed value of g the energy denominator in the Lindhard
function vanishes at those k vectors for which exyq = €. This condition is
satisfied in a tiny portion of the region of integration in the three-dimensional
case, along the intersection of the two displaced Fermi spheres, where both
the electron and the hole are on the Fermi surface. The integrand is large in
the neighborhood of this circle, but only in a tiny portion of the phase space.
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The response function is thus a continuous function and only its derivative
shows a weak, logarithmic singularity at ¢ = 2kp.

In two-dimensional systems the energy denominator vanishes at two points,
at the intersection of the two Fermi circles. The integral itself remains finite;
however, the derivative of the response function displays a stronger singularity,
it is discontinuous at ¢ = 2kp. The integrand is singular at two points of the
phase space in the one-dimensional case as well, but this singularity is not
compensated by the smallness of the corresponding phase space. The response
function itself is singular at ¢ = 2kp.

29.5.3 Materials with Nested Fermi Surface

We may ask what happens when the electron system is three dimensional,
but the shape of the Fermi surface deviates significantly from the sphere.
We consider as an example a crystal with orthorhombic structure where the
energy of electron states in the tight-binding approximation is given by

€k = €0 + €1 o8 kga + ez coskyb + e3cosk;c. (29.5.23)

It may occur that in two of the crystallographic directions (say in the y- and
z-directions) the overlap of the wavefunctions of neighboring atoms is much
weaker than in the third direction, |e1] > |e2], €3], and also that |ea| > |es].
In such systems there is a preferred direction of propagation. Electrons move
in one direction with much higher probability than in the other directions.
The system can be considered electronically quasi-one-dimensional. If the term
proportional to £ is approximated by a linear spectrum near the Fermi energy
and the smallest term proportional to 3 is neglected, the dispersion relation
becomes

ek = €0 + hwp(tky — kp) +excoskyb, (29.5.24)

where the + sign has to be chosen for &, close to kg and the — sign when k,
is close to —kg. Figure 29.12 shows the Fermi surface corresponding to this
spectrum. It is seen that the Fermi surface consists of two parts, which appear
as two sheets.
It is easy to verify that if the left sheet of the Fermi surface is shifted by
the vector
qo = (2kp, 7/b), (29.5.25)

it will exactly coincide with the right sheet, provided that, if necessary, the
wave vectors are reduced to the first Brillouin zone. Evaluating the response
function at this g, the energy denominator vanishes for all k vectors lying
on the left sheet of the Fermi surface and the response function is singular
at ¢ = gqy. The same logarithmic singularity appears as in one-dimensional
systems.

Such a divergence may appear not only in quasi-one-dimensional systems.
As has been seen already in Fig. 18.23, the “Fermi sphere” is distorted to a
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kAN

'y

Fig. 29.12. Fermi surface of a quasi-one-dimensional system with the nesting vector

square in the tight-binding approximation for a two-dimensional square lattice
if the band is half filled. Opposite edges of the Fermi surface are separated by
one of the vectors g, = (+m/a, £7/a). If the response function is calculated
at this g, the energy denominator vanishes for every vector k of the edge
of the Fermi surface under consideration and therefore the response function
exhibits similar logarithmic singularities.

These examples show that the divergence is the consequence of the special
shape of the Fermi surface, namely, when the Fermi surface is displaced by an
appropriately chosen wave vector g, an extended region of the Fermi surface
has to coincide (nest) with another portion of the Fermi surface. Such Fermi
surfaces are said to have the property of mesting. Figure 29.13 shows two
further examples of nested Fermi surfaces.

9

\ 9 /

Fig. 29.13. Nested Fermi surfaces with the nesting vector

When the dielectric response of such systems is calculated at the nesting
vector qg, the energy denominator vanishes along the whole nesting region,
and therefore the response function has the same kind of logarithmic singu-
larity as the one-dimensional model at 2kp. This singularity may lead to the
appearance of a new state, a static charge-density-wave or spin-density-wave
state. This problem will be treated in Chapter 33.
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29.6 Response to Electromagnetic Field

In the foregoing the response of the electron system to an external charge or
scalar potential was studied. This could have been described equivalently as
the response to a longitudinal vector potential, since according to (29.1.15)
both the electric field and the electric displacement are parallel to the wave
vector g. The dielectric function and the conductivity determined in this way
are thus responses to longitudinal perturbations. A different situation is en-
countered when the optical properties are considered, since in a radiating
electromagnetic field the vectors E and H are perpendicular to the direc-
tion of propagation. The ratio of the perpendicular components of D and E
gives the transverse dielectric function €, = €, /€y, where ¢, was defined in
(29.1.6) and (29.1.8). This quantity is not necessarily the same as the longi-
tudinal dielectric function even if the medium is isotropic. More importantly,
the transverse electromagnetic field couples to the current and therefore the
response of the electron system to such perturbations can be described by the
current—current response function. We will derive the Kubo formula that ex-
presses the conductivity in terms of the retarded current—current correlation
function and will specify it for the optical and DC conductivities.

29.6.1 Interaction with the Electromagnetic Field

The interaction between the electron system and an electromagnetic field can
be derived from the Hamiltonian of the interacting electron system in the pres-
ence of an electromagnetic field. If the field is described by a scalar potential
©(7) and a vector potential A(r), we have

1 Ne ) Ne 1 N. 52
"= ; [p; +eA(r;)]” — e; w(ri) + 5 ;1 CraE (29.6.1)

where the kinetic energy is given in terms of the kinetic momentum p + eA
instead of the canonical momentum p. Subtracting from this expression the
terms not related to the electromagnetic field, the remaining terms collected
into

Hi = Z { ¢ [A(r;) p; +p; - A(ry)] + ¢ A% (ry) — eap('ri)}

P ch ch
(29.6.2)
eh e
=S { oo [AGr) - Vit Vi Al + 5 A% - el

describe the interaction. It is convenient to work in Coulomb (transverse)
gauge, where divA = 0, i.e., the vector potential is perpendicular to the
propagation vector g and the scalar potential vanishes. When only the terms
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linear in the vector potential are kept, the interaction Hamiltonian can be
written in the simple form

Hi=— /j(r) “A(r,t)dr, (29.6.3)

where j (r) is the operator of the current density. To substantiate this state-
ment we recall that the quantum mechanical expression for the operator of
the particle-current density is

1

Jn(r) = S 2 [Pid(r = mi) - 8(r = 7i)p,] (29.6.4)

and the electric-current operator is

J(r) = —ej,(r) = —==

Y [pid(r—ri) +6(r —rip;] . (29.6.5)

2me
K3

This shows that the perturbing vector potential couples indeed to the cur-
rent. Expressing the vector potential and the current in terms of their Fourier
components, one readily finds

M= -3 Y i-a) Al 1), (20.6.6

where 5
~ e
i(g) = -

53 (Ve 47 4 om0V, (29.6.7)

or in second-quantized form

- eh eh
(@) =—— (k+ Lq)c =——> ke . (29.6.8
i(a) Me ko_( + 5390 Chigo me 4 Ck—q/20Ck+q/20 ( )

Before going on we have to recognize that the expression given above
for the current density is valid in the absence of electromagnetic field. In
its presence it has to be modified to make it gauge invariant. The correct
expression should contain the kinetic momentum

.7(7") = _TS”Le Z { [pi + €A(7‘i)]5(7' — Ti) + 5(7‘ — ri) [pi + eA('rZ)]}
z ) (29.6.9)
= g 2 [P — ) + 8 —rp] — 3T AW 7).

2Mme
1

The total current operator can be decomposed naturally into two terms:

i=Jp+Ja (29.6.10)
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where
e

pr) =~

Z [p;i6(r — i) +6(r —7i)p;] (29.6.11)

is the so-called paramagnetic current; it is the current component that appears
in the interaction with the electromagnetic field to lowest order in the field,
while the second term,

Ja(r) = —;—2 > A(r)é(r —ri), (29.6.12)

is the diamagnetic current. This term can be written in terms of the electron

density as
2

Fam) = = A(r)n(r). (29.6.13)

Me

29.6.2 Current—Current Correlations and the Kubo Formula

The total current density is the expectation value of the current operator. In
what follows the notation j will be used for the total current density and j
for the operator of the paramagnetic current. We then have

nee?

j(rvt) = <5(T,t>> -

A(r,t), 29.6.14
< Al (29.6.14)
if the electric field is time dependent, and the particle density has been re-
placed with its unperturbed mean value. Assuming a periodically varying
space and time dependence for the vector potential with a fixed frequency
and wave vector,

A(r,t) = A(q, )9 = A(g)el@m—+) (29.6.15)

the current varies with the same periodicity, and the spatial Fourier transform
of the current density is

2

dla.t) = (G(g,0)) — =

e

A(q,t). (29.6.16)

The current at a given frequency is the Fourier transform of this quantity,

that is )
. s _ Nne€
i(q,w) = (j(q,w)) -

e

A(q,w). (29.6.17)

For weak external perturbations the current is proportional to the internal
electric field. In the most general case

t
Ja(r,t) = Z/dr' /dt/aa,g(r,r’,t—t')Eg(r’7t’)7 (29.6.18)
8 “oo
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where 0,3 is the conductivity tensor. In a homogeneous system the relation-
ship is algebraic between the Fourier components:

jlq,w) =0(q,w)E(q,w). (29.6.19)

Note that the relationship between current and electric field is causal; hence,
the Kramers—Kronig relations are satisfied by the real and imaginary parts of
the conductivity:

1 o0 1 , 9 o0 " ,
Reo(q,w) = —P / Qo molee) _ ,p/dw/%(w)
Vs

w —w m W2
% )
(29.6.20)
1 N / 9 o ,
mo(qw) = —~p [ dwBeo@e) _ 20p [, Reolg.w)
™ w —w T w/2 — w2
“s ]

To derive the conductivity, the paramagnetic current has to be calculated
as a linear response to the perturbing electromagnetic field. Since the mean
value of the paramagnetic current has to be calculated and the vector potential
couples to the same paramagnetic component of the current, the response
function that connects the current to the vector potential in the expression

Ualr,t)) /dt /dr Pog(r,r' t —t)Ag(r',t) (29.6.21)

is the current—current response function:

Pag(r, v/ t—t') = —ih@(t =) [alr,0),Ja(r", )] ). (29.6.22)

In a homogeneous system where the response depends only on r — 7/, the
Fourier transform of the paramagnetic current density is

(Ja(g:w)) = =Pap(q,w) As(q,w), (29.6.23)

where

Paslaw ——f—/ (e — )0t — #){ [ja(a, 1), jo(~a.t)] )

il i ~
=37 dte “f< []a(q,t),]g(—q,O)} 7> . (29.6.24)
0
The retarded response function has to be analytic in the upper complex w
half-plane. This is achieved by inserting a factor exp(—dt) with a positive
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infinitesimal § in the last integrand. This factor corresponds to switching on
the perturbation adiabatically. We thus have

3

i

Pos(g,w) = =5 dt et~ ‘”<[ o (4, )35(—q,0)]7>. (29.6.25)

<I~
o\

When the average is calculated at finite temperatures in terms of the matrix
elements between the complete set of eigenstates of the unperturbed Hamil-
tonian, we find

Pos(q,w) = 1 Z <e_5En _ e_ﬁEm> (Yn|ja (@) |¥m) (Uimlis(—q) | ¥n) '
’ Vv Z A hw — E,, + E, +1
(29.6.26)
The current—current correlation function appears in response to the vector
potential, while the conductivity is defined through the response to the electric
field. We make use of the relationship

mn

E(r,t) = —% (29.6.27)

valid in that gauge where the scalar potential vanishes. For fields varying with
frequency w, this leads to

E(r,w) =iwA(r,w). (29.6.28)

Substituting this into (29.6.23) and adding the paramagnetic and diamagnetic
contributions we have

i Nee?
0ap(@:w) = — | Pap(g:w) + ——0as| - (29.6.29)

e

With the explicit form of the current—current response function P,z we find
the relationship

inee?

Oap(q,w) EV/ te‘(“’+15)t Ja(q7t),§'ﬁ(—q70)]_>+ -
0

dap

(5]

(29.6.30)
known as the Kubo formula.® In real-space representation

8 R. KuBo, 1957. The name Kubo formula refers more generally to the formula that
expresses the generalized susceptibility as a retarded correlation function. This is
discussed in more detail in Appendix J. The expression for transport coefficients
is often referred to as Green—-Kubo formula (M. S. GREEN, 1952, 1954), while the
expression for the conductivity is sometimes referred to as Kubo—Nakano formula
(H. NakANO. 1956).
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Oap (.7, 0) / at 0 1), 30", 0)] )
(29.6.31)

2
ine(r)e
| ine(r)

Sapd(r —1').

MeW

If the thermal average is written in terms of the matrix elements between
a complete set of states |¥,,) of energy E,, as in (29.6.26), we find

. il e_ﬁE" e_ﬁEm n j (q)’wm><wm|jﬁ(iq)|wn>
Ua,B(QaLU)—wVZ( 7 7 ) hw— E,, + E, +10

mn

inee?

803 - (29.6.32)

MW

The real part of the frequency-dependent conductivity can then be written as

1 —BE, —BEm N
Reaaﬁ<qaw) = gv (eZ _° 7 ) <Q/n J Q)|Wm>
@lis(—a@) |\ (hw — By + B,
X < ‘Jﬁ(lfm >5 ) (29.6.33)
T — Bhw e
=—(1-e") 2> (Taljalg)[#m)

mn

X (W |js(—q)|¥n )6 (hw — By, + Ey) .

Alternatively this expression could have been derived by making use of the
fact that the real part of the conductivity is proportional to the imaginary
part of the current—current response function

1
Reoap(g,w) = ——Im Pas(q,w), (29.6.34)

which in turn can be expressed in terms of the current—current correlation
function using the fluctuation—dissipation theorem outlined in Appendix J:

2h

= o—phw M Pap(q,w).  (29.6.35)

[oe]
1 iwt /% 5
- /dtelwt@a(qaﬂjﬂ(—qv()» ==
We then find that

VT
Reoas(q,w) = —e—ﬁf‘W)V /dte“"t<ja(q,t)jg(—q,0)>. (29.6.36)

— 00

1
3 1

If the thermal average is written in terms of the matrix elements between a
complete set of states with the appropriate weight factor, the time integral
can be performed using
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o0
/ @t dt = 2716 (w) (29.6.37)
—0o0

and we find precisely (29.6.33).

29.6.3 Transverse and Longitudinal Response

In the derivation of the Kubo formula the response to an external electric
field was considered. When the conductivity is calculated, we have to take
into account that the current is the response to the internal field E. We show
that this leads to the expression

~ Nee?

1
- Pa 1)
" (q,w) + -

Ua/g(q, w) = 5aﬁ (29.6.38)
for the conductivity tensor instead of (29.6.29), where ﬁag(q7w) is the irre-
ducible part of P,g(q,w).

First, we show that this makes no difference for the transverse response
since transverse fields are not screened. This can be best seen when the
current—current response function is visualized by diagrams. These diagrams
have the same form as the diagrams for the density—density response function;
their analytic expression is, however, different. The current vertex (its analytic
form can be inferred from the second-quantized expression for the current op-
erator) appears at the two end points, where the electron—hole pair is created
and annihilated. Analogous to the density—density response function, one can
distinguish irreducible and reducible processes in the current—current response
function, too. The reducible diagrams can be separated into two unconnected
parts by cutting a single appropriately chosen interaction line. The diagrams
for the full response function form again a geometric progression, in which ir-
reducible polarization bubbles are coupled to each other by interaction lines,
similar to the diagrammatic representation of the density—density correlation
function, except that the first and last bubbles have a current vertex; they
represent the irreducible part of the current—density and the density—current
response functions

Su(a.) = —5 3 [ ([ul@.n(-q.0] ) (29639)
0
and
Sal(g,w) = —%% /dt eth_6t<[n(q,t),ﬁ'a(—q,O)]7>. (29.6.40)
0

Denoting their irreducible parts by S, (g,w) and S, (q,w), respectively, and
the irreducible part of the current—current response function by P,g, we have
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Pop(q,w) = Papl(q,w) + Sa(gq,w) — (4;;6/2/2(;}((1 w)ﬁg(q,w) . (29.6.41)

The current—density response function being a vector, its components perpen-
dicular to g vanish by symmetry in an isotropic system,

Si(gw) =S1(qw) =0, (29.6.42)

and therefore B
Pi(q,w) = Pi(q,w). (29.6.43)

This shows that there are no polarization corrections to the transverse re-
sponse; the transverse vector potential and transverse fields are not screened.
Thus

2

Ne€ 2

} - i [E(q,w) + 200 (20.6.44)

(5]

o (gw) = [qu?w) n

i
w .
The situation is different for the longitudinal response. To see that we

rewrite the interaction of the electron system with an external potential,

Hi = /n(r)‘/;xt(r,t) dr = —e/n(r)cpext('r,t) dr

= —% Z n(—Q)%xt(Qa t) )

q

(29.6.45)

in terms of a longitudinal vector potential by making use of the gauge invari-
ance of electrodynamics. The same longitudinal electric field is obtained from
the longitudinal vector potential defined by

. aAext (7', t)
ot '

Assuming that the longitudinal field varies periodically in space and time we
have the relationship

— grad @ext (1, 1) = (29.6.46)

qPext(q,w) = —wAexi(q, w) (29.6.47)

between the Fourier components. On the other hand, the number density and
the particle-current density have to satisfy the continuity equation

on(r,t)

s divy,(r,t) =0 (29.6.48)

that follows from the particle-number (charge) conservation. This implies

wn(q,t) =q-J.(q,1). (29.6.49)

Substituting these relations into (29.6.45) we see that in the longitudinal case
as well
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o= o3 i) Ala ) =~ Y i) Alg.)
a a (29.6.50)

=— /j(r)A(r,t) dr.
If the vector potential and the current are parallel to g, the relationship

(i(g.w)) = = Py(g,w) Aext(q. w) (20.6.51)

defines the longitudinal current—current response function, and the total cur-
rent is given by

Jjlq,w) =— [P|(q,w) + 717:16532} Aexi(q,w) . (29.6.52)

As we know, the longitudinal field (potential) is screened and the physically
relevant internal vector potential and field are

1

A(q,w) = mAext(q, w), Bquw)= Eoi(q,w). (29.6.53)

1
&(q,w)

Using (29.6.28) that relates the vector potential to the electric field we get

i nee?
ia.0) = Talaw) |Fila.) + 0] Bla.w). (29654)

(s}
from which

: 2

o1(qw) = —e(q,w) {H(q,w) + ”e} . (29.6.55)
w Me

The effect of screening appears in the factor €,(q,w).

To get a simpler expression we rewrite the longitudinal conductivity in
terms of the density—density response function. For that we multiply both
sides of (29.6.52) by q, rewrite the left-hand side in terms of the number
density, and express the vector potential on the right-hand side by the scalar
potential using (29.6.47). This leads to

—ew(n(q,w)) = [P|(Q,w) + T’;Z ] %gpext(q,w). (29.6.56)

On the other hand, the induced charge density and the external potential
are related by the density—density response function I7(q,w). Comparing the
above expression with (29.1.24) we find

n 62 w2€2

Py(q,w) + m =7 I(q,w). (29.6.57)

This relationship can be readily checked alternatively by evaluating the
response functions directly. Using (29.1.31) and (29.6.26) and
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~ e
<y7n‘q : J(q)‘!pm> = ﬁ(En - Em)<u7n‘n(q)|wm> (29658)

that follows from the continuity equation, we find
2,2

w2e 2 1 0 BEn o BEm
. H(q’”)‘P'(q’“’)—nzqav;< - ) (20.6.59)

% (I + By — Ey) | (Zaln(@) @) [

ez 1 e BEn 9
=y 22 B = En)|[ (@) )]

mn

On the other hand, the dynamical structure factor S(g,w) is known to satisfy
the sum rule [see (J.2.20)]

hq?
— 29.6.
/wS q,w 2mc (29.6.60)

Substituting the spectral representation (28.4.92) into this equation, we find

1 e—,BEn 2 hQ 2

mn

(29.6.61)

e

Combining this with (29.6.59) we in fact recover (29.6.57).
Inserting now (29.6.57) into (29.6.52) and using (29.6.28) valid for the
longitudinal component, we find

. w?e? 262
J(q.w) =— 7 I(q,w)Aext(q,w) = — 7 Il(q,w)e(q,w)A(q,w)
iwe?
= 11(q,w)er(q, w)E(q,w) (29.6.62)

from which we get

iwe iwe? ~

1 (q,w)e = q—ﬂ(q, w). (29.6.63)

oy(q,w) =

When (29.6.41) is applied to the longitudinal component,

4mé? /q? =
_ Si(q,w). (29.6.64
= mey) g W) (9660

The longitudinal current—density response function appearing here can be
expressed using the continuity equation via the density—density response. We
readily find

P|(q,w) = P(q,w) + 5)(q,w)

S(q,w) = —%H(q,w). (29.6.65)
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When it is written in terms of the irreducible parts, we have

47r62/q2~
1— (4re?/q*) 1 (q,w)

Si(q,w) = S)(q,w) + S (q,w)

-~ (29.6.66)
S(q,w )
- (4re2/gA)II(q.w)
and hence _ Cw ~
Si(q,w) = —7H(q,w). (29.6.67)

Similar relations hold for the density—current response function. To check
them we have to recognize that

Salq,w) = 85(q,w)]5——s, (29.6.68)

which follows from the spectral representations

~BEn e*ﬁEm (W |70 (@) W) (T [0 (—q) [Ty,
=32 (5 )

e Z hw — B + By + 16
(29.6.69)
and
Z eI (|0 (@) ) (Tl o (— @) 190
Ty z ho— B+ Bp+16
(29.6.70)
Since IT(q,w) itself satisfies the relation
11(q,w) = II"(q,w)|s——s , (29.6.71)

which can be best seen from the spectral representation in (29.1.31), we have
= ew
Si(q,w) = —7H(q,w) : (29.6.72)

When this is written in terms of the irreducible parts we find

Si(a,w) = Sy (@,w) + 11(g,w)— (47:1;2/2?]?((1 w)§|\(q,w)
= ’ 29.6.73
_ S)(g,w) ( )
1— (4ne2/q*)I1(q,w)
and hence . -
Si(@w) =—-~1l(g,w). (29.6.74)

Combining these expressions with (29.6.64) we find
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2 2,2
~ Ne€ w e ~
Pi(g.0) + "o = “ o i(g.)
¢ (29.6.75)

= e(q,w) {Pl(q’“’) + T;nez] ’

which is equivalent to the statement that the longitudinal field is screened.
When this relationship is used for the conductivity in (29.6.55) we get

o)(q,w) = i {ﬁ(q,w) + nme } : (29.6.76)

Thus, indeed, it is the irreducible part of the current—current response that
appears in the Kubo formula for the longitudinal conductivity.

29.6.4 Dielectric Tensor and Conductivity

It was mentioned in Chapter 16 that the conductivity and the dielectric
constant are not independent of each other. Indeed (29.6.63) shows that the
longitudinal conductivity can be expressed in terms of the irreducible density—
density response function, which in turn is simply related to the dielectric
function. We thus find

i
€e(q,w) =1+ eTwU”(q’“)’ (29.6.77)

which is exactly the relationship we have found in (16.1.64).

A similar equation holds for the transverse components. To derive it
we combine Maxwell’s first equation (Ampére’s law) with Ohm’s law. The
Maxwell equation is written either as

E
curl B = pyg (eoaat —l—]) (29.6.78)

with the full electric-current density or as

oD
curl H = B + Jext » (29.6.79)

where only the external current appears on the right-hand side. The difference
between the electric displacement and the electric field is due to the current
Jina induced by the electromagnetic field

oD 9B
o =0 + dina- (29.6.80)

Inserting (29.6.19) into (29.6.80) and using (29.1.5) we find

i
€ap(q,w) = €0dap + aaag(q,w) , (29.6.81)
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which is nothing else than the generalization of (16.1.64). Thus the trans-
verse component of the dielectric function and the transverse conductivity
are related by

i
€lr(qw) =1+ 60701_((1,01) . (29.6.82)

29.6.5 Transverse Dielectric Function of the Electron Gas

An explicit expression can be derived for the transverse dielectric function by
substituting (29.6.29) into (29.6.81). When the spectral representation of the
current—current response function is used,

5(14

e (1- %) o+ 7? Z ( eZEm> (29.6.83)

% <Wn|]a(q)|wm><kpm|]ﬁ(_q)‘wn>
hw — E,, + E, + 10

1 Nee
Ea,@(q7w) = 606(16 - E |:Poz (q7w) + m

Choosing the propagation vector g of the radiation field in the z-direction and
calculating the response in the z-direction for free electrons, the transverse
dielectric function has a form similar to the Lindhard function

w? e? foler) — folek+q)
) flfip,ifzmﬁ 01 "k) — JO\"k+q 29.6.84
€1r(q,w) w2 egm2w?V “hw — epyq tER +10° ( )

Comparison with (29.4.6) shows two differences between the formulas for the
longitudinal and transverse components of the dielectric function. One is an
extra term in the transverse component due to the diamagnetic current. The
other is that the matrix element of the current appears in place of the dipole
matrix element. We note that if the calculation is done for Bloch electrons,
we find

en(quw)=1- nee? ¢ 2 Jo(enk) — fo(€nkiq)
L eomew?  egmiw? V ﬁw — En'ktq T Enk +10
ig-r ig-r 0)\ |2
< (s |3 (pae'®™ + €97, ) [ (29.6.85)
where the matrix element is
ig-r ig-r (O) 1 *
<wn’kz+q’ 2 (pe te ) ‘w > o Un'k+q (r) (29'6'86)

Vo

h
X [iV + hk + éhq] Uy, g (r)dr.

The transverse dielectric function can be calculated for free electrons in
closed form. For the real part we have
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5 2 2 2
grr ) 1 [ hvrg Eq hw
=1-=<= 1
c14(9,0) ¢ {8( hw ) [(ﬁqu> +3(hqu i
_L(Si 2 {— hw + e, 2 In hw + hvpg + €4
4kp \w hvpq hw — hvpq + €4

L (e = ? W (T = horg — e
hvpq hw + hvpq — €4 '
The imaginary part is

mhoeg e [ (e ' (e )
4 hw g¢2 hvrq hvgq

for 0 <hw < hvrg — &g,

ma eyl (B ot (20.6.88)
4 kp \hw hvpq >

for  hwpg—eq < Tw < horg + &g,

(29.6.87)

+

€2L<q7 W) =

0 for  hwpq+eq < hw,

if ¢ < 2kp, while for ¢ > 2kp

0 for 0<hw <eq— hopg,
ﬁkj(é‘F>2 1 hw — &, Q‘J%J
e1(qw)=4 4 ¢ \Iw hopq 2 (29.6.89)
for 4 — hwrg < hw < g4 + hurg,
0 for e+ hvrg < hw.

29.7 Optical and DC Conductivity

The formulas derived above will now be applied to calculate the conductivity
in two special cases, at optical frequencies and in the limit w = 0, to get the
optical and the DC conductivity, respectively.

29.7.1 Optical Conductivity

Since the momentum transfer during the emission or absorption of an optical
photon is much less than the typical momenta of electrons in solids, the rel-
evant quantities in the description of optical properties are the ¢ — 0 limits
of the dielectric function and the conductivity. The real part of the quantity

o1 (w) = .?L% o1(q,w) (29.7.1)
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is called optical conductivity. It characterizes the response of the electron sys-
tem to an electromagnetic radiation of frequency w. From the spectral repre-
sentation of the Kubo formula [see (29.6.33)] we find

1 ~PEn .
Reo | (w) = 5(1 DY ¢ — (@500 |*6(hw — Erp + Es) .

mn

(29.7.2)
This form allows a simple physical interpretation of the optical conductivity:
It is the power absorbed from the electromagnetic field at frequency w.
An alternative, much used form of the Kubo formula, can be derived for
the ¢ = 0 component in uniform systems, if the current is written as the time
derivative of the operator

Q=—e) m, (29.7.3)
since
Q= [Ho, =—— Zpl =3. (29.7.4)
Using this in (29.6.30) we find
casw) = 1o / et T ([Qu(0), js0)] ) + e (20.75)
fuu \% - Mew ’
0

which after integration by parts yields

1 N
Gap(w) = 7%? dt 1(w+16)t< [Qa(t),jg(())] 7>
) (29.7.6)
11 in.e?

S CRON O] IR

Making use of the canonical commutation relations we find

ihe? N,
[Qa(0),75(0)] _ = he e, (29.7.7)

Me

Hence the second and third terms cancel each other exactly. The thermal
average in the first term can be written in terms of the equilibrium density
matrix pg = e A" /Z of the unperturbed system. After a cyclic permutation
of the operators in the trace

oap(w) =

< \

LD far e [ u(0. 5501
0 (29.7.8)
= %% /dt ol (wtio Tr([Qa (t), PO} ,35(0)) .

0
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This expression can be further manipulated by using the operator identity

Bh

Mo A(t)e=PHo — A(t) = % / AN [y, A(H)] e Ao/
Oﬁh (29.7.9)
= %/d)\[HO,A(t—i/\)L,
0
which is equivalent to
Bh
[A(t), po] _ = —ipo / dMA(t — i), (29.7.10)

0

where A denotes the time derivative of A. Applying this transformation in
(29.7.8) and taking into account that the derivative of @ is the current, we

find o
11 O R
Tapw) = £+ / dt / A\ el @G (1 —iN)j5(0)), (29.7.11)

0 0

or after a rearrangement of the operators

o) Bh
11
Oap(w) = ﬁv/dt/d/\el (@I (F5(—iN)ja (1)) - (29.7.12)
0 0

29.7.2 Optical Conductivity of the Electron Gas

We note that in the long-wavelength (g — 0) limit, when there is no preferred
direction in an isotropic system, the longitudinal and transverse components
of the dielectric function and of the conductivity become identical,

€1(0,w) = €1 (0,w) and 0(0,w) =0, (0,w). (29.7.13)

We will therefore use the expressions derived for the longitudinal component
of the conductivity tensor given in (29.6.63), although, strictly speaking, the
optical conductivity is related to the transverse response. In the RPA I is
replaced with ITy. Looking at (29.2.46) we see that

2(¢ktq — Ek)
o(g,w) = Z fo(ek) e q(€k+q 5 (29.7.14)

from which in the vpg < w limit we obtain
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o(q,w) ~ ZZf? . (29.7.15)
Inserting this expression into (29.6.63) gives
M€’

o(w) = lmew . (29.7.16)

As it stands, a purely imaginary conductivity with no real part cannot be
true; it does not satisfy the Kramers—Kronig relations. Assuming that the
above form is valid for the imaginary part, the Kramers—Kronig relations give
vanishing real part at nonzero frequencies, but a finite, singularly large value
at w = 0:

Nee?

Reo(w) =

o(w) . 29.7.17
< 5(w) (29.7.17)
This sharp peak in the real part of the conductivity is the Drude peak. The
real and imaginary parts can be combined into the expression

nee?

o(w) = lme(w 0 (29.7.18)
One can show that this expression is valid more generally whenever scattering
by lattice vibrations or by impurities can be neglected, and only the electron—
electron interaction is taken into account since then energy is not dissipated
in the system.

The finite lifetime of electron states due to scattering by impurities or
lattice vibrations will modify this situation. According to (29.2.89) I can be

approximated by

T(q,w) = B (29.7.19)
e = mew(w +1i/7) "’ o
which leads to the result known from the Drude model
Nee? NeeT
=i = 29.7.20
o) 1me(u) +i/7)  me(l —iwT) ( )
and
Ne€’T 1 0o
Reo(w) = (29.7.21)

me 1+ (wr)? T 1+t (wr)?’
The Drude peak is broadened by the scattering processes, the width is propor-
tional to 1/7, and the optical conductivity decays as 1/w? for high frequencies:

Nee?

Reo(w) =~

(29.7.22)

Mew?T

This form of frequency-dependent conductivity satisfies the conductivity sum
rule
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i 2

TNee
/dw Reo(w) = e (29.7.23)
0

derived in (J.2.11).

When a more realistic band structure is considered, photons can be ab-
sorbed or emitted in association with interband transitions in the electron
system. Thus, as has been discussed in Chapter 25, the imaginary part of the
dielectric function and hence the optical conductivity gives information about
the joint density of states of the bands between which the transition takes
place. The Van Hove singularities of the joint density of states produce sharp
structures in o(w). Similar sharp features may appear in the dielectric func-
tion and optical conductivity at frequencies corresponding to the absorption
or emission of optical phonons. Nevertheless, the optical f-sum rule has to be
satisfied.

Note that if the transverse response is studied, the contribution given in
(29.7.16) and hence the Drude peak arises from the diamagnetic term. Its
contribution to the real part of the conductivity is singular and proportional
to d(w), even when scattering processes are taken into account. This singu-
larity is, however, unphysical. By considering the properties of the irreducible
current—current response function one can show that its real part cancels ex-
actly the contribution of the diamagnetic term in the w — 0 limit, and the
imaginary part is proportional to w. This then leads to a finite conductivity
even at w = 0.

29.7.3 DC Conductivity

The DC conductivity is obtained by taking the limit ¢ — 0 first and the limit
w — 0 afterward in (29.6.33).% Using the relationship

1 he
lim = (1-e Fhey = Bh, (29.7.24)
we have
R S PN
Reoap = TV / dt (Jo(t)ja) (29.7.25)
mh 1
= mvz ) (0 )5 — ).

9 We note that the order of the limits is different when the static dielectric constant
or the static magnetic susceptibility is calculated. The limit w — 0 has to be
performed first for finite g, and only after that we can take the limit ¢ — O.
Otherwise the Lindhard function gives zero, because the number of particles and
the magnetization are conserved quantities.
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Although (29.7.25) is a seemingly simple expression, the explicit calcula-
tion of the conductivity using this formula is not easy and has only been done
in a few simple cases. The difficulties, which are related to the fact that it does
not suffice to carry out the calculations in some low orders of perturbation
theory, can be readily seen when scattering by impurities is considered.

According to the lowest order Born approximation the inverse collision
time is proportional to the absolute square of the matrix element of the scat-
tering potential Vipp:

1 2T 2
S fnip(ap) [Vimp|” (29.7.26)

where n; is the concentration of impurities. Thus, a second-order calculation
of the current—current response would give a conductivity that is inversely
proportional to the collision time. We know, however, that according to the
celebrated Drude formula )
Ne€”T
o=— (29.7.27)

Me

the conductivity is proportional to the collision time of electrons. This result
can be obtained in a perturbative treatment of the response function only if
the contribution of the scattering processes are summed up to infinite order.
A partial summation can be achieved by including a finite lifetime for the
propagating electrons and holes when calculating the current—current response
function. This approximation corresponds to taking into account the so-called
self-energy corrections, but neglecting the processes that would directly or
indirectly couple the electron and the hole. When the form

1
GR(k = 29.7.28
(k,w) hw — ey, + ih/27 ( )
is used for the retarded Green function, we obtain
~ . 1
J— (29.7.29)

mel—iw/T

for the response function. This would yield a Drude-like expression for the con-
ductivity with this 7 as the relaxation time. This result is, however, still not
correct. To describe the contribution of the scattering processes to the conduc-
tivity properly, the so-called vertex corrections have to be taken into account
as well. To understand their role we recall that the correct expression for the
conductivity contains the so-called transport relaxation time, which differs
from the usual lifetime of electrons. The scattering processes are weighted
by a factor 1 — cosf, where 6 is the change in the direction of the scattered
electron, when the transport relaxation time is calculated. This factor takes
into account the effectiveness of losing current due to scattering.
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29.7.4 The Kubo—Greenwood Formula

A more convenient, simpler, and, in some cases, more easily applicable ex-
pression can be obtained by the following considerations: We neglect the dia-
magnetic term since it gives contribution only to the imaginary part and

hoo
| = —e A\ 29.7.30

J imeV ; ! ( )
is used for the current operator, while the interaction with the electromagnetic
field is expressed in terms of the electric field instead of the vector potential

in the form
Ne

> E-V,. (29.7.31)
i=1

he

Mew

Hext = -

To calculate the expectation value of the current we start from

i=3)="T{pWj}, (29.7.32)

where p) is the first-order correction to the density matrix due to the inter-
action with the electromagnetic field. According to (J.1.35)

t
p(”(t)=% / e o=t /Ml 50 Moo (t)] eMot=t0/hay  (29.7.33)

—00

The trace in (29.7.32) is evaluated using a complete set of many-body eigen-
states |, ). Insertion of a complete set of intermediate states gives

j = Z<Wn|j|y7m><gpm|p(1)|gpn> . (29734)

The matrix elements of the current are obtained from (29.7.30), while the
matrix elements of the density matrix can be evaluated using (29.7.33). For
its temporal Fourier transform we find

(29.7.35)

(|7, = (e‘”“ _ e‘ﬁEm) (W [Pt | 2)

A Z hw — Ep + E, +16

In the one-electron approximation the many-body states are Slater deter-
minants built up from single-particle functions ¢,, of energy ¢,,. The real part
of the conductivity then takes the form

me2h? 1

Reons = P
e

[fo(em) — fo(en)] (29.7.36)

X (pn|Valom) (em|Valon)d(em — en — Aw) ,
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where fj is the Fermi distribution function. Assuming that the matrix element
can be approximated by an average matrix element depending only on the
energy of the state, the summation over the states can be converted to an
integral over energy where the density of states appears in the integrand:

Reoas = T [ dep(e)ole + o) [fole + 1) = fo(e)]

e

(29.7.37)
X (Pe|ValPethw) (Petnwl Valpe) -
In the static, w — 0 limit, the difference between the Fermi distribution

functions is replaced by the derivative dfy/0e. Finally, in isotropic systems,
the DC conductivity can be written in the form

o= —/05(0)% de, (29.7.38)
where - )
me h 0
0.(0) = Tg[p(g)]2 <¢5 2 <p5> (29.7.39)

This is the Kubo—Greenwood formula.'® Besides the density of states the con-
ductivity is determined by the matrix element of the operator 9/0x. As
expected on physical grounds and expressed mathematically by the factor
—0fo/0e, only electrons lying in the neighborhood of the Fermi energy in a
range of width kg7 contribute to the integral. Thus it suffices to know the
wavefunction of states near the Fermi energy.

The situation is different in semiconductors. The states responsible for
conduction are at the bottom of the conduction band or at the top of the
valence band, typically much farther away from the chemical potential than
kT, i.e., € — u > kT for electrons in the conduction band. In this limit
classical statistics can be used instead of Fermi statistics and

Afole) . fole)
Oe - kBT

. (29.7.40)

The conductivity can then be written in the form

o= e/u(a)n(a) de, (29.7.41)

where )
O¢
pule) = FTp(e) (29.7.42)
is the mobility and
n(e) = p(e) fole) (29.7.43)

10D, A. GREENWOOD, 1958.
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is the density of electrons. If o. vanishes for ¢ < &, and this is the case for
extrinsic n-type semiconductors, there are no mobile charge carriers below the
conduction band. The conductivity then has an activated form

o~ o, e (Femm/keT (29.7.44)

A similar activated form is obtained for disordered systems if the electron
states near the Fermi energy are localized and do not contribute to the con-
duction.

29.8 Response to Magnetic Perturbations

The external perturbations considered until now couple identically to electrons
of both spin orientations and give rise to a change in the electronic density
or generate a current. An external magnetic field couples to the magnetic-
moment density acting oppositely on electrons of opposite spin and results in
a net magnetization when the field is homogeneous in space. For weak enough
disturbance the response to the magnetic field is linear in the field strength,
and the proportionality factor is the magnetic susceptibility. Because this
response depends on the internal dynamics of the system, the magnetic sus-
ceptibility, like the dielectric function, is sensitive to the electron—electron
interaction. We will first calculate how, in a simple Hubbard model of inter-
acting electrons, the Pauli susceptibility is modified by this interaction. Then
the dynamical susceptibility will be studied. Finally, the Ruderman—Kittel os-
cillations, the magnetic analog of the Friedel oscillations, will be considered.

29.8.1 Stoner Enhancement of the Susceptibility

The dielectric response of the electron gas was calculated analytically for
electrons moving in a uniform neutralizing background, interacting with each
other by Coulomb repulsion. In this model, as will be seen in Chapter 30,
magnetic fluctuations are weak at the usual metallic densities. Magnetic in-
stability may appear only at very low densities, for large values of rs. To get
a more realistic picture of the magnetic properties of metals we should con-
sider electrons in d or f states rather than free electrons. Such electrons can
reasonably be described in the tight-binding approximation, and a Hubbard-
like model may be more appropriate. We will therefore study the influence of
electron—electron interaction on the susceptibility in the Hubbard model.

The Hartree-Fock theory of the Hubbard model was presented in the pre-
vious chapter. We saw that the quasiparticle energies are

ko = €k + U(n_a> , (29.8.1)

where the average number of particles with spin ¢ and per unit volume has
to be determined self-consistently from
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1 ~
ne) = Zk: Nko) = Vzk:fo(ek,,). (29.8.2)

When an external field H is applied, an additional spin-dependent shift ap-
pears in the single-particle energies. Choosing the quantization axis in the
direction of the field, the quasiparticle energies are modified to

ng =€+ U<nl> — %geMB,U/OHv gkl =€k + U<nT> + %geMBMOHv (2983)

where the densities (n1) and (n|) have to be determined self-consistently for
a fixed total electron density

ne = % = (ny) + (ny). (29.8.4)

The magnetization is obtained from the difference of the number of parti-
cles with up- and down-spin orientations:

M = Sgoan (1) — ()] = Beotin s 3 [t} — ()
2 (29.8.5)

= Jam 3 U0 Eer) ~ oG]
k

For weak magnetic fields the Fermi distribution functions can be expanded to
linear order in the energy correction yielding

dfo(e
By Z fggkk ny) = 39epspo — Ulnt) — 3gepnpoH] .

(29.8.6)
Replacing the summation by an integral, we find

dfole)
M= %QQMB/ O [0 0)) — U ) = oo o () de,  (298.7)
where p, () is the density of states for one spin orientation. At low temper-
atures, where the thermal corrections in the Sommerfeld expansion can be
neglected, the leading term gives

M = —3gepn [U{ny) — Ulny) — gepnpoH| po(ex) - (29.8.8)

The quantity (n;) — (n)) on the right-hand side can be expressed by the
magnetization using (29.8.5). We then find

M =Up,(ex)M + 592 uispiops (ev) H, (29.8.9)

from which L g s
592 s HopPo (EF)

M =
1- UpU(EF)

(29.8.10)
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The susceptibility is then

_ 392HB 0P (EF)

T U or) (29.8.11)

The expression in the numerator is just the Pauli susceptibility of the free-
electron gas derived in (16.2.113). Coulomb repulsion gives rise to its increase
through the factor S = 1/[1 — Upy(er)] which is known as the Stoner en-
hancement factor.'!

The unpolarized, paramagnetic state, where e = € and (ng) = (n}),
is stable without external magnetic field, if Up,(¢r) < 1. The Stoner factor
is positive and the susceptibility is indeed enhanced. When the interaction
is strong enough or the density of states is large, the paramagnetic state be-
comes unstable even without external magnetic field. A polarized, ferromag-
netic state may appear in which the equality of the number of electrons with
opposite spin orientations is broken spontaneously. The condition Up, (er) = 1
obtained for this transition in the mean-field approximation is, however, only
a rough estimate. Transition to a homogeneous magnetic state cannot so eas-
ily occur when correlations between electrons are taken into account. Without
going into these details we will study the properties of the broken-symmetry
state in Chapter 33.

Materials in which the symmetry is not broken spontaneously but Up, (er)
is close to the instability threshold are of particular interest. Being close to
the threshold where the system becomes ferromagnetic, these metals are called
nearly ferromagnetic. As indicated by the large Stoner enhancement factor,
magnetic fluctuations are strongly enhanced in them and they give rise to
modifications in the thermodynamic properties (e.g., the temperature depen-
dence of the specific heat) compared to ordinary metals. Among the elemental
metals platinum and palladium fall into this class. The best estimate for pal-
ladium is Up,(er) =~ 0.9.

29.8.2 Dynamical Susceptibility

Having determined the static susceptibility we now turn to the problem where
a weak, spatially and temporarily varying magnetic field H oy (7, t) is applied
to the system in addition to a stronger uniform, static magnetic field H. The
uniform field shifts the one-particle energies of up- and down-spin electrons
oppositely and gives rise to a spatially uniform magnetization. We will study
how the magnetization is modified by the weak oscillating field.

Assuming that the weak field can be treated as a perturbation, the per-
turbation Hamiltonian is

1 E. C. STONER, 1938.
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—,uo/Hext(r,t) -m(r)dr
Ho
= *V Z cht(qvt) ! m(fq) ’
q

Ha(t)

(29.8.12)

where m(r) is the operator of the magnetic-moment density, its expectation
value is the local magnetization, and m/(q) is its Fourier transform. For sim-
plicity we assume that the perturbing field varies in space and time with wave
vector q and frequency w. In response to this perturbation a magnetization
component appears that has the same wave vector and frequency:

(m(q,w)) = x(q,w)Hexi(q,w), (29.8.13)

where x(q,w) is the dynamical susceptibility. It follows from linear response
theory that apart from a factor po the components of the susceptibility ten-
sor are the temporal Fourier transforms of the magnetization—magnetization
response function:

Xog(qt —t') = %uoﬂ(t - t’)% <[ma(q,t),mﬁ(—q,t’)]7>. (29.8.14)

This equation is the analog of the relationship between the electrical polariz-
ability and the density—density response function.

Choosing the weak frequency-dependent field in the same (z) direction as
the uniform field, the parallel (longitudinal) susceptibility is defined by

xj(g,w) = W . (29.8.15)

This response function is obtained by using the z-component of the magnetic-
moment density in (29.8.14):

i@t =) = bt — )5 {[m* (@ 0),m* (-, )] ). (20.8.16)

When the spin density is used instead of the magnetic-moment density, we
have

ge,UB< Z(qa )>
X|(qw) =, (29.8.17)
: Hiulg.w)
and accordingly
X11(g:w) = g2 gLy (g, w), (29.8.18)

where Yy (g, w) is the Fourier transform of the spin-density response function:

o0
2 (g,w i /d oiw(t—t)=3(t— t)‘]}<[Sz(q7t)’sz(_q7t/)]7>'
0

(29.8.19)
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The magnetization—-magnetization response function is a retarded Green
function and as such it can be calculated using the methods of many-body
theory. In principle, one should sum up all processes to all orders of perturba-
tion theory. Here we will apply the much simpler equation-of-motion method
described in Appendix J. We will study how the expectation value of s*(q,w)
changes due to the external perturbation.

If the magnetization is written in second-quantized form using (H.2.62),
its Fourier transform is

M(q) = 39eliB Y | ChoT o sChiqs (29.8.20)
kag

where o is the Pauli matrix and the spin density is

$(Q) =3 ChaCupChiqs- (29.8.21)
koS

The component along the quantization axis is

s*(q.t) = [n1(a,t) — ny(q,t)]
= 137 [ehi (Densqr () = el (Denyq )] (20.8.22)
k

The equation of motion will be written separately for ni(qg,t) and n(q,t)
using

Hy = QgCquo—Z = ( [ck+chkT c,qulckJ (29.8.23)

as perturbation.
If, for the sake of simplicity, the on-site Coulomb repulsion of the Hubbard
model is used to describe the interaction between electrons, then

hd U
(_idt + akT> ofy (t) = v D kg1 Ok g (Mo (1) (29.8.24)
/q/

zgc,uB,u'O V Z cxt q at)ClJr(g+q/T(t) )

hd U
(—idt + akl> o (t) = v Z o Dk gt (g () (20.8.25)
kl

ggeNBHO Z xt(d',1) Ck-ﬁ-q’l(t)
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h d U
(_ldt — €k+qT> Ck-‘qu(t) = V Z ClJrc’—q’i(t)ck’L(t)Ck+q—q’T(t) (29826)

3 9e B0 Z et @ )y g ar (1),

hd U
(_idt — 5k+ql> Chiql (t) = % Z CL,_q,T(t)ck,T(t)ckJrqiq/l(t) (29.8.27)
k/
+2,chB/ufO V Z ext q ?t)ck,+q—q’l(t) .

These equations can be linearized if the product CLL 7o (D), (t) appear-
ing on the right-hand side in the terms containing three operators is replaced
with its expectation value. In doing so we have to take into account that
the quantity <cL,7q,g(t)ck,g(t)> is finite only if ¢’ = 0 or q’ is equal to the
wave vector of the external perturbing field. The term with q" = 0 gives the
Hartree correction of the one-particle energies. That is why £k, and €x4q0
appear in the equations below instead of ex, and ex4qo. By a change of vari-

ables k' — k' 4+ q in the summation and combining the above equations we
find

hd
<idt 5’“+qT+€kT) (ch (B)ensqr(®)

= —g Z <01Tc'l(t)ck'+ql(t)> [fo(gk+qT) — fo(ng)] (29.8.28)
k'
+ %geNBMOHQXt( )% [fO(ngqu) — fO(ng)} ,

hd _ ~
(_idt ~ Cktql T 5kl) <CL¢(t)ck+ql(t)>

- *% > {1 Bt gt ) [foCrra) — foGri)] (20829
k,

— 3o H (a,0)3 [folGarar) — folEa)]

Dividing the temporal Fourier transform by the energy factor and summing
over the momentum k gives

(ni(gq,w)) = [%geuBuoHext( w) —U(n(q,w))]
Z Jo(Ek+qr) — fo(Ert) (29.8.30)

— Ektql +ERT

and
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<nl (q’w)> = [_ %geMBMOHext( ) U<nT(q7w)>}
Z Jo(Ektq1) — fo(Eky) . (29.8.31)

— Ektql t k|

We introduce the notation

Jo(Ektqo) — fo(Eko)
oo (q, . 29.8.32
0o (g,w Z — Ektqo + Eko ( )

The solution of (29.8.30) and (29.8.31) then takes the form

2genBr0 X0t (q,w) [1+ UXo (q,w)] o

n(q,w — X q,w),
(n1(g,w)) 1-U?Zo1(q,w) X0 (q,w) ) (29.8.33)
B 39etiB o X0) (q,w)[1+UXoi(q,w)] .
<’I’Ll(q, w)> - _ 2 ext(q7w) ’
1 U 2()T (q,w)E()l((LW)
and the longitudinal susceptibility can be written as
( w): (l )2 EOT(q,w)[1+U201(Qaw)]
X|\4q, 39eUB) Mo 1— UZEoT(q’w)Eol(q,W) (29 8 34)

Zoy(q,w)[1+UXo1(q,w)]
1—U2X%o1(q,w) X0, (q,w)

To interpret this result we rewrite the interaction with the perturbing
magnetic field in terms of n,(q):

My = QchBﬂOVZ Zela,t)[n1(—q) —ny(—q)] - (29.8.35)

Since the magnetization is proportional to the difference of nq(q,w) and
n|(q,w), the parallel susceptibility consists of four terms:

X1 (@,w) = (39e18)* 10 [Z11(q, w) — Zp1(q,w) — X)1(q,w) + X)) (q,0)]

(29.8.36)
where
, :i o iw(t—t’)—é(t—t/)l A—a. t'
Sarr(g.0) = ¢ [dlt=t)e L nota. (-0, ).
0
(29.8.37)

These quantities are known already from the dielectric function. They are
equal to the negative of the temporal Fourier transform of I1,,/ (q,t — t')
defined in (29.1.33):

Yoo (q,w) = —Iyer(q,w) . (29.8.38)

The 7 spin and | spin electrons contribute with equal weight to the density;
therefore, the dielectric function contains the sum of the spin-resolved response
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functions. On the other hand, they appear in (29.8.36) with signs depending
on the spin orientation. The RPA for the density—density response function
could be visualized (see Fig. 29.5) as an infinite series of diagrams containing
consecutive polarization bubbles. When a similar approximation is made for
the susceptibility, we have to take into account that the dielectric function was
calculated for the spin-independent Coulomb repulsion, while here we consider
a Hubbard model in which only electrons of opposite spins interact. Therefore,
when the spin-resolved response function is calculated in the RPA for the
Hubbard model and the propagation of the electron—hole pair is visualized by
diagrams, the subsequent bubbles have to have opposite spin orientations as
shown pictorially in Fig. 29.14.

5 1 1 ! 1
= < » + < Sanan S >
TR ] ) )

Fig. 29.14. The simplest processes contributing to the longitudinal susceptibility

Owing to this spin restriction, the sum of the bubble series gives

_ EOT (qvw)
1—U2X01(q,w) %0, (q,w)

ETT(q,w) (29839)

and
_EOT (qa W)UEOl (qa w)
1- UQEOT (q’ w)EOl (q’ w)

Summing up these expressions with the signs given in (29.8.36) we recover
exactly the expression derived earlier for the longitudinal susceptibility. Thus
the result of the equation-of-motion method is a straightforward extension of
the renormalized RPA to the Hubbard model.

If the material is unpolarized, X and Xy are equal. Denoting their com-
mon value by Xy, we have

Yr(qw) = (29.8.40)

$9e B0 X0 (q, w)

(ni(q,w)) = ~(n(g.w)) = = — USo(a.0) HZ, (q,w). (29.8.41)
Thus we get s
<mz(q,w)> _ igeMBMOZ‘O(q;w) H= (q’w) (29842)

1-UXy(q,w) ext

for the z-component of the magnetic-moment density, and the longitudinal
magnetic susceptibility becomes
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592110 X0(q, w)
1- UEO (q7 w)

xH(q,w) = (29.8.43)
When taking the limit w — 0 first and then ¢ — 0, X((0,0) is just the
density of states for a single spin orientation. We then recover (29.8.11) derived
for the static susceptibility. This expression can thus be considered as its
generalization to the dynamical susceptibility.

Equation (29.8.43) for the susceptibility is formally very similar to the
density—density response function (29.2.14) derived in the RPA. There is, how-
ever, an important difference. ITy appearing in the denominator of (29.2.14)
is equal to the negative of the density of states in the static, long-wavelength
limit. This is due to the sign difference in (29.8.38). Thus, the Coulomb re-
pulsion leads to a weakening of density fluctuations, but enhances magnetic
fluctuations. Charge fluctuations can be enhanced by attractive interactions.
Such an interaction can be mediated between electrons by long-wavelength
acoustic phonons, as we have seen in Chapter 23, and the enhanced density
fluctuations may give rise to the formation of static charge-density waves. This
will be further discussed in Chapter 33.

29.8.3 Transverse Dynamical Susceptibility

In certain resonance experiments the weak high-frequency field Heyy is perpen-
dicular to the homogeneous magnetic field H. Choosing again the direction of
the homogeneous field as the z-axis, it is convenient to use the linear combi-
nations

HE, =HZ

ext T ext

+iHY, (29.8.44)

for the perturbing field. The magnetic-moment density and the spin density
will be expressed similarly by the linear combinations

mE =m® +1imY, st =s"+isY, (29.8.45)

instead of the xz- and y-components of the m and s operators. The Hamilto-
nian describing the interaction with the perturbing field is then

H ( = _§1U’OV Z ext ( ) + Hext(q7 ) +(_q)] (29846)
QQGMBMO Vv Z ext t) ( ) + Hext(qa ) (_q)]

1
_%geMBHOV Z |:H:;ct( )cchJ,»qlckT + Heyi (g, )Ck+chki:|
kq

where we used the second-quantized expressions

(@ =) ChrCriqrs 5 (@)=Y ChCriqr- (29.8.47)
k k
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The response to the transverse field can be characterized by the transverse
susceptibility:

(m*(q.w)) _ gepn(s*(q,w))
H(q,w) Hy(q.w)
To calculate the expectation value (s™(q,w)) we use again the equation-of-
motion method. Here the quantity <CLT(t)ck+ql(t)> has to be studied. The
equations for the creation and annihilation operators are

xi(gq,w) = (29.8.48)

hd U
(—idt + sm) chi () = v D b1k (e (£) (29.8.49)
k'q’

JFggeMBMOV Z ext (@ at)CL+q’l(t)
and
(_}fjt - 5kz+qi> Criq(t) = Z Chr— gt (D)1 (D)o g gy () (29.8.50)
QQeMBro Z ot (@' )Cpeqqry (£) -

When the three-operator terms are linearized (decoupled) by replacing the
product of two operators by its expectation value, as was done in calculating
the longitudinal susceptibility, these equations lead to

<s+(q, w)> = [%geuB,uoHext( w) + U<s+(q,w)>] X (q,w), (29.8.51)

where

- Z fo(Brar) = folEr1) (29.8.52)
1.q; — Ek+ql T Ek|

The solution of this equation yields

1 0
(st (q,w)) = 296“?25((1(, ))Hg;t( w), (29.8.53)

from which we find

1021311029 (q,w)
1-UX9(q,w)

x1(g,w) = (29.8.54)

for the transverse susceptibility. This quantity will be considered in Chapter
33 when spin-density fluctuations will be studied. Notice that this expression
is identical to that obtained earlier for the longitudinal susceptibility when
the system is unpolarized.
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It is interesting to see which processes contribute to the transverse sus-
ceptibility in this approximation. For that we recall that according to linear
response theory the transverse susceptibility is the temporal Fourier transform
of the retarded response function

oiho(t - t’)%< [m*(q,t),m ™ (~q,t)] 7> . (29.8.55)

When the spin density is used instead of the magnetic moment, we have

xi(g,t—t)=3p

XL(gw) =302 upro X (q,w), (29.8.56)

where

oo
Si(gw) = ¢ [ A=) OO L[ g5 (<q.t)] ).
0

(29.8.57)
When st and s~ are written in the second-quantized form, one sees that
this response function describes the propagation of an electron—hole pair with
opposite spins. The electron and the hole created at time ¢’ interact with each
other and with the other electrons of the Fermi sea before being annihilated
at time ¢. The susceptibility derived from the equation of motion is just the
contribution of the processes shown diagrammatically in Fig. 29.15, when the
series is continued up to infinity. Since the analytic contributions of these dia-
grams form a geometric progression, the summed-up form is easily obtained.
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Fig. 29.15. The simplest processes taken into account in the transverse suscepti-
bility

29.8.4 Ruderman—Kittel Oscillations

We know from Chapter 16 and from our earlier discussions in this chapter
that a charged impurity distorts the electron states around itself. The exter-
nal charge is fully screened in metals by the accumulated charge density. The
spatial oscillations of this decaying charge density are called Friedel oscilla-
tions. Similar spatial oscillations may appear in the spin density of electrons
when the impurity has a magnetic moment, as mentioned already in Chapter
14. We rederive here this oscillating spin density.

We saw in Chapter 24, in connection with the Kondo effect, that the inter-
action between conduction electrons and localized magnetic moments (spins)
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of a magnetic impurity can be described by the so-called s—d interaction.
When a single localized moment is placed into the system at the origin and
the quantization axis is in the z-direction, then

Ho a= —JOL(0)S - o B%(O) (29.8.58)
v > [S Chr Cht T 57 g + 5 (C’”C’“T a C’“'lckl)} '
kk’

Let us assume that the system of electrons is in thermal equilibrium, the
charge and spin densities are homogeneous, and the localized spin is originally
in state |M) for which S*|M) = M|M). We are interested in the modification
of the electronic wavefunction and the spatial distribution of the spin density
around the localized spin. Technically it is easier to determine this spatial
variation of the spin density than to derive the Friedel oscillations in the
charge density since the interaction with the magnetic impurities is short
ranged, while the Coulomb interaction is long ranged.

The wavefunction of the perturbed electron system can be written in
Slater-determinant form, where the single-particle states are perturbed plane
waves obtained by taking the interaction with the localized spin into account.
If the electron has wave vector k and spin T, and the localized spin is in state
|M), the unperturbed state is

e, M) = el [0)1), (20.8.59)

where |0) denotes the vacuum of electrons. This state will be mixed by the
s—d interaction to states |k’c’, M') in which both the wave vector and the spin
of the electron as well as the orientation of the impurity spin can differ from
that in the initial state. In first order of perturbation theory, the perturbed
wavefunction is

(K'a’,M'|Hs.alk T, M)

kT, M) = kT, M)+ > Ko, M) F— . (29.8.60)
k'c’

There is no summation over M’; it cannot be chosen arbitrarily, because the
z-component of the total spin is conserved. Taking the matrix elements of the
interaction Hamiltonian we find

1 J

(1) — = + /
(kT,M)" = |kT,M) Vo e (M +1|STIM)|K' |, M +1)
+(M|S*|M)|K' 1, M)] . (29.8.61)
Similarly
o, )0 = |, a0) — =3 T (v — s ank 1, M - 1)

|4 o Sk~ Ew

—(M|S*IM)|K |, M)] . (29.8.62)
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In an isotropic system, where the unperturbed states are plane waves, we
obtain

k1, MY = %eik"r‘ 1, M) — S ; 6:’_ - (29.8.63)
x [(M 4 1|ST[M)] 1, M + 1) + (M|S*|M)|1, M)]
and
L) = L) - > . (6869

x [(M - 1|8~ |M>|T7M—1> — (M|S*|M)| 1, M)] .
The integration over k' can be done using (C.1.66) yielding

1 meJ coskr

VV  2mrh?
x (¢5(5+1 “ MM+ 1), M +1) +M|T,M>)

k1, M)D) = W e® T, M) — (29.8.65)

and

1 meJ coskr
YV 2wrh?
x (VS +1) = M(M=1)|1,M —1) - M|1, M)).

k|, M) = W ek ||, M) - (29.8.66)

The density due to electrons occupying these states is obtained by calcu-
lating the quantities (D(M,k 7 |k 17, M)V and (M, k| |k |, M)V . We
find

O R
1 medJ cos kr B
mlkr) =g |V g Meostk-r)|

The total density of the up- and down-spin electrons is obtained by sum-
ming the contribution of all occupied states. At temperature 7' = 0, this is
equivalent to integrating over all k vectors inside the Fermi sphere. This gives

3 M
ny(r) = —kF 1+ bmeJ Mk kx g(2kgr) |,
6 i (29.8.68)
2 6meJ Mkp e
ny(r) = 76752 [1 I g(2kzpr)} ,

where g(z) is the decaying oscillatory function given in (29.3.24).
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This shows that the localized moment perturbs the spatial distribution of
conduction electrons in such a way that the number density n(r) = ny(r) +
ny(r), and hence the charge density, remains uniform, but a spatially varying
spin density o (r) = nt(r)—n/ (r) appears in the originally unpolarized system.
This spin density oscillates in space and decays with the third power of the
distance from the impurity. These oscillations are known as the Ruderman-—
Kittel oscillations. The periodicity of the oscillations, their wavelength A, is
determined by the relation 2kpA = 27w. As has been mentioned already and
derived in Appendix I, this oscillating-induced spin density gives rise to the
spatially oscillating RKKY interaction between magnetic moments placed at
a distance r in a metal.

The results derived above are modified at finite temperatures for two rea-
sons. On the one hand, the Fermi distribution function is smeared out over
an interval of width kg7 around the Fermi energy, and this leads to a factor
exp(—mkprkgT/er) in the charge distribution. On the other hand, an extra
factor exp(—r/l) may appear due to the finite mean free path [ of electrons.

This oscillating spin density around a magnetic impurity can be observed
experimentally, e.g., in the shift of the resonance frequency of nuclear magnetic
resonance.
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Cohesive Energy of the Electron System

When the types of bonds that hold solids together were discussed in Chapter
4, only a few sentences were devoted to the metallic bond. It was em