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Preface

The reader is holding the third volume of a three-volume textbook on solid-
state physics. This book is the outgrowth of the courses I have taught for
many years at Eötvös University, Budapest, for undergraduate and graduate
students under the titles Solid-State Physics and Modern Solid-State Physics.

The main motivation for the publication of my lecture notes as a book
was that none of the truly numerous textbooks covered all those areas that
I felt should be included in a multi-semester course. Especially, if the course
strives to present solid-state physics in a unified structure and aims at dis-
cussing not only classic chapters of the subject matter but also (in more or
less detail) problems that are of great interest for today’s researcher as well.
Besides, the book presents a much larger material than what can be covered
in a two- or three-semester course. In the first part of the first volume the
analysis of crystal symmetries and structure goes into details that certainly
cannot be included in a usual course on solid-state physics. The same applies,
among others, to the discussion of the methods used in the determination of
band structure, the properties of Fermi liquids and non-Fermi liquids, and the
theory of unconventional superconductors in the present and third volumes.
These parts can be assigned as supplementary reading for interested students
or can be discussed in advanced courses.

The line of development and the order of the chapters are based on the
prerequisites for understanding each part. Therefore, a gradual shift can be
observed in the style of the book. While the intermediate steps of calculations
are presented in considerable detail and explanations are also more lengthy in
the first and second volumes, they are much sparser and more concise in the
third one, thus that volume relies more on the individual work of the students.
On account of the prerequisites, certain topics have to be revisited. This is why
magnetic properties are treated in three and superconductivity in two parts.
The magnetism of individual atoms is presented in an introductory chapter of
the first volume. The structure and dynamics of magnetically ordered systems
built up of localized moments are best discussed after lattice vibrations, along
the same lines. Magnetism is then revisited in the third volume, where the
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role of electron–electron interactions is discussed in more detail. Similarly, the
phenomenological description of superconductivity is presented in this volume
after the analysis of the transport properties of normal metals, in contrast to
them, while the microscopic theory is outlined later, in the third volume, when
the effects of interactions are discussed.

Separating the material into three similar-sized volumes is a necessity in
view of the size of the material – but it also reflects the internal logical struc-
ture of the subject matter. At those universities where the basic course in
solid-state physics runs for three semesters, working through one volume per
semester is a natural schedule. In this case the discussion of the electron
gas – which is traditionally part of the introduction – is left for the second
semester. This choice is particularly suited to curricula in which the course
on solid-state physics is held parallel with quantum mechanics or statistical
physics. If the lecturer feels more comfortable with the traditional approach,
the discussion of the Drude model presented in this volume can be moved to
the beginning of the whole course. Nevertheless, the discussion of the Sommer-
feld model should be postponed until students have familiarized themselves
with the fundamentals of statistical physics. For the same reason, the lecturer
may prefer to change the order of other chapters as well. This is, to a large
extent, up to the personal preferences of the lecturer.

In presenting the field of solid-state physics, special emphasis has been
laid on discussing the physical phenomena that can be observed in solids.
Nevertheless, I have tried to give – or at least outline – the theoretical inter-
pretation for each phenomenon, too. As is common practice for textbooks, I
have omitted precise references that would give the publication data of the
discussed results. I have made exceptions only for figures taken directly from
published articles. At the end of each chapter I have listed textbooks and
review articles only that present further details and references pertaining to
the subject matter of the chapter in question. The first chapter of the first
volume contains a longer list of textbooks and series on solid-state physics.

Bulky as it might be, this three-volume treatise presents only the funda-
mentals of solid-state physics. Today, when articles about condensed matter
physics fill tens of thousands of pages every year in Physical Review alone, it
would be obviously overambitious to aim at more. Therefore, building on the
foundations presented in this series, students will have to acquire a substan-
tial amount of extra knowledge before they can understand the subtleties of
the topics in the forefront of today’s research. Nevertheless, at the end of the
third volume students will also appreciate the number of open questions and
the necessity of further research.

A certain knowledge of quantum mechanics is a prerequisite for study-
ing solid-state physics. Various techniques of quantum mechanics – above
all field-theoretical methods and methods employed in solving many-body
problems – play an important role in present-day solid-state physics. Some
essential details are listed in one of the appendices of the third volume; how-
ever, I have omitted more complicated calculations that would have required
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the application of the modern apparatus of many-body problems. This is
especially true for the third volume, where central research topics of present-
day solid-state physics are discussed, in which the theoretical interpretation
of experimental results is often impossible without some extremely complex
mathematical formulation.

The selection of topics obviously bears the stamp of the author’s own
research interest, too. This explains why the discussion of certain important
fields – such as the mechanical properties of solids, surface phenomena, or
amorphous systems, to name but a few – have been omitted.

I have used the International System of Units (SI) and have given the equa-
tions of electromagnetism in rationalized form. Since nonrationalized equa-
tions as well as gaussian CGS (and other) units are still widely used in the
solid-state physics literature, the corresponding formulas and units are in-
dicated at the appropriate places. In addition to the fundamental physical
constants used in solid-state physics, the commonest conversion factors are
also listed in Appendix A of the first volume. I deviated from the recom-
mended notation in the case of the Boltzmann constant using kB instead of
k – reserving the latter for the wave number, which plays a central role in
solid-state physics.

To give an impression of the usual values of the quantities occurring in
solid-state physics, typical calculated values or measured data are often tabu-
lated. To provide the most precise data available, I have relied on the Landolt–
Börnstein series, the CRC Handbook of Chemistry and Physics, and other
renowned sources. Since these data are for information only, I have not indi-
cated either their error or in many cases the measurement temperature, and
I have not mentioned when different measurement methods lead to slightly
disparate results. As a rule of thumb, the error is usually smaller than or on
the order of the last digit.

I would like to thank all my colleagues who read certain chapters and
improved the text through their suggestions and criticism. Particular thanks
go to professors György Mihály and Attila Virosztek for reading the whole
manuscript. I am grateful to F. I. B. (Tito) Williams for reading the present
volume and for his comments. In spite of all efforts, some mistakes have cer-
tainly remained in the book. Obviously, the author alone bears the responsi-
bility for them.

Special thanks are due to Károly Härtlein for his careful work in drawing
the majority of the figures and to Karlo Penc for drawing a few figures. The
figures presenting experimental results are reproduced with the permission of
the authors or the publishers.

Finally, I am indebted to my family, my wife and children, for their patience
during all those years when I spent evenings and weekends in writing this book.

Budapest, Hungary Jenő Sólyom
November 2010
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28

Electron–Electron Interaction and Correlations

Throughout Volume 2 the electronic properties of solids were studied in the
independent electron approximation. The spectrum of Bloch electrons was
calculated in the presence of a periodic one-particle potential V (r),1 which
could incorporate the contribution of electron–electron interaction at a mean-
field level, and the states of the many-body system were obtained by filling
the electronic bands successively with independent particles. The interactions
with impurities and lattice vibrations could be given a simple interpretation in
this picture and we were able to understand some (e.g., transport and optical)
properties of insulators, metals, and semiconductors.

One notable exception to this independent electron treatment was made
in Volume 1, when covalent bonding was studied. In order to get a physical
picture of the nature of this type of bond, we computed the possible states
of two interacting electrons. This led to the concept of exchange interaction,
which proved to be extremely important in understanding the magnetic prop-
erties of solids. However, when magnetically ordered systems were considered
in Chapter 14, instead of treating the electron–electron interaction in its full
complexity, localized spins were assumed and the effects of their interaction
were discussed.

This simplistic, one-particle approach was adopted out of necessity, since
a serious treatment of electron–electron interaction can only be done by us-
ing techniques of the many-body problem. In this volume, we go beyond the
independent electron approximation and will study how electron–electron in-
teraction influences the properties of solids. These calculations will also help
us to understand under what circumstances the single-particle picture is ap-
plicable to real solids.

In this chapter we first give the Hamiltonian of the electron–electron inter-
action in various forms. Then we discuss a few simple approximation schemes
that allow us to calculate the ground-state energy and excitation energies of

1 In Volume 2 the notation U(r) was used for the potential. In this volume V (r)
stands for the one-particle potential and the notation U(r) is reserved for the
two-particle interaction. The subscript e–e will be dropped from Ue–e.

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_1, © Springer-Verlag Berlin Heidelberg 2010



2 28 Electron–Electron Interaction and Correlations

the electron system. It will also be pointed out that the Pauli exclusion prin-
ciple and the electron–electron interaction give rise to spatial and temporal
correlations between electrons that cannot be understood in the one-particle
approximation. During these studies second quantization (summarized briefly
in Appendix H) will often be used. Only knowledge of the elements of the
many-body problem will be supposed, as presented in Appendix K. The in-
terested reader can find further details in textbooks on the subject.

28.1 Models of the Interacting Electron System

To study the effects of electron–electron interaction, the straightforward ap-
proach would be to solve the Schrödinger equation as a many-variable dif-
ferential equation for the total Hamiltonian of the many-particle system that
includes the Coulomb interaction between electrons. It turns out that the
formalism of second quantization is better adapted to this problem. In this
approach the complete set of Bloch or Wannier states (or plane waves if the
periodic potential of the lattice can be neglected) is taken as a basis set and
one writes the many-particle states of the system as well as the Hamiltonian in
terms of the creation and annihilation operators of these one-particle states.
Depending on the representation used we arrive at different formulations.

28.1.1 The Hamiltonian

Since we wish to understand how electron–electron interaction influences the
properties of solids, we will, in what follows, assume that the ions sit rigidly
in their equilibrium positions on a regular lattice; their vibrations will be
neglected. The Coulomb interaction between ions gives only an additive con-
stant to the total energy that will be omitted. Thus, if the relativistic effect
of spin–orbit coupling is neglected, the Hamiltonian to be considered contains
in addition to the kinetic energy of Ne electrons the interaction with the ions
and the direct Coulomb repulsion between electrons:

H =
Ne∑

i=1

(
− �

2

2me
∇2

i

)
+

Ne∑

i=1

Vion(ri) + 1
2

Ne∑

i,j=1
i�=j

U(ri − rj) , (28.1.1)

where Vion(ri) is the potential created by the ions and

U(ri − rj) =
1

4πε0
e2

|ri − rj | =
ẽ2

|ri − rj | (28.1.2)

describes the electronic Coulomb repulsion. Our task is to solve the Schrödin-
ger equation

HΨ(r1, s1, r2, s2, . . . , rNe , sNe) = EΨ(r1, s1, r2, s2, . . . , rNe , sNe) . (28.1.3)
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For later convenience the spin variable si has been written out explicitly in
the wavefunction, although the total Hamiltonian is spin independent in the
absence of spin–orbit coupling.

So far the ionic potential has not been specified. If bare nuclei with charge
Ze are considered, then

Vion(ri) = − 1
4πε0

∑

Rm

Ze2

|ri − Rm| = −
∑

Rm

Zẽ2

|ri − Rm| , (28.1.4)

and Ne is the total number of electrons. However, significant simplification
can be achieved by treating the localized core electrons differently from the
delocalized valence electrons lying in bands close to the Fermi energy and
participating in the chemical bonding. The effect of electrons on deep levels
can be incorporated into the potential of the ions by identifying Ze with the
ionic charge. Using this effective ionic potential in (28.1.1), Ne is just the
number of electrons in the valence bands.2 In some cases an average potential
coming from the electron–electron interaction in the valence bands is also in-
cluded in the one-particle potential. In this case, naturally, only the deviation
from this average should be considered in the two-particle interaction, and
the one-particle term has to be evaluated self-consistently.

In a perturbative approach, the one-particle potential is usually incorpo-
rated into the unperturbed Hamiltonian

H0 =
Ne∑

i=1

(
− �

2

2me
∇2

i

)
+

Ne∑

i=1

Vion(ri) , (28.1.5)

and the electron–electron interaction is treated as a perturbation,

H1 = He–e = 1
2

Ne∑

i,j=1
i�=j

U(ri − rj) . (28.1.6)

Both the one-particle potential due to ions and the two-particle term of
the Hamiltonian describing the interaction between electrons can be given in
terms of the number-density operator of electrons,

n(r) =
Ne∑

i=1

δ(r − ri) . (28.1.7)

For the one-particle potential we have

Ne∑

i=1

Vion(ri) =
∫
Vion(r)n(r) dr . (28.1.8)

2 Contrary to the convention used in semiconductors, in our subsequent treatment
of solids bands occupied by electrons that participate in the formation of metallic
or covalent bonds will be called valence bands.
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When both the potential and the number-density operator are written in
Fourier representation, we have

Ne∑

i=1

Vion(ri) =
1
V

∑

q

Vion(q)n(−q) , (28.1.9)

where the summation goes over the Brillouin zone, and

n(q) =
∫

V

n(r)e−iq·r dr =
Ne∑

i=1

e−iq·ri . (28.1.10)

We have to take into account that there is no self-interaction in the two-
particle term. That is why the term i = j is missing in the third term on the
right-hand side of (28.1.1). We therefore obtain

1
2

Ne∑

i,j=1
i�=j

U(ri − rj) = 1
2

[∫∫
dr dr′U(r − r′)n(r)n(r′) −NeU(0)

]
. (28.1.11)

In case of spin-independent interactions, the interaction between particles at
sites r and r′ is weighted by the number density at these sites. The second
term containing the potential at r = r′ serves to eliminate the self-interaction.
This term is infinitely large for Coulomb interaction, but in fact it only cancels
a divergent contribution in the first term. In Fourier representation we have

1
2

Ne∑

i,j=1
i�=j

U(ri − rj) =
1

2V

∑

q

U(q)
[
n(−q)n(q) −Ne

]
. (28.1.12)

If the bare Coulomb potential is used, then according to (C.1.63) the Fourier
transform appearing here is

U(q) =
e2

ε0q2
=

4πẽ2

q2
. (28.1.13)

28.1.2 Second-Quantized Form of the Hamiltonian

When a complete (orthonormal) set of single-particle states {φk(r)} is taken
where k denotes all quantum numbers except spin, a complete set of states
for the many-body system can be obtained by forming totally antisymmetric
combinations, Slater determinants, from the single-particle states. An arbi-
trary state of the many-particle system can then be written as a linear com-
bination of Slater determinants. The Slater determinants themselves can be
constructed unequivocally once we know which one-particle states are present;
in other words, which states are occupied. That is why the wavefunction can
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be given in the occupation-number representation. The operators acting on
the many-particle states can then be given in second-quantized form by spec-
ifying how the occupation of single-particle states is changed. For this reason
a creation operator c†kσ acting in Fock space is introduced, which adds an
electron in the one-particle state (orbital) φk(r) with spin σ to the system.
Its adjoint, the annihilation operator ckσ, removes a particle from this state.
The number operator c†kσckσ counts the number of particles in the particu-
lar single-particle state φk(r) with spin σ. The total Hamiltonian containing
the kinetic energy of electrons, the one-particle potential, and the electron–
electron interaction can be written in terms of these operators according to
(H.2.25) in the form

H =
∑

klσ

Hklc
†
kσclσ + 1

2

∑

klmn
σσ′

Uklmnc
†
kσc

†
lσ′cmσ′cnσ , (28.1.14)

where

Hkl =
∫
φ∗k(r)

[
− �

2

2me
∇2 + Vion(r)

]
φl (r) dr (28.1.15)

and

Uklmn =
∫∫

dr dr′ φ∗k(r)φ∗l (r
′)U(r − r′)φm(r′)φn(r) . (28.1.16)

This shows that the electron–electron interaction can be considered as a col-
lision process in which two electrons are scattered from their initial states
into some final states. This was supposed already earlier when the interaction
between electrons was depicted in Fig. 6.5.

A different, perhaps more transparent, form is obtained when the field
operators defined in (H.2.15) by the expressions

ψ̂†
σ(r) =

∑

k

φ∗k(r)η†σc
†
kσ , ψ̂σ(r) =

∑

k

φk(r)ησckσ (28.1.17)

are used. Here ησ is the wavefunction of the spin state with quantum number
σ. These states are conveniently given by the spinors

η↑ =
(

1
0

)
, η↓ =

(
0
1

)
, (28.1.18)

and η†σ is their adjoint. They satisfy the orthogonality relationship

η†σi
(sl)ησj

(sl) = δσi,σj
. (28.1.19)

The creation operator c†kσ adds a particle of quantum numbers k and σ to
the system, whereas the field operator ψ̂†

σ(r) adds a particle to the system at
site r with spin σ, and ψ̂σ(r) removes an electron at site r. The Hamiltonian
then takes the form
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H =
∑

σ

∫
dr ψ̂†

σ(r)
[
− �

2

2me
∇2 + Vion(r)

]
ψ̂σ(r)

+ 1
2

∑

σσ′

∫∫
dr dr′ ψ̂†

σ(r)ψ̂†
σ′(r′)U(r − r′)ψ̂σ′(r′)ψ̂σ(r) .

(28.1.20)

When the addition of an electron to the system at point r is represented by
an oriented line starting at r and the removal of an electron by an oriented
line ending at r, the interaction between electrons can be represented by the
diagram shown in Fig. 28.1.

r’

r

Fig. 28.1. Diagrammatic representation of the electron–electron interaction. Solid
lines denote the electrons annihilated and created at positions r and r′. The wavy
line indicates the interaction potential between r and r′

Owing to the anticommutation relation of the field operators [see (H.2.17)],
[
ψ̂σ(r), ψ̂†

σ′(r′)
]
+

= δσσ′δ(r − r′) , (28.1.21)

the interaction Hamiltonian can be written as

He–e = 1
2

[∑

σσ′

∫∫
dr dr′ ψ̂†

σ(r)ψ̂σ(r)U(r − r′)ψ̂†
σ′(r′)ψ̂σ′(r′) −NeU(0)

]
.

(28.1.22)
This is nothing other than the second-quantized form of (28.1.11), since the
density of electrons can readily be expressed by the field operators as

n(r) =
∑

σ

ψ̂†
σ(r)ψ̂σ(r) . (28.1.23)

In what follows, different choices will be made for the single-particle basis
functions leading to somewhat different forms of the Hamiltonian.

28.1.3 The Homogeneous Electron Gas

For the sake of simplicity we will often suppose that the potential Vion(r)
created by positive ions can be replaced by a spatially uniform constant V0,
as if the charge of the ions had been smeared out uniformly.3 The details of
the interaction with ions are thus neglected in this model, and we concentrate
3 This model is often referred to as the jellium model.
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on phenomena caused by the interaction between electrons. The uniformly
smeared positive ions are kept only to satisfy charge neutrality. The inter-
action of electrons with the positive background gives a negative constant
contribution to energy. A constant but positive contribution arises from the
Coulomb repulsion between ions themselves. V0 is the sum of these terms. Its
value is fixed by the charge neutrality requirement.

When this uniform background is added to the kinetic energy, the eigen-
functions of the one-particle Hamiltonian

H(1)
0 (r) = − �

2

2me
∇2 + V0 (28.1.24)

are plane waves indexed by the wave vector k and spin quantum number σ,

φkσ(r) =
1√
V

eik·rησ , (28.1.25)

just as in the empty-lattice approximation. Their energy is εk = ε
(0)
k + V0,

where ε(0)k = �
2k2/(2me) is the energy of free particles.

The operators c†kσ and ckσ create and annihilate, respectively, these states.
The noninteracting Hamiltonian, the first term of (28.1.14), has only diagonal
elements:

H0 =
∑

kσ

εkc
†
kσckσ , (28.1.26)

and the total unperturbed energy of the system, described by a single Slater
determinant, is equal to the sum of the energies of the occupied one-particle
states.

The Hamiltonian of the electron–electron interaction takes the simple form

He–e =
1

2V

∑

kk′q
σσ′

U(q)c†k+qσc
†
k′−qσ′ck′σ′ckσ (28.1.27)

in the plane-wave basis. Since the homogeneous electron gas is invariant under
arbitrary translations, the total momentum is conserved. When two particles
with wave vectors k and k′ interact, they are scattered into states with wave
vectors k + q and k′ − q.

We make two further remarks about the Hamiltonian. First, the value of
V0 has not yet been fixed. We know that it represents some average of the
electron–ion and ion–ion Coulomb interactions. It follows from the charge
neutrality of the system that – apart from a sign difference – it has to be
identical to the q = 0 component of the electron–electron interaction. For this
reason, when studying the homogeneous electron gas, we neglect V0, provided
the q = 0 Fourier component is eliminated from the electron–electron interac-
tion. The bare interaction between electrons is the Coulomb repulsion, whose
Fourier transform U(q) is given in (28.1.13). Therefore, we will use
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U(q) =
4πẽ2

q2
(1 − δq,0) (28.1.28)

for the electron–electron interaction in the homogeneous electron gas.
Second, one has to pay attention to the fact that the Coulomb interaction

is long ranged and cannot be treated as a weak perturbation. Certain processes
have to be summed up to infinite order or self-consistent procedures have to
be applied.

28.1.4 Interaction Between Bloch Electrons

Although the homogeneous electron gas gives a qualitatively correct picture
of the effects of electron–electron interaction, this approximation is rather
drastic and the results may be quantitatively correct only for the simplest
alkali metals. For other metals, where the Fermi surface is not spherical, the
effect of the ion potential Vion(r) has to be treated more accurately. One
possibility is to choose Bloch functions – the solutions of the single-particle
problem in the presence of the periodic lattice potential – as the complete set of
single-particle basis states. Denoting the creation and annihilation operators
of a Bloch electron in state ψnkσ(r) with energy εnkσ by c†nkσ and cnkσ,
respectively, these operators diagonalize the noninteracting Hamiltonian H0:

H0 =
∑

nkσ

εnkσc
†
nkσcnkσ . (28.1.29)

The Hamiltonian of the electron–electron interaction then takes the form

He–e = 1
2

∑

{ni},{ki}
σ,σ′

Uσσ′(n1,k1, n2,k2, n
′
1,k

′
1, n

′
2,k

′
2)

× c†n′
1k′

1σc
†
n′

2k′
2σ′cn2k2σ′cn1k1σ ,

(28.1.30)

where the strength of the interaction is given by

Uσσ′(n1,k1, n2,k2, n
′
1,k

′
1, n

′
2,k

′
2) =

∫∫
dr dr′ ψ∗

n′
1k′

1σ(r)ψ∗
n′

2k′
2σ′(r′)

× U(r − r′)ψn2k2σ′(r′)ψn1k1σ(r) .
(28.1.31)

The scattering between electrons is not restricted to electrons in the same
band; there might be interband processes as well. Thus, in general, the cou-
pling strength should be indexed by four band indices and three wave vectors
– if conservation of quasimomentum is taken into account – and it may de-
pend on the spin variables, too. If electrons on completely filled deep levels
are incorporated into the ion cores, it is sufficient to consider explicitly only
the delocalized electrons of the valence bands. With this assumption we may
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arrive at a model in which only a single band is retained. In what follows we
will often make this simplification and the band index ni will be neglected.
We remark that such a simplified model cannot be valid for transition metals.
Their physical properties are determined not solely by the electrons in the 4s
(5s) bands. The 3d (4d) bands may play an equally important role.

Since the electron–electron interaction depends on the difference of the
spatial coordinates of electrons, the conservation of quasimomentum as given
in (6.2.42) has to be satisfied. This can be checked simply by using the Bloch
theorem valid for the single-particle wavefunctions ψnkσ(r). To see this the in-
teraction is written in Fourier representation and the integral over the volume
of the sample is replaced by a sum over the primitive cells and the integral
is performed within the cells. When the spatial coordinate r is written as
r = Rm + r̃, where r̃ is inside the primitive cell, and the known translational
property of Bloch functions is exploited,

Uσσ′(k1,k2,k
′
1,k

′
2) (28.1.32)

=
∑

Rm

∫

v

dr̃
∑

Rn

∫

v

dr̃′ e−ik′
1·Rmψ∗

k′
1σ(r̃)e−ik′

2·Rnψ∗
k′

2σ′(r̃′)

× 1
V

∑

q

U(q)eiq·(r̃+Rm−r̃′−Rn)eik2·Rnψk2σ′(r̃′)eik1·Rmψk1σ(r̃)

=
1
V

∑

q

∑

GG′
U(q)Iσσ′(k1,k2, q,G,G

′)δk′
1,k1+q+Gδk′

2,k2−q+G′ ,

where G and G′ are reciprocal-lattice vectors and

Iσσ′(k1,k2, q,G,G
′) = N2

∫∫

v

dr̃ dr̃′ ψ∗
k1+q+Gσ(r̃)ψ∗

k2−q+G′σ′(r̃′)

× eiq·(r̃−r̃′)ψk2σ′(r̃′)ψk1σ(r̃) . (28.1.33)

Electrons with wave vectors k1 and k2 are scattered into states with wave
vectors k1 + q and k2 − q, respectively. If necessary, these wave vectors are
reduced into the first Brillouin zone by G or G′. In the summations over
G and G′ in (28.1.32) only that single term contributes through which this
reduction is achieved. As before, processes for which no reduction is needed,
i.e., G = G′ = 0, are called normal processes, while the others are called
umklapp processes. Their appearance is an important new feature compared
to the homogeneous electron gas, where momentum conservation is rigorously
valid.

If umklapp processes can be neglected, the Hamiltonian of interacting
Bloch electrons,

H =
∑

kσ

εkσc
†
kσckσ +

1
2V

∑

kk′q
σσ′

U(q)Iσσ′(k,k′, q)c†k+qσc
†
k′−qσ′ck′σ′ckσ ,

(28.1.34)
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has a form similar to that of the homogeneous electron gas [compare this
expression with (28.1.26) and (28.1.27)], except that here the calculated band
energies of Bloch electrons have to be used in the kinetic energy and the
interaction potential is multiplied by the factor Iσσ′(k,k′, q). Incorporating
this factor into the potential U we will use

H =
∑

kσ

εkσc
†
kσckσ +

1
2V

∑

kk′q
σσ′

U(q)c†k+qσc
†
k′−qσ′ck′σ′ckσ (28.1.35)

as the Hamiltonian of a general interacting electron system.

28.1.5 The Hubbard Model

As has been discussed in Chapter 17, an alternative choice for the complete
set of single-particle states is provided by the Wannier functions φn(r − Ri).
The creation and annihilation operators of the Wannier states, c†niσ and cniσ,
add or remove the nth localized state at lattice point Ri. However, since the
Wannier states are not eigenstates of the one-particle Schrödinger equation for
electrons moving in a periodic potential, the unperturbed second-quantized
Hamiltonian H0 is not diagonal, when these states are used as a basis. As has
been shown in (17.5.19),

H0 =
∑

n,σ

∑

ij

tn,ijc
†
njσcniσ , (28.1.36)

where

tn,ij =
∫
φ∗n(r − Rj)

[
− �

2

2me
∇2 + Vion(r)

]
φn(r − Ri) dr . (28.1.37)

Usually the Wannier functions are localized to the neighborhood of the lattice
sites and their overlap is small beyond nearest neighbors. Therefore, in most
cases it is sufficient to restrict the summation over the lattice sites in H0 to
nearest-neighbor lattice points.

The interaction between electrons appears in the form

He–e = 1
2

∑

mnm′n′

∑

σσ′

∑

iji′j′
Umnn′m′

ijj′i′ c†miσc
†
njσ′cn′j′σ′cm′i′σ , (28.1.38)

where

Umnn′m′
ijj′i′ =

∫∫
φ∗m(r − Ri)φ∗n(r′ − Rj)U(r − r′)

× φn′(r′ − Rj′)φm′(r − Ri′) dr dr′ .
(28.1.39)

In this representation, too, the interaction can be interpreted as a collision in
which two electrons in different Wannier states are scattered into two other
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Wannier states. In the most general case the four sites Ri, Rj , Ri′ , and Rj′

may be different. Two electrons from different sites may be scattered to a
third and fourth site. In the physically most relevant processes, however, far
away sites are not involved. This is not trivial since the terms with i = i′ and
j = j′ correspond to Coulomb repulsion between electrons at sites i and j,
and this interaction is long ranged. However, as will be seen later in the next
chapter, the interaction dynamically rearranges the occupied electron states
and screens the long-range Coulomb repulsion. Thus the interaction between
Wannier states can be taken to be short ranged.

The interaction is rather complicated even if it is supposed to act domi-
nantly between electrons on the same site. Separating the terms corresponding
to Wannier states with identical and different spin indices, and the terms in-
volving spin flip,

He–e = 1
2

∑

iσ

{∑

mm′
Umm′nmiσnm′i,−σ (28.1.40)

+
∑

m �=m′

[
(Umm′ − Jmm′)nmiσnm′iσ − Jmm′c†miσcmi,−σc

†
m′i,−σcm′iσ

]}
,

where nmiσ = c†miσcmiσ is the number operator. The term containing Umm′ =
Umm′m′m

iiii corresponds to the intra-atomic Coulomb interaction and the term
with Jmm′ = Umm′mm′

iiii is due to exchange. Assuming that their strength is
independent of the band index m we arrive at

He–e = 1
2UH

∑

iσ

∑

mm′
nmiσnm′i,−σ + 1

2 (UH − J)
∑

iσ

∑

m �=m′
nmiσnm′iσ

− 1
2J
∑

iσ

∑

mm′
c†miσcmi,−σc

†
m′i,−σcm′iσ . (28.1.41)

For the sake of simplicity we will take one nondegenerate Wannier state
per atom. Then the only surviving term is the intra-atomic Coulomb repul-
sion between electrons of opposite spins. The exchange term is missing. The
Hamiltonian then reduces to

H =
∑

ijσ

tijc
†
iσcjσ +

UH

2

∑

iσ

ni,σni,−σ

=
∑

ijσ

tijc
†
iσcjσ + UH

∑

i

ni↑ni↓ .
(28.1.42)

It follows from the anticommutation rules for fermion operators that

n2
iσ = niσ , (28.1.43)

and therefore the Hamiltonian can be written in the equivalent form:
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H =
∑

ijσ

(
tij − 1

2UHδij
)
c†iσcjσ + 1

2UH
∑

iσσ′
ni,σni,σ′ . (28.1.44)

This model in which the Coulomb repulsion is taken into account only between
electrons on the same site is the Hubbard model.4 Despite its simple form, the
model cannot be solved exactly, except in one dimension, when electrons hop
along a chain only. Although the approximate solutions obtained in higher
dimensions are in qualitative agreement with some magnetic properties of
transition metals and give a qualitatively correct description of the metal–
insulator transition due to interaction, it is not clear at all whether a more
reliable solution of the model, to which many efforts have been devoted, would
reproduce the experimentally observed features or whether a more general
model with many more parameters would be necessary to understand these
phenomena.

One possibility for going beyond the Hubbard model is to include the
Coulomb interaction between electrons on nearest-neighbor sites. This is the
extended Hubbard model or t–U–V model with Hamiltonian

H =
∑

ijσ

tijc
†
iσcjσ + UH

∑

i

ni↑ni↓ + V
∑

〈ij〉σσ′
niσnjσ′ , (28.1.45)

where 〈ij〉 denotes that i and j are nearest neighbors. When a site is singly
occupied with a spin-up or spin-down electron, it has a magnetic moment. Ex-
change between neighboring singly occupied sites leads to a usual Heisenberg-
like coupling with a J on the order of t2/UH. When this term is included in the
Hubbard model with an independent coupling J , the so-called t–U–J model
defined by

H =
∑

ijσ

tijc
†
iσcjσ + UH

∑

i

ni↑ni↓ + J
∑

〈ij〉
Si · Sj (28.1.46)

is obtained. A special case of that is the t–J model. When U is much larger
than the bandwidth, which is the other characteristic energy scale of the
model, doubly occupied sites are practically forbidden. The on-site Coulomb
repulsion can then be omitted from the Hamiltonian,

H =
∑

ijσ

tijc
†
iσcjσ + J

∑

〈ij〉
Si · Sj , (28.1.47)

keeping in mind that only empty and singly occupied sites are allowed.5 The
physics of these models will be discussed in later chapters. Since the original
4

J. Hubbard, 1963. The model is named after Hubbard although the same model
was proposed by M. C. Gutzwiller and J. Kanamori at the same time to
describe the magnetic properties of transition metals.

5 Note that also three-site terms of the form c†i,σc†j,−σcj,σck,−σ and
c†i,σc†j,−σcj,−σck,σ appear in the effective Hamiltonian as the doubly occu-
pied sites are eliminated.
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Hubbard model is the simplest interacting electron model defined on a lattice
and one of the most studied models of solid-state physics, we will often refer
to it in what follows.

The Hubbard model has been defined in the Wannier representation. It
could be given in terms of the creation and annihilation operators of Bloch
states using (17.5.6) and (17.5.20) that relate the creation and annihilation
operators in Bloch and Wannier representations, respectively. It becomes

H =
∑

kσ

εkc
†
kσckσ +

UH

N

∑

kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑ , (28.1.48)

where N is the number of lattice sites. In an alternative form, starting from
(28.1.44),

H =
∑

kσ

εkc
†
kσckσ +

UH

2N

∑

kk′q
σσ′

c†k+qσc
†
k′−qσ′ck′σ′ckσ . (28.1.49)

The term containing UH drops out of the kinetic energy if the operators are
arranged in the order as they appear here in the interaction.

Introducing a coupling U via

UH = U
N

V
(28.1.50)

the Hubbard model can be written in the Bloch representation as

H =
∑

kσ

εkc
†
kσckσ +

U

2V

∑

kk′q
σσ′

c†k+qσc
†
k′−qσ′ck′σ′ckσ . (28.1.51)

Comparison of (28.1.51) with (28.1.34) shows that the choice of a local in-
teraction in the Hubbard model corresponds to a momentum-independent
U(q)Iσσ′(k,k′, q) = U , in sharp contrast to the strong q dependence in the
homogeneous electron gas. This is because the screening of the long-range
Coulomb interaction, to be discussed in the next chapter, has already been
taken into account in the Hubbard model, when only on-site interaction is
included.

We have derived two forms for the interaction. One, (28.1.34), is given in
terms of Bloch states and the other, (28.1.38), in terms of Wannier states.
They can be used in principle equivalently to get a full description of the
effects of interaction. In practical calculations, however, approximations have
to be made. The more appropriate representation – Bloch or Wannier – of the
electron states and the most adequate approximation scheme for studying the
physical properties of a given system depend on the band structure. It turns
out that the interaction is treated more easily in terms of delocalized Bloch
states when the behavior of simple metals with a single broad valence band
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is studied. On the other hand, when the properties of transition metals are
treated, where the band states formed from 3d (4d) electronic levels are im-
portant, the description in terms of Wannier states may be more convenient.
Accordingly, in what follows, we will frequently treat the homogeneous elec-
tron gas, since it gives a qualitatively correct physical picture of the effects of
interaction. However, when we want to get a simple description of the mag-
netic properties of transition metals, the Hubbard model will be considered.

28.2 Normal Fermi Systems

We know that the one-particle states with wave vector within the Fermi sphere
are completely filled in the ground state of noninteracting fermions and the
states outside the Fermi sphere are empty. One might think that the Fermi
edge, the discontinuity in the momentum distribution function, which is a
characteristic feature of the ground state of a free fermion system, will be
smeared out by processes in which electrons inside the Fermi sphere are scat-
tered outside, leaving holes behind. In reality quite often though not always,
this is not the case: A discontinuity remains in the momentum distribution
function. To illustrate this, we calculate the momentum distribution, the av-
erage number of electrons with wave vector k and spin σ in the ground state
|Ψ〉 of the interacting system,

〈
nkσ

〉
=
〈
Ψ
∣∣c†kσckσ

∣∣Ψ
〉
, (28.2.1)

in perturbation theory for the Hubbard model.
According to (G.1.10) the perturbed wavefunction can be written to first

order in the electron–electron interaction in the form

|Ψ〉 = |ΨFS〉 +
U

V

∑

k1k2q

1
εk1 + εk2 − εk1+q − εk2−q

c†k1+q↑c
†
k2−q↓ck2↓ck1↑|ΨFS〉 ,

(28.2.2)
where |ΨFS〉 denotes the wavefunction of the unperturbed Fermi sea. The
perturbed wavefunction clearly shows that configurations with two holes in
the Fermi sphere and two occupied states outside the Fermi sphere appear
with nonzero probability in the ground state of the interacting system.

We consider first the case |k| > kF. A nonvanishing perturbative correction
to the momentum distribution is obtained only if – depending on the spin –
either k1 +q or k2 −q is equal to k. The conditions that k1 and k2 are inside
the Fermi sphere, while k1 +k2 −k is outside, can be expressed by the Fermi
distribution function. Thus we find

〈
nkσ

〉
|k|>kF

=
(
U

V

)2 ∑

k1k2

[
1 − f0(εk1+k2−k)

]
f0(εk1)f0(εk2)

(εk1 + εk2 − εk − εk1+k2−k)2
. (28.2.3)
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For wave numbers inside the Fermi sphere it is more convenient to calculate〈
Ψ |c†kσckσ|Ψ

〉
by writing it as 1 − 〈Ψ |ckσc

†
kσ|Ψ

〉
. In lowest order, the mean

occupation of state k is reduced from unity owing to processes in which two
electrons are kicked out of the Fermi sea into states k1 and k2, and holes with
wave vectors k and k1 + k2 − k are left behind. The contribution of these
processes gives

〈nkσ〉|k|<kF = 1 −
(
U

V

)2 ∑

k1k2

f0(εk1+k2−k)
[
1 − f0(εk1)

][
1 − f0(εk2)

]

(εk + εk1+k2−k − εk1 − εk2)2
.

(28.2.4)
These rather cumbersome expressions can be evaluated analytically in an
isotropic model if the sums over ki are replaced by integrals. Figure 28.2 shows
the region of integration allowed by the Fermi distribution functions for k2 –
at fixed values of k1 – when k is right on the Fermi surface, infinitesimally
above or below it.

Fig. 28.2. Allowed values of k2 (shaded region) in the integral determining the
momentum distribution: (a) for wave vector k right outside the Fermi surface, when
k1 has to be within the Fermi sphere; (b) for wave vector k right inside the Fermi
surface, when k1 has to be outside the Fermi sphere

Performing first the integral over k2 in cylindrical coordinates using k1−k
as the axis, and then the integral over k1, again in cylindrical coordinates,
using now the direction of k as the axis, we get

〈nkσ〉k=kF+δ = 1
8

[
Uρ(εF)

]2 (ln 2 − 1
3

)
(28.2.5)

for wave vectors infinitesimally outside the Fermi sphere. For k inside the
Fermi sphere we have

〈nkσ〉k=kF−δ = 1 − 1
8

[
Uρ(εF)

]2 (ln 2 + 1
3

)
. (28.2.6)

The momentum distribution is not continuous as we cross the Fermi surface.
A finite jump is found which is somewhat smaller than unity and depends on
the strength of the interaction:
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〈nkσ〉k=kF−δ − 〈nkσ〉k=kF+δ = 1 − 1
4

[
Uρ(εF)

]2 ln 2 . (28.2.7)

For a general k away from the Fermi surface, the integrals can be evaluated
numerically. The momentum distribution is shown in Fig. 28.3.

kF

k

nkσ

1

0
0

Fig. 28.3. Momentum distribution for an interacting, but normal Fermi system

In higher orders of perturbation theory more and more holes are created
inside the Fermi sphere, while more and more electrons occupy states outside.
Nevertheless, it can be shown using methods of the many-body theory that a
sharp discontinuity, a sharp finite jump – known as the Fermi edge – survives
in the momentum distribution function of both the uniform electron gas and
the Hubbard model even if all perturbative corrections are summed up to
infinite order. The results of Compton scattering experiments on alkali metals,
i.e., the inelastic scattering of photons, can be interpreted by assuming a value
0.5 for the discontinuity in the momentum distribution. This is reasonably
close to the values between 0.6 and 0.8 valid for the homogeneous electron gas
at densities characteristic of metals.

Although the particles are interacting, a Fermi surface may be defined in
k-space as the locus of points where the momentum distribution is discontin-
uous. In isotropic systems this discontinuity appears exactly at the Fermi mo-
mentum kF of the unperturbed system, which means that in isotropic systems
the interaction does not distort the spherical Fermi surface. In more realistic
models, where the periodic potential of the ions gives rise to a nonspherical
Fermi surface, the electron–electron interaction may modify its shape. How-
ever, according to the Luttinger theorem the k-space volume of the Fermi
surface defined by the discontinuity is unaffected by the interaction.

The existence of a sharp Fermi edge and the Luttinger theorem stating
the conservation of the volume enclosed by the Fermi surface can be proven
quite generally, provided that perturbation theory is applicable and the per-
turbation series converges. Fermi systems for which this assumption is valid
are called normal Fermi systems. Their perturbed ground state can be ob-
tained from the noninteracting ground state by turning on the interaction
adiabatically. This is the case for ordinary metals.

There are systems, however, in which the interaction cannot be treated in
perturbation theory. This is the case, for example, in one-dimensional systems.
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To demonstrate the breakdown of the perturbation series we calculate the first
nonvanishing correction to the momentum distribution for k > kF applying
(28.2.3) to a one-dimensional model. A nonvanishing correction is obtained if
k1 and k2 are in the range (−kF, kF) and k1 + k2 − k is outside this range.
These requirements can be satisfied if k1 is in the neighborhood of +kF and
k2 in the neighborhood of −kF or vice versa. For the sake of simplicity the
dispersion curve is approximated by a linear dependence in the neighborhood
of the Fermi points kF and −kF in a range of width 2kc, that is we choose the
energy vs. momentum relation in the form

εk =

{
�vF(k − kF) for kF − kc < k < kF + kc ,

−�vF(k + kF) for − kF − kc < k < −kF + kc ,
(28.2.8)

where vF is the Fermi velocity. Performing the integrals we get

〈nkσ〉k>kF = 2U2

kF∫

kF−kc

dk1

2π

−kF+kc∫

−kF

dk2

2π
θ(−kF − (k1 + k2 − k))

[2�vF(k1 − k)]2

= 2
(

U

4π�vF

)2
kF∫

kF−kc

dk1
1

k − k1
(28.2.9)

= 2
(

U

4π�vF

)2

ln
(

kc

k − kF

)
.

As k tends to kF this second-order correction diverges logarithmically, indicat-
ing that the perturbative approach is not applicable to one-dimensional sys-
tems. As we will see later, the physical properties of one-dimensional fermion
systems differ substantially from that of normal systems due to the absence of
a sharp Fermi surface. Later we will also encounter three-dimensional fermion
systems with no Fermi edge. These systems, too, exhibit novel properties. In
the next few chapters, however, we will first consider the properties of normal
systems, where the perturbative approach is applicable.

28.3 Simple Approximate Treatments of the Interaction

The correct treatment of electron–electron interaction is a difficult task and
most of this volume is devoted to this problem. In this introductory chapter
the simplest approximation methods are presented.

We have seen in Chapter 14 that the magnetic properties of solids can
be understood qualitatively rather well if the effects of the environment on
a given spin – the influence of other, neighboring spins – are taken into ac-
count approximately as a mean, self-consistently determined effective field.
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A similar approach could be used for electrons by assuming that the electrons
feel an effective one-particle potential created by the others. However, this
effective field has to be calculated with much more care due to the fermionic
nature of electrons. After presenting the methods, they will be applied to the
homogeneous electron gas and the Hubbard model. The latter problem will
be elaborated in more detail in the next chapter and in Chapter 33.

28.3.1 Hartree Approximation

As early as 1929 D. R. Hartree proposed a simple approach by which a
self-consistent effective potential can be defined. He assumed that the elec-
tron system can be fully characterized by the number density ne(r), and the
electrons do not feel each other individually, only through the Coulomb po-
tential created by the charge density ρ(r) = −ene(r). The Coulomb potential
at point r is

ϕe–e(r) =
1

4πε0

∫
dr′ ρ(r′)

|r − r′| = − e

4πε0

∫
dr′ ne(r′)

|r − r′| , (28.3.1)

and thus the effective one-particle Hartree potential is

VH(r) = −eϕe–e(r) = ẽ2
∫

dr′ ne(r′)
|r − r′| . (28.3.2)

For a general two-particle interaction U(r − r′) the Hartree potential is

VH(r) =
∫

dr′U(r − r′)ne(r′) . (28.3.3)

The total effective potential Veff(r) acting on the electrons includes the exter-
nal potential Vion(r) due to ions, thus

Veff(r) = Vion(r) + VH(r) . (28.3.4)

The number density ne(r) appearing in (28.3.1) or (28.3.3) has to be cal-
culated self-consistently from the ground-state wavefunction Ψ of the many-
electron system as the expectation value of the number-density operator n(r)
defined in (28.1.7):

ne(r) =
〈
n(r)

〉
=
〈
Ψ

∣∣∣∣
Ne∑

i=1

δ(r − ri)
∣∣∣∣Ψ
〉
. (28.3.5)

In this approach the total Hamiltonian is the sum of one-particle contribu-
tions, which themselves are the sum of the kinetic energy and the one-particle
potential:

H =
Ne∑

i=1

[
− �

2

2me
∇2

i + Veff(ri)
]
. (28.3.6)
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The wavefunction of the many-body system can then be constructed from
solutions of the one-particle Schrödinger equation

− �
2

2me
∇2φλ(r) + Veff(r)φλ(r) = ελφλ(r) . (28.3.7)

The quantum number λ of the single-particle states is not specified yet, al-
though we know that in a system that is invariant under discrete translations
of the lattice, the wave vector k, the band index n, and the spin quantum
number σ could be used. The solution of this single-particle problem does not
pose a problem of principle. The complete orthonormal set of single-particle
eigenfunctions and the corresponding energies can be computed.

Let us suppose that the first, second, . . . , Neth electron occupies the state
φλ1,σ1(r1, s1), φλ2,σ2(r2, s2), . . . , φλNe ,σNe

(rNe, sNe), respectively. The wave-
function φλi,σi

(ri, si) denotes the product of the spatial and spin functions,

φλi
(ri)ησi

(si) . (28.3.8)

Of course, owing to the Pauli exclusion principle, all these states have to have
different quantum numbers.

In the Hartree approximation, the many-body wavefunction ΨH is written
as a product of the wavefunctions of the occupied single-particle states,

ΨH = φλ1,σ1(r1, s1)φλ2,σ2(r2, s2) · · ·φλNe ,σNe
(rNe , sNe) . (28.3.9)

Substituting this wavefunction into (28.3.5), the self-consistency requirement
for the density leads to

ne(r) =
Ne∑

i=1

∫
dξ1
∫

dξ2 . . .
∫

dξNe φ
∗
λ1,σ1

(ξ1)φ∗λ2,σ2
(ξ2) · · ·φ∗λNe ,σNe

(ξNe)

× δ(r − ri)φλ1,σ1
(ξ1)φλ2,σ2

(ξ2) . . . φλNe ,σNe
(ξNe) , (28.3.10)

where ξi is a short-hand notation for ri and si, and integration over ξi implies
integration over the spatial variable and summation over the spin variable.
Using the orthonormality relation (28.1.19) of the spin functions, one obtains
readily that for a spin-independent quantity like the electron density the prod-
uct of the spin functions in (28.3.10) gives unity. Integration over the spatial
variables can be performed using the orthonormality of the single-particle
wavefunctions. We then get

ne(r) =
Ne∑

i=1

∫
dr1

∫
dr2 · · ·

∫
drNe φ

∗
λ1

(r1)φ∗λ2
(r2) · · ·φ∗λNe

(rNe)

× δ(r − ri)φλ1
(r1)φλ2

(r2) · · ·φλNe
(rNe)

=
Ne∑

i=1

|φλi
(r)|2 . (28.3.11)
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The total electron density is obtained by summing the contributions of the
Ne occupied one-particle states. If we were to use it in the Hartree potential,
self-interaction would be included, while it should be excluded on physical
grounds. The procedure has to be refined. An electron in state λi feels only
the potentials generated by the Ne − 1 other electrons, that is, the effective
potential acting on that electron is

Veff(r) = Vion(r) + ẽ2
Ne∑

j=1
j �=i

∫
dr′ |φλj

(r′)|2
|r − r′| , (28.3.12)

and the single-particle wavefunctions have to be calculated from the equations

− �
2

2me
∇2φλi

(r) + Vion(r)φλi
(r)

+ ẽ2
Ne∑

j=1
j �=i

∫
dr′ |φλj

(r′)|2
|r − r′| φλi

(r) = ελi
φλi

(r)
(28.3.13)

known as the Hartree equations. For a general two-particle interaction they
have the form

− �
2

2me
∇2φλi

(r) + Vion(r)φλi
(r)

+
Ne∑

j=1
j �=i

∫
dr′U(r − r′)|φλj

(r′)|2φλi
(r) = ελi

φλi
(r) .

(28.3.14)

Note that the Hartree equations are not usual Schrödinger equations. The
third term of the left-hand side depends on the quantum numbers of the state
to be calculated, and the system of equations has to be solved self-consistently.
In many-body systems, where Ne is large, the full number density given in
(28.3.11) may be used in the Hartree potential, since inclusion of the i = j
term would give only a negligible shift of the energies.

28.3.2 Hartree Approximation as a Mean-Field Theory

In the Hartree approximation electrons move in an effective, self-consistent
potential (28.3.12) created by the others. It should not surprise us that this
approximation is in fact a mean-field theory (MFT) of the electron gas in the
sense MFT was introduced in Chapter 14 in the study of magnetic properties
of solids. Since that treatment shows better what is neglected in the approxi-
mation, we will rederive the Hartree equations following standard mean-field
theory.
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The idea behind this approximation is that fluctuations are weak for some
quantities and so the mean-square deviations from the expectation values of
the corresponding operators can be neglected. When this method is applied
to fermions, we may assume that certain pairs of fermion operators could be
replaced by their expectation values in the Hamiltonian, but these expectation
values have to be determined self-consistently. In order to get the total energy
of the system correctly, a term containing only expectation values has to be
added to the energy. Of course, one has to be careful in choosing the operators
that are to be replaced by their expectation values. The choice depends on
the system or more precisely on the nature of the state under study.

According to (28.1.11) the electron–electron interaction can be written in
terms of the electron densities at sites r and r′, more precisely the strength of
the interaction U(r − r′) has to be multiplied by the densities and integrated
over the volume of the sample. Leaving out the constant term that eliminates
self-interaction, we have

1
2

Ne∑

i,j=1
i�=j

U(ri − rj) = 1
2

∫∫
dr dr′U(r − r′)n(r)n(r′) . (28.3.15)

In normal Fermi systems, where there are no anomalous, symmetry-breaking
averages, the natural choice is to approximate the number-density operator
by its expectation value, supposing that density fluctuations can be neglected.
The standard procedure of neglecting [n(r)− 〈n(r)〉][n(r′)− 〈n(r′)〉] leads to

1
2

Ne∑

i,j=1
i�=j

U(ri − rj) ≈
∫∫

dr dr′U(r − r′)n(r)
〈
n(r′)

〉

− 1
2

∫∫
dr dr′U(r − r′)

〈
n(r)

〉〈
n(r′)

〉
.

(28.3.16)

The first term on the right-hand side can be written in an equivalent form by
substituting (28.1.7) for n(r) and we have

Ne∑

i=1

∫
dr′U(ri − r′)

〈
n(r′)

〉
. (28.3.17)

Making use of this expression in (28.1.1) gives

H ≈
Ne∑

i=1

[
− �

2

2me
∇2

i + Vion(ri) +
∫

dr′U(ri − r′)
〈
n(r′)

〉]

− 1
2

∫∫
dr dr′U(r − r′)

〈
n(r)

〉〈
n(r′)

〉
(28.3.18)

for the mean-field Hamiltonian. The first term is indeed the sum of one-particle
terms with the effective potential given in (28.3.3) and (28.3.4). The physical
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meaning of the constant correction term will be discussed later. The Hartree
equations are the eigenvalue equations of this one-particle problem:

H(1)
H (r)φλ(r) = ελφλ(r) , (28.3.19)

where

H(1)
H (r) = − �

2

2me
∇2 + Vion(r) +

∫
dr′ U(r − r′)

〈
n(r′)

〉
, (28.3.20)

and the density
〈
n(r)

〉
= ne(r) has to be calculated self-consistently using

(28.3.11) or, more precisely, an expression where self-interaction is omitted.
When the same mean-field approximation is applied to the Hamiltonian

(28.1.20) written in terms of the field operators, we have

HH =
∑

σ

∫
dr ψ̂†

σ(r)
[
− �

2

2me
∇2 + Vion(r)

]
ψ̂σ(r)

+
∑

σσ′

∫∫
dr dr′ ψ̂†

σ(r)U(r − r′)
〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉
ψ̂σ(r)

− 1
2

∑

σσ′

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉〈
ψ̂†

σ(r)ψ̂σ(r)
〉
.

(28.3.21)

This can be written in the form

HH =
∑

σ

∫
dr ψ̂†

σ(r)H(1)
H (r)ψ̂σ(r)

− 1
2

∑

σσ′

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉〈
ψ̂†

σ(r)ψ̂σ(r)
〉 (28.3.22)

with the one-particle Hamiltonian

H(1)
H (r) = − �

2

2me
∇2 + Vion(r) +

∑

σ′

∫
dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉
.

(28.3.23)
The Hamiltonian takes an even simpler form when it is written in terms

of the creation and annihilation operators of the one-particle states φλσ(r).
The creation operator c†λσ adds a particle with spatial wavefunction φλ(r)
and spin σ to the system. Its adjoint, the annihilation operator cλσ, removes
a particle with quantum numbers λ and σ. Since φλ(r) is an eigenfunction
of the one-particle problem, the full Hamiltonian becomes diagonal in the
Hartree approximation:

HH =
∑

λσ

ελc
†
λσcλσ − 1

2

∫∫
dr dr′U(r − r′)

〈
n(r)

〉〈
n(r′)

〉
. (28.3.24)
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It is important to note that while the summation in the first term of (28.3.24)
goes over all allowed quantum numbers, while the summation in the density
[see (28.3.11)], that is in the effective field generated by the other electrons,
goes over the occupied states only.

In the presence of a realistic periodic potential Vion(r), this coupled set of
nonlinear equations can be solved only numerically for the Ne occupied states.
The homogeneous electron gas is an exception. Due to charge neutrality, the
mean potential created by the uniform electron density cancels exactly the
potential of the uniform positive background,

V0 − eφe–e(r) = 0 . (28.3.25)

Then the Hartree equations are identical to the Schrödinger equation of free
electrons and the plane waves φk(r) = eik·r/

√
V are their solutions. In con-

sequence, the energies of the single-particle states are

εk = ε
(0)
k =

�
2k2

2me
. (28.3.26)

Thus, the interaction – if treated in the Hartree approximation – gives no
contribution to the energy of the homogeneous electron gas. For a general
two-particle interaction U and a uniform background potential V0, all energy
levels are shifted by the same amount:

εk = ε
(0)
k + V0 +

∫
dr′U(r − r′)ne(r′)

= ε
(0)
k + V0 + U(q = 0)ne ,

(28.3.27)

where ne is the uniform density of particles and it is multiplied by the q = 0
Fourier component of the interparticle interaction.

28.3.3 Hartree Equations Derived from the Variational Principle

We note before going on that the Hartree equations can be derived from the
variational principle of quantum mechanics. Instead of choosing the potential
approximately – as was done in (28.3.1) – a variational ansatz is made for the
wavefunction and we require that the total energy of the electron system

E = 〈H〉 =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 (28.3.28)

be minimum, where

H =
Ne∑

i=1

[
− �

2

2me
∇2

i + Vion(ri) + 1
2

Ne∑

j=1
j �=i

ẽ2

|ri − rj |
]
. (28.3.29)
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As the simplest choice, we write the many-body wavefunction as the product
of unknown single-particle wavefunctions in the form given in (28.3.9). One
readily obtains

〈Ψ |H|Ψ〉 =
Ne∑

i=1

∫
dr φ∗λi

(r)
[
− �

2

2me
∇2 + Vion(r)

]
φλi

(r)

+
ẽ2

2

Ne∑

i,j=1
i�=j

∫∫
dr dr′

∣∣φλj
(r′)
∣∣2

|r − r′| |φλi
(r)|2 .

(28.3.30)

To get the energy minimum, one has to minimize this quantity with the con-
straint that the single-particle wavefunctions are orthogonal,

∫
dr φ∗λi

(r)φλj
(r) = δλi,λj

. (28.3.31)

This constraint can be enforced by introducing a set of Lagrange multipliers.
The optimum wavefunctions are the solutions of the variational problem

δ

δψ∗
λi

[
〈H〉 − εi

∫
dr |φ∗λi

(r)|2
]

= 0 . (28.3.32)

This yields precisely the Hartree equations given in (28.3.13) and the Lagrange
multipliers are equal to the single-particle energies.

28.3.4 Hartree–Fock Approximation

The effect of the other electrons is taken into account in the Hartree approx-
imation rather crudely. A better approximation can be achieved if a better
form is assumed for the variational wavefunction. The most obvious problem
with the Hartree approximation is that – although each single-particle state is
occupied by at most one electron in agreement with the Pauli exclusion prin-
ciple – the indistinguishability of electrons has not been taken into account.

If states φλ1,σ1 , φλ2,σ2 , . . . , φλNe ,σNe
are occupied, one cannot tell which

electron occupies which state. All possible distributions among the states have
to be allowed for, and the many-body wavefunction is a linear combination of
all allowed configurations. Since electrons are fermions, the total wavefunction
has to be completely antisymmetric, i.e., it has to change sign whenever the
spatial and spin variables of any two electrons are exchanged:

Ψ(. . . , ri, si, . . . , rj , sj , . . . ) = −Ψ(. . . , rj , sj , . . . , ri, si, . . . ) . (28.3.33)

The wavefunction satisfying this requirement can be written in a compact
form as a Slater determinant:
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ΨHF =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣

φλ1,σ1(r1, s1) φλ1,σ1(r2, s2) . . . φλ1,σ1(rNe , sNe)

φλ2,σ2(r1, s1) φλ2,σ2(r2, s2) . . . φλ2,σ2(rNe , sNe)
...

...
. . .

...
φλNe ,σNe

(r1, s1) φλNe ,σNe
(r2, s2) . . . φλNe ,σNe

(rNe , sNe)

∣∣∣∣∣∣∣∣∣∣

.

(28.3.34)
This is a natural generalization of the two-particle Slater determinant intro-
duced in Chapter 4.

Evaluating the expectation value of the energy with this wavefunction, we
get

EHF = 〈H〉 =
Ne∑

i=1

∫
dr φ∗λi

(r)
[
− �

2

2me
∇2 + Vion(r)

]
φλi

(r)

+
ẽ2

2

Ne∑

i,j=1

∫
dr

∫
dr′ |φλj

(r′)|2
|r − r′| |φλi

(r)|2 (28.3.35)

− ẽ
2

2

Ne∑

i,j=1

∫
dr

∫
dr′ 1

|r − r′|δσi,σj
φ∗λi

(r)φ∗λj
(r′)φλi

(r′)φλj
(r) .

Unlike in the Hartree approximation, there is no need here to impose the
restriction j �= i, since contributions coming from the j = i terms cancel
each other in the last two terms. To get the optimum wavefunctions that at
the same time satisfy the orthogonality condition, the constraints are again
enforced by the method of Lagrange multipliers. Independent variation with
respect to φλi

and φ∗λi
leads to

− �
2

2me
∇2φλi

(r) + Vion(r)φλi
(r) + ẽ2

Ne∑

j=1

∫
dr′ |φλj

(r′)|2
|r − r′| φλi

(r)

− ẽ2
Ne∑

j=1

∫
dr′φ

∗
λj

(r′)φλi
(r′)

|r − r′| φλj
(r)δσi,σj

= ε̃λi
φλi

(r) .

(28.3.36)
These equations are referred to as the Hartree–Fock equations. For a general
two-particle interaction we find

− �
2

2me
∇2φλi

(r) + Vion(r)φλi
(r) +

Ne∑

j=1

∫
dr′U(r − r′)|φλj

(r′)|2φλi
(r)

−
Ne∑

j=1

∫
dr′U(r − r′)φ∗λj

(r′)φλi
(r′)φλj

(r)δσi,σj
= ε̃λi

φλi
(r) .

(28.3.37)
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As in the Hartree approximation, the values of the Lagrange multipliers at the
minimum give the energy eigenvalues. They are denoted by ε̃λi

to distinguish
them from the energies obtained in the Hartree approximation. The new term
compared to the Hartree approximation is due to the indistinguishability of
the particles, i.e., the quantum mechanical exchange. For this reason, this
term is called exchange term or Fock term after V. Fock, who derived it first
in 1930.6 The factor δσi,σj

appears because only particles with identical spins
can be exchanged. Of course, similar to the Hartree equations, these equations
have to be solved self-consistently.

The local Hartree potential introduced in (28.3.3) can be written in terms
of the single-particle wavefunctions in the form

VH(r) =
Ne∑

j=1

∫
dr′ U(r − r′)|φλj

(r′)|2 . (28.3.38)

In contrast to the Hartree term, the exchange term can be written only in
terms of a nonlocal exchange potential Vx(r, r′) defined by

−
Ne∑

j=1

∫
dr′U(r − r′)φ∗λj

(r′)φλj
(r)δσi,σj

φλi
(r′) =

∫
Vx(r, r′)φλi

(r′) dr′ .

(28.3.39)
The Hartree–Fock equations are then equivalent to the nonlocal Schrödinger
equations ∫

H(1)
HF(r, r′)φλi

(r′) dr′ = ε̃λi
φλi

(r) , (28.3.40)

where

H(1)
HF(r, r′) =

[
− �

2

2me
∇2 + Vion(r) + VH(r)

]
δ(r − r′) + Vx(r, r′) . (28.3.41)

28.3.5 Hartree–Fock Approximation as a Mean-Field Theory

The Hartree approximation could be interpreted as a mean-field theory. One
of the density operators in the interaction was replaced by its expectation
value. This is, however, not the only possible choice for a mean-field-like in-
teraction. When the interaction part of (28.1.20) is written in terms of the
field operators, we have

He–e = 1
2 ẽ

2
∑

σσ′

∫∫
dr dr′ ψ̂†

σ(r)ψ̂†
σ′(r′)

1
|r − r′| ψ̂σ′(r′)ψ̂σ(r) , (28.3.42)

where we used the bare Coulomb interaction. This expression contains four
operators, and one could choose other combinations than the local densities
6 The Hartree term is also called direct term.
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that could be approximated by their mean value. We may suppose that the
nonlocal quantity, the expectation value of ψ̂†

σ′(r′)ψ̂σ(r) describing a process
in which the particles are added and removed at different positions, is also
finite. Then, in addition to the term corresponding to the Hartree approxima-
tion a new term appears in the Hamiltonian,

Hx ≈ −ẽ2
∑

σσ′

∫∫
dr dr′ ψ̂†

σ(r)

〈
ψ̂†

σ′(r′)ψ̂σ(r)
〉

|r − r′| ψ̂σ′(r′) . (28.3.43)

The factor 1/2 in the original Hamiltonian has disappeared since there are
two ways to arrive at such terms. The negative sign arises because the order
of two field operators had to be interchanged. Mean-field theory is, however,
more subtle than simply replacing some quantities by their average. The total
energy is obtained correctly when a term containing the product of averages
is added. In the present case a term

1
2

∑

σσ′

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ(r)
〉〈
ψ̂†

σ(r)ψ̂σ′(r′)
〉

(28.3.44)

has to be added to the total energy.
In a homogeneous, isotropic, unpolarized system, the expectation value〈

ψ̂†
σ′(r′)ψ̂σ(r)

〉
depends on |r − r′|; it is nonvanishing only if σ = σ′ and its

value is spin independent. We will see in Chapter 33 that this is not true
any more in broken-symmetry phases such as in a polarized electron gas or
in charge-density- or spin-density-wave states. The superconducting state to
be discussed in Chapter 34 is even more delicate. It can be described by a
mean-field-like generalized Hartree–Fock theory in which an anomalous aver-
age takes nonvanishing value.

By adding the new terms with σ = σ′ to the Hamiltonian of the Hartree
approximation, the total Hamiltonian can be written in a form analogous to
(28.3.22) with a nonlocal spin-dependent term in the one-particle part:

HHF =
∑

σ

∫∫
dr dr′ψ̂†

σ(r)H(1)
HFσ(r, r′)ψ̂σ(r′) (28.3.45)

− 1
2

∑

σσ′

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉〈
ψ̂†

σ(r)ψ̂σ(r)
〉

+ 1
2

∑

σ

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ(r′)ψ̂σ(r)
〉〈
ψ̂†

σ(r)ψ̂σ(r′)
〉
,

where

H(1)
HFσ(r, r′) = H(1)

H δ(r − r′) − ẽ2
〈
ψ̂†

σ(r′)ψ̂σ(r)
〉

|r − r′| , (28.3.46)

or for a general electron–electron interaction,
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H(1)
HFσ(r, r′) =

[
− �

2

2me
∇2 + Vion(r)

+
∑

σ′

∫
dr′′ U(r − r′′)

〈
ψ̂†

σ′(r′′)ψ̂σ′(r′′)
〉]
δ(r − r′)

−U(r − r′)
〈
ψ̂†

σ(r′)ψ̂σ(r)
〉
. (28.3.47)

To prove the equivalence to the Hartree–Fock approximation we take the
solutions of the nonlocal Schrödinger equation

∫
H(1)

HFσ(r, r′)φλiσ(r′) dr′ = ε̃λiσφλiσ(r) (28.3.48)

as basis functions. The field operators can be expanded in terms of the creation
and annihilation operators, c†λσ and cλσ, of these states in analogy to (28.1.17)
as

ψ̂†
σ(r) =

∑

λi

φ∗λi,σ(r)c†λiσ
, ψ̂σ(r) =

∑

λi

φλi,σ(r)cλiσ
. (28.3.49)

Since the only nonvanishing average is that of the number operator c†λσcλσ

when no symmetry is broken, H(1)
HFσ(r, r′) is identical to H(1)

HF(r − r′) of
(28.3.41) and this eigenvalue problem is indeed identical to the Hartree–Fock
equations.

Alternatively one could start with the Hamiltonian (28.1.35) written in
terms of the creation and annihilation operators of the single-particle states
of the noninteracting system:

H =
∑

kσ

εkc
†
kσckσ +

1
2V

∑

kk′q
σσ′

U(q)c†k+qσc
†
k′−qσ′ck′σ′ckσ . (28.3.50)

In normal metals, where the ground state does not break any symmetry of
the Hamiltonian – i.e., it is neither superconducting nor does it show a static
charge or spin density – the only nonvanishing average of the product of two
fermion operators is the number of electrons with wave vector k and spin σ:

〈
c†kσckσ

〉
= f0(εk) . (28.3.51)

It would seem natural to single out the q = 0 term in the interaction and to
write the four-fermion product after a rearrangement of the operators in the
form

c†kσckσc
†
k′σ′ck′σ′ =

(
c†kσckσ − 〈c†kσckσ

〉
+
〈
c†kσckσ

〉)

×
(
c†k′σ′ck′σ′ −

〈
c†k′σ′ck′σ′

〉
+
〈
c†k′σ′ck′σ′

〉)
.

(28.3.52)

If fluctuations, i.e., terms of second order in the deviation from the mean
value, are neglected, we have
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c†kσc
†
k′σ′ck′σ′ckσ ≈ c†kσckσ

〈
c†k′σ′ck′σ′

〉
+
〈
c†kσckσ

〉
c†k′σ′ck′σ′

− 〈c†kσckσ

〉〈
c†k′σ′ck′σ′

〉
.

(28.3.53)

Substituting this into the Hamiltonian gives

HH =
∑

kσ

[
εk +

1
V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉]
c†kσckσ

− 1
2V

∑

kk′
σσ′

U(q = 0)
〈
c†k′σ′ck′σ′

〉〈
c†kσckσ

〉
.

(28.3.54)

This is exactly the result of the Hartree approximation. We can go beyond that
if we choose the operator products that are approximated by their expectation
values differently. After a change of the order of two operators (this leads to
a factor −1 when q �= 0) the following identical transformation can be made:

c†k+qσc
†
k′−qσ′ck′σ′ckσ = −c†k+qσck′σ′c

†
k′−qσ′ckσ (28.3.55)

= −
(
c†k+qσck′σ′ −

〈
c†k+qσck′σ′

〉
+
〈
c†k+qσck′σ′

〉)

×
(
c†k′−qσ′ckσ − 〈c†k′−qσ′ckσ

〉
+
〈
c†k′−qσ′ckσ

〉)
.

Again neglecting fluctuations,

c†k+qσc
†
k′−qσ′ck′σ′ckσ ≈ −c†k+qσck′σ′

〈
c†k′−qσ′ckσ

〉− 〈c†k+qσck′σ′
〉
c†k′−qσ′ckσ

+
〈
c†k+qσck′σ′

〉〈
c†k′−qσ′ckσ

〉
. (28.3.56)

The expectation values give finite contribution only when k = k′ − q and
σ = σ′. If U(q) is an even function of q, the Hamiltonian in this approximation
takes the form

HHF =
∑

kσ

[
εk +

1
V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉

− 1
V

∑

k′
U(k′ − k)

〈
c†k′σck′σ

〉]
c†kσckσ

− 1
2V

∑

kk′
σσ′

U(q = 0)
〈
c†k′σ′ck′σ′

〉〈
c†kσckσ

〉

+
1

2V

∑

kk′
σ

U(k′ − k)
〈
c†k′σck′σ

〉〈
c†kσckσ

〉
.

(28.3.57)

The operator part of HHF is diagonal in the quantum numbers and the
coefficient of the particle-number operator is
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ε̃kσ = εk +
1
V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉 − 1
V

∑

k′
U(k′ − k)

〈
c†k′σck′σ

〉
,

(28.3.58)

where in the ground state

〈
c†k′σck′σ

〉
=

{
1 for |k′| < kF ,

0 for |k′| > kF .
(28.3.59)

Thus
ε̃kσ = εk +

Ne

V
U(q = 0) − 1

V

∑

|k′|<kF

U(k′ − k) . (28.3.60)

Note that (28.3.58) allows for a simple generalization of the Hartree–Fock
approximation to finite temperatures. The ground-state average of the occu-
pation number should be replaced by the Fermi distribution function. This
approach is self-consistent if the energy in the Fermi distribution function
contains already the finite-temperature corrections, that is

ε̃kσ = εk +
1
V

∑

k′σ′
U(q = 0)f0(ε̃k′σ′) − 1

V

∑

k′
U(k′ − k)f0(ε̃k′σ) . (28.3.61)

It is due to this self-consistency requirement that the single-particle energy
may become spin dependent.

28.3.6 Quasiparticles in the Hartree–Fock Approximation

When the Hartree–Fock Hamiltonian is written in terms of the creation and
annihilation operators of the optimal single-particle states, it takes the par-
ticularly simple form

HHF =
∑

λσ

ε̃λiσc
†
λσcλσ (28.3.62)

− 1
2

∑

σσ′

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ′(r′)ψ̂σ′(r′)
〉〈
ψ̂†

σ(r)ψ̂σ(r)
〉

+ 1
2

∑

σ

∫∫
dr dr′ U(r − r′)

〈
ψ̂†

σ(r′)ψ̂σ(r)
〉〈
ψ̂†

σ(r)ψ̂σ(r′)
〉
.

The first part is the Hamiltonian of a free fermion gas with one-particle energy
ε̃λiσ. To understand the physical meaning of these eigenvalues we calculate
the energy needed to remove a particle of index l with quantum numbers λl

and σl from the solid. The Hamiltonian H′ of this (Ne − 1)-particle system is
easily obtained from the Hamiltonian H of the Ne-particle system:

H′ = H−
[
− �

2

2me
∇2

l + V (rl) +
Ne∑

j=1
j �=l

ẽ2

|rl − rj |

]
. (28.3.63)



28.3 Simple Approximate Treatments of the Interaction 31

The self-consistent solutions of the Hartree–Fock equations with this Hamil-
tonian differ from the wavefunctions of the Ne-particle system. For a large
enough system, however, the relaxation of the wavefunction is on the or-
der of 1/Ne. If the system was originally described by a Slater-determinant
wavefunction (28.3.34), a good approximation for the wavefunction of the
Ne−1-particle system is obtained by deleting simply the appropriate row and
column of the Slater determinant, leaving the single-particle wavefunctions
unchanged.7 That is we choose

Ψl =
1√

(Ne − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φλ1(r1) . . . φλ1(rl−1) φλ1(rl+1) . . . φλ1(rNe)
φλ2(r1) . . . φλ2(rl−1) φλ2(rl+1) . . . φλ2(rNe)

...
. . .

...
...

. . .
...

φλl−1(r1) . . . φλl−1(rl−1) φλl−1(rl+1) . . . φλl−1(rNe)
φλl+1(r1) . . . φλl+1(rl−1) φλl+1(rl+1) . . . φλl+1(rNe)

...
. . .

...
...

. . .
...

φλNe
(r1) . . . φλNe

(rl−1) φλNe
(rl+1) . . . φλNe

(rNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(28.3.64)
where the spin variables and quantum numbers are not written out explicitly
for the sake of brevity. The energy difference between the two states,

ΔE = 〈Ψl|H′|Ψl〉 − 〈ΨHF|H|ΨHF〉 , (28.3.65)

gives the energy needed to remove the particle with quantum number λl.
When (28.3.35) is used for the energy of the system with Ne particles, this

energy difference is equal to the contribution of all terms that contain the
one-particle wavefunction with quantum number λl, that is

− ΔE =
∫

dr φ∗λl
(r)
[
− �

2

2me
∇2 + Vion(r)

]
φλl

(r)

+ẽ2
Ne∑

j=1

∫
dr

∫
dr′ |φλj

(r′)|2
|r − r′| |φλl

(r)|2 (28.3.66)

−ẽ2
Ne∑

j=1

∫
dr

∫
dr′ 1

|r − r′|δσl,σj
φ∗λl

(r)φ∗λj
(r′)φλl

(r′)φλj
(r) .

It follows from the Hartree–Fock equations that the right-hand side is exactly
equal to the eigenvalue ε̃λl

, and so

ΔE = −ε̃λl
. (28.3.67)

This shows that the eigenvalues of the Hartree–Fock equations have a simple
physical meaning: they give the energy needed to remove a particle with the
7 This approximation may give incorrect result in quantum chemistry calculations

for atoms or molecules, where the number of electrons is not large.
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given quantum number. In other words, the Hartree–Fock energy of an oc-
cupied orbital is the negative of the ionization energy for the corresponding
state. Similarly, one can calculate the energy needed to add a particle to the
system. The solutions of the Hartree–Fock equations provide a complete basis
set, not only for the wavefunctions and energies of occupied orbitals but also
for the wavefunctions and energies of unoccupied, virtual states. These eigen-
values are equal to the energies needed to add a particle to an unoccupied
orbital. This result is known as Koopmans’ theorem.8 It implies that if an
electron is excited from the state with quantum number λl into the state with
quantum number λk, the excitation energy is

ΔE = ε̃λk
− ε̃λl

. (28.3.68)

The energy ε̃λl
needed to add a particle to the interacting system is modi-

fied, renormalized, compared to the energy ελl
of a free particle. The effect of

interaction with the other particles is incorporated into this modified single-
particle energy. The elementary excitations of the interacting system are not
bare electrons but quasiparticles having energy ε̃λσ. When this energy is writ-
ten in the form

ε̃λσ = ελσ +Σλσ , (28.3.69)

the correction Σλσ is called the self-energy.
The interesting physical properties of the system can be explained in terms

of quasiparticles. One has to take into account, however, that the concept of
quasiparticles can be used only when a small number of them are excited. Only
in this limit can one write the excitation energy of a state as the sum of the
energies of independent quasiparticles. When a large number of quasiparticles
are present in the system, the interaction between them becomes important.
This interaction and how it influences the properties of normal Fermi systems
will be discussed in more detail in Chapter 32, in the framework of Landau’s
theory of Fermi liquids. Here we only show that the ground-state energy of the
interacting system is not equal to the sum of the energies of Ne quasiparticles.

28.3.7 Total Energy in the Hartree–Fock Approximation

The total ground-state energy can be calculated as the expectation value of
the Hamiltonian. Staring from the expression given in (28.3.57) we get

EHF =
∑

kσ

[
εk +

1
2V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉

− 1
2V

∑

k′
U(k′ − k)

〈
c†k′σck′σ

〉]〈
c†kσckσ

〉
.

(28.3.70)

8
T. Koopmans, 1934. Tjalling Charles Koopmans (1910–1985) was awarded
the 1975 Nobel Memorial Prize in economic sciences.
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If the quasiparticle energy ε̃kσ given in (28.3.58) is used instead of the bare
energy, we find

EHF =
∑

kσ

[
ε̃kσ − 1

2V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉

+
1

2V

∑

k′
U(k′ − k)

〈
c†k′σck′σ

〉]〈
c†kσckσ

〉
.

(28.3.71)

Since the self-energy is

Σkσ =
1
V

∑

k′σ′
U(q = 0)

〈
c†k′σ′ck′σ′

〉− 1
V

∑

k′
U(k′ − k)

〈
c†k′σck′σ

〉
(28.3.72)

in the Hartree–Fock approximation, the total energy can be written either as

EHF =
∑

kσ

(
ε̃kσ − 1

2Σkσ

)〈
c†kσckσ

〉
(28.3.73)

or as
EHF =

∑

kσ

(
εk + 1

2Σkσ

)〈
c†kσckσ

〉
. (28.3.74)

When the energies of occupied quasiparticle states are summed, the correction
coming from two-particle interactions appears in the energy of both quasipar-
ticles, and thus twice in the sum. This double counting is corrected in (28.3.73)
by subtracting half of the self-energy. Alternatively, when the bare energies
are summed, only half of the self-energy has to be added for each occupied
state.

28.3.8 Hartree–Fock Theory of the Uniform Electron Gas

The Hartree–Fock equations can in general be solved only numerically. The
homogeneous electron gas, where Vion(r) is uniform in space and the Hartree
term is compensated exactly by the potential of the positive background, is
an exception. It is readily seen that plane waves are self-consistent solutions
of the Hartree–Fock equations, but the quasiparticle energies differ from the
free electron energies due to the Fock term.

Assuming that the one-particle states that fill the Fermi sphere in the
ground state are plane waves, the same plane waves are indeed eigenfunctions
of the Hartree–Fock equations

− �
2

2me
∇2φk(r) −

∑

|k′|<kF

1
V

∫
dr′ ẽ2

|r − r′|e
−ik′·r′

eik′·rφk(r′) = ε̃kφk(r)

(28.3.75)
with eigenvalues



34 28 Electron–Electron Interaction and Correlations

ε̃k =
�

2k2

2me
− 1
V

∑

|k′|<kF

∫
dr′ ẽ2

|r − r′|e
−i(k−k′)·(r−r′) . (28.3.76)

Since exchange is possible only between electrons of the same spin, each wave
vector k′ has to be taken once. Recognizing that the second term on the
right-hand side is a sum of the k − k′ Fourier components of the Coulomb
potential we indeed recover the result derived in (28.3.60). Note that the
uniform positive background precisely cancels the q = 0 component of the
potential. Substitution of (C.1.63) into (28.3.76) gives

ε̃k =
�

2k2

2me
− 1
V

∑

|k′|<kF

4πẽ2

|k − k′|2 . (28.3.77)

Comparison of the second term of (28.3.75) with (28.3.39) shows that the
exchange potential is

Vx(r, r′) = − 1
V

∑

|k′|<kF

ẽ2

|r − r′|e
ik′·(r−r′) . (28.3.78)

The summation can be performed with the aid of (C.2.29) yielding

Vx(r − r′) = − ẽ
2k4

F
2π2

sin kF|r − r′| − kF|r − r′| cos kF|r − r′|
(kF|r − r′|)4

= − ẽ
2k4

F
2π2

j1(kF|r − r′|)
(kF|r − r′|)2 ,

(28.3.79)

where j1(x) = (sinx − x cosx)/x2 is the first-order spherical Bessel function
of the first kind. At short distances a 1/|r − r′| dependence resembling the
Coulomb potential is obtained, while the exchange potential decays to zero
much faster at large distances oscillating with wavelength 1/kF.

Another picture for the exchange potential is obtained if the Fock term is
written in the form

− e

4πε0

∫
dr′ ρHF(r, r′)

|r − r′| φλi
(r) , (28.3.80)

where

ρHF(r, r′) = e
∑

j

φ∗λj
(r′)φλi

(r′)φ∗λi
(r)φλj

(r)

φ∗λi
(r)φλi

(r)
δσi,σj

. (28.3.81)

In this representation the effect of exchange is manifested in an induced charge
density around the electrons. In the homogeneous electron gas, where the
solutions are plane waves,

ρHF(r, r′) =
e

V

∑

|k′|<kF

ei(k−k′)·(r−r′) . (28.3.82)
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Integration over the Fermi sphere gives

ρHF(r, r′) = e eik·(r−r′) k
3
F

2π2

sin kF|r − r′| − kF|r − r′| cos kF|r − r′|
(kF|r − r′|)3

= e eik·(r−r′) k
3
F

2π2

j1(kF|r − r′|)
kF|r − r′| . (28.3.83)

One can interpret this result by saying that the electrons create positively
charged holes around themselves with an oscillatory charge density that dies
off rather fast. We will return to this problem when correlations between
electrons will be studied.

To calculate the dispersion curve of quasiparticles the sum in (28.3.77) is
replaced by an integral over the Fermi sphere. The integral can be evaluated
exactly using (C.2.31) with the result

ε̃k =
�

2k2

2me
− 4πẽ2

∫

|k′|<kF

dk′

(2π)3
1

|k − k′|2

=
�

2k2

2me
− 2
π
ẽ2kFF

(
k

kF

)

=
(
k

kF

)2

εF − 2
π
ẽ2kFF

(
k

kF

)
,

(28.3.84)

where

F (x) =
1
2

+
1 − x2

4x
ln
∣∣∣∣
1 + x

1 − x

∣∣∣∣ . (28.3.85)

The function F (x), which will appear at various places, is plotted in Fig.
28.4. Note that F (x) is a smooth function, although its derivative is weakly,
logarithmically singular at x = 1.

1
x

1

0
0

F x

Fig. 28.4. Variation of F (x) as a function of x

Electronic energies are often given in the literature in hartree (Eh) or
rydberg (Ry),9

9 Hartree energy (1 Eh = ẽ2/a0) is the atomic unit of energy. It is conveniently
used in the atomic system of units, where the charge and mass of electron, �, and
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1Eh =
ẽ2

a0
=

�
2

mea2
0

= 27.211 eV , (28.3.86)

and 1Ry = 13.606 eV. When the Fermi energy is expressed in terms of the
Bohr radius,

εF =
�

2k2
F

2me
=

1
2
(kFa0)2

ẽ2

a0
, (28.3.87)

and so

ε̃k =

[
1
2
(kFa0)2

(
k

kF

)2

− 2
π
kFa0F

(
k

kF

)]
ẽ2

a0
. (28.3.88)

If the electron density is expressed in terms of the Wigner–Seitz radius r0,10
or in terms of the dimensionless quantity rs = r0/a0,

εF =
1
2

(
9π
4

)2/3(
a0

r0

)2
ẽ2

a0
=

1.842
r2s

Eh , (28.3.89)

and so

ε̃k =

[
1.842
r2s

(
k

kF

)2

− 1.222
rs

F

(
k

kF

)]
Eh . (28.3.90)

This dispersion curve is displayed in Fig. 28.5 for a relatively large density
(rs = 2), which is close to the electron density in aluminum.

~

1–1

k

k/kF

Fig. 28.5. The dispersion relation of quasiparticles in the Hartree–Fock approxi-
mation for an electron gas with density rs = 2. Dashed line shows the dispersion
relation in the free electron gas

The energy correction is largest for the k = 0 state. Its value is

the Bohr radius are taken to be unity, and hence the Hartree energy is also unity.
1 Ry is the binding energy of the electron in the ground state of the hydrogen
atom, it is half of the hartree energy.

10 The Wigner–Seitz radius, the radius of the sphere belonging to an electron, was
introduced in Chapter 16. Its relationship to kF is given in (16.2.31).
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Δεk=0 = − 2
π
ẽ2kF = − 2

π
kFa0

ẽ2

a0
= − 2

π

(
9π
4

)1/3
a0

r0

ẽ2

a0
= −1.222

rs
Eh .

(28.3.91)
The shift is only half that much for electrons with wave number kF, whereas
there is practically no energy shift for particles with large momentum. The
energy spread of occupied states is thus

ε̃kF−ε̃k=0 =
�

2k2
F

2me
+

1
π
ẽ2kF =

(
1.842
r2s

+
0.611
rs

)
Eh =

(
50.111
r2s

+
16.623
rs

)
eV .

(28.3.92)
The Hartree–Fock approximation of the electron–electron interaction gives
a substantial increase of the bandwidth of occupied states in the uniform
electron gas compared to the free electron model. For typical metallic electron
densities, this width could easily double or increase by an even larger factor.
We do not see any sign of such an increase in experiments. The bandwidth of
occupied states is on the order of a few electron volts in the conduction band
of simple metals, in rough agreement with free electron calculations.

It is even worse that the Hartree–Fock approximation yields an absolutely
wrong result for the effective mass of electrons. To calculate the effective mass
we redefine it in a somewhat different, though equivalent form. Taking a wave
vector k0 on the Fermi surface, the quasiparticle energy ε̃k is expanded about
the Fermi energy. For small deviations, to linear order

ε̃k = ε̃k0 +
(
∂ε̃k

∂k

)

k0

· (k − k0) . (28.3.93)

In isotropic systems, where the energy depends only on the magnitude of k,

ε̃k = ε̃kF +
(
∂ε̃k

∂k

)

kF

(k − kF) . (28.3.94)

For free electrons with a quadratic dispersion relation this expansion gives

εk = εF +
�

2kF

me
(k − kF) . (28.3.95)

When the expansion of the quasiparticle energy is written in a similar form
with an effective mass m∗, comparison of the two expressions gives

1
m∗ =

1
�2kF

(
∂ε̃k

∂k

)

kF

. (28.3.96)

Due to the singular derivative of F (x) at x = 1, the derivative of the single-
particle energy ∂ε̃k/∂k diverges logarithmically at k = kF, and the effective
mass vanishes on the Fermi surface in the Hartree–Fock approximation. The
Sommerfeld expansion cannot be applied in this case and the electronic heat
capacity would show a T/ lnT temperature dependence instead of being pro-
portional to T .
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These results are in contradiction with observations in metals. This is a
consequence of treating the long-range Coulomb interaction in a mean-field
approximation. Correlations beyond the Hartree–Fock approximation screen
the Coulomb repulsion in metals making the electron–electron interaction
effectively short ranged. This will be discussed in the next chapter.

28.3.9 Hartree–Fock Theory of the Hubbard Model

The Hamiltonian of the Hubbard model is chosen usually in the form

H =
∑

ijσ

tijc
†
iσcjσ + UH

∑

i

ni↑ni↓ (28.3.97)

as given in (28.1.42). Only electrons with opposite spins interact in this model.
They cannot be exchanged, so the Fock term gives no contribution. There
is, however, a Hartree term. Employing the usual decoupling procedure the
product of the number operators can be approximated by

ni↑ni↓ ≈ ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 . (28.3.98)

Thus

H ≈
∑

ijσ

tijc
†
iσcjσ + UH

∑

iσ

〈ni,−σ〉ni,σ − UH
∑

i

〈ni↑〉〈ni↓〉 . (28.3.99)

The energy of the electron at site i with spin σ is shifted by UH〈ni,−σ〉. If
this energy shift is site dependent, e.g., it oscillates in space, the spin density
may exhibit antiferromagnetic modulation. We will return to this problem in
Chapter 33. In a translationally invariant solution, the one-particle energies
εk (they are obtained by Fourier transformation from the hopping matrix
elements) are shifted by the same amount. The quasiparticle energies are

ε̃kσ = εk + UH〈ni,−σ〉 . (28.3.100)

If the average number of particles per unit volume

〈nσ〉 =
1
V

∑

i

〈ni,σ〉 =
N

V
〈ni,σ〉 (28.3.101)

is used instead of the number of particles per site, we find

ε̃kσ = εk + U〈n−σ〉 , (28.3.102)

where the coupling constant U defined in (28.1.50) appears in place of UH of
the Hubbard model. The mean number of electrons with spin σ can be written
in terms of the momentum distribution or Fermi distribution function in the
form



28.4 Spatial and Temporal Correlations 39

〈ni,σ〉 =
1
N

∑

k

〈nkσ〉 =
1
N

∑

k

f0(ε̃kσ) ,

〈nσ〉 =
1
V

∑

k

〈nkσ〉 =
1
V

∑

k

f0(ε̃kσ) ,
(28.3.103)

where the shifted single-particle energies appear in the argument. This energy
shift and the common chemical potential for up- and down-spin electrons have
to be calculated self-consistently for a fixed total number Ne of electrons from

ε̃k↑ = εk +
U

V

∑

k

f0(ε̃k↓) ,

ε̃k↓ = εk +
U

V

∑

k

f0(ε̃k↑) ,
(28.3.104)

and from the requirement
∑

kσ

〈nkσ〉 =
∑

kσ

f0(ε̃kσ) = Ne . (28.3.105)

The unpolarized state in which ε̃k↑ = ε̃k↓ is always a self-consistent solution
of these equations. Later, in Chapter 33, we will return to these equations and
will study the problem of when this unpolarized state becomes unstable.

28.4 Spatial and Temporal Correlations

Electrons fill the single-particle states independently in the Hartree approxi-
mation. There is no correlation between them. In the Hartree–Fock approxi-
mation, electrons still occupy single-particle states, but the requirement that
the wavefunction has to be fully antisymmetric leads to an exchange interac-
tion between electrons if their spins are parallel. The Pauli exclusion can be
interpreted as an effective short-range repulsion through which electrons cre-
ate a hole around themselves. This gives rise to spatial, distance-dependent
correlations between electrons. We expect that dynamical, time-dependent
correlations will also appear when we go beyond the Hartree–Fock approxi-
mation.

28.4.1 The n-Particle Density Matrix

An arbitrary one-particle operator, which is the sum of terms acting on indi-
vidual electrons, can be expressed analogous to (28.1.8) as

Ne∑

i=1

f(ri) =
∫
f(r)n(r) dr . (28.4.1)
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Its expectation value can be written in terms of the ground-state wavefunction
Ψ(r1, r2, . . . , rNe) of the many-particle system in the form

〈 Ne∑

i=1

f(ri)
〉

≡
Ne∑

i=1

∫∫
. . .

∫
dr1 dr2 · · · drNeΨ

∗(r1, r2, . . . , rNe)

× f(ri)Ψ(r1, r2, . . . , rNe)

=
∫
f(r)ne(r) dr ,

(28.4.2)

where

ne(r) =
Ne∑

i=1

∫∫
· · ·
∫

dr1 dr2 · · · drNeΨ
∗(r1, r2, . . . , rNe)

× δ(r − ri)Ψ(r1, r2, . . . , rNe)

(28.4.3)

is the electron density defined in (28.3.5). Using the fully antisymmetric prop-
erty of the wavefunction this expression reduces to

ne(r) = Ne

∫
dr2 · · ·

∫
drNe |Ψ(r, r2, . . . , rNe)|2 . (28.4.4)

In the Hartree–Fock approximation, where the many-particle wavefunction
is a Slater determinant built up from single-particle functions φλi

(r), the
determinant can be expanded using the functions in the first column:

Ψ(r, r2, . . . , rne) =
1√
Ne

[
φλ1

(r)Ψ1 − φλ2
(r)Ψ2 + · · · ] , (28.4.5)

where the subdeterminants Ψi defined in (28.3.64) describe the state of an
Ne − 1-particle system. It is easily seen, using the orthonormality of these
functions, that

ne(r) =
Ne∑

i=1

φ∗λi
(r)φλi

(r) , (28.4.6)

in agreement with (28.3.11). Of course, the index λi includes here the spin
quantum number as well.

When two-particle operators are considered and self-interaction is ex-
cluded, then in analogy to (28.1.11) we find

1
2

Ne∑

i,j=1
i�=j

f2(ri, rj) = 1
2

{∫∫
dr1 dr2f2(r1, r2)n(r1)n(r2) −Nef2(r1, r1)

}
.

(28.4.7)
One has to be careful in taking the expectation value since – due to correla-
tions – the expectation value of the product of the densities at positions r1
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and r2 is not equal to the product of the mean values. Therefore, the expecta-
tion value of two-particle operators can be expressed in terms of the so-called
two-particle density matrix as

1
2

〈 Ne∑

i,j=1
i�=j

f2(ri, rj)
〉

=
∫∫

f2(r1, r2)ρ2(r1, r2) dr1 dr2 , (28.4.8)

where

ρ2(r1, r2) =
(
Ne

2

)∫
dr3 · · ·

∫
drNe |Ψ(r1, r2, . . . , rNe)|2 . (28.4.9)

The density ne(r) and the two-particle density matrix ρ2(r1, r2) are ob-
tained from the absolute square of the many-body wavefunction by integrating
over all its variables, except for one or two. The generalization of this prescrip-
tion leads to the n-particle density matrix ρn. It is defined by

ρn(r1, . . . , rn) =
(
Ne

n

)∫
drn+1 · · ·

∫
drNe

× ∣∣Ψ(r1, r2, . . . , rn, rn+1, . . . , rNe)
∣∣2 ,

(28.4.10)

that is, the absolute square of the wavefunction of the many-body system is
integrated over the variables of Ne − n particles. For the sake of brevity, only
the integration over the spatial variables is explicitly displayed. For particles
with spin, a summation over the spin variables is implied.

Although, following common usage, ρn(r1, . . . , rn) was called n-particle
density matrix, this quantity is in fact the diagonal element of the n-particle
density matrix defined via

ρn(r1, . . . , rn, r
′
1, . . . , r

′
n) =

(
Ne

n

)∫
drn+1 · · ·

∫
drNe

× Ψ∗(r′
1, r

′
2, . . . , r

′
n, rn+1, . . . , rNe)

× Ψ(r1, r2, . . . rn, rn+1 . . . , rNe) ,

(28.4.11)

where the variables which are not integrated over are different in Ψ∗ and Ψ .
The simplest case is the one-particle density matrix:

ρ1(r, r′) =Ne

∫
dr2 . . .

∫
drNeΨ

∗(r′, r2, r3, . . . , rNe)

× Ψ(r, r2, r3, . . . , rNe) .
(28.4.12)

For a Slater-determinant wavefunction we get

ρ1(r, r′) =
Ne∑

i=1

φ∗λi
(r′)φλi

(r) . (28.4.13)
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Note that if the system is in a mixed state and cannot be described by a
wavefunction, the one-particle density matrix is defined as

ρ1(r, r′) =
∑

i

pλi
φ∗λi

(r′)φλi
(r) , (28.4.14)

where the summation goes over a complete set of states and pλi
is the statisti-

cal weight of the state with index λi, i.e., the probability of finding the system
in this particular state. The expectation value of a one-particle operator can
be calculated by evaluating the integral

〈∑

i

f(ri)
〉

=
∫
f(r)ρ(r) dr , (28.4.15)

where ρ(r) is the diagonal element of the one-particle density matrix,

ρ(r) =
∑

i

pλi
φ∗λi

(r)φλi
(r) . (28.4.16)

In the homogeneous electron gas, where all plane-wave states within the
Fermi sphere (|k| < kF) are filled with particles of both spin orientations,

ρ1(r, r′) =
2
V

∑

|k|<kF

eik·(r−r′) . (28.4.17)

This expression can readily be evaluated exactly by replacing the sum by an
integral. Making use of (C.2.29) we get

ρ1(r, r′) =
1
π2

[
sin kF|r − r′|

|r − r′|3 − kF cos kF|r − r′|
|r − r′|2

]

= 3ne
j1(kF|r − r′|)
kF|r − r′| .

(28.4.18)

Note that in second quantization the one-particle density matrix can be
written in terms of the field operators

ψ̂(r) =
∑

σ

ψ̂σ(r) , ψ̂†(r) =
∑

σ

ψ̂†
σ(r) (28.4.19)

as
ρ1(r, r′) =

〈
Ψ
∣∣∣ψ̂†(r′)ψ̂(r)

∣∣∣Ψ
〉
. (28.4.20)

As a natural generalization of this expression one can define the spin-resolved
one-particle density matrix via

ρ1σσ′(r, r′) =
〈
Ψ
∣∣∣ψ̂†

σ′(r′)ψ̂σ(r)
∣∣∣Ψ
〉
. (28.4.21)

When the spin quantum numbers are separated from the quantum numbers
of the spatial part of the wavefunction and only the latter are denoted by λi,
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ρ1σσ′(r, r′) =
∑

i

φ∗λi
(r′)φλi

(r)δσσ′ , (28.4.22)

where the summation goes over the occupied single-particle states. For plane
waves, we get the spin-dependent generalization of (28.4.18):

ρ1σσ′(r, r′) =
1

2π2

sin kF|r − r′| − kF|r − r′| cos kF|r − r′|
|r − r′|3 δσσ′ . (28.4.23)

The two-particle density matrix is defined by

ρ2(r1, r2; r′
1, r

′
2) = 1

2Ne(Ne − 1)
∫

dr3 · · ·
∫

drNe (28.4.24)

×Ψ∗(r′
1, r

′
2, r3, . . . , rNe)Ψ(r1, r2, r3, . . . , rNe) ,

where again the spin variables are not displayed for simplicity. The single-
particle density matrix is obtained from this expression by a further integra-
tion: ∫

ρ2(r1, r2; r′
1, r2) dr2 = 1

2 (Ne − 1)ρ1(r1, r
′
1) . (28.4.25)

On the other hand, in the limit r1 = r′
1 and r2 = r′

2, we get back the quantity
ρ2(r1, r2) used to calculate the expectation value of two-particle operators.
We remark that the two-particle density matrix, too, can be given in terms
of the field operators:

ρ2(r1, r2; r′
1, r

′
2) = 1

2

〈
Ψ
∣∣∣ψ̂†(r′

2)ψ̂
†(r′

1)ψ̂(r1)ψ̂(r2)
∣∣∣Ψ
〉
. (28.4.26)

One can show with the aid of the orthonormality of the single-particle
functions φλi

(r) that

ρ2(r1, r2; r′
1, r

′
2) = 1

2

Ne∑

i,j=1

[
φ∗λi

(r′
1)φ

∗
λj

(r′
2)φλi

(r1)φλj
(r2)

− φ∗λi
(r′

1)φ
∗
λj

(r′
2)φλj

(r1)φλi
(r2)

]
(28.4.27)

= 1
2

[
ρ1(r1, r

′
1)ρ1(r2, r

′
2) − ρ1(r1, r

′
2)ρ1(r2, r

′
1)
]
,

if the wavefunction has a Slater-determinant form. The diagonal elements can
be written as

ρ2(r1, r2) = 1
2

Ne∑

i,j=1

[
φ∗λi

(r1)φ∗λj
(r2)φλi

(r1)φλj
(r2)

− φ∗λi
(r1)φ∗λj

(r2)φλj
(r1)φλi

(r2)
]

= 1
2

Ne∑

i,j=1

1
2!

∣∣∣∣∣
φ∗λi

(r1) φ∗λj
(r1)

φ∗λi
(r2) φ∗λj

(r2)

∣∣∣∣∣ ·
∣∣∣∣∣
φλi

(r1) φλj
(r1)

φλi
(r2) φλj

(r2)

∣∣∣∣∣ .

(28.4.28)
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Using the expression derived earlier for ρ1(r, r′) for the homogeneous electron
gas, an explicit expression can be obtained for ρ2(r1, r2):

ρ2(r1, r2) = 1
2n

2
e

{
1 − 9

2

[
sin kF|r1 − r2| − kF|r1 − r2| cos kF|r1 − r2|

(kF|r1 − r2|)3
]2}

.

(28.4.29)
A factor 1/2 in front of the second term in the brackets arises because only
electrons with identical spins contribute.

28.4.2 Pair Distribution Functions

We have seen in Chapter 2 that the short- or long-range order appearing in
the spatial arrangement of atoms can be characterized by the pair distribution
function or the structure factor which is the Fourier transform of the density–
density correlation function. Here, repeating partly what has been learned
there, we will consider electronic correlations and will demonstrate that the
two-particle density matrix can be related to the pair distribution function
and the density–density correlation function.

Starting with the expression

ρ2(r, r′) = 1
2Ne(Ne − 1)

∫
dr3 · · ·

∫
drNe

∣∣Ψ(r, r′, r3, . . . , rNe)
∣∣2 (28.4.30)

for the two-particle density matrix it is easy to show that

ρ2(r, r′) = 1
2

〈 Ne∑

i,j=1
i�=j

δ(r − ri)δ(r′ − rj)
〉
, (28.4.31)

which is the two-particle probability density function defined in (2.1.4) apart
from a factor 1/2. Here 〈· · · 〉 denotes the ground-state average or thermal
average, depending on whether the correlations are studied at T = 0 or at
finite temperatures. For spatially homogeneous systems it can be written as

ρ2(r, r′) =
1

2V

∫
dr′′
〈 Ne∑

i,j=1
i�=j

δ(r − r′′ − ri)δ(r′ − r′′ − rj)
〉

=
1

2V

〈 Ne∑

i,j=1
i�=j

δ(r − r′ + rj − ri)
〉
.

(28.4.32)

Following the approach outlined in Chapter 2 one can introduce the pair
distribution function, which is the conditional probability of finding a particle
at position r′ provided that there is already a particle at position r. Defined
according to (2.1.13) by
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g(r − r′) =
V

N2
e

〈 Ne∑

i,j=1
i�=j

δ(r − r′ + rj − ri)
〉
, (28.4.33)

the pair distribution function is normalized in such a way that it tends to unity
for large distances. It differs from the two-particle density matrix precisely in
this normalization:

ρ2(r, r′) = 1
2

(
Ne

V

)2

g(r − r′) . (28.4.34)

The pair correlation function is obtained from the pair distribution function
by subtracting unity, to express the fact that there are no correlations at large
distances.11

The density–density correlation function is defined by

Γ (r, r′) =
V

Ne

〈
n(r)n(r′)

〉
, (28.4.35)

where n(r) is given in (28.1.7). In a spatially homogeneous system, where cor-
relations depend only on the distance between r and r′, it is more convenient
to use the equivalent form

Γ (r − r′) =
1
Ne

∫ 〈
n(r − r′′)n(r′ − r′′)

〉
dr′′ . (28.4.36)

Substitution of (28.1.7) into this expression gives

Γ (r − r′) =
1
Ne

∫ Ne∑

i,j=1

〈
δ(r − r′′ − ri)δ(r′ − r′′ − rj)

〉
dr′′

=
1
Ne

Ne∑

i,j=1

〈
δ(r − r′ + rj − ri)

〉
.

(28.4.37)

It is in this form that the density–density correlation function was defined
in (2.1.16). It differs from the pair distribution function not only in the nor-
malization factor but also in the inclusion of the terms i = j. To derive their
relationship we separate the terms i = j in (28.4.37). This gives

Γ (r − r′) = δ(r − r′) +
1
Ne

〈∑

i�=j

δ(r − r′ + rj − ri)
〉

= δ(r − r′) +
Ne

V
g(r − r′) .

(28.4.38)

11 The pair distribution function itself is often called pair correlation function in the
literature.



46 28 Electron–Electron Interaction and Correlations

The same relationship could have been derived simply by expressing both
Γ (r − r′) and g(r − r′) in terms of the field operators. Substituting (28.1.23)
into (28.4.35) we have

Γ (r − r′) =
V

Ne

∑

σσ′

〈
ψ̂†

σ(r)ψ̂σ(r)ψ̂†
σ′(r′)ψ̂σ′(r′)

〉
. (28.4.39)

Moving the operator ψ̂σ(r) to the right of the operators standing behind it,
taking into account the anticommutation rules of fermion operators given in
(28.1.21), and using the fact that

∑

σ

〈
ψ̂†

σ(r)ψ̂σ(r)
〉

=
Ne

V
, (28.4.40)

we get

Γ (r − r′) = δ(r − r′) +
V

Ne

∑

σσ′

〈
ψ̂†

σ(r)ψ̂†
σ′(r′)ψ̂σ′(r′)ψ̂σ(r)

〉
. (28.4.41)

The second term on the right-hand side describes the correlation between two
different particles, since the two annihilation operators stand next to each
other. It is proportional to the diagonal element of the two-particle density
matrix [see (28.4.26)] which is related to the two-particle distribution function
via (28.4.34). Hence

g(r − r′) =

∑

σσ′

〈
ψ̂†

σ(r)ψ̂†
σ′(r′)ψ̂σ′(r′)ψ̂σ(r)

〉

〈
n(r)

〉〈
n(r′)

〉 (28.4.42)

and (28.4.38) is indeed recovered.
Sometimes it is of interest to study the probability of finding an electron

with identical or opposite spin around an electron with spin σ. The spin-
resolved density–density correlations are described by the quantities

Γσσ′(r, r′) =
V

Ne

〈
nσ(r)nσ′(r′)

〉
, (28.4.43)

where the number-density operator for electrons with spin σ is

nσ(r) = ψ̂†
σ(r)ψ̂σ(r) , (28.4.44)

while the properly normalized spin-resolved pair distribution functions are
defined by

gσσ′(r, r′) =

〈
ψ̂†

σ(r)ψ̂†
σ′(r′)ψ̂σ′(r′)ψ̂σ(r)

〉
〈
nσ(r)

〉〈
nσ′(r′)

〉 . (28.4.45)
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The relationship between these functions can be obtained by an appropriate
reordering of the operators using the anticommutation rules. It is readily seen
that

Γσσ′(r, r′) =

〈
nσ(r)

〉

ne
δσσ′δ(r − r′) +

〈
nσ(r)

〉〈
nσ′(r′)

〉

ne
gσσ′(r, r′) . (28.4.46)

In unpolarized systems where N↑ = N↓ = Ne/2, only the relative spin
matters. The correlations between electrons with identical or opposite spins
are described by

Γ‖(r, r′) =
V

Ne

∑

σ

〈
nσ(r)nσ(r′)

〉
,

Γ⊥(r, r′) =
V

Ne

∑

σ

〈
nσ(r)n−σ(r′)

〉
,

(28.4.47)

and
Γ (r, r′) = Γ‖(r, r′) + Γ⊥(r, r′) . (28.4.48)

The pair distribution functions for electrons with identical and opposite spins
are

g↑↑(r, r′) = g↓↓(r, r′) ≡ g‖(r, r′) ,
g↑↓(r, r′) = g↓↑(r, r′) ≡ g⊥(r, r′) .

(28.4.49)

In a homogeneous system we then find

Γ‖(r − r′) = δ(r − r′) +
Ne

2V
g‖(r − r′) ,

Γ⊥(r − r′) =
Ne

2V
g⊥(r − r′) ,

(28.4.50)

and
g(r − r′) = 1

2

[
g‖(r − r′) + g⊥(r − r′)

]
. (28.4.51)

Since the volume integral of both Γ‖(r − r′) and Γ⊥(r − r′) is equal to Ne/2,
the pair distribution functions satisfy the relations

Ne

2V

∫ [
1 − g‖(r)

]
dr = 1 ,

Ne

2V

∫ [
1 − g⊥(r)

]
dr = 0 .

(28.4.52)

28.4.3 Correlations in the Homogeneous Electron Gas

The general expressions derived in the previous sections will now be applied to
study correlations in the homogeneous electron gas at T = 0. In the Hartree
approximation, where the self-energy due to electron–electron interaction is
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canceled exactly by the uniform positive background, there are no correlations
between electrons; the pair distribution function is unity independently of the
distance and the pair correlation function vanishes identically. Correlations
first appear in the Fock approximation.

Our starting point is (28.4.34) that relates the pair distribution function
to the two-particle density matrix:

g(r − r′) = 2
(
V

Ne

)2

ρ2(r, r′) . (28.4.53)

Since the Hartree–Fock wavefunction is a single Slater determinant, (28.4.27)
can be applied. Displaying the spin variables explicitly in the single-particle
functions for later convenience, the pair distribution function takes the form

g(r − r′) =
(
V

Ne

)2 ∑

λiσi,λjσj

[
φ∗λiσi

(r, s)φ∗λjσj
(r′, s′)φλiσi

(r, s)φλjσj
(r′, s′)

−φ∗λiσi
(r, s)φ∗λjσj

(r′, s′)φλjσj
(r, s)φλiσi

(r′, s′)
]
. (28.4.54)

Here λi denotes the quantum numbers characterizing the spatial part of the
wavefunction.

In an unpolarized electron gas the properly normalized pair distribution
functions of electrons with identical or opposite spins take analogous forms

g↑↑(r − r′) = 4
(
V

Ne

)2 ∑

λiλj

[
φ∗λi,↑(r, s)φ

∗
λj ,↑(r

′, s′)φλi,↑(r, s)φλj ,↑(r
′, s′)

− φ∗λi,↑(r, s)φ
∗
λj ,↑(r

′, s′)φλj ,↑(r, s)φλi,↑(r
′, s′)

]
(28.4.55)

and

g↑↓(r − r′) = 4
(
V

Ne

)2 ∑

λiλj

[
φ∗λi,↑(r, s)φ

∗
λj ,↓(r

′, s′)φλi,↑(r, s)φλj ,↓(r
′, s′)

− φ∗λi,↑(r, s)φ
∗
λj ,↓(r

′, s′)φλj ,↓(r, s)φλi,↑(r
′, s′)

]
. (28.4.56)

The single-particle states being plane waves one finds

g↑↑(r − r′) = 4
(
V

Ne

)2 1
V 2

∑

kikj

[
1 − ei(ki−kj)·(r−r′)

]

= 1 −
(

2
Ne

∑

ki

eiki·(r−r′)
)2

,

(28.4.57)

where naturally the summation goes over the Ne/2 wave vectors inside the
Fermi sphere. The same sum appears here as in the one-particle density ma-
trix. The relation between the two quantities should not surprise us. Accord-
ing to (28.4.27) the two-particle density matrix can be expressed through the
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one-particle density matrix if the wavefunction is a single Slater determinant.
Taking into account that the quantity in (28.4.17) is normalized by the vol-
ume whereas the number of electrons appears in (28.4.57), from (28.4.18) we
get

2
Ne

∑

ki

eiki·r = 3
j1(kFr)
kFr

. (28.4.58)

Thus the spatial correlations between electrons with parallel spins are given
in the Hartree–Fock approximation by the radial distribution function

g↑↑(r) = 1 − 9
[
sin kFr − kFr cos kFr

(kFr)3

]2
. (28.4.59)

When g↑↓ is calculated, the second term of (28.4.56) gives no contribution
owing to the orthogonality of the spin functions and we find

g↑↓(r − r′) = 4
(
V

Ne

)2 1
V 2

(
Ne

2

)2

= 1 . (28.4.60)

The spatial variations of the radial distribution functions are plotted in
Fig. 28.6. The amplitude of the oscillatory term is so small that it can hardly
be seen.
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Fig. 28.6. Spatial variation of the radial distribution functions for electrons of
parallel and antiparallel spin orientations in the Hartree–Fock approximation

The minimum appearing at r = 0 in the radial distribution function of
electrons with identical spins is a consequence of the Pauli principle. Electrons
occupying orthogonal states repel each other and

lim
r→0

g↑↑(r) = 0 , (28.4.61)

as can be shown mathematically rigorously. Moreover, for electrons interacting
with the slowly decaying Coulomb repulsion, the Kimball relation12

lim
r→0

dg↑↑(r)
dr

=
1
a0

lim
r→0

g↑↑(r) (28.4.62)

12
J. C. Kimball, 1973.
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holds, and hence also the derivative of the radial distribution function has to
vanish at r = 0,

lim
r→0

dg↑↑(r)
dr

= 0 . (28.4.63)

This relationship is valid for spin-polarized systems as well. Since this is a
consequence of quantum mechanical exchange between fermions, the dip in
the radial distribution function at short distances is called an exchange hole
or Fermi hole. The parallel-spin radial distribution function calculated with
the Hartree–Fock wavefunction is in agreement with these exact results.

The radial distribution function for electrons with opposite spins has to
satisfy the generalized Kimball relation

lim
r→0

dg↑↓(r)
dr

=
1
a0

lim
r→0

g↑↓(r) , (28.4.64)

which follows from the slow 1/r dependence of the Coulomb repulsion. Al-
though g↑↓(r) does not vanish at r = 0, the Coulomb repulsion leads to a dip
around r = 0, known as the Coulomb hole. This relationship is not obeyed
in the Hartree–Fock approximation and the Coulomb hole appears only when
corrections beyond the Hartree–Fock approximation are taken into account.
The Fermi and Coulomb holes are seen in Fig. 28.7 where the results of Monte
Carlo simulations are plotted for the spin-resolved radial distribution functions
at two different densities.
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Fig. 28.7. “Exact” radial distribution functions of the homogeneous electron gas
at two different densities calculated using Monte Carlo methods [Reprinted with
permission from G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994). © (1994)
by the American Physical Society]

In a dense electron gas, for small values of the dimensionless rs, where the
kinetic energy is more important than the Coulomb repulsion, the Coulomb
hole is smaller than the Fermi hole. On the other hand, in a dilute electron
gas, for large values of rs, where the Coulomb repulsion is more important
than the kinetic energy of electrons, the Coulomb and Fermi holes become
comparable.
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28.4.4 The Structure Factor

We know from Chapter 8 that the Fourier transform of the density–density
correlation function, Γ (q), can be directly measured by diffraction techniques.
Taking (28.4.37) for the density–density correlation function, its Fourier trans-
form with respect to r − r′ is

Γ (q) =
∫
Γ (r − r′)e−iq·(r−r′) d(r − r′) (28.4.65)

=
1
Ne

∫ 〈 Ne∑

i,j=1

δ(r − r′ + rj − ri)
〉

e−iq·(r−r′) d(r − r′)

=
1
Ne

〈 Ne∑

i,j=1

e−iq·(ri−rj)

〉
=

1
Ne

〈 Ne∑

i=1

e−iq·ri

Ne∑

j=1

eiq·rj

〉
.

This expression can be written as

Γ (q) =
1
Ne

〈
n(q)n(−q)

〉
(28.4.66)

where n(q) is the Fourier transform of the operator of the electron density.
If the ground state of the system is denoted by |Ψ0〉 and a complete set of

many-body states |Ψm〉 is inserted between the operators n(q) and n(−q) =
n∗(q), we get

Γ (q) =
1
Ne

∑

m

∣∣〈Ψ0|n(q)|Ψm〉∣∣2. (28.4.67)

It is easily seen from (28.4.65) that Γ (q) has a sharp peak at q = 0, since
it is exactly true that

Γ (q = 0) = Ne . (28.4.68)

The static structure factor S(q) is defined by separating this peak:

Γ (q) = Neδq,0 + S(q) . (28.4.69)

At finite temperatures, where the spectral representation of Γ (q) is

Γ (q) =
1
Ne

1
Z

∑

mn

e−βEn
∣∣〈Ψn|n(q)|Ψm〉∣∣2, (28.4.70)

the peak at q = 0 is still a sharp Dirac delta peak.
As shown in Chapter 2, the structure factor and the pair correlation func-

tion are related via

S(q) − 1 =
Ne

V

∫ [
g(r − r′) − 1

]
e−iq·(r−r′) d(r − r′) (28.4.71)

or inverting the transformation,
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g(r − r′) − 1 =
1
Ne

∑

q

[
S(q) − 1

]
eiq·(r−r′) . (28.4.72)

In isotropic systems, after integration over the angles and using the relation-
ship between the electron density and the Fermi wave number we find

S(q) − 1 =
4k3

F
3π

∫
r2
[
g(r) − 1

] sin qr
qr

dr (28.4.73)

or
g(r) − 1 =

3
2k3

F

∫
q2
[
S(q) − 1

] sin qr
qr

dq . (28.4.74)

The structure factor of the homogeneous electron gas can be computed in
the Hartree–Fock approximation at T = 0 by inserting the expression derived
earlier for the pair distribution function. We get

SHF(q) =

⎧
⎪⎪⎨

⎪⎪⎩

3
4
q

kF
− 1

16

(
q

kF

)3

, q < 2kF ,

1 , q > 2kF .

(28.4.75)

Since there is no correlation between electrons of opposite spins in the Hartree–
Fock approximation, this form of the structure factor is due entirely to the
Pauli exclusion of electrons with parallel spins.

An alternative derivation of this result starts from (28.4.66). Inserting

n(q) =
∑

kσ

c†kσck+qσ (28.4.76)

for the Fourier transform of the electron density in second quantization we
find

Γ (q) =
1
Ne

〈∑

k′σ′

∑

kσ

c†k′σ′ck′+qσ′c
†
kσck−qσ

〉

=
1
Ne

〈∑

k′σ′

∑

kσ

c†k′σ′ck′+qσ′c
†
k+qσckσ

〉
.

(28.4.77)

This gives, as it should, the total number of particles at q = 0. Separating this
term, the remaining part is the static structure factor. Only the terms k′ = k
and σ′ = σ contribute to it. The state with wave vector k has to be occupied
in the ground state, while the state with k + q has to be empty originally.
When the structure factor is evaluated for a noninteracting Fermi sea, the k
vectors have to be inside the Fermi sphere about the origin, but outside the
Fermi sphere drawn about the tip of vector −q. This region is displayed in
Fig. 28.8.
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k
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k q

0

Fig. 28.8. The region in k-space (shaded region) that gives nonvanishing contribu-
tion to the structure factor

The restrictions on the k vectors can be expressed in the form

S(q) =
2
Ne

∑

k

f0(εk)
[
1 − f0(εk+q)

]
. (28.4.78)

The factor of 2 comes from the spin. When the sum is replaced by an integral,
the volume of the nonoverlapping regions of the displaced Fermi spheres can
easily be obtained using cylindrical coordinates with the axis fixed by the
vector q. The expression for S(q) then reduces to (28.4.75).

28.4.5 Dynamical Correlations Between Electrons

The time-dependent density–density correlation function is a straightforward
generalization of the static correlation function. It is defined by

Γ (r, t, r′, t′) =
V

Ne

〈
n(r, t)n(r′, t′)

〉
, (28.4.79)

where

n(r, t) =
Ne∑

i=1

δ(r − ri(t)) , (28.4.80)

and the time dependence of an operator O is defined as usual in the Heisenberg
picture via

O(t) = eiHt/�Oe−iHt/� . (28.4.81)

For electrons moving in a spatially uniform time-independent potential the
correlation function depends on r − r′ and t− t′, and so

Γ (r, t) =
1
Ne

〈 Ne∑

i,j=1

δ(r − ri(t) + rj(0))
〉
. (28.4.82)

Γ (r, t) can be decomposed into two parts:

Γ (r, t) = Γself(r, t) + Γpair(r, t) . (28.4.83)
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The first part, the self-correlation function, contains the terms i = j:

Γself(r, t) =
1
Ne

〈 Ne∑

i=1

δ(r − ri(t) + ri(0))
〉

(28.4.84)

and describes how the position of an electron at time t correlates with its
initial position. The terms i �= j describe the dynamical correlations between
different particles:

Γpair(r, t) =
1
Ne

〈 Ne∑

i,j=1
i�=j

δ(r − ri(t) + rj(0))
〉
. (28.4.85)

The Fourier transform with respect to the spatial variable is

Γ (q, t) =
1
Ne

〈n(q, t)n(−q, 0)〉 (28.4.86)

with

n(q, t) =
Ne∑

i=1

e−iq·ri(t) . (28.4.87)

The time dependence can be given explicitly if a complete set of eigenstates
of the total Hamiltonian are inserted between n(q, t) and n(−q, 0). We have

Γ (q, t) =
1
Ne

∑

m

〈Ψ0|n(q, t)|Ψm〉〈Ψm|n(−q, 0)|Ψ0〉

=
1
Ne

∑

m

|〈Ψ0|n(q)|Ψm〉|2 e−i(Em−E0)t/� .

(28.4.88)

Taking the Fourier transform with respect to time we find

Γ (q, ω) =
2π�

Ne

∑

m

|〈Ψ0|n(q)|Ψm〉|2 δ(�ω − Em + E0) . (28.4.89)

The dynamical structure factor S(q, ω) is defined in analogy to the static
structure factor by removing the forward scattering (q = 0), elastic [δ(ω)]
component from Γ (q, ω):

Γ (q, ω) = 2πNeδq,0δ(ω) + S(q, ω) . (28.4.90)

Thus13

S(q, ω) =
2π�

Ne

∑

m

|〈Ψ0|n(q)|Ψm〉|2 δ(�ω − Em + E0) , q �= 0 . (28.4.91)

13 Quite often in the literature, the dynamical structure factor is defined without
the factor 2π/Ne.
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At finite temperatures, where the thermal average has to be taken and not
the ground-state expectation value,

S(q, ω) =
2π�

Ne

∑

nm

1
Z

e−βEn |〈Ψn|n(q)|Ψm〉|2 δ(�ω − Em + En) . (28.4.92)

The static structure factor is obtained by integrating over frequency:

S(q) =

∞∫

−∞

dω
2π
S(q, ω) . (28.4.93)

The dynamical structure factor of the homogeneous electron gas can be
calculated more conveniently by starting from the expression where the densi-
ties are written in terms of the field operators. As a natural generalization of
(28.4.39) the dynamical density–density correlation function takes the form

Γ (r, t, r′, t′) =
V

Ne

∑

σσ′

〈
ψ̂†

σ(r, t)ψ̂σ(r, t)ψ̂†
σ′(r′, t′)ψ̂σ′(r′, t′)

〉
. (28.4.94)

When the field operators are expressed in terms of the creation and annihila-
tion operators of plane-wave states we find

Γ (q, t) =
1
Ne

〈∑

kσ

∑

k′σ′
c†kσ(t)ck+qσ(t)c†k′+qσ′ck′σ′

〉
(28.4.95)

for the spatial Fourier transform of the dynamical density–density correlation
function. It is a straightforward generalization of (28.4.77) and could have
been obtained by using

n(q, t) =
∑

kσ

c†kσ(t)ck+qσ(t) (28.4.96)

in (28.4.86). We will evaluate it for the filled Fermi sea as the ground state.
Although the Coulomb repulsion is neglected in this approximation, the quan-
tum mechanical exchange is taken into account.

For free electrons the time dependence of the creation and annihilation
operators is

c†kσ(t) = c†kσeiεkσt/� , ckσ(t) = ckσe−iεkσt/� . (28.4.97)

Only the terms k = k′ and σ = σ′ give contribution for q �= 0, and so

S(q, t) =
1
Ne

∑

kσ

f0(εk)
[
1 − f0(εk+q)

]
ei(εk−εk+q)t/� . (28.4.98)

The Fourier transform with respect to time gives
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S(q, ω) =
1
Ne

∑

kσ

f0(εk)
[
1 − f0(εk+q)

]
∞∫

−∞
ei(�ω+εk−εk+q)t/� dt

=
2π�

Ne

∑

kσ

f0(εk)
[
1 − f0(εk+q)

]
δ(�ω − εk+q + εk) .

(28.4.99)

At temperature T = 0, the state annihilated by ckσ has to be inside the
Fermi sphere, while the state created by ck+qσ has to be outside. Therefore,
εk+q > εk and the dynamical structure factor is finite only if ω > 0. As long
as q ≤ 2kF, both the electron and the hole can be created in the neighborhood
of the Fermi surface with vanishingly small excitation energies. The largest
energy of the electron–hole pair for a fixed q is

�ωmax =
�

2(kF + q)2

2me
− �

2k2
F

2me
=

�
2kFq

me
+

�
2q2

2me
= �vFq + εq . (28.4.100)

This is attained when k is on the Fermi surface and q lies in the same direction
as k. Hence, as shown in Fig. 28.9, in this range of wave vectors, the electron–
hole pair excitations give a broad continuum that goes from zero to �ωmax.

Fig. 28.9. The continuum of electron–hole pair excitations in a three-dimensional
free electron gas

When q > 2kF, the continuum of excitations does not start at zero energy.
The lower boundary is obtained when k is on the Fermi surface and q is
oppositely oriented to k. We have

�ωmin =
�

2(kF − q)2

2me
− �

2k2
F

2me
= εq − �vFq . (28.4.101)

The dynamical structure factor of the noninteracting electron gas can be
calculated exactly at T = 0 if the sum over k is converted to an integral. Con-
veniently we choose cylindrical coordinates where the z-axis is in the direction
of q. For q < 2kF we find
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S(q, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3π�

2εF
�ω

�vFq
0 ≤ �ω < �vFq − εq ,

3π�

4εF
kF

q

[
1 −
(

�ω − εq

�vFq

)2
]

�vFq − εq ≤ �ω ≤ �vFq + εq ,

0 �vFq + εq ≤ �ω ,
(28.4.102)

while in the range q > 2kF

S(q, ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 0 ≤ �ω < εq − �vFq ,

3π�

4εF
kF

q

[
1 −
(

�ω − εq

�vFq

)2
]

εq − �vFq ≤ �ω ≤ εq + �vFq ,

0 εq + �vFq ≤ �ω .
(28.4.103)

Figure 28.10 shows the ω dependence of the dynamical structure factor at a
few fixed values of q. In all cases a broad, featureless maximum is seen.
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Fig. 28.10. Frequency dependence of the dynamical structure factor of the non-
interacting electron gas at four different q values. The density of the electron gas
corresponds to rs = 3

Expression (28.4.99) for the dynamical structure factor is valid also at finite
temperatures if f0(εk) is the finite-temperature Fermi distribution function.
S(q, ω) is then nonvanishing for negative frequencies as well. It can be easily
shown with the aid of (28.4.92) that

S(q,−ω) = e−β�ωS(q, ω) . (28.4.104)
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The foregoing calculations were done for noninteracting electrons. All the
results are still valid for isotropic electron systems characterized by an effective
mass m∗, if the electron mass me is replaced with m∗ in all expressions derived
above.

28.4.6 Dynamical Structure Factor and Scattering Cross Section

It was shown in Chapter 8 that the intensity of the beam diffracted from a
system of identical atoms is proportional to |fK |2, where

fK =
∑

m

e−iK·rm , (28.4.105)

and K = k − k′ is the change in the wave vector of the scattered particle
(photons, neutrons, etc.).

Later, in Chapter 13 and in Appendix E, it was shown in connection with
the study of lattice vibrations that the double differential cross section is
proportional to

S(K, ω) =

∞∫

−∞
dt eiωt

∑

m,n

〈
e−iK·rm(t)eiK·rn(0)

〉
, (28.4.106)

where K = k − k′ and �ω = Ei − Ef, i.e., the K and ω variables of the
measured dynamical structure factor are related to the change in the wave
vector and energy during the scattering process.

It follows from the Van Hove formula that this result is generally valid for
scattering on solids whenever the interaction between the incoming radiation
and the particles of the medium located at rm can be given by a potential

Hint =
∑

m

V (r − rm) . (28.4.107)

Then the double differential cross section is proportional to the spatial and
temporal Fourier transform of the density–density correlation function, which
is exactly the dynamical structure factor discussed above:

d2σ

dΩ dε
∝ S(K, ε/�) . (28.4.108)

If the system has sharply defined excitations, then sharp peaks appear at
the corresponding energies in the dynamical structure factor, and hence in the
scattering cross section. Conversely, sharp peaks in the dynamical structure
factor imply the existence of well-defined excitations, as has been seen for
phonons and magnons. In contrast to this behavior, when a beam is scattered
by a noninteracting electron system, no sharp peaks appear in the energy
dependence. The broad peak in the dynamical structure factor and in the
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energy distribution of the scattered beam is due to the fact that the energy of
the created electron–hole pair can vary in a wide range for a fixed wave vector.
We will see later that the dynamical structure factor is strongly modified by
the interaction. When the interaction is strong enough a relatively sharp peak
may appear indicating that relatively well-defined collective excitations are
formed.

28.4.7 Magnetic Correlations

In an external magnetic field, the energy and the number of up- and down-spin
electrons are no longer the same. Spin polarization also occurs when the spin-
rotation symmetry is broken spontaneously. In such systems the spin-resolved
density–density correlation functions defined in (28.4.43) or the spin-resolved
pair distribution functions defined in (28.4.45) have to be studied. It follows
from (28.4.46) that for spatially uniform systems

Γσσ(r − r′) = δσσ′
nσ

ne
δ(r − r′) +

nσnσ′

ne
gσσ′(r − r′) . (28.4.109)

The polarization can be conveniently characterized by the quantity

ζ =
Ne↑ −Ne↓
Ne↑ +Ne↓

=
n↑ − n↓
n↑ + n↓

, (28.4.110)

that is
n↑ =

Ne

2V
(1 + ζ) , n↓ =

Ne

2V
(1 − ζ) . (28.4.111)

The spin-resolved density–density correlation functions can then be written
as

Γ↑↑(r − r′) =
1 + ζ

2
δ(r − r′) +

(
1 + ζ

2

)2
Ne

V
g↑↑(r − r′) ,

Γ↓↓(r − r′) =
1 − ζ

2
δ(r − r′) +

(
1 − ζ

2

)2
Ne

V
g↓↓(r − r′) ,

Γ↑↓(r − r′) =
1 − ζ2

4
Ne

V
g↑↓(r − r′) ,

Γ↓↑(r − r′) =
1 − ζ2

4
Ne

V
g↓↑(r − r′) ,

(28.4.112)

and

g(r − r′) =
(

1 + ζ

2

)2

g↑↑(r − r′) +
(

1 − ζ

2

)2

g↓↓(r − r′)

+
1 − ζ2

4
[
g↑↓(r − r′) + g↓↑(r − r′)

]
.

(28.4.113)
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In order to study dynamical correlations in a magnetically polarized sys-
tem, the spin-resolved dynamical density–density correlation functions

Γσσ′(r, t, r′, t′) =
V

Ne
〈nσ(r, t)nσ′(r′, t′)〉

=
V

Ne

〈
ψ̂†

σ(r, t)ψ̂σ(r, t)ψ̂†
σ′(r′, t′)ψ̂σ′(r′, t′)

〉 (28.4.114)

have to be studied. In a spatially uniform system, the spatial Fourier transform
is

Γσσ′(q, t) =
1
Ne

〈nσ(q, t)nσ′(−q, 0)〉

=
1
Ne

〈∑

kk′
c†kσ(t)ck+qσ(t)c†k′+qσ′ck′σ′

〉
.

(28.4.115)

The dynamical structure factor is obtained by separating the term q = 0,

Γσσ′(q, t) = Ne
Neσ

Ne

Neσ′

Ne
δq,0 + Sσσ′(q, t) . (28.4.116)

The q �= 0 term describes the propagation of an electron–hole pair created at
t = 0. It is the probability amplitude of finding the pair at a later time t. For
noninteracting electrons, this contribution is finite only when the electrons
have identical spins and k = k′. Taking into account that the hole is inside
the Fermi sea while the electron is outside,

Sσσ′(q, t) = δσσ′
1
Ne

∑

k

f0(εkσ)
[
1 − f0(εk+qσ)

]
ei(εkσ−εk+qσ)t/� , (28.4.117)

from which we get

Sσσ′(q, ω) = δσσ′
2π�

Ne

∑

k

f0(εkσ)
[
1 − f0(εk+qσ)

]
δ(�ω − εk+qσ + εkσ)

(28.4.118)
for the Fourier transform with respect to time.
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Electronic Response to External Perturbations

The transport and optical properties of solids are due primarily to the elec-
tron system and to a lesser extent to the ions. These properties were discussed
in Chapters 24 and 25 without taking the interaction between electrons into
account, although its role may be important in some cases. In this chapter we
will study the response of the interacting electron system to external pertur-
bations, to an applied electromagnetic field. We will consider first the effect of
an external scalar potential and will derive general expressions that relate the
dielectric function to the density–density response function and the dynami-
cal structure factor introduced in the previous chapter. This will then allow
us to get approximate expressions for the frequency and wave number depen-
dence of the dielectric function. The study of the redistribution of electrons
induced by an external charge will lead to a proper description of screening in
metals. It will be shown that the optical conductivity can be calculated from
the current–current correlation function. Finally, by studying the response of
the electron system to an external magnetic field, we will be able to derive
an approximate expression for the wave number- and frequency-dependent
susceptibility which is the magnetic analog of the dielectric function.

29.1 The Dielectric Function

When a solid is exposed to an external electric field varying in space and time,
the relationship between the electric displacement D and the electric field E
is not local in space, though it is causal in time. The permittivity must then
be expressed in an integral form. The relationship

Dα(r, t) =
∫

dr′
t∫

−∞
dt′ εαβ(r − r′, t− t′)Eβ(r′, t′) (29.1.1)

given in (16.1.50) is valid for isotropic systems. In a crystalline material we
have
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DOI 10.1007/978-3-642-04518-9_2, © Springer-Verlag Berlin Heidelberg 2010
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Dα(r, t) =
∑

β

∫
dr′

t∫

−∞
dt′εαβ(r, r′, t− t′)Eβ(r′, t′) , (29.1.2)

where εαβ(r, r′, t − t′) depends on r and r′ separately, not just on their dif-
ference. Hence its Fourier transform contains two momentum variables:

εαβ(q, q′, t− t′) =
∫∫

dr dr′εαβ(r, r′, t− t′)e−iq·re−iq′·r′
. (29.1.3)

However, if the position vectors are written as r = Rn + u and r′ = Rm + u′

where u and u′ are in the primitive cell around the lattice points Rn and
Rm, respectively, the dielectric tensor depends on u, u′, and Rn − Rm only,
owing to the discrete translational invariance of the crystal, and q′ may differ
from −q by a reciprocal-lattice vector G. Taking the Fourier transform with
respect to time the relationship

Dα(q, ω) =
∑

G

∑

β

εαβ(q,−q − G, ω)Eβ(q + G, ω) (29.1.4)

is obtained between the Fourier components of the fields. The terms with
G �= 0 take into account the variations of the fields over atomic distances
and yield the so-called local-field corrections. These corrections are usually
small and can be neglected, so that the system can be assumed to have full
translational symmetry. We then arrive at the usual expression

Dα(q, ω) =
∑

β

εαβ(q, ω)Eβ(q, ω) . (29.1.5)

But, even after this simplification the dielectric function depends on the direc-
tion of propagation of the electromagnetic field relative to the crystallographic
axes. In what follows we will forget about this and will consider the properties
of isotropic materials only.

Decomposing the electric field and the electric displacement into compo-
nents parallel and perpendicular to the direction of q, their relationship in the
general case can be written as

D‖(q, ω) = ε‖(q, ω)E‖(q, ω) , D⊥(q, ω) = ε⊥(q, ω)E⊥(q, ω) , (29.1.6)

which means that

D(q, ω) = ε‖(q, ω)
q · E(q, ω)

q2
q + ε⊥(q, ω)

q × E(q, ω)
q2

× q , (29.1.7)

i.e., the permittivity tensor has the general form

εαβ(q, ω) = ε‖(q, ω)q̂αq̂β + ε⊥(q, ω) (δαβ − q̂αq̂β) , (29.1.8)
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where q̂α is the α component of the unit vector q̂ that points in the direction
of q. The dielectric function is related to the longitudinal component ε‖(q, ω)
by

εr(q, ω) = ε‖(q, ω)/ε0 . (29.1.9)

The dielectric function has been studied previously in Chapter 16 in the frame-
work of the Drude model. The results derived there are, however, valid only
in the long-wavelength limit, owing to the approximations inherent to that
model. A better approximation will be applied here with the primary aim of
studying the role of the electron–electron interaction. This will help us to get
a better understanding of how electrons influence each other.

29.1.1 Dielectric Response of the Electron System

In order to obtain the dielectric function, we will study what happens in an
originally homogeneous electron gas with a neutralizing background when ex-
ternal charges with a spatially inhomogeneous, time-dependent charge density
ρext(r, t) are introduced into it. The external charge is related to the electric
displacement via Maxwell’s third equation (Gauss’s law):

div D(r, t) = ρext(r, t) . (29.1.10)

The Coulomb interaction between the external charges and the electrons of
the system gives rise to a redistribution of the electrons and induces a charge
density ρind(r, t) in the originally homogeneous and neutral system. The elec-
tric field E is generated by the total charge density, the sum of external and
induced charges,

ρ(r, t) = ρext(r, t) + ρind(r, t) , (29.1.11)

and their relationship is given by

ε0 div E(r, t) = ρ(r, t) . (29.1.12)

This field is the negative gradient of the scalar potential ϕ(r),

E(r, t) = −gradϕ(r, t) . (29.1.13)

In analogy to this relationship an external potential ϕext(r) can be introduced
that is generated by the external charge. It is defined by

D(r, t) = −ε0 gradϕext(r, t) . (29.1.14)

Taking the Fourier transforms of the fields and potentials we find

E(q, ω) = −iqϕ(q, ω) , D(q, ω) = −iε0qϕext(q, ω) . (29.1.15)

It follows from (29.1.5) that a simple relationship exists between the two
potentials:
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ϕ(q, ω) =
ε0

ε(q, ω)
ϕext(q, ω) =

1
εr(q, ω)

ϕext(q, ω) . (29.1.16)

Substitution of (29.1.13) and (29.1.14) into (29.1.12) and (29.1.10), respec-
tively, gives

ε0 ∇2 ϕ(r, t) = −ρ(r, t) ,
ε0 ∇2 ϕext(r, t) = −ρext(r, t) .

(29.1.17)

When these relationships are written for the Fourier transforms, they reduce
to

ε0q
2ϕ(q, ω) = ρ(q, ω) ,

ε0q
2ϕext(q, ω) = ρext(q, ω) .

(29.1.18)

Comparison of these equations with (29.1.16) yields

ρ(q, ω) =
1

εr(q, ω)
ρext(q, ω) (29.1.19)

which can be written as

1
εr(q, ω)

=
ρ(q, ω)
ρext(q, ω)

= 1 +
ρind(q, ω)
ρext(q, ω)

. (29.1.20)

If the external charge is expressed in terms of the external potential using
(29.1.18), we find

1
εr(q, ω)

= 1 +
1
ε0q2

ρind(q, ω)
ϕext(q, ω)

. (29.1.21)

It is often more convenient to use the external, induced, and total num-
ber densities, next(r), nind(r), and n(r), respectively, instead of the corre-
sponding charge densities, where ρi(r) = −eni(r). Similarly, the quantity
Vi(r) = −eϕi(r) will be used instead of ϕi for both the external and the
total potentials. When (29.1.17) is rewritten in terms of these quantities, the
Fourier transforms satisfy the relations

V (q, ω) =
e2

ε0q2
n(q, ω) =

4πẽ2

q2
n(q, ω) ,

Vext(q, ω) =
e2

ε0q2
next(q, ω) =

4πẽ2

q2
next(q, ω) .

(29.1.22)

The dielectric function can then be expressed as

1
εr(q, ω)

= 1 +
e2

ε0q2
nind(q, ω)
Vext(q, ω)

= 1 +
4πẽ2

q2
nind(q, ω)
Vext(q, ω)

. (29.1.23)

We introduce the quantity Π(q, ω) defined by
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nind(q, ω) = Π(q, ω)Vext(q, ω) . (29.1.24)

It has a simple physical interpretation. It tells how the electron system re-
sponds to the external perturbing potential and how the spatial distribution
of electrons is modified in the presence of Vext(q, ω). For this reason the quan-
tity Π(q, ω) is called a response function. The inverse of the dielectric function
can be written in terms of it as

1
εr(q, ω)

= 1 +
4πẽ2

q2
Π(q, ω) . (29.1.25)

Thus, the calculation of the dielectric function reduces to calculating this
response function.

29.1.2 Density–Density Response Function

The function Π(q, ω) was defined by (29.1.24) as the proportionality factor
between the charge induced in an interacting electron system and the external
perturbing potential. The Hamiltonian of this perturbation can be written in
analogy to (28.1.8) in the form

H1(t) =
∑

i

Vext(ri, t) =
∫
Vext(r, t)n(r) dr . (29.1.26)

Hence the potential couples to the electron density. In terms of the Fourier
transforms we have

H1(t) =
1
V

∑

q

Vext(q, t)n(−q) . (29.1.27)

If the external perturbation is weak and the induced density nind(q, ω) is
proportional to the external perturbation, Π(q, ω) can be calculated using
linear response theory as a generalized susceptibility. Since the external po-
tential couples to the density and the system responds by modifying its den-
sity, the quantity to be considered, Π(q, ω), is the Fourier transform of the
density–density response function, also known as the retarded density–density
correlation function,

Π(r, r′, t− t′) = − i
�
θ(t− t′)

〈[
n(r, t), n(r′, t′)

]
−
〉
, (29.1.28)

that is

Π(q, ω) = − i
�

∞∫

0

d(t−t′) eiω(t−t′)−δ(t−t′) 1
V

〈[
n(q, t), n(−q, t′)

]
−
〉
, (29.1.29)

where δ is a positive infinitesimal. As discussed in Appendix J [see (J.1.53),
(J.1.54), (J.1.55), and (J.1.56)] it ensures the adiabatic switching on of the
perturbation and hence the correct analytic properties.
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The thermal average can be calculated in terms of the matrix elements
between the complete set of many-body eigenstates |Ψn〉 of the Hamiltonian
that includes the interaction between electrons but not the external pertur-
bation. Using the completeness relation we obtain the spectral representation
of the response function:

Π(r, r′, t− t′) = − i
�
θ(t− t′)

∑

mn

e−βEn

Z

[
〈Ψn|n(r, t)|Ψm〉〈Ψm|n(r′, t′)|Ψn〉

− 〈Ψn|n(r′, t′)|Ψm〉〈Ψm|n(r, t)|Ψn〉
]
. (29.1.30)

The time dependence of the operators can be explicitly given in terms of the
eigenvalues En. Interchanging the labels n and m in the second term, the
Fourier transform of the response function is

Π(q, ω) =
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) 〈Ψn|n(q)|Ψm〉〈Ψm|n(−q)|Ψn〉
�ω − Em + En + iδ

=
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) |〈Ψn|n(q)|Ψm〉|2
�ω − Em + En + iδ

. (29.1.31)

It will prove convenient to consider the spin-resolved response functions,
i.e., the response of electrons with spin σ to a perturbation that couples to
electrons with spin σ′. For this we define the response function

Πσσ′(r, r′, t− t′) = − i
�
θ(t− t′)

〈[
nσ(r, t), nσ′(r′, t′)

]
−
〉

(29.1.32)

and its Fourier transform with respect to the spatial variable,

Πσσ′(q, t− t′) = − i
�
θ(t− t′)

1
V

〈[
nσ(q, t), nσ′(−q, t′)

]
−
〉
, (29.1.33)

where the second-quantized form of the Fourier transform of the density of
electrons with spin σ is

nσ(q, t) =
∑

k

c†kσ(t)ck+qσ(t) . (29.1.34)

Thus Πσσ′(q, t − t′) describes the propagation of an electron–hole pair with
momentum q and spin σ′ that is created at time t′. It gives the probability of
finding this pair at a later time t with the same momentum and spin σ. This
propagation can be represented pictorially by the diagram shown in Fig. 29.1.

In the simplest case, when the electron–hole pair does not interact with the
other electrons of the Fermi sea during its propagation, we get the response
function Π0 of free electrons. In reality, the electron and the hole can take part
in a variety of scattering processes due to electron–electron interaction. This
is represented in the diagram by the shaded circle. Although strictly speak-
ing the Feynman diagram technique can be used only for the causal Green
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k ' ' k   q

k ' ' k

q

Fig. 29.1. Diagrammatic representation of the density–density response function
as the propagation of an electron–hole pair

functions, diagrams can help to visualize the contributions to the retarded
response function as well. Figure 29.2 shows a few low-order processes in the
propagation of electron–hole pairs. The wavy lines represent the interaction.

Fig. 29.2. Low-order scattering processes that can occur during the propagation of
an electron–hole pair

29.1.3 Relationship to the Dynamical Structure Factor

The dielectric function is related not only to the density–density response func-
tion but also to the dynamical structure factor via the fluctuation–dissipation
theorem. To show this we start from (J.1.90). Applying this relation to the
dynamical structure factor, taking into account that it is normalized by the
number of particles and not by the volume, we obtain

S(q, ω) = − 2�

1 − e−β�ω

V

Ne
ImΠ(q, ω) , (29.1.35)

or, if Π(q, ω) is expressed through the dielectric function via (29.1.25),

S(q, ω) = − 2�

1 − e−β�ω

V

Ne

q2

4πẽ2
Im

1
εr(q, ω)

. (29.1.36)
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The retarded response function Π being analytic in the upper half of the
complex ω plane, the real and imaginary parts satisfy the Kramers–Kronig
relation

ReΠ(q, ω) =
1
π

P
∞∫

−∞

ImΠ(q, ω′)
ω′ − ω

dω′

=
1

2π�

Ne

V

∞∫

−∞

S(q, ω′)
ω − ω′

(
1 − e−β�ω′)

dω′ .

(29.1.37)

Taking both the real and imaginary parts, the full response function can be
written in the form

Π(q, ω) =
1

2π�

Ne

V

∞∫

−∞

S(q, ω′)
ω − ω′ + iδ

(
1 − e−β�ω′)

dω′ . (29.1.38)

Substituting (28.4.92) into this expression we recover the spectral representa-
tion of the response function given in (29.1.31).

Since S(q, ω) satisfies (28.4.104), the response function can be written as

Π(q, ω) =
1

2π�

Ne

V

∞∫

0

S(q, ω′)
(
1 − e−β�ω′) [ 1

ω − ω′ + iδ
− 1
ω + ω′ + iδ

]
dω′ .

(29.1.39)
Inserting this into (29.1.25) we get

1
εr(q, ω)

= 1 +
4πẽ2

q2
1

2π�

Ne

V

∞∫

0

S(q, ω′)
(
1 − e−β�ω′)

×
[

1
ω − ω′ + iδ

− 1
ω + ω′ + iδ

]
dω′ .

(29.1.40)

At T = 0, where the dynamical structure factor is given by (28.4.91), we find

1
εr(q, ω)

= 1 +
4πẽ2

q2
1
V

∑

m

|〈Ψ0 |n(q)|Ψm〉|2

×
[

1
�ω − Em + E0 + iδ

− 1
�ω + Em − E0 + iδ

]
(29.1.41)

= 1 +
4πẽ2

q2
1
V

∑

m

|〈Ψ0 |n(q)|Ψm〉|2 2(Em − E0)
(�ω + iδ)2 − (Em − E0)2

.

29.1.4 Self-Consistent Treatment of the Interaction

The response functionΠ(q, ω) has to be calculated for an unperturbed system,
in which, however, the internal interactions between the constituents have to
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be taken into account in their full complexity. This requires to solve a compli-
cated many-body problem. The difficulties can partially be circumvented by
applying a self-consistent approach.

The full potential felt by the electrons is not the external potential ϕext but
ϕ = ϕext/εr weakened by the dielectric function. Similarly, for the quantity
V = −eϕ we have V = Vext/εr. The internal electric field is the negative
gradient of this potential. Since εr is related to the internal dynamics of the
electron system, the weakening of the external potential inside the system
can be interpreted as arising from the screening effect of the dynamically
rearranged charges. For this reason ϕ and V are called screened potentials.

When Vext is replaced in (29.1.23) with V εr, we have

1
εr(q, ω)

= 1 +
4πẽ2

q2
1

εr(q, ω)
nind(q, ω)
V (q, ω)

, (29.1.42)

from which after simple manipulations we obtain

εr(q, ω) = 1 − 4πẽ2

q2
nind(q, ω)
V (q, ω)

. (29.1.43)

If the function Π̃(q, ω) is defined by

nind(q, ω) = Π̃(q, ω)V (q, ω) (29.1.44)

as the response to the screened potential, the dielectric function is

εr(q, ω) = 1 − 4πẽ2

q2
Π̃(q, ω) . (29.1.45)

Comparison with (29.1.25) gives the following relationship between Π(q, ω)
and Π̃(q, ω):

Π(q, ω) =
Π̃(q, ω)

1 − (4πẽ2/q2)Π̃(q, ω)
=
Π̃(q, ω)
εr(q, ω)

, (29.1.46)

and the inverse dielectric function can be written as

1
εr(q, ω)

= 1 + Ueff(q, ω)Π̃(q, ω) (29.1.47)

with

Ueff(q, ω) =
(4πẽ2/q2)

1 − (4πẽ2/q2)Π̃(q, ω)
=

1
εr(q, ω)

4πẽ2

q2
. (29.1.48)

Comparison of (29.1.25) with (29.1.47) shows that the dielectric properties
of the interacting electron system can be described in two ways. Either the
bare Coulomb coupling 4πẽ2/q2 and the full response function Π is used, or
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the Coulomb interaction is assumed to be screened and then only the response
Π̃ to the screened potential has to be considered. This latter approach is
more convenient because the screened interaction is short ranged and does
not contain the singularities characteristic of the Coulomb potential.

The self-consistent approach can be visualized by the diagrams used to
represent the propagation of electron–hole pairs. Let us remark that some of
the diagrams seen in Fig. 29.2 can be separated into two disjoint parts by
removing a single interaction line. The initial point corresponding to the op-
erator n(q, t) and the final point corresponding to n(−q, t′) appear in the two
distinct pieces. These are called reducible or improper diagrams. A diagram
which cannot be broken into unconnected parts by cutting a single interaction
line is called irreducible or proper. Such processes are shown in Fig. 29.3.

Fig. 29.3. Irreducible electron–hole propagation processes which do not fall into
distinct parts by cutting a single interaction line

The reducible diagrams (some low-order ones can be seen in Fig. 29.2) can
clearly be constructed by connecting irreducible diagrams by interaction lines
in a sequence. If the sum of the contribution of all irreducible diagrams is
denoted by Π̃(q, ω), then the full response function is the sum of a geometric
progression:

Π(q, ω) = Π̃(q, ω) + Π̃(q, ω)
4πẽ2

q2
Π̃(q, ω)

+ Π̃(q, ω)
4πẽ2

q2
Π̃(q, ω)

4πẽ2

q2
Π̃(q, ω) + · · ·

=
Π̃(q, ω)

1 − (4πẽ2/q2)Π̃(q, ω)
.

(29.1.49)

Comparing this expression with (29.1.46) we see that Π̃ appearing in the self-
consistent approach is in fact the contribution of the irreducible diagrams.1

A self-consistent potential can also be introduced for Bloch electrons
interacting with a general potential U(q). The internal dynamics of the system
gives rise to screening and the effective interaction between the particles is

Ueff(q, ω) =
U(q)

1 − U(q)Π̃(q, ω)
. (29.1.50)

1 For this reason Π̃ is sometimes called irreducible polarization function or
irreducible polarization insertion.
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The relation between the full response function and the irreducible one is then

Π(q, ω) =
Π̃(q, ω)

1 − U(q)Π̃(q, ω)
. (29.1.51)

29.2 Dielectric Function of the Uniform Electron Gas

Having written down general expressions for the dielectric function and the
response function Π(q, ω) of an interacting electron system, we will now at-
tempt to compute its explicit form, its q and ω dependence. The full panoply
of many-body theory would be needed if the electron–electron interaction is
to be taken into account in its complexity. A reasonable approximate form
can be obtained much simpler in the self-consistent treatment when the irre-
ducible part of the response function, Π̃(q, ω), is approximated by Π0(q, ω),
the response function of noninteracting electrons. This latter quantity can
be evaluated exactly and can be written in a closed form. Before presenting
this result it is useful to get acquainted with a simple semiclassical approach.
Finally corrections beyond the self-consistent approach will be considered.

29.2.1 Thomas–Fermi Approximation

When the electron system is exposed to a static (time-independent), spa-
tially slowly varying external potential, both the induced charge and the full
(screened) potential V (r) are also slowly varying in space. We may assume
in the spirit of the semiclassical approximation that a local, spatially varying
energy ε̃k(r) can be defined, which is the bare energy of an electron shifted
by the potential at the position r of the electron:

ε̃k(r) = εk + V (r) . (29.2.1)

This is shown schematically in Fig. 29.4.

∼
k r)(

k

k

k k

r

V (r)

Fig. 29.4. Local displacement of the electron energy in the presence of a spatially
slowly varying potential
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Since the chemical potential is constant in space in thermal equilibrium,
the Fermi momentum has to vary in space together with the spatial variation
of the potential V (r) in accordance with the relation

μ =
�

2k2
F(r)

2me
+ V (r) . (29.2.2)

It then follows that

kF(r) =
√

2me

�
[μ− V (r)]1/2 = kF

[
1 − V (r)

μ

]1/2

. (29.2.3)

The electron density has to exhibit a similar spatial variation since accord-
ing to (16.2.25) there is a unique relationship between the electron density and
the Fermi momentum:

ne(r) =
k3
F(r)
3π2

=
k3
F

3π2

[
1 − V (r)

μ

]3/2

. (29.2.4)

For weak external potentials a first-order expansion,

ne(r) =
k3
F

3π2

[
1 − 3

2
V (r)
μ

]
=

k3
F

3π2
− mekF

π2�2
V (r) , (29.2.5)

gives satisfactory results. One can recognize in the coefficient of V (r) the
electronic density of states at the Fermi energy, and so the induced electron
density is given by

nind(r) = −ρ(εF)V (r) . (29.2.6)

This result has a simple interpretation. When the external potential shifts
locally and rigidly, by the same amount, all electron energies, the number
of states that are pushed above the chemical potential and become empty is
exactly equal to the number of states in a range of width V (r) around the
Fermi energy.

The foregoing calculation was done at temperature T = 0. The same result
is valid at finite temperatures, too. To show this we make use of the fact that
at finite temperature the occupation of electron states is given by the Fermi
distribution function f0(ε̃k(r)), and the local electron density is

ne(r) =
1
V

∑

kσ

f0(ε̃k(r)) . (29.2.7)

The change in the electron density due to the external perturbation, i.e., the
induced electron density, is given by the difference

nind(r) =
1
V

∑

kσ

f0(ε̃k(r)) − 1
V

∑

kσ

f0(εk)

=
1

(2π)3
∑

σ

∫
dk
[
f0(ε̃k(r)) − f0(εk)

]
.

(29.2.8)
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If the external potential is weak compared to the Fermi energy, the function
f0(ε̃k(r)) = f0(εk +V (r)) can be expanded in powers of V (r). To linear order
in the potential we find

nind(r) =
1

(2π)3
∑

σ

∫
dk

∂f0(εk)
∂εk

V (r) . (29.2.9)

If the integral over k is converted to an integral over energy and the tempe-
rature-dependent corrections in the Sommerfeld expansion [see (16.2.77)] are
neglected, the leading term in the expansion gives precisely (29.2.6).

When the Fourier transforms are used,

nind(q) = −ρ(εF)V (q) . (29.2.10)

Thus in this approximation, known as the Thomas–Fermi approximation,2 a
q-independent response function is obtained:

Π̃(q, ω) = −ρ(εF) , (29.2.11)

which means that the electrons respond locally to the slowly varying external
perturbation. By substituting this into (29.1.45) the dielectric function reduces
to

εr(q) = 1 +
4πẽ2

q2
ρ(εF) = 1 +

q2TF
q2

, (29.2.12)

where the Thomas–Fermi wave number qTF has been introduced with the
definition

q2TF = 4πẽ2ρ(εF) . (29.2.13)

Its physical meaning will become clear later on.
This result for the long-wavelength limit of the dielectric function is a good

approximation for metals. The singularity at q = 0 is simply the consequence
of the fact that a homogeneous electric field cannot be maintained in metals
in thermal equilibrium.

29.2.2 The RPA

The Thomas–Fermi approach that relies on the semiclassical approximation
is valid only for long-wavelength perturbations. It is in this limit that Π̃
is equal to the negative of the density of states at the Fermi energy. For
shorter wavelengths a better approximation is needed. When working with
the screened potential and the response to it, one might argue that screening
takes into account at least in part the interaction between electrons; moreover,
the screened interaction is much weaker than the bare Coulomb interaction
and short ranged.3 Therefore, replacing Π̃ by its zeroth-order expression, Π0,
2

L. H. Thomas, 1927 and E. Fermi, 1928.
3 As we will see, the 1/q2 singularity of the Fourier transform of the Coulomb

interaction vanishes when the screened interaction is considered.
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might be justified. In this approximation, which for historical reasons is called
the RPA,4 we have

Π(q, ω) =
Π0(q, ω)

1 − (4πẽ2/q2)Π0(q, ω)
, (29.2.14)

i.e., the full response is a geometric series whose first term, Π0, corresponds
to the free propagation of an electron–hole pair, without scattering processes.
The diagram corresponding to Π0 is a simple bubble, also known as the po-
larization bubble. The higher order terms correspond to a special subset of
all possible scattering processes. The electron–hole pair is annihilated in an
interaction process creating another electron–hole pair. In the diagrammatic
representation, the RPA corresponds to a series of bubbles shown in Fig. 29.5.

Fig. 29.5. Graphical representation of the propagation of an interacting electron–
hole pair in the RPA

The effective interaction obtained in this approximation,

Ueff(q, ω) =
U(q)

1 − U(q)Π0(q, ω)
, (29.2.15)

can be represented by the diagrams depicted in Fig. 29.6. An infinite series
of bubbles appears in the intermediate states. Thus, in the RPA, the effective
interaction is mediated by subsequent electron–hole pairs.

Fig. 29.6. Processes contributing to the screening of the interaction U in the RPA

When this approximation is applied to the dielectric function, it follows
from (29.1.44) and (29.1.45) that in the RPA

nind(q, ω) = Π0(q, ω)V (q, ω) (29.2.16)

and

εRPA
r (q, ω) = 1 − 4πẽ2

q2
Π0(q, ω) . (29.2.17)

4 Acronym for random phase approximation.



29.2 Dielectric Function of the Uniform Electron Gas 75

29.2.3 The Lindhard Dielectric Function

We will now show that Π0 can be calculated exactly in closed form and a
simple expression can be obtained for the dielectric function in the RPA. The
formulas will be derived in two ways: first using elementary considerations of
quantum mechanics and then applying the formalism of many-body theory.
At a later stage, the results will be generalized to Bloch electrons moving
through the periodic potential of the lattice.

Since the Fourier components belonging to different q and ω values are
not mixed in the dielectric response, it is sufficient to consider the change in
the electron density caused by a potential

V (r, t) =
1
V

[
V (q)ei(q·r−ωt)eδt + V ∗(q)e−i(q·r−ωt)eδt

]
(29.2.18)

that varies periodically both in space and in time. The infinitesimally small
positive δ ensures the adiabatic switching on of the perturbation.

We will consider a plane-wave state ψ(0)
k (r) = eik·r/

√
V of the unperturbed

system and study its time evolution due to the disturbance. The perturbed
wavefunction ψk(r, t) can be expanded in terms of a complete set of states. It
is convenient to choose the eigenfunctions of the unperturbed Hamiltonian as
this basis set, which in our case means an expansion in terms of plane waves:

ψk(r, t) =
∑

k′
αk′(t)ψ(0)

k′ (r)e−iεk′ t/� . (29.2.19)

In the leading, linear order, the perturbing potential mixes the state ψ(0)
k only

with the states ψ(0)
k+q and ψ(0)

k−q. The perturbed wavefunction can therefore be
looked for in the form

ψk(r, t) = ψ
(0)
k (r)e−iεkt/� + αk+q(t)ψ(0)

k+q(r)e−iεk+qt/�

+ αk−q(t)ψ(0)
k−q(r)e−iεk−qt/� .

(29.2.20)

The coefficient of the first term was chosen to be unity, since the coefficients
αk′(t) will be evaluated in lowest order of perturbation theory.

Using (G.2.7) we find

αk+q(t) = − i
�

t∫

−∞

〈
ψ

(0)
k+q

∣∣H1(t1)
∣∣ψ(0)

k

〉
ei(εk+q−εk)t1/� dt1 , (29.2.21)

where the perturbing Hamiltonian H1(t) has the same form as (29.1.26),
except that here the screened potential V has to be used instead of Vext.

If the space and time dependence of the perturbing potential is given by
(29.2.18), the integration over the time variable t1 can be performed. We get
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αk+q(t) =
1
V

V (q)ei(εk+q−εk)t/�e−iωteδt

�ω − εk+q + εk + iδ
. (29.2.22)

Similar calculation yields

αk−q(t) = − i
�

t∫

−∞

〈
ψ

(0)
k−q|H1(t1)|ψ(0)

k

〉
ei(εk−q−εk)t1/� dt1

=
1
V

V ∗(q)ei(εk−q−εk)t/�eiωteδt

−�ω − εk−q + εk + iδ
.

(29.2.23)

The perturbed wavefunction can thus be written as

ψk(r, t) = ψ
(0)
k (r)e−iεkt/�

[
1 +

1
V

V (q)ei(q·r−ωt)eδt

�ω − εk+q + εk + iδ

+
1
V

V ∗(q)e−i(q·r−ωt)eδt

−�ω − εk−q + εk + iδ

]
.

(29.2.24)

The contribution of electrons with momentum �k to the induced electron
density is

nind(k, r, t) =
[∣∣ψk(r, t)

∣∣2 − ∣∣ψ(0)
k (r)

∣∣2
]
. (29.2.25)

The total induced electron density is obtained by summing over the occupied
states

nind(r, t) = 2
∑

|k|<kF

[∣∣ψk(r, t)
∣∣2 − ∣∣ψ(0)

k (r)
∣∣2
]
. (29.2.26)

The factor 2 comes from the two spin orientations. Inserting (29.2.24) into
this expression, taking into account the normalization factor 1/

√
V of plane

waves and keeping only the terms linear in V (q), we find

nind(r, t) =
2
V 2

∑

|k|<kF

[
V ∗(q)e−i(q·r−ωt)eδt

�ω − εk+q + εk − iδ
+

V (q)ei(q·r−ωt)eδt

−�ω − εk−q + εk − iδ

+
V (q)ei(q·r−ωt)eδt

�ω − εk+q + εk + iδ
+

V ∗(q)e−i(q·r−ωt)eδt

−�ω − εk−q + εk + iδ

]
. (29.2.27)

The Fourier components with both q and −q [V ∗(q) = V (−q)] appear in
the above expression due to our choice (29.2.18) of the potential. When only
the terms proportional to V (q) exp(iq · r) are collected,

nind(r, t) =
2
V 2

∑

|k|<kF

[
V (q)ei(q·r−ωt)eδt

−�ω − εk−q + εk − iδ
+

V (q)ei(q·r−ωt)eδt

�ω − εk+q + εk + iδ

]
.

(29.2.28)
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If the summation variable k is changed in the first term to k+q, the state with
k+q has to be occupied. This condition can be expressed by an appropriately
chosen Fermi distribution function. We then get

nind(r, t) =
2
V 2

∑

k

[
f0(εk+q)V (q)ei(q·r−ωt)eδt

−�ω − εk + εk+q − iδ

+
f0(εk)V (q)ei(q·r−ωt)eδt

�ω − εk+q + εk + iδ

]
.

(29.2.29)

It follows from this expression that the Fourier transform of the induced
density is

nind(q, ω) =
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

V (q) . (29.2.30)

Comparison with (29.2.16) gives

Π0(q, ω) =
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (29.2.31)

Note that the term iδ in the denominator originates from the factor eδt

describing the adiabatic switching on of the external perturbation, and it
ensures the correct analytic properties of Π0(q, ω) and of the dielectric func-
tion in the complex ω plane. By inserting this expression into (29.2.17) we
find

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (29.2.32)

This is known as the Lindhard dielectric function,5 and the response function
Π0(q, ω) itself is called the Lindhard function.

29.2.4 Alternative Derivation of the Lindhard Function

The response function Π0 of the noninteracting electron system and hence the
dielectric function can be calculated even more simply in second quantization.
For this we evaluate the spin-resolved generalization of the response function,
the quantity Πσσ′ defined in (29.1.33), for noninteracting electrons.

The first term of the commutator in (29.1.33),
∑

kk′

〈
c†kσ(t)ck+qσ(t)c†k′+qσ′(t′)ck′σ′(t′)

〉
, (29.2.33)

describes the propagation of an electron–hole pair from time t′ when it is
created until time t when the pair is annihilated. Apart from the trivial case
5

J. Lindhard, 1954.
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q = 0, the hole with momentum k′ and spin σ′ created at t′ has to be filled
at t by the electron with momentum k and spin σ. Hence only the terms with
k′ = k and σ′ = σ give finite contributions. The electron–hole pair can be
created only if the state with wave vector k is occupied in the ground state,
while the state with k+q has to be empty. These requirements can be written
concisely by the Fermi distribution functions f0(εkσ) and 1− f0(εk+qσ). The
time dependence of the operators can be evaluated using (28.4.97). Thus we
find that

∑

kk′

〈
c†kσ(t)ck+qσ(t)c†k′+qσ′(t′)ck′σ′(t′)

〉
(29.2.34)

= δσσ′
∑

k

eiεkσ(t−t′)/�e−iεk+qσ(t−t′)/�f0(εkσ)
[
1 − f0(εk+qσ)

]
.

As a retarded response function (the retardation is ensured by the Heaviside
step function) the Fourier transform Π0(q, ω) with respect to time has to
be analytic in the upper complex half-plane. This can be achieved by incor-
porating a factor exp(−δ|t − t′|) with infinitesimal δ, which is equivalent to
switching on the perturbation adiabatically. The Fourier transform is then

∞∫

−∞
θ(t− t′)eiω(t−t′)ei(εkσ−εk+qσ)(t−t′)/�e−δ|t−t′| d(t− t′)

=

∞∫

0

ei(�ω−εk+qσ+εkσ+iδ)(t−t′)/� d(t− t′)

=
i�

�ω − εk+qσ + εkσ + iδ
.

(29.2.35)

Since the response function is defined in (29.1.33) with a prefactor −i/�V ,
the first term of the commutator yields

1
V
δσσ′

∑

k

f0(εkσ)
[
1 − f0(εk+qσ)

] 1
�ω − εk+qσ + εkσ + iδ

. (29.2.36)

Analogously, the second term of the commutator,
∑

kk′

〈
c†k′+qσ′(t′)ck′σ′(t′)c

†
kσ(t)ck+qσ(t)

〉
, (29.2.37)

again gives finite contribution only if k′ = k and σ′ = σ. However, now the
state with quantum number k has to be empty while the state with wave
vector k + q has to be occupied. Thus,

∑

kk′

〈
c†k′+qσ′(t′)ck′σ′(t′)c

†
kσ(t)ck+qσ(t)

〉
(29.2.38)

= δσσ′
∑

k

eiεk+qσ(t′−t)/�e−iεkσ(t′−t)/�f0(εk+qσ)
[
1 − f0(εkσ)

]
.
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Multiplying it with the step function and incorporating the factor that
describes the adiabatic turning on, the Fourier transform of this expression
with respect to time gives

δσσ′
∑

k

f0(εk+qσ)
[
1 − f0(εkσ)

] i�
�ω − εk+qσ + εkσ + iδ

. (29.2.39)

Multiplying by the prefactor −i/�V and subtracting the contributions of the
two terms of the commutator, we find

Π0σσ′(q, ω) = δσσ′
1
V

∑

k

f0(εkσ) − f0(εk+qσ)
�ω − εk+qσ + εkσ + iδ

. (29.2.40)

If the single-particle energies are spin independent, summation over the spin
variables gives back the Lindhard function for the polarization bubble

Π0(q, ω) =
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

, (29.2.41)

and the usual form of the Lindhard dielectric function is recovered:

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (29.2.42)

By a change of variables k → −k − q in (29.2.39) the second term of the
commutator could be written in the form

δσσ′
∑

k

f0(εkσ)
[
1 − f0(εk+qσ)

] i�
�ω + εk+qσ − εkσ + iδ

, (29.2.43)

since the electron energy is an even function of the wave number. Multiplying
this expression by −i/�V and combining it with (29.2.36) the spin-resolved
response function can be written as

Π0σσ′(q, ω) = δσσ′
1
V

∑

k

f0(εkσ)
[
1 − f0(εk+qσ)

]
(29.2.44)

×
[

1
�ω − εk+qσ + εkσ + iδ

− 1
�ω + εk+qσ − εkσ + iδ

]
.

The term that contains the product of the two Fermi distribution functions
gives vanishing contribution. This can again be shown by a change of variables
k → −k − q. While the product of the Fermi distribution functions remains
unchanged, the expression in the square bracket changes sign; thus, there is
complete cancelation when the sum over k is performed and the expression
then simplifies to



80 29 Electronic Response to External Perturbations

Π0σσ′(q, ω) = δσσ′
1
V

∑

k

f0(εkσ) (29.2.45)

×
[

1
�ω − εk+qσ + εkσ + iδ

− 1
�ω + εk+qσ − εkσ + iδ

]
,

while the Lindhard dielectric function can be written as

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(εk) (29.2.46)

×
[

1
�ω − εk+q + εk + iδ

− 1
�ω + εk+q − εk + iδ

]
.

29.2.5 Explicit Form of the Lindhard Dielectric Function

The dielectric function εr(q, ω) can be decomposed into real and imaginary
parts:

εr(q, ω) = ε1(q, ω) + i ε2(q, ω). (29.2.47)

Taking the expression given in (29.2.42) and using (C.3.3) we find

ε1(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(ε) − f0(εk+q)
�ω − εk+q + εk

(29.2.48)

and

ε2(q, ω) =
4π2ẽ2

q2
2
V

∑

k

[
f0(εk) − f0(εk+q)

]
δ(�ω − εk+q + εk) . (29.2.49)

On the other hand, if the form given in (29.2.46) is used, we obtain

ε1(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(εk) (29.2.50)

×
[

1
�ω − (εk+q − εk)

− 1
�ω + (εk+q − εk)

]

and

ε2(q, ω) =
4π2ẽ2

q2
2
V

∑

k

f0(εk)
[
δ(�ω − εk+q + εk) − δ(�ω − εk + εk+q)

]
.

(29.2.51)
It is readily seen from these expressions that the real part of the dielectric
function is even in ω, while the imaginary part is an odd function of ω.

The summation can be performed exactly in both the real and the imag-
inary parts at temperature T = 0 if it is transformed into an integral in
k-space. Using (29.2.50) for the real part and integrating first over the angle
θ between k and q and then over the length of k, we find
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ε1(q, ω) = 1 +
q2TF
q2

{
1
2

+
kF

4q

{[
1 −
(

�ω + εq

�vFq

)2
]

ln
(

�ω + �vFq + εq

�ω − �vFq + εq

)

+

[
1 −
(

�ω − εq

�vFq

)2
]

ln
(

�ω − �vFq − εq

�ω + �vFq − εq

)}}
(29.2.52)

with εq = �
2q2/2me, and qTF is the Thomas–Fermi wave number defined in

(29.2.13).
In the static case the dielectric function simplifies to

εr(q) = 1 +
q2TF
q2

[
1
2

+
kF

2q

(
1 − q2

4k2
F

)
ln
∣∣∣∣
q + 2kF

q − 2kF

∣∣∣∣

]
. (29.2.53)

For later convenience this is written in the form

εr(q) = 1 +
q2TF
q2

F (q/2kF) = 1 +
4πẽ2

q2
ρ(εF)F (q/2kF) , (29.2.54)

where the function F (x) is defined in (28.3.85). Here it appears with the
argument x = q/2kF. Making use of the fact that F (x) ≈ 1 for small values
of x, as can be seen in Fig. 28.4, the result of the Thomas–Fermi approxima-
tion is recovered in the long-wavelength limit. This is not surprising since we
know that the Thomas–Fermi approximation is applicable for spatially slowly
varying potentials. Recalling that the derivative of F (x) is logarithmically
singular at x = 1, it follows that the derivative of the dielectric function is
also logarithmically singular at q = 2kF. This has – as will be seen – serious
implications. Among others this gives rise to the Friedel oscillations of the
screening charge.

According to (29.2.49) the imaginary part is finite only at those ω values
for which �ω is equal to the excitation energy of an electron–hole pair, i.e.,

�ω = εk+q − εk =
�

2

me
q · k +

�
2q2

2me
. (29.2.55)

This is quite natural since the imaginary part is related to the energy dis-
sipation and the electron system can absorb energy from the external field
through electron–hole pair excitations. We saw already in Fig. 28.9 that these
excitations form a broad continuum. Knowing that ε2(q, ω) is an odd function
of ω, we list the results for ω > 0 only. One has to distinguish three frequency
ranges. For q < 2kF

ε2(q, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π

2
�ω

�vFq

q2TF
q2

0 ≤ �ω < �vFq − εq,

π

4
kF

q

[
1 −
(

�ω − εq

�vFq

)2
]
q2TF
q2

�vFq − εq ≤ �ω ≤ �vFq + εq,

0 �vFq + εq ≤ �ω ,
(29.2.56)
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while for q > 2kF

ε2(q, ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 0 ≤ �ω < εq − �vFq,

π

4
kF

q

[
1 −
(

�ω − εq

�vFq

)2
]
q2TF
q2

εq − �vFq ≤ �ω ≤ εq + �vFq,

0 εq + �vFq ≤ �ω .
(29.2.57)

Figure 29.7 shows the frequency dependence of the real and imaginary
parts of the dielectric function for positive ω for small, intermediate, and
large values of q/kF.
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Fig. 29.7. Frequency dependence of the real and imaginary parts of the dielectric
function of the electron gas for small, intermediate, and large values of the wave
number. The results are shown for a typical metallic electron density, rs = 3

As a retarded function, Π(q, ω) is analytic in the upper half-plane. Hence,
it has to satisfy the Kramers–Kronig relations given in (J.1.70):

Re
1

εr(q, ω)
− 1 =

1
π

P
∞∫

−∞
dω′ Im

1
εr(q, ω′)

1
ω′ − ω

(29.2.58)

and

Im
1

εr(q, ω)
=

1
π

P
∞∫

−∞
dω′

[
1 − Re

1
εr(q, ω′)

]
1

ω′ − ω
. (29.2.59)

We also note that since the dielectric function establishes a causal rela-
tionship between the electric displacement and the electric field, the Kramers–
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Kronig relations are valid between the real and imaginary parts of the dielec-
tric function as well. These relations were given in (16.1.65).

29.2.6 Corrections Beyond the RPA

If we wish to go beyond the RPA, the methods of many-body theory have to
be used. There are several possibilities for that. One of them is to calculate
Π̃(q, ω) up to a given order of perturbation theory. Another is to select an
infinite set of irreducible diagrams for the two-particle Green function accord-
ing to some physical considerations and to sum up their contributions. For
this let us notice that there is a large class of processes in which the electron
and the hole of the pair propagate independently of one another in the sense
that although they interact with the other electrons of the Fermi sea, there
are no intermediate scattering processes that would couple the electron to the
hole either directly or indirectly. Such processes are displayed in Fig. 29.8.

Fig. 29.8. Scattering processes during the propagation of the electron–hole pair that
lead to the renormalization of the energy of the electron and the hole separately

These processes have a simple physical interpretation: the electron and the
hole propagating in the system are not bare particles but quasiparticles. Their
energy is not εk+q and εk, respectively; it is renormalized by the interaction
with the rest of the electron system. The first two diagrams correspond to the
simplest Hartree and Fock corrections to the energy, but higher order processes
should also be taken into account. When only such self-energy corrections are
considered, the dielectric function still has a Lindhard-like form; however the
energy of quasiparticles ε̃k appears in place of εk, the energy of free electrons.
We then have

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(ε̃k) − f0(ε̃k+q)
�ω − ε̃k+q + ε̃k + iδ

. (29.2.60)

This approximation is called the renormalized RPA.
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A further possibility is to use the equation-of-motion method explained
briefly in Appendix J. That method relies on solving the equation of motion

dn(q, t)
dt

=
i
�

[H, n(q, t)
]
− (29.2.61)

for the Fourier transform of the operator of electron density given in second-
quantized form in (28.4.96), where H denotes the total Hamiltonian of the
system that includes, besides the kinetic energy and the interaction given in
(28.1.34), the external potential Vext(r, t). This last term, which is treated as
a perturbation, is used in one of the equivalent forms. It is written either in
real space in terms of the field operators or in momentum space in terms of
the Fourier transforms of the potential and density. The Fourier transform of
the density can also be expressed in terms of the creation and annihilation
operators. Thus we have

H1(t) =
∑

σ

∫
ψ̂†

σ(r)Vext(r, t)ψ̂σ(r) dr

=
1
V

∑

q

Vext(q, t)n(−q)

=
1
V

∑

kqσ

Vext(q, t)c
†
k+qσckσ .

(29.2.62)

Once the equation of motion is solved for n(q, t), the induced charge is its
expectation value:

nind(q, t) =
〈
n(q, t)

〉
. (29.2.63)

As known from our earlier calculations, and it follows also from the derivation
given in Appendix J, in a noninteracting system the electron density induced
by the external potential is

nind(q, ω) = Π0(q, ω)Vext(q, ω) (29.2.64)

with the known Π0. If the external potential is generated by an external
charge,

nind(q, ω) = Π0(q, ω)
4πẽ2

q2
next(q, ω) . (29.2.65)

New, more complicated terms appear on the right-hand side of the equa-
tion of motion when the electron–electron interaction is taken into account.
Depending on the treatment of these terms different approximation schemes
are obtained; some details of which can be found in Appendix J. Here we
present only the results, motivating them by using a simple approach.

If the interacting electron system is treated in the RPA,

nind(q, ω) =
Π0(q, ω)

1 − (4πẽ2/q2)Π0(q, ω)
Vext(q, ω) = Π0(q, ω)V (q, ω) , (29.2.66)
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where V (q, ω) = Vext(q, ω)/εr(q, ω) is the screened potential. Combining this
expression with the first equation of (29.1.22) we have

nind(q, ω) = Π0(q, ω)
4πẽ2

q2
n(q, ω)

= Π0(q, ω)
4πẽ2

q2
[
next(q, ω) + nind(q, ω)

]
.

(29.2.67)

This expression is similar to (29.2.65) which is valid for noninteracting elec-
trons except that the induced electron density is found to be proportional to
the total density. We know that owing to exchange and correlations, electrons
repel other electrons from their close vicinity creating Fermi and Coulomb
holes around themselves. Therefore, a presumably better approximation can
be achieved by assuming that the electron system does not react to the full
charge, but to a charge corrected by the local field. If so, then only an effective
particle density

neff(q, ω) = next(q, ω) +
[
1 −G(q)

]
nind(q, ω) (29.2.68)

should appear on the right-hand side of (29.2.67). The quantity G(q) is the
so-called local-field factor and accounts for the short-range exchange and cor-
relation effects not present in the RPA. With this assumption the dielectric
function takes the form

1
εr(q, ω)

= 1 +
4πẽ2

q2
Π0(q, ω)

1 − (4πẽ2/q2)
[
1 −G(q)

]
Π0(q, ω)

. (29.2.69)

This expression shows that G(q) weakens the screening.
The local-field factor has to be determined using physical considerations.

Depending on its choice different approximation schemes are obtained. Using
the equation-of-motion method for the screening charge, as explained in
Appendix J, J. Hubbard (1957) proposed the expression

G(q) =
1
2

q2

q2 + k2
F
. (29.2.70)

Somewhat later K. S. Singwi and A. Sjölander (1967) have shown that a
better approximation can be achieved if G(q) is chosen in the form

G(q) = q

∞∫

0

dr
[
1 − g(r)

]
j1(qr) , (29.2.71)

where g(r) is the pair distribution function and j1 is the first-order spherical
Bessel function. The RPA corresponds to completely neglecting this local-field
correction.
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29.2.7 Effect of Finite Relaxation Time

Until now the electron states have been assumed to have infinite lifetime.
Although the states near the Fermi energy have a rather long lifetime if only
the electron–electron interaction is taken into account, impurities that are
unavoidably present in the sample or interaction with phonons can give rise
to a substantial shortening of the lifetime. Here, we will consider the effect of
the finite lifetime on the dielectric function in the semiclassical approximation.
The induced charge will be determined using the nonstationary Boltzmann
equation in an improved relaxation-time approximation.

We assume a space- and time-dependent external perturbation described
by a periodically varying scalar potential

ϕ(r, t) = ϕ(q)ei(q·r−ωt) . (29.2.72)

The force acting on the electron is

F = −eE = e gradϕ(r) = ieqϕ(q)ei(q·r−ωt) , (29.2.73)

or, when expressed in terms of V (q) = −eϕ(q),

F = −iqV (q)ei(q·r−ωt) . (29.2.74)

This perturbation gives rise to a periodically varying term in the distribution
function which can be written as

f(k, r, t) = f0(n0) + f1(k)ei(q·r−ωt) , (29.2.75)

where f0(n0) is the distribution function corresponding to the uniform charge
density n0. However, when the effect of collisions is treated in the relaxation-
time approximation of the Boltzmann equation, we should take into account
that the electron density relaxes to its local equilibrium value n(r, t) and not to
its uniform equilibrium value n0. Thus, when the explicit time dependence of
the distribution function is kept in the Boltzmann equation [see (24.2.16)] and
this improved relaxation-time approximation is used for the collision integral,
we have

∂f

∂t
+ vk

∂f

∂r
+

1
�
F (r, t)

∂f

∂k
= −f − f0[n(r, t)]

τ
. (29.2.76)

If the difference between distribution functions belonging to the local equilib-
rium density and the uniform density is denoted by

δnf0 = f0(n) − f0(n0) , (29.2.77)

the Boltzmann equation linearized in f1 takes the form

∂f1
∂t

+ vk
∂f1
∂r

+
1
�
F (r, t)

∂f0
∂k

= −f1
τ

+
δnf0
τ

. (29.2.78)
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The equilibrium distribution function f0 depends on k through the energy
only. Making use of the periodic spatial and temporal variation of the distri-
bution function and using (29.2.74) for the force we have

− iωf1 + iq · vkf1 − iq · vkV (q)
∂f0
∂ε

= −f1
τ

+
δnf0
τ

. (29.2.79)

The formal solution of this equation yields

f1 =
iq · vkτV (q)

∂f0
∂ε

+ δnf0

1 − iωτ + iq · vkτ
. (29.2.80)

The induced number density is obtained by summing the contributions of all
occupied states, that is by summing f1 over the k vectors within the Fermi
sphere:

nind =
2
V

∑

|k|<kF

f1(k) . (29.2.81)

The distribution function changes significantly, however, only in the neighbor-
hood of the Fermi energy. This is seen when the second term in the numerator
of (29.2.80) is rewritten using the expansion

δnf0 = f0(n) − f0(n0) =
∂f0
∂ε

∂ε

∂n
δn , (29.2.82)

where δn is the induced particle density. We know from the Thomas–Fermi
approximation that for long-wavelength disturbances

∂n

∂ε
= −ρ(εF) , (29.2.83)

and thus
δnf0 = − 1

ρ(εF)
∂f0
∂ε

nind . (29.2.84)

Averaging first over the angle between q and vk on the Fermi surface yields

〈f1〉ave = V (q)
∂f0(k)
∂ε

[
1 +

ω + i/τ
2vFq

ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)]

− nind

ρ(εF)
∂f0(k)
∂ε

1
2iqvFτ

ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)
.

(29.2.85)

Then the integral over the length of k is performed by converting it to an
integral over energy. It is readily obtained that

nind = −V (q)ρ(εF)
[
1 +

ω + i/τ
2vFq

ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)]

+
nind

2iqvFτ
ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)
.

(29.2.86)



88 29 Electronic Response to External Perturbations

The solution of this equation for nind leads to the following expression for the
response function Π̃:

Π̃(q, ω) = −ρ(εF)
1 +

ω + i/τ
2vFq

ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)

1 +
i/τ

2vFq
ln
(
ω − vFq + i/τ
ω + vFq + i/τ

) . (29.2.87)

The dielectric function then takes the form

εr(q, ω) = 1 +
4πẽ2

q2
ρ(εF)

1 +
ω + i/τ
2vFq

ln
(
ω − vFq + i/τ
ω + vFq + i/τ

)

1 +
i/τ

2vFq
ln
(
ω − vFq + i/τ
ω + vFq + i/τ

) . (29.2.88)

In the static, ω → 0 limit the semiclassical Thomas–Fermi result is recov-
ered, while in the long-wavelength, q → 0 limit we find

Π̃(q, ω) =
neq

2

meω(ω + i/τ)
, (29.2.89)

where ne = k3
F/3π

2 is the electron density. It then follows that

εr(ω) = 1 − 4πneẽ
2

meω(ω + i/τ)
. (29.2.90)

This expression is identical to the result derived for the frequency-dependent
dielectric function in the Drude model [see (16.1.68)]. This has been used in
Chapter 25 to study the optical properties of metals. To get a more accurate
expression with a better q dependence than the Thomas–Fermi result, a quan-
tum mechanical treatment is needed. We note that the naive approximation in
which the polarization bubble of the RPA is calculated for an electron and a
hole with finite lifetime τ would yield a Lindhard-like expression where ω+iδ
is replaced with ω + i/τ , i.e.,

Π̃(q, ω) = Π0(q, ω + i/τ) =
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + i/τ

. (29.2.91)

We know from our earlier considerations that this approach does not give a
physically correct result since in a periodically driven system relaxation is
toward local equilibrium and not toward thermodynamic equilibrium. When
this is taken into account, one finds the so-called Lindhard–Mermin6 form for
the dielectric function

εr(q, ω) = 1 − 4πẽ2

q2

[
1 + i/(ωτ)

]
Π0(q, ω + i/τ)

1 + i/(ωτ)
[
Π0(q, ω + i/τ)/Π0(q, 0)

] . (29.2.92)

In the τ → ∞ limit the Lindhard form of the dielectric function (29.2.32) is
recovered. This expression also yields the correct static limit and the known
expression for the frequency-dependent conductivity.
6

N. D. Mermin, 1970.
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29.3 Static Screening

One essential feature of the above-derived result for the dielectric function is
its 1/q2 divergence in the long-wavelength (q → 0) limit. As a consequence of
that, the electronic charge distribution is drastically modified if an external
charge is introduced into a simple metal. We show below that the induced
charge screens completely the external charge.

The potential created by a pointlike external charge Q is

ϕext(r) =
Q

4πε0r
. (29.3.1)

Equation (C.1.63) implies that the Fourier transform of the potential is

ϕext(q) =
Q

ε0q2
. (29.3.2)

This potential gives rise to an inhomogeneous charge distribution in the vicin-
ity of the external charge. In the static case, the Fourier transform of the
induced number density is given according to (29.1.24) by

nind(q) = Π(q)Vext(q) = −eΠ(q)ϕext(q) = − eQ

ε0q2
Π(q) . (29.3.3)

If the density–density response function is expressed in terms of the dielectric
function using (29.1.25) we get

nind(q) =
Q

e

[
1 − 1

εr(q)

]
(29.3.4)

or, if the irreducible polarization function is used,

nind(q) = − eQ

ε0q2
Π̃(q)

1 − e2

ε0q2
Π̃(q)

. (29.3.5)

The total induced charge, the volume integral of the induced charge density
ρind(r) = −enind(r), is equal to the q = 0 Fourier component of the induced
charge density. If Π̃(q) remains finite in the limit q → 0, which is the case in
the homogeneous electron gas and in metals as well,

Qind = −e lim
q→0

nind(q) = Q lim
q→0

e2

ε0q2
Π̃(q)

1 − e2

ε0q2
Π̃(q)

= −Q . (29.3.6)

The sign of the total induced charge is opposite to that of the external charge
and they are equal in magnitude; hence, screening is indeed complete in
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metals. In semiconductors, where there are mobile carriers, but Π̃(q) vanishes
at q = 0 owing to the absence of low-energy electron–hole pair excitations,
screening is not complete.

In what follows we will show, calculating the spatial variation of the screen-
ing charge and the screened potential, that in metals, where screening is com-
plete, screening of the long-range Coulomb potential leads to a short-range
effective interaction.

29.3.1 Thomas–Fermi Screening

It follows from (29.1.16) that the Fourier transform of the screened potential
around a charge Q introduced into a metal is

ϕ(q) =
1

εr(q)
ϕext(q) =

1
εr(q)

Q

ε0q2
. (29.3.7)

The Thomas–Fermi approximation for the dielectric function [see (29.2.12)]
gives

ϕ(q) =
Q

ε0(q2 + q2TF)
, (29.3.8)

which shows that the 1/q2 singularity of the Coulomb potential is removed
by the screening effect of the electrons.

The spatial variation of the screened potential can be obtained by taking
the inverse Fourier transform. According to (C.1.62)

ϕ(r) =
1
V

∑

q

Q

ε0(q2 + q2TF)
eiq·r =

Q

4πε0r
e−qTFr . (29.3.9)

This is the well-known Yukawa potential of nuclear physics. The spatial vari-
ation of the induced charge is given according to (29.2.6) by

ρind(r) = −enind(r) = −e2ρ(εF)ϕ(r) = −e2ρ(εF)
Q

4πε0r
e−qTFr . (29.3.10)

If the prefactor is expressed in terms of the Thomas–Fermi wave number, we
find

ρind(r) = − Q

4π
q2TF
r

e−qTFr . (29.3.11)

The total induced charge is its volume integral

Qind =
∫

V

ρind(r) dr = − Q

4π

∞∫

0

q2TF
r

e−qTFr4πr2 dr

= −Q
∞∫

0

xe−x dx = −Q , (29.3.12)
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as has already been demonstrated generally. The redistribution of the electric
charge is so drastic that the screened potential decreases exponentially fast.
The characteristic screening length is 1/qTF; the external charge is practically
not felt at distances larger than a few times 1/qTF.

Before estimating the screening length for metals we note that this type of
exponential screening of external charges is well known in the Debye–Hückel
theory of electrolytes, which are classical, nondegenerate charged systems, but
their screening length is essentially different from that in degenerate systems.
According to the classical Maxwell–Boltzmann distribution applicable to elec-
trolytes and also to nondegenerate semiconductors, the density of particles
varies as

n(r) = nee−V (r)/kBT (29.3.13)

when the energy is changed locally by an amount V (r). This expression can
be expanded to linear order if the potential is weak, and the change in the
particle density is given by

nind(r) = − ne

kBT
V (r) . (29.3.14)

Comparison of this expression with (29.2.6) shows that the response of classi-
cal particles is given by ne/kBT instead of the density of states ρ(εF). Using
this in the dielectric function an expression similar to the Thomas–Fermi ap-
proximation is obtained, where screening is characterized by the Debye–Hückel
wave number defined via

q2DH =
nee

2

ε0kBT
=

4πneẽ
2

kBT
. (29.3.15)

The inverse of this wave number is the Debye length which was introduced
and used already in Chapter 27 where the properties of semiconductors were
studied.

For the degenerate electron gas, where the Fermi distribution function
applies, the density of states of the three-dimensional free electron gas is used
in (29.2.13) to estimate the screening length. Comparing qTF to the Fermi
momentum and expressing kF with the radius r0 of the Wigner–Seitz sphere
available for an electron or with the dimensionless rs, we find

q2TF
k2
F

=
4πẽ2

k2
F

mekF

�2π2
=
(

16
3π2

)2/3
r0
a0

=
(

16
3π2

)2/3

rs , (29.3.16)

from which
qTF = 0.815 kFr

1/2
s . (29.3.17)

The typical range for rs is between 1.8 and 6 in metals. This implies that qTF
is of the same order as kF. Since the inverse of kF is on the order of atomic
distances, screening occurs on the same length scale in metals.
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29.3.2 Friedel Oscillations

The Thomas–Fermi approximation gives only a crude picture of the spatial
variation of the screening charge since screening occurs on the atomic scale
while the approximation is applicable for long-wavelength variations only. We
have therefore to consider how the result changes when the Lindhard function
with its correct q dependence is used for Π0 and not its q → 0 limit.

For that one would have to repeat the calculation of the induced charge by
inserting the Lindhard form of the dielectric function into (29.3.4), and then
taking the inverse Fourier transform of nind(q). Unfortunately, this inverse
Fourier transform cannot be calculated exactly. Therefore, we apply a differ-
ent procedure used already in Chapter 16 when we studied the scattering of
electrons by an impurity. Equation (16.4.44) shows already that at distances
far from the impurity, outside the range of the atomic potential, the induced
density decays as 1/r3 and it is modulated by an oscillatory function. These
oscillations will be discussed further here.

When the incoming particle is described by a plane wave and the scattering
center by a potential V (r), it follows from (16.4.4) that the wavefunction
satisfies the equation

ψk(r) =
1√
V

eik·r +
∫

dr′G(r − r′)V (r′)ψk(r′) , (29.3.18)

where

G(r − r′) = − me

2π�2

eik|r−r′|

|r − r′| (29.3.19)

is the Green function of free electrons. The first iteration gives

ψk(r) =
1√
V

eik·r
[
1 +
∫

dr′G(r − r′)V (r′)eik·(r′−r)

]
. (29.3.20)

When the change in the electron density is calculated from this expression up
to first order in the potential, we get

nind(r) =
2
V

∑

|k|<kF

∫
dr′ V (r′) (29.3.21)

×
[
G(r − r′)eik·(r′−r) +G∗(r − r′)e−ik·(r′−r)

]
,

where the factor 2 comes from the two spin orientations. Using (29.3.19) for
the Green function, replacing the sum by an integral, and performing first the
integration over the angular variable, we have

nind(r) = − me

2π3�2

∫
dr′ V (r′)

kF∫

0

dk k2

[
sin k|r − r′|
k|r − r′| · 2 cos k|r − r′|

|r − r′|
]
.

(29.3.22)



29.4 Dielectric Function of Metals and Semiconductors 93

Performing then the integral over k gives

nind(r) =
2mek

4
F

π3�2

∫
dr′V (r′)g(2kF|r − r′|) , (29.3.23)

where
g(x) =

x cosx− sinx
x4

. (29.3.24)

If the potential V (r) varies slowly in space compared to the inverse of 2kF
over which this oscillatory function decays, then the local relationship (29.2.6)
found in the Thomas–Fermi approximation holds true between the induced
charge density and the perturbing potential. If, on the other hand, the screened
potential is short ranged, as is the case in metals, then asymptotically, beyond
the screening length, the induced charge density decays as

nind(r) ∼ cos 2kFr

(2kFr)3
, (29.3.25)

as has already been seen in (16.4.44). This slowly decaying oscillation is the
consequence of the weak (logarithmic) singularity in the derivative of the
Lindhard function at q = 2kF. Physically it is due to the sharp Fermi edge in
the momentum distribution of electrons. The wavelength of the oscillation is
determined by 1/2kF.

It can be shown using a somewhat more rigorous calculation that asymp-
totically, far from the impurity, only the q = 2kF Fourier components of the
bare external potential Vext = −eϕext and of the dielectric function play a
role, and the induced charge density is given by the expression

ρind(r) ≈ − e2

4π
ρ(εF)

ϕext(2kF)
ε2r (2kF)

cos 2kFr

r3
. (29.3.26)

It is interesting to note that the induced charge is not proportional to the
2kF Fourier component of the screened potential; the square of the dielectric
function appears in the denominator. Inserting the Fourier transform of the
Coulomb potential of the localized charge Q and using the Lindhard function,
we find

ρind(r) ≈ − Q

4π
ξ2

(1 + ξ2/2)2
cos 2kFr

r3
(29.3.27)

with ξ = qTF/2kF.

29.4 Dielectric Function of Metals and Semiconductors

In the foregoing, the Lindhard function and the dielectric function have been
calculated for electrons moving in a uniform background. Plane-wave wave-
functions and a quadratic dispersion relation have been assumed. The result
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obtained may be valid for simple metals where the contribution of the fully
occupied bands lying deep below and the completely empty bands lying far
above the Fermi energy can be neglected, and the main contribution to the
dielectric function comes from electrons of a single partially filled conduction
band. If the states of this band can be characterized by a scalar effective mass
m∗, then the results derived above are still valid with the proviso that m∗

and the corresponding Fermi velocity are used instead of me and vF of free
electrons.

The calculations can be extended to solids with more complicated, realistic
band structure. We will see that metals, where the Fermi energy lies inside
the conduction bands, and semiconductors, where the Fermi energy lies inside
the gap between the valence and conduction bands, have essentially different
dielectric functions.

29.4.1 Dielectric Function of Bloch Electrons

To calculate the dielectric function of the system of Bloch electrons we repeat
our earlier derivation of the Lindhard function but now we start with a Bloch
state ψ

(0)
nk (r) of wave vector k in the nth band. The periodically varying

external field (29.2.18) couples this state only to those states whose wave
vector is k + q or k − q, though they may be in any band. For this reason,
generalizing the trial function given in (29.2.20), the perturbed state is sought
in the form

ψnk(r, t) = ψ
(0)
nk (r)e−iεnkt/� +

∑

n′
αnn′k+q(t)ψ(0)

n′k+q(r)e−iεn′k+qt/�

+
∑

n′
αnn′k−q(t)ψ(0)

n′k−q(r)e−iεn′k−qt/� . (29.4.1)

The coefficient αnn′k+q(t) can be determined using the formulas of
perturbation theory. To lowest order we find

αnn′k+q(t) =
1
V

V (q)
〈
ψ

(0)
n′k+q|eiq·r|ψ(0)

nk

〉
ei(εn′k+q−εnk)t/�e−iωteδt

�ω − εn′k+q + εnk + iδ
(29.4.2)

and

αnn′k−q(t) =
1
V

V ∗(q)
〈
ψ

(0)
n′k−q|e−iq·r|ψ(0)

nk

〉
ei(εn′k−q−εnk)t/�eiωteδt

−�ω − εn′k−q + εnk + iδ
. (29.4.3)

Thus, the perturbed wavefunction is
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ψnk(r, t) = e−iεkt/�

[
ψ

(0)
nk (r) (29.4.4)

+
1
V

∑

n′

V (q)
〈
ψ

(0)
n′k+q|eiq·r|ψ(0)

nk

〉
e−iωteδt

�ω − εn′k+q + εnk + iδ
ψ

(0)
n′k+q(r)

+
1
V

∑

n′

V ∗(q)
〈
ψ

(0)
n′k−q|e−iq·r|ψ(0)

nk

〉
eiωteδt

−�ω − εn′k−q + εnk + iδ
ψ

(0)
n′k−q(r)

]
.

The essential difference compared to the earlier result for plane waves is that
an extra factor appears besides V (q), the matrix element of e±iq·r between
ψ

(0)
nk and ψ(0)

n′k±q. Using the Bloch form of the electron wavefunction and the
lattice periodicity of unk(r), the matrix element can be written as

〈
ψ

(0)
n′k+q

∣∣eiq·r∣∣ψ(0)
nk

〉
=

1
v

∫

v

u∗n′k+q(r)unk(r) dr , (29.4.5)

where the integration goes over the volume v of the elementary cell.
The induced density is obtained by summing the absolute square of the

wavefunction over all occupied states. Taking its Fourier transform and keep-
ing only the terms proportional to V (q), the expression for the polariza-
tion function is rather similar to (29.2.41) and the dielectric function has
a Lindhard-like form,

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

knn′

f0(εnk) − f0(εn′k+q)
�ω − εn′k+q + εnk + iδ

∣∣〈ψ(0)
n′k+q|eiq·r|ψ(0)

nk

〉∣∣2 ;

(29.4.6)
however, it contains the absolute square of the matrix element (29.4.5) and
besides the summation over k one has to sum over the band indices.

In the extended-zone scheme, the states belonging to different zones can
be distinguished by an appropriate vector G of the reciprocal lattice. Then
the dielectric function can be written in the form

εr(q, ω) = 1 − 4πẽ2

q2
1
V

∑

kGG′σ

f0(εk+G) − f0(εk+q+G′)
�ω − εk+q+G′ + εk+G + iδ

× ∣∣〈ψk+q+G′ |eiq·r|ψk+G

〉∣∣2 .
(29.4.7)

29.4.2 Dielectric Constant of Semiconductors

Expression (29.4.6) derived for arbitrary band structure will now be used to
calculate the dielectric constant of semiconductors. As has been mentioned
already, transitions between the valence and conduction bands play an impor-
tant role in their optical properties. When their dielectric function is calcu-
lated, the states of at least two bands have to be considered. Those terms give
a finite contribution in (29.4.6), where the state ψ(0)

nk is in the valence band and
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ψ
(0)
n′k+q in the conduction band or vice versa. To evaluate the matrix element

we consider the double commutator
[[H, eiq·r]

− , e
−iq·r

]

−
. (29.4.8)

The lattice-periodic potential in H commutes with eiq·r, but the operator
of kinetic energy does not. Writing explicitly −(�2/2me)∇2 for the kinetic
energy it is readily seen that

[[
− �

2

2me
∇2, eiq·r

]

−
, e−iq·r

]

−
= −�

2q2

me
= −2εq . (29.4.9)

Alternatively, the diagonal matrix element of the double commutator for
state ψ(0)

nk with energy εnk can be calculated by inserting a complete set of
intermediate states ψ(0)

n′k′ . Due to quasimomentum conservation the matrix
elements appearing in this expression are nonvanishing only for those inter-
mediate states whose wave vector is equivalent to k ± q. We get

〈
ψ

(0)
nk

∣∣∣
[[H, eiq·r]

− , e
−iq·r

]

−

∣∣∣ψ(0)
nk

〉
(29.4.10)

=
∑

n′

〈
ψ

(0)
nk

∣∣Heiq·r∣∣ψ(0)
n′k−q

〉〈
ψ

(0)
n′k−q

∣∣e−iq·r∣∣ψ(0)
nk

〉

−
∑

n′

〈
ψ

(0)
nk

∣∣eiq·rH∣∣ψ(0)
n′k−q

〉〈
ψ

(0)
n′k−q

∣∣e−iq·r∣∣ψ(0)
nk

〉

−
∑

n′

〈
ψ

(0)
nk

∣∣e−iq·r∣∣ψ(0)
n′k+q

〉〈
ψ

(0)
n′k+q

∣∣Heiq·r∣∣ψ(0)
nk

〉

+
∑

n′

〈
ψ

(0)
nk

∣∣e−iq·r∣∣ψ(0)
n′k+q

〉〈
ψ

(0)
n′k+q

∣∣eiq·rH∣∣ψ(0)
nk

〉

=
∑

n′
(εnk − εn′k+q)

∣∣∣
〈
ψ

(0)
n′k+q

∣∣eiq·r∣∣ψ(0)
nk

〉∣∣∣
2

+
∑

n′
(εnk − εn′k−q)

∣∣∣
〈
ψ

(0)
n′k−q

∣∣e−iq·r∣∣ψ(0)
nk

〉∣∣∣
2

.

Comparison of the two expressions yields

∑

n′

[
(εn′k+q − εnk)

∣∣∣
〈
ψ

(0)
n′k+q

∣∣eiq·r∣∣ψ(0)
nk

〉∣∣∣
2

+ (εn′k−q − εnk)
∣∣∣
〈
ψ

(0)
n′k−q

∣∣e−iq·r∣∣ψ(0)
nk

〉∣∣∣
2 ]

= 2εq .

(29.4.11)

When the dielectric constant, the value of the dielectric function at q ≈ 0, is
considered, the energy difference in the direct transitions between the valence
and conduction bands can be approximated by the direct gap,
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εn′k±q − εnk ≈ εg , (29.4.12)

when k is in the valence band and k± q in the conduction band. This is used
both in (29.4.11) and in the energy denominator of (29.4.6). The sum over
the k vectors in the valence and conduction bands gives

εr(q, 0) ≈ 1 +
4πẽ2

q2
2ne

εg

εq

εg
= 1 +

4πneẽ
2
�

2

m∗ε2g
(29.4.13)

for the dielectric constant where ne is the electron density in the valence band.
When the density is expressed in terms of the plasma frequency with the help
of (16.1.69), we obtain

εr(q, 0) = 1 +
(

�ωp

εg

)2

. (29.4.14)

The 1/q2 singularity characteristic for metals does not appear in semicon-
ductors and the dielectric constant is finite in the limit q → 0 owing to the
finite gap, the forbidden region around the Fermi energy. As a consequence
screening is not complete in semiconductors.

The direct gap is about 4 eV in both Ge and Si, and the plasmon energy is
about �ωp ≈ 16 eV. This would give εr ≈ 17 for the dielectric constant in good
agreement with the experimental values. As mentioned already in Chapter 20,
εr ≈ 12 in silicon and εr ≈ 16 in germanium.

29.5 Dielectric Function in Special Cases

A very interesting development of the last decades was the discovery of a
large class of materials – some of them exist in nature, others could only be
synthesized artificially – in which the motion of electrons is confined by the
overlap of the wavefunctions of neighboring atoms to only one or two spatial
dimensions. This is equivalent to saying that εk depends in fact on only one
or two components of the wave vector. For simplicity we will consider systems
where a scalar effective mass can be used, i.e., the dispersion relation has the
form

εk =
�

2k2
x

2m∗ or εk =
�

2(k2
x + k2

y)
2m∗ . (29.5.1)

The dielectric function will be computed for such systems in the RPA. The
response function Π0 is still defined by (29.2.41), but its value, which can
be given in closed form for both one- and two-dimensional systems,7 depends
strongly on the dimensionality of the phase space. Finally we will discuss
the case when the Fermi surface has a nesting property. Even though the
motion of the electrons is not restricted to one or two directions, a singularity
characteristic of one-dimensional systems appears in the dielectric function.
7 The results will be given by replacing the effective mass with the electron mass.
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29.5.1 Dielectric Function of the Two-Dimensional Electron Gas

The dielectric function of the two-dimensional electron gas will be written in
analogy to (29.2.54) in the form

εr(q, ω) = 1 +
4πẽ2

q2
ρ2d(εF)F2d(q, ω) , (29.5.2)

where ρ2d(εF) = me/π�
2 is the density of states of the two-dimensional elec-

tron gas. In a strictly two-dimensional system, solution of the Poisson equa-
tion gives U(q) = 2πẽ2/q for the Fourier transform of the Coulomb poten-
tial. Nonetheless, we use the choice given above since we are considering a
truly three-dimensional system, in which, however, the electrons can propa-
gate with high probability in two directions only. We first consider the region
of momenta q < 2kF where �vFq > εq. One has to distinguish again three
frequency ranges. Separating F2d(q, ω) into real and imaginary parts in the
form F ′ + iF ′′, in the low-frequency range 0 ≤ �ω < �vFq − εq we have

F ′
2d(q, ω) = 1 (29.5.3)

and

F ′′
2d(q, ω) =

[
(�qvF)2 − (εq − �ω)2

]1/2

2εq
−
[
(�qvF)2 − (εq + �ω)2

]1/2

2εq
.

(29.5.4)
For intermediate frequencies satisfying �vFq − εq ≤ �ω ≤ �vFq + εq we find

F ′
2d(q, ω) = 1 −

[
(εq + �ω)2 − (�qvF)2

]1/2

2εq
(29.5.5)

and

F ′′
2d(q, ω) =

[
(�qvF)2 − (εq − �ω)2

]1/2

2εq
. (29.5.6)

Finally, at high frequencies where �vFq + εq ≤ �ω we have

F ′
2d(q, ω) = 1 −

[
(εq + �ω)2 − (�qvF)2

]1/2

2εq
+

[
(�ω − εq)

2 − (�qvF)2
]1/2

2εq

(29.5.7)
and

F ′′
2d(q, ω) = 0 . (29.5.8)

Similar expressions are obtained for q > 2kF where εq > �vFq. At low
frequencies, in the range 0 ≤ �ω < εq − �vFq,

F ′
2d(q, ω) = 1 −

[
(εq + �ω)2 − (�qvF)2

]1/2

2εq
−
[
(εq − �ω)2 − (�qvF)2

]1/2

2εq

(29.5.9)
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and
F ′′

2d(q, ω) = 0 , (29.5.10)

in the intermediate frequency range εq − �vFq ≤ �ω ≤ εq + �vFq we find

F ′
2d(q, ω) = 1 −

[
(εq + �ω)2 − (�qvF)2

]1/2

2εq
(29.5.11)

and

F ′′
2d(q, ω) =

[
(�qvF)2 − (εq − �ω)2

]1/2

2εq
, (29.5.12)

while in the high-frequency range εq + �vFq ≤ �ω

F ′
2d(q, ω) = 1 −

[
(εq + �ω)2 − (�qvF)2

]1/2

2εq
+

[
(εq − �ω)2 − (�qvF)2

]1/2

2εq

(29.5.13)
and

F ′′
2d(q, ω) = 0 . (29.5.14)

In the static limit, the function F (q) takes the form

F2d(q) =

{
1 for q < 2kF ,

1 −√1 − (2kF/q)2 for q > 2kF .
(29.5.15)

29.5.2 Dielectric Function of the One-Dimensional Electron Gas

The polarization function of a one-dimensional electron gas is again given by
(29.2.31). If q < 2kF, two regions, kF − q ≤ k ≤ kF and −kF − q ≤ k ≤ −kF
(see Fig. 29.9), give finite contribution in the integral. Otherwise either both
Fermi distribution functions take unit value or both vanish.

kF kF

kF

q 2kF

q 2kF

0

0q

kF q

kF kF

kF

q

kF qq

q

Fig. 29.9. The “Fermi spheres” belonging to the wave numbers k and k + q. Only
the regions covered once give finite contributions to the Lindhard function
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We get

ReΠ0(q, ω) =
1
π

kF∫

kF−q

dk
1

�ω − �2qk/me − εq
− 1
π

−kF∫

−kF−q

dk
1

�ω − �2qk/me − εq

= − 1
π

me

�2q

{
ln
∣∣∣∣
�vFq + εq − �ω

�vFq − εq − �ω

∣∣∣∣− ln
∣∣∣∣
�vFq − εq + �ω

�vFq + εq + �ω

∣∣∣∣

}

= − 1
π

me

�2q
ln
∣∣∣∣
(�vFq + εq)2 − (�ω)2

(�vFq − εq)2 − (�ω)2

∣∣∣∣ (29.5.16)

for the real part. If q > 2kF, the integration goes over two full “Fermi spheres”.
We then have

ReΠ0(q, ω) =
1
π

kF∫

−kF

dk
1

�ω − �2qk/me − εq
− 1
π

kF−q∫

−kF−q

dk
1

�ω − �2qk/me − εq

= − 1
π

me

�2q

{
ln
∣∣∣∣

�vFq + εq − �ω

−�vFq + εq − �ω

∣∣∣∣− ln
∣∣∣∣

�vFq − εq − �ω

−�vFq − εq − �ω

∣∣∣∣

}

= − 1
π

me

�2q
ln
∣∣∣∣
(�vFq + εq)2 − (�ω)2

(�vFq − εq)2 − (�ω)2

∣∣∣∣ . (29.5.17)

The imaginary part, too, can be easily calculated yielding

ImΠ0(q, ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for 0 ≤ �ω < �vFq − εq ,

− me

�2kF
for �vFq − εq ≤ �ω ≤ �vFq + εq ,

0 for �vFq + εq ≤ �ω .

(29.5.18)

We can write again the response function in the form

Π0(q, ω) = −ρ1d(εF)F1d(q, ω) , (29.5.19)

where
ρ1d(εF) =

2me

π�2kF
(29.5.20)

is the density of states of the one-dimensional electron gas at the Fermi energy
and

ReF1d(q, ω) =
kF

2q
ln
∣∣∣∣
(�vFq + εq)2 − (�ω)2

(�vFq − εq)2 − (�ω)2

∣∣∣∣ . (29.5.21)

In the static limit, this quantity reduces to

F1d(q) =
kF

q
ln
∣∣∣∣
2kF + q

2kF − q

∣∣∣∣ . (29.5.22)

The results obtained for F (x) with x = q/2kF for the one-, two-, and three-
dimensional cases are plotted in Fig. 29.10.
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F (x)

1

1

d = 3

d = 2

d = 1

x
q

=
2kF0

0

Fig. 29.10. q dependence of the static density–density response function in the
one-, two-, and three-dimensional electron gas

The function F (x) displays stronger and stronger singularities at x = 1
(q = 2kF) as the dimensionality decreases. It is continuous in the two- and
three-dimensional cases and only its derivative is singular at x = 1. The
function F itself is singular at this point in the one-dimensional case. The
reason for this singular behavior is easy to find when we look at (29.2.31).
As described by the Fermi distribution functions, the hole with wave vec-
tor k has to be created inside the Fermi sphere and the electron with k + q
outside or the role of the electron and the hole can be interchanged. When
two Fermi spheres shifted by a vector −q are drawn as in Fig. 29.11, the
integrand vanishes outside the shaded region. The region inside the Fermi
sphere around the origin appears with weight +1 in the integrand, whereas
the region inside the Fermi sphere around the tip of the vector −q with
weight −1.

k

q

k q

0

Fig. 29.11. The regions of integration giving nonvanishing contribution to the
Lindhard function

Taking ω = 0 at a fixed value of q the energy denominator in the Lindhard
function vanishes at those k vectors for which εk+q = εk. This condition is
satisfied in a tiny portion of the region of integration in the three-dimensional
case, along the intersection of the two displaced Fermi spheres, where both
the electron and the hole are on the Fermi surface. The integrand is large in
the neighborhood of this circle, but only in a tiny portion of the phase space.
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The response function is thus a continuous function and only its derivative
shows a weak, logarithmic singularity at q = 2kF.

In two-dimensional systems the energy denominator vanishes at two points,
at the intersection of the two Fermi circles. The integral itself remains finite;
however, the derivative of the response function displays a stronger singularity,
it is discontinuous at q = 2kF. The integrand is singular at two points of the
phase space in the one-dimensional case as well, but this singularity is not
compensated by the smallness of the corresponding phase space. The response
function itself is singular at q = 2kF.

29.5.3 Materials with Nested Fermi Surface

We may ask what happens when the electron system is three dimensional,
but the shape of the Fermi surface deviates significantly from the sphere.
We consider as an example a crystal with orthorhombic structure where the
energy of electron states in the tight-binding approximation is given by

εk = ε0 + ε1 cos kxa+ ε2 cos kyb+ ε3 cos kzc . (29.5.23)

It may occur that in two of the crystallographic directions (say in the y- and
z-directions) the overlap of the wavefunctions of neighboring atoms is much
weaker than in the third direction, |ε1|  |ε2|, |ε3|, and also that |ε2|  |ε3|.
In such systems there is a preferred direction of propagation. Electrons move
in one direction with much higher probability than in the other directions.
The system can be considered electronically quasi-one-dimensional. If the term
proportional to ε1 is approximated by a linear spectrum near the Fermi energy
and the smallest term proportional to ε3 is neglected, the dispersion relation
becomes

εk = ε0 + �vF(±kx − kF) + ε2 cos kyb , (29.5.24)

where the + sign has to be chosen for kx close to kF and the − sign when kx

is close to −kF. Figure 29.12 shows the Fermi surface corresponding to this
spectrum. It is seen that the Fermi surface consists of two parts, which appear
as two sheets.

It is easy to verify that if the left sheet of the Fermi surface is shifted by
the vector

q0 =
(
2kF, π/b

)
, (29.5.25)

it will exactly coincide with the right sheet, provided that, if necessary, the
wave vectors are reduced to the first Brillouin zone. Evaluating the response
function at this q0, the energy denominator vanishes for all k vectors lying
on the left sheet of the Fermi surface and the response function is singular
at q = q0. The same logarithmic singularity appears as in one-dimensional
systems.

Such a divergence may appear not only in quasi-one-dimensional systems.
As has been seen already in Fig. 18.23, the “Fermi sphere” is distorted to a
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q0

q0

ky

kF kF

kx

Fig. 29.12. Fermi surface of a quasi-one-dimensional system with the nesting vector

square in the tight-binding approximation for a two-dimensional square lattice
if the band is half filled. Opposite edges of the Fermi surface are separated by
one of the vectors q0 = (±π/a,±π/a). If the response function is calculated
at this q0, the energy denominator vanishes for every vector k of the edge
of the Fermi surface under consideration and therefore the response function
exhibits similar logarithmic singularities.

These examples show that the divergence is the consequence of the special
shape of the Fermi surface, namely, when the Fermi surface is displaced by an
appropriately chosen wave vector q0, an extended region of the Fermi surface
has to coincide (nest) with another portion of the Fermi surface. Such Fermi
surfaces are said to have the property of nesting. Figure 29.13 shows two
further examples of nested Fermi surfaces.

q
0

q
0

q
0

q
0

q
0

q
0

Fig. 29.13. Nested Fermi surfaces with the nesting vector

When the dielectric response of such systems is calculated at the nesting
vector q0, the energy denominator vanishes along the whole nesting region,
and therefore the response function has the same kind of logarithmic singu-
larity as the one-dimensional model at 2kF. This singularity may lead to the
appearance of a new state, a static charge-density-wave or spin-density-wave
state. This problem will be treated in Chapter 33.
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29.6 Response to Electromagnetic Field

In the foregoing the response of the electron system to an external charge or
scalar potential was studied. This could have been described equivalently as
the response to a longitudinal vector potential, since according to (29.1.15)
both the electric field and the electric displacement are parallel to the wave
vector q. The dielectric function and the conductivity determined in this way
are thus responses to longitudinal perturbations. A different situation is en-
countered when the optical properties are considered, since in a radiating
electromagnetic field the vectors E and H are perpendicular to the direc-
tion of propagation. The ratio of the perpendicular components of D and E
gives the transverse dielectric function ε⊥r = ε⊥/ε0, where ε⊥ was defined in
(29.1.6) and (29.1.8). This quantity is not necessarily the same as the longi-
tudinal dielectric function even if the medium is isotropic. More importantly,
the transverse electromagnetic field couples to the current and therefore the
response of the electron system to such perturbations can be described by the
current–current response function. We will derive the Kubo formula that ex-
presses the conductivity in terms of the retarded current–current correlation
function and will specify it for the optical and DC conductivities.

29.6.1 Interaction with the Electromagnetic Field

The interaction between the electron system and an electromagnetic field can
be derived from the Hamiltonian of the interacting electron system in the pres-
ence of an electromagnetic field. If the field is described by a scalar potential
ϕ(r) and a vector potential A(r), we have

H =
1

2me

Ne∑

i=1

[
pi + eA(ri)

]2 − e

Ne∑

i=1

ϕ(ri) +
1
2

Ne∑

i,j=1
i�=j

ẽ2

|ri − rj | , (29.6.1)

where the kinetic energy is given in terms of the kinetic momentum p + eA
instead of the canonical momentum p. Subtracting from this expression the
terms not related to the electromagnetic field, the remaining terms collected
into

H1 =
∑

i

{
e

2me

[
A(ri) · pi + pi · A(ri)

]
+

e2

2me
A2(ri) − eϕ(ri)

}

(29.6.2)

=
∑

i

{
e�

2ime

[
A(ri) · ∇i + ∇i · A(ri)

]
+

e2

2me
A2(ri) − eϕ(ri)

}

describe the interaction. It is convenient to work in Coulomb (transverse)
gauge, where div A = 0, i.e., the vector potential is perpendicular to the
propagation vector q and the scalar potential vanishes. When only the terms
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linear in the vector potential are kept, the interaction Hamiltonian can be
written in the simple form

H1 = −
∫

ĵ(r) · A(r, t) dr , (29.6.3)

where ĵ(r) is the operator of the current density. To substantiate this state-
ment we recall that the quantum mechanical expression for the operator of
the particle-current density is

ĵn(r) =
1

2me

∑

i

[
piδ(r − ri) + δ(r − ri)pi

]
(29.6.4)

and the electric-current operator is

ĵ(r) = −eĵn(r) = − e

2me

∑

i

[
piδ(r − ri) + δ(r − ri)pi

]
. (29.6.5)

This shows that the perturbing vector potential couples indeed to the cur-
rent. Expressing the vector potential and the current in terms of their Fourier
components, one readily finds

H1 = − 1
V

∑

q

ĵ(−q) · A(q, t) , (29.6.6)

where
ĵ(q) = − e

2me

�

i

∑

i

[∇ie−iq·ri + e−iq·ri∇i

]
, (29.6.7)

or in second-quantized form

ĵ(q) = − e�

me

∑

kσ

(k + 1
2q)c†kσck+qσ = − e�

me

∑

kσ

kc†k−q/2 σck+q/2 σ . (29.6.8)

Before going on we have to recognize that the expression given above
for the current density is valid in the absence of electromagnetic field. In
its presence it has to be modified to make it gauge invariant. The correct
expression should contain the kinetic momentum

ĵ(r) = − e

2me

∑

i

{[
pi + eA(ri)

]
δ(r − ri) + δ(r − ri)

[
pi + eA(ri)

]}

(29.6.9)
= − e

2me

∑

i

[
piδ(r − ri) + δ(r − ri)pi

]− e2

me

∑

i

A(ri)δ(r − ri) .

The total current operator can be decomposed naturally into two terms:

ĵ = ĵp + ĵd , (29.6.10)
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where
ĵp(r) = − e

2me

∑

i

[
piδ(r − ri) + δ(r − ri)pi

]
(29.6.11)

is the so-called paramagnetic current; it is the current component that appears
in the interaction with the electromagnetic field to lowest order in the field,
while the second term,

ĵd(r) = − e2

me

∑

i

A(ri)δ(r − ri) , (29.6.12)

is the diamagnetic current. This term can be written in terms of the electron
density as

ĵd(r) = − e2

me
A(r)n(r) . (29.6.13)

29.6.2 Current–Current Correlations and the Kubo Formula

The total current density is the expectation value of the current operator. In
what follows the notation j will be used for the total current density and ĵ
for the operator of the paramagnetic current. We then have

j(r, t) =
〈
ĵ(r, t)

〉− nee
2

me
A(r, t) , (29.6.14)

if the electric field is time dependent, and the particle density has been re-
placed with its unperturbed mean value. Assuming a periodically varying
space and time dependence for the vector potential with a fixed frequency
and wave vector,

A(r, t) = A(q, t)eiq·r = A(q)ei(q·r−ωt) , (29.6.15)

the current varies with the same periodicity, and the spatial Fourier transform
of the current density is

j(q, t) =
〈
ĵ(q, t)

〉− nee
2

me
A(q, t) . (29.6.16)

The current at a given frequency is the Fourier transform of this quantity,
that is

j(q, ω) =
〈
ĵ(q, ω)

〉− nee
2

me
A(q, ω) . (29.6.17)

For weak external perturbations the current is proportional to the internal
electric field. In the most general case

jα(r, t) =
∑

β

∫
dr′

t∫

−∞
dt′σαβ(r, r′, t− t′)Eβ(r′, t′) , (29.6.18)
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where σαβ is the conductivity tensor. In a homogeneous system the relation-
ship is algebraic between the Fourier components:

j(q, ω) = σ(q, ω)E(q, ω) . (29.6.19)

Note that the relationship between current and electric field is causal; hence,
the Kramers–Kronig relations are satisfied by the real and imaginary parts of
the conductivity:

Reσ(q, ω) =
1
π

P
∞∫

−∞
dω′ Imσ(q, ω′)

ω′ − ω
=

2
π

P
∞∫

0

dω′ ω
′Imσ(q, ω′)
ω′2 − ω2

,

(29.6.20)

Imσ(q, ω) = − 1
π

P
∞∫

−∞
dω′ Reσ(q, ω′)

ω′ − ω
= −2ω

π
P

∞∫

0

dω′ Reσ(q, ω′)
ω′2 − ω2

.

To derive the conductivity, the paramagnetic current has to be calculated
as a linear response to the perturbing electromagnetic field. Since the mean
value of the paramagnetic current has to be calculated and the vector potential
couples to the same paramagnetic component of the current, the response
function that connects the current to the vector potential in the expression

〈ĵα(r, t)〉 = −
t∫

−∞
dt′
∫

dr′Pαβ(r, r′, t− t′)Aβ(r′, t′) (29.6.21)

is the current–current response function:

Pαβ(r, r′, t− t′) = − i
�
θ(t− t′)

〈[
ĵα(r, t), ĵβ(r′, t′)

]
−
〉
. (29.6.22)

In a homogeneous system where the response depends only on r − r′, the
Fourier transform of the paramagnetic current density is

〈
ĵα(q, ω)

〉
= −Pαβ(q, ω)Aβ(q, ω) , (29.6.23)

where

Pαβ(q, ω) = − i
�

1
V

∞∫

−∞
d(t− t′) eiω(t−t′)θ(t− t′)

〈[
ĵα(q, t), ĵβ(−q, t′)

]
−
〉

= − i
�

1
V

∞∫

0

dt eiωt
〈[
ĵα(q, t), ĵβ(−q, 0)

]
−
〉
. (29.6.24)

The retarded response function has to be analytic in the upper complex ω
half-plane. This is achieved by inserting a factor exp(−δt) with a positive



108 29 Electronic Response to External Perturbations

infinitesimal δ in the last integrand. This factor corresponds to switching on
the perturbation adiabatically. We thus have

Pαβ(q, ω) = − i
�

1
V

∞∫

0

dt eiωt−δt
〈[
ĵα(q, t), ĵβ(−q, 0)

]
−
〉
. (29.6.25)

When the average is calculated at finite temperatures in terms of the matrix
elements between the complete set of eigenstates of the unperturbed Hamil-
tonian, we find

Pαβ(q, ω) =
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) 〈Ψn|ĵα(q)|Ψm〉〈Ψm|ĵβ(−q)|Ψn〉
�ω − Em + En + iδ

.

(29.6.26)
The current–current correlation function appears in response to the vector

potential, while the conductivity is defined through the response to the electric
field. We make use of the relationship

E(r, t) = −∂A(r, t)
∂t

(29.6.27)

valid in that gauge where the scalar potential vanishes. For fields varying with
frequency ω, this leads to

E(r, ω) = iωA(r, ω) . (29.6.28)

Substituting this into (29.6.23) and adding the paramagnetic and diamagnetic
contributions we have

σαβ(q, ω) =
i
ω

[
Pαβ(q, ω) +

nee
2

me
δαβ

]
. (29.6.29)

With the explicit form of the current–current response function Pαβ we find
the relationship

σαβ(q, ω) =
1

�ω

1
V

∞∫

0

dt ei(ω+iδ)t
〈[
ĵα(q, t), ĵβ(−q, 0)

]
−
〉

+
inee

2

meω
δαβ

(29.6.30)
known as the Kubo formula.8 In real-space representation

8
R. Kubo, 1957. The name Kubo formula refers more generally to the formula that
expresses the generalized susceptibility as a retarded correlation function. This is
discussed in more detail in Appendix J. The expression for transport coefficients
is often referred to as Green–Kubo formula (M. S. Green, 1952, 1954), while the
expression for the conductivity is sometimes referred to as Kubo–Nakano formula
(H. Nakano. 1956).
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σαβ(r, r′, ω) =
1

�ω

∞∫

0

dt ei(ω+iδ)t
〈[
ĵα(r, t), ĵβ(r′, 0)

]
−
〉

+
ine(r)e2

meω
δαβδ(r − r′) .

(29.6.31)

If the thermal average is written in terms of the matrix elements between
a complete set of states |Ψn〉 of energy En, as in (29.6.26), we find

σαβ(q, ω) =
i
ω

1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) 〈
Ψn

∣∣ĵα(q)
∣∣Ψm

〉〈
Ψm

∣∣ĵβ(−q)
∣∣Ψn

〉

�ω − Em + En + iδ

+
inee

2

meω
δαβ . (29.6.32)

The real part of the frequency-dependent conductivity can then be written as

Reσαβ(q, ω) =
π

ω

1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

)〈
Ψn

∣∣ĵα(q)
∣∣Ψm

〉

× 〈Ψm

∣∣ĵβ(−q)
∣∣Ψn

〉
δ(�ω − Em + En)

=
π

ω

(
1 − e−β�ω

) 1
V

∑

mn

e−βEn

Z

〈
Ψn

∣∣ĵα(q)
∣∣Ψm

〉

× 〈Ψm

∣∣ĵβ(−q)
∣∣Ψn

〉
δ(�ω − Em + En) .

(29.6.33)

Alternatively this expression could have been derived by making use of the
fact that the real part of the conductivity is proportional to the imaginary
part of the current–current response function

Reσαβ(q, ω) = − 1
ω

ImPαβ(q, ω) , (29.6.34)

which in turn can be expressed in terms of the current–current correlation
function using the fluctuation–dissipation theorem outlined in Appendix J:

1
V

∞∫

−∞
dt eiωt

〈
ĵα(q, t)ĵβ(−q, 0)

〉
= − 2�

1 − e−β�ω
ImPαβ(q, ω) . (29.6.35)

We then find that

Reσαβ(q, ω) =
1

2�ω

(
1 − e−β�ω

) 1
V

∞∫

−∞
dt eiωt

〈
ĵα(q, t)ĵβ(−q, 0)

〉
. (29.6.36)

If the thermal average is written in terms of the matrix elements between a
complete set of states with the appropriate weight factor, the time integral
can be performed using
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∞∫

−∞
eiωt dt = 2πδ(ω) (29.6.37)

and we find precisely (29.6.33).

29.6.3 Transverse and Longitudinal Response

In the derivation of the Kubo formula the response to an external electric
field was considered. When the conductivity is calculated, we have to take
into account that the current is the response to the internal field E. We show
that this leads to the expression

σαβ(q, ω) =
i
ω

[
P̃αβ(q, ω) +

nee
2

me
δαβ

]
(29.6.38)

for the conductivity tensor instead of (29.6.29), where P̃αβ(q, ω) is the irre-
ducible part of Pαβ(q, ω).

First, we show that this makes no difference for the transverse response
since transverse fields are not screened. This can be best seen when the
current–current response function is visualized by diagrams. These diagrams
have the same form as the diagrams for the density–density response function;
their analytic expression is, however, different. The current vertex (its analytic
form can be inferred from the second-quantized expression for the current op-
erator) appears at the two end points, where the electron–hole pair is created
and annihilated. Analogous to the density–density response function, one can
distinguish irreducible and reducible processes in the current–current response
function, too. The reducible diagrams can be separated into two unconnected
parts by cutting a single appropriately chosen interaction line. The diagrams
for the full response function form again a geometric progression, in which ir-
reducible polarization bubbles are coupled to each other by interaction lines,
similar to the diagrammatic representation of the density–density correlation
function, except that the first and last bubbles have a current vertex; they
represent the irreducible part of the current–density and the density–current
response functions

Sα(q, ω) = − i
�

1
V

∞∫

0

dt eiωt−δt
〈[
ĵα(q, t), n(−q, 0)

]
−
〉

(29.6.39)

and

Sα(q, ω) = − i
�

1
V

∞∫

0

dt eiωt−δt
〈[
n(q, t), ĵα(−q, 0)

]
−
〉
. (29.6.40)

Denoting their irreducible parts by S̃α(q, ω) and S̃α(q, ω), respectively, and
the irreducible part of the current–current response function by P̃αβ , we have
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Pαβ(q, ω) = P̃αβ(q, ω) + S̃α(q, ω)
4πẽ2/q2

1 − (4πẽ2/q2)Π̃(q, ω)
S̃β(q, ω) . (29.6.41)

The current–density response function being a vector, its components perpen-
dicular to q vanish by symmetry in an isotropic system,

S⊥(q, ω) = S̃⊥(q, ω) = 0 , (29.6.42)

and therefore
P⊥(q, ω) = P̃⊥(q, ω) . (29.6.43)

This shows that there are no polarization corrections to the transverse re-
sponse; the transverse vector potential and transverse fields are not screened.
Thus

σ⊥(q, ω) =
i
ω

[
P⊥(q, ω) +

nee
2

me

]
=

i
ω

[
P̃⊥(q, ω) +

nee
2

me

]
. (29.6.44)

The situation is different for the longitudinal response. To see that we
rewrite the interaction of the electron system with an external potential,

H1 =
∫
n(r)Vext(r, t) dr = −e

∫
n(r)ϕext(r, t) dr

= − e

V

∑

q

n(−q)ϕext(q, t) ,
(29.6.45)

in terms of a longitudinal vector potential by making use of the gauge invari-
ance of electrodynamics. The same longitudinal electric field is obtained from
the longitudinal vector potential defined by

− gradϕext(r, t) = −∂Aext(r, t)
∂t

. (29.6.46)

Assuming that the longitudinal field varies periodically in space and time we
have the relationship

qϕext(q, ω) = −ωAext(q, ω) (29.6.47)

between the Fourier components. On the other hand, the number density and
the particle-current density have to satisfy the continuity equation

∂n(r, t)
∂t

+ div ĵn(r, t) = 0 (29.6.48)

that follows from the particle-number (charge) conservation. This implies

ω n(q, t) = q · ĵn(q, t) . (29.6.49)

Substituting these relations into (29.6.45) we see that in the longitudinal case
as well
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H1 =
e

V

∑

q

ĵn(−q) · A(q, t) = − 1
V

∑

q

ĵ(−q) · A(q, t)

= −
∫

ĵ(r)A(r, t) dr .

(29.6.50)

If the vector potential and the current are parallel to q, the relationship
〈
ĵ(q, ω)

〉
= −P‖(q, ω)Aext(q, ω) (29.6.51)

defines the longitudinal current–current response function, and the total cur-
rent is given by

j(q, ω) = −
[
P‖(q, ω) +

nee
2

me

]
Aext(q, ω) . (29.6.52)

As we know, the longitudinal field (potential) is screened and the physically
relevant internal vector potential and field are

A(q, ω) =
1

εr(q, ω)
Aext(q, ω) , E(q, ω) =

1
εr(q, ω)

Eext(q, ω) . (29.6.53)

Using (29.6.28) that relates the vector potential to the electric field we get

j(q, ω) =
i
ω
εr(q, ω)

[
P‖(q, ω) +

nee
2

me

]
E(q, ω) , (29.6.54)

from which

σ‖(q, ω) =
i
ω
εr(q, ω)

[
P‖(q, ω) +

nee
2

me

]
. (29.6.55)

The effect of screening appears in the factor εr(q, ω).
To get a simpler expression we rewrite the longitudinal conductivity in

terms of the density–density response function. For that we multiply both
sides of (29.6.52) by q, rewrite the left-hand side in terms of the number
density, and express the vector potential on the right-hand side by the scalar
potential using (29.6.47). This leads to

− eω
〈
n(q, ω)

〉
=
[
P‖(q, ω) +

nee
2

me

]
q2

ω
ϕext(q, ω) . (29.6.56)

On the other hand, the induced charge density and the external potential
are related by the density–density response function Π(q, ω). Comparing the
above expression with (29.1.24) we find

P‖(q, ω) +
nee

2

me
=
ω2e2

q2
Π(q, ω) . (29.6.57)

This relationship can be readily checked alternatively by evaluating the
response functions directly. Using (29.1.31) and (29.6.26) and
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〈Ψn|q · ĵ(q)|Ψm〉 =
e

�
(En − Em)〈Ψn|n(q)|Ψm〉 (29.6.58)

that follows from the continuity equation, we find

ω2e2

q2
Π(q, ω) − P‖(q, ω) =

e2

�2q2
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

)
(29.6.59)

× (�ω + Em − En

)∣∣〈Ψn|n(q)|Ψm〉∣∣2

=
e2

�2q2
1
V

∑

mn

2
e−βEn

Z
(Em − En)

∣∣〈Ψn|n(q)|Ψm〉∣∣2 .

On the other hand, the dynamical structure factor S(q, ω) is known to satisfy
the sum rule [see (J.2.20)]

1
2π

∞∫

−∞
ωS(q, ω)dω =

�q2

2me
. (29.6.60)

Substituting the spectral representation (28.4.92) into this equation, we find

1
�Ne

∑

mn

e−βEn

Z
(Em − En)

∣∣〈Ψn|n(q)|Ψm〉∣∣2 =
�

2q2

2me
. (29.6.61)

Combining this with (29.6.59) we in fact recover (29.6.57).
Inserting now (29.6.57) into (29.6.52) and using (29.6.28) valid for the

longitudinal component, we find

j(q, ω) = −ω
2e2

q2
Π(q, ω)Aext(q, ω) = −ω

2e2

q2
Π(q, ω)εr(q, ω)A(q, ω)

=
iωe2

q2
Π(q, ω)εr(q, ω)E(q, ω) , (29.6.62)

from which we get

σ‖(q, ω) =
iωe2

q2
Π(q, ω)εr =

iωe2

q2
Π̃(q, ω) . (29.6.63)

When (29.6.41) is applied to the longitudinal component,

P‖(q, ω) = P̃‖(q, ω) + S̃‖(q, ω)
4πẽ2/q2

1 − (4πẽ2/q2)Π̃(q, ω)
S̃‖(q, ω) . (29.6.64)

The longitudinal current–density response function appearing here can be
expressed using the continuity equation via the density–density response. We
readily find

S‖(q, ω) = −e ω
q
Π(q, ω) . (29.6.65)
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When it is written in terms of the irreducible parts, we have

S‖(q, ω) = S̃‖(q, ω) + S̃‖(q, ω)
4πẽ2/q2

1 − (4πẽ2/q2)Π̃(q, ω)
Π̃(q, ω)

=
S̃‖(q, ω)

1 − (4πẽ2/q2)Π̃(q, ω)
,

(29.6.66)

and hence
S̃‖(q, ω) = −e ω

q
Π̃(q, ω) . (29.6.67)

Similar relations hold for the density–current response function. To check
them we have to recognize that

Sα(q, ω) = S∗
α(q, ω)|δ→−δ , (29.6.68)

which follows from the spectral representations

Sα(q, ω) =
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) 〈Ψn|ĵα(q)|Ψm〉〈Ψm|n(−q)|Ψn〉
�ω − Em + En + iδ

(29.6.69)
and

Sα(q, ω) =
1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

) 〈Ψn|n(q)|Ψm〉〈Ψm|ĵα(−q)|Ψn〉
�ω − Em + En + iδ

.

(29.6.70)
Since Π(q, ω) itself satisfies the relation

Π(q, ω) = Π∗(q, ω)|δ→−δ , (29.6.71)

which can be best seen from the spectral representation in (29.1.31), we have

S‖(q, ω) = −e ω
q
Π(q, ω) . (29.6.72)

When this is written in terms of the irreducible parts we find

S‖(q, ω) = S̃‖(q, ω) + Π̃(q, ω)
4πẽ2/q2

1 − (4πẽ2/q2)Π̃(q, ω)
S̃‖(q, ω)

=
S̃‖(q, ω)

1 − (4πẽ2/q2)Π̃(q, ω)
,

(29.6.73)

and hence
S̃‖(q, ω) = −e ω

q
Π̃(q, ω) . (29.6.74)

Combining these expressions with (29.6.64) we find
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P̃‖(q, ω) +
nee

2

me
=
ω2e2

q2
Π̃(q, ω)

= εr(q, ω)
[
P‖(q, ω) +

nee
2

me

]
,

(29.6.75)

which is equivalent to the statement that the longitudinal field is screened.
When this relationship is used for the conductivity in (29.6.55) we get

σ‖(q, ω) =
i
ω

[
P̃‖(q, ω) +

nee
2

me

]
. (29.6.76)

Thus, indeed, it is the irreducible part of the current–current response that
appears in the Kubo formula for the longitudinal conductivity.

29.6.4 Dielectric Tensor and Conductivity

It was mentioned in Chapter 16 that the conductivity and the dielectric
constant are not independent of each other. Indeed (29.6.63) shows that the
longitudinal conductivity can be expressed in terms of the irreducible density–
density response function, which in turn is simply related to the dielectric
function. We thus find

ε‖r(q, ω) = 1 +
i
ε0ω

σ‖(q, ω) , (29.6.77)

which is exactly the relationship we have found in (16.1.64).
A similar equation holds for the transverse components. To derive it

we combine Maxwell’s first equation (Ampère’s law) with Ohm’s law. The
Maxwell equation is written either as

curl B = μ0

(
ε0
∂E

∂t
+ j

)
(29.6.78)

with the full electric-current density or as

curl H =
∂D

∂t
+ jext , (29.6.79)

where only the external current appears on the right-hand side. The difference
between the electric displacement and the electric field is due to the current
jind induced by the electromagnetic field

∂D

∂t
= ε0

∂E

∂t
+ jind . (29.6.80)

Inserting (29.6.19) into (29.6.80) and using (29.1.5) we find

εαβ(q, ω) = ε0δαβ +
i
ω
σαβ(q, ω) , (29.6.81)
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which is nothing else than the generalization of (16.1.64). Thus the trans-
verse component of the dielectric function and the transverse conductivity
are related by

ε⊥r(q, ω) = 1 +
i
ε0ω

σ⊥(q, ω) . (29.6.82)

29.6.5 Transverse Dielectric Function of the Electron Gas

An explicit expression can be derived for the transverse dielectric function by
substituting (29.6.29) into (29.6.81). When the spectral representation of the
current–current response function is used,

εαβ(q, ω) = ε0δαβ − 1
ω2

[
Pαβ(q, ω) +

nee
2

me
δαβ

]

= ε0

(
1 − ωp

ω2

)
δαβ +

i
ω2

1
V

∑

mn

(
e−βEn

Z
− e−βEm

Z

)

× 〈Ψn|ĵα(q)|Ψm〉〈Ψm|ĵβ(−q)|Ψn〉
�ω − Em + En + iδ

.

(29.6.83)

Choosing the propagation vector q of the radiation field in the z-direction and
calculating the response in the x-direction for free electrons, the transverse
dielectric function has a form similar to the Lindhard function

ε⊥r(q, ω) = 1 − ω2
p

ω2
− e2

ε0m2
eω

2

2
V

∑

k

�
2k2

x

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (29.6.84)

Comparison with (29.4.6) shows two differences between the formulas for the
longitudinal and transverse components of the dielectric function. One is an
extra term in the transverse component due to the diamagnetic current. The
other is that the matrix element of the current appears in place of the dipole
matrix element. We note that if the calculation is done for Bloch electrons,
we find

ε⊥r(q, ω) = 1 − nee
2

ε0meω2
− e2

ε0m2
eω

2

2
V

∑

knn′

f0(εnk) − f0(εn′k+q)
�ω − εn′k+q + εnk + iδ

× ∣∣〈ψ(0)
n′k+q

∣∣ 1
2

(
pxeiq·r + eiq·rpx

)∣∣ψ(0)
nk

〉∣∣2 , (29.6.85)

where the matrix element is
〈
ψ

(0)
n′k+q

∣∣ 1
2

(
peiq·r + eiq·rp

)∣∣ψ(0)
nk

〉
=

1
v0

∫

v0

u∗n′k+q(r) (29.6.86)

×
[

�

i
∇ + �k + 1

2�q

]
un,k(r) dr .

The transverse dielectric function can be calculated for free electrons in
closed form. For the real part we have
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ε1⊥(q, ω) = 1 − q2TF
q2

{
1
8

(
�vFq

�ω

)2
[(

εq

�vFq

)2

+ 3
(

�ω

�vFq

)2

+ 1

]
(29.6.87)

− q

4kF

( εF
�ω

)2
([

1 −
(

�ω + εq

�vFq

)2
]

ln
(

�ω + �vFq + εq

�ω − �vFq + εq

)

+

[
1 −
(

�ω − εq

�vFq

)2
]

ln
(

�ω − �vFq − εq

�ω + �vFq − εq

))}
.

The imaginary part is

ε2⊥(q, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

4
�vFq

�ω

q2TF
q2

[
1 −
(

�ω

�vFq

)2

−
(

εq

�vFq

)2
]

for 0 ≤ �ω < �vFq − εq,

π

4
q

kF

( εF
�ω

)2
[
1 −
(

�ω − εq

�vFq

)2
]
q2TF
q2

for �vFq − εq ≤ �ω ≤ �vFq + εq,

0 for �vFq + εq ≤ �ω ,

(29.6.88)

if q < 2kF, while for q > 2kF

ε2⊥(q, ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ �ω < εq − �vFq,

π

4
kF

q

( εF
�ω

)2
[
1 −
(

�ω − εq

�vFq

)2
]
q2TF
q2

for εq − �vFq ≤ �ω ≤ εq + �vFq,

0 for εq + �vFq ≤ �ω .

(29.6.89)

29.7 Optical and DC Conductivity

The formulas derived above will now be applied to calculate the conductivity
in two special cases, at optical frequencies and in the limit ω = 0, to get the
optical and the DC conductivity, respectively.

29.7.1 Optical Conductivity

Since the momentum transfer during the emission or absorption of an optical
photon is much less than the typical momenta of electrons in solids, the rel-
evant quantities in the description of optical properties are the q → 0 limits
of the dielectric function and the conductivity. The real part of the quantity

σ⊥(ω) = lim
q→0

σ⊥(q, ω) (29.7.1)



118 29 Electronic Response to External Perturbations

is called optical conductivity. It characterizes the response of the electron sys-
tem to an electromagnetic radiation of frequency ω. From the spectral repre-
sentation of the Kubo formula [see (29.6.33)] we find

Reσ⊥(ω) =
π

ω

(
1 − e−βω

) 1
V

∑

mn

e−βEn

Z

∣∣〈Ψn|ĵx|Ψm

〉∣∣2δ(�ω − Em +En) .

(29.7.2)
This form allows a simple physical interpretation of the optical conductivity:
It is the power absorbed from the electromagnetic field at frequency ω.

An alternative, much used form of the Kubo formula, can be derived for
the q = 0 component in uniform systems, if the current is written as the time
derivative of the operator

Q = −e
∑

i

ri , (29.7.3)

since
Q̇ =

i
�
[H0,Q]− = − e

me

∑

i

pi = ĵ . (29.7.4)

Using this in (29.6.30) we find

σαβ(ω) =
1

�ω

1
V

∞∫

0

dt ei(ω+iδ)t d
dt

〈[
Qα(t), ĵβ(0)

]
−
〉

+
inee

2

meω
δαβ , (29.7.5)

which after integration by parts yields

σαβ(ω) = − i
�

1
V

∞∫

0

dt ei(ω+iδ)t
〈[
Qα(t), ĵβ(0)

]
−
〉

− 1
�ω

1
V

〈[
Qα(0), ĵβ(0)

]
−
〉

+
inee

2

meω
δαβ .

(29.7.6)

Making use of the canonical commutation relations we find

[
Qα(0), ĵβ(0)

]
− =

i�e2Ne

me
. (29.7.7)

Hence the second and third terms cancel each other exactly. The thermal
average in the first term can be written in terms of the equilibrium density
matrix ρ0 = e−βH/Z of the unperturbed system. After a cyclic permutation
of the operators in the trace

σαβ(ω) = − i
�

1
V

∞∫

0

dt ei(ω+iδ)t Tr
(
ρ0

[
Qα(t), ĵβ(0)

]
−
)

=
i
�

1
V

∞∫

0

dt ei(ω+iδ)t Tr
([
Qα(t), ρ0

]
−ĵβ(0)

)
.

(29.7.8)
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This expression can be further manipulated by using the operator identity

eβH0A(t)e−βH0 −A(t) =
1
�

β�∫

0

dλ eλH0/�
[H0,A(t)

]
−e−λH0/�

=
1
�

β�∫

0

dλ
[H0,A(t− iλ)

]
− ,

(29.7.9)

which is equivalent to

[A(t), ρ0

]
− = −iρ0

β�∫

0

dλȦ(t− iλ) , (29.7.10)

where Ȧ denotes the time derivative of A. Applying this transformation in
(29.7.8) and taking into account that the derivative of Q is the current, we
find

σαβ(ω) =
1
�

1
V

∞∫

0

dt

β�∫

0

dλ ei(ω+iδ)t
〈
ĵα(t− iλ)ĵβ(0)

〉
, (29.7.11)

or after a rearrangement of the operators

σαβ(ω) =
1
�

1
V

∞∫

0

dt

β�∫

0

dλ ei(ω+iδ)t
〈
ĵβ(−iλ)ĵα(t)

〉
. (29.7.12)

29.7.2 Optical Conductivity of the Electron Gas

We note that in the long-wavelength (q → 0) limit, when there is no preferred
direction in an isotropic system, the longitudinal and transverse components
of the dielectric function and of the conductivity become identical,

ε‖(0, ω) = ε⊥(0, ω) and σ‖(0, ω) = σ⊥(0, ω) . (29.7.13)

We will therefore use the expressions derived for the longitudinal component
of the conductivity tensor given in (29.6.63), although, strictly speaking, the
optical conductivity is related to the transverse response. In the RPA Π̃ is
replaced with Π0. Looking at (29.2.46) we see that

Π0(q, ω) =
2
V

∑

k

f0(εk)
2(εk+q − εk)

(�ω + iδ)2 − (εk+q − εk)2
, (29.7.14)

from which in the vFq � ω limit we obtain
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Π 0(q, ω) ≈ neq
2

meω2
. (29.7.15)

Inserting this expression into (29.6.63) gives

σ(ω) = i
nee

2

meω
. (29.7.16)

As it stands, a purely imaginary conductivity with no real part cannot be
true; it does not satisfy the Kramers–Kronig relations. Assuming that the
above form is valid for the imaginary part, the Kramers–Kronig relations give
vanishing real part at nonzero frequencies, but a finite, singularly large value
at ω = 0:

Reσ(ω) = π
nee

2

me
δ(ω) . (29.7.17)

This sharp peak in the real part of the conductivity is the Drude peak. The
real and imaginary parts can be combined into the expression

σ(ω) = i
nee

2

me(ω + iδ)
. (29.7.18)

One can show that this expression is valid more generally whenever scattering
by lattice vibrations or by impurities can be neglected, and only the electron–
electron interaction is taken into account since then energy is not dissipated
in the system.

The finite lifetime of electron states due to scattering by impurities or
lattice vibrations will modify this situation. According to (29.2.89) Π̃ can be
approximated by

Π̃ (q, ω) =
neq

2

meω(ω + i/τ)
, (29.7.19)

which leads to the result known from the Drude model

σ(ω) = i
nee

2

me(ω + i/τ)
=

nee
2τ

me(1 − iωτ)
(29.7.20)

and

Reσ(ω) =
nee

2τ

me

1
1 + (ωτ)2

=
σ0

1 + (ωτ)2
. (29.7.21)

The Drude peak is broadened by the scattering processes, the width is propor-
tional to 1/τ , and the optical conductivity decays as 1/ω2 for high frequencies:

Reσ(ω) ≈ nee
2

meω2τ
. (29.7.22)

This form of frequency-dependent conductivity satisfies the conductivity sum
rule
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∞∫

0

dωReσ(ω) =
πnee

2

2me
(29.7.23)

derived in (J.2.11).
When a more realistic band structure is considered, photons can be ab-

sorbed or emitted in association with interband transitions in the electron
system. Thus, as has been discussed in Chapter 25, the imaginary part of the
dielectric function and hence the optical conductivity gives information about
the joint density of states of the bands between which the transition takes
place. The Van Hove singularities of the joint density of states produce sharp
structures in σ(ω). Similar sharp features may appear in the dielectric func-
tion and optical conductivity at frequencies corresponding to the absorption
or emission of optical phonons. Nevertheless, the optical f -sum rule has to be
satisfied.

Note that if the transverse response is studied, the contribution given in
(29.7.16) and hence the Drude peak arises from the diamagnetic term. Its
contribution to the real part of the conductivity is singular and proportional
to δ(ω), even when scattering processes are taken into account. This singu-
larity is, however, unphysical. By considering the properties of the irreducible
current–current response function one can show that its real part cancels ex-
actly the contribution of the diamagnetic term in the ω → 0 limit, and the
imaginary part is proportional to ω. This then leads to a finite conductivity
even at ω = 0.

29.7.3 DC Conductivity

The DC conductivity is obtained by taking the limit q → 0 first and the limit
ω → 0 afterward in (29.6.33).9 Using the relationship

lim
ω→0

1
ω

(
1 − e−β�ω

)
= β� , (29.7.24)

we have

Reσαβ =
1

2kBT

1
V

∞∫

−∞
dt
〈
ĵα(t)ĵβ

〉
(29.7.25)

=
π�

kBT

1
V

∑

mn

e−βEn

Z

〈
Ψn

∣∣ĵα
∣∣Ψm

〉〈
Ψm

∣∣ĵβ
∣∣Ψn

〉
δ(Em − En) .

9 We note that the order of the limits is different when the static dielectric constant
or the static magnetic susceptibility is calculated. The limit ω → 0 has to be
performed first for finite q, and only after that we can take the limit q → 0.
Otherwise the Lindhard function gives zero, because the number of particles and
the magnetization are conserved quantities.
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Although (29.7.25) is a seemingly simple expression, the explicit calcula-
tion of the conductivity using this formula is not easy and has only been done
in a few simple cases. The difficulties, which are related to the fact that it does
not suffice to carry out the calculations in some low orders of perturbation
theory, can be readily seen when scattering by impurities is considered.

According to the lowest order Born approximation the inverse collision
time is proportional to the absolute square of the matrix element of the scat-
tering potential Vimp:

1
τ

=
2π
�
niρ(εF) |Vimp|2 , (29.7.26)

where ni is the concentration of impurities. Thus, a second-order calculation
of the current–current response would give a conductivity that is inversely
proportional to the collision time. We know, however, that according to the
celebrated Drude formula

σ =
nee

2τ

me
(29.7.27)

the conductivity is proportional to the collision time of electrons. This result
can be obtained in a perturbative treatment of the response function only if
the contribution of the scattering processes are summed up to infinite order.
A partial summation can be achieved by including a finite lifetime for the
propagating electrons and holes when calculating the current–current response
function. This approximation corresponds to taking into account the so-called
self-energy corrections, but neglecting the processes that would directly or
indirectly couple the electron and the hole. When the form

GR(k, ω) =
1

�ω − εk + i�/2τ
(29.7.28)

is used for the retarded Green function, we obtain

P̃αα = − ne

me

1
1 − iω/τ

(29.7.29)

for the response function. This would yield a Drude-like expression for the con-
ductivity with this τ as the relaxation time. This result is, however, still not
correct. To describe the contribution of the scattering processes to the conduc-
tivity properly, the so-called vertex corrections have to be taken into account
as well. To understand their role we recall that the correct expression for the
conductivity contains the so-called transport relaxation time, which differs
from the usual lifetime of electrons. The scattering processes are weighted
by a factor 1 − cos θ, where θ is the change in the direction of the scattered
electron, when the transport relaxation time is calculated. This factor takes
into account the effectiveness of losing current due to scattering.
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29.7.4 The Kubo–Greenwood Formula

A more convenient, simpler, and, in some cases, more easily applicable ex-
pression can be obtained by the following considerations: We neglect the dia-
magnetic term since it gives contribution only to the imaginary part and

ĵ = −e �

imeV

Ne∑

i=1

∇i (29.7.30)

is used for the current operator, while the interaction with the electromagnetic
field is expressed in terms of the electric field instead of the vector potential
in the form

Hext = − �e

meω

Ne∑

i=1

E · ∇i . (29.7.31)

To calculate the expectation value of the current we start from

j = 〈ĵ〉 = Tr {ρ(1)ĵ} , (29.7.32)

where ρ(1) is the first-order correction to the density matrix due to the inter-
action with the electromagnetic field. According to (J.1.35)

ρ(1)(t) =
i
�

t∫

−∞
e−iH0(t−t′)/�

[
ρ0,Hext(t′)

]
−eiH0(t−t′)/� dt′ . (29.7.33)

The trace in (29.7.32) is evaluated using a complete set of many-body eigen-
states |Ψn〉. Insertion of a complete set of intermediate states gives

j =
∑

mn

〈Ψn|ĵ|Ψm〉〈Ψm|ρ(1)|Ψn〉 . (29.7.34)

The matrix elements of the current are obtained from (29.7.30), while the
matrix elements of the density matrix can be evaluated using (29.7.33). For
its temporal Fourier transform we find

〈Ψm|ρ(1)|Ψn〉 =
(

e−βEn

Z
− e−βEm

Z

) 〈Ψm|Hext|Ψn〉
�ω − Em + En + iδ

. (29.7.35)

In the one-electron approximation the many-body states are Slater deter-
minants built up from single-particle functions ϕn of energy εn. The real part
of the conductivity then takes the form

Reσαβ =
πe2�

2

m2
eω

1
V

∑

mn

[
f0(εm) − f0(εn)

]
(29.7.36)

× 〈ϕn|∇α|ϕm〉〈ϕm|∇β |ϕn〉δ(εm − εn − �ω) ,
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where f0 is the Fermi distribution function. Assuming that the matrix element
can be approximated by an average matrix element depending only on the
energy of the state, the summation over the states can be converted to an
integral over energy where the density of states appears in the integrand:

Reσαβ =
πe2�

2

m2
eω

∫
dε ρ(ε)ρ(ε+ �ω)

[
f0(ε+ �ω) − f0(ε)

]

× 〈ϕε|∇α|ϕε+�ω〉〈ϕε+�ω|∇β |ϕε〉 .
(29.7.37)

In the static, ω → 0 limit, the difference between the Fermi distribution
functions is replaced by the derivative ∂f0/∂ε. Finally, in isotropic systems,
the DC conductivity can be written in the form

σ = −
∫
σε(0)

∂f0
∂ε

dε , (29.7.38)

where

σε(0) =
πe2�

2

m2
e

[
ρ(ε)
]2
∣∣∣∣

〈
ϕε

∣∣∣∣
∂

∂x

∣∣∣∣ϕε

〉∣∣∣∣
2

. (29.7.39)

This is the Kubo–Greenwood formula.10 Besides the density of states the con-
ductivity is determined by the matrix element of the operator ∂/∂x. As
expected on physical grounds and expressed mathematically by the factor
−∂f0/∂ε, only electrons lying in the neighborhood of the Fermi energy in a
range of width kBT contribute to the integral. Thus it suffices to know the
wavefunction of states near the Fermi energy.

The situation is different in semiconductors. The states responsible for
conduction are at the bottom of the conduction band or at the top of the
valence band, typically much farther away from the chemical potential than
kBT , i.e., ε − μ  kBT for electrons in the conduction band. In this limit
classical statistics can be used instead of Fermi statistics and

∂f0(ε)
∂ε

≈ −f0(ε)
kBT

. (29.7.40)

The conductivity can then be written in the form

σ = e

∫
μ(ε)n(ε) dε , (29.7.41)

where
μ(ε) =

σε(0)
ekBTρ(ε)

(29.7.42)

is the mobility and
n(ε) = ρ(ε)f0(ε) (29.7.43)

10
D. A. Greenwood, 1958.
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is the density of electrons. If σε vanishes for ε < εc, and this is the case for
extrinsic n-type semiconductors, there are no mobile charge carriers below the
conduction band. The conductivity then has an activated form

σ ≈ σεce
−(εc−μ)/kBT . (29.7.44)

A similar activated form is obtained for disordered systems if the electron
states near the Fermi energy are localized and do not contribute to the con-
duction.

29.8 Response to Magnetic Perturbations

The external perturbations considered until now couple identically to electrons
of both spin orientations and give rise to a change in the electronic density
or generate a current. An external magnetic field couples to the magnetic-
moment density acting oppositely on electrons of opposite spin and results in
a net magnetization when the field is homogeneous in space. For weak enough
disturbance the response to the magnetic field is linear in the field strength,
and the proportionality factor is the magnetic susceptibility. Because this
response depends on the internal dynamics of the system, the magnetic sus-
ceptibility, like the dielectric function, is sensitive to the electron–electron
interaction. We will first calculate how, in a simple Hubbard model of inter-
acting electrons, the Pauli susceptibility is modified by this interaction. Then
the dynamical susceptibility will be studied. Finally, the Ruderman–Kittel os-
cillations, the magnetic analog of the Friedel oscillations, will be considered.

29.8.1 Stoner Enhancement of the Susceptibility

The dielectric response of the electron gas was calculated analytically for
electrons moving in a uniform neutralizing background, interacting with each
other by Coulomb repulsion. In this model, as will be seen in Chapter 30,
magnetic fluctuations are weak at the usual metallic densities. Magnetic in-
stability may appear only at very low densities, for large values of rs. To get
a more realistic picture of the magnetic properties of metals we should con-
sider electrons in d or f states rather than free electrons. Such electrons can
reasonably be described in the tight-binding approximation, and a Hubbard-
like model may be more appropriate. We will therefore study the influence of
electron–electron interaction on the susceptibility in the Hubbard model.

The Hartree–Fock theory of the Hubbard model was presented in the pre-
vious chapter. We saw that the quasiparticle energies are

ε̃kσ = εk + U〈n−σ〉 , (29.8.1)

where the average number of particles with spin σ and per unit volume has
to be determined self-consistently from
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〈nσ〉 =
1
V

∑

k

〈nkσ〉 =
1
V

∑

k

f0(ε̃kσ) . (29.8.2)

When an external field H is applied, an additional spin-dependent shift ap-
pears in the single-particle energies. Choosing the quantization axis in the
direction of the field, the quasiparticle energies are modified to

ε̃k↑ = εk + U〈n↓〉 − 1
2geμBμ0H, ε̃k↓ = εk + U〈n↑〉 + 1

2geμBμ0H, (29.8.3)

where the densities 〈n↑〉 and 〈n↓〉 have to be determined self-consistently for
a fixed total electron density

ne =
Ne

V
= 〈n↑〉 + 〈n↓〉 . (29.8.4)

The magnetization is obtained from the difference of the number of parti-
cles with up- and down-spin orientations:

M = 1
2geμB

[〈n↑〉 − 〈n↓〉
]

= 1
2geμB

1
V

∑

k

[〈nk↑〉 − 〈nk↓〉
]

= 1
2geμB

1
V

∑

k

[
f0(ε̃k↑) − f0(ε̃k↓)

]
.

(29.8.5)

For weak magnetic fields the Fermi distribution functions can be expanded to
linear order in the energy correction yielding

M = 1
2geμB

1
V

∑

k

∂f0(εk)
∂εk

[
U〈n↓〉 − 1

2geμBμ0H − U〈n↑〉 − 1
2geμBμ0H

]
.

(29.8.6)
Replacing the summation by an integral, we find

M = 1
2geμB

∫
∂f0(ε)
∂ε

[
U〈n↓〉 − U〈n↑〉 − geμBμ0H

]
ρσ(ε) dε , (29.8.7)

where ρσ(ε) is the density of states for one spin orientation. At low temper-
atures, where the thermal corrections in the Sommerfeld expansion can be
neglected, the leading term gives

M = − 1
2geμB

[
U〈n↓〉 − U〈n↑〉 − geμBμ0H

]
ρσ(εF) . (29.8.8)

The quantity 〈n↑〉 − 〈n↓〉 on the right-hand side can be expressed by the
magnetization using (29.8.5). We then find

M = Uρσ(εF)M + 1
2g

2
eμ

2
Bμ0ρσ(εF)H, (29.8.9)

from which

M =
1
2g

2
eμ

2
Bμ0ρσ(εF)

1 − Uρσ(εF)
H. (29.8.10)



29.8 Response to Magnetic Perturbations 127

The susceptibility is then

χ =
1
2g

2
eμ

2
Bμ0ρσ(εF)

1 − Uρσ(εF)
. (29.8.11)

The expression in the numerator is just the Pauli susceptibility of the free-
electron gas derived in (16.2.113). Coulomb repulsion gives rise to its increase
through the factor S = 1/[1 − Uρσ(εF)] which is known as the Stoner en-
hancement factor.11

The unpolarized, paramagnetic state, where ε̃k↑ = ε̃k↓ and 〈n↑〉 = 〈n↓〉,
is stable without external magnetic field, if Uρσ(εF) < 1. The Stoner factor
is positive and the susceptibility is indeed enhanced. When the interaction
is strong enough or the density of states is large, the paramagnetic state be-
comes unstable even without external magnetic field. A polarized, ferromag-
netic state may appear in which the equality of the number of electrons with
opposite spin orientations is broken spontaneously. The condition Uρσ(εF) = 1
obtained for this transition in the mean-field approximation is, however, only
a rough estimate. Transition to a homogeneous magnetic state cannot so eas-
ily occur when correlations between electrons are taken into account. Without
going into these details we will study the properties of the broken-symmetry
state in Chapter 33.

Materials in which the symmetry is not broken spontaneously but Uρσ(εF)
is close to the instability threshold are of particular interest. Being close to
the threshold where the system becomes ferromagnetic, these metals are called
nearly ferromagnetic. As indicated by the large Stoner enhancement factor,
magnetic fluctuations are strongly enhanced in them and they give rise to
modifications in the thermodynamic properties (e.g., the temperature depen-
dence of the specific heat) compared to ordinary metals. Among the elemental
metals platinum and palladium fall into this class. The best estimate for pal-
ladium is Uρσ(εF) ≈ 0.9.

29.8.2 Dynamical Susceptibility

Having determined the static susceptibility we now turn to the problem where
a weak, spatially and temporarily varying magnetic field Hext(r, t) is applied
to the system in addition to a stronger uniform, static magnetic field H. The
uniform field shifts the one-particle energies of up- and down-spin electrons
oppositely and gives rise to a spatially uniform magnetization. We will study
how the magnetization is modified by the weak oscillating field.

Assuming that the weak field can be treated as a perturbation, the per-
turbation Hamiltonian is

11
E. C. Stoner, 1938.
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H1(t) = −μ0

∫
Hext(r, t) · m(r) dr

= −μ0

V

∑

q

Hext(q, t) · m(−q) ,
(29.8.12)

where m(r) is the operator of the magnetic-moment density, its expectation
value is the local magnetization, and m(q) is its Fourier transform. For sim-
plicity we assume that the perturbing field varies in space and time with wave
vector q and frequency ω. In response to this perturbation a magnetization
component appears that has the same wave vector and frequency:

〈
m(q, ω)

〉
= χ(q, ω)Hext(q, ω) , (29.8.13)

where χ(q, ω) is the dynamical susceptibility. It follows from linear response
theory that apart from a factor μ0 the components of the susceptibility ten-
sor are the temporal Fourier transforms of the magnetization–magnetization
response function:

χαβ(q, t− t′) =
i
�
μ0θ(t− t′)

1
V

〈[
mα(q, t),mβ(−q, t′)

]
−
〉
. (29.8.14)

This equation is the analog of the relationship between the electrical polariz-
ability and the density–density response function.

Choosing the weak frequency-dependent field in the same (z) direction as
the uniform field, the parallel (longitudinal) susceptibility is defined by

χ‖(q, ω) =
〈mz(q, ω)〉
Hz

ext(q, ω)
. (29.8.15)

This response function is obtained by using the z-component of the magnetic-
moment density in (29.8.14):

χ‖(q, t− t′) =
i
�
μ0θ(t− t′)

1
V

〈[
mz(q, t),mz(−q, t′)

]
−
〉
. (29.8.16)

When the spin density is used instead of the magnetic-moment density, we
have

χ‖(q, ω) =
geμB〈sz(q, ω)〉
Hz

ext(q, ω)
, (29.8.17)

and accordingly
χ‖(q, ω) = g2

eμ
2
Bμ0Σ‖(q, ω) , (29.8.18)

where Σ‖(q, ω) is the Fourier transform of the spin-density response function:

Σ‖(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′)−δ(t−t′) 1
V

〈[
sz(q, t), sz(−q, t′)

]
−
〉
.

(29.8.19)
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The magnetization–magnetization response function is a retarded Green
function and as such it can be calculated using the methods of many-body
theory. In principle, one should sum up all processes to all orders of perturba-
tion theory. Here we will apply the much simpler equation-of-motion method
described in Appendix J. We will study how the expectation value of sz(q, ω)
changes due to the external perturbation.

If the magnetization is written in second-quantized form using (H.2.62),
its Fourier transform is

m(q) = 1
2geμB

∑

kαβ

c†kασαβck+qβ , (29.8.20)

where σ is the Pauli matrix and the spin density is

s(q) = 1
2

∑

kαβ

c†kασαβck+qβ . (29.8.21)

The component along the quantization axis is

sz(q, t) = 1
2

[
n↑(q, t) − n↓(q, t)

]

= 1
2

∑

k

[
c†k↑(t)ck+q↑(t) − c†k↓(t)ck+q↓(t)

]
. (29.8.22)

The equation of motion will be written separately for n↑(q, t) and n↓(q, t)
using

H1 = − 1
2geμBμ0

1
V

∑

kq

Hz
ext(q, t)

[
c†k+q↑ck↑ − c†k+q↓ck↓

]
(29.8.23)

as perturbation.
If, for the sake of simplicity, the on-site Coulomb repulsion of the Hubbard

model is used to describe the interaction between electrons, then
(
−�

i
d
dt

+ εk↑

)
c†k↑(t) = −U

V

∑

k′q′
c†k+q′↑(t)c

†
k′−q′↓(t)ck′↓(t) (29.8.24)

+ 1
2geμBμ0

1
V

∑

q′
Hz

ext(q
′, t)c†k+q′↑(t) ,

(
−�

i
d
dt

+ εk↓

)
c†k↓(t) = −U

V

∑

k′q′
c†k+q′↓(t)c

†
k′−q′↑(t)ck′↑(t) (29.8.25)

− 1
2geμBμ0

1
V

∑

q′
Hz

ext(q
′, t)c†k+q′↓(t) ,
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(
−�

i
d
dt

− εk+q↑

)
ck+q↑(t) =

U

V

∑

k′q′
c†k′−q′↓(t)ck′↓(t)ck+q−q′↑(t) (29.8.26)

− 1
2geμBμ0

1
V

∑

q′
Hz

ext(q
′, t)ck+q−q′↑(t) ,

(
−�

i
d
dt

− εk+q↓

)
ck+q↓(t) =

U

V

∑

k′q′
c†k′−q′↑(t)ck′↑(t)ck+q−q′↓(t) (29.8.27)

+ 1
2geμBμ0

1
V

∑

q′
Hz

ext(q
′, t)ck+q−q′↓(t) .

These equations can be linearized if the product c†k′−q′σ(t)ck′σ(t) appear-
ing on the right-hand side in the terms containing three operators is replaced
with its expectation value. In doing so we have to take into account that
the quantity

〈
c†k′−q′σ(t)ck′σ(t)

〉
is finite only if q′ = 0 or q′ is equal to the

wave vector of the external perturbing field. The term with q′ = 0 gives the
Hartree correction of the one-particle energies. That is why ε̃kσ and ε̃k+qσ

appear in the equations below instead of εkσ and εk+qσ. By a change of vari-
ables k′ → k′ + q in the summation and combining the above equations we
find

(
−�

i
d
dt

− ε̃k+q↑ + ε̃k↑

)〈
c†k↑(t)ck+q↑(t)

〉

= −U
V

∑

k′

〈
c†k′↓(t)ck′+q↓(t)

〉[
f0(ε̃k+q↑) − f0(ε̃k↑)

]

+ 1
2geμBμ0H

z
ext(q, t)

1
V

[
f0(ε̃k+q↑) − f0(ε̃k↑)

]
,

(29.8.28)

(
−�

i
d
dt

− ε̃k+q↓ + ε̃k↓

)〈
c†k↓(t)ck+q↓(t)

〉

= −U
V

∑

k′

〈
c†k′↑(t)ck′+q↑(t)

〉[
f0(ε̃k+q↓) − f0(ε̃k↓)

]

− 1
2geμBH

z
ext(q, t)

1
V

[
f0(ε̃k+q↓) − f0(ε̃k↓)

]
.

(29.8.29)

Dividing the temporal Fourier transform by the energy factor and summing
over the momentum k gives

〈
n↑(q, ω)

〉
=
[
1
2geμBμ0H

z
ext(q, ω) − U

〈
n↓(q, ω)

〉]

× 1
V

∑

k

f0(ε̃k+q↑) − f0(ε̃k↑)
�ω − ε̃k+q↑ + ε̃k↑

(29.8.30)

and
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〈
n↓(q, ω)

〉
=
[− 1

2geμBμ0H
z
ext(q, ω) − U

〈
n↑(q, ω)

〉]

× 1
V

∑

k

f0(ε̃k+q↓) − f0(ε̃k↓)
�ω − ε̃k+q↓ + ε̃k↓

.
(29.8.31)

We introduce the notation

Σ0σ(q, ω) =
1
V

∑

k

f0(ε̃k+qσ) − f0(ε̃kσ)
�ω − ε̃k+qσ + ε̃kσ

. (29.8.32)

The solution of (29.8.30) and (29.8.31) then takes the form

〈
n↑(q, ω)

〉
=

1
2geμBμ0Σ0↑(q, ω)

[
1 + UΣ0↓(q, ω)

]

1 − U2Σ0↑(q, ω)Σ0↓(q, ω)
Hz

ext(q, ω) ,

〈
n↓(q, ω)

〉
= −

1
2geμBμ0Σ0↓(q, ω)

[
1 + UΣ0↑(q, ω)

]

1 − U2Σ0↑(q, ω)Σ0↓(q, ω)
Hz

ext(q, ω) ,

(29.8.33)

and the longitudinal susceptibility can be written as

χ‖(q, ω) =
(

1
2geμB

)2
μ0

[
Σ0↑(q, ω)

[
1 + UΣ0↓(q, ω)

]

1 − U2Σ0↑(q, ω)Σ0↓(q, ω)

+
Σ0↓(q, ω)

[
1 + UΣ0↑(q, ω)

]

1 − U2Σ0↑(q, ω)Σ0↓(q, ω)

]
.

(29.8.34)

To interpret this result we rewrite the interaction with the perturbing
magnetic field in terms of nσ(q):

H1 = − 1
2geμBμ0

1
V

∑

q

Hz
ext(q, t)

[
n↑(−q) − n↓(−q)

]
. (29.8.35)

Since the magnetization is proportional to the difference of n↑(q, ω) and
n↓(q, ω), the parallel susceptibility consists of four terms:

χ‖(q, ω) = (1
2geμB)2μ0

[
Σ↑↑(q, ω) −Σ↑↓(q, ω) −Σ↓↑(q, ω) +Σ↓↓(q, ω)

]
,

(29.8.36)
where

Σσσ′(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′)−δ(t−t′) 1
V

〈[
nσ(q, t), nσ′(−q, t′)

]
−
〉
.

(29.8.37)
These quantities are known already from the dielectric function. They are
equal to the negative of the temporal Fourier transform of Πσσ′(q, t − t′)
defined in (29.1.33):

Σσσ′(q, ω) = −Πσσ′(q, ω) . (29.8.38)

The ↑ spin and ↓ spin electrons contribute with equal weight to the density;
therefore, the dielectric function contains the sum of the spin-resolved response
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functions. On the other hand, they appear in (29.8.36) with signs depending
on the spin orientation. The RPA for the density–density response function
could be visualized (see Fig. 29.5) as an infinite series of diagrams containing
consecutive polarization bubbles. When a similar approximation is made for
the susceptibility, we have to take into account that the dielectric function was
calculated for the spin-independent Coulomb repulsion, while here we consider
a Hubbard model in which only electrons of opposite spins interact. Therefore,
when the spin-resolved response function is calculated in the RPA for the
Hubbard model and the propagation of the electron–hole pair is visualized by
diagrams, the subsequent bubbles have to have opposite spin orientations as
shown pictorially in Fig. 29.14.
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Fig. 29.14. The simplest processes contributing to the longitudinal susceptibility

Owing to this spin restriction, the sum of the bubble series gives

Σ↑↑(q, ω) =
Σ0↑(q, ω)

1 − U2Σ0↑(q, ω)Σ0↓(q, ω)
(29.8.39)

and
Σ↑↓(q, ω) =

−Σ0↑(q, ω)UΣ0↓(q, ω)
1 − U2Σ0↑(q, ω)Σ0↓(q, ω)

. (29.8.40)

Summing up these expressions with the signs given in (29.8.36) we recover
exactly the expression derived earlier for the longitudinal susceptibility. Thus
the result of the equation-of-motion method is a straightforward extension of
the renormalized RPA to the Hubbard model.

If the material is unpolarized, Σ0↑ and Σ0↓ are equal. Denoting their com-
mon value by Σ0, we have

〈n↑(q, ω)〉 = −〈n↓(q, ω)〉 =
1
2geμBμ0Σ0(q, ω)
1 − UΣ0(q, ω)

Hz
ext(q, ω) . (29.8.41)

Thus we get

〈mz(q, ω)〉 =
1
2g

2
eμ

2
Bμ0Σ0(q, ω)

1 − UΣ0(q, ω)
Hz

ext(q, ω) (29.8.42)

for the z-component of the magnetic-moment density, and the longitudinal
magnetic susceptibility becomes
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χ‖(q, ω) =
1
2g

2
eμ

2
Bμ0Σ0(q, ω)

1 − UΣ0(q, ω)
. (29.8.43)

When taking the limit ω → 0 first and then q → 0, Σ0(0, 0) is just the
density of states for a single spin orientation. We then recover (29.8.11) derived
for the static susceptibility. This expression can thus be considered as its
generalization to the dynamical susceptibility.

Equation (29.8.43) for the susceptibility is formally very similar to the
density–density response function (29.2.14) derived in the RPA. There is, how-
ever, an important difference. Π0 appearing in the denominator of (29.2.14)
is equal to the negative of the density of states in the static, long-wavelength
limit. This is due to the sign difference in (29.8.38). Thus, the Coulomb re-
pulsion leads to a weakening of density fluctuations, but enhances magnetic
fluctuations. Charge fluctuations can be enhanced by attractive interactions.
Such an interaction can be mediated between electrons by long-wavelength
acoustic phonons, as we have seen in Chapter 23, and the enhanced density
fluctuations may give rise to the formation of static charge-density waves. This
will be further discussed in Chapter 33.

29.8.3 Transverse Dynamical Susceptibility

In certain resonance experiments the weak high-frequency fieldHext is perpen-
dicular to the homogeneous magnetic field H. Choosing again the direction of
the homogeneous field as the z-axis, it is convenient to use the linear combi-
nations

H±
ext = Hx

ext ± iHy
ext (29.8.44)

for the perturbing field. The magnetic-moment density and the spin density
will be expressed similarly by the linear combinations

m± = mx ± imy, s± = sx ± isy , (29.8.45)

instead of the x- and y-components of the m and s operators. The Hamilto-
nian describing the interaction with the perturbing field is then

H1(t) = − 1
2μ0

1
V

∑

q

[
H+

ext(q, t)m
−(−q) +H−

ext(q, t)m
+(−q)

]
(29.8.46)

= − 1
2geμBμ0

1
V

∑

q

[
H+

ext(q, t)s
−(−q) +H−

ext(q, t)s
+(−q)

]

= − 1
2geμBμ0

1
V

∑

kq

[
H+

ext(q, t)c
†
k+q↓ck↑ +H−

ext(q, t)c
†
k+q↑ck↓

]
,

where we used the second-quantized expressions

s+(q) =
∑

k

c†k↑ck+q↓ , s−(q) =
∑

k

c†k↓ck+q↑ . (29.8.47)
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The response to the transverse field can be characterized by the transverse
susceptibility:

χ⊥(q, ω) =
〈m+(q, ω)〉
H+

ext(q, ω)
=
geμB〈s+(q, ω)〉
H+

ext(q, ω)
. (29.8.48)

To calculate the expectation value 〈s+(q, ω)〉 we use again the equation-of-
motion method. Here the quantity

〈
c†k↑(t)ck+q↓(t)

〉
has to be studied. The

equations for the creation and annihilation operators are
(
−�

i
d
dt

+ εk↑

)
c†k↑(t) = −U

V

∑

k′q′
c†k+q′↑(t)c

†
k′−q′↓(t)ck′↓(t) (29.8.49)

+ 1
2geμBμ0

1
V

∑

q′
H+

ext(q
′, t)c†k+q′↓(t)

and
(
−�

i
d
dt

− εk+q↓

)
ck+q↓(t) =

U

V

∑

k′q′
c†k′−q′↑(t)ck′↑(t)ck+q−q′↓(t) (29.8.50)

− 1
2geμBμ0

1
V

∑

q′
H+

ext(q
′, t)ck+q−q′↑(t) .

When the three-operator terms are linearized (decoupled) by replacing the
product of two operators by its expectation value, as was done in calculating
the longitudinal susceptibility, these equations lead to

〈
s+(q, ω)

〉
=
[
1
2geμBμ0H

+
ext(q, ω) + U

〈
s+(q, ω)

〉]
Σ0

⊥(q, ω) , (29.8.51)

where
Σ0

⊥(q, ω) =
1
V

∑

k

f0(ε̃k+q↑) − f0(ε̃k↓)
�ω − ε̃k+q↑ + ε̃k↓

. (29.8.52)

The solution of this equation yields

〈
s+(q, ω)

〉
=

1
2geμBμ0Σ

0
⊥(q, ω)

1 − UΣ0
⊥(q, ω)

H+
ext(q, ω) , (29.8.53)

from which we find

χ⊥(q, ω) =
1
2g

2
eμ

2
Bμ0Σ

0
⊥(q, ω)

1 − UΣ0
⊥(q, ω)

(29.8.54)

for the transverse susceptibility. This quantity will be considered in Chapter
33 when spin-density fluctuations will be studied. Notice that this expression
is identical to that obtained earlier for the longitudinal susceptibility when
the system is unpolarized.
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It is interesting to see which processes contribute to the transverse sus-
ceptibility in this approximation. For that we recall that according to linear
response theory the transverse susceptibility is the temporal Fourier transform
of the retarded response function

χ⊥(q, t− t′) = 1
2μ0

i
�
θ(t− t′)

1
V

〈[
m+(q, t),m−(−q, t′)

]
−
〉
. (29.8.55)

When the spin density is used instead of the magnetic moment, we have

χ⊥(q, ω) = 1
2g

2
eμ

2
Bμ0Σ⊥(q, ω) , (29.8.56)

where

Σ⊥(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′)−δ(t−t′) 1
V

〈[
s+(q, t), s−(−q, t′)

]
−
〉
.

(29.8.57)
When s+ and s− are written in the second-quantized form, one sees that
this response function describes the propagation of an electron–hole pair with
opposite spins. The electron and the hole created at time t′ interact with each
other and with the other electrons of the Fermi sea before being annihilated
at time t. The susceptibility derived from the equation of motion is just the
contribution of the processes shown diagrammatically in Fig. 29.15, when the
series is continued up to infinity. Since the analytic contributions of these dia-
grams form a geometric progression, the summed-up form is easily obtained.
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Fig. 29.15. The simplest processes taken into account in the transverse suscepti-
bility

29.8.4 Ruderman–Kittel Oscillations

We know from Chapter 16 and from our earlier discussions in this chapter
that a charged impurity distorts the electron states around itself. The exter-
nal charge is fully screened in metals by the accumulated charge density. The
spatial oscillations of this decaying charge density are called Friedel oscilla-
tions. Similar spatial oscillations may appear in the spin density of electrons
when the impurity has a magnetic moment, as mentioned already in Chapter
14. We rederive here this oscillating spin density.

We saw in Chapter 24, in connection with the Kondo effect, that the inter-
action between conduction electrons and localized magnetic moments (spins)
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of a magnetic impurity can be described by the so-called s–d interaction.
When a single localized moment is placed into the system at the origin and
the quantization axis is in the z-direction, then

Hs−d = −Jψ̂†
α(0)S · σαβψ̂β(0) (29.8.58)

= − J

V

∑

kk′

[
S+c†k′↓ck↑ + S−c†k′↑ck↓ + Sz

(
c†k′↑ck↑ − c†k′↓ck↓

)]
.

Let us assume that the system of electrons is in thermal equilibrium, the
charge and spin densities are homogeneous, and the localized spin is originally
in state |M〉 for which Sz|M〉 = M |M〉. We are interested in the modification
of the electronic wavefunction and the spatial distribution of the spin density
around the localized spin. Technically it is easier to determine this spatial
variation of the spin density than to derive the Friedel oscillations in the
charge density since the interaction with the magnetic impurities is short
ranged, while the Coulomb interaction is long ranged.

The wavefunction of the perturbed electron system can be written in
Slater-determinant form, where the single-particle states are perturbed plane
waves obtained by taking the interaction with the localized spin into account.
If the electron has wave vector k and spin ↑, and the localized spin is in state
|M〉, the unperturbed state is

|k↑,M〉 = c†k↑|0〉|M〉 , (29.8.59)

where |0〉 denotes the vacuum of electrons. This state will be mixed by the
s–d interaction to states |k′σ′,M ′〉 in which both the wave vector and the spin
of the electron as well as the orientation of the impurity spin can differ from
that in the initial state. In first order of perturbation theory, the perturbed
wavefunction is

|k↑,M〉(1) = |k↑,M〉 +
∑

k′σ′
|k′σ′,M ′〉 〈k

′σ′,M ′|Hs-d|k↑,M〉
εk − εk′

. (29.8.60)

There is no summation over M ′; it cannot be chosen arbitrarily, because the
z-component of the total spin is conserved. Taking the matrix elements of the
interaction Hamiltonian we find

|k↑,M〉(1) = |k↑,M〉 − 1
V

∑

k′

J

εk − εk′

[〈M + 1|S+|M〉|k′ ↓,M + 1〉

+〈M |Sz|M〉|k′ ↑,M〉] . (29.8.61)

Similarly

|k↓,M〉(1) = |k↓,M〉 − 1
V

∑

k′

J

εk − εk′

[〈M − 1|S−|M〉|k′ ↑,M − 1〉

−〈M |Sz|M〉|k′ ↓,M〉] . (29.8.62)
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In an isotropic system, where the unperturbed states are plane waves, we
obtain

|k↑,M〉(1) =
1√
V

eik·r|↑,M〉 − J

V 3/2

∑

k′

eik′·r

εk − εk′
(29.8.63)

× [〈M + 1|S+|M〉|↓,M + 1〉 + 〈M |Sz|M〉|↑,M〉]

and

|k↓,M〉(1) =
1√
V

eik·r|↓,M〉 − J

V 3/2

∑

k′

eik′·r

εk − εk′
(29.8.64)

× [〈M − 1|S−|M〉|↑,M − 1〉 − 〈M |Sz|M〉|↓,M〉] .

The integration over k′ can be done using (C.1.66) yielding

|k↑,M〉(1) =
1√
V

eik·r|↑,M〉 − 1√
V

meJ cos kr
2πr�2

(29.8.65)

×
(√

S(S + 1) −M(M + 1)|↓,M + 1〉 +M |↑,M〉
)

and

|k↓,M〉(1) =
1√
V

eik·r|↓,M〉 − 1√
V

meJ cos kr
2πr�2

(29.8.66)

×
(√

S(S + 1) −M(M − 1)|↑,M − 1〉 −M |↓,M〉
)
.

The density due to electrons occupying these states is obtained by calcu-
lating the quantities (1)〈M,k ↑ |k ↑,M〉(1) and (1)〈M,k ↓ |k ↓,M〉(1). We
find

n↑(k, r) =
1
V

[
1 − meJ cos kr

πr�2
M cos(k · r)

]
,

n↓(k, r) =
1
V

[
1 +

meJ cos kr
πr�2

M cos(k · r)
]
.

(29.8.67)

The total density of the up- and down-spin electrons is obtained by sum-
ming the contribution of all occupied states. At temperature T = 0, this is
equivalent to integrating over all k vectors inside the Fermi sphere. This gives

n↑(r) =
k3
F

6π2

[
1 +

6meJMkF

π�2
g(2kFr)

]
,

n↓(r) =
k3
F

6π2

[
1 − 6meJMkF

π�2
g(2kFr)

]
,

(29.8.68)

where g(x) is the decaying oscillatory function given in (29.3.24).
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This shows that the localized moment perturbs the spatial distribution of
conduction electrons in such a way that the number density n(r) = n↑(r) +
n↓(r), and hence the charge density, remains uniform, but a spatially varying
spin density σ(r) = n↑(r)−n↓(r) appears in the originally unpolarized system.
This spin density oscillates in space and decays with the third power of the
distance from the impurity. These oscillations are known as the Ruderman–
Kittel oscillations. The periodicity of the oscillations, their wavelength λ, is
determined by the relation 2kFλ = 2π. As has been mentioned already and
derived in Appendix I, this oscillating-induced spin density gives rise to the
spatially oscillating RKKY interaction between magnetic moments placed at
a distance r in a metal.

The results derived above are modified at finite temperatures for two rea-
sons. On the one hand, the Fermi distribution function is smeared out over
an interval of width kBT around the Fermi energy, and this leads to a factor
exp(−πkFrkBT/εF) in the charge distribution. On the other hand, an extra
factor exp(−r/l) may appear due to the finite mean free path l of electrons.

This oscillating spin density around a magnetic impurity can be observed
experimentally, e.g., in the shift of the resonance frequency of nuclear magnetic
resonance.
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Cohesive Energy of the Electron System

When the types of bonds that hold solids together were discussed in Chapter
4, only a few sentences were devoted to the metallic bond. It was emphasized
that this type of bond can be understood only if electron–electron interactions
are taken into account. After the study of a few simple consequences of these
interactions in the previous chapters we can now turn to the problem of the
cohesive energy of metals. The total binding energy is the sum of electronic
and ionic contributions. Here we will consider the portion due to electrons.

We will first treat an electron gas moving in a uniform positive background.
Then we present the density-functional theory which can be used to calculate
the cohesive energy of real metals.

30.1 Total Energy of the Dense Electron Gas

According to the rules of quantum mechanics the total energy of the electron
system is obtained from

E =
〈Ψ0|H|Ψ0〉
〈Ψ0|Ψ0〉 , (30.1.1)

where |Ψ0〉 is the ground-state wavefunction. If the interaction can be treated
in perturbation theory, the contributions of the most important interaction
processes have to be summed up. We will see that the perturbative approach
gives convergent result only for the dense electron gas.

30.1.1 Total Energy in the Hartree–Fock Approximation

We know from Chapter 28 that there is no self-energy correction to the one-
particle energies if the homogeneous electron gas is treated in the Hartree
approximation since the interaction with the homogeneous background pre-
cisely cancels the q = 0 component of the electron–electron interaction. The
total energy is the sum of the energies of the filled one-particle states. In the

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_3, © Springer-Verlag Berlin Heidelberg 2010
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ground state of an unpolarized electron gas, where the k vectors of the occu-
pied states fill the Fermi sphere of radius kF and each state is doubly occupied
with electrons of both spin orientations, the total energy of the electron system
is

EH = 2
∑

|k|<kF

�
2k2

2me
= 2

V

(2π)3

∫

|k|<kF

�
2k2

2me
dk . (30.1.2)

The integration gives

EH = 2
V

(2π)3

kF∫

0

�
2k2

2me
4πk2 dk =

V

π2

�
2

2me

k5
F
5
. (30.1.3)

By the use of (16.2.24) that relates the Fermi wave number to the number Ne
of electrons we have

EH = Ne
3
5

�
2k2

F
2me

= Ne
3
5
εF . (30.1.4)

The average energy of electrons filling the Fermi sphere is three-fifths of the
Fermi energy. When the Fermi wave number is expressed in terms of the
Wigner–Seitz radius r0 using (16.2.31) and then by the dimensionless rs =
r0/a0, we get

εF =
(9π/4)2/3

r2s

�
2

2mea2
0

=
8.029
r2s

× 10−18 J . (30.1.5)

If the electronvolt is used as the unit of energy, εF = 50.112/r2s eV and

EH

Ne
=

30.067
r2s

eV . (30.1.6)

Quite often the cohesive energy of the electron system is given in rydberg
(1Ry = ẽ2/2a0) or – using atomic units – in hartree (1Eh = ẽ2/a0). Since
the energy per particle can be written with the help of (28.3.86) in the form

EH

Ne
=

3
5
ẽ2

2a0
(kFa0)

2
, (30.1.7)

we find
EH

Ne
=

3
5

(
(9π/4)1/3a0

r0

)2
ẽ2

2a0
=

1.105
r2s

ẽ2

a0
. (30.1.8)

In the Hartree–Fock approximation, where exchange gives rise to a self-
energy correction, the total energy is not equal to the sum of the energies of
quasiparticles. The interaction modifies the energy of both interacting part-
ners, but this correction has to appear in the total energy only once. It follows
from (28.3.71) that in the homogeneous electron gas
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EHF =
∑

kσ

ε̃kσf0(ε̃kσ) +
1

2V

∑

kk′σ

U(k′ − k)f0(ε̃k′σ)f0(ε̃kσ)

=
∑

kσ

ε̃kσf0(ε̃kσ) +
1

2V

∑

kqσ

U(q)f0(ε̃k+q,σ)f0(ε̃kσ) ,
(30.1.9)

where the Fermi function f0 gives the occupation probability of the quasipar-
ticle state, and k′ was replaced with k+q in the second line. The second term
on the right-hand side corrects the double counting of the contribution due
to the interaction.

To evaluate the total energy, it is more convenient to use (28.3.70), where
the Hartree–Fock energy is given in terms of the bare electron energies. The
quasiparticles fill the same Fermi sphere as without interaction, so we have

EHF =
∑

kσ

εkσf0(εkσ) − 1
2V

∑

kqσ

U(q)f0(εk+q,σ)f0(εkσ) . (30.1.10)

The summation over k in the second term goes over the overlapping region of
two displaced Fermi spheres. The integration over k and then over q can be
carried out using (C.2.34) and (16.2.24) for Coulomb interaction and we get

EHF = Ne

[
3
5
εF − 3

4π
ẽ2kF

]
. (30.1.11)

When the dimensionless parameter rs characterizing the density of the electron
gas is used instead of the Fermi energy and Fermi momentum, we find

EHF

Ne
=
[
30.067
r2s

− 12.467
rs

]
eV . (30.1.12)

The correction compared to the Hartree approximation is called exchange
energy. When both terms are expressed in the atomic energy unit ẽ2/a0, we
have

EHF

Ne
=

ẽ2

2a0

[
3
5

(kFa0)
2 − 3

2π
(kFa0)

]

=
[
1.105
r2s

− 0.458
rs

]
ẽ2

a0
.

(30.1.13)

The dependence on rs of the total energy per particle is displayed in Fig. 30.1.
The total electronic energy has a minimum at rs = 4.825 and its value

is −0.0475 ẽ2/a0. This is the first indication that metallic bonding exists.
The system of electrons can be in thermal equilibrium at a finite density
notwithstanding the Coulomb repulsion provided that the entire system is
neutral; the charge of electrons is compensated by a positive background. The
equilibrium value of rs is reasonably close to the value calculated from the
number of conduction electrons and the lattice constant for alkali metals as
seen from Table 16.6.
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Fig. 30.1. rs dependence of the energy per particle in the Hartree–Fock approxi-
mation

30.1.2 The Exchange Potential

The previous considerations are valid for a uniform electron gas. The cal-
culation is much more difficult in the inhomogeneous case. We know that if
the Fock term in the Hartree–Fock equations is written in terms of an ex-
change potential, this potential is nonlocal, and the energy correction due
to exchange can be calculated only approximately. A simple approximation
scheme was proposed by J. C. Slater in 1951. For this he rewrote the Fock
term

− ẽ2
Ne∑

j=1

∫
dr′φ

∗
λj

(r′)φλi
(r′)

|r − r′| φλj
(r) (30.1.14)

of the Hartree–Fock equations given in (28.3.36) in the equivalent form

− ẽ2

∑Ne

j=1

∫
dr′φ∗λi

(r)φλi
(r′)

1
|r − r′|φ

∗
λj

(r′)φλj
(r)

φ∗λi
(r)φλi

(r)
φλi

(r) (30.1.15)

and proposed to approximate the effective, nonlocal potential felt by an elec-
tron in orbital λi, the factor multiplying φλi

(r) in the Hartree–Fock equations,

− ẽ2

∑Ne

j=1

∫
dr′φ∗λi

(r)φλi
(r′)

1
|r − r′|φ

∗
λj

(r′)φλj
(r)

φ∗λi
(r)φλi

(r)
, (30.1.16)

by a weighted average with weight

φ∗λi
(r)φλi

(r)
∑Ne

i=1
φ∗λi

(r)φλi
(r)

(30.1.17)

corresponding to the probability of finding an electron in state λi at the
position r. The average Slater exchange potential is
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V S
x (r) = −ẽ2

∑Ne

i,j=1

∫
dr′φ∗λi

(r)φλi
(r′)

1
|r − r′|φ

∗
λj

(r′)φλj
(r)

∑Ne

i=1
φ∗λi

(r)φλi
(r)

. (30.1.18)

When written in terms of the pair distribution function,

V S
x (r) =

∫
dr′ ẽ2

|r − r′|ne(r′)
[
g(r, r′) − 1

]
. (30.1.19)

Using this local potential in the Hartree–Fock equations, they reduce to

− �
2

2me
∇2φS

λi
(r) + Vion(r)φS

λi
(r) + ẽ2

∫
dr′ ne(r′)

|r − r′|φ
S
λi

(r)

+ V S
x (r)φS

λi
(r) = ε̃Sλi

φS
λi

(r) ,
(30.1.20)

where the exchange potential and the density

ne(r) =
∑

i

∣∣φS
λi

(r)
∣∣2 (30.1.21)

have to be determined self-consistently. These equations are referred to as the
Hartree–Fock–Slater equations. Instead of the integro-differential equation of
the Hartree–Fock approximation, only a differential equation has to be solved
in this approach, a technically much simpler task. The ground-state energy
is the expectation value of the Hamiltonian taken with respect to the Slater
determinant of the one-particle functions φS

λi
(r).

When the local exchange potential is calculated for plane-wave wavefunc-
tions, we get a constant value

V S
x (r) = −3ẽ2

2π
kF = −3ẽ2

2π
(
3π2ne

)1/3
. (30.1.22)

Assuming that this expression is valid at each point of an inhomogeneous
electron gas with the local value of the density ne(r), we have

V S
x (r) = −3ẽ2

2π
[
3π2ne(r)

]1/3
. (30.1.23)

Due to the ambiguity in the approximation scheme and with the aim to ac-
count for correlation effects, Slater proposed to multiply this potential by a
factor α. The procedure using the local potential

V S
xc(r) = −α3ẽ2

2

[
3
π
ne(r)

]1/3

(30.1.24)

is referred to as the Xα method. The optimal value of α is obtained by
minimizing the ground-state energy with respect to this parameter.



144 30 Cohesive Energy of the Electron System

30.1.3 Higher Order Corrections to the Energy

After this detour we return to the uniform electron gas. It was seen earlier that
the cohesive energy as a function of rs varies rather slowly in the neighborhood
of the minimum found in the Hartree–Fock approximation. To get a more
precise location of the minimum a better treatment of the electron–electron
interaction is needed. Corrections beyond the Fock term that collectively bear
the name correlation energy have to be calculated. The task, to get reliable
results for the correlation energy, is made difficult by the fact that if the
electron–electron interaction is treated as a perturbation, then – as will be
seen – it is not sufficient to go to some finite order of perturbation theory,
but the contributions of certain classes of processes have to be summed up to
infinite order in the interaction. This requires the use of methods of the many-
body problem, although the summation of the contributions of an infinite
series of processes can partially be avoided if screening is taken into account.

According to the Brueckner–Goldstone linked-cluster expansion1 of per-
turbation theory, the corrections to the ground-state energy can be written in
a simple form

ΔE =
∞∑

n=0

〈
ΨFS

∣∣∣∣Hint

(
1

E0 −H0
Hint

)n∣∣∣∣ΨFS

〉

connected
, (30.1.25)

where |ΨFS〉 denotes the ground state of the unperturbed electron system,
the free Fermi sea. The subscript connected indicates that – if the individual
processes are visualized by diagrams – only the contributions of the connected
diagrams have to be taken into account.

The first-order correction is simply the expectation value of the interaction
Hamiltonian:

ΔE(1) =
〈
ΨFS

∣∣∣∣
1

2V

∑

kk′q
σσ′

U(q)c†k+qσc
†
k′−qσ′ck′σ′ckσ

∣∣∣∣ΨFS

〉
. (30.1.26)

Starting from the filled Fermi sea the scattering event takes two electrons out
of the filled Fermi sea and scatters them into empty states, but the system
has to return to the unperturbed ground state at the end. There are two
possibilities: The electrons with wave vectors k and k′ are scattered either
back into their initial states or into the initial state of the other electron.
These processes are depicted in Fig. 30.2.

There is no momentum transfer in the first type of process. Its contribution
is proportional to U(q = 0). Such processes are excluded in the homogeneous
electron gas, and the Hartree term gives no contribution to the total energy. In
the second type of process, corresponding to the Fock term, two electrons are
exchanged by the scattering. The electron with wave vector k is scattered into

1
K. A. Brueckner, 1955, J. Goldstone, 1957.
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Fig. 30.2. First-order scattering processes contributing to the ground-state energy.
The corresponding Feynman diagrams are shown at the bottom of the figure

the hole left behind by the electron of wave vector k′. A nonzero contribution
is obtained only if k′ = k + q and σ′ = σ. Thus the first-order correction to
the ground-state energy is

ΔE(1) =
〈
ΨFS

∣∣∣∣
1

2V

∑

kqσ

U(q)c†k+qσc
†
kσck+qσckσ

∣∣∣∣ΨFS

〉

= − 1
2V

∑

kqσ

U(q)〈c†k+qσck+qσ〉〈c†kσckσ〉 ,
(30.1.27)

where the negative sign comes from the interchange of the order of the fermion
operators. This energy correction is exactly the one obtained in the Hartree–
Fock approximation.

Two processes are possible in second order, too. They are shown in
Fig. 30.3. In the first step, in both processes, the electrons with wave vec-
tors k and k′ are scattered into empty states outside the Fermi sphere with
quantum numbers k + q and k′ − q, respectively. The two processes differ in
the second step. Either both electrons scatter back into their initial states,
this is the direct process, or the electrons are scattered from the states k + q

k k

k’ k’

(1)

(1) (1)
(1)(2) (2)

(2)

(2)k q k q

k q’ k q’

Fig. 30.3. Second-order processes contributing to the ground-state energy. The
numbers indicate the sequence of the scattering processes. The corresponding Feyn-
man diagrams are shown at the bottom of the figure
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and k′ − q into the holes left behind by the other electron. The change of the
wave vector is then k+q−k′. This is the exchange process. It can occur only
if the two electrons have the same spin orientation.

The energy of the intermediate state is εk+q + εk′−q − εk − εk′ in both
cases. Taking into account the minus sign coming from the change of the order
of the fermion operators, the two processes yield a contribution

ΔE(2) =
1
2

(
1
V

)2 ∑

kk′q
σσ′

U(q)U(q)
εk + εk′ − εk+q − εk′−q

− 1
2

(
1
V

)2 ∑

kk′q
σ

U(q)U(k + q − k′)
εk + εk′ − εk+q − εk′−q

.

(30.1.28)

The summation (integration) has to be performed over the region where k
and k′ are inside the Fermi sphere, while k + q and k′ − q are outside.

The second term, the exchange process, is considered first. Using the
quadratic dispersion relation of free electrons and the 1/q2 behavior of the
Fourier transform of the Coulomb interaction, the integral to be evaluated is

V

(
4πẽ2

)2

(2π)9

∫
dq

q2

∫

|k|<kF

dk

∫

|k′|<kF

dk′

(k + q − k′)2
me

�2[q · (k − k′) + q2]
,

(30.1.29)
where the constraints |k+q| > kF and |k′−q| > kF have to be imposed on the
range of integration over the variable q. These requirements can be satisfied
if both k and k′ are in the neighborhood of the Fermi surface, in a range of
width q if q is small. The integrals over k and k′ lead to a term proportional
to q, and the energy correction per particle due to the exchange process is

[
1
6

ln 2 − 1
4π2

ζ(3)
]
ẽ2

a0
= 0.02418 ẽ2/a0 . (30.1.30)

The contribution of the direct process contains the integral

V

(
4πẽ2

)2

(2π)9

∫
dq

q4

∫

|k|<kF

dk

∫

|k′|<kF

dk′ me

�2[q · (k − k′) + q2]
. (30.1.31)

Even though the integration over k and k′ gives again a result proportional
to q, the strong singularity of the 1/q4 prefactor for small q values, which
comes from the slow decay (long range) of the Coulomb interaction, leads to a
divergent result. M. Gell-Mann and K. A. Brueckner (1957) have shown
that further divergent contributions appear in higher orders of perturbation
theory. It can be shown that the strongest divergence is due to those processes
in which in each elementary scattering process an electron–hole pair with total
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wave vector q is scattered into another electron–hole pair with the same total
wave vector. The ring diagrams corresponding to these processes are displayed
in Fig. 30.4.

Fig. 30.4. The so-called ring diagrams

The momentum transfer being equal in each interaction process, the in-
teractions give a factor Un(q) ∝ q−2n in nth order. This strong singularity of
the integrand at small q makes the contribution of these processes divergent.
However, when the contributions of all these processes are summed up, the
divergences cancel out due to the alternating signs and a finite correction is
obtained.

This can be easily understood if we notice that these processes can be
generated from the second-order direct process by replacing the Coulomb in-
teraction by the effective, screened interaction shown in Fig. 29.6. Screening
transforms the long-range Coulomb potential into a short-range one, elimi-
nates the 1/q2 singularity of the Fourier transform, and eliminates the diver-
gence in the total energy. In the Thomas–Fermi approximation the Fourier
transform of the screened potential can be approximated by the form

4πẽ2

εr(q)q2
=

4πẽ2

q2 + q2TF
. (30.1.32)

As a rough estimate of the effect of screening, the 1/q2 dependence can be cut
off at a value on the order of qTF when the energy correction is calculated.
The value of the integral depends logarithmically on this cutoff. Expressing
the Thomas–Fermi wave number in terms of rs with the help of (29.3.17),
the correction to the ground-state energy per particle is proportional to the
logarithm of rs,

1
π2

(1 − ln 2) ln rs ẽ2/a0 = 0.0311 ln rs ẽ2/a0 . (30.1.33)

By calculating the contribution of the diagrams more accurately Gell-Mann

and Brueckner could obtain also a constant term independent of rs. Later
W. J. Carr Jr. and A. A. Maradudin (1964) determined the coefficient
of the term proportional to rs ln rs. Collecting all these corrections we find
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E

Ne
=
[
1.105
r2s

− 0.458
rs

− 0.047 + 0.0311 ln rs + 0.009 rs ln rs + O(rs)
]
ẽ2

a0
.

(30.1.34)
As can be seen from Fig. 30.5, the perturbative corrections to the Hartree–
Fock approximation are not small when rs > 2.5. Since the terms proportional
to rs or its higher powers are not known, this expression is valid only for small
values of rs, i.e., for a dense electron gas.

0

0.1

0.2

0.3

–0.1

4 6 82
rs

(Ry)
E Ne

Fig. 30.5. Ground-state energy obtained in perturbation theory (solid line) com-
pared to the result of the Hartree–Fock approximation

30.1.4 Relationship Between Energy and Correlation Function

The two-particle interaction can be written according to (28.1.11) or (28.1.12)
as a product of electron densities, and thus the expectation value of the in-
teraction energy can be expressed in terms of the Fourier transform of the
density–density correlation function Γ (r − r′). Using (28.4.66) we obtain

〈Hint〉 =
Ne

2V

∑

q

4πẽ2

q2
[
Γ (q) − 1

]
. (30.1.35)

The q = 0 term is missing from the sum for the homogeneous electron gas,
thus the interaction energy is related to the static structure factor via

〈Hint〉 =
Ne

2V

∑

q

4πẽ2

q2
[
S(q) − 1

]
. (30.1.36)

The interaction modifies the expectation value of H0, too, compared to
the free electron value, since the expectation value has to be determined us-
ing the wavefunction of the perturbed ground state. The total change of the
ground-state energy due to the interaction can be determined using a for-
mula originating from Pauli, which can be considered as a special case of the
Hellmann–Feynman theorem.2 The theorem states that if the Hamiltonian
2

H. Hellmann, 1936, R. P. Feynman, 1939.
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depends on a continuous parameter λ and |Ψn〉 is an eigenstate with energy
En,

H|Ψn〉 = En|Ψn〉 , (30.1.37)

then
dEn

dλ
=
〈
Ψn

∣∣∣∣
dH
dλ

∣∣∣∣Ψn

〉
. (30.1.38)

To prove this theorem one has to take into account that |Ψn〉 itself depends
on λ and therefore

dEn

dλ
=
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dΨn

dλ

∣∣∣∣H
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〉
+
〈
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〉
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dΨn

dλ

〉
. (30.1.39)

Making use of the eigenvalue equation and the fact that the function |Ψn〉 is
normalized to unity,

dEn

dλ
= En

d
dλ

〈Ψn|Ψn〉 +
〈
Ψn

∣∣∣∣
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〉
=
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∣∣∣∣Ψn

〉
, (30.1.40)

as stated above.
We will apply this theorem to the case when λ is the coupling constant of

the interaction:
H = H0 + Hint = H0 + λH1 , (30.1.41)

and thus
dH
dλ

= H1 =
Hint(λ)
λ

. (30.1.42)

Then the ground-state energy E0(λ) satisfies the differential equation

dE0

dλ
=

1
λ

〈
Ψ0

∣∣Hint(λ)
∣∣Ψ0

〉
. (30.1.43)

Integration of this equation gives

E0(λ) = E0(λ = 0) +

λ∫

0

dλ′

λ′
〈Ψ0(λ′)|Hint(λ′)|Ψ0(λ′)〉 . (30.1.44)

If the expectation value of the interaction Hamiltonian is expressed in
terms of the structure factor using (30.1.36) and ẽ2 is chosen as the coupling
constant of the Coulomb interaction, we have

E0(λ) = E0(λ = 0) +
Ne

2V

ẽ2∫

0

dλ′

λ′
∑

q

4πλ′

q2
[
S(q) − 1

]
. (30.1.45)

This shows that the total energy of the interacting electron system can be
calculated if the density–density correlation function or the static structure
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factor is known. S(q) itself depends on the coupling constant in general, hence
performing the integral is not a simple task.

At finite temperatures, a similar expression can be derived for the free
energy. For this we write the free energy in terms of the partition function,

F = −kBT lnZ = −kBT ln Tr e−(H0+Hint)/kBT (30.1.46)

and take its derivative with respect to λ. This gives

∂F

∂λ
= − kBT

Z(λ)
∂Z(λ)
∂λ

=
1

Z(λ)
Tr

dHint(λ)
dλ

e−(H0+Hint)/kBT . (30.1.47)

By the use of (30.1.42) we find

∂F

∂λ
=

〈Hint(λ)〉
λ

, (30.1.48)

where 〈· · · 〉 denotes the thermodynamic average. Integration of this equation
gives

F (λ) = F (λ = 0) +

λ∫

0

dλ′

λ′
〈Hint(λ′)

〉
, (30.1.49)

from which

F (λ) = F (λ = 0) +
Ne

2V

ẽ2∫

0

dλ′

λ′
∑

q

4πλ′

q2
[
S(q) − 1

]
. (30.1.50)

Thus the free energy can be obtained if the structure factor (or equivalently
the density–density correlation function) is known at finite temperatures.

30.1.5 Correlation Energy in the RPA

When the static structure factor calculated in the Hartree–Fock approxima-
tion [see Eq. (28.4.75)] is used in (30.1.36), we have

〈Hint〉 = − 3
4π
ẽ2kFNe . (30.1.51)

Since ẽ2 appears only as a multiplicative factor, this expression gives at
the same time the correction to the ground-state energy, in agreement with
(30.1.11).

To get a better result we make use of the fluctuation–dissipation theorem
that relates the structure factor and the density–density response function.
Applying (J.1.93) which is valid at T = 0 we have

Γ (q) = −2�
V

Ne

∞∫

0

dω
2π

ImΠ(q, ω) . (30.1.52)
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Substitution of this expression into (30.1.35) gives

〈Hint〉 =
1
2
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4πẽ2
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[
− 2�
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dω
2π

ImΠ(q, ω) − Ne

V

]
. (30.1.53)

Note that if Π(q, ω) is approximated by Π0(q, ω), the result of the Hartree–
Fock approximation is recovered. A more natural choice is to use the RPA
result for Π(q, ω). Its imaginary part can be written in terms of the real and
imaginary parts of Π0(q, ω) as

ImΠ(q, ω) =
ImΠ0(q, ω)

[
1 − (4πẽ2/q2)ReΠ0(q, ω)

]2 +
[
(4πẽ2/q2)ImΠ0(q, ω)

]2 .

(30.1.54)
Inserting this into (30.1.53) and then into (30.1.44), ẽ2 appears both in the
numerator and in the denominator; nevertheless, the integration over the cou-
pling constant can be performed yielding
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(30.1.55)
Using the known form for the Lindhard function the integration yields

E

Ne
=
[
1.105
r2s

− 0.458
rs

+ 0.0311 ln rs − 0.071 + · · ·
]
ẽ2

a0
(30.1.56)

for small rs. The constant term differs from the one given in (30.1.34) which
was obtained by summing the contribution of the ring diagrams. The difference
is just the contribution of the second-order exchange process given in (30.1.30)
which is missing in the RPA. The RPA misses some other processes, too, but
their contributions are of higher order in rs.

30.2 The Total Energy at Lower Densities

We know that the Hartree–Fock approximation or the perturbative approach
to calculate the total energy of the electron gas is reasonable for small values
of rs (rs < 1), i.e., for a dense electron gas. On the other hand we also know
that in most metals the electronic density – if expressed in terms of rs –
falls into the range 1.8 ≤ rs ≤ 6. If we want to understand the metallic
bond, it is necessary to compute the cohesive energy of the electron gas more
accurately. First – following E. P. Wigner (1934) – we will consider the low-
density electron gas, and then – since in real metals the density is between
the two limits – interpolation formulas will be presented that allow a smooth
interpolation between the low- and high-density limits.
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30.2.1 The Low-Density Electron Gas, Wigner Crystal

The kinetic energy of electrons goes as 1/r2s , while the exchange energy is
proportional to 1/rs, hence the interaction is dominant in the low-density,
large rs limit. Wigner assumed that a minimum energy configuration can be
achieved if electrons get localized as far apart as possible, i.e., they occupy
the lattice sites of a close-packed lattice, which gives the largest interparticle
spacing for a given density. This electron crystal is called the Wigner crystal.

To estimate the energy of this electron crystal, the Wigner–Seitz cells
around the lattice sites are replaced with spheres of radius r0 and it is assumed
that there is exactly one electron in each sphere. The positive background of
the ions has been assumed to be uniform. Although the spheres necessarily
overlap, the tesselation of space by spheres probably gives a small error, since
the Wigner–Seitz cells of face-centered and body-centered cubic lattices can
be well approximated by spheres.

If the electron is in the center of the sphere and the charge of the ions
is smeared out uniformly in the sphere, the electric field vanishes outside
the sphere. Each electron feels only the positive background of its respective
sphere, and there is no electric interaction between the spheres. The potential
created at r relative to the center of the sphere by the smeared positive charge
of density 3e/(4r30π) is

ϕ(r) =
e

4πε0
3

4r30π

∫

|r′|<r0

1
|r − r′| dr′ =

e

4πε0

[
3

2r0
− r2

2r30

]
. (30.2.1)

Hence the electron sitting at the center of the sphere feels a potential ϕ(0) =
(e/4πε0)(3/2r0) and the electrostatic energy per particle is

E(−)

Ne
= −eϕ(0) = − e2

4πε0
3

2r0
= −3ẽ2

2r0
. (30.2.2)

The same potential can be used to get the energy of interaction of the
positive background with itself. This energy is

E(+)

Ne
=

1
2
ẽ2

3
4r30π

3
4r30π

∫

|r|<r0

dr

∫

|r′|<r0

dr′ 1
|r − r′|

=
1
2
ẽ2

3
4r30π

∫

|r|<r0

(
3

2r0
− r2

2r30

)
dr =

6
5
ẽ2

2r0

(30.2.3)

for each cell. Thus the total energy due to the Coulomb interaction between
the positive and negative charges inside the sphere is

EC

Ne
=
E(+) + E(−)

Ne
=

ẽ2

2r0

[
6
5
− 3
]

= −9
5
ẽ2

2r0
= −0.9

rs

ẽ2

a0
. (30.2.4)
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However rough it might be, this estimate is quite reasonable as can be
shown by comparing it with the Madelung energy of the electron crystal.
This latter has been calculated numerically for simple crystal structures whose
lattice constant a was chosen in such a way that the volume belonging to every
electron be equal to the volume of the sphere with radius r0 = a0rs. Expressing
the Madelung energy in terms of rs, and not in terms of the nearest-neighbor
distance as is done usually, it takes the form

EMad

Ne
= − α

rs

ẽ2

a0
. (30.2.5)

The Madelung constant α is 0.880 for the simple cubic lattice, while α ≈ 0.896
for the body-centered cubic lattice, and nearly the same value is found for the
face-centered cubic and hexagonal close-packed lattices. The largest value,
although only by a slight margin, is α = 0.89593, for the body-centered cubic
lattice. Later numerical works on the conditions for the existence of the Wigner
crystal concentrated therefore on this lattice type.

If the electron is displaced from the center of the sphere, its electrostatic
energy is

E(−)

Ne
= −eϕ(r) = − e2

4πε0

[
3

2r0
− r2

2r30

]
= − ẽ2

2r0

[
3 −
(
r

r0

)2
]
, (30.2.6)

and the total Coulomb energy of the positive and negative charges inside the
sphere is

EC

Ne
=
E(+) +E(−)

Ne
=

ẽ2

2r0

[
6
5
− 3 +

(
r

r0

)2
]

=
ẽ2

2r0

[
− 9

5
+
(
r

r0

)2
]
.

(30.2.7)

This can be interpreted as the energy of a particle in a harmonic potential.
Adding it to the kinetic energy, the total energy of an electron in a Wigner
crystal is

EW

Ne
=

p2

2me
+

ẽ2

2r0

[
− 9

5
+
(
r

r0

)2
]
. (30.2.8)

Comparing it with the Hamiltonian of a harmonic oscillator of frequency ω,

H =
p2

2me
+ 1

2meω
2r2 , (30.2.9)

one finds
1
2meω

2 =
ẽ2

2r30
. (30.2.10)



154 30 Cohesive Energy of the Electron System

The frequency of oscillations of electrons in the Wigner crystal has to be
determined from this relation. When the frequency is expressed in terms of
the electron density ne = 3/(4πr30), we have

ω2 =
4πneẽ

2

3me
=

1
3
ω2

p , (30.2.11)

where ωp is the frequency of plasma oscillations given in (16.1.69).
There are three degenerate modes corresponding to the three directions

of oscillation. Their zero-point oscillations give a finite contribution to the
ground-state energy. Adding the zero-point energy to the energy due to the
Coulomb repulsion, we get

EW

Ne
= −9

5
ẽ2

2r0
+

3
2

�ω = −9
5
ẽ2

2r0
+

√
3

2
�ωp , (30.2.12)

for the energy per particle. In atomic energy units, where the plasma frequency
is given by

�ωp =
(

3
(r0/a0)3

)1/2
ẽ2

a0
=
(

3
r3s

)1/2
ẽ2

a0
, (30.2.13)

we have
EW

Ne
=
[
−0.9
rs

+
1.5

r
3/2
s

]
ẽ2

a0
. (30.2.14)

When the energy of vibrations is calculated more accurately, one finds 1.325
instead of 1.5 for the coefficient of the term proportional to r−3/2

s . If anhar-
monicity is taken into account, corrections proportional to r−2

s and to higher
powers of 1/rs are found. The leading perturbative correction is −0.365/r2s .
Writing the total energy of the electron system at low densities, in the Wigner-
crystal state, in the form

EWC

Ne
=
[
c1
rs

+
c3/2

r
3/2
s

+
c2
r2s

+ · · ·
]
ẽ2

a0
, (30.2.15)

the best values for the expansion coefficients are obtained from fitting the total
energy calculated by quantum Monte Carlo methods to this form. Fixing c1 to
the value calculated for the Madelung constant α of the body-centered cubic
lattice, we get

EWC

Ne
=
[
−0.896

rs
+

1.338

r
3/2
s

− 0.553
r2s

]
ẽ2

a0
. (30.2.16)

The physical picture used to derive this energy allows us to get an estimate
of the validity of this approximation. Provided the vibrations of the Wigner
crystal are harmonic, the mean-square displacement of the electron from its
equilibrium position is
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〈r2〉 = 3
�

2meω
=

3
2

�

me

(
mer

3
0

ẽ2

)1/2

=
3
2
(
a0r

3
0

)1/2
, (30.2.17)

where we have taken into account that each electron can participate in three
independent vibrational modes. Our assumption about the localization of the
electrons to lattice sites becomes meaningless if 〈r2〉1/2 is comparable to the
radius of the sphere in which the electron oscillates. We know from Chapter 12
that a crystal melts according to the Lindemann criterion when the root-mean-
square displacement of the atoms reaches about one quarter of the lattice
parameter,

〈u2〉1/2

a
≈ 1

4
. (30.2.18)

If r0 is identified with the lattice constant, the relative mean displacement is

〈r2〉1/2

r0
=

√
3
2

(a0r
3
0)

1/4

r0
=

√
3
2

(
1
rs

)1/4

. (30.2.19)

Applying this criterion to the Wigner crystal we find that it can be stable at
very low densities only, for rs > 20.

A better treatment of the interacting electron system gives a much stricter
bound: Wigner crystal can be formed in a three-dimensional homogeneous
electron gas only at much lower densities. If the energy of the low-density elec-
tron system is calculated numerically by using quantum Monte Carlo methods,
one finds that the body-centered cubic Wigner crystal is the stable ground
state for rs ≥ 106. We will see in Chapter 33 that the homogeneous para-
magnetic fluid phase does not go over directly to the Wigner-crystal phase as
the density is lowered. The electron system becomes magnetically polarized,
the occupation of states with opposite spin orientations becoming unequal, for
densities rs > 50. The typical values of rs in normal metals being much smaller
than this limit, no three-dimensional Wigner crystals have been observed in
nature.

The limits for the existence of the Wigner crystal are not so extreme in
a two-dimensional homogeneous electron gas. The best numerical estimates
give rs ≈ 35–38 beyond which the triangular Wigner-crystal phase is the
stable ground state. Modern semiconductor technology allows us to produce
two-dimensional electron gases with such densities. Figure 30.6 shows the
temperature dependence of the resistivity of a high purity GaAs/AlGaAs het-
erostructure for several concentrations of carriers. The change from metallic-
like to semiconductor-like behavior, the metal–insulator transition in the
ground state can be interpreted as being due to the localization of electrons
in the Wigner crystal.
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Fig. 30.6. Temperature dependence of the resistivity of a two-dimensional hole
system in a GaAs/AlGaAs heterostructure for different hole densities. The system
behaves as a metal at higher densities and as an insulator at lower densities. The
critical density is 7.7× 109 cm−2, corresponding to rs = 35 [Reprinted with permis-
sion from J. Yoon et al., Phys. Rev. Lett. 82, 1744 (1999). © (1999) by the American
Physical Society]

30.2.2 Parametrization of the Correlation Energy

The results obtained in the low- and high-density limits are not valid for
densities characteristic of most metals. Since we have analytic expressions in
these limits, it seems natural to attempt to find smooth interpolation formulas
for intermediate densities.

Subtracting the Hartree–Fock result from (30.2.16) we find

Ec

Ne
=
[
−0.438

rs
+

1.338

r
3/2
s

− 1.658
r2s

]
ẽ2

a0
(30.2.20)

for the correlation energy of the low-density electron gas. On the other hand,
taking (30.1.34) for the dense electron gas, we have

Ec

Ne
=
[− 0.047 + 0.0311 ln rs + 0.009 rs ln rs + O(rs)

]
ẽ2/a0 . (30.2.21)

Wigner derived a somewhat different expression for the dense electron gas
and proposed the interpolation formula
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EW
c

Ne
= − 0.44

rs + 7.8
ẽ2

a0
(30.2.22)

for intermediate values of rs. The applicability of this formula is doubtful, since
it connects the energy of two regions by a smooth function between which,
if a Wigner crystal exists, a first-order phase transition takes place, and the
derivative of the energy is discontinuous at the transition point. Nevertheless,
as seen in Fig. 30.7, the total energy is quite close to the values obtained in
the better approximations discussed below, when this expression is used for
the correlation energy.

0

–0.1

0.1

4 6 8
rs

HF
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VWN, PZ

2

E Ne
(Ry)

Fig. 30.7. Ground-state energy of the electron gas as a function of rs in the Hartree–
Fock approximation (HF) and using the expressions for the correlation energy pro-
posed by Wigner (W); Nozières and Pines (NP); Vosko, Wilk, and Nusair

(VWN); or Perdew and Zunger (PZ)

Using the result derived in the RPA, P. Nozières and D. Pines (1958)
proposed a somewhat different interpolation formula:

ENP
c

Ne
= [−0.057 + 0.015 ln rs] ẽ2/a0 . (30.2.23)

Taking a completely different approach, D. M. Ceperley and B. J.

Alder (1980) calculated the correlation energy of the homogeneous electron
gas at various densities by a Monte Carlo method. Using these results as well
as the expansions valid for low and high densities, S. H. Vosko, L. Wilk,
and M. Nusair (1980) proposed the analytic expression

EVWN
c

Ne
= 0.0311

{
ln
(

rs
rs + 3.7274

√
rs + 12.9352

)

+ 1.2474 arctan
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6.1520
2
√
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)
(30.2.24)

+0.0312 ln
[

(
√
rs + 0.1050)2

rs + 3.7274
√
rs + 12.9352

]}
ẽ2

a0
.

Using the same data but assuming a different analytic form, J. P. Perdew

and A. Zunger (1981) proposed a slightly modified form of the perturbative
expression,
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EPZ
c

Ne
= [0.0311 ln rs − 0.048 + 0.0020rs ln rs − 0.0116rs] ẽ2/a0 , (30.2.25)

for a dense electron gas, in the range 0 ≤ rs ≤ 1, and

EPZ
c

Ne
= − 0.1423

1 + 1.0529
√
rs + 0.3334rs

ẽ2

a0
(30.2.26)

when rs ≥ 1. The two expressions join smoothly at rs = 1. The total energies
calculated with these expressions are also shown in Fig. 30.7.

A numerically even simpler parametrization of the correlation energy is due
to J. P. Perdew and Y. Wang (1992). They assumed the same analytical
form

EPW
c

Ne
= −2A(1 + α1rs) ln

[
1 +

1
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(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2s
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]
ẽ2

a0

(30.2.27)
both at low and high densities and found good matching to the numerical
values if A = 0.0311, α1 = 0.2137, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382,
and β4 = 0.4929.

30.3 The Density-Functional Theory

The energy of the homogeneous electron gas could be expressed as a func-
tion of rs, i.e., as a function of the electron density. The electronic density is
inhomogeneous in a realistic model of solids owing to the presence of the in-
homogeneous potential Vion(r) of the ions, and we might not expect a unique
functional relationship between the local electronic density and the total en-
ergy. The Thomas–Fermi approximation seems to be an exception. When elec-
trons propagate in a slowly varying external one-particle potential Vext(r), a
local Fermi wave number can be defined which is related to the local electron
density via (29.2.4). Using (30.1.4) for the average kinetic energy of an elec-
tron in a uniform system, the kinetic energy of the inhomogeneous electron
gas is

Ekin =
3
5

�
2

2me

∫
k2
F(r)ne(r) dr =

3�
2

10me
(3π2)2/3

∫
n5/3

e (r) dr . (30.3.1)

Adding to this the energy due to the external potential Vext(r) and the term
due to the Coulomb interaction,

∫
Vext(r)ne(r) dr +

ẽ2

2

∫∫
dr dr′ne(r)ne(r′)

|r − r′| , (30.3.2)

the total energy is a unique functional of the density.
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Although the kinetic energy cannot be written in such a simple form
when we go beyond the semiclassical Thomas–Fermi approximation, it is still
true that the local density ne(r) determines uniquely the solutions of the
Hartree equations. The exchange correction of the Hartree–Fock approxima-
tion could be derived from the density only when the generically nonlocal
exchange potential was approximated by a density-dependent local exchange
potential. Quite generally we could only show that the total energy can be
calculated only if the density–density correlation function, which contains the
two-particle correlations, as well as the density are known.

It might be surprising then that P. Hohenberg and W. Kohn
3 (1964)

have shown that there is a unique relationship between the ground-state en-
ergy of an interacting electron system and the density ne(r) of the electrons.
Further developments of the theory have led to well-defined procedures to
calculate the correlation energy.

30.3.1 Hohenberg–Kohn Theorems

Assume that we know the solutions of the Schrödinger equation of the many-
body system where the particles move in an external potential Vext(ri) and the
electrons interact with each other via a two-particle potential U(ri −rj). The
ground-state energy is denoted by E0 and the corresponding wavefunction is
Ψ0(r1, r2, . . . , rNe). Introducing the short-hand notation

T =
Ne∑

i=1

(
− �

2

2me
∇2

i

)
, U = 1

2

Ne∑

i,j=1
i�=j

U(ri − rj) , (30.3.3)

for the kinetic energy and the interparticle interaction, respectively, and

V =
Ne∑

i=1

Vext(ri) (30.3.4)

for the external potential, the Schrödinger equation can be written in the
concise form

H|Ψ0〉 ≡ (T + U + V ) |Ψ0〉 = E0|Ψ0〉 . (30.3.5)

For a fixed particle–particle interaction, the ground-state wavefunction and
the corresponding energy eigenvalue are determined by the external poten-
tial. Provided the many-body wavefunction is known, the one-particle density
can be calculated unequivocally using (28.4.4). Thus the external potential is
mapped uniquely on the density.

The first Hohenberg–Kohn theorem states that this map is unique not
only in this direction, but in the opposite sense as well. More precisely, the
3

Walter Kohn (1923–) was awarded the Nobel Prize in chemistry in 1998 “for
his development of the density-functional theory”.
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ground-state wavefunction and consequently the ground-state expectation value
of any observable physical quantity – among others the ground-state energy –
is a unique functional of the ground-state electron density. Moreover, if the
ground-state wavefunctions of two systems are identical, the potentials can
differ only by a constant. We will assume in the proof that the ground state
is nondegenerate. It can be shown, although the proof is more involved, that
the theorem is true for degenerate ground states as well.

First, we prove that if two systems have identical electronic densities, then
their many-particle wavefunctions have to be necessarily identical. To show
this we consider two systems with different one-particle potentials:

V =
∑

i

Vext(ri) (30.3.6)

in one of them and
V ′ =

∑

i

V ′
ext(ri) (30.3.7)

in the other, but the same electron–electron interaction acts in both of them.
If the ground-state wavefunction of the latter problem is denoted by |Ψ ′

0〉 and
the ground-state energy by E′

0, the corresponding Schrödinger equation is

H′|Ψ ′
0〉 ≡ (T + U + V ′) |Ψ ′

0〉 = E′
0|Ψ ′

0〉 . (30.3.8)

According to the variational principle of quantum mechanics if |Ψ0〉 is the
ground-state wavefunction of H, then

〈Ψ |H|Ψ〉 > 〈Ψ0|H|Ψ0〉 = E0 (30.3.9)

for any other state |Ψ〉. If |Ψ〉 is chosen to be the ground state of H′, that is
|Ψ ′

0〉, the left-hand side is

〈Ψ ′
0|H|Ψ ′

0〉 = 〈Ψ ′
0|H′ + V − V ′|Ψ ′

0〉 = E′
0 + 〈Ψ ′

0|V − V ′|Ψ ′
0〉 , (30.3.10)

and the inequality yields

E′
0 + 〈Ψ ′

0|V − V ′|Ψ ′
0〉 > E0 . (30.3.11)

On the other hand, starting from the inequality

〈Ψ |H′|Ψ〉 > 〈Ψ ′
0|H′|Ψ ′

0〉 = E′
0 (30.3.12)

valid for the ground-state energy of Hamiltonian H′ provided |Ψ〉 is different
from |Ψ ′

0〉 and applying it to |Ψ〉 = |Ψ0〉, similar steps lead to the inequality

E0 + 〈Ψ0|V ′ − V |Ψ0〉 = E0 − 〈Ψ0|V − V ′|Ψ0〉 > E′
0 . (30.3.13)

Combining the two inequalities we find



30.3 The Density-Functional Theory 161

E′
0 + 〈Ψ ′

0|V − V ′|Ψ ′
0〉 > E′

0 + 〈Ψ0|V − V ′|Ψ0〉 . (30.3.14)

The contribution of the one-particle potentials depends only on the elec-
tron density and we have

〈Ψ0|V − V ′|Ψ0〉 =
∫
ne(r) [Vext(r) − V ′

ext(r)] dr . (30.3.15)

Similarly

〈Ψ ′
0|V − V ′|Ψ ′

0〉 =
∫
n′e(r) [Vext(r) − V ′

ext(r)] dr . (30.3.16)

If the densities corresponding to the two wavefunctions are identical,

〈Ψ ′
0|V − V ′|Ψ ′

0〉 = 〈Ψ0|V − V ′|Ψ0〉 . (30.3.17)

Inequality (30.3.14) thus reduces to

E′
0 > E′

0 . (30.3.18)

This contradiction can be resolved only if we assume that the wavefunctions
|Ψ0〉 and |Ψ ′

0〉 are in fact identical and in all previous relations equality holds
instead of inequality. This proves that the densities ne(r) and n′e(r) calculated
from |Ψ0〉 and |Ψ ′

0〉, respectively, can be equal only if the wavefunctions are
identical, which means that the wavefunction is a unique functional of the
density.

Assume now that the same wavefunctions appear in (30.3.5) and (30.3.8).
Subtracting the two equations gives

(V − V ′)|Ψ0〉 = (E0 − E′
0)|Ψ0〉 . (30.3.19)

It then follows that – apart from singular potentials for which the wavefunction
vanishes on finite regions – V and V ′ may only differ in an additive constant,
which is the energy difference ΔE0 of the two ground states.

Application of the two steps one after the other leads to the following
result: if the density ne(r) calculated in the presence of Vext(r) is equal to the
density n′e(r) calculated for V ′

ext(r), then the two potentials may differ in an
additive constant only. This statement is valid for degenerate ground states
as well.

Thus far we have seen that the external potential, the ground-state
wavefunction, and the ground-state density of the electrons are uniquely
related. Since the wavefunction is a unique functional of the density and the
electron–electron interaction was taken to be fixed, the sum of the kinetic
energy and the energy due to electron–electron interaction,

F [ne(r)] ≡ 〈Ψ0|T + U |Ψ0〉 , (30.3.20)
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is also a unique functional of the density. Furthermore, since the density de-
termines the one-particle potential, too, apart from an additive constant, the
total energy

E[ne(r)] = F [ne(r)] +
∫
Vext(r)ne(r) dr (30.3.21)

is a unique functional of the density, as the first Hohenberg–Kohn theorem
stated.

Another, equally important property of the functional relationship between
the ground-state energy and density is stated by the second Hohenberg–Kohn
theorem: the energy as a functional of the density takes its minimum at the
true ground-state density. Stated otherwise, the ground-state energy for a
given external potential Vext(r) is obtained by minimizing the total energy
functional E[ne(r)] with respect to the density, provided the total number of
particles Ne is fixed, i.e., ∫

ne(r) dr = Ne . (30.3.22)

When this condition is taken into account by a Lagrange multiplier μ, the
minimum of the functional

E[ne(r)] − μ

[∫
ne(r) dr −Ne

]
(30.3.23)

has to be found, that is, the ground-state density satisfies the equation

δE[ne(r)]
δne(r)

≡ δF [ne(r)]
δne(r)

+ Vext(r) = μ , (30.3.24)

and the value of the functional at the minimum is the ground-state energy. It
can be shown that the Lagrange multiplier μ is equal to the chemical potential.

The second theorem is the consequence of the Rayleigh–Ritz variational
principle of quantum mechanics which states that the expectation value of the
Hamiltonian is minimal if it is calculated with the true ground-state wave-
function, provided the particle number is fixed, and the value of the minimum
is the ground-state energy:

E0 = minE[ne(r)] . (30.3.25)

An interesting generalization of these theorems to finite temperatures has
been proved by N. D. Mermin (1965). He has shown that the grand canonical
potential

Ω = E − μN − TS (30.3.26)

is a unique functional of the density and it takes its minimum at the physical
density of the finite-temperature system.
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30.3.2 Kohn–Sham Equations

The many-body problem is thus reduced to finding the functional F [ne(r)]
that contains the kinetic energy and the contribution of the electron–electron
interaction and to solving the corresponding variational problem. The Hohen-
berg–Kohn theorems only state the existence of this functional but give no
hint about its form. The density-functional theory can be applied for the cal-
culation of physical quantities only if some assumptions can be made about
this functional. This difficult task could be simplified if the many-body prob-
lem could be reduced to an effective one-body problem with an appropriately
chosen potential. Such a procedure has been proposed by W. Kohn and
L. J. Sham (1965).

Consider an interacting system with a physical Vext(r) one-particle poten-
tial and density ne(r). Kohn and Sham supposed that one can find a fictitious
noninteracting system that produces the same density in the presence of an
effective one-particle potential Vs(r). The question whether an effective po-
tential can necessarily be found to a given smooth density is a fundamental
problem of the mathematical foundation of density-functional theory. This is
the problem of v-representability. Without going into mathematical details we
assume that such an effective potential exists. Then it follows from the first
Hohenberg–Kohn theorem that Vs(r) is uniquely defined.

The particles of this noninteracting auxiliary problem satisfy the one-
particle Schrödinger equation

[
− �

2

2me
∇2 + Vs(r)

]
φi(r) = εiφi(r) , (30.3.27)

and the density has to be determined via

ne(r) =
Ne∑

i=1

|φi(r)|2 , (30.3.28)

where the summation goes over the lowest energy occupied states. Thus the
one-particle wavefunctions are also unique functionals of the density.

The wavefunction |Ψs〉 of this noninteracting system is a Slater determinant
formed from the one-particle wavefunctions. The expectation value of the
kinetic energy operator is

Ts[ne(r)] = 〈Ψs|T |Ψs〉 =
Ne∑

i=1

∫
φ∗i (r)

(
− �

2

2me
∇2

)
φi(r) dr . (30.3.29)

It is important to note that it is not equal to the total kinetic energy,

Ts[ne(r)] �= T [ne(r)] , (30.3.30)

since the expectation value of T is not taken with the correct wavefunction.
The difference can be incorporated into the correlation energy.
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Adding to it the contribution of the potential Vs, the total energy functional
is

E[ne(r)] = Ts[ne(r)] +
∫
Vs(r)ne(r) dr . (30.3.31)

Naturally the principle of energy minimum holds for this system as well, i.e.,
this functional has its minimum at the true ground-state density and the value
of the energy minimum is the ground-state energy.

The as yet unknown potential has to be determined self-consistently from
the requirement that the energy functional of this fictitious noninteracting
system be as close as possible to the true energy functional. Its minimum
will then give a good approximation for the ground-state energy and density.
Thus, all the difficulty is reduced to finding a good potential Vs. In order to
be able to say something about it, we subtract three terms from E[ne(r)]: the
term Ts, the contribution of the external potential

Eext[ne(r)] =
∫
Vext(r)ne(r) dr , (30.3.32)

and the Hartree approximation to the electron–electron interaction,

UH[ne(r)] =
ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr . (30.3.33)

The remaining term Exc[ne(r)] defined by

E[ne(r)] = 〈Ψs|T |Ψs〉 +
∫
Vext(r)ne(r) dr

+
ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr + Exc[ne(r)]

(30.3.34)

is called the exchange–correlation energy. It contains all corrections beyond
the Hartree approximation, including the correlation correction to the kinetic
energy:

Exc[ne(r)] = T [ne(r)] − Ts[ne(r)] + U [ne(r)] − UH[ne(r)] . (30.3.35)

Note that the exchange–correlation energy has a simple interpretation
if the relationship derived previously between the energy and the density–
density correlation function is used. It can be written in the form

Exc[ne(r)] =
ẽ2

2

∫∫
ne(r)nxc(r, r′)

|r − r′| dr′ dr , (30.3.36)

where
nxc(r, r′) = ne(r)

[
g̃(r, r′) − 1

]
(30.3.37)

and g̃(r, r′) is a mean of the pair distribution function over the coupling
strength. We have seen in Chapter 28 that both quantum mechanical exchange
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and Coulomb repulsion lead to a decrease of the pair distribution function at
short distances. Electrons create Fermi and Coulomb holes around themselves.
Since nxc(r, r′) is related to the hole density at r′ created by an electron at r,
Exc[ne(r)] can be viewed as the interaction of electrons with their exchange–
correlation holes.

Substituting (30.3.34) into (30.3.24) which expresses the minimum condi-
tion for the ground-state energy, we find

δTs[ne(r)]
δne(r)

+ Vext(r) + ẽ2
∫

ne(r′)
|r − r′|dr′ + Vxc[ne(r)] = μ , (30.3.38)

where
Vxc[ne(r)] =

δExc[ne(r)]
δne(r)

(30.3.39)

is the exchange–correlation potential. On the other hand, when noninteracting
particles moving in a potential Vs(r) are considered, the minimum condition
of functional (30.3.31) leads to

δTs[ne(r)]
δne(r)

+ Vs(r) = μ . (30.3.40)

Comparison of (30.3.38) with (30.3.40) gives

Vs(r) = Vext(r) + ẽ2
∫

ne(r′)
|r − r′|dr′ + Vxc[ne(r)] . (30.3.41)

This effective one-particle potential is known as the Kohn–Sham potential and
the Schrödinger equations using this potential,
[
− �

2

2me
∇2 + Vext(r) + ẽ2

∫
ne(r′)
|r − r′|dr′ + Vxc[ne(r)]

]
φi(r) = εiφi(r) ,

(30.3.42)
are the Kohn–Sham equations. It follows from our earlier considerations that
the density determined via (30.3.28) from the solutions of these equations is
equal to the true ground-state density of the many-body system.

Finally, knowing the density and using (30.3.34), the total ground-state
energy can be calculated from

E[ne(r)] =
Ne∑

i=1

∫
φ∗i (r)

(
− �

2

2me
∇2

)
φi(r) dr +

∫
Vext(r)ne(r) dr

+
ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr + Exc[ne(r)] . (30.3.43)

It can be seen using (30.3.27) that

Ts[ne(r)] =
Ne∑

i=1

∫
φ∗i (r)

[
εi − Vs(r)

]
φi(r) dr

=
Ne∑

i=1

εi −
∫
Vs(r)ne(r) dr ,

(30.3.44)
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which leads to a more convenient expression for the total energy:

E[ne(r)] =
Ne∑

i=1

εi −
∫
Vs(r)ne(r) dr +

∫
Vext(r)ne(r) dr

+
ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr + Exc[ne(r)]

=
Ne∑

i=1

εi − ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr

+ Exc[ne(r)] −
∫
ne(r)Vxc[ne(r)] dr .

(30.3.45)

Provided we know the potential Vext(r) and the exchange–correlation en-
ergy functional Exc[ne(r)], or the exchange–correlation potential Vxc[ne(r)],
the density and the ground-state energy can be calculated self-consistently.
The coordinates Rn of the atoms and their charge Zn are input parameters
together with the total number of electrons. Taking an initial form for the
density ne(r) first the potential Vs(r) is calculated using (30.3.41). Then the
solution of the Kohn–Sham equations in (30.3.42) leads to a new set of wave-
functions from which a new density is obtained via (30.3.28). This iterative
procedure is repeated until self-consistency is established.

30.3.3 Local-Density Approximation

The procedure explained above is in principle exact. However, we do not have
an explicit expression for Exc[ne(r)] or its functional derivative, Vxc[ne(r)]. An
approximate form can be obtained if we assume that for systems where ne(r)
varies slowly on the scale of the Fermi wavelength the exchange–correlation
potential is a function of the local density. In this local-density approximation
(LDA) the exchange–correlation energy is chosen in the form

ELDA
xc [ne(r)] =

∫
ne(r)εhom

xc [ne(r)] dr , (30.3.46)

where εhom
xc [ne] is the exchange–correlation energy per particle in the homoge-

neous electron gas of density ne. The exchange–correlation potential is then

V LDA
xc (r) =

δELDA
xc [ne(r)]
δne(r)

=
dneε

hom
xc [ne]

)

dne

∣∣∣
ne=ne(r)]

= εhom
xc [ne(r)] + ne(r)

dεhom
xc (ne)
dne

∣∣∣
ne=ne(r)]

.

(30.3.47)

If the dimensionless radius rs is used to characterize the density,

V LDA
xc =

(
1 − rs

3
d

drs

)
εhom
xc (rs) , (30.3.48)
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where we used the relationship between rs and ne valid in a homogeneous
electron gas.

It follows from (30.1.11) derived for the exchange correction to the energy
of the homogeneous electron gas that

εhom
x = − 3

4π
ẽ2kF = −3

4

(
3
π

)1/3

ẽ2n1/3
e , (30.3.49)

or in terms of the parameter rs

εhom
x (rs) = − 3

4π

(
9π
4

)1/3
ẽ2

rsa0
= −0.458

rs

ẽ2

a0
. (30.3.50)

The exchange energy in the local-density approximation is then

ELDA
x = −3

4

(
3
π

)1/3

ẽ2
∫
n4/3

e (r) dr (30.3.51)

and the exchange potential, the functional derivative of the exchange energy,
is

V LDA
x (r) = −

(
3
π

)1/3

ẽ2n1/3
e (r) . (30.3.52)

This form corresponds to taking α = 2/3 in the Slater exchange potential [see
(30.1.24)].

For the correlation energy, one can use one of the parametrized analytical
forms given in the previous section. In most calculations the Vosko–Wilk–
Nusair, the Perdew–Zunger, or the Perdew–Wang parametrizations given in
(30.2.24), (30.2.25), and (30.2.26), or (30.2.27), respectively, are used nowa-
days.

30.3.4 Spin-Polarized Systems

We assumed until now that the system is unpolarized and the density of
spin-up and spin-down electrons is the same. That is why the system could be
characterized by a single function, the density of electrons. This is not possible
any more in the presence of an external magnetic field or when the system
is spontaneously polarized, and the densities are different for the two spin
orientations, n↑(r) and n↓(r). Besides the coupling of the number-density
operator n(r) to the external potential, another term appears in V , which
describes the coupling of the operator of the magnetization density m(r) to
the magnetic induction:

V =
∫ [

Vext(r)n(r) − B(r) · m(r)
]
dr , (30.3.53)

where
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n(r) =
∑

i

δ(r − ri) (30.3.54)

and
m(r) = geμB

∑

i

sδ(r − ri) = 1
2geμB

∑

i

σδ(r − ri) (30.3.55)

with σ the Pauli operator.
Quite similar to the procedure applied above for unpolarized systems, it

can now be shown that different wavefunctions cannot give identical particle
density and magnetization density,

ne(r) = 〈Ψ |n(r)|Ψ〉 , M(r) = 〈Ψ |m(r)|Ψ〉 . (30.3.56)

To prove this, the same inequalities are used except that the two problems that
we compare have potential Vext(r) and induction B(r) on the one hand and
potential V ′

ext(r) and induction B′(r) on the other hand. As a consequence
(30.3.15) is replaced with

〈Ψ |V − V ′|Ψ〉 =
∫
ne(r) [Vext(r) − V ′

ext(r)] dr

−
∫

M(r) · [B(r) − B′(r)
]
dr .

(30.3.57)

It follows from the generalization of the first Hohenberg–Kohn theorem that
every observable quantity is a unique functional of ne(r) and M(r). This the-
ory is called spin-density-functional theory. The energy functional is obtained
by adding the contribution of the magnetic field to (30.3.21):

E[ne(r),M(r)] = F [ne(r),M(r)] +
∫
Vext(r)ne(r) dr −

∫
B(r) · M(r) dr .

(30.3.58)
For a fixed external potential Vext(r) and induction B(r), this functional takes
its minimum at the physical particle density ne(r) and magnetization density
M(r) which have to be calculated self-consistently from the ground-state
wavefunction. If the constraint for the particle number is taken into account
by a Lagrange multiplier we find

δE[ne(r),M(r)]
δne(r)

≡ δF [ne(r),M(r)]
δne(r)

+ Vext(r) = μ ,

δE[ne(r),M(r)]
δM(r)

≡ δF [ne(r),M(r)]
δM(r)

− B(r) = 0 .
(30.3.59)

The Kohn–Sham equations can also be generalized for spin-polarized sys-
tems by introducing an effective magnetic induction in addition to the effective
one-particle potential Vs(r):

∑

σ′

{[
− �

2

2me
∇2 + Vs(r)

]
δσσ′ − 1

2geμBσσσ′ · Bs(r)
}
φiσ′(r) = εiσφiσ(r) .

(30.3.60)
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Just as for unpolarized systems, the origin of this effective field is best un-
derstood if we subtract out the kinetic energy of the noninteracting system,
the contribution of the external potential and of the magnetic field as well as
the Hartree term (which depends solely on the density) from the total energy
functional. The remaining term is the exchange–correlation energy:

E[ne(r),M(r)] = Ts[ne(r),M(r)] +
∫
Vext(r)ne(r) dr

−
∫

B(r) · M(r) dr +
ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr

+Exc[ne(r),M(r)] . (30.3.61)

This yields

Vs(r) = Vext(r) + ẽ2
∫

ne(r′)
|r − r′|dr′ +

δExc[ne(r),M(r)]
δne(r)

,

Bs(r) = B(r) − δExc[ne(r),M(r)]
δM(r)

(30.3.62)

for the effective potential and effective induction.
In a uniform magnetic field or when the magnetic moments are collinear,

the particle densities of electrons with the two spin orientations may be used
instead of the total particle density and magnetization density. The Kohn–
Sham equations from which the one-particle states with spin σ have to be
calculated, [

− �
2

2me
∇2 + Vsσ(r)

]
φiσ(r) = εiσφiσ(r) , (30.3.63)

contain a spin-dependent effective potential

Vsσ(r) = Vext(r) + ẽ2
∫

ne(r′)
|r − r′|dr′

+ Vxcσ[n↑(r), n↓(r)] − 1
2geμBσB ,

(30.3.64)

where
Vxcσ[n↑(r), n↓(r)] =

δExc[n↑(r), n↓(r)]
δnσ(r)

(30.3.65)

is the spin-dependent exchange–correlation potential. The procedure is self-
consistent if the density of electrons with spin σ satisfies the equation

nσ(r) =
Nσ∑

i=1

|φiσ(r)|2 , (30.3.66)

where the summation goes over the lowest energy occupied states and the
total density is ne(r) = n↑(r) + n↓(r).
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Similar to (30.3.45), the total energy is obtained from

E[n↑(r), n↓(r)] =
∑

σ

Nσ∑

i=1

εiσ − ẽ2

2

∫∫
ne(r)ne(r′)
|r − r′| dr′ dr (30.3.67)

+Exc[n↑(r), n↓(r)] −
∑

σ

∫
nσ(r)Vxcσ[n↑(r), n↓(r)] dr .

The local-density approximation can be used to get an approximate ex-
pression for the spin-dependent exchange–correlation energy, too. It then has
the name local-spin-density approximation (LSDA). We assume that instead
of (30.3.46) the exchange–correlation energy can be written in the form

Exc[n↑(r), n↓(r)] =
∫
εxc[n↑(r), n↓(r)]ne(r) dr . (30.3.68)

The exchange contribution can relatively simply be expressed in terms of the
exchange energy of the unpolarized electron gas. Since there is no exchange
between particles of opposite spin, the contributions of electrons of the two
spin orientations are additive:

Ex[n↑, n↓] = 1
2

(
Ex[2n↑] +Ex[2n↓]

)
. (30.3.69)

With the known form for the exchange energy of the unpolarized electron gas
we have

ELSDA
x [n↑, n↓] = −21/3 3

4

(
3
π

)1/3

ẽ2
∫ [

n
4/3
↑ (r) + n

4/3
↓ (r)

]
dr. (30.3.70)

Instead of n↑(r) and n↓(r) it is customary to use the total density ne(r) =
n↑(r) + n↓(r) and the parameter

ζ(r) =
n↑(r) − n↓(r)

ne(r)
(30.3.71)

characterizing the relative polarization. We have

ELSDA
x [ne, ζ] =

∫
εx
[
ne(r), ζ(r)

]
ne(r) dr (30.3.72)

with

εx[ne, ζ] = −1
2

3
4

(
3
π

)1/3

ẽ2n1/3
e (r)

{[
1 + ζ(r)

]4/3 +
[
1 − ζ(r)

]4/3
}
.

(30.3.73)
Using rs instead of ne, it is customarily rewritten in the form

εLSDA
x (rs, ζ) = εx(rs, ζ = 0)

+
[
εx(rs, ζ = 1) − εx(rs, ζ = 0)

]
f(ζ) ,

(30.3.74)
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where

εx(rs, ζ = 0) = − 3
4π

(
9π
4

)1/3 1
rs

ẽ2

a0
,

εx(rs, ζ = 1) = 21/3εx(rs, ζ = 0) ,

(30.3.75)

and

f(ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

2(21/3 − 1)
. (30.3.76)

The additivity of the contributions coming from electrons of the two spin
orientations is not valid for the spin-dependent correlation energy. Neverthe-
less, it is often assumed that a form analogous to (30.3.74) holds for the
correlation energy of partially polarized systems, that is

εc(rs, ζ) = εc(rs, ζ = 0)

+
[
εc(rs, ζ = 1) − εc(rs, ζ = 0)

]
f(ζ) .

(30.3.77)

Using the Perdew–Zunger parametrization of the correlation energy, the ex-
pressions given in (30.2.25) and (30.2.26) are used in the unpolarized, ζ = 0
case. When 0 ≤ rs ≤ 1,

εPZ
c (rs, ζ = 0) = [0.0311 ln rs − 0.048 + 0.0020rs ln rs − 0.0116rs] ẽ2/a0 ,

(30.3.78)
while for rs ≥ 1

εPZ
c (rs, ζ = 0) = − 0.1423

1 + 1.0529
√
rs + 0.3334rs

ẽ2

a0
. (30.3.79)

Similar expressions are valid in the fully polarized state but with different
coefficients. In the range 0 ≤ rs ≤ 1,

εPZ
c (rs, ζ = 1) = [0.01555 ln rs − 0.0269 + 0.0007rs ln rs − 0.0048rs] ẽ2/a0 ,

(30.3.80)
while when rs ≥ 1,

εPZ
c (rs, ζ = 1) = − 0.0843

1 + 1.3981
√
rs + 0.2611rs

ẽ2

a0
. (30.3.81)

Vosko, Wilk, and Nusair proposed a form somewhat different from
(30.3.77), namely

εc(rs, ζ) = εc(rs, ζ = 0) + αc(rs)
f(ζ)
f ′′(0)

(1 − ζ4)

+
[
εc(rs, ζ = 1) − εc(rs, ζ = 0)

]
f(ζ)ζ4

(30.3.82)

with
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αc(rs) = −0.0169
{

ln
(

rs
rs + 1.1311

√
rs + 13.0045

)

+ 0.3177 arctan
(

7.1231
2
√
rs + 1.1311

)
(30.3.83)

+0.0004 ln
[

(
√
rs + 0.0048)2

rs + 1.1311
√
rs + 13.0045

]}
ẽ2

a0
,

to interpolate between the unpolarized and fully polarized systems. The ex-
pression given earlier as the Vosko–Wilk–Nusair parametrization of the cor-
relation energy is used for the unpolarized system,

εVWN
c (rs, ζ = 0) = 0.0311

{
ln
(

rs
rs + 3.7274

√
rs + 12.9352

)

+ 1.2474 arctan
(

6.1520
2
√
rs + 3.7274

)
(30.3.84)

+0.0312 ln
[

(
√
rs + 0.1050)2

rs + 3.7274
√
rs + 12.9352

]}
ẽ2

a0
,

while the expression for the fully polarized system has a similar form with
different parameters,

εVWN
c (rs, ζ = 1) = 0.01555

{
ln
(

rs
rs + 7.0604

√
rs + 18.0578

)

+ 3.3767 arctan
(

4.7309
2
√
rs + 7.0604

)
(30.3.85)

+0.1446 ln
[

(
√
rs + 0.3250)2

rs + 7.0604
√
rs + 18.0578

]}
ẽ2

a0
.

The energy expression (30.3.82) is used in the Perdew–Wang parametriza-
tion as well with αc(rs) and εc(rs, ζ = 1) given in a form similar to (30.2.27),
albeit with different coefficients.

The LDA and the LSDA are commonly used for calculating the exchange–
correlation energy. Several attempts have been made to go beyond these
approximations, e.g., by taking into account gradient corrections or to use
nonlocal functionals. In the generalized gradient approximation (GGA) the
exchange–correlation energy is written as the integral of a functional of both
the density and the gradient of the density:

EGGA
xc =

∫
drf(n↑, n↓,∇n↑,∇n↓) . (30.3.86)

Several GGA exchange functionals have been developed. They would, however,
take us too far afield, and we will not go into such detail.
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30.3.5 Applications of the Density-Functional Theory

The density-functional theory was introduced with the aim of finding a good
approximation to the ground-state energy and other observable quantities
that can be determined from the ground-state wavefunction. That is why it
is used extensively in quantum chemistry to calculate the binding energy of
molecules. Its applications in solid-state physics far exceed the calculation of
cohesive energy, although the applicability of the method is based in many
cases on experience without rigorous theoretical foundations.

When we determine the ground-state energy E0(Ne) of a system ofNe elec-
trons, the ionization potential of a semiconductor or insulator can be obtained
from

I = E0(Ne − 1) − E0(Ne) , (30.3.87)

while the electron affinity is

A = E0(Ne) − E0(Ne + 1) . (30.3.88)

It can be shown that these quantities can be related to the energy of the
fictitious one-particle states obtained from the Kohn–Sham equations:

I = −εNe
Ne
, (30.3.89)

where εNe
Ne

is the energy of the highest occupied state of the system with Ne
electrons. Similarly

A = −εNe+1
Ne+1 . (30.3.90)

In metals, the energy of the highest occupied fictitious level is equal to the
chemical potential.

A further exact result that has been assumed tacitly is that the one-particle
states obtained from the solution of the Kohn–Sham equations are filled ac-
cording to Fermi statistics. It can be shown that this is in fact true. One must
pay attention, however, that the fictitious particles of the Kohn–Sham equa-
tions are not strictly identical to the quasiparticles introduced to describe the
excited states of normal Fermi systems. When these excited states are to be
described accurately, the application of the methods of the many-body prob-
lem cannot be avoided. Nevertheless, experience shows that the one-particle
states obtained in the density-functional theory represent a good approxima-
tion to the Bloch states forming the electronic bands and the Kohn–Sham
eigenvalues can be interpreted as being the band energies. However, if one
calculates the band gap of semiconductors by taking the difference between
the energy of the lowest unoccupied and the highest occupied Kohn–Sham
eigenstates, the experimental value is consistently underestimated by at least
a factor of 2. This error is due partially to the local-density approximation
and partially to the fact that a continuous exchange–correlation potential is
used in the calculations while it must have discontinuities at integer particle
numbers.
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The methods of band structure calculation have been explained in Chap-
ter 19. A series of methods have been discussed which allow one to determine
the energy of Bloch states in the presence of a lattice-periodic one-particle
potential V (r). It was mentioned that besides the potential of the ions this
potential contains an effective potential due to mobile electrons as well. No
discussion was given, however, about how this effective potential can be de-
termined. The density-functional theory provides us with a tool to construct
this potential. Therefore, the modern methods of band structure calculation
combine the density-functional theory with one of the methods outlined in
Chapter 19. These methods are used to solve the Kohn–Sham equations.

Besides the total energy and the band structure, we can calculate a host of
other quantities using the density-functional theory. The lattice structure and
the atomic coordinates Rn serve as input parameters in the calculations. By
calculating the total energy for a variety of different possible primitive unit
cells, one can predict the stable crystalline structure. Once the structure is
known and the ground-state energy is determined for different lattice parame-
ters, the minimum yields the equilibrium lattice constants. The bulk modulus
can be extracted from the variation of the energy about the minimum. The
phonon spectrum can also be determined in the Born–Oppenheimer approx-
imation, i.e., by assuming that the electrons can adjust very quickly to a
change in the ionic positions. By varying the position of an atom inside a
cluster of other atoms, the elements of the dynamical matrix can be obtained.
The phonon energies can be determined directly from a “frozen phonon” cal-
culation by calculating the total energy, compared to the ground-state energy,
of a configuration, in which the static deformation of the lattice corresponds
to a phonon of a particular branch of a chosen wave vector q and polarization
λ.
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31

Excitations in the Interacting Electron Gas

However interesting it may be to calculate the total energy of the electron
system, which is an essential component of the cohesive energy of solids, as
precisely as possible, it is even more important to know the energies of the
excited states of electrons if we want to study the physical properties of solids.
These calculations are made possible by the quasiparticle picture which is valid
for the low-lying excitations. Even if the ground-state wavefunction of the in-
teracting many-body system is not known, adding (removing) a few electrons
to (from) the ground state can be interpreted as if a few quasiparticles with
renormalized energies ε̃k were added (removed) to (from) the system. There-
fore as far as the thermal, electric, or magnetic properties are considered, in
which the low-lying excited states play a dominant role, normal metals can
be viewed as if independent, free electronlike quasiparticles with renormal-
ized energies were propagating in it. That is the reason why the Drude and
Sommerfeld models were so successful in describing the properties of simple
metals. In this chapter, these quasiparticles will be studied going beyond the
Hartree–Fock approximation.

Unlike phonons, the number of electrons is conserved. When no charge
carriers are introduced from an external source, the only excitations to exist
are those in which one or more electrons are taken from their initial states into
new, so far unoccupied states, leaving holes behind. The basic excitations are
thus electron–hole pair excitations. In metals, these excitations form a broad
continuum with no energy gap, similar to what has been found in the free-
electron gas. In addition a new type of excitation, spontaneous spatial and
temporal oscillations, may appear in the electronic charge density due to the
Coulomb interaction. This can easily be understood if the results obtained
in Chapter 16 for the high-frequency properties of the classical electron gas
are recalled. We learnt there that collective longitudinal oscillations, plasma
oscillations, can propagate in the system of interacting electrons. The wave-
length and frequency of these oscillations are determined by those values of q
and ω where the dielectric function vanishes. Here a more accurate, quantum
mechanical treatment of these collective oscillations will be given.

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_4, © Springer-Verlag Berlin Heidelberg 2010
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The situation is different in semiconductors and ionic crystals. On the
one hand, finite energy is needed to create an electron–hole pair due to the
finite band gap. On the other hand, screening is weak or missing, and for this
reason the Coulomb interaction between the electron and the hole becomes
important. The excitation spectrum is therefore drastically different from the
spectrum in metals. The continuum of the electron–hole pair excitations starts
at a finite value, there are no low-energy pairs, and bound states may appear
inside the gap.

In magnetically polarized systems, oscillations similar to the plasma os-
cillations may appear in the magnetic-moment density. We will consider the
most important properties of these excitations at the end of this chapter.

31.1 One-Particle and Electron–Hole Pair Excitations

The bare, unscreened Coulomb interaction was used in the Hartree–Fock
approximation to calculate the quasiparticle energy. This led to the result
that the effective mass of the quasiparticles vanishes at the Fermi energy.
If that were true, the thermodynamic behavior of the interacting electron
system would be completely different from that of the noninteracting elec-
tron gas. We know from experiments that this is not so. Simple metals can
be described relatively well in terms of a free electron model. The failure of
the Hartree–Fock approximation is due to the complete neglect of screening.
One can ask the question, what is the spectrum of quasiparticles if a better
approximation is used, e.g., the RPA.

31.1.1 One-Particle Elementary Excitations

To find the one-particle excitations we look first at the problem of adding
an extra particle to the ground state of the interacting system. According to
the formalism sketched in Appendix H, the field operator ψ̂†

σ(r′, t′) creates an
electron of spin σ at position r′ at time t′. Thus the new state containing the
extra electron can be written in the form

|Ψ〉 = ψ̂†
σ(r′, t′)|Ψ0〉 , (31.1.1)

where |Ψ0〉 is the ground-state wavefunction. The probability of finding this
electron with the same spin at r at a later time t is the absolute square of the
probability amplitude

〈
Ψ0

∣∣ψ̂σ(r, t)ψ̂†
σ(r′, t′)

∣∣Ψ0

〉
. (31.1.2)

Provided that |Ψ〉 is an eigenstate of the total Hamiltonian with energy E,
the time dependence of this quantity is given by
〈
Ψ0

∣∣ψ̂σ(r, t)ψ̂†
σ(r′, t′)

∣∣Ψ0

〉
= e−i(E−E0)(t−t′)/�

〈
Ψ0

∣∣ψ̂σ(r)
∣∣Ψ
〉〈
Ψ
∣∣ψ̂†

σ(r′)
∣∣Ψ0

〉
,

(31.1.3)
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that is the probability of finding the particle does not decay in time. If, on the
other hand, ψ̂†

σ(r′) does not create an exact eigenstate, but a linear combina-
tion of states in a range of width Γ around an energy E, the probability of
finding the particle at a later time decays exponentially. When the width Γ is
small compared to E −E0, the excited state

∣∣Ψ
〉

has a simple interpretation:
an elementary excitation of energy E−E0 and lifetime τ ∼ 1/Γ are added to
the ground state.

To calculate the energy and lifetime of elementary excitations, the Green
functions of the many-body problem will be used. Their definition and most
important properties are given in Appendix K. A consistent perturbative cal-
culation can be done only for the causal Green function. When the successive
terms in perturbation theory are represented by Feynman diagrams, the pro-
cesses taken into account can be represented pictorially. One can either try
to sum the contributions of all processes up to a given order, if the coupling
constant is a small parameter, or one may use physical considerations to try
to find the most important classes of processes and to sum their contributions
up to infinity. In these cases the region of validity and the accuracy of the
approximation can also be estimated.

A much simpler procedure is provided by the equation-of-motion method.
Although it has the disadvantage that its accuracy is less controllable, we will
use this method for its simplicity in studying the elementary excitations.

The retarded Green function describing the propagation of a particle is

GR
σ (r, t, r′, t′) = − i

�
θ(t− t′)

〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
+

〉
, (31.1.4)

where [. . . , . . . ]+ denotes the anticommutator of operators. The equation of
motion is obtained by taking the derivative with respect to time t′:

�

i
d
dt′
GR

σ (r, t, r′, t′) = δ(t− t′)
〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
+

〉

−θ(t− t′)
〈[
ψ̂σ(r, t),

dψ̂†
σ(r′, t′)
dt′

]

+

〉
(31.1.5)

= δ(t− t′)δ(r − r′) − θ(t− t′)
〈[
ψ̂σ(r, t),

dψ̂†
σ(r′, t′)
dt′

]

+

〉
,

where we made use of the equal-time anticommutator of the field operators.
The time derivative of ψ̂†

σ(r′, t′) in the second term of the right-hand side
can be expressed using the equation

dψ̂†
σ(r′, t′)
dt′

=
i
�

[H, ψ̂†
σ(r′, t′)

]
− . (31.1.6)

With the Hamiltonian given in (28.1.20) we find
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�

i
dψ̂†

σ(r′, t′)
dt′

=
[
− �

2

2me
∇2

r′ + Vion(r′)
]
ψ̂†

σ(r′, t′) (31.1.7)

+ 1
2

∑

σ′

∫
dr′′ ψ̂†

σ(r′, t′)ψ̂†
σ′(r′′, t′)U(r′ − r′′)ψ̂σ′(r′′, t′)

− 1
2

∑

σ′

∫
dr′′ ψ̂†

σ′(r′′, t′)ψ̂†
σ(r′, t′)U(r′′ − r′)ψ̂σ′(r′′, t′) .

Since the last two terms give identical contributions, we have
[

�

i
d
dt′

+
�

2

2me
∇2

r′ − Vion(r′)
]
ψ̂†

σ(r′, t′) (31.1.8)

=
∑

σ′

∫
dr′′ ψ̂†

σ(r′, t′)ψ̂†
σ′(r′′, t′)U(r′ − r′′)ψ̂σ′(r′′, t′) .

Substitution into (31.1.5) leads to the following equation of motion for the
Green function:

[
�

i
d
dt′

+
�

2

2me
∇2

r′ − Vion(r′)
]
GR

σ (r, t, r′, t′) = δ(t− t′)δ(r − r′)

− i
�
θ(t− t′)

∑

σ′

∫
dr′′ U(r′ − r′′) (31.1.9)

×
〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)ψ̂†
σ′(r′′, t′)ψ̂σ′(r′′, t′)

]
+

〉
.

Before trying to solve this equation, we consider the Green function of
noninteracting electrons. If we neglect the potential of the ions, the Green
function of free electrons is defined via

[
�

i
d
dt′

+
�

2

2me
∇2

r′

]
G(0)

σ (r, t, r′, t′) = δ(t− t′)δ(r − r′) . (31.1.10)

If the Green function is written as a Fourier integral in the form

G(0)
σ (r, t, r′, t′) =

∫
dk

(2π)3
dω
2π
G(0)

σ (k, ω)eik·(r−r′)−iω(t−t′) , (31.1.11)

the equation of motion for the Fourier transform simplifies to an algebraic
equation: (

�ω − �
2k2

2me

)
G(0)

σ (k, ω) = 1 . (31.1.12)

Its solution is
G(0)

σ (k, ω) =
1

�ω − ε
(0)
k

+ aδ
(
�ω − ε

(0)
k

)
, (31.1.13)

where ε(0)k = �
2k2/2me. The constant a is not determined by the equation

itself, since the same equation would have been obtained for the advanced or
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causal Green functions as well. Its value is fixed by the analytic properties of
the Green function. The retarded function has to be analytic in the upper half-
plane and may have poles in the lower half-plane. This is satisfied if a = −iπ,
that is

G(0)R
σ (k, ω) =

1

�ω − ε
(0)
k + iδ

, (31.1.14)

where δ is a positive infinitesimal. The pole of the free electron Green function
is exactly at the energy �ω = �

2k2/2me of one-particle excitations.
In the presence of a lattice-periodic potential, but still neglecting the

electron–electron interaction,
[

�

i
d
dt′

+
�

2

2me
∇2

r′ − V (r′)
]
GR

σ (r, t, r′, t′) = δ(t− t′)δ(r − r′) . (31.1.15)

The field operators appearing in the definition of the Green function can be
expanded in terms of the creation and annihilation operators of Bloch states:

GR
σ (r, t, r′, t′) = − i

�
θ(t− t′)

∑

nkn′k′

〈[
cnkσ(t), c†n′k′σ(t′)

]
+

〉
ψnkσ(r)ψ∗

n′k′σ(r′) .

(31.1.16)
Using the time dependence of the operators in the Heisenberg picture as well
as the anticommutator of the fermion operators, we get

GR
σ (r, t, r′, t′) = − i

�
θ(t− t′)

∑

nk

e−iεnk(t−t′)/�ψnkσ(r)ψ∗
nkσ(r′) , (31.1.17)

where εnk is the energy of the Bloch state. Taking the Fourier transform with
respect to time the integral is made to converge with the help of the adiabatic
factor exp[−δ(t− t′)] with an infinitesimal δ.1 The retarded Green function is

GR
σ (r, r′, ω) =

∑

nk

ψnkσ(r)ψ∗
nkσ(r′)

�ω − εnk + iδ
, (31.1.18)

and the corresponding Green operator has the form

GR
σ (r, r′, ε) =

∑

nk

∣∣ψnkσ(r)
〉〈
ψnkσ(r′)

∣∣
ε− εnk + iδ

. (31.1.19)

The spatial variables can be transformed out if, instead of taking the Fourier
transform, the quantity

GR
nn′σ(k,k′, ω) =

∫
dr

∫
dr′ψ∗

nkσ(r)GR
σ (r, r′, ω)ψn′k′σ(r′) (31.1.20)

is defined in terms of the Bloch functions. Inverting the transformation using
the completeness of the Bloch functions we have
1 Note that the same δ ensures the correct analytic properties of the Green function.
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GR
σ (r, r′, ω) =

∑

nkn′k′
ψnkσ(r)GR

nn′σ(k,k′, ω)ψ∗
n′k′σ(r′) . (31.1.21)

The orthonormality of the Bloch functions leads to

GR
nn′σ(k,k′, ω) = δnn′δkk′

1
�ω − εnk + iδ

. (31.1.22)

Thus, similar to the Green function of free electrons, the Green function of
noninteracting Bloch electrons has a simple pole on the lower half-plane, ex-
actly at εnk, at the energy of Bloch electrons.

We return now to (31.1.9) from which the Green function of interacting
electrons has to be determined, assuming for the sake of simplicity a uniform
background. A two-particle Green function appears in the equation of motion
owing to the electron–electron interactions. This higher order Green function
contains four operators and describes the propagation of two particles. When
the equation of motion is written down for this Green function, in general a
term containing even more operators will appear. Continuing along this line
yields an infinite hierarchy of higher order Green functions. An approximate
solution can be obtained if, similar to the decoupling procedure used for the
response functions, the hierarchy is truncated somewhere, i.e., the higher order
Green functions are expressed as products of lower order ones. As the simplest
example we show how the two-particle Green function can be decoupled.

The correlated motion of two particles can be studied by considering the
quantity

〈
ψ̂σ1

(r1, t1)ψ̂σ2
(r2, t2)ψ̂†

σ3
(r3, t3)ψ̂†

σ4
(r4, t4)

〉
,

which is the probability amplitude of finding the particles at the space–time
positions r1, t1 and r2, t2 with spins σ1 and σ2, if they were added to the sys-
tem at r3 at time t3 and at r4 at time t4 with spins σ3 and σ4, respectively.
In the simplest approximation the propagation of the two particles can be
thought to be independent, i.e., the two-particle propagator can be approx-
imated by the product of two one-particle propagators. Note that the term
appearing on the right-hand side of (31.1.9) describes a process in which only
one of the particles propagates truly, the other is added and removed immedi-
ately at the same moment and at the same position. It therefore seems natural
to choose the decoupling in the form

〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)ψ̂†
σ′(r′′, t′)ψ̂σ′(r′′, t′)

]
+

〉
(31.1.23)

≈ 〈ψ̂†
σ′(r′′, t′)ψ̂σ′(r′′, t′)

〉〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
+

〉
.

This decoupling corresponds to replacing the operator of the electron density
by its expectation value and gives exactly the result of the Hartree
approximation.
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A better approximation can be achieved by the decoupling
〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)ψ̂†
σ′(r′′, t′)ψ̂σ′(r′′, t′)

]
+

〉
(31.1.24)

≈ 〈ψ̂†
σ′(r′′, t′)ψ̂σ′(r′′, t′)

〉〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
+

〉

− 〈ψ̂†
σ(r′, t′)ψ̂σ′(r′′, t′)

〉〈[
ψ̂σ(r, t), ψ̂†

σ′(r′′, t′)
]
+

〉

that takes into account the indistinguishability of electrons The minus sign
in front of the second term comes from changing the order of two fermion
operators. As we will see, this antisymmetrized decoupling is equivalent to
the Hartree–Fock approximation.

Indeed, inserting this into (31.1.9) we get
[

�

i
d
dt′

+
�

2

2me
∇2

r′ − V0

]
GR

σ (r, t, r′, t′) = δ(t− t′)δ(r − r′) (31.1.25)

+
∑

σ′

∫
dr′′ U(r′ − r′′)

〈
ψ̂†

σ′(r′′, t′)ψ̂σ′(r′′, t′)
〉
GR

σ (r, t, r′, t′)

−
∑

σ′

∫
dr′′ U(r′ − r′′)

〈
ψ̂†

σ′(r′, t′)ψ̂σ(r′′, t′)
〉
GR

σ (r, t, r′′, t′)

for the homogeneous electron gas, where Vion(r) takes a spatially uniform
value V0. The Fourier transform of the Green function satisfies the equation
[
�ω − �

2k2

2me
− V0

]
GR

σ (k, ω) = 1 + U(q = 0)
∑

σ′

∫
dk′

(2π)3
〈nk′σ′〉GR

σ (k, ω)

(31.1.26)

−
∫

dk′

(2π)3
U(k − k′)〈nk′σ〉GR

σ (k, ω) .

Rearrangement of the terms gives
[
�ω − �

2k2

2me
− V0 − U(q = 0)

∑

σ′

∫
dk′

(2π)3
〈nk′σ′〉

+
∫

dk′

(2π)3
U(k − k′)〈nk′σ〉

]
GR

σ (k, ω) = 1 .

(31.1.27)

The potential of the uniform background is exactly compensated by the
Hartree term proportional to U(q = 0). Requiring the correct analytic prop-
erty for the retarded Green function, the solution is

GR
σ (k, ω) =

1
�ω − ε̃kσ + iδ

, (31.1.28)

where
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ε̃kσ =
�

2k2

2me
−
∫

dk′

(2π)3
U(k − k′)〈nk′σ〉 (31.1.29)

is the quasiparticle energy in the Hartree–Fock approximation. Thus even
if the interaction is treated in the Hartree–Fock approximation, the Green
function has a pole at the energy of quasiparticles. Similar results are obtained
for Bloch electrons in the Hartree–Fock approximation. We find

GR
nn′σ(k,k′, ω) = δnn′δkk′

1
�ω − ε̃nk + iδ

, (31.1.30)

where ε̃nk is the renormalized energy of Bloch electrons.
The simplest way to go beyond Hartree–Fock is to take the screening of the

Coulomb interaction into account.2 Then, from the pole of the Green function,
we get

ε̃kσ =
�

2k2

2me
− 1
V

∑

k′

U(k − k′)
εr(k − k′)

〈nk′σ〉 (31.1.31)

for the quasiparticle energy. When the Thomas–Fermi form of the dielectric
function is used,

ε̃k =
�

2k2

2me
− 1
V

∑

k′

4πẽ2

|k − k′|2 + q2TF
〈nk′σ〉 (31.1.32)

for an unpolarized electron gas, where the excitation energies are spin inde-
pendent. It is sometimes more convenient to write it in the form

ε̃k =
�

2k2

2me
− 1
V

∑

q

4πẽ2

q2 + q2TF
〈nk+q〉 . (31.1.33)

31.1.2 Effective Mass of Quasiparticles

The effective mass of quasiparticles near the Fermi surface can be obtained
from (28.3.96) or, in the isotropic case, from the equivalent expression

1
m∗ =

1
�2kF

k̂ · ∂ε̃k

∂k

∣∣
|k|=kF

, (31.1.34)

where k̂ is the unit vector in the direction of k. We have seen in Chapter 28
that the Hartree–Fock approximation leads to an unphysical result for the
effective mass of quasiparticles. If ε̃k is expanded about the Fermi energy to
linear order, the effective mass defined by
2 We will see in Appendix K that the corrections appearing in the equation of

motion of the Green function can be visualized as scattering processes occurring
in the course of propagation. When these processes are described by diagrams, it
is easy to identify which processes the screening corresponds to.
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ε̃k = εF +
�

2kF

m∗ (k − kF) (31.1.35)

vanishes. To go beyond the Hartree–Fock approximation we take (31.1.33)
for the quasiparticle energy and make use of the fact that 〈nk+q〉 is a step
function θ(kF − |k + q|) at zero temperature. Hence

∂〈nk+q〉
∂k

=
∂θ(kF − |k + q|)

∂k
= −δ(kF − |k + q|) k + q

|k + q| . (31.1.36)

With the change of variables q → k′ = k + q we get

1
m∗ =

1
me

+
1

�2kF

1
V

∑

k′

4πẽ2

|k − k′|2 + q2TF
k̂ · k̂′ δ(kF − |k′|)

=
1
me

+
1

�2kF

∫
dk′

(2π)3
4πẽ2

|k − k′|2 + q2TF
k̂ · k̂′ δ(kF − |k′|) ,

(31.1.37)

where k has to be taken at the Fermi surface. We integrate first over the
length of k′. Denoting the angle between k and k′ by θ we find

1
m∗ =

1
me

+
kF

4π2�2

π∫

0

sin θ dθ
4πẽ2

2k2
F(1 − cos θ) + q2TF

cos θ . (31.1.38)

This expression shows that the correction to the effective mass is a weighted
average of the potential acting between electrons. We will give a more general
derivation later. The quantity q2TF defined in (29.2.13) can be rewritten as

q2TF =
4
π

kF

a0
, (31.1.39)

and the Fermi momentum can be expressed in terms of rs via kFa0 = 1/αrs
with α = (4/9π)1/3 = 0.521. We then obtain

me

m∗ = 1 +
1
4

π∫

0

sin θ dθ
αrs/π

1
2 (1 − cos θ) + αrs/π

cos θ . (31.1.40)

Integration over the angular variable gives

me

m∗ = 1 +
αrs
π

(
1
2

+
αrs
π

)
ln
π + αrs
αrs

− αrs
π

(31.1.41)

with αrs/π = 0.166 rs. For both high- and low-density electron gases, in the
limits rs → 0 and rs → ∞, the effective mass becomes equal to the electron
mass. For densities characteristic of metals me/m

∗ varies between 1.04 and
1.05. That is, the effective mass of quasiparticles due to the screened Coulomb
repulsion is only slightly smaller than the electron mass.
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Had we used the Lindhard function for the dielectric function, the energy
of quasiparticles near the Fermi momentum would have been

ε̃k =
�

2k2

2me
− α rs

π

(
1 + 1

2 ln
αrs
π

+ · · ·
)

�
2kFk

me

=
�

2k2

2me
− 0.083 rs(ln rs + 0.203)

�
2kFk

me
+ · · ·

(31.1.42)

in a dense electron gas, where an expansion in powers of rs can be used. Thus
in the RPA, the leading terms in the expansion in rs give

me

m∗ = 1 − 0.083 rs
(
ln rs + 0.203

)
+ · · · (31.1.43)

for the effective mass. These are precisely the leading terms if the results
obtained in the Thomas–Fermi approximation are expanded. This again shows
that in a homogeneous electron gas the effective mass of quasiparticles on the
Fermi surface is very close to that of free electrons.

31.1.3 Lifetime of Electron States

A further consequence of the electron–electron interaction is that the one-
particle states are no longer eigenstates of the full Hamiltonian and their
lifetime becomes finite. The quasiparticle picture can be used reasonably only
if the lifetime is relatively long. Since the energy uncertainty of the state is
proportional to the inverse of the lifetime, the condition

�/τk � |εk − εF| (31.1.44)

has to be satisfied. We show that in normal fermion systems this condition is
satisfied for states near the Fermi energy.

Consider a state with energy εk > εF and try to estimate its lifetime due
to two-particle scattering processes. At T = 0, this particle can be scattered
only by those electrons inside the Fermi sphere whose wave vector k′ lies in a
narrow range of width εk − εF below the Fermi energy satisfying

εF − εk′ < εk − εF . (31.1.45)

Otherwise the total energy of the two particles is not high enough, and the
electrons cannot be scattered into empty states outside the Fermi sphere.
The energy of only one of the scattered particles can be chosen freely, and
the energy of the other is fixed by energy conservation, but even this energy
cannot be bigger than εk. If the inverse of the lifetime is calculated from the
transition probability of the scattering processes and the limitations on the
energy of the particles are taken into account,

1
τk

∝ (εk − εF)2 . (31.1.46)
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A more quantitative expression can be obtained if the transition probabil-
ity is calculated using Fermi’s golden rule. The inverse lifetime is

1
τkσ

=
2π
�

1
V 2

∑

k′qσ′
|U(q)|2f0(εk′σ′) [1 − f0(εk+qσ)]

[
1 − f0(εk′−qσ′)

]

× δ
(
εkσ + εk′σ′ − εk+qσ − εk′−qσ′

)
, (31.1.47)

where the Fermi functions ensure that the state with wave vector k′ on which
the electron is scattered is filled initially, while the states into which the elec-
trons are scattered are empty. The potential is the screened Coulomb poten-
tial at frequency and momentum corresponding to the energy and momentum
transfer during the scattering process,

U(q) =
4πẽ2

q2εr(−q,−ωkq)
, (31.1.48)

and �ωkq = εk+q − εk. It follows from the energy conservation and the re-
strictions imposed by the Fermi functions that the scattered particle has to
lose energy, εF < εk+q < εk, and therefore the dielectric function is taken at
positive frequencies in this formula.

We can recognize the imaginary part of the dielectric function in the ex-
pression for the lifetime, since (29.2.49) could be written in the form

ε2(q, ω) =
4π2ẽ2

q2
1
V

∑

k′σ

f0(εk′σ)
[
1 − f0(εk′+qσ)

]
δ(�ω − εk′+qσ + εk′σ) .

(31.1.49)
Thus

1
τkσ

=
2π
�

1
V

∑

q

1
π

4πẽ2

q2
ε2(−q,−ωkq)
|εr(−q,−ωkq)|2

[
1 − f0(εk+qσ)

]
. (31.1.50)

Note that this result could have been derived from a calculation of the quasi-
particle energy for a screened interaction. The imaginary part of the frequency-
dependent dielectric function leads to an imaginary part of the self-energy
correction, and the Green function acquires the form

GR
σ (k, ω) =

Zk

�ω − ε̃kσ + iΓkσ
. (31.1.51)

Transformed back to time, the imaginary part of the self-energy gives rise to
a decay of the probability of finding the particle at a later time, hence Γkσ is
the inverse of the lifetime, Γkσ = �/2τkσ, while Zk is the quasiparticle weight.
Condition (31.1.44) for the applicability of the quasiparticle concept means
that the imaginary part has to be much smaller than the real part.

The summation over q in (31.1.50) can be carried out if

ε2(q, ω) =
π

2
�ω

�vFq

q2TF
q2

, (31.1.52)
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which was derived in (29.2.56) in the RPA for low frequencies, that is for small
energies, is used for the dielectric function, and we find

1
τk

=
π2

√
3

128
ωp

(
εk − εF
εF

)2

. (31.1.53)

At finite temperatures, particles sitting on the Fermi surface can also par-
ticipate in scattering processes owing to the smearing of the Fermi distribution
function, but the partners in the scattering process have to be in a range of
width kBT , and the contribution of these processes to the scattering probabil-
ity is proportional to (kBT )2. The coefficient of this T 2 term can be estimated
if the Coulomb interaction is replaced with the screened potential

U(q) =
4πẽ2

q2 + q2TF
with q2TF = 4πẽ2ρ(εF) . (31.1.54)

If the matrix element is approximated by its value at q = 0, we find

∣∣U(q)
∣∣2 ≈

(
1

ρ(εF)

)2

. (31.1.55)

The summation over momenta is restricted to an energy range of width kBT .
Taking account of energy conservation

�

τ
∼
(

1
ρ(εF)

)2

ρ2(εF)
(kBT )2

εF
=

(kBT )2

εF
. (31.1.56)

Combining these results, in the general case we have

�

τk
≈ 1
εF

[
a (εk − εF)2 + b (kBT )2

]
, (31.1.57)

where a and b are constants of order unity. Note that the lifetime of parti-
cles is infinitely long on the Fermi surface at T = 0 and becomes finite at
finite temperatures or as we move away from the Fermi energy. Nevertheless,
(31.1.44) is still satisfied at low temperatures for states in the neighborhood
of the Fermi surface.

31.1.4 Electron–Hole Pair Excitations

If the number of particles is conserved, the excited states of the free electron
gas can be generated by exciting successively electron–hole pairs. The operator
that creates an electron–hole pair from the ground state is

α†
kqσ = c†k+qσckσ , (31.1.58)

where |k| ≤ kF and |k + q| ≥ kF. In what follows this restriction will be
understood tacitly even when it is not written out explicitly. As shown in
Fig. 28.9 the energies
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�ωkqσ = εk+qσ − εkσ (31.1.59)

form a broad continuum.
The situation is similar when the Hamiltonian of the interacting electron

system is treated in the Hartree–Fock approximation. The low-lying excita-
tions are pairs of a quasielectron and a quasihole, and it follows from Koop-
mans’ theorem that the excitation energy is simply the sum of the energies of
the quasielectron and of the quasihole:

�ωkqσ = ε̃k+qσ − ε̃kσ . (31.1.60)

The pairs do not interact and, therefore, have an infinite lifetime.
When the electron–electron interaction is treated more accurately, the op-

erator α†
kqσ acting on the ground-state wavefunction |Ψ0〉 of the interact-

ing electron system no longer creates an exact eigenstate of the system. The
electron–hole pair can be scattered into another pair state where k is differ-
ent but the total momentum q of the pair is conserved. The excited state
should contain all possible electron–hole pairs that can be mixed by the inter-
action. The wavefunction of the excited state could be looked for as the linear
combination

|Ψq〉 =
∑

k

φkqσc
†
k+qσckσ|Ψ0〉 , (31.1.61)

and the operator
α†

qσ =
∑

k

φkqσc
†
k+qσckσ (31.1.62)

that generates the excited state |Ψq〉 from the ground state could be consid-
ered as the creation operator of the excitation. In general, states with several
electron–hole pairs should also be mixed in, but these configurations will be
neglected in this approximation and the so far undetermined coefficients φkqσ

will be determined from the requirement that the state created by this oper-
ator be as close to an eigenstate as possible.

If |Ψq〉 were an eigenstate of the Hamiltonian with an excitation energy
�ωqσ above the ground-state energy E0,

H|Ψq〉 = Hα†
qσ|Ψ0〉 =

[
E0 + �ωσ(q)

]
α†

qσ|Ψ0〉 (31.1.63)

would hold. |Ψ0〉 is an eigenstate of H with energy E0, and thus

Hα†
qσ|Ψ0〉 = α†

qσH|Ψ0〉 + �ωqσα
†
qσ|Ψ0〉 , (31.1.64)

from which it follows that
[H, α†

qσ

]
− |Ψ0〉 = �ωqσα

†
qσ|Ψ0〉 . (31.1.65)

Thus, when acting on the ground state,
[H, α†

qσ

]
− = �ωqσα

†
qσ . (31.1.66)
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Moreover if |Ψq〉 is properly normalized, α†
qσ and its Hermitian adjoint satisfy

the commutation relation
[
αqσ, α

†
q′σ′
]
− = δqq′δσσ′ , (31.1.67)

but again only when both sides act on the ground state.
Let us assume that these relations hold quite generally, that is (31.1.66)

is an identity and the operators α†
qσ and αqσ are bosonic creation and an-

nihilation operators. Then the Hamiltonian can be written in terms of these
operators in the form

H =
∑

qσ

�ωqσα
†
qσαqσ . (31.1.68)

The interacting electron system could then be mapped onto a noninteracting
gas of bosons. All excited states of the system could be obtained by applying
successively the creation operators α†

qσ of the elementary excitations.
Unfortunately, the coefficients φkqσ appearing in α†

qσ cannot in general be
chosen in such a way that (31.1.66) be satisfied exactly. When it is satisfied at
least approximately, α†

qσ could still be considered as the creation operator of
an elementary excitation, and the system could be viewed as a noninteracting
gas of fictitious particles. Therefore we will try to fix φkqσ from the require-
ment that this relationship be valid at least approximately. As will be seen,
the self-consistency requirement of the procedure will lead to an equation that
gives immediately the quantity we are interested in: the energy of excitation.

To calculate the commutator we make use of
[H, c†k+qσckσ

]
− =

[H, c†k+qσ

]
−ckσ + c†k+qσ

[H, ckσ

]
− (31.1.69)

and
[H, c†k+qσ

]
− = εk+qσc

†
k+qσ +

1
V

∑

k′q′σ′
U(q′)c†k+q−q′σc

†
k′+q′σ′ck′σ′ ,

[H, ckσ

]
− = −εkσckσ − 1

V

∑

k′q′σ′
U(q′)c†k′+q′σ′ck′σ′ck+q′σ . (31.1.70)

Thus we get
[H, c†k+qσckσ

]
− = (εk+qσ − εkσ) c†k+qσckσ

+
1
V

∑

k′q′σ′
U(q′)c†k+q−q′σc

†
k′+q′σ′ck′σ′ckσ

− 1
V

∑

k′q′σ′
U(q′)c†k+qσc

†
k′+q′σ′ck′σ′ck+q′σ .

(31.1.71)

We will apply the procedure already used repeatedly in mean-field approaches,
namely the terms with four operators will be approximated by replacing two
of them with their expectation values. The choice
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c†k+q−q′σc
†
k′+q′σ′ck′σ′ckσ ≈ 〈c†k′+q′σ′ck′σ′

〉
c†k+q−q′σckσ

+
〈
c†k+q−q′σckσ

〉
c†k′+q′σ′ck′σ′

(31.1.72)

seems to be natural in the second term on the right-hand side. As long as the
system does not undergo a phase transition to a new broken-symmetry phase,
the only nonvanishing expectation value is

〈
c†kσck′σ′

〉
= f0(εk)δkk′δσσ′ . (31.1.73)

Since the q′ = 0 component of the interaction U(q′) vanishes in the homo-
geneous electron gas, the first term of (31.1.72) gives no contribution and
thus

c†k+q−q′σc
†
k′+q′σ′ck′σ′ckσ ≈ δqq′f0(εkσ)c†k′+qσ′ck′σ′ . (31.1.74)

If a similar decoupling procedure is used in the third term on the right-
hand side of (31.1.71), we find

[H, c†k+qσckσ

]
− = (εk+qσ − εkσ) c†k+qσckσ (31.1.75)

+
1
V

∑

k′σ′
U(q)

[
f0(εkσ) − f0(εk+qσ)

]
c†k′+qσ′ck′σ′ .

Multiplying this equation by φkqσ, summing it over k and σ, and then insert-
ing the expression into (31.1.66) gives

∑

kσ

[�ωqσ − εk+qσ + εkσ]φkqσc
†
k+qσckσ

=
1
V

∑

kk′σσ′
U(q)

[
f0(εkσ) − f0(εk+qσ)

]
φkqσc

†
k′+qσ′ck′σ′ .

(31.1.76)

Interchanging the summation indices, k ↔ k′ and σ ↔ σ′, on the right-hand
side we may require that the identity

[�ωqσ − εk+qσ + εkσ]φkqσ =
1
V

∑

k′σ′
U(q)

[
f0(εk′σ′) − f0(εk′+qσ′)

]
φk′qσ′

(31.1.77)
hold for each operator c†k+qσckσ separately. Since the right-hand side of this
equation is independent of k and σ, the solution is sought in the form

φkqσ =
φ(q)

�ωqσ − εk+qσ + εkσ
. (31.1.78)

Insertion into the previous equation yields a self-consistency condition:

1 = U(q)
1
V

∑

kσ

f0(εkσ) − f0(εk+qσ)
�ωqσ − εk+qσ + εkσ

. (31.1.79)
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The solutions of this equation give the possible energies �ωqσ of electron–hole
pair excitations in an interacting electron system, where U(q) is the strength
of the two-particle interaction. Looking at (29.2.42) we immediately see that
the excitation energies are obtained from the zeros of the dielectric function,
that is those ω, q pairs have to be found for which

εr(q, ω) = 0 . (31.1.80)

Before trying to find the solutions of this equation it is appropriate to
make a few remarks about the approximations that led to this equation. In
a more careful decoupling procedure of the four-operator terms one should
choose the operators, which are replaced with their expectation values, in
all possible ways. In doing so we would recognize terms that correspond to
the self-energy corrections in the Hartree–Fock approximation. Incorporating
these corrections into the one-particle energy we get
[H, c†k+qσckσ

]
− = (ε̃k+qσ − ε̃kσ) c†k+qσckσ (31.1.81)

+
1
V

∑

k′σ′

[
U(q) − U(k − k′)δσσ′

] 〈
c†kσckσ

〉
c†k′+qσ′ck′σ′

− 1
V

∑

k′σ′

[
U(q) − U(k − k′)δσσ′

] 〈
c†k+qσck+qσ

〉
c†k′+qσ′ck′σ′

instead of (31.1.75). Following the procedure proposed by Hubbard for the di-
electric function as explained in Appendix J and writing the thermal averages
in terms of the Fermi distribution function, we find

[H, c†k+qσckσ

]
− = (ε̃k+qσ − ε̃kσ) c†k+qσckσ (31.1.82)

+
1
V

∑

k′σ′
U(q)

[
1 −G(q)

][
f0(ε̃kσ′) − f0(ε̃k+qσ′)

]
c†k′+qσ′ck′σ′ ,

where

G(q) =
1
2

q2

q2 + k2
F
. (31.1.83)

From here we can proceed as before to arrive at the self-consistency require-
ment

1 = U(q)
[
1 −G(q)

] 1
V

∑

kσ

f0(ε̃kσ) − f0(ε̃k+qσ)
�ωqσ − ε̃k+qσ + ε̃kσ

(31.1.84)

that determines the eigenvalues. Comparison with (31.1.79) shows that the
structure of the equations is identical: the Lindhard function appears in
both cases, but the one-particle energies are renormalized in (31.1.84) by the
Hartree–Fock self-energy correction and the interaction U(q) is multiplied by
the Hubbard factor. Note that here again the solution of this equation is
equivalent to finding the zeros of the dielectric function if (J.2.96) derived in
the Hubbard approximation is used.
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The solutions of the self-consistency equation can be found graphically by
the trick we applied earlier in Chapter 11 (see Fig. 11.14) to find the vibra-
tion spectrum of a lattice containing impurities. When the right-hand side of
(31.1.79) or (31.1.84) is considered as a function of �ωqσ, this function has a
discontinuity at all possible energies of electron–hole pairs and varies wildly
from +∞ to −∞ between the singular points. There is necessarily a solution
of (31.1.79) or (31.1.84) with �ω lying between two successive energies of the
free electron–hole pairs. These excitation energies form a quasicontinuum, al-
though the density of states in the continuum may be different from that of
the free system. We will return to this question later.

31.2 Collective Excitations

We have seen that a dense set of zeros of the real part of the dielectric function
exists in the quasicontinuum of electron–hole pair excitations. The true exci-
tation energies are in fact defined by the position of the zeros. The imaginary
part of the dielectric function is finite in this energy range. But another kind
of solution of (31.1.80) also exists. The real part of the dielectric function
vanishes, at least for small values of q, at an energy which lies well above the
continuum, where the imaginary part of the dielectric function vanishes as
well. These solutions correspond to stable collective density oscillations of the
electron system, in agreement with what has been mentioned already in the
introduction of this chapter: spontaneous density oscillations are expected to
appear with such wave vectors q and frequencies ω for which εr(q, ω) = 0. The
physical reasoning underlying this statement is that according to (29.1.19)
even an infinitesimally weak external perturbation can create such density
fluctuations with finite amplitude.

An estimate of the frequency of this oscillation can already be obtained
from the classical treatment of the electron system. As known from Chap-
ter 16, the longitudinal dielectric function has the form

εr(ω) = 1 − ω2
p

ω2
(31.2.1)

at high frequencies [see (16.1.71)] with

ω2
p =

4πneẽ
2

me
(31.2.2)

introduced in (16.1.69). Thus the oscillation frequency of the interacting elec-
tron gas is the classical plasma frequency ωp. Because of this analogy to the
classical plasma oscillations, the collective density oscillations of the electron
system are called plasmons. In what follows, the dispersion relation of these
oscillations will be calculated more precisely using the quantum mechanical
expression derived above for the dielectric function.
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31.2.1 Dispersion Relation of Plasmons

Starting from (29.2.46) derived in the RPA, we will consider the real part of the
dielectric function at frequencies that correspond to much higher energies than
the typical energies of electron–hole pairs. Since the imaginary part vanishes
at these energies,

εr(q, ω) = 1 − 4πẽ2

q2
2
V

∑

k

f0(εk)

×
[

1
�ω − �2k · q/me − εq

− 1
�ω + �2k · q/me + εq

]
.

(31.2.3)

After a change of variables k → −k in the second term we have

εr(q, ω) = 1 − 4πẽ2
�

2

me

2
V

∑

k

f0(εk)
(�ω − �2k · q/me)2 − (εq)

2 . (31.2.4)

The energy of plasmons can be calculated analytically for small q. Expanding
the last factor for large ω and keeping the terms up to order q2 we find

εr(q, ω) = 1 − 4πẽ2

meω2

2
V

∑

k

f0(εk)
[
1 + 2

�

meω
k · q + 3

(
�

meω

)2

(k · q)2
]
.

(31.2.5)
Taking first only the leading term, the summation over k gives the number of
occupied k states, i.e., Ne/2, which is half of the number of electrons. In this
approximation we recover the known result:

εr(q, ω) = 1 − ω2
p

ω2
. (31.2.6)

Thus the frequency of collective plasmon oscillations is ω = ωp even in the
quantum mechanical treatment.

To get an estimate of the energy of plasmons we express the density of the
electron gas via r0 using (16.2.29) and then via the dimensionless rs:

(�ωp)2 = �
2 3
4πr30

4πẽ2

me
= 12

(
a0

r0

)3
�

2

2mea2
0

ẽ2

2a0
. (31.2.7)

Recognizing that �
2/(2mea

2
0) is equal to the Rydberg unit of energy, ẽ2/2a0,

�ωp =
√

12

r
3/2
s

Ry . (31.2.8)

Thus the plasmon energy is on the order of a rydberg. Since this is much
larger than the Fermi energy of most metals, which are on the order of a
few electron volts, this justifies a posteriori the large-ω expansion that led to
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Table 31.1. Calculated and measured plasmon energies of a few metals

Element �ωtheo
p (Ry) �ωtheo

p (eV) �ωexp
p (eV)

Li 0.59 8.02 7.1
Na 0.44 5.95 5.7
K 0.32 4.29 3.7
Al 1.16 15.83 14.9
Be 1.35 18.43 18.7
Mg 0.80 10.86 10.3
Sb 1.11 15.06 15.3

(31.2.5). Table 31.1 gives the calculated and measured values of the plasmon
energy for a few metals.

The values were calculated using the parameters of the free electron model,
relying, e.g., on the electron density or rs given in Table 16.6. Had we used
the effective mass m∗ instead of the electron mass, the agreement between
theory and experiment would be better. An even better agreement could be
achieved by taking into account that the polarizability of core electrons gives
an extra contribution to the dielectric function.

A wave number-dependent correction is obtained to the plasmon energy if
we keep the terms proportional to q2 in (31.2.5). The term proportional to q
gives no contribution when the integration over the Fermi sphere is performed
and we find

εr(q, ω) = 1 − 4πneẽ
2

meω2

[
1 +

3
5

(
�kFq

meω

)2

+ · · ·
]
. (31.2.9)

The solution of εr(q, ω) = 0 leads to

ω2 = ω2
p +

3
5
q2v2

F + · · · , (31.2.10)

from which we get

ω = ωp

[
1 +

3
10

(
qvF
ωp

)2

+ · · ·
]

= ωp

[
1 +

9
10

(
q

qTF

)2

+ · · ·
]

(31.2.11)

for the frequency of oscillations. The dispersion curve of plasmons and its
position relative to the continuum of electron–hole pair excitations is shown
in Fig. 31.1.

The concept of plasmons as collective excitations with a well-defined
energy and wave vector is meaningful as long as the corresponding q, ω
values are outside the electron–hole continuum, and the imaginary part of the
dielectric function vanishes, ε2(q, ω) = 0. This is the case for small q values. At
larger wave numbers, beyond a critical qc ≈ ωp/vF, plasmons can decay into
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Fig. 31.1. Dispersion curve of plasmons relative to the continuum of electron–hole
pair excitations

electron–hole pairs. This is the Landau damping.3 The lifetime of plasmons
becomes so short that these collective excitations cannot be meaningfully de-
fined and only the electron–hole pair excitations have physical meaning.

It is worth noting that the fact that the long-wavelength plasmons ap-
pear in metals at high energies, well above the electron–hole continuum, is a
consequence of the Coulomb repulsion between charged electrons. For neutral
fermions, such as the 3He liquid, the spectrum of collective excitations has
a completely different character. The collective excitations have to be deter-
mined from the solutions of (31.1.79), where, however, a short-range poten-
tial appears in place of the long-range Coulomb interaction, i.e., the singular
Fourier transform 4πẽ2/q2 is replaced with a constant. As a consequence, the
energy of the collective density oscillations is proportional to q. Since the
propagation of sound (acoustic vibrations) is related to density oscillations,
this branch of excitations of neutral fermion systems was called zero sound by
Landau (1957). One has to emphasize that there is an essential physical dif-
ference between the hydrodynamic sound wave on the one hand and the zero
sound or plasmon on the other. Sound waves can propagate in a gas if scat-
tering events between the gas particles are frequent compared to the period of
oscillation of the wave. If τ is the average time between subsequent scattering
events of a particle, ωτ � 1 has to be satisfied. This is the so-called hydro-
dynamic regime. On the contrary, zero-sound and plasmons are well-defined
elementary excitations in the collisionless limit, ωτ  1, i.e., when the lifetime
of these excitations is long compared to the period of oscillations.

31.2.2 Study of Plasmons with Inelastic Scattering of Electrons

Owing to their high energy, plasmons are not excited thermally. Nevertheless,
their energy can be determined directly by measuring the energy loss of trans-
mitted electrons when a high-energy electron beam is directed onto the surface

3
L. D. Landau, 1946.
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of a metal. The peaks in the energy-loss spectrum correspond to the genera-
tion of one or several plasmons. As has been pointed out in Appendix E, the
cross section of inelastic scattering of particles by solids is proportional to the
density–density correlation function of that constituent of the solid by which
the particles are scattered. More precisely, the cross section is proportional
to the Fourier transform of the correlation function, which is the dynamical
structure factor S(q, ω):

d2σ

dεdΩ
∝ S(K, ε/�) , (31.2.12)

where �K is the change in the momentum of the scattered particle and ε is
the energy loss.

We have seen in (29.1.35) and (29.1.36) that the dynamical structure factor
can be related to the imaginary part of the density–density response function
via the fluctuation–dissipation theorem and also to the imaginary part of the
inverse of the dielectric function. Although the imaginary part of the dielectric
function vanishes at energies corresponding to the energy of plasmons, the
Kramers–Kronig relations (29.2.58) and (29.2.59) can be satisfied only if the
imaginary part of the inverse of the dielectric function is nonvanishing at the
plasmon energy.

Expanding the dielectric function about the plasma frequency ωp, from
(31.2.6) we find

εr(ω) ≈ 2
ωp

(ω − ωp) , (31.2.13)

and thus
Re

1
εr

≈ ωp

2
1

ω − ωp
. (31.2.14)

The Kramers–Kronig relations can be satisfied only with a singular imaginary
part

Im
1
εr

≈ −π
2
ωpδ(ω − ωp) , (31.2.15)

which means that the correct expression for the inverse of the dielectric func-
tion near ωp is

1
εr

≈ ωp

2
1

ω − ωp + iδ
. (31.2.16)

The Dirac delta in the imaginary part of 1/εr gives rise to a sharp peak
in the structure factor and thus in the inelastic cross section at the plasmon
energy. The experimental energy-loss spectra of electrons scattered from alu-
minum and magnesium are shown in Fig. 31.2. A series of more or less sharp
peaks are seen, since electrons can create more than one plasmon as they
traverse the sample. The peaks at integer multiples of �ωp = 15.3 eV in alu-
minum and at multiples of �ωp = 10.6 eV in magnesium are due to plasmons.
The extra peaks at �ω′

p = 10.3 and 7.1 eV, respectively, are due to surface
plasmons.
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Fig. 31.2. Energy-loss spectra of high-energy electrons scattered from aluminum
and magnesium, respectively [Reprinted with permission from C. J. Powell and J. B.
Swan, Phys. Rev. 115, 869 (1959) and 116, 81 (1959). © (1959) by the American
Physical Society]

The contribution of the electron–hole pair excitations should also show
up in the dynamical structure factor and hence in the cross section. This
gives, however, a negligible contribution to the scattered intensity at small
momentum transfers. The dominant process is the creation of plasmons. This
can be shown by using the sum rules for the dynamical structure factor. If
(31.2.15) is used for the imaginary part of the inverse dielectric function, the
T = 0 limit of (29.1.36) gives

S(q, ω) =
π�

ne

q2

4πẽ2
ωpδ(ω − ωp) = π

�q2

meωp
δ(ω − ωp) (31.2.17)

for the dynamical structure factor. Although this expression contains the con-
tribution of plasmons only, the sum rules (J.2.20) and (J.2.21) are satisfied. On
the other hand we know that (28.4.102), which is due entirely to the contin-
uum of noninteracting electron–hole pairs, satisfies the same sum rules. This
indicates that the excitation spectrum of the electron gas is rearranged drasti-
cally by the interactions, reducing the weight of the electron–hole continuum.
In the frequency range of the continuum we find
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SRPA(q, ω) =
SHF(q, ω)
|εr(q, ω)|2 (31.2.18)

in the RPA, while the plasmon peak gains a strong weight. Figure 31.3 shows
the frequency dependence of the dynamical structure factor for several values
of q, without the Dirac delta corresponding to the plasmon peak. Comparing it
with the results in Fig. 28.10 we see that the spectral weight of the continuum
is in fact much reduced for small values of q/kF, where the plasmon is a
well-defined excitation.
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Fig. 31.3. Frequency dependence of the dynamical structure factor calculated in
the RPA for several values of q in an electron gas of density rs = 3

At larger wave numbers, where the plasmon branch merges into the
electron–hole continuum, the scattering cross section is finite only within the
continuum. When q is close to kF, a relatively sharp peak is seen near the
upper edge of the continuum which widens and gets smoother with increasing
q. At even larger q values the interaction has no effect at all.

31.2.3 Transverse Excitations in the Electron Gas

The plasmon oscillations of the electron density are accompanied by a longi-
tudinal oscillation of the electric field. That is why plasmons can be excited by
a longitudinal electric field and by charged particles, but cannot be excited by
a transverse electromagnetic field. It is natural to ask what kind of transverse
electromagnetic oscillations can propagate in an interacting electron gas.

In a nonmagnetic material in the absence of external current, the first and
second Maxwell equations can be written in the form
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curlH =
∂D

∂t
, curl E = −μ0

∂H

∂t
. (31.2.19)

Combining these equations we get

curl curlE = −μ0
∂2D

∂t2
(31.2.20)

or

grad div E − ∇2E = −μ0
∂2D

∂t2
. (31.2.21)

If the fields vary in space and times as exp(iq · r − iωt),

− q · (q · E) + q2E = μ0ω
2D . (31.2.22)

Making use of the tensorial relationship between D and E we find
∑

β

[
q2δαβ − qαqβ − μ0ω

2εαβ

]
Eβ = 0 . (31.2.23)

Spontaneous oscillations may arise in the system if this equation has a non-
trivial solution for the amplitude of the field. The necessary condition for this
is the vanishing of the determinant

det
∣∣q2δαβ − qαqβ − μ0ω

2εαβ

∣∣ = 0 . (31.2.24)

Written in an equivalent form

det
∣∣∣∣q

2δαβ − qαqβ − ω2

c2
εαβ

ε0

∣∣∣∣ = 0 . (31.2.25)

This gives back the condition ε‖(q, ω) = 0 for longitudinal oscillations. For
transverse fields we find

q2 =
ω2

c2
ε⊥(q, ω)

ε0
. (31.2.26)

In the long-wavelength limit, where the diamagnetic term gives the leading
contribution to the transverse conductivity, and hence

σ⊥(0, ω) = i
nee

2

meω
, (31.2.27)

the transverse dielectric function is

ε⊥(0, ω)
ε0

= 1 +
i
ε0ω

σ⊥(0, ω) = 1 − nee
2

ε0meω2
= 1 − ω2

p

ω2
. (31.2.28)

This then leads to
ω2 = ω2

p + c2q2 (31.2.29)

for the frequency of excitations, in agreement with (25.1.55). In the limit
cq  ωp we recover ω ≈ cq which shows that the electromagnetic field is
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almost completely decoupled from the electrons in the short-wavelength limit.
On the other hand, the coupling is strong for cq � ωp and the electromagnetic
field propagates in solids with the plasma frequency. Electromagnetic waves
with smaller frequencies are not allowed in metals; the dielectric function is
negative for ω < ωp and the amplitude of such waves decays exponentially
fast inside the sample.

One can show using a more accurate expression for the dielectric function
that another collective excitation could exist with frequency on the order of
qvF. This would, however, require an interaction much stronger than what we
have in metals.

31.3 Bound Electron–Hole Pairs, Excitons

When looking for electron–hole excitations, it was found that although the
interaction shifts somewhat their energies, they form the same continuum
as before and the collective excitations appear above the continuum. This
picture changes dramatically in two respects in the case of semiconductors or
insulators instead of metals. On the one hand, in these materials, the electron–
hole pair can be created by taking an electron out of one band (the valence
band in semiconductors) and putting it into an empty state of another band
(the conduction band in semiconductor) and therefore this excitation requires
a finite energy larger than the band gap. The continuum does not extend to
zero energy. On the other hand, while the Coulomb repulsion becomes short
ranged in metals due to screening, it remains long ranged in semiconductors
and insulators, since their dielectric constant is finite in the q → 0 limit and
screening is not complete. As a consequence, while electrons and holes interact
weakly in metals and can be taken to be independent to a good approximation,
the interaction between the oppositely charged electrons and holes remains
strong enough in semiconductors and insulators to lead to bound states inside
the gap, much like the donor or acceptor states in semiconductors. This bound
state of an electron and a hole is called an exciton. Unlike the bound states
around impurities, excitons are not localized however and propagate in the
system.

31.3.1 Electron–Hole Pairs in Semiconductors and Insulators

The creation operator that creates an electron and a hole in the same band
near the Fermi energy was defined in (31.1.58). In semiconductors and insula-
tors, the relevant electron–hole pairs consist of a hole in the highest occupied
band and an electron in the lowest unoccupied band. They are created by the
operators

c†nk+qσcpkσ , (31.3.1)

where cpkσ is the annihilation operator of a Bloch state in the valence band
(the creation operator of the hole) and c†nkσ is the creation operator of the
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electron state in the conduction band. Similar to the case of metals, this state
is not an eigenstate of the Hamiltonian of the interacting system, but an
approximate eigenstate can be found by taking a linear combination of such
states.

It will be convenient sometimes to use the localized Wannier states instead
of the extended Bloch states. The creation of an electron–hole pair can then
be given by the creation and annihilation operators of the Wannier states as

c†nRi+RjσcpRiσ
. (31.3.2)

A propagating pair is obtained if linear combinations are taken with coeffi-
cients depending on the lattice vectors Ri and Rj . To simplify the calcula-
tions, the excitation spectrum will be determined in two limiting cases.

31.3.2 Wannier Excitons

The physical picture introduced above that interprets the bound state as a
special propagating electron–hole pair is due to G. H. Wannier (1937). Since
both the electron and the hole move in the periodic potential of the lattice
and they interact with each other via a weakened Coulomb interaction due to
the finite dielectric constant, the Hamiltonian of the two-particle system is

H =
[

1
2me

(
�

i
∇rn

)2

+ V (rn)
]
−
[

1
2me

(
�

i
∇rp

)2

+ V (rp)
]
− ẽ2

εr|rn − rp| ,
(31.3.3)

where rn and rp denote the position of the electron and the hole, respectively.
The terms describing the hole appear with negative sign since a hole corre-
sponds to the removal of one particle. The sign of the Coulomb interaction
was chosen so as to describe attraction between the electron and the hole.
Neglecting first the Coulomb interaction but taking into account the periodic
potential, the states of the electron and of the hole can be determined from
the Schrödinger equation

[
1

2me

(
�

i
∇r

)2

+ V (r)
]
ψnk(r) = εnkψnk(r) . (31.3.4)

Let us assume that the energies εnk of the Bloch states are known. Then the
Wannier theorem can be applied to eliminate the periodic potential from the
one-particle problem. We have seen in Chapter 22 that the operator

εn(−i∇) , (31.3.5)

which is obtained by replacing the wave vector k in the energy εnk of
Bloch electrons by −i∇ plays the role of an effective Hamiltonian and the
Schrödinger equation takes the form

εn(−i∇)ψnk(r) = εnkψnk(r) . (31.3.6)
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If the relevant states of the conduction and valence bands can be charac-
terized by scalar effective masses, m∗

n and m∗
p, respectively, that is

εnk = εc +
�

2k2

2m∗
n
, εpk = εv − �

2k2

2m∗
p
, (31.3.7)

then the eigenvalue problem of the interacting electron–hole pair is equivalent
to solving the two-particle Schrödinger equation
{[
εc +

�
2

2m∗
n

(−i∇rn)2
]
−
[
εv − �

2

2m∗
p

(−i∇rp

)2
]

− ẽ2

εr|rn − rp|
}
ψ(rn, rp) = εψ(rn, rp) .

(31.3.8)

Instead of working with the position vectors of the electron and the hole, it is
more convenient to use the center-of-mass and relative coordinates:

R =
m∗

nrn +m∗
prp

m∗
n +m∗

p
, r = rn − rp . (31.3.9)

Then the Schrödinger equation from which the states of the pair has to be
determined takes the form
[
− �

2

2(m∗
n +m∗

p)
∇2

R − �
2

2mr
∇2

r − ẽ2

εr|r|
]
ψ(R, r) = [ε− εc + εv]ψ(R, r) ,

(31.3.10)
where mr is the reduced mass,

1
mr

=
1
m∗

n
+

1
m∗

p
. (31.3.11)

We assume that the wavefunction is separable in the variables R and r,
that is the motion of the center of mass is independent of the relative motion
within the pair:

ψ(R, r) = g(R)f(r) . (31.3.12)

Since the center-of-mass motion contributes to the kinetic energy only and
the corresponding Schrödinger equation is identical to the wave equation of a
free particle, this motion can be characterized by a wave vector k,

g(R) =
1√
V

eik·R , (31.3.13)

and the kinetic energy is
�

2k2

2(m∗
n +m∗

p)
. (31.3.14)



202 31 Excitations in the Interacting Electron Gas

The wavefunction describing the relative motion satisfies
[
− �

2

2mr
∇2

r − ẽ2

εr|r|
]
f(r) =

[
ε− εc + εv − �

2k2

2(m∗
n +m∗

p)

]
f(r) . (31.3.15)

This is nothing else than an effective hydrogen problem, the Schrödinger equa-
tion of a particle of charge −e with mass mr in a Coulomb potential that is
weakened by the dielectric constant. The energy eigenvalues of the full prob-
lem are then

ε = εc − εv − mrẽ
4

2�2ε2r

1
n2

+
�

2k2

2(m∗
n +m∗

p)
, (31.3.16)

where n is the principal quantum number of the hydrogenlike state. The en-
ergies belonging to the same n form an exciton band.

Compared to the energy levels in a hydrogen atom the binding energies
are multiplied by a factor mr/meε

2
r as is the case for the donor and acceptor

levels in doped semiconductors. The measured exciton energies are listed in
Table 31.2 for a few semiconductors and ionic crystals.

Table 31.2. Binding energy of excitons in a few materials

Semiconductor Δεexc (meV) Ionic crystal Δεexc (meV)

Si 14.7 KCl 400
Ge 4.1 KI 480
GaAs 4.2 RbCl 440
GaP 3.5 AgCl 30

Due to the large value of the dielectric constant and the small effective
mass, the binding energy of excitons is on the order of 1–10meV in semicon-
ductors. The states are in general quite close to the bottom of the conduction
band and are practically fully ionized by thermal excitation. They are there-
fore uninteresting when the properties of semiconductors are studied. The ex-
citon energies are much larger in ionic crystals, where the dielectric constant
is usually smaller (εr ≈ 5) and the effective mass is larger than in semiconduc-
tors. The energies are on the order of the energy of infrared photons. Thus,
excitons play a role in the infrared optical transitions.

The treatment exposed above is in fact valid for semiconductors only,
where the typical spatial dimension of excitons is on the order of 100Å. This
estimate comes from multiplying the Bohr radius by εrme/mr. The assump-
tion that the electrons move in a homogeneous medium characterized by a
dielectric constant is questionable in ionic crystals, where the size of the ex-
citon is close to the atomic dimensions. In this case, the excitons have to be
treated differently.
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31.3.3 Frenkel Excitons

To get a simple picture of the formation of excitons in insulating ionic or
molecular crystals, we follow the arguments of J. Frenkel (1931). For sim-
plicity, we forget about the spin of electrons and assume that the system has
one electron per atom (Ne = N). Owing to the intra-atomic Coulomb re-
pulsion, one electron sits on each atom in the ground state, and when they
are excited, they remain preferentially on the same atom. Jumps to another
atom which already has an electron on it require high energy. The state in
which the excited electron is localized to one atom is not an eigenstate and
the excitation propagates through the crystal due to interatomic interaction
processes: the excited electron on site j returns to its ground state, while an
electron on a neighboring site is excited.

Such states of the many-electron system can be described in terms of the
Wannier functions φn(r−Rj). We assume further that the Wannier states can
be approximated by atomic wavefunctions satisfying the atomic Schrödinger
equation

H(r,Rj)φn(r − Rj) = εnφn(r − Rj) . (31.3.17)

Although some overlap between the atomic wavefunctions of neighboring
atoms is needed for the propagation of the excitations just as in the tight-
binding approximation, we can assume that

∫
φ∗n(r − Rj)φn′(r − Rj′) dr = δnn′δjj′ (31.3.18)

when the wavefunction is normalized.
In the Hartree–Fock approximation, the relevant wavefunctions of the elec-

tron system can be given in Slater-determinant form. In the ground state,
where all electrons are in their atomic ground state φ0, the wavefunction is

Ψ0 =
1√
N

∣∣∣∣∣∣∣∣∣

φ0(r1 − R1) φ0(r1 − R2) . . . φ0(r1 − RN )
φ0(r2 − R1) φ0(r2 − R2) . . . φ0(r2 − RN )

...
...

. . .
...

φ0(rN − R1) φ0(rN − R2) . . . φ0(rN − RN )

∣∣∣∣∣∣∣∣∣

. (31.3.19)

Excited states can be formed by putting one of the electrons into one of the
atomic excited states φn while all other electrons remain in their ground state.
If the excited atom is at site Rj and one of the electrons is in the lowest energy
excited state φ1, the wavefunction is

Ψj =
1√
N

∣∣∣∣∣∣∣∣∣

φ0(r1 − R1) φ0(r1 − R2) . . . φ1(r1 − Rj) . . . φ0(r1 − RN )
φ0(r2 − R1) φ0(r2 − R2) . . . φ1(r2 − Rj) . . . φ0(r2 − RN )

...
...

. . .
...

. . .
...

φ0(rN − R1) φ0(rN − R2) . . . φ1(rN − Rj) . . . φ0(rN − RN )

∣∣∣∣∣∣∣∣∣

.

(31.3.20)
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An eigenstate with proper translational properties can be obtained by taking
linear combinations of such states with appropriate phase factors:

Ψexc =
1√
N

∑

j

eik·RjΨj . (31.3.21)

If the energy in the atomic ground state φ0 is denoted by ε0, and ε1 is the
energy of the excited state, then the energy of the exciton is

Eexc = ε1 − ε0 +
∑

jj′
eik·(Rj−Rj′ )Vjj′ , (31.3.22)

where Vjj′ is the matrix element of the interaction between states Ψj and
Ψj′ . Similar to what has been seen in the tight-binding approximation, the
dominant matrix elements are the ones between Wannier functions belonging
to nearest neighbors. Hence the spectrum of excitons is similar to the band
structure in the tight-binding approximation. The dispersion relations start
as k2 for small values of k.

Frenkel excitons behave almost as bosons. Since the electron and the hole
are created on the same atom, if index p denotes band states belonging to
Wannier state φ0 and index n denotes band states belonging to Wannier state
φ1, the creation operator of an exciton is

α†
q =

1√
N

∑

j

eiq·Rjc†nRjσcpRjσ . (31.3.23)

The commutator of creation and annihilation operators is easily calculated:

[
αq, α

†
q′
]
− =

1
N

∑

jj′
e−i(q·Rj−q′·Rj′ )

[
c†pRjσcnRjσ, c

†
nRj′σ

cpRj′σ

]
−

=
1
N

∑

j

e−i(q−q′)·Rj
(
c†pRjσcpRjσ − c†nRjσcnRjσ

)

=
1
N

∑

j

e−i(q−q′)·Rj
(
1 − 2c†nRjσcnRjσ

)

= δqq′ − 2
N

∑

j

e−i(q−q′)·Rjc†nRjσcnRjσ , (31.3.24)

where we have used the fact that there is exactly one electron on each site,
either in the ground state or in the excited state. Assuming that the number
of excited states is small we recover the commutation relation valid for bosons.

When the binding energy of the exciton is larger than the bandwidth, the
picture presented above – exciton states inside the gap – breaks down. The
system goes over into a different state, the excitonic insulator state, where
the ground state is a coherent superposition of electron–hole pairs.
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Another state is found when electron–hole pairs are generated in a macro-
scopic number in a semiconductor by optical pumping, i.e., exposing it to
a strong beam of light. In this case, it is no longer energetically favorable
for the system to form bound pairs; the electrons and holes condense rather
into droplets of finite, macroscopic size. In this electron–hole liquid state the
semiconductor behaves as a conductor.

31.4 Magnetic Excitations

We have seen, when magnetic correlations were studied, that the Coulomb
repulsion gives rise to an increase of magnetic fluctuations. Nevertheless, no
magnetic analogue of the plasmon was found. This can easily be understood
if we recall that the expressions obtained in the RPA for the magnetic
and dielectric responses have a very similar form, but Π0 and Σ0 differ in
sign. Therefore, since the collective density oscillations appear above the
electron–hole continuum, they would have to appear below the continuum
in the magnetic case. Such bound states cannot exist if the continuum starts
without a gap. When the system is put into a magnetic field, and the con-
tinuum of spin-flip excitations starts with a finite gap, well-defined collec-
tive excitations may appear inside the gap. A physically more interesting
situation may occur when the Stoner enhancement factor is large enough.
Then the continuum itself will be deformed leading to magnetic excitations
inside the continuum, which nevertheless have a long enough lifetime to be
observable.

31.4.1 Paramagnons in Nearly Ferromagnetic Metals

Assume that the Coulomb repulsion is strong enough so that Uρσ(εF) in the
Stoner enhancement factor is close to unity. This could be the case in 4d and
5d metals, in particular in platinum and palladium, and their compounds. As
already mentioned in Chapter 29, these materials are nonmagnetic but are
rather close to the threshold where the unpolarized, paramagnetic electron
system becomes unstable against transition to a ferromagnetic state. They
are therefore called nearly ferromagnetic metals. Although, as will be seen in
Chapter 33, a better approximation sets a stronger constraint for the magnetic
instability, we will use the RPA, where the threshold is at [Uρσ(εF)]c = 1 and
will calculate the dynamical susceptibility for materials where Uρσ(εF) < 1
but close to the threshold.

Apart from a sign difference which already appeared in (29.8.43) for the
dynamical susceptibility, Σ0(q, ω) has the same form as the Lindhard function
determined for the dielectric function. When its real part (29.2.52) is expanded
for small values of q and ω assuming that ω � vFq, and the imaginary part
is taken from (29.2.56), we find
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Σ0(q, ω) = ρσ(εF)
(

1 + i
πω

2vFq
− q2

12k2
F

+ · · ·
)
. (31.4.1)

Inserting this into (29.8.43) we get in the limit Uρσ(εF) ≈ 1

χ(q, ω) ≈
1
4g

2
eμ

2
Bμ0ρσ(εF)

1 − Uρσ(εF) − i
πω

2vFq
+

q2

12k2
F

+ · · ·
. (31.4.2)

Figure 31.4 shows the imaginary part of the susceptibility compared to the
case when the interaction is neglected. While Imχ increases slowly in a free
electron gas, the same quantity in the interacting system exhibits a relatively
narrow peak at low energies when Uρσ(εF) is close to the instability threshold.
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Fig. 31.4. The peak appearing in the imaginary part of the magnetic susceptibility
of the electron gas due to the interaction, for several values of U . The momentum
is fixed at q/kF = 0.1

At small values of q, for q � kF
[
1 − Uρσ(εF)

]1/2, the peak is at

ω =
2
π
vFq
[
1 − Uρσ(εF)

]
, (31.4.3)

while for q  kF[1 − Uρσ(εF)]1/2 the position of the peak varies as the third
power of q. To interpret this narrow peak we recall that the inelastic cross
section of scattering of high-energy electrons on a solid is proportional to the
dynamical structure factor, which in turn is related to the imaginary part
of the dielectric function. Sharp resonances appear in the cross section at
energies where elementary excitations can be created or annihilated. Simi-
lar considerations lead to the conclusion that the cross section of magnetic
scattering of neutrons is proportional to the imaginary part of the magnetic
susceptibility, the sharp peaks in the inelastic scattering processes are due
to magnetic excitations, and the position of the peak gives their energy. The
relatively sharp peak in the imaginary part of the magnetic susceptibility is
therefore an indication that, even though the system is in the paramagnetic
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state, overdamped collective excitations, resembling spin waves (magnons),
propagate in the sample. These excitations are called paramagnons.

When the Coulomb interaction is strong and the system is close to the
ferromagnetic instability, the lifetime of these excitations may be quite long.
The thermally excited, long-lived paramagnons modify the thermal properties
of paramagnetic metals. At low temperatures they give a contribution propor-
tional to T 3 lnT in the specific heat. Paramagnons might even play a role in
high-temperature superconductors, where the superconducting state appears
in the phase diagram next to a magnetically ordered state. If magnetic fluc-
tuations are still strong in the superconducting state, they may contribute
to the formation of Cooper pairs and that may explain the unconventional
symmetry of the pairs and the unconventional properties of these systems.

31.4.2 Spin Waves in Magnetic Field

Another type of collective magnetic excitations may appear in paramagnetic
systems if they are polarized by an external magnetic field. The field shifts
the one-particle energies oppositely for the two spin orientations,

εk↑ = εk − 1
2geμBμ0H, εk↓ = εk + 1

2geμBμ0H, (31.4.4)

and the lower bound of the continuum of electron–hole pair excitations with
opposite spins; the minimum of

�ωkq = εk+q↑ − εq↓ (31.4.5)

for a fixed q becomes finite. It takes the value

Δ = |ge|μBμ0H (31.4.6)

at q = 0. The effect of interactions will again be considered in the Hubbard
model, where the energy of the one-particle excitations is given in a mean-field
approximation by (29.8.3):

ε̃k↑ = εk + U〈n↓〉 − 1
2geμBμ0H, ε̃k↓ = εk + U〈n↑〉 + 1

2geμBμ0H. (31.4.7)

When an electron–hole pair is excited with opposite spins, its energy is

ε̃k+q↑ − ε̃q↓ = εk+q − εq + U
[〈n↓〉 − 〈n↑〉

]− geμBμ0H. (31.4.8)

The continuum of excitations then starts at

ε̃k↑ − ε̃k↓ = U
[〈n↓〉 − 〈n↑〉

]− geμBμ0H (31.4.9)

for q = 0. The difference in the occupation numbers for the two spin directions
can be expressed in terms of the magnetization using (29.8.5) and then in
terms of the external field using (29.8.10). The splitting between the two
subbands with opposite spin orientations becomes
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ε̃k↑ − ε̃k↓ = |ge|μBμ0
Uρσ(εF)

1 − Uρσ(εF)
H + |ge|μBμ0H

=
|ge|μBμ0H

1 − Uρσ(εF)
=

Δ

1 − Uρσ(εF)
.

(31.4.10)

The electron–electron interaction enhances the splitting caused by the external
field in a free electron gas. The continuum of electron–hole pairs with opposite
spins for a finite total momentum q of the pair is shown in Fig. 31.5.

Continuum

Spin wave

∼
k q k

∼

U F

q

Fig. 31.5. Continuum of electron–hole pair excitations with opposite spins and the
excitation energy of spin waves

Since the continuum starts at finite energies, collective spin excitations
may appear at lower energies inside the gap. Following the procedure applied
earlier to get the collective density oscillations, the plasmons, we search for
states created by the operator

α†
q =

∑

k

φkqc
†
k+q↑ck↓ . (31.4.11)

Not surprisingly we find that magnetic excitations can propagate in the system
for wave vectors and frequencies for which the transverse susceptibility defined
in (29.8.48) is singularly large. This happens, according to (29.8.54), when

1 = UΣ0
⊥(q, ω) . (31.4.12)

If (29.8.52) is used for Σ0
⊥(q, ω), the excitation energies are the solutions of

1 = U
1
V

∑

k

f0(ε̃k+q↑) − f0(ε̃k↓)
�ω − ε̃k+q↑ + ε̃k↓

. (31.4.13)

The summation can be performed in the limit q → 0 if (31.4.9) is inserted
into the denominator. This leads to

1 = U
〈n↑〉 − 〈n↓〉

�ω − U
[〈n↓〉 − 〈n↑〉

]− |ge|μBμ0H
, (31.4.14)
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giving
�ω = |ge|μBμ0H (31.4.15)

for the solution. For finite q values the energy starts from this finite value and
has a weak q2 dependence, just as for plasmons. This dispersion relation is
also shown in Fig. 31.5. These collective magnetic excitations are called spin
waves, although they appear in paramagnetic systems which are polarized by
an external magnetic field. If the Stoner enhancement factor is large enough,
the spin waves are well separated from the continuum and can be observed
experimentally.
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32

Fermion Liquids

In the previous chapters, we presented various methods that allow for taking
the electron–electron interaction into account and studied some of its effects.
One important finding was that a low-order perturbative treatment is not
sufficient for a quantitatively correct description of the properties of even the
simplest metals since the Coulomb repulsion between electrons is strong and
long ranged. The whole panoply of many-body physics is needed. In spite of
this, experiments show that – rather surprisingly – simple metals behave in
many respects as the noninteracting chargeless fermion gas: the heat capacity
varies linearly with T and the Pauli susceptibility is independent of temper-
ature. Similar behavior is observed in the normal liquid phase of 3He, which
is a fermionic system, while 4He is a Bose liquid. There are of course excep-
tions. The most notable are superconductors, whose thermal and magnetic
properties differ drastically from those of normal metals.

In 1956 L. D. Landau pointed out that the almost-free-electron-like be-
havior is not accidental but is an inherent property of Fermi systems under
certain conditions. Systems without long-range order in spite of strong inter-
actions were called normal Fermi liquids. In Landau’s original formulation the
theory was aimed at describing the low-temperature properties of 3He liquid,
which does not crystallize at ambient pressure even at very low temperatures
owing to quantum fluctuations. The theory also had its greatest success there.
Not only did it give a simple description of the low-temperature properties
in terms of a few phenomenological parameters which could be fit to experi-
ments, but it was able to explain and predict quantitatively a wide variety of
new phenomena.

The quasiparticle picture and the Landau theory is, however, applicable
more generally to explain those properties of normal metals in which only the
states near the Fermi surface play an important role, although the results are
quantitatively much less spectacular than in 3He. This is because other inter-
actions besides the electron–electron interaction, such as the periodic potential
of the lattice and the electron–phonon interaction, also play a decisive role.
Furthermore, the quasiparticles have to be defined relative to a nonspherical
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DOI 10.1007/978-3-642-04518-9_5, © Springer-Verlag Berlin Heidelberg 2010



212 32 Fermion Liquids

Fermi surface, which means that the use of a scalar effective mass may not
be sufficient and the parametrization of the interaction is more difficult. Its
importance lies rather in the fact that the concepts on which this theory is
based, namely the adiabatic continuity between the noninteracting and inter-
acting systems, the existence of quasiparticles, and the way the interaction
between them is handled, give a general theoretical framework in which the
behavior of normal metals can easily be understood.

Fermi-liquid-like behavior is not the only possibility for an interacting
electron gas even if no symmetry is broken. The assumptions underlying
the Landau theory, for example, the applicability of perturbation theory,
which is a prerequisite for the existence of a Fermi surface, are not satis-
fied in the one-dimensional interacting electron gas. The momentum distribu-
tion function cannot be calculated in perturbation theory since logarithmic
singularities appear at the Fermi momentum already in low orders of the
perturbation. The new type of behavior exhibited by one-dimensional sys-
tems will be demonstrated in two models and their common features will
lead us to the Luttinger-liquid concept. Although the models we study are
one dimensional in a mathematical sense, Luttinger-liquid behavior may be
observed in physically realistic, strongly anisotropic, quasi-one-dimensional
systems, in which electrons can propagate with high probability only in one
direction.

The case of two-dimensional systems is more delicate. The theory of Lut-
tinger liquids cannot be generalized simply to two dimensions, and the exper-
imental results that indicate deviations from Fermi-liquid behavior in layered
materials are not fully understood. We will consider one special case, the pro-
nounced non-Fermi-liquid properties of the two-dimensional electron gas in
strong magnetic field. A new type of quantum liquid state, the quantum Hall
liquid, is observed there.

After a brief presentation of Landau’s phenomenological theory of normal
Fermi liquids the Luttinger-liquid behavior of several one-dimensional models
is studied at some length in this chapter. Some properties of quantum Hall
liquids are discussed at the end.

32.1 Ground State and Excited States of Normal Fermi
Systems

It is well known that the low-lying excited states of a vibrating lattice can
be identified to good approximation by the states of a free gas of bosonic
phonons. Some features of the dispersion curve are determined by the mass of
the ions and the interaction between them, but the bosonic character of the
collective excitations does not depend on whether the ions have integer or half-
odd-integer spins. The acoustic phonons are the soft Goldstone bosons that
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have to appear owing to the broken translational symmetry in the crystalline
state, but the higher lying optical phonons, too, have a bosonic character.

Something similar happens in magnetically ordered systems as well. The
interaction between localized spins may give rise to a complicated excita-
tion spectrum in ferromagnets described by the Heisenberg Hamiltonian. The
low-lying part of the spectrum corresponding to states in which the number
of reversed spins is not too high, i.e., the magnetization is close to satura-
tion, could be considered as a superposition of independent bosonic magnons.
Bosonic magnons appear in antiferromagnets, too, irrespective of the value of
the spin quantum number S, whether integer or half-integer. The soft magnons
are the Goldstone bosons: they are the consequences of breaking the contin-
uous rotational symmetry of the Heisenberg Hamiltonian.

These examples show that if we consider only the low-lying excited states
of a strongly interacting system – by low lying we mean energies comparable
to or smaller than the thermal energy at room temperature, which is smaller
than the typical energy scales in the band structure – these excited states
can be described in terms of a system of weakly interacting bosons. These
bosons are collective excitations. They lose their identity when the interaction
between ions is switched off. The excited states of a free atom or of a free spin
are very different from phonons or magnons.

The situation is different in the system of electrons. Bosonic collective exci-
tations, such as plasmons, appear in such systems, too, owing to the Coulomb
interaction. However, the fermionic one-particle excited states play a domi-
nant role. Their energies have been determined in the previous chapters in the
Hartree–Fock approximation. As stated by Koopmans’ theorem, if an electron
is excited from its initial state to a final state, the excitation energy is the
difference between the energies of the corresponding quasiparticle states. This
is not true any more when a large number of quasiparticles are excited. Nev-
ertheless at low temperatures, where the number of thermally excited quasi-
particles is small, the interacting electron system can be treated in a first
approximation as a free gas of quasiparticles. One reason for that is Pauli’s
exclusion principle, but the weakening of the strong Coulomb repulsion due
to screening also plays an important role.

Contrary to the bosonic collective excitations, which are defined only in
an interacting system, the fermionic elementary excitations go over to similar
excited states of the free system, when the interaction is switched off adiabat-
ically. Reversing this statement we can assume that starting from the ground
state of the noninteracting system and switching on the interaction adiabati-
cally, the ground state of the interacting system is obtained. This assumption
is very important for the applicability of perturbation theory. Moreover, a sim-
ilar one-to-one correspondence is assumed between the excited states of the
noninteracting and interacting systems. This adiabatic continuity is a basic
concept in the theory of normal metals.
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32.1.1 Ground State of Normal Fermi Systems

The adiabatic continuity does not mean, though, that the momentum distri-
bution function

〈nkσ〉 =
〈
c†kσckσ

〉
(32.1.1)

calculated for the ground state of the interacting system remains a unit step
function. As has been seen in Chapter 28, there are empty states below the
Fermi energy and the probability of finding electrons above the Fermi energy is
nonvanishing. Nevertheless, one can prove that 〈nkσ〉 exhibits a discontinuous
jump (see Fig. 28.3) if perturbation theory is applicable, although the value of
the jump is less than unity, and the energy of one-particle excitations vanishes
at the same points in k-space. Systems where this happens are called normal
Fermi systems and these points define the Fermi surface of the interacting
system.

The Luttinger theorem mentioned in Chapter 28 states that the interaction
leaves the volume enclosed by the Fermi surface invariant. Thus in an isotropic
system, where the Fermi surface is spherical, its radius, the Fermi momentum
kF, has the same value as in the noninteracting electron gas. In nonisotropic
systems the Fermi surface is not spherical and the interaction may distort its
shape. Adiabatic switching of the interaction may then not take the ground
state of the noninteracting system into that of the interacting system and
perturbation theory may fail. This can be corrected by adding an appropriate
counter term to the Hamiltonian of the free system – which of course has to be
compensated in the interaction part – such that the Fermi surfaces of the free
and of the interacting systems coincide. The adiabatic continuity between the
ground states of the noninteracting and interacting systems can be established
after such a reformulation of the problem and thus the Landau theory of Fermi
liquids could be valid for systems with anisotropic Fermi surface as well.

Of course quite often the above-sketched scenario does not apply. The
ground state of the interacting system may be very different from that of
the free system and cannot be generated by adiabatically switching on the
interaction. This is the case, e.g., in superconductors, in magnetically ordered
fermion systems, and in density-wave systems. The properties of such systems
will be described in subsequent chapters. Throughout this section we will
assume that the ground state of the noninteracting system evolves into that
of the interacting one after adiabatically switching on the interaction.

32.1.2 Quasiparticles in Normal Fermi Systems

From now on we will consider normal systems only. Let us add an electron
with wave vector k to the ground state and switch on again the interaction
adiabatically. The properties of the initially free particle will be modified by
the interaction, but the excited state of the interacting system will have the
same k vector, since the momentum is conserved in the interaction processes.
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We will look upon this state as if a quasiparticle were added to the interacting
ground state. Denoting by |ΨFS〉 the ground state of the free Fermi gas from
which the ground state |Ψ0〉 of the Fermi liquid evolves after switching on
the interaction adiabatically, the state which evolves from c†kσ|ΨFS〉 will be
denoted as α†

kσ|Ψ0〉. The operator α†
kσ can then be interpreted as the creation

operator of a quasiparticle, if k is outside the Fermi sphere. Similarly, if the
state into which the state with one hole (the state ckσ|ΨFS〉 with k inside the
Fermi sphere) evolves is denoted by β†

kσ|Ψ0〉; the operator β†
kσ is the creation

operator of a quasihole. The quasiparticles defined outside the Fermi surface
and the quasiholes defined inside it are the key elements of the Fermi-liquid
theory.

As the interaction between the extra particle and the Fermi sea is turned
on, its energy and mass are modified. Since the particle repels or attracts the
other particles of the system, it drags along a “cloud” formed by these particles
as it propagates. In other words we may say that the initially “bare” particle
is “dressed” by the interaction. This accounts for the interaction-dependent
effective mass of the quasiparticle. A major contribution of the interactions is
taken into account by this mass renormalization. The remaining interactions
between the dressed particles are weak. That is why quasiparticles could be
treated in the one-particle approximation.

Alternatively, one could say that the low-lying excited state |Ψkσ〉 with one
quasiparticle has a finite overlap with the state in which a free particle with
momentum k is added to the ground state of the interacting system, that is

〈Ψkσ|c†kσ|Ψ0〉 = Z
1/2
kσ , (32.1.2)

where Zkσ is of order unity and not of order 1/Ne. This could also be taken
as the definition of a state containing one quasiparticle. The factor Zkσ is the
quasiparticle weight. It gives the probability of finding a quasiparticle in the
state created by the operator c†kσ.

In a free electron gas, the energy of particles and holes varies linearly
with momentum near the Fermi energy. In normal Fermi liquids, where the
quasiparticle energy measured from the chemical potential vanishes at the
Fermi surface, a similar behavior should hold. In an unpolarized system

εkσ = μ+ v∗F�(k − kF) = μ+
�

2kF

m∗ (k − kF) (32.1.3)

with some effective Fermi velocity v∗F and effective mass m∗ instead of the
quantities characterizing the free particles. The effective Fermi velocity and
the effective mass are two basic parameters of the theory; they determine the
density of states of the quasiparticles at the Fermi energy:

ρ(εF) =
1
V

∑

kσ

δ(εkσ − εF) =
m∗kF

π2�2
. (32.1.4)
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The excitation spectrum given in (32.1.3) is displayed in Fig. 32.1(a). If
there is a finite gap in the excitation spectrum above the ground state, as in
Fig. 32.1(b), the system cannot be a normal Fermi liquid.

εk – μ εk – μ

k
kF kF

( )a ( )b k

Fig. 32.1. The spectrum of low-lying excitations in (a) a normal and (b) a not
normal Fermi system

The excitation spectrum of quasiparticles was drawn intentionally near
the Fermi momentum only. The one-particle states of the free system are not
stationary solutions in the interacting system, they decay due to scattering
processes, and the electronic states have a finite lifetime. The quasiparticle
concept is useful only if the lifetime is long enough, in other words if the un-
certainty in the energy, which is on the order of �/τ , is less than the energy
itself. Otherwise the state decays before it is really formed in the adiabatic
process. As we have seen in the previous chapter, the reciprocal of the life-
time is proportional to the square of the energy measured relative to the Fermi
energy. That means that only the states created near the Fermi surface will
have a sufficiently long lifetime. There is also a constraint on the temperature
range for the existence of quasiparticles. At room temperatures a lifetime of
the order τ ∼ 10−11 s is obtained from electron–electron interactions. Other
scattering mechanisms, like scattering by impurities or by phonons, give a
much shorter lifetime of order 10−14 s. Owing to the finite lifetime, the quasi-
particle concept is useful only at low temperatures and near the Fermi surface.
The quasiparticle picture is therefore inadequate to give the total energy of a
fermion system, but it may be very appropriate in the study of thermal and
transport properties.

32.2 Landau’s Theory of Fermi Liquids

The Landau theory describes the behavior of interacting Fermi systems in
terms of fermionic quasiparticles. In the foregoing the quasiparticles were de-
fined by considering how the state with an extra electron or an extra hole
added to the ground state of a noninteracting system evolves as the inter-
action is switched on. This concept is useful if the low-lying states of the
interacting system can be described as superpositions of quasiparticle excita-
tions. We will assume that when several particles are added to (removed from)
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the ground state of a noninteracting system and the interaction is turned on
adiabatically, the same number of quasiparticles (quasiholes) are generated.
The occupation number of any particular k-state with spin σ may change
by ±1. A smooth function δnkσ can be defined by averaging over a small
neighborhood in k-space or taking the thermal average. Note that the same
δnkσ characterizes the excited states of the free as well as of the interacting
systems. The numbers δnkσ are positive for k vectors lying outside the Fermi
sphere and give the number of quasiparticles, they are negative for k vectors
inside the Fermi sphere, and their absolute value gives the number of quasi-
holes. Although we attribute physical meaning only to δnkσ, the number of
quasiparticles or quasiholes can formally be written as the difference

δnkσ = nkσ − n0
kσ , (32.2.1)

where nkσ is the occupation number in the excited state and

n0
kσ = θ(kF − |k|) (32.2.2)

is the occupation number in the ground state of the free Fermi sea. Since this
quantity depends on the energy only, it is more convenient to work with the
expression

n0
kσ = θ(μ− εkσ) , (32.2.3)

where μ is the chemical potential. Although nkσ or n0
kσ may appear in the

intermediate steps of the calculations, the physical quantities are independent
of them.

The Landau theory is a phenomenological theory that relies on the as-
sumptions that the number of quasiparticles is small compared to the total
number of particles: δnkσ can then be used as an expansion parameter, and
the interaction between the quasiparticles can be described in terms of a few
parameters. A more precise theory could be given using the methods of many-
body theory. This would allow us to treat the interacting fermion systems
microscopically and to lay a foundation for the Landau theory. One could

1. determine the range of validity of the theory, the energy and temperature
range in which the quasiparticle concept is meaningful;

2. determine the relationship between the phenomenological parameters that
characterize the interaction of quasiparticles and the electron–electron
interaction appearing in the microscopic Hamiltonian; and

3. calculate the corrections beyond the phenomenological theory.

This microscopic theory is beyond the scope of this book. We will consider
the phenomenological description only.

32.2.1 Energy of Quasiparticles and Their Interaction

As the quasiparticle is formed out of the free particle as the interaction is
switched on, it acquires a renormalized energy εkσ. The velocity of quasipar-
ticles can be determined using the well-known relationship
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vkσ =
1
�

∂εkσ

∂k
. (32.2.4)

In an unpolarized isotropic system

vkσ =
k

|k|v
∗
F (32.2.5)

for states near the Fermi surface, where v∗F is the effective Fermi velocity.
Assuming the form given in (32.1.3) for εkσ, the relationship between the
effective Fermi velocity and the effective mass is given by

v∗F =
�kF

m∗ . (32.2.6)

Neglecting for the moment the interaction between quasiparticles, the total
energy of the system can be obtained by adding the one-particle energies. Thus
we have

E = E0 +
∑

kσ

εkσ δnkσ . (32.2.7)

If the number of particles is not conserved, a grand canonical ensemble has to
be used and the quantity E−μNe has to be considered instead of the energy.
At finite temperatures this will then be replaced with the free energy, and we
have

F = F0 +
∑

kσ

(εkσ − μ) δnkσ . (32.2.8)

The corrections to the ground-state energy are always positive since creation
of a hole corresponds to removing a particle; thus, δnkσ = −1 if a state with
εkσ < μ is excited.

When stopping at this point, the description would be identical to that of
a free system, and the properties of the Fermi liquid would also be identical
with the only exception that the electron mass, wherever it appears, should
be replaced with the effective mass m∗ of the quasiparticles. The important
new element of the Landau theory is that instead of this expression, which
is linear in δnkσ, Landau proposed taking into account the remaining weak
interaction between quasiparticles by a term which is higher order in δnkσ.

As a simple example let us consider the electron gas in the Hartree–Fock
approximation. The total energy of the system is given by

EHF =
∑

kσ

εkσnkσ − 1
2V

∑

kk′σ

U(k′ − k)nkσnk′σ . (32.2.9)

Separating out the ground-state energy and using δnkσ, the physically relevant
number of quasiparticles excited above the ground state, this expression can
be written in the form

EHF = E0
HF +

∑

kσ

εHF
kσ δnkσ − 1

2V

∑

kk′σ

U(k′ − k)δnkσδnk′σ , (32.2.10)
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where E0
HF is the ground-state energy in the Hartree–Fock approximation

and εHF
kσ is the excitation energy of one-particle states obtained in the same

approximation:

εHF
kσ = εkσ − 1

V

∑

k′
U(k′ − k)n0

k′σ . (32.2.11)

This contains the interaction with all the particles filling the Fermi sea.
The last term in (32.2.10) describes the interaction between the quasipar-

ticles. A similar expression could be obtained for the free energy. Landau’s
idea can be viewed as the generalization of this expression. He assumed that
the free energy is a functional of the quasiparticle distribution δnkσ, and at
temperatures low compared to the Fermi temperature, where only a relatively
small number of quasiparticles are excited, it is sufficient to go to second order
in the expansion of the free energy in powers of δnkσ:

F = F0 +
∑

kσ

(εkσ − μ)δnkσ +
1

2V

∑

kk′σσ′
fσσ′(k,k′)δnkσδnk′σ′ , (32.2.12)

where the coefficients fσσ′(k,k′), which characterize the interaction between
quasiparticles, are known as the Fermi-liquid parameters or Landau parame-
ters. Note that in the Hartree–Fock approximation, where the quasiparticles
have infinitely long lifetime, there is no limitation on the summation in k-
space. More generally, however, since the quasiparticles are defined only in
the neighborhood of the Fermi surface, the summations over k and k′ are
restricted to the neighborhood of the Fermi surface.

Note also that although formally we have the first- and second-order terms
of the expansion of the free energy with respect to the small parameters δnkσ,
the contributions of the two terms are in fact of the same order of magni-
tude. This is because the quasiparticles are excited in a narrow range around
the Fermi surface, that is δnkσ differs from zero in that range only, and the
excitation energies themselves, εkσ − μ, are also small in this region. Thus a
consistent treatment of quasiparticles requires taking both terms into account
on an equal footing.

The quantity εkσ is the energy of an independent quasiparticle when it is
alone in the system. The energy needed to add a quasiparticle to a system in
which other quasiparticles are already present is different owing to its inter-
action with them. The renormalized energy is equal to the change in the free
energy,

ε̃kσ − μ =
δF

δnkσ
= εkσ − μ+

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ . (32.2.13)

Thus the Landau parameter fσσ′(k,k′) divided by the volume gives the change
in the energy of the quasiparticle with quantum numbers k and σ owing to
its interaction with another quasiparticle of quantum numbers k′ and σ′:
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1
V
fσσ′(k,k′) =

δε̃kσ

δnk′σ′
. (32.2.14)

The Landau parameters depend only on the relative orientation of the spins
in an unpolarized system. To see that we should recognize that fσσ′(k,k′) is
the second derivative of the free energy,

1
V
fσσ′(k,k′) =

δ2F

δnkσδnk′σ′
; (32.2.15)

it is therefore symmetric in its arguments:

fσσ′(k,k′) = fσ′σ(k′,k) . (32.2.16)

Time-reversal symmetry should hold if no magnetic field is applied, hence

fσσ′(k,k′) = f−σ,−σ′(−k,−k′) . (32.2.17)

If the system has inversion symmetry, the Landau parameters are invariant
under the transformation k → −k. Together with the time-reversal symmetry
this leads to the identity

fσσ′(k,k′) = f−σ,−σ′(k,k′) . (32.2.18)

It is therefore sufficient to use the parameters f↑↑ = f↓↓ and f↑↓ = f↓↑, or,
more conveniently, the symmetric and antisymmetric combinations:

f s(k,k′) = 1
2

[
f↑↑(k,k′) + f↑↓(k,k′)

]
,

fa(k,k′) = 1
2

[
f↑↑(k,k′) − f↑↓(k,k′)

]
.

(32.2.19)

Expressing the original parameters in terms of the new ones we have

fσσ′(k,k′) = f s(k,k′) + fa(k,k′) [2δσσ′ − 1]

= f s(k,k′) + σ σ′fa(k,k′) .
(32.2.20)

When the weak dependence on the lengths of k and k′ near kF is neglected,
fσσ′(k,k′) depends only on the angle ξ between k and k′ in the isotropic case.
More precisely it depends on cos ξ = k · k′/k2

F. The Fermi-liquid parameters
can then be expanded in Legendre polynomials in the form

f s(a)(k,k′) =
∞∑

l=0

f
s(a)
l Pl(cos ξ) . (32.2.21)

The inverse relations can be derived with the aid of the orthogonality rela-
tionship

+1∫

−1

Pl(x)Pl′(x) dx = δl,l′
2

2l + 1
(32.2.22)
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of the Legendre polynomials. We find

f
s(a)
l =

2l + 1
2

π∫

0

f s(a)(k,k′)Pl(cos ξ) sin ξ dξ . (32.2.23)

The interacting Fermi system can thus be characterized by the set of pa-
rameters f s(a)

l . In what follows it will be convenient to use dimensionless
parameters defined by

F
s(a)
l = ρ(εF)f s(a)

l =
m∗kF

π2�2
f

s(a)
l . (32.2.24)

Although an infinite set of parameters appear in the expansion of the free
energy, only a few of them are relevant for the interesting physical quantities.
Almost the full behavior of a Fermi liquid can be described in terms of just a
few parameters.

32.2.2 Distribution Function of Quasiparticles

When the system is in thermal equilibrium at a finite temperature, the oc-
cupation numbers nkσ are different from what they are in the ground state.
The distribution function of quasiparticles can be determined by the methods
of statistical mechanics. Since the excited states of the interacting system are
in a one-to-one correspondence with the possible states of the free fermion
system, the same δnkσ characterizes the excited states of the noninteracting
system and the distribution of quasiparticles of the interacting system. Owing
to the same counting of the states the entropy can be written in the form

S = −kB
∑

kσ

[
nkσ lnnkσ + (1 − nkσ) ln(1 − nkσ)

]
(32.2.25)

known for a free Fermi gas. When quasiparticles are added to the system and
the distribution function is changed by δnkσ, the change in the entropy is

δS = −kB
∑

kσ

δnkσ ln
nkσ

1 − nkσ
, (32.2.26)

and the change in the number of particles is

δN =
∑

kσ

δnkσ . (32.2.27)

The variation in the total energy can be written in terms of the quasiparticle
energies as

δE =
∑

kσ

ε̃kσδnkσ , (32.2.28)
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where of course the renormalized quasiparticle energies appear that contain
contributions from the interaction with the other quasiparticles. Using the
relation

δE = TδS + μδN (32.2.29)

well known from thermodynamics we have

∑

kσ

ε̃kσδnkσ =
∑

kσ

(
−kBT ln

nkσ

1 − nkσ
+ μ

)
δnkσ . (32.2.30)

This can be satisfied if

ε̃kσ = −kBT ln
nkσ

1 − nkσ
+ μ (32.2.31)

holds for each k and σ separately, from which the usual Fermi–Dirac distri-
bution function is recovered:

nkσ =
1

e(ε̃kσ−μ)/kBT + 1
. (32.2.32)

Since f0 is used conventionally in the Fermi-liquid theory to denote an inter-
action parameter, the notation

n0(ε̃kσ, T ) =
1

e(ε̃kσ−μ)/kBT + 1
(32.2.33)

will be used for the distribution function in thermal equilibrium. It is impor-
tant to emphasize once more that this result was obtained using (32.2.28);
therefore, the ε̃kσ appearing here depend on the distribution function itself.
Whenever the number of quasiparticles is used in the subsequent calculations,
this self-consistency condition should be taken into account.

32.2.3 Thermodynamic Properties of Fermi Liquids

The thermodynamic properties are obtained by summing the contributions of
all quasiparticles. Since the density of states of the quasiparticles [see (32.1.4)]
is different from that of the noninteracting Fermi gas, it is expected that
the density of states entering thermodynamic quantities is the quasiparticle
density of states. As a first example we consider the heat capacity.

The difference between the distribution function n0(ε̃kσ, T ) and the step
function,

δnkσ = n0(ε̃kσ, T ) − θ(μ− εkσ) , (32.2.34)

can be interpreted as the number of thermally excited quasiparticles when
the Fermi liquid is in thermal equilibrium at a finite temperature. The renor-
malized energy ε̃kσ appearing here has to be determined self-consistently by
combining this equation with (32.2.13):
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ε̃kσ = εkσ +
1
V

∑

k′σ′
fσσ′(k,k′)

[
n0(ε̃k′σ′ , T ) − θ(μ− εk′σ′)

]
. (32.2.35)

The free energy of the thermally excited Fermi liquid is obtained by substi-
tuting the self-consistent solution for δnkσ in

F = F0 +
∑

kσ

εkσδnkσ +
1

2V

∑

kk′σσ′
fσσ′(k,k′)δnkσδnk′σ′ . (32.2.36)

First, we demonstrate that the number of thermally excited quasiparticles
is proportional to T 2, and the leading correction to the energy of quasiparticles
is also of order T 2. Assuming that this is true, ε̃k′σ′ may be replaced with
εk′σ′ in n0(ε̃k′σ′ , T ) on the right-hand side of (32.2.35). The sum over k′ can
be replaced by an angular average and an integral over the length of k′ or
over energy using the density of states:

1
V

∑

k′σ′
g(εk′)h(cos ξ) →

∑

σ′

∫
dερσ′(ε)g(ε)

∫∫
sin θ′ dθ′ dϕ′

4π
h(cos ξ) ,

(32.2.37)
where ρσ′(ε) is the density of states of quasiparticles for one spin orientation.
We apply this transformation in (32.2.35) by choosing the z-axis of the co-
ordinate system in the direction of k. The angle ξ between k and k′ is then
equal to the polar angle θ′ of k′. This angular variable appears in the Landau
parameters only, and the integration over θ′ can be carried out if the Landau
parameters are expanded in Legendre polynomials. Only the symmetric l = 0
component gives a nonvanishing contribution:

1
2

∑

σ′

∫∫
fσσ′(cos θ′)

sin θ′ dθ′ dϕ′

4π
= f s

0 . (32.2.38)

The change in the quasiparticle energy can be expressed as

ε̃kσ − εkσ ≈ f s
0

∫
ρ(ε)

[
1

eβ(ε−μ) + 1
− θ(μ− ε)

]
dε . (32.2.39)

The integral can be evaluated using the Sommerfeld expansion and we find

ε̃kσ − εkσ ≈ f s
0

π2

6
(kBT )2

dρ(ε)
dε

∣∣∣∣
ε=μ

. (32.2.40)

The correction to the quasiparticle energy is in fact of order T 2. It then
follows immediately that also the number of thermally excited quasiparticles
is proportional to the square of the temperature,

∑

kσ

δnkσ ∼ (kBT )2 , (32.2.41)

provided the Fermi-liquid parameters are temperature independent.



224 32 Fermion Liquids

The correction to the free energy owing to the interaction of quasiparticles
is of order T 4 and can be neglected compared to the leading term of order
(kBT )2. The free energy is then

F = F0 +
∑

kσ

εkσ

[
1

eβ(εkσ−μ) + 1
− θ(kF − |k|)

]

= F0 + V

∫
ε ρ(ε)

[
1

eβ(ε−μ) + 1
− θ(μ− ε)

]
dε .

(32.2.42)

Application of the Sommerfeld expansion gives

F = F0 + V
π2

6
(kBT )2ρ(εF) . (32.2.43)

The heat capacity can be calculated to leading order from the expressions

CV (T ) =
(
∂E

∂T

)

N

≈
(
∂F

∂T

)

μ

. (32.2.44)

Clearly the heat capacity per unit volume of the Fermi liquid has the same
form as that of the free Fermi gas given in (16.2.91),

cV (T ) =
π2

3
ρ(εF)k2

BT , (32.2.45)

but here ρ(εF) is the density of states of quasiparticles, which is proportional
to the effective mass. This enables us to determine m∗ from experiments.

32.2.4 Creation of Quasiparticles by External Perturbation

We consider now the situation when an external perturbation drives the sys-
tem out of equilibrium. The number of quasiparticles in the perturbed state
is

δnkσ = nkσ − n0
kσ , (32.2.46)

and their energy is given by

ε̃kσ = εkσ +
1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ . (32.2.47)

If the quasiparticles were in thermal equilibrium, their number would be

δntherm
kσ = n0(ε̃kσ, T ) − n0

kσ . (32.2.48)

We will show in the following sections that some properties of the Fermi liquid
can be written in a simpler form if the number of extra quasiparticles excited
in addition to those present in thermal equilibrium,
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δn̄kσ = δnkσ − δntherm
kσ = nkσ − n0(ε̃kσ, T ) , (32.2.49)

is used instead of the actual number of quasiparticles. For that we first demon-
strate that a simple relationship exists between δn̄kσ and δnkσ at T = 0 in
an isotropic system.

Expansion of n0(ε̃kσ, T = 0) about the unrenormalized energy gives

δn̄kσ = nkσ − n0(εkσ, T = 0) − ∂n0(εkσ, T = 0)
∂εkσ

(ε̃kσ − εkσ)

= δnkσ − ∂n0
kσ

∂εkσ

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ .

(32.2.50)

The symmetric and antisymmetric combinations of the quasiparticle distribu-
tions are defined via

δnk↑ = δns
k + δna

k , δnk↓ = δns
k − δna

k , (32.2.51)

and similarly

δn̄k↑ = δn̄s
k + δn̄a

k , δn̄k↓ = δn̄s
k − δn̄a

k . (32.2.52)

Equation (32.2.50) can be rewritten for these combinations with the result

δn̄s
k = δns

k − ∂n0
kσ

∂εk

2
V

∑

k′
f s(k,k′)δns

k′ ,

δn̄a
k = δna

k − ∂n0
kσ

∂εk

2
V

∑

k′
fa(k,k′)δna

k′ .

(32.2.53)

Since the quasiparticles are defined near the Fermi energy only, the depen-
dence on the length of the wave vector is uninteresting, only the dependence on
the polar and azimuthal angles θ and ϕ of k is relevant, and the quasiparticle
distribution can be expanded in spherical harmonics in the form

δn
s(a)
k = −∂n

0
kσ

∂εk

∑

lm

δn
s(a)
lm Y m

l (θ, ϕ) ,

δn̄
s(a)
k = −∂n

0
kσ

∂εk

∑

lm

δn̄
s(a)
lm Y m

l (θ, ϕ) .
(32.2.54)

Inserting these expansions into (32.2.53) and using the orthogonality relation-
ship [see (C.4.27)]

2π∫

0

dϕ

π∫

0

sin θ dθ Y m∗
l (θ, ϕ)Y m′

l′ (θ, ϕ) = δll′δmm′ (32.2.55)

of the spherical harmonics we get
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δn̄
s(a)
lm = δn

s(a)
lm +

2
V

∑

k′

∑

l′m′

∫∫
sin θ dθ dϕ (32.2.56)

×
(
−∂n

0
k′

∂εk′

)
Y m∗

l (θ, ϕ)f s(a)(cos ξ) δn
s(a)
l′m′ Y

m′
l′ (θ′, ϕ′) ,

where ξ is the angle between k and k′, i.e., between the directions given by the
angles θ, ϕ and θ′, ϕ′. Using the step function for the ground-state distribution
we have

∂n0
k′σ′

∂εk′
= −δ(εk′ − μ) . (32.2.57)

Replacing the sum over k′ by an integral over the angular variables and over
the energy using the density of states for one spin orientation we find

δn̄
s(a)
lm = δn

s(a)
lm +

2
V

∑

l′m′

1
4π

∫∫
sin θ′ dθ′ dϕ′

∫∫
sin θ dθ dϕ (32.2.58)

×ρσ(εF)Y m∗
l (θ, ϕ)f s(a)(cos ξ) δn

s(a)
l′m′ Y

m′
l′ (θ′, ϕ′) .

The Legendre polynomials in the expansion of the Fermi-liquid parameters can
be expressed in terms of the spherical harmonics associated with the angles
θ, ϕ and θ′, ϕ′ using

Pl(cos ξ) = Pl(cos θ)Pl(cos θ′)

+2
l∑

m=1

(l −m)!
(l +m)!

Pm
l (cos θ)Pm

l (cos θ′) cosm(ϕ− ϕ′)

=
4π

2l + 1

+l∑

m=−l

Y m∗
l (θ, ϕ)Y m

l (θ′, ϕ′) . (32.2.59)

The orthogonality relationship of the spherical harmonics then leads to

δn̄
s(a)
lm = δn

s(a)
lm

(
1 +

F
s(a)
l

2l + 1

)
. (32.2.60)

32.2.5 Susceptibility of Fermi Liquids

Next we consider the magnetic susceptibility. Neglecting the diamagnetic con-
tribution coming from the orbital motion we will consider the interaction of
the spin of the quasiparticles with an external magnetic field of strength H. If
the field is applied in the z-direction and the quantization axis is the z-axis,
the one-particle energies are shifted to

εkσ(H) = εk − 1
2geμBμ0σH . (32.2.61)

The states have to be filled up to the same chemical potential for the two spin
orientations and therefore kF becomes spin dependent in the presence of the
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(a) (b)

Spin-down
quasiparticles

Spin-up
quasiholes

kF

kF

kF
kF

Fig. 32.2. (a) Expanded and contracted Fermi spheres for particles with ↑ and
↓ spins in a magnetically polarized Fermi liquid. (b) Quasielectron and quasihole
excitations of opposite spins created by a magnetic field

field. As seen in Fig. 32.2, the radius of the Fermi sphere for spin-up (σ = +1)
particles shrinks and for spin-down (σ = −1) particles expands.

The polarized state contains an equal number of spin-down quasiparticles
and spin-up quasiholes with renormalized energy

ε̃kσ(H) = εk − 1
2geμBμ0σH +

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ . (32.2.62)

For a given strength of the magnetic field the actual number of quasiparticles
has to be determined self-consistently from the condition that the one-particle
states are filled up to the same Fermi energy for both spin orientations. Using
the Fermi–Dirac distribution function for the occupation number we have

nkσ(H) = n0(ε̃kσ) = n0(ε̃k − 1
2geμBμ0σH) , (32.2.63)

where of course ε̃k is the renormalized quasiparticle energy, and the number
of quasiparticles and quasiholes is obtained from the difference

δnkσ = nkσ(H) − nkσ(H = 0)

= n0(ε̃k − 1
2geμBμ0σH, T ) − n0

kσ .
(32.2.64)

Expanding the right-hand side to linear order in the deviation of the renormal-
ized quasiparticle energy from the energy of a lone quasiparticle and neglecting
the thermal corrections we have

δnkσ =
∂n0

kσ

∂εk
(ε̃k − 1

2geμBμ0σH − εk)

=
∂n0

kσ

∂εk

[
− 1

2geμBμ0σH +
1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′

]
.

(32.2.65)

Writing them separately for the two spin orientations
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δnk↑ =
∂n0

kσ

∂εk

{
− 1

2geμBμ0H +
1
V

∑

k′

[
f↑↑(k,k′)δnk′↑ + f↑↓(k,k′)δnk′↓

]}
,

(32.2.66)

δnk↓ =
∂n0

kσ

∂εk

{
1
2geμBμ0H +

1
V

∑

k′

[
f↓↑(k,k′)δnk′↑ + f↓↓(k,k′)δnk′↓

]}
.

When the symmetric and antisymmetric combinations introduced in (32.2.51)
are used, we have

δns
k + δna

k =
∂n0

kσ

∂εk

{
− 1

2geμBμ0H +
2
V

∑

k′

[
f s(k,k′)δns

k′ + fa(k,k′)δna
k′

]}
,

(32.2.67)

δns
k − δna

k =
∂n0

kσ

∂εk

{
1
2geμBμ0H +

2
V

∑

k′

[
f s(k,k′)δns

k′ − fa(k,k′)δna
k′

]}
,

from which

δns
k =

∂n0
kσ

∂εk

2
V

∑

k′
f s(k,k′)δns

k′ ,

δna
k =

∂n0
kσ

∂εk

[
− 1

2geμBμ0H +
2
V

∑

k′
fa(k,k′)δna

k′

]
.

(32.2.68)

Comparing this expression with (32.2.53) we get

δn̄s
k = 0 , δn̄a

k = −∂n
0
kσ

∂εk

1
2geμBμ0H. (32.2.69)

The quasiparticle distribution is independent of the polar angles in a uniform
magnetic field. It follows from (32.2.54) that only the component l = 0, m = 0
is nonvanishing, that is

δn̄a
00 = 1

2geμBμ0H. (32.2.70)

It is easily seen that the same component appears in the magnetization. It
can be obtained from the occupation numbers corresponding to the two spin
orientations via

M =
1
V

∑

kσ

1
2geμBσ δnkσ =

1
V

∑

k

geμB δna
k . (32.2.71)

If δna
k is expanded according to (32.2.54), the term l = 0,m = 0 alone survives

after integration over the angular variables and we get

M = geμBρσ(εF) δna
00 . (32.2.72)

Using (32.2.60) that gives the relationship between δn̄a
00 and δna

00,



32.2 Landau’s Theory of Fermi Liquids 229

M = geμBρσ(εF)
δn̄a

00

1 + F a
0

. (32.2.73)

Combining this expression with (32.2.70) we find

M = 1
2g

2
eμ

2
Bμ0ρσ(εF)

1
1 + F a

0

H, (32.2.74)

and the susceptibility is

χ = 1
2g

2
eμ

2
Bμ0ρσ(εF)

1
1 + F a

0

. (32.2.75)

The same form is obtained as for the Pauli susceptibility of a free elec-
tron gas, apart from the factor 1/(1 + F a

0 ), but with the density of states
of the quasiparticles which contains the effective mass. The factor 1 + F a

0 in
the denominator appears owing to the interaction between the quasiparticles.
The Landau parameter F a

0 is negative for repulsive interaction between quasi-
particles of opposite spin, resulting in an enhancement of the susceptibility.
The factor 1/(1 + F a

0 ) can be considered as the generalization of the Stoner
enhancement factor. The paramagnetic state is stable as long as 1 + F a

0 > 0.
Otherwise the interaction between fermions of opposite spins can give rise to
magnetic ordering.

32.2.6 Effective Mass of Quasiparticles

The self-consistency of Landau’s Fermi-liquid theory implies that the effective
mass of quasiparticles can be expressed in terms of the Landau parameters,
since the mass enhancement is caused by the same interactions which are
incorporated into these parameters. In order to find this relationship we cal-
culate and equate the current carried by the particles in the noninteracting
and in the interacting systems.

In a noninteracting system, a particle of momentum �k carries a particle-
current density

jnk =
1
V

v
(0)
k =

1
V

�k

me
, (32.2.76)

where of course the bare mass me appears. When the state with wave vector k
and spin σ is occupied with probability nkσ, the total particle-current density
is given by

jn =
1
V

∑

kσ

�k

me
nkσ . (32.2.77)

Since no net current flows in the ground state, the current is due to the extra
electrons outside the Fermi sphere and the holes inside the Fermi sphere,
that is

jn =
1
V

∑

kσ

�k

me
δnkσ . (32.2.78)
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The total momentum and hence the total current is a conserved quantity in
a translation-invariant system. As the interaction is switched on adiabatically,
the total momentum is unchanged (the current operator commutes with the
two-particle potential) and the current is still given by (32.2.78). In order to
express this current in terms of the quantities characterizing the quasiparticles
one has to take into account that the interaction between the extra particle
and the Fermi sea will modify the energies and thereby the velocities of the
particles inside the Fermi sea. Therefore, a distribution δnkσ of quasiparticles
gives rise to a total current density which can be written to linear order in δn
as the sum of two terms,

jn =
1
V

∑

kσ

vkδnkσ +
1
V

∑

kσ

δvkn
0
kσ , (32.2.79)

where the summation in the second term goes formally over the whole Fermi
sea. As will be seen, in reality only the quasiparticles near the Fermi surface
contribute to this term, too.

The change in the velocity of a particle can be obtained from (32.2.4) using
the renormalized energy:

vk + δvk =
1
�

∂ε̃k

∂k
. (32.2.80)

Inserting (32.2.13) for the renormalized energy we have

δvk =
1
�

∂

∂k

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ . (32.2.81)

Thus

jn =
1
V

∑

kσ

vkδnkσ +
1
V 2

∑

kk′σσ′

[
1
�

∂

∂k
fσσ′(k,k′)δnk′σ′

]
n0

kσ . (32.2.82)

Replacing the sum over k by an integral, integration by parts gives

jn =
1
V

∑

kσ

vkδnkσ − 1
V 2

∑

kk′σσ′

1
�
fσσ′(k,k′)δnk′σ′

∂n0
kσ

∂k
. (32.2.83)

Since n0
kσ depends on k via the energy only, indirect differentiation gives

jn =
1
V

∑

kσ

vkδnkσ − 1
V 2

∑

kk′σσ′
fσσ′(k,k′)δnk′σ′

∂n0
kσ

∂εkσ
vk

=
1
V

∑

kσ

[
δnkσ − ∂n0

kσ

∂εkσ

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′

]
vk .

(32.2.84)

This expression could be rewritten according to (32.2.50) as
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jn =
1
V

∑

kσ

δn̄kσvk . (32.2.85)

The current depends in fact on how much the distribution of quasiparticles
differs from the equilibrium distribution.

With the change of variables k ↔ k′ and σ ↔ σ′ in the second term of
(32.2.84) we have

jn =
1
V

∑

kσ

[
vk − 1

V

∑

k′σ′
fσ′σ(k′,k)

∂n0
k′σ′

∂εk′σ′
vk′

]
δnkσ . (32.2.86)

From this one can read off the current carried by the quasiparticle of wave
vector k:

jnk =
1
V

[
vk − 1

V

∑

k′σ′
fσ′σ(k′,k)

∂n0
k′σ′

∂εk′σ′
vk′

]
. (32.2.87)

As the propagating quasiparticle interacts with the rest of the system, the
other quasiparticles generate an extra contribution to the current. This “back-
flow” is described by the second term. Using (32.2.57) one sees immediately
that only quasiparticles near the Fermi surface contribute.

Although this result is very suggestive, it involves in the intermediate steps
a summation over all particles and the variation of their velocity due to the
interaction with the quasiparticles. To be consistent with the philosophy of
the Landau theory we present another derivation where only the contribution
of the quasiparticles is taken into account in the intermediate steps as well.
For this we recall that the current density is the expectation value of the
current operator:

jn =
1
V

〈
∑

i

pi

me

〉
. (32.2.88)

Let us consider what happens when the wave number of all particles is shifted
in the ground state by the same q. This is equivalent to studying the system
in a new frame which moves with a uniform velocity −�q/me.

According to the Galilean transformation between the laboratory and the
moving frames, the total energy and the total momentum of a state in the
frame moving with velocity v are given by

E′ = E − P · v + 1
2Mv2 ,

P ′ = P −Mv ,
(32.2.89)

where M is the total mass of the system. These expressions can be derived by
boosting the momentum of each particle by the same amount in the kinetic
energy and taking into account that the interaction part is unchanged under
a Galilean transformation. The transformed Hamiltonian is then
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H′ =
∑

i

(pi + �q)2

2me
+ Hint = H + �q ·

∑

i

pi

me
+Ne

(�q)2

2me
. (32.2.90)

The current carried by a quasiparticle of wave vector k and spin σ can thus
be calculated by adding a quasiparticle to the boosted system and taking the
derivative of its energy with respect to q:

jnkσ =
1

�V

∂ε̃k+qσ

∂q
(32.2.91)

The energy of the quasiparticle in the moving frame is different from that in
the laboratory frame not only due to the boost but also due to the quasi-
electrons and quasiholes created on opposite sides of the Fermi surface in the
moving system (see Fig. 32.3). We have

ε̃k+qσ = εkσ + �q · vk +
1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′ . (32.2.92)

q

Quasiholes

Quasieletcrons

Fig. 32.3. Displaced Fermi sphere with quasiparticles and quasiholes when the wave
vectors of all particles are shifted by the same q

For a displacement of the Fermi surface by δkF(θ, ϕ) in the direction char-
acterized by the polar angles θ and ϕ, we have

δnkσ = −∂n
0
kσ

∂εkσ
v∗FδkF(θ, ϕ) . (32.2.93)

In the present case, when the Fermi surface is displaced uniformly by the same
q,

δnkσ = −q · ∂n
0
kσ

∂k
= −�q · vk

∂n0
kσ

∂εkσ
, (32.2.94)

and the current carried by the quasiparticle is

jnk =
1
V

[
vk − 1

V

∑

k′σ′
fσσ′(k,k′)

∂n0
k′σ′

∂εk′σ′
vk′

]
. (32.2.95)

This expression is identical to the result obtained in (32.2.87).
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Equating this expression with (32.2.76) and writing the velocity of quasi-
particles in terms of the effective mass as

vk =
�k

m∗ , (32.2.96)

we get
k

me
=

k

m∗ +
1
V

∑

k′σ′
fσσ′(k,k′)δ(εk′ − μ)

k′

m∗ . (32.2.97)

Multiplication of this equation by k gives a scalar equation. Since only the
wave vectors near the Fermi surface are relevant, the lengths of k and k′ are
equal in the isotropic case and fσσ′(k,k′) depends only on the angle ξ between
the vectors. We then have

1
me

=
1
m∗ +

1
V

∑

k′σ′
fσσ′(cos ξ)δ(εk′ − μ)

cos ξ
m∗ . (32.2.98)

Replacing the sum over k′ by an integral and carrying out the integration over
the length of k′ as an integration over the energy, the equation determining
the effective mass is

1
me

=
1
m∗ +

1
4π

∑

σ′

∫
dε ρσ′(ε)δ(ε− μ)

∫∫
fσ′σ(cos ξ)

cos ξ
m∗ sin θ′ dθ′ dϕ′.

(32.2.99)
Only the spin-symmetric combination f s gives a contribution after summa-

tion over the spin variable. Choosing again the z-axis of the coordinate system
in the direction of k and expanding the Fermi-liquid parameters according to
(32.2.21) in terms of the Legendre polynomials, the only nonvanishing contri-
bution to the integral over the angular variables comes from the term l = 1
owing to the extra factor cos ξ in the integrand. We find

m∗

me
= 1 + 1

3F
s
1 . (32.2.100)

The condition of stability requires that the mass be positive, i.e., F s
1 > −3

has to be satisfied.

32.2.7 Stability Condition of Fermi Liquids

When studying the susceptibility and the effective mass it was shown that
the Fermi-liquid state is stable only if conditions F a

0 > −1 and F s
1 > −3 are

simultaneously satisfied. A similar condition is obtained when the compress-
ibility or the sound velocity, that is the velocity of acoustic waves propagating
in the Fermi liquid, are studied. For the compressibility one finds

1
κ

= Neρ
∂μ

∂Ne
= Neρ

1
ρ(εF)

(1 + F s
0) , (32.2.101)
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and the sound velocity is obtained from

c2 =
Ne

me

∂μ

∂Ne
=
Ne

me

1
ρ(εF)

(1 + F s
0) . (32.2.102)

The compressibility diverges and the sound velocity vanishes if 1 + F s
0 = 0.

The Fermi-liquid state is stable only if F s
0 is larger than −1. We will show

now quite generally that the condition

F
s(a)
l > −(2l + 1) (32.2.103)

has to be satisfied for each l.
The spherical Fermi surface with the same kF in all directions is deformed

in such a way that the states with spin σ are filled up to kF + uσ(θ, ϕ) in the
direction characterized by the angles θ and ϕ. That is we add quasiparticles
to the system with distribution δnkσ = 1 for kF < k < kF + uσ(θ, ϕ). When
uσ(θ, ϕ) is negative, quasiholes are created in the system δnkσ = −1 in the
range kF + uσ(θ, ϕ) < k < kF. The Fermi-liquid state is unstable if such
deformations of the Fermi surface can result in lowering the free energy.

To calculate the variation of the free energy owing to such deformations,
we write the vectors k and k′ in the free energy (32.2.12) in polar coordinates:

δF =
V

(2π)3
∑

σ

∫∫
sin θ dθ dϕ

kF+uσ∫

kF

(εkσ − μ)k2 dk

+
1
2

V

(2π)6
∑

σσ′

∫∫
sin θ dθ dϕ

∫∫
sin θ′ dθ′ dϕ′

×
kF+uσ∫

kF

k2 dk

kF+u′
σ′∫

kF

k′2 dk′fσσ′(cos ξ) ,

(32.2.104)

where ξ denotes the angle between k and k′. Integration over the lengths of
the vectors can be carried out using the expansion

a+x∫

a

f(y) dy = f(a)x+ 1
2f

′(a)x2 + · · · (32.2.105)

The first term in (32.2.104) gives no contribution to first order in u since the
integrand vanishes at the Fermi surface; thus, both terms are proportional to
u2. We have

δF =
V

(2π)3
∑

σ

∫∫
sin θ dθ dϕu2

σ(θ, ϕ)k2
F

1
2
∂εk

∂k

∣∣∣∣
k=kF

+
1
2

V

(2π)6
∑

σσ′

∫∫
sin θ dθ dϕ

∫∫
sin θ′ dθ′ dϕ′

× uσ(θ, ϕ)uσ′(θ′, ϕ′)k4
Ffσσ′(cos ξ) .

(32.2.106)
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Using
∂εk

∂k
=

�
2k

m∗ (32.2.107)

in the first term and the dimensionless Landau parameters Fσσ′ in the second
term we find

δF =
1
2

V

(2π)3
�

2k3
F

m∗

[
∑

σ

∫∫
sin θ dθ dϕu2

σ(θ, ϕ) (32.2.108)

+
1
8π

∑

σσ′

∫∫
sin θ dθ dϕ

∫∫
sin θ′ dθ′ dϕ′

× uσ(θ, ϕ)uσ′(θ′, ϕ′)Fσσ′(cos ξ)

]
.

We introduce the spin-symmetric and spin-antisymmetric combinations
with the definition

u↑(θ, ϕ) = us(θ, ϕ) + ua(θ, ϕ) ,

u↓(θ, ϕ) = us(θ, ϕ) − ua(θ, ϕ) ,
(32.2.109)

and expand them in spherical harmonics in the form

us(a)(θ, ϕ) =
∑

lm

u
s(a)
lm Y m

l (θ, ϕ) . (32.2.110)

Then, using the properties of the spherical harmonics, we find

δF =
V

(2π)3
k3
F
m∗
∑

lm

[
|us

lm|2
(

1 +
F s

2l + 1

)
+ |ua

lm|2
(

1 +
F a

2l + 1

)]
.

(32.2.111)
The system is stable, i.e., the free energy is increased by small deformations
of the Fermi surface, if indeed (32.2.103) is satisfied for each l. The physical
meaning of these conditions has already been discussed in special cases. When
the conditions fail for any l, the Fermi-liquid state breaks down. This is the
Pomeranchuk instability.1

32.2.8 3He as a Normal Fermi Liquid

Landau’s Fermi-liquid theory applies naturally to describing the properties
of 3He. Assuming that the 3He atoms are almost free, the degeneracy tem-
perature TF, below which quantum effects are important, can be estimated
from (16.2.28) replacing the electron mass by the mass of the 3He atoms and
the density of electrons by the density in the fluid phase of helium. This de-
generacy temperature is about 5K. The non-Fermi-liquid superfluid phases of
1

Ya. I. Pomeranchuk, 1958.
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3He – in which spin-triplet pairs are formed – appear much below this tem-
perature. The Fermi-liquid theory is applicable in the normal phase, above the
transition temperature to the superfluid phases, but well below the degeneracy
temperature, below about 0.1K, where quantum effects are dominant.

The Landau parameters F s
0 , F a

0 , and F s
1 can be determined from the mea-

surement of compressibility, susceptibility, and heat capacity. The parameters
measured on 3He for several values of the pressure are shown in Table 32.1.
It can be seen that the interaction is not weak, the enhancement of both the
mass and the susceptibility is quite significant, nevertheless 3He is a stable
Fermi liquid at the available pressures.

Table 32.1. Measured values of the effective mass and the Landau parameters of
3He at six different pressures

Pressure (bar) F s
0 F a

0 F s
1 m∗/m

0 9.28 −0.70 5.39 2.80
6 22.49 −0.73 7.45 3.48

12 35.42 −0.75 9.09 4.03
18 48.46 −0.76 10.60 4.53
24 62.16 −0.76 12.07 5.02
30 77.02 −0.75 13.50 5.50

In the form presented until now the Landau theory gives a simple frame-
work to parametrize the equilibrium properties of the homogeneous liquid
phase of 3He. It becomes a predictive theory when generalized to the case
where the distribution of quasiparticles becomes inhomogeneous due to exter-
nal perturbations. When the spatial variations of the perturbation occur on a
length scale larger than the inverse of Δk, where Δk = kBT/�v

∗
F is the scale

on which the distribution function varies in reciprocal space, the distribution
of quasiparticles can be characterized by a semiclassical function depending
on k and r. Denoting by δnkσ(r) the density of quasiparticles of wave vector
k and spin σ at the position r, the free energy is assumed to have the form

F = F0 +
1
V

∑

kσ

∫
dr (εkσ − μ)δnkσ(r) (32.2.112)

+
1

2V 2

∑

kk′σσ′

∫∫
dr dr′ fσσ′(k, r,k′, r′)δnkσ(r)δnk′σ′(r′) ,

which is a natural generalization of (32.2.12) with the interaction parame-
ters fσσ′(k, r,k′, r′) depending only on the difference between r and r′. The
renormalized quasiparticle energy is then position dependent and is given by
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ε̃kσ(r) = εkσ +
1
V

∑

k′σ′

∫
dr′ fσσ′(k, r,k′, r′)δnk′σ′(r′) . (32.2.113)

If the range of the interaction is shorter than the characteristic scale of inho-
mogeneities, we find

F = F0 +
1
V

∑

kσ

∫
dr (εkσ − μ)δnkσ(r)

+
1

2V 2

∑

kk′σσ′

∫
dr fσσ′(k,k′)δnkσ(r)δnk′σ′(r) ,

(32.2.114)

where
fσσ′(k,k′) =

∫
dr′ fσσ′(k, r,k′, r′) (32.2.115)

and
ε̃kσ(r) = εkσ +

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′(r) . (32.2.116)

The behavior of the inhomogeneous Fermi liquid is then determined by the
same Landau parameters as in equilibrium.

When the distribution of quasiparticles varies in time, possibly in the pres-
ence of external space- and time-dependent forces, the free energy, too, varies
in time. Assuming that the interaction between quasiparticles is short ranged
and instantaneous, we have

F (t) = F0 +
1
V

∑

kσ

∫
dr (εkσ − μ)δnkσ(r, t) (32.2.117)

+
1

2V 2

∑

kk′σσ′

∫
dr fσσ′(k,k′)δnkσ(r, t)δnk′σ′(r, t) .

The space and time dependence of the distribution function is determined by
a kinetic equation, which is analogous to the Boltzmann equation studied in
Chapter 24 for the transport of electrons. Following the procedure used there
we consider how the number of quasiparticles varies in a phase space volume
element dk dr as the quasiparticles drift in phase space and undergo collisions
during which their momenta change suddenly. We find

∂nkσ(r, t)
∂t

+ vkσ(r, t) · ∇rnkσ(r, t) + F kσ(r, t) · ∇knkσ(r, t) = I[δnkσ] .

(32.2.118)
The term on the right-hand side originates from the quasiparticle collisions.

The basic assumption of the kinetic theory is that the velocity of quasipar-
ticles is obtained from the derivative of the position-dependent quasiparticle
energy ε̃kσ(r, t) with respect to k, and the force acting on the quasiparticles
is equal to the negative gradient of the energy:
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vkσ(r, t) =
1
�
∇kε̃kσ(r, t) , F kσ(r, t) = −∇r ε̃kσ(r, t) . (32.2.119)

This leads to the Landau kinetic equation:

∂nkσ(r, t)
∂t

+
1
�
∇kε̃kσ(r, t) · ∇rnkσ(r, t)

− 1
�
∇r ε̃kσ(r, t) · ∇knkσ(r, t) = I[δnkσ] .

(32.2.120)

Although it is formally a usual Boltzmann equation, an important difference
appears through the term containing

∇r ε̃kσ(r) =
1
V

∑

k′σ′
fσσ′(k,k′)∇rδnk′σ′(r) , (32.2.121)

namely an effective force acts on the quasiparticles even in the absence of
external forces owing to the inhomogeneous distribution of the other quasi-
particles around them. This term is responsible for many interesting features
of nonequilibrium phenomena in Fermi liquids.

Note that summation of both sides of (32.2.120) over k and σ leads to the
continuity equation

∂n(r, t)
∂t

+ ∇ · jn(r, t) = 0 , (32.2.122)

where
n(r, t) =

1
V

∑

kσ

nkσ(r, t) (32.2.123)

and
jn(r, t) =

1
V

∑

kσ

1
�

[∇kε̃kσ(r, t)
]
nkσ(r, t) . (32.2.124)

The sum over k of the collision integral vanishes owing to the conservation of
the number of quasiparticles in collisions. When only the terms linear in the
number of quasiparticles are kept we have

jn(r, t) =
1
V

∑

kσ

[
1
�

(∇kεkσ) δnkσ(r, t) + n0
kσ

1
�
∇kδε̃kσ(r, t)

]

=
1
V

∑

kσ

vkσδn̄kσ(r, t) .
(32.2.125)

For a homogeneous system we recover the current density derived earlier.
The transition probabilities in the collision term can be expressed by the

known Landau parameters; no new parameters appear in the transport equa-
tion. Hence the kinetic coefficients, such as the heat conduction, the spin diffu-
sion, or the viscosity, can be expressed in terms of the Fermi-liquid parameters,
and their values can be estimated quantitatively in 3He. The agreement with
the experimental data gives a self-consistency check of the theory.
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Returning to (32.2.120) we rewrite it keeping only the terms linear in the
quasiparticle distribution δnkσ(r, t). We have

∂δnkσ(r, t)
∂t

+ vk · ∇rδnkσ(r, t) − ∂n0
kσ

∂εkσ
vk · 1

V

∑

k′σ′
fσσ′(k,k′)∇rδnk′σ′(r, t)

+
1
�
F · ∇knkσ(r, t) = I[δnkσ] , (32.2.126)

where F is the external force acting on the quasiparticles. When such forces
are present, the number of excited quasiparticles is proportional to them and
nkσ(r, t) in the last term on the left-hand side can be approximated by n0

kσ.
Using relation (32.2.50) we find

∂δnkσ(r, t)
∂t

+ vk · ∇rδn̄kσ(r, t) + F · vk
∂n0

kσ

∂εkσ
= I[δnkσ] . (32.2.127)

In the collisionless limit, when ωτ  1, new collective oscillations may
appear in the quasiparticle distribution. Their frequencies and dispersion re-
lations can be obtained from the kinetic equation. For plane-wave-like spatial
and temporal variations of δnkσ(r, t) in the form

δnkσ(r, t) = δnkσ(q, ω)ei(q·r−ωt) (32.2.128)

we have

(q · vk − ω)δnkσ(q, ω) − q · vk
∂n0

kσ

∂εkσ

1
V

∑

k′σ′
fσσ′(k,k′)δnk′σ′(q, ω) = 0

(32.2.129)
in the absence of external forces. One possible solution of this equation is
a density oscillation with linear dispersion relation. This is the zero sound
observed experimentally after being predicted by the theory. It propagates
with a velocity c0 which is different from the velocity c of ordinary (first)
sound. This latter exists in the hydrodynamic (ωτ < 1) regime.

32.2.9 Charged Fermi Liquid in Metals

The Landau theory as exposed in the foregoing is well suited for neutral
Fermi liquids where the interaction is of short range. The situation is more
complicated in metals where the long-range Coulomb interaction between the
charged electrons has to be taken into account. Looking at the expression de-
rived for the quasiparticle energy in the Hartree–Fock approximation, we see
that the Landau parameters are the Fourier components of the Coulomb inter-
action. In the Hartree–Fock theory this interaction originates from exchange
and acts between particles of identical spins only:

f↑↑(k,k′) = − 4πẽ2

|k − k′|2 , f↑↓(k,k′) = 0 . (32.2.130)
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The use of a singular Fermi-liquid parameter would be in contradiction with
the spirit of the Landau theory. A way out of this discrepancy is found if
the screening of the long-range Coulomb interaction, which is missing in the
Hartree–Fock theory, is taken into account. Assuming that the Landau param-
eters are related to the screened, short-ranged interaction between quasipar-
ticles, the Landau theory is expected to be applicable to the charged electron
system as well. The Fermi-liquid parameters of the homogeneous electron gas
can be estimated from the results of Monte Carlo calculations. The values for
F s

0 and F a
0 are given in Table 32.2 for different values of the density. They are

obtained with the assumption that the mass enhancement is so small that F s
1

is practically zero. Otherwise the values given here refer to F s
0/(1+F s

1/3) and
F a

0 /(1 + F s
1/3).

Table 32.2. Landau parameters for the homogeneous electron gas as derived from
Monte Carlo calculations at different densities

rs F s
0 F a

0

1 −0.17 −0.13
2 −0.36 −0.23
3 −0.55 −0.32
4 −0.74 −0.38
5 −0.95 −0.44

The charge of electrons and the electric polarization cannot be neglected
in an inhomogeneous system, when transport or oscillation phenomena are
studied. The interaction between charged quasiparticles can then be parti-
tioned into a regular part fσσ′(k,k′) and a singular part given by the Fourier
transform of the Coulomb interaction. This latter can be treated as a polariza-
tion term Ep(r, t) in the electric field, which is generated by the quasiparticle
distribution δnkσ(r, t) varying in space and time. Their relationship is given
by the Poisson equation

div ε0Ep(r, t) = −e 1
V

∑

kσ

δnkσ(r, t) . (32.2.131)

Even if no external electromagnetic field is present, the polarization term has
to appear in the kinetic equation:

∂δnkσ(r, t)
∂t

+ vk · ∇rδnkσ(r, t) − vk · ∂n
0
kσ

∂εkσ

1
V

∑

k′σ′
fσσ′(k,k′)∇rδnkσ(r, t)

+
(
F − eEp

) · vk
∂n0

kσ

∂εkσ
= I[δnkσ] . (32.2.132)
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This is known as the Landau–Silin equation,2 and the Fermi-liquid theory for
charged fermions is referred to as the Landau–Silin theory.

For periodically varying quasiparticle distribution

Ep(q, ω) = iq
e

ε0q2
1
V

∑

kσ

δnkσ(q, ω) . (32.2.133)

In the absence of external forces in the collisionless regime we find

(q · vk − ω)δnkσ(q, ω) (32.2.134)

−q · vk
∂n0

kσ

∂εkσ

1
V

∑

k′σ′

[
fσσ′(k,k′) +

4πẽ2

q2

]
δnk′σ′(q, ω) = 0

instead of (32.2.129). The collective excitations of a charged Fermi liquid, the
plasmons, are not sound-wave-like excitations with linear dispersion relation,
as in neutral Fermi systems, owing to the singular Coulomb term. They have
a finite excitation energy �ωp.

The effects of interaction between electrons appear in two places in the
Landau theory. On the one hand, it is due to this interaction that the effective
Fermi velocity and the effective mass are different from the free electron values.
On the other hand, the same interaction gives rise to the interaction between
quasiparticles. A detailed account of the Landau theory would allow us to
demonstrate that some physical properties of the Fermi system do not depend
on the interaction between quasiparticles. That is, they can be accounted for
in the one-particle picture provided the correct effective mass is used. This is
the case, for example, for the cyclotron resonance, the Azbel–Kaner resonance,
or the de Haas–van Alphen effect. These are precisely the methods that are
best suited for measuring the parameters of the Fermi surface. We can thus
state that, in spite of the interaction between electrons, the evaluation of these
measurements in the one-particle picture gives correct information about the
Fermi surface.

A further difficulty for the Landau theory of metals is that the Fermi sur-
face is inherently nonspherical owing to the periodic potential of the ions, and
the strength fσσ′(k,k′) of the interaction between the quasiparticles depends
on k and k′ separately, not only on the angle between them. Even if this
dependence can be neglected, the effective mass determined from the heat
capacity measurements contains not only the contribution of the electron–
electron interaction, but the mass enhancement due to the periodic potential
is also incorporated in it. The measured effective mass is in fact

m∗ = mc
(
1 + 1

3F
s
1

)
, (32.2.135)

where mc is the band mass due to the periodic potential. This is enhanced
according to (32.2.100) by the interaction between quasiparticles. Similarly,
the enhancement of the Pauli susceptibility is given by
2

V. P. Silin, 1957.
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χ

χ
(0)
P

=
m∗

me

1
1 + F a

0

=
mc

me

1 + 1
3F

s
1

1 + F a
0

. (32.2.136)

The first factor is due to the periodic potential and the second is due to the
interaction between the quasiparticles. It is a difficult task to separate the two
contributions in the analysis of the experimental data. As a conclusion we can
say that although the Landau theory is much less quantitative for metals than
for 3He it is extremely important conceptually. The physical picture under-
lying the theory, namely that the complex many-body system of interacting
electrons can be regarded as a gas of weakly interacting quasiparticles, pro-
vides us with a qualitative explanation of why the properties of most metals
can be described reasonably well in the free electron model.

32.3 Tomonaga–Luttinger Model

In the foregoing it seemed natural to assume that the fermions propagate in all
three directions of space with practically the same probability. Indeed in the
isotropic liquid 3He the three directions are equivalent. Although crystalline
materials are anisotropic, a weak anisotropy is irrelevant in the sense that
it does not destroy the Fermi-liquid behavior of normal metals. More and
more new materials were synthesized in the last decades, which are quasi-one
dimensional at least concerning their electronic properties. It is reasonable to
ask the question when can Landau’s Fermi-liquid theory be used to describe
the electronic properties of such systems and if a different behavior is observed,
what its main features should be.

With this aim we study first a model due to S. Tomonaga
3 (1950) and

J. M. Luttinger (1963). Tomonaga was the first to realize that the low-
energy excitations of the one-dimensional electron gas, which are electron–
hole pairs in the noninteracting system, are phononlike bosonic elementary
excitations with linear dispersion relation for a specially chosen long-range
(small-momentum transfer) electron–electron interaction.4 A modified version
of the Tomonaga model known as the Luttinger model was shown to be exactly
solvable with rather unusual properties: there are no low-energy fermionic
quasiparticle in the system, the usual definition of the Fermi surface fails, and
the correlation functions decay asymptotically at large distances and long
times with nonuniversal exponents. This model is presented in this section.
We show in the subsequent sections that the one-dimensional Hubbard model
and the one-dimensional XXZ model behave similarly. It will be pointed
3

Sin-Itiro Tomonaga (1906–1979) shared the Nobel Prize with J. Schwinger

and R. P. Feynman in 1965 “for their fundamental work in quantum electro-
dynamics, with deep-ploughing consequences for the physics of elementary parti-
cles”.

4 That the electron–hole excitations in the one-dimensional noninteracting electron
gas can be described as sound waves was discovered by F. Bloch already in 1934.
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out that this is not an accident. The non-Fermi-liquid behavior is a generic
property of one-dimensional Fermi systems. The models mentioned above are
special realizations of Luttinger liquids also known as Tomonaga–Luttinger
liquids.

32.3.1 Linearized Dispersion Relation

To understand the basic features of quasi-one-dimensional materials a very
simple electronic band structure is chosen with a single band near the Fermi
energy. The dispersion relation can be assumed to be parabolic when the
periodic potential is weak, while it is proportional to cos ka (a is the lattice
constant) in the opposite limit, in the tight-binding approximation, when the
overlap is negligible beyond nearest neighbors. The corresponding dispersion
curves are displayed in Fig. 32.4.

(a)

εk – μ εk – μ

(b)
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Fig. 32.4. Dispersion curves of the one-dimensional fermion gas: (a) in the free-
electron model and (b) in the tight-binding approximation

The “Fermi surface” consists of two points, ±kF, in one dimension. The
most interesting physical properties are determined by single-particle and
electron–hole pair excitations where the excited particles are situated in the
neighborhood of the Fermi points, in a range of width kBT . The states well
below this range are practically always completely filled, and the states well
above this range are always empty. For this reason it is sufficient to consider
states within a finite bandwidth 2D about the Fermi energy neglecting the
states that are outside this range.

The physically interesting portion of the dispersion curve can be approxi-
mated by two straight lines both in the free electron and in the tight-binding
models, except for nearly filled or nearly empty bands. The finer details of
the band structure are relevant at higher energies only. Accordingly we will
assume in all our further calculations that the band energy measured from
the chemical potential, ξk = εk − μ, can be written in the form

ξk =

{
�vF(k − kF) kF − kc < k < kF + kc ,

−�vF(k + kF) −kF − kc < k < −kF + kc ,
(32.3.1)
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where kc is a momentum cutoff. The bandwidth cutoff D and the momentum
cutoff kc are related via D = �vFkc. Our results should not depend quali-
tatively either on their choice or on the position of the allowed momenta in
the Brillouin zone (−π/a, π/a). The linearized dispersion curve is shown in
Fig. 32.5.
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Fig. 32.5. Linearized dispersion of the one-dimensional electron gas with a finite
bandwidth

Not only are there good physical arguments for this choice of the dispersion
curve, but it is also very convenient in some of the calculations. In his original
work S. Tomonaga assumed that the linear dispersion relation holds for any
momentum except for a break point at k = 0:

ξk =

{
�vF(k − kF) k > 0 ,

−�vF(k + kF) k < 0 .
(32.3.2)

This dispersion curve is shown in Fig. 32.6(a).

(a) (b)

kF kF
kk

–kF –kF

Fig. 32.6. Linearized dispersion curve of one-dimensional fermions: (a) in the
Tomonaga model and (b) in the Luttinger model
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It is convenient to use different notations for the right- and left-moving
fermions. In what follows, c†kσ (ckσ) denotes the creation (annihilation) opera-
tors of right-moving fermions with velocity vF. The operators for left-moving
fermions with velocity −vF are denoted by d†kσ (dkσ). The Hamiltonian of
noninteracting fermions in the Tomonaga model is then

H0 =
∑

k>0,σ

�vF(k − kF)c†kσckσ −
∑

k<0,σ

�vF(k + kF)d†kσdkσ. (32.3.3)

The Tomonaga model can be solved mathematically more rigorously if the
two branches with velocities ±vF do not terminate at k = 0, but continue to
infinity on both sides as proposed by Luttinger and shown in Fig. 32.6(b):

ξk =

{
�vF(k − kF) −∞ < k <∞ ,

−�vF(k + kF) −∞ < k <∞ .
(32.3.4)

Thus in contrast to (32.3.3), the summation over momentum runs over the re-
gion −∞ < k <∞ in both terms in the Luttinger model. The ground state of
the model is not uniquely defined owing to the infinitely many negative energy
states. To cope with this problem, to eliminate this divergent contribution, we
assume that all negative energy states are filled in the ground states and the
creation and annihilation operators are normal ordered in the Hamiltonian.
Normal ordering of the particle-number operators is defined via

:c†kσckσ : = c†kσckσ − 〈c†kσckσ

〉
0
,

:d†kσdkσ : = d†kσdkσ − 〈d†kσdkσ

〉
0
,

(32.3.5)

where 〈· · · 〉0 denotes the ground-state expectation value,
〈
c†kσckσ

〉
0

= θ(kF − k) ,
〈
d†kσdkσ

〉
0

= θ(k + kF) . (32.3.6)

By using the anticommutation rules of fermions the normal-ordered operators
can be written equivalently in the form

:c†kσckσ : =

{
c†kσckσ k > kF ,

−ckσc
†
kσ k < kF ,

:d†kσdkσ : =

{
d†kσdkσ k < −kF ,

−dkσd
†
kσ k > −kF .

(32.3.7)

The noninteracting Hamiltonian of the Luttinger model then takes the form

H0 =
∑

kσ

�vF(k − kF) :c†kσckσ : −
∑

kσ

�vF(k + kF) :d†kσdkσ : . (32.3.8)

The ground-state energy is E0 = 0. The positive energy excitations are parti-
cles outside the Fermi “sphere” and holes inside.



246 32 Fermion Liquids

The filled negative energy states far below the Fermi energy are eliminated
by this trick. Although there are very high energy excitations above the Fermi
energy both in the Tomonaga and in the Luttinger models, they cannot be
excited thermally and are therefore physically irrelevant. Thus the model with
finite bandwidth describes the same physics as either the Tomonaga or the
Luttinger model, and this model will be treated in most of the remaining
part of this section. The field theory of the Luttinger model is presented in
Appendix L. When the momenta are measured from the corresponding Fermi
points, the Hamiltonian of the noninteracting model takes the form

H0 =
∑

kσ

�vFk
(
c†kF+k,σckF+k,σ − d†−kF+k,σd−kF+k,σ

)
, (32.3.9)

where the creation and annihilation operators are defined only in the region
−kc < k < kc and the summation over k is restricted to this range.

32.3.2 Bosonic Electron–Hole Excitations

As has already been discussed in Chapter 15 in connection with the one-
dimensional XY model, which is equivalent to a model of noninteracting
spinless fermions, low-energy particle–hole pairs can be created in four dif-
ferent ways in a one-dimensional Fermi system owing to the two Fermi points.
They are displayed schematically in Fig. 32.7.
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Fig. 32.7. Four types of low-energy particle–hole excitations in the one-dimensional
Fermi gas

When both the particle and the hole are in the neighborhood of +kF
or both of them are in the neighborhood of −kF, the total wave number q
of the pair is small compared to kF. When a particle is excited across the
Fermi sea, from one Fermi point to the other, leaving a hole behind, the wave
number of the pair is large; it is on the order of ±2kF. Low-energy particle–hole
excitations exist only near q = 0 and q = ±2kF. This is in contrast with the
known properties of the three-dimensional electron gas where the continuum
of electron–hole pair excitations starts at zero in the whole range 0 ≤ q ≤ 2kF
as was shown in Fig. 28.9. The spectrum for a one-dimensional tight-binding
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model is shown in Fig. 32.8(a).5 When the excitation of several particle–hole
pairs is also allowed for, low-energy excitations appear at integral multiples
of ±2kF as shown in Fig. 32.8(b).

q

q q

q
02kF 2kF 02kF 2kF

(a) (b)

Fig. 32.8. Continuum of particle–hole pair excitations in the one-dimensional tight-
binding model: (a) for a single electron–hole pair and (b) for several electron–hole
pairs

If the dispersion curve is approximated by two straight lines near the Fermi
points, the excitation energy of the small-momentum electron–hole pairs is
±�vFq independently of the position of the hole. The continuum shrinks to
two lines near q = 0 and to two V-shaped continua near ±2kF. When several
electron–hole pairs are excited, such V-shaped continua appear at any integral
multiple of 2kF, even at q = 0. The energy vs. wave number for these cases is
shown in Fig. 32.9.
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Fig. 32.9. Continuum of electron–hole pair excitation for a model with linear dis-
persion curve: (a) for a single electron–hole pair and (b) for several electron–hole
pairs

If only the physically relevant low-energy excitations are considered, the
same energies are obtained with the linearized dispersion curve as for the tight-
binding model. This energy spectrum is highly degenerate since the energy of
5 The continuum of particle–hole excitations is similar to the spectrum shown in

Fig. 15.13 except that the soft modes are shifted from ±π/a to ±2kF.
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the state created by the operator c†kF+k+q,σckF+k,σ is �vFq independently of
the value of k. We can therefore describe this spectrum equivalently by taking
the linear combinations

n+,σ(q) =
∑

k

c†kF+k,σckF+k+q,σ ,

n−,σ(q) =
∑

k

d†−kF+k,σd−kF+k+q,σ .
(32.3.10)

Both the electron and the hole have to be created within the band in the
model with finite bandwidth. Accordingly the summation over k has to be
carried out for −kc < k < kc−q when q > 0, while k is restricted to the range
−kc − q < k < kc if q < 0. The expressions are well defined at q = 0 as well.
In the Luttinger model, on the other hand, we would have an infinite number
of particles for q = 0. This infinity can be eliminated if the pair-creation
operators are normal ordered:

n+,σ(q) =
∑

k

c†kF+k,σckF+k+q,σ − δq,0

∑

k

〈
c†kF+k,σckF+k+q,σ

〉
0
,

(32.3.11)
n−,σ(q) =

∑

k

d†−kF+k,σd−kF+k+q,σ − δq,0

∑

k

〈
d†−kF+k,σd−kF+k+q,σ

〉
0
.

In what follows the q = 0 component will be treated separately.
The density operators n(q) commute with each other in three dimensions.

The same is true for the Fourier components of the full density in one di-
mension. When we treat the densities of right- and left-moving fermions sep-
arately, their Fourier transform obey the Kac–Moody commutation relations.
We prove it below for right-moving fermions.

Using the anticommutation rules for fermions we find

[
n+,σ(q), n+,σ′(q′)

]
− =

∑

kk′

[
c†kF+k,σckF+k+q,σ, c

†
kF+k′,σ′ckF+k′+q′,σ′

]

−
(32.3.12)

= δσσ′
∑

k

(
c†kF+k,σckF+k+q+q′,σ − c†kF+k−q′,σckF+k+q,σ

)
.

When q �= −q′, the commutator might have nonvanishing matrix elements
only between states that differ by a particle–hole pair, but in fact the con-
tribution of the two terms cancel each other exactly when q and q′ are small
compared to kc. This cancellation can be shown formally by shifting the sum-
mation index in the second term from k to k + q′ whereby the two terms
become equal. The same cancelation does not hold when q = −q′. In that
case the commutator
[
n+,σ(q), n+,σ′(−q)]− = δσσ′

∑

k

(
c†kF+k,σckF+k,σ − c†kF+k+q,σckF+k+q,σ

)

(32.3.13)
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has only diagonal matrix elements and behaves as a c-number. We evaluate
it first for the spectrum proposed by Tomonaga. Since the sum over k for
right-moving fermions is restricted to the range kF+k ≥ 0 if q > 0, the second
term can compensate only the contribution of the region k ≥ −kF + q and
thus
[
n+,σ(q), n+,σ(−q)]− =

∑

−kF<k<−kF+q

c†kF+k,σckF+k,σ for q > 0 . (32.3.14)

A similar expression is obtained for negative q but with opposite sign since
then the summation goes over the region −kF + k + q ≥ 0 and only the
contribution of the region −kF < k < −kF − q survives:

[
n+,σ(q), n+,σ(−q)]− = −

∑

−kF<k<−kF−q

c†kF+k,σckF+k,σ for q < 0 .

(32.3.15)
These states are far below the Fermi energy and are practically always com-
pletely filled. The possible k values are quantized in units of 2π/L in a sample
of length L; hence, the number of states in a range of width q is qL/2π. This
gives

[
n+,σ(q), n+,σ′(q′)

]
− = δσσ′δq,−q′

qL

2π
. (32.3.16)

One can show similarly that

[
n−,σ(q), n−,σ′(q′)

]
− = −δσσ′δq,−q′

qL

2π
(32.3.17)

and [
n+,σ(q), n−,σ′(q′)

]
− = 0 . (32.3.18)

It is shown in Appendix L that the same commutators are obtained if the
dispersion curves proposed by Luttinger are used. While the commutators
were approximately evaluated in the previous calculations with the assump-
tion that states far below the Fermi energy are practically always filled, rela-
tions (32.3.16), (32.3.17), and (32.3.18) are exact in the Luttinger model.

Consider now the model with finite bandwidth. The wave numbers should
lie in a range of width 2kc. When q > 0, the sum over k is restricted to the
range −kc < k < kc − q. Shifting the summation index by q in the second
term we have
[
n+,σ(q), n+,σ(−q)]− =

∑

−kc<k<kc−q

c†kF+k,σckF+k,σ −
∑

−kc+q<k<kc

c†kF+k,σckF+k,σ .

(32.3.19)
The contributions of the two terms cancel each other in the region between
−kc + q and kc − q and we are left with
[
n+,σ(q), n+,σ(−q)]− =

∑

−kc<k<−kc+q

c†kF+k,σckF+k,σ −
∑

kc−q<k<kc

c†kF+k,σckF+k,σ .

(32.3.20)
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The states at the bottom of the band, with −kc < k < −kc + q, are all filled
and the states at the top, in the range kc − q < k < kc, are empty if q is small
compared to the momentum cutoff kc. The model with bandwidth cutoff thus
gives the same commutator for the long-wavelength density fluctuations as
the Tomonaga or Luttinger models. While the commutators are exact in the
Luttinger model, they are only valid for long-wavelength fluctuations in the
model with finite bandwidth. This restriction should be taken into account in
calculating the physical quantities by a cutoff in the summation over q.

It follows from the definition of n±,σ(q) that

n±,σ(−q) = n†±,σ(q) , (32.3.21)

and the commutation relations can be written in the concise form
[
nλ,σ(q), n†λ′,σ′(q′)

]
− = δλλ′δσσ′δqq′λ

qL

2π
, (32.3.22)

where λ = +1 for right-moving particles and λ = −1 for left movers. If we use
n±,σ(q) and its adjoint, it suffices to define these operators either for q > 0 or
for q < 0 only. We will use a different convention. The density operators and
their adjoints with index λ = +1 will be defined for q > 0, and those with
index λ = −1 are defined for q < 0.6 Introducing the operators

bqσ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

k

(
2π
Lq

)1/2

c†kF+k,σckF+k+q,σ q > 0 ,

∑

k

(
2π
L|q|

)1/2

d†−kF+k,σd−kF+k+q,σ q < 0 ,
(32.3.23-a)

b†qσ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

k

(
2π
Lq

)1/2

c†kF+k+q,σckF+k,σ q > 0 ,

∑

k

(
2π
L|q|

)1/2

d†−kF+k+q,σd−kF+k,σ q < 0 ,
(32.3.23-b)

they satisfy the usual bosonic commutation relations:
[
bqσ, b

†
q′σ′
]
− = δσσ′δqq′ . (32.3.24)

b†qσ (bqσ) is the creation (annihilation) operator of a collective excitation in-
volving the coherent superposition of a large number of electron–hole pairs.
It follows from the definition that the operator bqσ gives zero when acting on
the ground state of the noninteracting Fermi sea,

bqσ|ΨFS〉 = 0 , (32.3.25)

that is the ground state of the Fermi gas is the vacuum of these bosons.
6 Note that another convention is also quite common in the literature. The bosons

with negative q formed from left-moving particle–hole pairs are replaced by an-
other boson branch with positive q defined via b̃qσ = b−qσ and b̃†qσ = b†−qσ.
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32.3.3 Bosonic Form of the Noninteracting Hamiltonian

It follows from the linear dispersion curve that the energy of the electron–
hole pair created by the operator c†kF+k+q,σckF+k,σ is �vFq, irrespective of
the value of k, if q > 0. The pair created around −kF by the operator
d†−kF+k+q,σd−kF+k,σ has the same excitation energy, �vF|q|, if q < 0. Thus
b†qσ creates an excitation with this energy for both q > 0 and q < 0, and bqσ

annihilates such an excitation. We therefore expect that the kinetic energy of
the one-dimensional noninteracting electron gas can be written in the form

H0 =
∑

qσ

�vF|q|b†qσbqσ . (32.3.26)

To prove that, consider the commutator of the fermionic form of the noninter-
acting Hamiltonian (32.3.9) with bqσ and b†qσ, respectively. Simple algebraic
manipulations lead to the result

[H0, bqσ

]
− = −�vF|q|bqσ ,

[H0, b
†
qσ

]
− = +�vF|q|b†qσ . (32.3.27)

The same commutation relations are obtained if (32.3.26) is used for the
noninteracting Hamiltonian. Thus in the low-energy sector of the Hilbert
space, where the excitations are small-momentum particle–hole pairs, the one-
dimensional free electron gas is equivalent to a noninteracting boson gas.

The particle and the hole are created with the same spin and the same
chirality7 in the small-momentum excitations. There are, however, other types
of low-energy excitations, too. The electron and the hole may be created with
opposite chirality, in which case the wave number of the pair is close to ±2kF.
When the creation of the pair is accompanied by a spin flip, the particle
and the hole have opposite spins. The generation of these excitations can be
decomposed into two subsequent steps. Starting from the ground state, where
there is an equal number of fermions in each branch, we first change the
number of fermions by δNλσ in the branch of chirality λ and spin σ filling the
lowest energy states in agreement with the Pauli exclusion principle. Electron–
hole pairs are then created in a second step within the branches. The excited
states are thus characterized by the numbers δNλσ in addition to the numbers
of the excited bosons with quantum number q and σ.

All four branches (λ = ±1, σ =↑, ↓) are filled up to the same kF in the
ground state. When the number of particles on branch with quantum numbers
λ and σ is changed by δNλσ, the Fermi wave number is shifted by

δkFλσ = λ
2π
L

δNλσ . (32.3.28)

The average value of the kinetic energy of the added particles with velocity
±vF is ±�vF δkFλσ/2. Hence the change of the total kinetic energy is
7 The chirality of the particle tells whether it is right or left moving, that is whether

its wave number is close to +kF or −kF.
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δEλσ = 1
2λ�vF δkFλσ δNλσ =

π�vF
L

(δNλσ)2. (32.3.29)

When bosons are created within the branches in the second step, their energies
should appear in the total Hamiltonian together with this energy correction
and we have

H0 =
∑

q �=0,σ

�vF|q|b†qσbqσ +
π�vF
L

∑

λσ

(δNλσ)2 . (32.3.30)

The term q = 0 is excluded from the summation over q in the first term. The
contribution of the q = 0 component of the density appears in the second
term.

The construction of the collective bosonic excitations was made possible by
the high degeneracy of the particle–hole pair excitations. It is natural to ask
whether this degeneracy is correctly reproduced in the bosonic description. In
order to show that the two representations are faithful in this respect, too, we
calculate the thermal energy and the heat capacity in both the fermionic and
the bosonic representations. Starting from (32.3.9) where the kinetic energy
is given in terms of the fermion operators we find

ΔE = 〈H0〉 − 〈H0〉T=0

=
∑

σ

kc∑

k=−kc

[
�vFk

eβ�vFk + 1
− �vFk θ(−k)

]

+
∑

σ

kc∑

k=−kc

[ −�vFk

e−β�vFk + 1
+ �vFk θ(k)

]
.

(32.3.31)

With the change of variables k → −k in the region k < 0 we have

ΔE = 4
∑

σ

kc∑

k=0

�vFk

eβ�vFk + 1
. (32.3.32)

Replacing the sum by an integral and extending the region of integration to
infinity, which is a good approximation at low temperatures, by making use
of (C.2.17) we find

ΔE = 8
L

2π

∞∫

0

�vFk

eβ�vFk + 1
dk = 8

L

2π
(kBT )2

�vF

π2

12
. (32.3.33)

The heat capacity per unit length is

cV =
2π
3
kB
kBT

�vF
. (32.3.34)

This expression is in agreement with the known result [see (16.2.91)] for the
heat capacity per unit volume of the free electron gas,
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cV =
π2

3
k2
BTρ(εF) , (32.3.35)

if the correct expression

ρ(εF) =
2

π�vF
(32.3.36)

is substituted for the density of states of the one-dimensional electron gas at
the Fermi energy.

In the boson representation, we may use (32.3.26) for the Hamiltonian,
since the contributions of the particles added to or removed from the branches
vanish in the thermodynamic limit. We then have

ΔE =
∑

σ

∑

q

�vF|q|
eβ�vF|q| − 1

= 2
∑

σ

∑

q>0

�vFq

eβ�vFq − 1
. (32.3.37)

Replacing again the sum by an integral and carrying out the integration to
infinity with the aid of (C.2.8) we find

ΔE = 4
L

2π
(kBT )2

�vF

π2

6
. (32.3.38)

This yields precisely the same expression for the Debye heat capacity of the
boson gas as the heat capacity (32.3.35) derived in the fermion representa-
tion. This shows that the low-energy excitations of the one-dimensional Fermi
system are faithfully represented by the bosonic density fluctuations.

The Pauli susceptibility, too, is recovered exactly. The particles are rear-
ranged in an external magnetic field, some of them are transferred from the
↑ spin to the ↓ spin branches:

δNλ↑ = −δNλ↓ , (32.3.39)

with the natural expectation that the left–right symmetry is preserved. In the
lowest energy state, where no bosons are excited, the energy in the presence
of the external field is

E = E0 +
π�vF
L

[
(δN+,↑)2 + (δN+,↓)2 + (δN−,↑)2 + (δN−,↓)2

]

− 1
2geμBμ0

(
δN+,↑ − δN+,↓ + δN−,↑ − δN−,↓

)
H.

(32.3.40)

The number of particles transferred to (from) the branches is obtained by
minimizing this expression. We find

δNλ↑ = L
geμBμ0

4π�vF
H, (32.3.41)

yielding a magnetic-moment density

M =
1

2L
geμB

(
δN+,↑ − δN+,↓ + δN−,↑ − δN−,↓

)

= 1
2g

2
eμ

2
Bμ0

1
π�vF

H
(32.3.42)
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and a susceptibility

χ = 1
4g

2
eμ

2
Bμ0

2
π�vF

, (32.3.43)

which agrees precisely with the usual expression for the Pauli susceptibility

χP = 1
4g

2
eμ

2
Bμ0ρ(εF) , (32.3.44)

if the density of states of the one-dimensional electron gas is used.

32.3.4 Spin–Charge Separation

In what follows it will be convenient to use the spin-symmetric and spin-anti-
symmetric combinations of the chiral densities. The quantities

nλc(q) =
1√
2

[
nλ↑(q) + nλ↓(q)

]
(32.3.45)

and
nλs(q) =

1√
2

[
nλ↑(q) − nλ↓(q)

]
(32.3.46)

are related to the particle density and the spin density, respectively, of the
right- and left-moving particles. The indices c and s refer to charge and spin,
respectively.8 These operators satisfy the commutation rules

[
nλc(q), nλ′c(q′)

]
− =

[
nλs(q), nλ′s(q′)

]
− = δλλ′δq,−q′λ

qL

2π
, (32.3.47)

and the commutator of operators with different indices vanishes. Bosonic com-
mutation relations are obeyed if a proper normalization factor is chosen, or
equivalently if the combinations

bqc =
1√
2

(
bq↑ + bq↓

)
, bqs =

1√
2

(
bq↑ − bq↓

)
,

b†qc =
1√
2

(
b†q↑ + b†q↓

)
, b†qs =

1√
2

(
b†q↑ − b†q↓

) (32.3.48)

are used. The spin and charge bosons appear separately in the Hamiltonian:

H0 =
∑

q �=0

�vF|q|b†qcbqc +
∑

q �=0

�vF|q|b†qsbqs . (32.3.49)

The separation of the spin and charge degrees of freedom holds for the
topological excitations as well. Introduce the combinations

δNc = δN+,↑ + δN+,↓ + δN−,↑ + δN−,↓ ,
Ns = δN+,↑ − δN+,↓ + δN−,↑ − δN−,↓ ,
Jc = δN+,↑ + δN+,↓ − δN−,↑ − δN−,↓ ,
Js = δN+,↑ − δN+,↓ − δN−,↑ + δN−,↓ ,

(32.3.50)

8 The notations ρ and σ are also common.
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which give the change in the total number of particles, the total spin, as well
as the charge and spin currents; the total Hamiltonian is the sum of two terms:

H0 = H0c + H0s , (32.3.51)

with

H0c =
∑

q

�vF|q|b†qcbqc +
π�vF
4L

[
(δNc)

2 + J2
c

]
,

H0s =
∑

q

�vF|q|b†qsbqs +
π�vF
4L

[
N2

s + J2
s
]
.

(32.3.52)

The term with (δNc)
2 is the energy of the topological charge excitations. It is

the energy needed to add particles symmetrically to the lowest energy available
states, δNc/4 particles to each of the four branches. The term proportional
to J2

c is the energy of a topological charge-current excitation: Jc/4 particles
from the highest occupied states of each left-moving branch are transferred
to the lowest unoccupied right-moving states with the same spin. The terms
with N2

s and J2
s /4 correspond to the analogous topological excitations in the

spin sector.
The total momentum of the excited state can also be determined easily.

The momentum of the density fluctuations with wave number q is �q. Hence
the momentum of the bosonic excitations is

P =
∑

qσ

�qb†qσbqσ , (32.3.53)

or when written in terms of the charge and spin bosons,

P =
∑

q

�qb†qcbqc +
∑

q

�qb†qsbqs . (32.3.54)

The momentum is changed when particles are added to the branches. Since
the Fermi momentum changes from kF to kF+(2π/L)δN+,σ when the number
of right-moving particles changes by δN+,σ [similarly the Fermi momentum
changes from −kF to −kF − (2π/L)δN−,σ when the number of left-moving
particles changes by δN−,σ], the change in the momentum is

ΔP = �

∑

λσ

λ
[
kF + (π/L)δNλσ

]
δNλσ . (32.3.55)

Using the spin-symmetric and spin-antisymmetric combinations we have

ΔP = �kFJc + �
π

2L
(δNcJc +NsJs) . (32.3.56)

In the ground state, where the N0
c particles are distributed equally among the

four branches, kF is given by
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kF = 1
4N

0
c

2π
L
, (32.3.57)

and hence

ΔP = �
π

2L
(
N0

c + δNc
)
Jc + �

π

2L
NsJs

= �
π

2L
NcJc + �

π

2L
NsJs

(32.3.58)

with Nc the total number of particles. The total momentum is the sum of
the contributions of the bosonic excitations and of the particles added to the
system:

P =
∑

q

�qb†qcbqc + �
π

2L
NcJc +

∑

q

�qb†qsbqs + �
π

2L
NsJs . (32.3.59)

When particle–hole excitations are considered, the total number of par-
ticles is conserved (δNc = 0) and the charge current Jc is an even number.
Since the wave number q is quantized in units of 2π/L in a finite chain of
length L, the eigenvalues of the total Hamiltonian H0 given in (32.3.51) and
(32.3.52) are

E = E0 + �vF
2π
L

(nc,+ + nc,− +Δc,+ +Δc,−)

+ �vF
2π
L

(ns,+ + ns,− +Δs,+ +Δs,−) ,
(32.3.60)

and the eigenvalues of the total momentum are

P = �kFJc + �
2π
L

(nc,+ − nc,− +Δc,+ −Δc,−)

+ �
2π
L

(ns,+ − ns,− +Δs,+ −Δs,−) ,
(32.3.61)

where nc,± and ns,± are integers, and

Δc,± =
1
16

(
δNc ± Jc

)2

,

Δs,± =
1
16

(
Ns ± Js

)2

.

(32.3.62)

For Jc = 0, when the same number of particles move to the right and to the
left, the energies of the spin-symmetric and spin-antisymmetric excitations
form overlapping V-shaped “towers” with their tips at q = 0. When more
particles move to the right or to the left, similar “towers” appear at inte-
ger multiples of 2kF, and the V-shaped quasicontinua start at a small finite
energy, above a parabola with coefficient of order 1/N . This is important
when correlation functions are calculated. This excitation spectrum is shown
in Fig. 32.10. The continuum of excitations displayed in Fig. 32.9 is recovered
for an infinitely long chain.
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q

–4kF –2kF 2kF 4kF0
q

Fig. 32.10. Spectrum of particle–hole excitations in a discrete chain

32.3.5 Interactions in the Tomonaga–Luttinger Model

The electron–electron interaction is given in the most general form in (28.1.34).
Since the momenta of the particles both before and after the scattering process
have to be in a range of width 2kc about the Fermi points ±kF, the momentum
transfer is either small or of the order of ±2kF if kc is smaller than the Fermi
wave number. Taking a screened interaction with slowly varying q depen-
dence, the scattering processes can be classified according to the momentum
transfer as well as the chirality and the spin orientation of the scattered parti-
cles. Neglecting for the moment the spin dependence, four distinct scattering
processes are allowed by momentum conservation. Their strength is charac-
terized by momentum-independent coupling constants. The four processes are
displayed in Fig. 32.11.

k k k k

g1 g2 g3 g4
σσσσ σ σ σ σ

σ'σ'σ'σ'σ'σ'σ'σ'

k k k k

Fig. 32.11. Scattering processes in the one-dimensional Fermi gas. Right-moving
fermions are denoted by solid lines and left-moving fermions by dashed lines

When two oppositely moving particles collide and the right-moving parti-
cle transfers a momentum of the order of 2kF to the other particle, the right
mover becomes a left mover and the left mover is scattered into a right-moving
state by acquiring this momentum. This is a backward-scattering process. Its
coupling constant is g1 in the conventional notation of the “g-ology” model.
When the momentum transfer is small between a right- and a left-moving par-
ticle, they remain in the same branch after scattering. The coupling constant
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of this forward-scattering process is denoted by g2. Forward scattering is pos-
sible also between particles moving in the same direction. This is a g4 process.
Finally, when two particles moving in the same direction are scattered into the
neighborhood of the opposite Fermi point, we are dealing with an umklapp
process. Its coupling constant is denoted by g3. Umklapp processes become
important in a half-filled band where kF = π/2a since the conservation of
crystal momentum can be satisfied in low-energy processes with total mo-
mentum transfer ±4kF = ±2π/a which are reciprocal-lattice vectors of the
one-dimensional model.

Allowing for the spin dependence of the coupling constants the explicit
expression of the interaction Hamiltonian is

Hint =
1

2L

∑

kk′qσσ′
g1σσ′

[
c†kF+k+q,σd

†
−kF+k′−q,σ′ckF+k′,σ′d−kF+k,σ

+d†−kF+k+q,σc
†
kF+k′−q,σ′d−kF+k′,σ′ckF+k,σ

]

+
1

2L

∑

kk′qσσ′
g2σσ′

[
c†kF+k+q,σd

†
−kF+k′−q,σ′d−kF+k′,σ′ckF+k,σ

+d†−kF+k+q,σc
†
kF+k′−q,σ′ckF+k′,σ′d−kF+k,σ

]

+
1

2L

∑

kk′qσσ′
g3σσ′

[
c†kF+k+q,σc

†
kF+k′−q,σ′d−kF+k′,σ′d−kF+k,σ

+d†−kF+k+q,σd
†
−kF+k′−q,σ′ckF+k′,σ′ckF+k,σ

]

+
1

2L

∑

kk′qσσ′
g4σσ′

[
c†kF+k+q,σc

†
kF+k′−q,σ′ckF+k′,σ′ckF+k,σ

+d†−kF+k+q,σd
†
−kF+k′−q,σ′d−kF+k′,σ′d−kF+k,σ

]
, (32.3.63)

if left–right symmetry is assumed.
Although the g1 processes were termed as backscattering, they cannot

be distinguished from the g2-type forward scattering when σ = σ′. If a
right-moving electron collides with a left-moving electron, both having the
same spin, and a right- and a left-moving electron emerge after scattering,
there is no way to tell – owing to the indistinguishability of the particles in
quantum mechanics – whether the right-moving particle was scattered with
small momentum transfer to a right-moving state or the left-moving particle
acquired a large momentum to become right mover. True backward scatter-
ing is found only when σ �= σ′. The electrons can be distinguished by their
spins, and one can tell whether the electron with a given spin transferred
small or large momentum to the electron with opposite spin. Tomonaga and
Luttinger considered the special case when the large-momentum-transfer
processes are neglected and showed that the model can be solved in a very
good approximation or even exactly depending on the choice of the linearized
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spectrum. We will use the name Tomonaga–Luttinger model (TL model in
short) for the model when only forward-scattering processes are allowed even
if the band has a finite bandwidth. Note that if the energy spectrum proposed
by Luttinger is used, the operators in the interaction should be normal
ordered.

The forward-scattering terms can be written in terms of the long-wave-
length density components defined in (32.3.10) in the form

Hint =
1

2L

∑

qσσ′
g2σσ′

[
n+,σ(−q)n−,σ′(q) + n−,σ(−q)n+,σ′(q)

]

+
1

2L

∑

qσσ′
g4σσ′

[
n+,σ(−q)n+,σ′(q) + n−,σ(−q)n−,σ′(q)

]
.

(32.3.64)

If the boson operators bqσ and b†qσ are used instead of the densities we have

Hint =
∑

qσσ′

|q|
4π
g2σσ′

(
b†qσb

†
−qσ′ + b−qσbqσ′

)

+
∑

qσσ′

|q|
4π
g4σσ′

(
b†qσbqσ′ + b−qσb

†
−qσ′

)
.

(32.3.65)

The q = 0 term is excluded in the summation. The interaction between the
extra particles added to the branches, that is between the q = 0 components
of the chiral densities, gives rise to an extra term

H′ =
1

2L

∑

σσ′
g2σσ′

(
δN+,σδN−,σ′ + δN−,σδN+,σ′

)

+
1

2L

∑

σσ′
g4σσ′

(
δN+,σδN+,σ′ + δN−,σδN−,σ′

) (32.3.66)

in the Hamiltonian. The essential feature of the TL model that makes it
solvable is the fact that the number of particles of chirality λ and spin σ is
conserved separately in each branch, which implies that the particle-number
operator Nλσ commutes with the total Hamiltonian,

[Nλσ,H
]
− = 0 . (32.3.67)

In what follows we will assume that the system is unpolarized, that is,
it is invariant under time reversal. The interaction then depends only on the
relative orientation of the spins: gi↑↑ = gi↓↓ and gi↑↓ = gi↓↑. We will use the
notation

gi‖ = gi↑↑ = gi↓↓ , gi⊥ = gi↑↓ = gi↓↑ (32.3.68)

for them. The term with g1‖, which is indistinguishable from forward scatter-
ing, could be included by a redefinition of the coupling constants; g2‖ − g1‖
would appear instead of g2‖ in all subsequent formulas.
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32.3.6 Excitations in the Interacting Model

The total Hamiltonian of the Tomonaga–Luttinger model is the sum of
(32.3.30), (32.3.65), and (32.3.66). The kinetic energy was given in (32.3.51)
and (32.3.52) in terms of the charge and spin bosons, the change in the total
number of particles, the total spin, as well as the charge and spin currents.
When the interaction Hamiltonian is written in terms of the same quantities
we have

Hint =
∑

q

|q|
4π
g2c

(
b†qcb

†
−qc + b−qcbqc

)
+
∑

q

|q|
4π
g2s

(
b†qsb

†
−qs + b−qsbqs

)

(32.3.69)

+
∑

q

|q|
4π
g4c

(
b†qcbqc + b−qcb

†
−qc

)
+
∑

q

|q|
4π
g4s

(
b†qsbqs + b−qsb

†
−qs

)

and

H′ =
1

8L
g2c
[
(δNc)2 − J2

c
]
+

1
8L
g2s
[
N2

s − J2
s
]

+
1

8L
g4c
[
(δNc)2 + J2

c
]
+

1
8L
g4s
[
N2

s + J2
s
]
,

(32.3.70)

where gic and gis are the spin-symmetric and spin-antisymmetric combinations
for the coupling constants defined by

g2c = g2‖ + g2⊥ , g2s = g2‖ − g2⊥ ,
g4c = g4‖ + g4⊥ , g4s = g4‖ − g4⊥ .

(32.3.71)

The terms with coupling g4c and g4s give rise to a renormalization of the
velocity of the charge- and spin-density oscillations, respectively. They can
be incorporated in the kinetic energy (32.3.52). The interesting part of the
interaction Hamiltonian is the term with coupling constant g2.

Even after collecting all the terms, spin–charge separation still holds, that
is the full Hamiltonian can be separated into two terms:

H = Hc + Hs , (32.3.72)

where the first term contains only the charge degrees of freedom,

Hc =
∑

q

�vF(1 + g̃4c)|q|b†qcbqc + 1
2�vF|q|

∑

q

g̃2c
(
b†qcb

†
−qc + b−qcbqc

)

+
π�vF
4L

[
(1 + g̃4c + g̃2c) (δNc)

2 + (1 + g̃4c − g̃2c)J2
c

]
, (32.3.73)

and the other only the spin degrees of freedom,

Hs =
∑

q

�vF
(
1 + g̃4s

)|q|b†qsbqs +
1
2

�vF|q|
∑

q

g̃2s
(
b†qsb

†
−qs + b−qsbqs

)

+
π�vF
4L

[
(1 + g̃4s + g̃2s)N2

s + (1 + g̃4s − g̃2s)J2
s
]
. (32.3.74)
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The shorthand notation
g̃ =

g

2π�vF
(32.3.75)

has been used for the dimensionless coupling constants.
The nondiagonal terms appear because the g2 processes couple the density

fluctuations of right- and left-moving electrons. The operators with different
chirality quantum numbers are mixed. Both Hc and Hs can be diagonalized
by a Bogoliubov transformation as shown in Appendix I. Doing it first for the
charge part we introduce the operators

βqc = ucqbqc + vcqb
†
−qc , β†

qc = ucqb
†
qc + vcqb−qc . (32.3.76)

They obey bosonic commutation rules if

u2
cq − v2

cq = 1 , (32.3.77)

which means that an angle θcq can be defined via

ucq = cosh θcq , vcq = sinh θcq . (32.3.78)

The inverse transformation is then

b†qc = β†
qc cosh θcq − β−qc sinh θcq ,

b−qc = β−qc cosh θcq − β†
qc sinh θcq .

(32.3.79)

Inserting these expressions in the Hamiltonian the nondiagonal terms vanish
if

− (1 + g̃4c
)
cosh θcq sinh θcq + 1

2 g̃2c
(
cosh2 θcq + sinh2 θcq

)
= 0 . (32.3.80)

The solution of this equation is

tanh 2θcq =
g̃2c

1 + g̃4c
. (32.3.81)

The diagonal terms of the charge part of the Hamiltonian give

Hc =
∑

q

�uc|q|β†
qcβqc +

π�

4L

[
vNc (δNc)

2 + vJcJ
2
c

]
(32.3.82)

with
uc = vF

√
(1 + g̃4c)

2 − (g̃2c)
2 (32.3.83)

and

vNc = vF (1 + g̃4c + g̃2c) , vJc = vF (1 + g̃4c − g̃2c) . (32.3.84)

Note that the three velocities are not independent, the relationship
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u2
c = vNc vJc (32.3.85)

has to be satisfied. Introducing the notation

Kc =
uc

vNc

=
vJc

uc
=

√
1 + g̃4c − g̃2c
1 + g̃4c + g̃2c

(32.3.86)

the Hamiltonian takes the form

Hc =
∑

q

�uc|q|β†
qcβqc +

π�

4L

[
uc

Kc
(δNc)

2 + ucKcJ
2
c

]
. (32.3.87)

In a completely analogous fashion the spin part can be written as

Hs =
∑

q

�us|q|β†
qsβqs +

π�

4L
(
vNsN

2
s + vJsJ

2
s
)
, (32.3.88)

where
us = vF

√
(1 + g̃4s)

2 − (g̃2s)
2 (32.3.89)

and

vNs = vF (1 + g̃4s + g̃2s) , vJs = vF (1 + g̃4s − g̃2s) . (32.3.90)

The relationship between the velocities is now

u2
s = vNs vJs . (32.3.91)

Introducing the quantity

Ks =
us

vNs

=
vJs

us
=

√
1 + g̃4s − g̃2s
1 + g̃4s + g̃2s

, (32.3.92)

we have

Hs =
∑

q

�us|q|β†
qsβqs +

π�

4L

(
us

Ks
N2

s + usKsJ
2
s

)
. (32.3.93)

The Hamiltonian of the interacting TL model is identical to that of a two-
component noninteracting boson gas. One component corresponds to charge
excitations, the other to spin excitations of the Fermi system. Thus spin–
charge separation holds even in the interacting TL model. There are three
kinds of excitations in both sectors. The bosonic charge-density and spin-
density fluctuations propagate with velocities uc and us, respectively. The
other excitations are topological in nature; they correspond to adding δNc
particles or generating a conserved current Jc in the charge sector and to
creating an imbalance Ns in the number of spin-up and spin-down particles
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or generating a spin current Js in the spin sector. The velocities of these
excitations, vNc and vJc in the charge sector, vNs and vJs in the spin sector,
are not independent. They satisfy relations (32.3.85) and (32.3.91).

The separation of charge and spin degrees of freedom taken together with
the fact that charge and spin fluctuations propagate with different velocities
has interesting consequences. For example, if a particle is added to the system
at the origin and the expectation value of the charge density is measured at a
later time, the propagation is determined entirely by the charge bosons. The
wavefunction of the state with an extra right-moving particle at the origin at
t = 0 can be given in terms of the field operator ψ̂†

+,σ(0, 0) defined in (L.2.98)
as ψ̂†

+,σ(0, 0)|ΨFS〉. The operator of the particle density is

n(x, t) =
∑

σ

ψ̂†
σ(x, t)ψ̂σ(x, t)

=
∑

σ

[
ψ̂†

+,σ(x, t)ψ̂+,σ(x, t) + ψ̂†
−,σ(x, t)ψ̂−,σ(x, t)

]
.

(32.3.94)

A straightforward calculation using the techniques developed in Appendix L
yields

〈
ΨFS|ψ̂+,σ(0, 0)n(x, t)ψ̂†

+,σ(0, 0)|ΨFS
〉 ∝ δ(x− uct) . (32.3.95)

We would get δ(x + uct) if a left-moving particle is added to the system at
the origin. Similar calculation for the expectation value of the spin density

σ(x, t) = ψ̂†
+,↑(x, t)ψ̂+,↑(x, t) − ψ̂†

+,↓(x, t)ψ̂+,↓(x, t)

+ ψ̂†
−,↑(x, t)ψ̂−,↑(x, t) − ψ̂†

−,↓(x, t)ψ̂−,↓(x, t)
(32.3.96)

gives
〈
ΨFS|ψ̂+,σ(0, 0)σ(x, t)ψ̂†

+,σ(0, 0)|ΨFS
〉 ∝ δ(x− ust) . (32.3.97)

Later we will see more generally that only the bosons with velocity uc con-
tribute to those quantities that depend on long-wavelength charge fluctua-
tions. Similarly the bosons propagating with velocity us contribute to those
properties that are related to long-wavelength spin fluctuations.

In a finite system of length L, where q is quantized in units of 2π/L, the
energy eigenvalues are given by

E = Lε0 + �uc
2π
L

(nc,+ + nc,− +Δc,+ +Δc,−)

+ �us
2π
L

(ns,+ + ns,− +Δs,+ +Δs,−) ,
(32.3.98)

where ε0 is the ground-state energy per site in an infinite system, nc,± and
ns,± are integers, and
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Δc,± =
1
16

(
1√
Kc

δNc ±
√
KcJc

)2

,

Δs,± =
1
16

(
1√
Ks

Ns ±
√
KsJs

)2

.

(32.3.99)

The momentum of the state can be written, using (32.3.59), with the same
parameters in the form

P = �kFJc + �
2π
L

(nc,+ − nc,− +Δc,+ −Δc,−)

+ �
2π
L

(ns,+ − ns,− +Δs,+ −Δs,−) .
(32.3.100)

The excitation spectrum of the TL model exhibits a similar tower structure
as in the noninteracting case. The role of the interaction is to renormalize the
values of the parameters Kc, Ks, uc, and us. The parameters uc and us modify
the opening angle of the towers, while Kc and Ks shift the positions of the tips
of the towers. As we will see, the latter determine the critical exponents of the
correlation functions which have power-law behavior even in the interacting
model, though the exponents are not universal; they depend on the coupling
strengths via Kc and Ks.

Note that although the noninteracting eigenstates of the one-dimensional
model are particlelike, the low-energy excitations of the interacting system
are collective bosonic density fluctuations. The one-to-one correspondence be-
tween the interacting and noninteracting eigenstates is destroyed, so that the
system described by the TL model is not a normal Fermi liquid. Nevertheless,
the new features do not show up in the thermodynamic behavior. They can
be seen, however, in the correlation functions.

32.3.7 Thermodynamic Properties and Correlation Functions

The low-temperature properties of the Tomonaga–Luttinger model are best
calculated in the boson representation. The heat capacity is linear in temper-
ature owing to the gapless linear dispersion relation. It follows from (32.3.38)
that the heat capacity per unit length of a two-component boson gas propa-
gating with velocity u is

cV =
2π
3
k2
BT

�u
. (32.3.101)

Since the two components propagate with different velocities in the interacting
model, the heat capacity per unit length of the TL model is

cV =
π

3
k2
BT

�uc
+
π

3
k2
BT

�us
. (32.3.102)

Writing it as cV (T ) = γT we have
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γ/γ0 =
1
2

(
vF
uc

+
vF
us

)
, (32.3.103)

where

γ0 =
π2

3
k2
Bρ(εF) =

2π
3
k2
B

�vF
. (32.3.104)

A static external magnetic field disturbs only the spin sector. It couples to
Ns creating an imbalance in the number of spin-up and spin-down particles.
At T = 0, where no bosons are excited, the energy in the presence of the field
is

E =
π�

4L
vNsN

2
s − 1

2geμBμ0NsH. (32.3.105)

The value of Ns is obtained from the minimum of this expression. Inserting
the minimum value into the expression for the magnetic moment per unit
length,

M =
1

2L
geμBNs =

(
1
2geμB

)2
μ0

2
π�vNs

H, (32.3.106)

from which we get

χ = 1
4g

2
eμ

2
Bμ0

2
π�vNs

(32.3.107)

for the susceptibility. The response to a static field is similar to that of a
normal Fermi liquid: the susceptibility is multiplied by a factor depending on
the interactions. Compared to the noninteracting model

χ

χ0
=

vF
vNs

=
vF
us
Ks . (32.3.108)

The Wilson ratio in the TL model is then

RW =
χ

γ

γ0

χ0
=

2uc

uc + us
Ks . (32.3.109)

The dynamical response and the corresponding correlation functions be-
have drastically differently from normal Fermi liquids. In order to show that,
we consider the variations of the particle (charge) density due to an external
scalar potential, which can be given according to linear response theory by the
density–density response function defined in (29.1.29). In the one-dimensional
case we have

Π(q, ω) = − i
�

1
L

∞∫

0

dt eiωt
〈[
n(q, t), n(−q, 0)

]
−
〉
, (32.3.110)

where
n(q) =

∑

k

(
c†k↑ck+q↑ + c†k↓ck+q↓

)
. (32.3.111)
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Similarly, the variations of the spin density due to an external magnetic
field can be given by the longitudinal response function Σ‖(q, ω) defined in
(29.8.19). The corresponding quantity in the one-dimensional model is

Σ(q, ω) =
i
�

1
L

∞∫

0

dt eiωt
〈[
σ(q, t), σ(−q, 0)

]
−
〉
, (32.3.112)

where
σ(q) =

∑

k

(
c†k↑ck+q↑ − c†k↓ck+q↓

)
(32.3.113)

is the Fourier transform of the difference between the densities of particles
with ↑ and ↓ spins.

In these expressions the operators ckσ and c†kσ refer to both the right-
and left-moving particles. To calculate the response functions in the long-
wavelength limit, for small q values, it is convenient to consider separately the
chiral densities of the right- and the left-moving particles and to define the
quantities

Πλσλ′σ′(q, t) = − i
�

1
L
θ(t)
〈[
nλσ(q, t), nλ′σ′(−q, 0)

]
−
〉
. (32.3.114)

They will be calculated using the equation-of-motion method. The Hamilto-
nian of the TL model can be written in a simple form in terms of the chiral
densities and the commutator of the densities with the Hamiltonian gives
[H, nλσ(q, t)

]
− = − λ�vFqnλσ(q, t) − λ

∑

σ′

g2σσ′

2π
qn−λσ′(q, t)

− λ
∑

σ′

g4σσ′

2π
qnλσ′(q, t) .

(32.3.115)

Using this in the equation of motion for the frequency Fourier transform of
Πλσλ′σ′(q, t) we have

(�ω − λ�vFq)Πλσλ′σ′(q, ω) =
λq

2π
δλλ′ δσσ′ + λ

∑

σ′′

g2σσ′′

2π
qΠ−λσ′′λ′σ′(q, ω)

+λ
∑

σ′′

g4σσ′′

2π
qΠλσ′′λ′σ′(q, ω) . (32.3.116)

Taking the spin-symmetric and spin-antisymmetric combinations correspond-
ing to the charge and spin densities defined in (32.3.45) and (32.3.46), respec-
tively, the charge-density and spin-density response functions are separated.
We give here the result for the charge-density response:

(�ω − λ�vFq)Πλcλ′c(q, ω) =
λq

2π
δλλ′ + λ

g2c
2π
qΠ−λcλ′c(q, ω)

+ λ
g4c
2π
qΠλcλ′c(q, ω) .

(32.3.117)
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The solution is

Π+,c,+,c(q, ω) =
1
2π

q[�ω + (�vF + g4c/2π)q]
(�ω)2 − (�ucq)2

,

Π+,c,−,c(q, ω) = − 1
2π

(g2c/π)q2

(�ω)2 − (�ucq)2
,

Π−,c,−,c(q, ω) = − 1
2π

q[�ω − (�vF + g4c/2π)q]
(�ω)2 − (�ucq)2

,

Π−,c,+,c(q, ω) = − 1
2π

(g2c/π)q2

(�ω)2 − (�ucq)2
,

(32.3.118)

and the total density–density response is given by

Π(q, ω) =
2
π�

vJcq
2

ω2 − u2
cq

2
. (32.3.119)

This response function, which is related to the dielectric function, is entirely
determined by the spin-symmetric excitations, the charge bosons, propagating
with velocity uc.

Similar calculation for the spin-antisymmetric combinations gives

Σ(q, ω) = − 2
π�

vJsq
2

ω2 − u2
sq

2
(32.3.120)

for the spin density–spin density response function. Only the spin bosons
propagating with velocity us contribute to this quantity. Its relation to the
longitudinal dynamical susceptibility is given by

χ‖(q, ω) = 1
4g

2
eμ

2
Bμ0Σ(q, ω) . (32.3.121)

In the static limit ω → 0 we find

χ‖ = 1
4g

2
eμ

2
Bμ0

2vJs

π�u2
s

= 1
4g

2
eμ

2
Bμ0

2
π�vNs

= 1
4g

2
eμ

2
Bμ0

2
π�us

Ks (32.3.122)

reproducing (32.3.107).
We have seen in Chapter 29 that the q = 2kF component of the polariza-

tion bubble Π0(q, ω) exhibits a logarithmic singularity in one dimension. This
quantity describes the propagation of an electron–hole pair where the parti-
cle moves to the right and the hole to the left or vice versa. A few low-order
diagrams illustrating the propagation of such a pair are depicted in Fig. 32.12.

Unlike in the RPA, all diagrams are irreducible since large-momentum-
transfer processes are absent in the model. The polarization bubble for
large-momentum-transfer can therefore be given in terms of the renormal-
ized propagators of the left- and right-moving particles, and the renormalized
large-momentum-transfer vertex as shown in Fig. 32.13.
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Fig. 32.12. Diagrams illustrating the propagation of an electron–hole pair with total
momentum 2kF. Right-moving fermions are denoted by solid lines and left-moving
fermions by dashed lines

Fig. 32.13. Large-momentum-transfer polarization bubble. The heavy lines denote
renormalized propagators with self-energy corrections

This vertex satisfies an exact Ward identity9 relating it to the Green func-
tions; thus, the response functions of the TL model can be calculated exactly
in real-space and time representation. The equation-of-motion method can
also be used to calculate the propagator of such electron–hole pairs, or more
generally the time evolution of a state where particles are added to or removed
from the various branches. Without going into the details of this rather te-
dious calculation we only list the result. When a right-moving electron and
a left-moving hole are added to the system at the origin at time t = 0 and
we let them propagate to position x till time t, the asymptotic form of the
propagator is

N(x, t) ∝ 1
(x2 − u2

ct
2)Kc/2(x2 − u2

s t
2)Ks/2

. (32.3.123)

When the right-moving particle and the left-moving hole have different spin
orientations, their propagator is

χ(x, t) ∝ cos(2kFx)
(x2 − u2

ct
2)Kc/2(x2 − u2

s t
2)1/(2Ks)

. (32.3.124)

9
J. C. Ward, 1950.



32.3 Tomonaga–Luttinger Model 269

These are special cases of a more general expression that can be derived
by using the conformal invariance of the Luttinger model that shows up in
the tower structure of the excitation spectrum or by using the field-theoretic
formulation of Luttinger liquids discussed in Appendix L. Taking an operator
O that changes the number of particles with chirality λ = ±1 and spin σ
by δN±,σ at the origin at time t = 0 and studying the propagation of these
particles to space–time position x, t we find

〈O(x, t)O†(0, 0)
〉 ∼ e−ikFJcx

(x− uct)2Δc,+(x+ uct)2Δc,−(x− ust)2Δs,+(x+ ust)2Δs,−
,

(32.3.125)
where Δc,± and Δs,± are the scaling dimensions introduced in (32.3.99). In
the special case when a right-moving particle and a left-moving hole is added
to the system with the same spin, δNc = Ns = 0, Jc = 2, and Js = ±2
depending on the orientation of the spins. This gives precisely the exponents in
(32.3.123). When the particle and the hole have opposite spins, δNc = Js = 0,
Jc = 2, and Ns = ±2, and we recover the expression given in (32.3.124) for
the susceptibility.

32.3.8 Absence of the Fermi Edge

As a special example we study the propagation of an extra particle added
to the TL model. This propagation is best described by the causal Green
functions

G+,σ(k, t− t′) = − i
�

〈
T
{
ckF+k,σ(t)c†kF+k,σ(t′)

}〉
(32.3.126)

or
G−,σ(k, t− t′) = − i

�

〈
T
{
d−kF+k,σ(t)d†−kF+k,σ(t′)

}〉
, (32.3.127)

where T is the time-ordering operator. When taking the time derivative of
the Green function, the commutator with the Hamiltonian of the TL model
leads to a higher order Green function

F+,σ,λ′,σ′(k, q, t− t′, t′′) = − i
�

〈
T
{
ckF+k+qσ(t)nλ′σ′(q, t′′)c†kF+kσ(t′)

}〉
.

(32.3.128)
When the equation of motion is written for this new Green function by taking
the derivative with respect to t′′, no further higher order Green functions
appear owing to the special choice of the interactions in the TL model. The
system of equations closes and can be solved in space–time representation.
We get

G±(x, t) ∼ e±ikFx

√
(x∓ uct)(x∓ ust)

(
x2 − u2

ct
2
)−2Δc (

x2 − u2
s t

2
)−2Δs

,

(32.3.129)
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where

Δc =
1
16

(
1√
Kc

−
√
Kc

)2

=
(Kc − 1)2

16Kc
,

Δs =
1
16

(
1√
Ks

−
√
Ks

)2

=
(Ks − 1)2

16Ks
.

(32.3.130)

Precisely the same expression would be obtained by applying the general
expression (32.3.125) to the present case, that is when the field operator of
fermions is substituted for O(x, t). When a right-moving fermion is added to
the system, either δN+,↑ = +1 or δN+,↓ = +1, and consequently

δNc = Jc = Ns = Js = +1 (32.3.131)

or
δNc = Jc = −Ns = −Js = +1 . (32.3.132)

In both cases

Δc,+ = Δc + 1
4 , Δc,− = Δc ,

Δs,+ = Δs + 1
4 , Δs,− = Δs .

(32.3.133)

On the other hand, when a left-moving fermion is added to the system, either
δN−,↑ = +1 or δN−,↓ = +1, and therefore

δNc = −Jc = Ns = −Js = +1 (32.3.134)

or
δNc = −Jc = −Ns = Js = +1 . (32.3.135)

Thus we have

Δc,+ = Δc , Δc,− = Δc + 1
4 ,

Δs,+ = Δs , Δs,− = Δs + 1
4 .

(32.3.136)

Substituting these expressions for the exponents in (32.3.125) we in fact re-
cover (32.3.129).

The result that the Green function has a cut and not a pole is a clear
indication that the system described by the TL model is not a normal Fermi
liquid. The absence of poles implies the absence of fermionic quasiparticles;
the bosonic fluctuations describe the full low-energy spectrum. The spectral
function A(k, ω) defined in (K.1.39), which is proportional to the imaginary
part of the Green function, has a Lorentzian peak in normal Fermi liquids
becoming an infinitely sharp Dirac delta for particles at the Fermi surface. The
energy and the lifetime of the quasiparticles are obtained from the position
and the width of this peak. Instead of that the spectral function of the TL
model exhibits power-law singularities. At the Fermi momentum, as a function
of ω we have
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Aσ(kF, ω) ∝ |ω|4(Δc+Δs)−1 , (32.3.137)

while for wave numbers different from kF, singularities may appear at ω =
±uck and ω = ±usk. For example when uc > us we find

Aσ(k, ω) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ω − uck|2Δc+4Δs−1/2 for ω ≈ uck ,

θ(ω − usk)
(
ω − usk

)4Δc+2Δs−1/2 for ω ≈ usk ,

θ(−ω − uck)
(− ω − uck

)2Δc+4Δs for − ω ≈ usk .

(32.3.138)

Typical spectral functions of the Green function G+,σ(k, ω) are shown in
Fig. 32.14. The largest weight to the spectral function comes from the range
between ω = usk and ω = uck.

(b)(a) 0

A  (k,   ) A  (k,   )

0uck usk usk uck

Fig. 32.14. Spectral function for right-moving fermions in the TL model as a func-
tion of ω for (a) k = 0 and (b) k > 0

Knowing the Green function we can calculate the momentum distribution
function

〈nkσ〉 = 〈Ψ0|c†kσckσ|Ψ0〉 , (32.3.139)

which exhibits a discontinuous jump at kF in normal Fermi liquids, as seen in
Fig. 28.3. Instead of that a power-law-like behavior is found in the neighbor-
hood of kF in the TL model:

〈nkσ〉 ∼ 1
2 − C|k − kF|4(Δc+Δs)sgn(k − kF) . (32.3.140)

This is shown in Fig. 32.15. The vanishing of the Fermi edge implies that no
Fermi surface can be defined in the TL model. The single-particle density of
states, which is related to the momentum integral of the imaginary part of the
Green function, can also be evaluated. It vanishes at the chemical potential
and varies as a power law,

ρ(ε) ∝ |ε− εF|4(Δc+Δs) . (32.3.141)
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kF0
0

nk

1

k

Fig. 32.15. Momentum distribution function in the TL model

32.4 The Hubbard Model in One Dimension

The Hubbard model, as one of the simplest models of interacting elec-
trons, plays an important role in the study of correlated systems. The one-
dimensional model has the additional feature that it is the physically most
interesting example of Luttinger-liquid behavior. Assuming that the electrons
can hop only to nearest-neighbor sites, it is written conventionally10 in the
form

H = −t
∑

iσ

(c†i,σci+1,σ + c†i+1,σci,σ) + U
∑

i

ni↑ni↓ . (32.4.1)

When the Coulomb interaction is omitted, the single-particle spectrum is

ε(kj) = −2t cos kja , (32.4.2)

where kj can take the values (2π/L)nj in a chain of length L = Na with integer
nj . The many-body state of the system of Ne electrons can be characterized
by giving the kj quantum numbers of the occupied one-particle states. The
unperturbed energy is

E =
Ne∑

j=1

ε(kj) = −2t
Ne∑

j=1

cos kja , (32.4.3)

where the summation goes over the occupied states. In the ground state,
where the electrons fill the states with both spin orientations equally, the
region −kF < k < kF is filled in reciprocal space with

kF =
2π
L

Ne

4
=

π

2a
ne . (32.4.4)

The Fermi velocity is readily obtained from this expression:

�vF = 2ta sin kFa = 2ta sin
(

1
2πne

)
. (32.4.5)

In what follows, for the sake of simplicity, the lattice constant will be taken to
be unity. The length L and the number of sites N will be used interchangeably.
10 Unlike in (28.1.42), the notation U is used in this chapter instead of UH for the

on-site Coulomb repulsion.
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32.4.1 Bethe-Ansatz Solution

Just as for the spin-1/2 Heisenberg model, the energy spectrum of the Hub-
bard model can be solved exactly by the Bethe ansatz in one dimension. We
can follow the procedure outlined in Chapter 15 with the additional difficulty
that besides the number of particles with spin ↓, N↓, the total number of
electrons, Ne = N↓ +N↑, can be arbitrary and an extra quantum number ap-
pears. We will assume that the number of electrons is less than or equal to the
number of lattice sites, the system is at most half filled, Ne ≤ N , and at most
half of the electrons have their spins oriented down, N↓ ≤ N↑. The opposite
cases can be treated by considering holes instead of electrons or reversing all
spins.

The total wavefunction can be written in second quantization as the linear
combination of terms like

c†l1↓c
†
l2↓ . . . c

†
lN↓↓c

†
lN↓+1↑c

†
lN↓+2↑ . . . c

†
lNe↑
∣∣0
〉
, (32.4.6)

where 1 ≤ l1 < l2 < · · · < lN↓ ≤ N and 1 ≤ lN↓+1 < lN↓+2 < · · · < lNe ≤ N ,
that is the sites occupied by particles with ↓ and ↑ spins are ordered separately
in increasing order of the site index. The coefficients f that appear in the
wavefunction

Ψ =
∑

l1

∑

l2

· · ·
∑

lNe

f(l1, l2, . . . lNe)c
†
l1↓c

†
l2↓ . . . c

†
lN↓↓

× c†lN↓+1↑c
†
lN↓+2↑ . . . c

†
lNe↑
∣∣0
〉 (32.4.7)

are determined from the requirement that this wavefunction be an eigenfunc-
tion of the Hubbard Hamiltonian. Operating with the Hamiltonian on this
function a coupled system of equations is obtained:

−t
Ne∑

i=1

[
f(l1, . . . , li + 1, . . . , lNe) + f(l1, . . . , li − 1, . . . , lNe)

]

+ U
[∑

i<j

δli,lj

]
f(l1, . . . , lNe) = Ef(l1, . . . , lNe) .

(32.4.8)

This has to be solved with a periodic boundary condition and subject to the
constraint that the total wavefunction has to be antisymmetric under the
exchange of any two particles. For this the amplitude f(l1, l2, . . . , lNe) which
originally was defined in the segment satisfying 1 ≤ l1 < l2 < · · · < lN↓ ≤ N
and 1 ≤ lN↓+1 < lN↓+2 < · · · < lNe ≤ N has to be extended to all possible
configurations of the occupied lattice sites.

Consider first a dilute electron system where the spins of all electrons have
the same ↑ orientation. None of the sites is doubly occupied and we assume
that the singly occupied sites are surrounded by empty sites. Electrons can
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then freely hop and the coefficient f can be written as a linear combination
of the product of plane waves,

f(l1, . . . , lNe) =
∑

P

A(P ) exp
[
i(kP1l1 + · · · + kPNe lNe)

]
, (32.4.9)

where P = {P1, P2, . . . , PNe} is a permutation of the numbers {1, 2, . . . , Ne}.
The state of the system is characterized by Ne = N↑ wave numbers and the
summation goes over all possible permutations of the wave numbers. The
energy takes the same form,

E = −2t
Ne∑

j=1

cos kj , (32.4.10)

as that of the noninteracting system, though the values of the wave numbers,
just as in the Bethe-ansatz solution of the Heisenberg model, may be shifted
from their values in the noninteracting system.

When particles with ↓ spin are also present, the amplitude A(P ) of the
plane-wave factors depends not only on the permutation of the Ne wave num-
bers, on the way they are assigned to the Ne electrons, but also on the
positions l1, l2, . . . , lN↓ of the spin-down electrons relative to the positions
lN↓+1, lN↓+2, . . . , lNe of the spin-up electrons. That can be characterized by
the permutation {Q1, Q2, . . . , QNe} of the numbers {1, 2, . . . , Ne} that orders
the occupied lattice sites in increasing order irrespective of the spin of the
electrons:

1 ≤ lQ1 ≤ lQ2 ≤ · · · ≤ lQNe ≤ N . (32.4.11)

The coefficient f depends on both permutations, P and Q:

f(l1, . . . , lNe) =
∑

P

A[Q,P ] exp
[
i(kP1lQ1 + · · · + kPNe lQNe)

]
. (32.4.12)

The state is characterized by the Ne wave numbers kj and by N↓ other quan-
tum numbers, called rapidities and denoted by λα. They are related to the
state of the spins. When the system is dilute and there are no doubly occupied
sites, the energy of this state is still given by (32.4.10).

There exist, however, configurations in which there are doubly occupied
sites. The Bethe ansatz is the hypothesis that the wavefunction and the energy
eigenvalues can still be written in the form given above. When two electrons
with wave numbers k1 and k2 interact on a doubly occupied site, they continue
to propagate after the interaction with the same wave numbers; the interaction
only causes a phase shift and a possible exchange of the spins. Moreover, this
phase shift depends only on k1 and k2 and does not depend on the state of the
other particles. Formulated in the language of scattering theory, the scattering
matrix is factorizable. This hypothesis does not work for most models studied
in solid-state physics. The one-dimensional Hubbard model, together with



32.4 The Hubbard Model in One Dimension 275

some other models like the spin-1/2 Heisenberg chain, is an exception owing
to the particular choice of the interaction. The amplitudes A[Q,P ] are fixed
by the uniqueness of the wavefunction when two particles occupy the same
site irrespective of which of the two Q permutations satisfying (32.4.11) is
chosen. Further conditions are given by the requirement that the energy take
the form given in (32.4.10) even if double occupancy occurs.11 Moreover, the
periodic boundary condition is used to fix the values of the wave numbers.
One finds after a rather lengthy calculation that the Ne wave numbers and
the N↓ rapidities satisfy the Lieb–Wu equations:12

eikjL =
N↓∏

α=1

λα − sin kj − iu
λα − sin kj + iu

,

Ne∏

j=1

λα − sin kj − iu
λα − sin kj + iu

=
N↓∏

β=1
β �=α

λα − λβ − 2iu
λα − λβ + 2iu

,

(32.4.13)

where u = U/4t is the dimensionless strength of the interaction. Once these
equations are solved, the energy and momentum of the state can be calculated.
Both are given solely in terms of the wave numbers and the expressions have
the same form as for a free system,

E = −2t
Ne∑

j=1

cos kj , P =
Ne∑

j=1

kj , (32.4.14)

but the wave numbers are shifted from their values in the noninteracting case
and the energy is renormalized accordingly.

Taking the logarithm of both sides of the equations determining the quan-
tum numbers we find

kjL = 2πIj + 2
N↓∑

α=1

arctan
[
(λα − sin kj)/u

]
, (32.4.15)

2
Ne∑

j=1

arctan
[
(λα − sin kj)/u

]
= 2πJα + 2

N↓∑

β=1

arctan
[
(λα − λβ)/2u

]
,

where the quantum numbers Ij and Jα are integers or half-integers depending
on the parity of N↓ and Ne −N↓:

11 In the spin-1/2 Heisenberg chain, where spins on neighboring sites interact, the
Bethe ansatz leads to an extra condition on the wavefunction when spins are
reversed on neighboring sites. In the Hubbard model with on-site interaction, the
Bethe ansatz provides a constraint for the case when two electrons sit on the same
site.

12
E. H. Lieb and F. Y. Wu, 1968.
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2Ij =

{
even for N↓ even ,

odd for N↓ odd

2Jα =

{
even for N↑ = Ne −N↓ odd ,

odd for N↑ = Ne −N↓ even .

(32.4.16)

These quantum numbers can be used equivalently instead of the wave numbers
and rapidities to characterize the state. It follows from (32.4.15) that the
momentum of a state is given by

P =
2π
L

( Ne∑

j=1

Ij +
N↓∑

α=1

Jα

)
. (32.4.17)

The wave numbers kj and rapidities λα should be different and can be
real or complex like the rapidities in the antiferromagnetic Heisenberg chain.
When these quantum numbers are real, the Ij and Jα numbers are all different
in the macroscopically relevant states and Jα should be in the interval

− 1
2 (Ne −N↓) + 1

2 ≤ Jα ≤ 1
2 (Ne −N↓) − 1

2 . (32.4.18)

Note that in the half-filled case in the limit u 1, the Lieb–Wu equations
for the variable Λα = λα/2u reduce to

2Ne arctan 2Λα = 2πJα + 2
N↓∑

β=1

arctan(Λα − Λβ) . (32.4.19)

The same equations are satisfied by the rapidities in the spin-1/2 Heisenberg
model. This can be checked by taking the logarithm of (15.5.105) and using
the relation

arctan z =
1
2i

ln
1 + iz
1 − iz

=
π

2
+

1
2i

ln
z − i
z + i

. (32.4.20)

This is not surprising. There are practically no doubly occupied sites in the
half-filled Hubbard model in the large U limit. Each site is occupied by one
electron, but their spin orientations can vary in two-step exchange processes
through high-energy virtual intermediate states. The model is equivalent with
an antiferromagnetic Heisenberg model with exchange coupling J = −2t2/U .

32.4.2 Ground State of the Hubbard Chain

We assume for the sake of simplicity that the number of electrons is even
but not a multiple of 4, Ne = 4ν + 2 with integer ν, since the unpolarized
ground state with N↓ = Ne/2 is then a nondegenerate singlet. The quantum
numbers Ij are half-odd-integers while the quantum numbers Jα are integers.
They take consecutive values in the ground state, symmetrically about zero,
between ±(Ne − 1)/2 and ±(Ne/2 − 1)/2, respectively:
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{Ij} = −(Ne − 1)/2, . . . ,−1/2, 1/2, . . . , (Ne − 1)/2 ,
{Jα} = −(Ne/2 − 1)/2, . . . ,−1, 0, 1, . . . , (Ne/2 − 1)/2 .

(32.4.21)

A special example is shown in Fig. 32.16.

Ij

Fig. 32.16. Positions of the Ij and Jα parameters of the Lieb–Wu equations in the
ground state of the Hubbard model for Ne = 18 and N↓ = 9

The wave numbers and the rapidities obtained from the solution of the
Lieb–Wu equations fill an interval in the Brillouin zone and on the real axis,
respectively, densely but nonuniformly for a long enough chain. In the limit
L → ∞, when the distance between subsequent roots is on the order of 1/L,
the ground-state distributions of kj and λα can be characterized by the root-
density functions

ρ(k) = lim
L→∞

1
L

1
kj+1 − kj

(32.4.22)

and
σ(λ) = lim

L→∞
1
L

1
λα+1 − λα

, (32.4.23)

and the Lieb–Wu equations can be transformed into integral equations for
these functions:

ρ(k) =
1
2π

+ cos k

λ0∫

−λ0

dλ
2π
K1(sin k − λ)σ(λ) ,

σ(λ) =

k0∫

−k0

dk
2π
K1(λ− sin k)ρ(k) −

λ0∫

−λ0

dλ′

2π
K2(λ− λ′)σ(λ′)

(32.4.24)

with
Kn(x) =

2nu
(nu)2 + x2

. (32.4.25)

The values of k0 and λ0 are fixed by the constraints that the integrated densi-
ties yield the total number of electrons per site and the number of spin-down
electrons per site, respectively:

k0∫

−k0

ρ(k) dk =
Ne

N
,

λ0∫

−λ0

σ(λ) dλ =
N↓
N

. (32.4.26)
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In the absence of magnetic field, when N↓ = Ne/2, the integration over λ
extends to the entire real axis and the integral equations for the distribution
of the wave numbers and rapidities can be simplified to yield

ρ(k) =
1
2π

+ cos k

k0∫

−k0

dk′R(sin k′ − sin k)ρ(k′) ,

σ(λ) =

k0∫

−k0

dk
1

4u cosh[π(λ− sin k)/2u]
ρ(k)

(32.4.27)

with the kernel

R(x) =

∞∫

−∞

dξ
2π

eiξx

1 + e2u|ξ| =

∞∫

0

dξ
2π

e−ξu

cosh(ξu)
cos(ξx) . (32.4.28)

Once the root-density functions are known, the ground-state energy can be
calculated via

E0 = −2tN

k0∫

−k0

ρ(k) cos k dk . (32.4.29)

32.4.3 Low-Energy Excitations

Excited states can be generated in various ways. When the total number of
electrons and the total number of spin-down particles are conserved, electron–
hole pairs can be created. Charged excitations are obtained by adding (remov-
ing) particles with ↑ or ↓ spin to (from) the unpolarized ground state. Finally,
spin excitations are created when the spin of an electron is reversed. We only
treat excitations in less than half-filled bands and consider first spin excita-
tions. The particularities of the excitation spectrum of the Hubbard model at
half filling will be discussed later.

Spin Excitations, Spinons

A spin-triplet excitation is obtained when the spin of a particle is reversed
while keeping the number of particles fixed. N↑ = Ne/2 + 1 particles have
their spin pointing up and N↓ = Ne/2 − 1 particles have their spin pointing
down. Both sets of quantum numbers Ij and Jα change parity compared to
the ground state; Ijs take integer and Jαs half-integer values. It follows from
the second equation of (32.4.15) that finite, real momenta and rapidities can
be obtained only if |Jα| ≤ (Ne −N↓ − 1)/2, that is Jα can take values in the
range [−Ne/4, Ne/4]. There are

Ne/2 + 1 = N↓ + 2 (32.4.30)
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half-integers in this interval, but only N↓ of them are needed, hence two
holes are left in the ground-state distribution. Two possible choices of the
parameters of an excited state, starting from the ground state sets shown in
Fig. 32.16, are displayed in Fig. 32.17.

Ij

Jα

Ij

Jα

Fig. 32.17. Possible distributions of the parameters Ij and Jα in a spin-triplet
excited state for Ne = 18 and N↓ = 8

As seen in the figure, the Ijs cannot be chosen symmetrically. They are
consecutive integers for the low-energy excitations, from −Ne/2 + 1 to Ne/2
or from −Ne/2 to Ne/2 − 1. Because of the asymmetry, the parameters Ij
contribute to the momentum of the state by

P =
2π
L

(
±Ne

2

)
= ±πne = ±2kF . (32.4.31)

This momentum shift has to be taken into account when the excitation spec-
trum is calculated. Since the excited states can be characterized by two pa-
rameters, the two missing Jα values, they form again a continuum shown in
Fig. 32.18. Soft modes occur at k = 0, ±2kF, and ±4kF mod 2π.

ε(k) ε(k)

−ππ−π 0−2kF 2kF −2kF 2kF

k
π

k
0

(b)(a)

Fig. 32.18. Typical continuum of the Sz = 1 excitations in the low-energy spectrum
of the Hubbard model for a moderately strong U for an electron density ne = 0.6
(a) in the extended zone and (b) reduced to the Brillouin zone

This spin-reversed state is the Sz = 1 component of a triplet excitation.
The Sz = 0 and Sz = −1 components of the triplet, which have to have the
same energy, can be generated by the application of the spin-lowering operator
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on the Sz = 1 state. The Sz = 0 state corresponds to an excitation without
spin reversal compared to the ground state with an unchanged number of
particles. It can be obtained by a particular choice of the parameters Ij and
Jα which now have the same parity as in the ground state.13 The Ijs are
consecutive half-integers between −(Ne − 1)/2 and (Ne − 1)/2 while the Jαs
take integer values in the range [−(Ne/2 + 1)/2, (Ne/2 + 1)/2] with two holes
in the sequence. A special example is displayed in Fig. 32.19.

Fig. 32.19. Possible distribution of the parameters Ij and Jα for the Sz = 0
component of the spin-triplet excited state for Ne = 18 and N↓ = 9

All rapidities cannot be finite now. The second equation of (32.4.15) is sat-
isfied for JNe/2 = (Ne/2 + 1)/2 with finite rapidities except for λNe/2 which
takes infinite value. Separating out this rapidity and the corresponding JNe/2,
the remaining ones satisfy the Lieb–Wu equations with shifted values of the
parameters, Ij → Ij + 1/2, Jα → Jα + 1/2 for α = 1, 2, . . . , Ne/2 − 1. Al-
ternatively, we can separate out the parameter J1 = −(Ne/2 + 1)/2 and the
corresponding rapidity λ1 which is now −∞. The remaining parameters are
effectively shifted to Ij − 1/2 and Jα − 1/2 for α = 2, 3, . . . , Ne/2. We thus
recover the parameter sets characterizing the Sz = 1 component of the triplet
and thus the same excitation energy is obtained.

Besides this Sz = 0 component of the triplet, it is possible to construct
spin-singlet excitations in the same subspace. To get these states, two real ra-
pidities are replaced by a complex conjugate pair. In terms of the parameters
Jα this corresponds to leaving two holes in the ground-state set and the singlet
excitations form a two-parameter continuum. One can show that the singlet
and triplet continua coincide in the thermodynamic limit. Similar to the sit-
uation found in Chapter 15 for the spin-1/2 antiferromagnetic Heisenberg
chain, the degenerate triplet and singlet excitations can be interpreted as
spin-triplet and spin-singlet pairs of fictitious spin-1/2 “elementary” excita-
tions called spinons with energy εs(q) defined in the interval −kF ≤ q ≤ kF.
The continuum of composite excitations is obtained by the rule

ε(k) = εs(q1) + εs(q2) with k = q1 + q2 . (32.4.32)

To calculate the dispersion of spinons we first establish that if a Js is
missing from the symmetric ground-state set, the momentum of the state is
13 The Sz = −1 state, where more than half of the particles have their spins oriented

down, can be described by a Bethe-ansatz wavefunction by reversing the role
of up- and down-spin electrons. The motion of up-spin particles is considered
through the background of down-spin particles.
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q = −2π
L
Js . (32.4.33)

This momentum can vary between −πne/2 and πne/2, that is between −kF
and kF. A rapidity λs(q) can be associated with the missing Js, that is with
q, through the implicit equation

q = −
k0∫

−k0

2 arctan
(
λs(q) − sin k

u

)
ρ(k) dk

+

λ0∫

−λ0

2 arctan
(
λs(q) − λ′

2u

)
σ(λ′) dλ′ .

(32.4.34)

Then one has to solve the closed system of equations

εh(k) = 2t cos k + μ+

λ0∫

−λ0

dλ
2π
K1(sin k − λ)εs(λ) ,

εs(λ) =

k0∫

−k0

dk
2π
K1(λ− sin k) cos k εh(k) −

λ0∫

−λ0

dλ′

2π
K2(λ− λ′)εs(λ′)

(32.4.35)

for the functions εh(k) and εs(λ), where μ is determined from the condition
εh(k0) = 0. When the ground state is unpolarized, the integration over λ
extends to the whole real axis (λ0 → ∞) and Fourier transformation leads to

εh(k) = 2t cos k + μ+

k0∫

−k0

dk′R(sin k′ − sin k) cos k′ εh(k′) ,

εs(λ) =

k0∫

−k0

dk
cos k

4u cosh[π(λ− sin k)/2u]
εh(k) .

(32.4.36)

The solution εs(λ) of this system of equations at λ = λs(q) gives the spinon
energy belonging to momentum q, i.e., the dispersion relation of spinons. A
typical dispersion curve is shown in Fig. 32.20.

ε(q)

0−kF kF

q
π−π

Fig. 32.20. Typical dispersion curve of spinons for an electron density ne = 0.6
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Analytic expressions can be obtained for small and large values of U :

εs(q) =

{
2t (cos q − cos kF) for U � t ,

1
2πJeff cos(q/ne) for U  t ,

(32.4.37)

where

Jeff =
4t2

U
ne

[
1 − sin(2πne)

2πne

]
. (32.4.38)

Linearization of the dispersion curve in the neighborhood of kF yields the
velocity us of spinons. For small values of U we have

�us ≈ 2t sin(πne/2) − U

2π
for U � t , (32.4.39)

while in the large-U limit

�us =
2πt2

U

[
1 − sin(2πne)

2πne

]
=
π

2
Jeff

ne
. (32.4.40)

In the half-filled case (ne = 1), where the large-U limit of the Hubbard model is
equivalent to the spin-1/2 Heisenberg chain, the results derived in Chapter 15
are recovered. The numerically determined spinon velocities are displayed in
Fig. 32.21 as a function of the band filling for several values of U/t.
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Fig. 32.21. Spinon velocity us as a function of ne for different values of U/t

Charged Excitations, Holons, and Antiholons

Next we consider excited states obtained by adding or removing a particle.
Owing to the restrictions mentioned above we treat the cases when a spin-up
particle is added or a spin-down particle is removed. We consider first the
latter case. The allowed values of Jα are unchanged, but one less is needed to
characterize the positions of spin-down particles and there will be a hole Js in
their distribution. The Ijs now have to be integers. The simplest choice is to
take them symmetrically with respect to the origin, as seen in Fig. 32.22(a).
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This choice of the parameters yields the lowest energy excited states at a given
momentum. Higher lying excited states are obtained by creating a hole Ih in
the distribution of Ij choosing instead the smallest unoccupied Ij , as shown
in Fig. 32.22(b).

(a)

(b)

Fig. 32.22. Possible distributions of the parameters Ij and Jα of the Lieb–Wu equa-
tions when a spin-down particle is removed from the ground state of the Hubbard
model with Ne = 18 and N↓ = 9

The low-lying excited states form a two-parameter continuum shown
schematically in Fig. 32.23, where the states are characterized by the missing
Js and the missing Ih. Soft modes occur at ±kF and ±3kF mod 2π. Fur-
ther low-energy modes occur at momenta differing by ±2kF if more holes are
created in the ground-state distribution of Ij .

ε(k)ε(k)

−3kF 3kF−kF kF −3kF 3kF−kF kF

−ππ−π
k

π
k

00

Fig. 32.23. Excitation spectrum of the Hubbard model when a spin-down particle
is removed from the ground state for band filling ne = 0.6 in the extended- and
in the reduced-zone schemes. The lower edge of the continuum drawn with a solid
line coincides with the spinon dispersion curve and the dashed line is the dispersion
curve of holons

The excitations in the continuum can again be interpreted as arising from
a pair of “elementary” excitations, a spinon, owing to Js, and a holon, owing
to the missing Ih. Since Ih is missing from the interval given in (32.4.21), the
corresponding momentum

q = −2π
L
Ih (32.4.41)
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is in the interval between −πne and πne, that is holons are defined between
−2kF and 2kF. To get their dispersion relation a wave number kh(q) is asso-
ciated with the momentum of the holon which has to be calculated from the
implicit equation

q = −kh(q) −
∞∫

−∞
2 arctan

(
sin kh(q) − λ

u

)
σ(λ) dλ , (32.4.42)

and the energy of the holon with momentum q is equal to εh(k), calculated
from (32.4.36), at k = kh(q). The analytic expressions in the weak- and strong-
coupling limits are given by

εh(q) =

{
4t
(
cos q/2 − cos kF

)
for U � t ,

2t
(
cos q − cos 2kF) for U  t .

(32.4.43)

The energy measured from the chemical potential vanishes at q = ±2kF. The
dispersion curve of holons is illustrated in Fig. 32.24.

ε(q)

−2kF 2kF

q

h
_
h

_

π−π 0

h

Fig. 32.24. Dispersion curve of holons (h) and antiholons (h̄) for an electron density
ne = 0.6 in the weak-coupling (dashed line) and strong-coupling (solid line) limits

Linearizing the dispersion curve in the neighborhood of ±2kF yields the
velocity uc of holons. For small U values we have

�uc ≈ 2t sin(πne/2) +
U

2π
, U � t , (32.4.44)

that is we recover the Fermi velocity vF given in (32.4.5) in the limit U → 0.
For large values of U we have

�uc = 2t sin(πne) = 2t sin 2kF . (32.4.45)

The factor 2 in the argument, kF for small U and 2kF for large U , can be
understood if we take into account that doubly occupied sites are not allowed
in the large-U limit. The electrons fill the states as if they all had the same
spin. The numerically determined holon velocities are displayed in Fig. 32.25
as a function of the band filling for several values of U/t.
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Fig. 32.25. Holon velocity uc as a function of ne for different values of U/t

We can proceed similarly when a spin-up particle is added to the system.
The simplest excited state corresponds to adding a new half-odd integer Ih̄ to
the ground-state set. Since the parity of the spin-up particles has changed, the
quantum numbers Jα should take half-odd integer values. There are Ne/2+1
half-odd integers in the interval given in (32.4.18), but only N↓ = Ne/2 of
them are needed to characterize the distribution of ↓ spins in the excited state.
If the Jα parameters are all different, which is the case for low-lying states,
there is a hole at say Js in the distribution of these parameters compared to
the ground state. A possible distribution of the half-odd integers is given in
Fig. 32.26.

¯

Fig. 32.26. A possible choice of the parameters Ij and Jα of the Lieb–Wu equations
when a spin-up particle is added to the ground state of the Hubbard model with
Ne = 18 and N↓ = 9

The continuum of excitations is shown in Fig. 32.27 in the extended-zone
scheme. Soft modes occur at ±kF and ±3kF mod 2π. Higher lying excitations
are obtained if some half-odd integer values are left out of the ground-state
interval [−(Ne − 1)/2, (Ne − 1)/2] for the parameters Ij and are replaced by
half-odd integers outside this interval. Soft modes with ±5kF, ±7kF, etc., can
be generated in this way.

This two-parameter continuum, too, where the states are characterized
by the extra Ih̄ and the missing Js, can be interpreted as arising from com-
binations of two “elementary” excitations. The missing Js is equivalent to a
spinon, and the extra Ih̄ corresponds to creating an antiholon. Since Ih̄ has
to be outside the interval given in (32.4.21), the corresponding momentum
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ε(k)

0 3kF–3kF –kF kF

π−π
k

Fig. 32.27. Excitation spectrum of the Hubbard model when a spin-up particle
is added to the ground state for a band filling ne = 0.6. The lower edge of the
continuum drawn with a solid line coincides with the spinon dispersion curve and
the dashed line is the dispersion curve of antiholons

q =
2π
L
Ih̄ (32.4.46)

has to be smaller than −πne (−2kF) or larger than πne (2kF). Antiholons are
defined in a restricted range of the Brillouin zone, in the intervals [−π,−2kF]
and [2kF, π], which is complementary to the region where holons were defined.
A wave number kh̄(q) is associated with the momentum q through the equation

q = kh̄(q) +

∞∫

−∞
2 arctan

(
sin kh̄(q) − λ

u

)
σ(λ) dλ , (32.4.47)

and the energy of the antiholon is the negative of εh(k) calculated from
(32.4.36) at k = kh̄(q),

εh̄(q) = −εh(kh̄(q)) . (32.4.48)

The analytic expressions are analogous to the ones obtained for holons,

εh̄(q) =

{
4t
(
cos kF − cos q/2

)
for U � t ,

2t
(
cos 2kF − cos q

)
for U  t .

(32.4.49)

The dispersion curve of antiholons is illustrated in Fig. 32.24 in the weak- and
strong-coupling limits.

Thus, adding a particle to the Hubbard chains is equivalent to creating a
deconfined spinon–antiholon pair, while removing a particle is equivalent to
creating a spinon–holon pair, where the spinon carries the spin and the holon
(antiholon) carries the charge:

εe−(k) = εs(q1) + εh̄(q2) with k = q1 + q2 ,

εe+(k) = εs(q1) + εh(q2) with k = q1 + q2 .
(32.4.50)

Note that our previous treatment of the Hubbard chain is valid for less than
half-filled bands. When the band is more than half-filled by particles, Ne > N ,
the Bethe-ansatz solution can be found by studying the motion of the 2N−Ne
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holes. The elementary excitations are again spinons, holons, and antiholons,
but adding a particle to the system, i.e., removing a hole, corresponds to
creating a deconfined spinon–holon pair, while removing a particle, i.e., adding
an extra hole, corresponds to creating a spinon–antiholon pair.

In this context deconfinement means that spinons and holons (antiholons),
the constituents of the physical excitations, propagate independently with dif-
ferent velocities. A simple physical picture can be given in the large-U limit,
when doubly occupied sites are absent. The effective antiferromagnetic ex-
change tends to align the neighboring spins antiferromagnetically, even though
they cannot be ordered. Figure 32.28 shows such an environment and the pro-
cesses occurring when a spin-down particle is removed.

Fig. 32.28. Independent propagation of a holon (empty site) and a spinon (domain
wall) when a particle is removed from a large-U Hubbard chain, where the spins are
locally antiferromagnetically arranged

The inserted hole may propagate by hopping of electrons. On the other
hand, the spins of neighboring electrons can be exchanged in a two-step pro-
cess. Thus the spin configurations found after a few steps contain a hole,
around which the spin alternation along the chain is not interrupted, and a
domain wall separating two antiferromagnetically ordered regions, in which
the spins alternate in opposite phase. The hole – which carries charge but no
spin, since the spin arrangement is not modified around it – can be identified
with the holon and the domain wall can be interpreted as a spinon. The holon
propagation is determined solely by the hopping t, while the propagation of
spinons is related to the effective exchange Jeff.

Particle–Hole Excitations

We mentioned earlier that spin-singlet excitations, where both the total num-
ber of particles and the number of spin-down particles remain unchanged,
cannot be described by real rapidities. A pair of complex conjugate rapidities
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is needed. There is another class of low-energy excitations with conserved Ne
and N↓, which can be described by real parameters. These are particle–hole
excitations, also called 4kF excitations, because they are soft at k = 0 and
k = 4kF mod 2π but not at 2kF. Starting from the ground state and keeping
the number of Ij and Jα parameters unchanged, one of the half-integer Ijs
lying in the interval [−(Ne − 1)/2, (Ne − 1)/2], say Ih, is left out and an Ip is
chosen outside this interval, as shown in Fig. 32.29.

Ih Ip

Fig. 32.29. Possible choice of the parameters Ij and Jα of the Lieb–Wu equations
in a particle–hole excitation of the Hubbard model with Ne = 18 and N↓ = 9

The hole Ih and the extra Ip give again a two-parameter set and the
corresponding excitation energies shown in Fig. 32.30 form a continuum in
the thermodynamic limit.

ε(k)

0−2π + 4kF 2π − 4kF

π−π
k

Fig. 32.30. Continuum of particle–hole (holon–antiholon) excitations in the low-
energy spectrum of the Hubbard model for a band filling ne = 0.6. The lower edge
of the continuum drawn with a solid line coincides with the dispersion curve of
antiholons. The dashed line is the dispersion curve of holons

We know from our earlier considerations that a missing Ih corresponds
to creating a holon and an extra Ip corresponds to creating an antiholon.
Comparing the boundaries of this continuum with the dispersion curves of
holons and antiholons shown in Fig. 32.24 it is readily seen that these particle–
hole excitations correspond to holon–antiholon pairs:

εp-h(k) = εh(q1) + εh̄(q2) with k = q1 + q2 . (32.4.51)
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Thus holons, antiholons, and spinons are the true elementary excitations
of the one-dimensional Hubbard model. These excitations, which have gapless
linear dispersion when the system is not half filled, always occur in pairs.

32.4.4 Correlation Functions in a Hubbard Chain

The Lieb–Wu equations were originally derived for finite Hubbard chains, but
the spinon and holon excitations were analyzed in the continuum limit, for
infinitely long chains. When the solutions are analyzed for a large but finite
system, the energies and momenta of low-energy spinons and holons are found
to form towers just as in the TL model. The elements of a tower are charac-
terized by integer numbers nc,+, nc,−, ns,+, and ns,−, which give the number
of small-momentum excitations in the holon and spinon sectors, respectively.
The positions of the towers depend on the number of extra particles δN±,σ

added to the system near ±kc with spin σ. We have

E = Lε0 + �uc
2π
L

(
nc,+ + nc,− +Δc,+ +Δc,− − 1

12

)

+ �us
2π
L

(
ns,+ + ns,− +Δs,+ +Δs,− − 1

12

)
,

(32.4.52)

where ε0 is the ground-state energy per site in the thermodynamic limit and

P = �kFJc + �
2π
L

(nc,+ − nc,− +Δc,+ −Δc,−)

+ �
2π
L

(ns,+ − ns,− +Δs,+ −Δs,−) ,
(32.4.53)

with

Δc,± =
1
16

(
1√
Kc

δNc ±
√
KcJc

)2

,

Δs,± =
1
16
(
Ns ± Js

)2
,

(32.4.54)

where δNc is the total number of particles added to the system, Ns is the
difference between the number of particles added with ↑ and ↓ spins, Jc and
Js are the charge and spin currents. The parameter Kc, which determines the
critical exponents, is a function of the Hubbard U and the number of electrons
per site, ne. It can be calculated from an integral equation which is analogous
to the integral equations obtained for the spinon and holon energies. In the
absence of an external magnetic field Kc = ξ2(k0)/2, where ξ(k0) is obtained
from

ξ(k) = 1 +

k0∫

−k0

dk′ cos k′R(sin k′ − sin k)ξ(k′) (32.4.55)
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Fig. 32.31. Correlation parameter Kc of the Hubbard model as a function of ne

for several values of U/t

at k = k0 with the kernel R(x) given in (32.4.28). The numerically evaluated
values are displayed in Fig. 32.31.

Analytic expressions can be obtained in two limits. For small values of U
we find

Kc ≈ 1 − U

4πt sin(πne/2)
, (32.4.56)

while in the large U limit

Kc ≈ 1
2

+
4t ln 2
πU

sin(πne) . (32.4.57)

Although the one-dimensional Hubbard model does not possess conformal
symmetry owing to the different velocities of holons and spinons, the concepts
of conformal invariance can be applied to it due to the tower structure of the
excitation spectrum. The quantities Δc,± and Δs,± can be identified with the
scaling dimensions appearing in the exponents of the correlation functions.
If an operator O changes the number of particles with spin σ in the vicinity
of the Fermi points ±kF by δN±,σ, the asymptotic form of the correlation
function is

〈O(x, t)O†(0, 0)〉 ∼ e−ikFJcx

(x− uct)2Δc,+(x+ uct)2Δc,−(x− ust)2Δs,+(x+ ust)2Δs,−
.

(32.4.58)

32.4.5 Mapping Between the Hubbard and TL Models

The low-energy spectrum of the Hubbard model given in (32.4.52) and
(32.4.53) has precisely the same structure as that of the TL model given in
(32.3.98) and (32.3.100) except for the term −1/12 which gives the finite-size
correction to the ground-state energy. That means that those physical prop-
erties of the two models that are determined by the low-energy excitations are
identical, if a proper mapping is found between the Coulomb repulsion and
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band filling ne of the Hubbard model and the couplings g2c, g2s, g4c, and g4s
of the TL model. This mapping can be achieved by equating the parameters
uc, us, Kc, and Ks calculated for the two models.

This does not imply that the charge and spin bosons of the TL model
can be identified with the holons (antiholons) and spinons of the Hubbard
model. Holons carry no spin and have charge +e (antiholons have charge −e),
spinons are neutral and carry spin-1/2. Holons (antiholons) and spinons on
the one hand and the TL bosons on the other hand simply offer alternative,
but equivalent descriptions of the same low-energy physics in the regime where
a linearized dispersion is a good approximation.

In the weak-coupling limit of the Hubbard model the velocities [see
(32.4.39) and (32.4.44)] and the correlation parameter (32.4.56) can be written
as

�uc ≈ �vF +
U

2π
,

�us ≈ �vF − U

2π
,

Kc ≈ 1 − U

2π�vF
,

(32.4.59)

and Ks = 1 for any U . On the other hand, in the weak-coupling limit of the
TL model the expansion of (32.3.83), (32.3.89), (32.3.86), and (32.3.92) give

�uc = �vF

[
1 +

g4c
2π�vF

− 1
2

(
g2c

2π�vF

)2
]
,

�us = �vF

[
1 +

g4s
2π�vF

− 1
2

(
g2s

2π�vF

)2
]
,

Kc = 1 − g2c
2π�vF

,

Ks = 1 − g2s
2π�vF

.

(32.4.60)

Comparison of these equations yields the relationships

g2c = U , g2s = 0 , g4c = U , g4s = −U (32.4.61)

between the couplings of the two models. When written in terms of gi‖ and
gi⊥ we find

g2‖ = g2⊥ ≈ U/2 , g4‖ ≈ 0 , g4⊥ ≈ U . (32.4.62)
In the large-U limit we have

g2‖ = g2⊥ ≈ 3πt
2

sin(πne) ,

g4‖ ≈ 5πt
2

sin(πne) − 4πt sin(πne/2) ,

g4⊥ ≈ 5πt
2

sin(πne) .

(32.4.63)
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For intermediate values of U the equivalent TL couplings can be obtained
by comparing the numerically evaluated holon and spinon velocities and the
parameterKc with the corresponding expressions in the TL model. The results
for g2‖ = g2⊥ are shown in Fig. 32.32.

Fig. 32.32. (a) The couplings g2‖ = g2⊥ in units of t which make the TL model
equivalent to the Hubbard model with Coulomb repulsion U for various band fill-
ings characterized by ne. (b) The same as in the left panel, but the equivalent
couplings are plotted as a function of the band filling for several values of U ,
U/t = 0.4, 0.8, 1.2, 1.6, 2, 4, 8, 16,∞ from bottom to top

As seen, the linear relationship between the TL couplings and U is rather
well satisfied up to about U/t ≈ 1, except for low band filling or when the
band is almost half filled. In the first case, the curvature of the dispersion
relation gives rise to a stronger renormalization, while in the second case the
umklapp processes start to play a role.

32.5 Luttinger Liquids

The two models discussed above, the Tomonaga–Luttinger model and the one-
dimensional Hubbard model, display surprising similarities. The low-energy
excitation spectrum is exhausted by soft bosonic excitations; fermionic quasi-
particles are absent. The tower structure of the spectrum can be described
by a few parameters. The scaling dimensions that determine the exponents of
the power-law decay of the correlation functions can be calculated from the
finite-size corrections to the energy. This similarity occurs despite the differ-
ence in the bare dispersion relation and in the type of interactions. F. D. M.

Haldane (1980) conjectured that this is not an accident. He demonstrated
that the absence of fermionic quasiparticles, the existence of several branches
of low-energy bosonic excitations with linear dispersion (characterized by the
renormalized velocity ui), the appearance of topological excitations with stiff-
ness constant Ki, and the nonuniversal power-law decay of correlations, which
is the consequence of the particularities of the excitation spectrum, are generic
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features of a large class of one-dimensional systems. The Luttinger model be-
ing the archetype of this behavior, he proposed the name Luttinger liquid for
such systems. The term Tomonaga–Luttinger liquid is also used.

Before presenting the generic properties of Luttinger liquids we consider
another example, the one-dimensional XXZ or Heisenberg–Ising model in the
spinless-fermion representation and show that it exhibits similar behavior.

32.5.1 Low-Energy Spectrum of the XXZ Chain

We have seen in Chapter 15 that the s = 1/2 spin operators can be expressed
in terms of spinless fermions with the aid of the Jordan–Wigner transforma-
tion. Applying transformation (15.2.62) to the one-dimensional anisotropic
Heisenberg model the Hamiltonian becomes

H = −J
∑

i

[
1
2

(
c†i ci+1 + c†i+1ci

)
+Δ

(
c†i ci − 1

2

)(
c†i+1ci+1 − 1

2

)]
, (32.5.1)

where the parameter Δ = Jz/Jxy characterizes the anisotropy. In Fourier
representation, apart from an additive constant we have

H = − J
∑

k

[cos(ka) −Δ] c†kck

− JΔ

N

∑

q

cos(qa)
(∑

k

c†k+qck

)(∑

k′
c†k′−qck′

)
,

(32.5.2)

where k runs over the Brillouin zone, −π/a ≤ k ≤ π/a.
We also know that the ground state is magnetically disordered in the range

−1 ≤ Δ < 1 in the absence of external magnetic field, that is

〈Sz
i 〉 = 〈c†i ci 〉 − 1

2 =
1
N

∑

k

〈c†kck〉 − 1
2 = 0 , (32.5.3)

which means that exactly half of the allowed k states are occupied in the
ground state. We can assume without restricting generality that J > 0. With
this choice, the middle portion of the Brillouin zone, the region −π/2a ≤ k ≤
π/2a, is filled for Δ = 0.14

The noninteracting system, Δ = 0, corresponds to the XY model. We
know from the Bethe-ansatz solution presented in Chapter 15 that the low-
energy part of the excitation spectrum is quite similar for finite Δ to that
obtained for Δ = 0. The elementary excitations are s = 1/2 spinons with
linear dispersion relation and an anisotropy-dependent velocity, but they are
always created in pairs. The measured excitation spectrum is a continuum of
two-spinon excitations. Here we give a different treatment.
14 The states close to the zone boundary would be filled for J < 0. They can be

shifted to the center of the Brillouin zone by the transformation k → k + π/a.
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We first consider the XY part of the Hamiltonian which gives the kinetic
energy of the spinless fermions:

H = − 1
2J
∑

i

[
c†i ci+1 + c†i+1ci

]
= −J

∑

k

cos(ka)c†kck . (32.5.4)

The physical properties are determined by the states close to the Fermi points
±kF = ±π/2a. We may therefore define a finite band (of width 2D in energy
or 2kc in wave number) and keep only those states that are within this band.
When the dispersion curve −J cos ka is linearized about the Fermi points,
the velocity of the fermionic excitations is given by the relation �vF = Ja.
Separating the right- and left-moving fermions and introducing the bosonic
densities in the same way as was done in the TL model we find

H0 =
∑

q

�vF|q|b†qbq +
π�vF
2L

[
(δN)2 + J̃2

]
, (32.5.5)

where δN = δN+ + δN− and J̃ = δN+ − δN−. The momentum operator is
given by

P =
∑

q

�qb†qbq + �

∑

λ

λ [kF + (π/L)δNλ] δNλ

=
∑

q

�qb†qbq + �kFJ̃ + �
π

L
δNJ̃ .

(32.5.6)

The spinless-fermion representation of the XY model is identical to a one-
component TL model.

Strictly speaking the quantities δN± are not well defined when δN is an
odd number, that is an odd number of spins are reversed compared to the
ground state. This is due to the shift of the allowed positions of k, which
depend according to (15.5.122) and (15.5.123) on the parity of the number of
reversed spins. The quantity δN can, however, be well defined as the change
in the number of occupied states compared to the ground state. The quantity
J̃ is defined as the difference between the occupied states on the right and left
sides of k-space. The Hamiltonian and the momentum operator can then be
expressed in terms of these quantities in the form given above.

The energy and momentum eigenvalues for a finite chain are

E = �vF
2π
L

(n+ + n− +Δ+ +Δ−) (32.5.7)

and
P = �kFJ̃ + �

2π
L

(n+ − n− +Δ+ −Δ−) , (32.5.8)

where
Δ± =

1
8

(
δN ± J̃

)2

. (32.5.9)
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The excitation spectrum has a tower structure similar to the one shown in
Fig. 32.10.

Taking now the terms proportional to Δ in the Hamiltonian, they describe
an interaction between the spinless fermions. The momenta of both incoming
and both outgoing particles are in the vicinity of one of the Fermi points in
the physically relevant processes. The momentum transfer q is either small or
of the order of ±2kF. The four possible processes are displayed in Fig. 32.33.

k k k k

k k k k

Fig. 32.33. Allowed scattering processes between one-dimensional spinless fermions.
Right-moving fermions are denoted by solid lines and left-moving fermions by dashed
lines

When two fermions from the neighborhood of the same Fermi point or a
right- and a left-moving particle exchange a small momentum, they remain in
the same branch after scattering. These are the forward-scattering processes
retained in the TL model. Using again the notation c†kF+k (ckF+k) and d†−kF+k

(d−kF+k) for the creation (annihilation) operator of the right- and left-moving
particles, the forward-scattering processes can be written as

Hfw = −JΔ
N

∑

q

cos(qa)
∑

k

(
c†kF+k+qckF+k + d†−kF+k+qd−kF+k

)

×
∑

k′

(
c†kF+k′−qckF+k′ + d†−kF+k′−qd−kF+k′

)
, (32.5.10)

where q is small. This interaction is between the long-wavelength components
of the densities and can be written in terms of the boson operators defined for
spinless fermions in analogy with (32.3.23). The forward-scattering processes
can thus be written in the boson representation as

Hfw = −JaΔ
2π

∑

q

|q|
(
b†q + b−q

)(
bq + b†−q

)

= −JaΔ
π

∑

q

|q|b†qbq −
JaΔ

2π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)
,

(32.5.11)
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where cos(qa) was approximated by unity for small q values, and a constant
term has been omitted. The first term is the contribution of the Fock term.
Being of the same form as the kinetic energy, it renormalizes the velocity of
the bosons. The role of the second term will be discussed later.

A seemingly backward-scattering process is obtained when two oppositely
moving particles exchange a large momentum of the order of 2kF. The right-
moving particle is scattered into a left-moving state and vice versa. With a
change of variables q → ±2kF + q the new q is small and the corresponding
term in the Hamiltonian can be written in the form

Hbw = −JΔ
N

∑

q

cos(π + qa)
∑

k

c†kF+k+qd−kF+k

∑

k′
d†−kF+k′−qckF+k′

(32.5.12)
−JΔ
N

∑

q

cos(−π + qa)
∑

k

d†−kF+k+qckF+k

∑

k′
c†kF+k′−qd−kF+k′ .

With a further change of variables q → q + k′ − k and a change of the order
of the operators we find

Hbw = −JΔ
N

∑

q

∑

k′
c†kF+k′+qckF+k′

∑

k

d†−kF+k−qd−kF+k

(32.5.13)
−JΔ
N

∑

q

∑

k

c†kF+k−qckF+k

∑

k′
d†−kF+k′+qd−kF+k′ .

We may recognize in this representation the densities of right- and left-moving
particles and this part of the Hamiltonian has the same form in terms of the
bosonic operators,

Hbw = −JaΔ
2π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)
, (32.5.14)

as the forward-scattering term. It is easy to understand why the backward-
and forward-scattering terms give identical result for spinless fermions. Both
the initial and the final states of the scattering process are the same. A particle
from the neighborhood of +kF is scattered by a particle from the neighbor-
hood of −kF. One is scattered to the neighborhood of +kF and the other to
the neighborhood of −kF. Owing to the indistinguishability of the particles
one cannot tell which particle is scattered to which side; therefore, no distinc-
tion can be made between forward and backward scattering. The Fock term
corresponding to the renormalization of the velocity is missing in the boson
representation, although it should be present if forward and backward scat-
terings are truly equivalent. This drawback of the naive bosonization can be
corrected in a more careful treatment and we find

Hbw = −JaΔ
π

∑

q

|q|b†qbq −
JaΔ

2π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)
. (32.5.15)
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Finally when two particles moving in the same direction are scattered to
the opposite side, we are dealing with umklapp processes. When both the in-
coming and the outgoing particles are in the vicinity of the Fermi energy and
the change in the total momentum is ±4kF, the conservation of quasimomen-
tum can be satisfied only if the band is half filled, that is kF = π/2a and the
total incoming quasimomentum differs from the outgoing quasimomentum by
2π/a, which is a vector of the reciprocal lattice. If the momentum transfer is
written as ±2kF + q, the corresponding terms in the Hamiltonian are

Hu = −JΔ
N

∑

q

cos(π + qa)
∑

k

c†kF+k+qd−kF+k

∑

k′
c†kF+k′−qd−kF+k′

(32.5.16)
−JΔ
N

∑

q

cos(−π + qa)
∑

k

d†−kF+k+qckF+k

∑

k′
d†−kF+k′−qckF+k′ .

They cannot be expressed simply in terms of the densities of right- and left-
moving particles, and will therefore be neglected for the moment. We will
return later to the justification of this omission and to the role umklapp
processes play.

The interaction between the spinless fermions can then be written in boson
representation in the form

Hint = −2JaΔ
π

∑

q

|q|b†qbq −
JaΔ

π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)

= −�vF
2Δ
π

∑

q

|q|b†qbq − �vF
Δ

π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)
,

(32.5.17)

where the relationship �vF = Ja has been used. This expression contains only
the contributions of the bosonic excitations, that is the q �= 0 modes. We have
to add the energy of topological excitations when the number of fermions
changes in the branches:

H′ = −2JaΔ
L

(δN+ + δN−)2 = −2JaΔ
L

(δN)2 . (32.5.18)

The total Hamiltonian is the sum of (32.5.5), (32.5.17), and (32.5.18), that is

H =
∑

q

�vF

(
1 − 2Δ

π

)
|q|b†qbq − �vF

Δ

π

∑

q

|q|
(
b†qb

†
−q + b−qbq

)

+
π�vF
2L

(
1 − 4Δ

π

)
(δN)2 +

π�vF
2L

J̃2 . (32.5.19)

The bosonic part of the Hamiltonian is bilinear but nondiagonal. Diag-
onalization can be achieved by a Bogoliubov-like canonical transformation
which mixes the operators b†q and b−q. In analogy to (32.3.76) we introduce
the operators
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β†
q = uqb

†
q + vqb−q ,

β−q = uqb−q + vqb
†
q ,

(32.5.20)

for which bosonic commutation rules are assumed. Repeating the same steps
as for the TL model, the Hamiltonian can be transformed to the form

H =
∑

q

�u|q|β†
qβq +

π�

2L

[
vN (δN)2 + vJJ̃

2
]
, (32.5.21)

with

�u = �vF

[
(1 − 2Δ/π)2 − (2Δ/π)2

]1/2

= Ja
(
1 − 4Δ/π

)1/2
, (32.5.22)

and
�vN = Ja

(
1 − 4Δ/π

)
, �vJ = Ja . (32.5.23)

Just as in the Tomonaga–Luttinger model [see (32.3.85) and (32.3.91)], the
velocities u, vN, and vJ are not independent, they satisfy the relationship

u2 = vNvJ . (32.5.24)

The quantity K defined by K = u/vN = vJ/u is then

K =
(
1 − 4Δ/π

)−1/2
. (32.5.25)

The low-energy part of the spectrum of the XXZ model is thus described by
a Tomonaga–Luttinger-type Hamiltonian with one bosonic component.

When the eigenvalues are calculated for a finite chain, the spectrum has a
tower structure. The energies can be written as

E = �u
2π
L

(n+ + n− +Δ+ +Δ−) (32.5.26)

and the momentum as

P = �kFJ̃ + �
2π
L

(n+ − n− +Δ+ −Δ−) , (32.5.27)

where n+ and n− are integers, and

Δ± =
1
8

(
1√
K

δN ±
√
KJ̃

)2

. (32.5.28)

These expressions were obtained after linearizing the cos qa spectrum.
As explained in Chapter 15, the excitation spectrum of the one-dimensional
anisotropic spin-1/2 Heisenberg chain can be calculated exactly with the Bethe
ansatz. The leading terms to order 1/N for a finite chain of length L = Na
are
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E = Lε0 + �u
2π
L

(
n+ + n− +Δ+ +Δ− − 1

12

)
(32.5.29)

with ε0 the ground-state energy per site in an infinitely long chain and

P = �kFJ̃ + �
2π
L

(n+ − n− +Δ+ −Δ−) . (32.5.30)

The term −1/12 is the finite-size correction to the ground-state energy, n+

and n− are integers, and u is determined by the anisotropy parameter Δ via

�u = Ja
π
√

1 −Δ2

2 (π − arccosΔ)
. (32.5.31)

The quantities Δ± are related to the distribution of the (half-odd) integers Ij
appearing in (15.5.98). We know that these numbers take consecutive values in
the range −N/4 < Ij < N/4 in the ground state. The change in the number of
positive and negative (half-odd) integers in an excited state is denoted by δN+

and δN−, respectively. Their symmetric and antisymmetric combinations,

δN = δN+ + δN− , J̃ = δN+ − δN− (32.5.32)

appear in Δ± in the form

Δ± =
1
8

(
1√
K

δN ±
√
KJ̃

)2

, (32.5.33)

where15

K =
π

2 arccosΔ
. (32.5.34)

Comparison of the parameters u and K of the exact solution with that
obtained in the approximate treatment can shed light on the accuracy of
the bosonic approximation scheme. At Δ = 0, where there is no interaction
between the spinless fermions, the velocity of the bosons is equal to that of
fermions. For small values of Δ, where arccosΔ ≈ π/2 − Δ, both the exact
result and the bosonic treatment give the same corrections up to linear order:

�u ≈ Ja(1 − 2Δ/π) , K ≈ 1 + 2Δ/π . (32.5.35)

Deviations appear for larger Δ values, where higher order corrections have
to be taken into account, indicating that the curvature of the true dispersion
curve cannot be neglected in establishing the relationship between the param-
eters of the Heisenberg chain and of the equivalent TL model. The Heisenberg
chain, at least in the low-energy sector, can still be mapped onto a TL model
with effective couplings. In other words the effects of the curvature can be
15 The difference compared to (15.5.119) is due to a redefinition of the model. The

antiferromagnetic side corresponds to Δ < 0 in the present treatment, while we
used the convention Δ > 0 there.
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eliminated by renormalizing the coupling constants. The mapping to the TL
model breaks down at Δ = ±1. The velocity of bosons vanishes at Δ = 1
and a ferromagnetic transition takes place. The velocity remains finite at the
isotropic antiferromagnetic point Δ = −1; it is given by �u = Jaπ. Never-
theless, a new phase appears due to the umklapp processes neglected until
now. As shown in Appendix L, umklapp processes are irrelevant in the planar
regime, where K > 1/2. They can be eliminated by a renormalization group
transformation discussed later in this chapter and the TL model with small-
momentum transfer turns out to be a stable fixed point of the transformation.
The umklapp processes become relevant for K < 1/2, that is for Δ < −1, and
generate a finite gap in the excitation spectrum.

The correlation functions of the spin-1/2XXZ Heisenberg–Ising chain can
be calculated directly in the spinless fermion representation in the continuum
limit. The same results are obtained if the general expressions given for the
TL model are applied to this one-component case. The exponents are related
to the scaling dimensions Δ± that depend on the anisotropy via K and on the
number of particles added to the branches by the operator whose correlations
are considered. The operator Sz in the correlation function

〈
Sz

l (t)Sz
0 (0)

〉
does

not change the number of reversed spins, δN = 0. It creates a particle–hole
pair either with small momentum (J̃ = 0) or with q ≈ ±2kF (J̃ = 2). The
leading terms in the correlation function are

〈
Sz

l (t)Sz
0 (0)

〉 ≈ A

π2

x2 + u2t2

(x2 − u2t2)2
+B

cos 2kFx

(x2 − u2t2)K
, (32.5.36)

where x is the distance of the lth lattice point from the origin.
In calculating the correlation function

〈
S+

l (t)S−
0 (0)

〉
we have to take into

account that when a particle is removed from the system, the change in the
parity of the number of particles leads to a rearrangement of the allowed k
values, and the lowest energy state corresponds to a symmetric distribution
of the momenta. δN = 1 does not imply J̃ = 1. Instead of that we have J̃ = 0
and J̃ = ±2 for the lowest lying excitations. Accordingly the leading terms of
the asymptotic form of the transverse correlation function are

〈
S+

l (t)S−
0 (0)

〉 ≈ A
1

(x2 − u2t2)1/4K
+B

x2 + u2t2

x2 − u2t2
cos 2kFx

(x2 − u2t2)K+1/4K
.

(32.5.37)

32.5.2 Generic Properties

We are now in the position to collate the characteristic features of Luttinger
liquids. The elementary excitations are bosonic collective density oscillations
with a dispersion linear in |q| at long wavelengths. The slope of the dispersion
curve defines the sound velocity u. If there are several branches of excitations,
e.g., charge density and spin density oscillations for spin-1/2 fermions, these
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excitations do not interact (this is known under the name “spin–charge sep-
aration”) and propagate with different velocities ui. The number of particles
and the current are conserved, and there are two topological excitations as-
sociated with each bosonic branch, corresponding to adding particles to the
system or generating a current. The Hamiltonian of the ith component is

Hi =
∑

q

�ui|q|β†
qiβqi +

π�

4L

[
vNi

(δNi)
2 + vJi

J2
i

]
, (32.5.38)

and the momentum operator is

P =
∑

q

�qb†qibqi + �

(
kF +

π

2L
δNi

)
Ji . (32.5.39)

The velocities of the topological excitations are not independent; they obey

u2
i = vNi

vJi
. (32.5.40)

The spectrum of low-energy bosonic excitations form towers about the points
labeled by the integers δNi and Ji. As a consequence, the correlation func-
tions exhibit at T = 0 a power-law decay in the asymptotic regime, at long
distances and times, with coupling-strength-dependent exponents. The expo-
nents depend on the correlation parameters Ki = ui/vNi

= vJi
/ui.

The characteristic Kohn anomaly wave number 2kF varies linearly with the
charge density. The Luttinger-liquid state becomes unstable when an integer
multiple of 2kF is equal to the reciprocal-lattice vector 2π/a.

This kind of behavior was originally found in the Tomonaga–Luttinger
model with a strictly linear dispersion relation when the large-momentum-
transfer processes were excluded. We may say in view of the exact results in the
XXZ and Hubbard models that neither of these assumptions are necessary.
A curvature in the dispersion relation may result in an interaction between
the bosonic degrees of freedom, but this interaction is not relevant. It can be
eliminated by a renormalization procedure leading to a Luttinger liquid with
effective couplings. That is why a weak nearest-neighbor interaction in the
extended Hubbard model does not destroy the Luttinger-liquid properties.

The problem of large-momentum-transfer and umklapp processes is more
delicate. There is no good physical reason why these processes should be
forbidden in realistic physical systems. In the Hubbard model, for example,
the strength of the interaction is independent of the momentum transfer. The
coupling constants of the backward and umklapp processes are the same as
that for forward scattering. The umklapp processes, which play a role only in
a half-filled model, seem to be relevant; they generate a gap in the excitation
spectrum. On the other hand, backward scattering seems to be irrelevant; it
does not seem to destroy the Luttinger-liquid behavior even when it is present.
The relevance or irrelevance of couplings can be studied by a renormalization
transformation. Here we will apply the procedure presented in Appendix M
to derive the scaling equations of the one-dimensional electron gas and to
demonstrate that backward scattering can indeed be eliminated.
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32.5.3 Scaling Theory of the One-Dimensional Electron Gas

For the sake of simplicity we consider first non-half-filled systems and neglect
the umklapp processes. The g4 terms that lead to a trivial renormalization of
the Fermi velocity will also be omitted. There are three independent couplings
in an unpolarized system since the process with coupling g1‖, where particles
with the same spin are scattered backwards, cannot be distinguished from
forward scattering with coupling g2‖. The strength of this process is in fact
g1‖ − g2‖ owing to the different order of the operators in the two terms of
the Hamiltonian. When the spins of the scattered particles are different, and
the spin is conserved in the scattering process, the forward- and backward-
scattering processes with coupling constants g2⊥ and g1⊥, respectively, can be
distinguished.

Consider a scattering process in which the initial state

|i〉 = c†kF+k1αd
†
−kF+k2β |ΨFS〉 (32.5.41)

with a right- and a left-moving electron outside the Fermi sea is scattered into
the final state

|f〉 = d†−kF+k3γc
†
kF+k4δ|ΨFS〉 . (32.5.42)

The matrix element of the interaction Hamiltonian between these states gives

〈f |Hint|i〉 =
1
L

[
(g1‖ − g2‖)δαγδβδδαβ + g1⊥δαγδβδδα,−β − g2⊥δαδδβγδα,−β

]
.

(32.5.43)

The three terms correspond to the three processes discussed above.
Applying the procedure presented in Appendix M we decrease the band-

width cutoff from D = �vFkc to D − δD. Processes in which the energies of
some of the intermediate particles are in the narrow ranges [−D,−D + δD]
or [D − δD,D] become now forbidden. Their missing contributions can be
compensated by modifying the coupling constants. The original model and
the new model with the smaller cutoff and modified couplings describe the
same physical behavior if the matrix elements of the scattering matrix are
identical at least for electrons near the Fermi energy.

The correction to the effective Hamiltonian of the new model up to second
order in the coupling constants is

δH′
int = HintP

1
z −H0

Hint , (32.5.44)

where z is the energy of the initial state and P is a projection operator that
ensures that there is at least one electron in the neighborhood of the upper
band edge, in the region [D − δD,D], in the intermediate state, or at least
one hole near the lower band edge, in the range [−D,−D + δD]. A lengthy
but straightforward calculation yields
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〈f |δH′
int|i〉 = − 1

L

1
2π�vF

[
g2
1⊥δαγδβδδαβ + g2

1⊥δαδδβγδα,−β

+ 2g1⊥(g1‖ − g2‖ + g2⊥)δαγδβδδα,−β

]
δD

D
.

(32.5.45)

The spin-dependent factors help to identify the contributions to the different
processes. We find

δ(g1‖ − g2‖) = − 1
D

1
2π�vF

g2
1⊥δD ,

δg1⊥ = − 1
D

1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥)δD ,

δg2⊥ = − 1
D

1
2π�vF

g2
1⊥δD .

(32.5.46)

Linear combinations of these equations lead to the relations

δ(g1‖ − g2‖ − g2⊥) = 0 ,

δ(g1‖ − g2‖ + g2⊥) = − 1
D

1
π�vF

g2
1⊥δD ,

δg1⊥ = − 1
D

1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥)δD .

(32.5.47)

The combination g1‖−g2‖−g2⊥ is invariant under the renormalization trans-
formation. The two other combinations scale together.

The new couplings are obtained by decreasing the cutoff by δD; hence, for
small changes in the cutoff and the couplings

δgi = −dgi

dD
δD . (32.5.48)

The flow equations of the effective couplings can be written in differential
form

d(g1‖ − g2‖)
dD

=
1
D

1
2π�vF

g2
1⊥ ,

dg1⊥
dD

=
1
D

1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥) ,

dg2⊥
dD

=
1
D

1
2π�vF

g2
1⊥ .

(32.5.49)

When the appropriate linear combinations are taken,

d(g1‖ − g2‖ − g2⊥)
dD

= 0 ,

d(g1‖ − g2‖ + g2⊥)
dD

=
1
D

1
π�vF

g2
1⊥,

dg1⊥
dD

=
1
D

1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥) .

(32.5.50)
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The flow of the renormalized couplings as the cutoff is decreased is displayed
in Fig. 32.34.

Fig. 32.34. Flow of the renormalized couplings of the one-dimensional electron gas

The line g1⊥ = 0 is a fixed line of the scaling equations. No backward scat-
tering is generated by higher order processes if there is no backward scattering
in the bare Hamiltonian. The couplings of the forward-scattering processes,
g1‖ − g2‖ − g2⊥ and g1‖ − g2‖ + g2⊥, are marginal; they remain unrenormal-
ized. That is why the critical exponents of the correlation functions of the TL
model are not universal; they depend on the coupling constants. The stabil-
ity of the fixed line is, however, different whether g1‖ − g2‖ + g2⊥ ≥ |g1⊥| or
g1‖−g2‖+g2⊥ < |g1⊥|. In the former case, the scaling curves flow in from both
sides to g1⊥ = 0 and g1‖−g2‖+g2⊥ takes a finite nonuniversal value. The half-
line g1⊥ = 0, g1‖−g2‖+g2⊥ ≥ 0 is thus stable under renormalization when the
bare couplings of the model satisfy the condition g1‖−g2‖+g2⊥ ≥ |g1⊥|. Even
if the bare value of g1⊥ is finite, that is backward scattering is present in the
original model, the absolute values of the couplings decrease as the cutoff be-
comes smaller and g1⊥ scales to zero. Backward scattering is irrelevant in this
case, it is gradually transformed out, eliminated. The model can be mapped
onto an equivalent model with modified cutoff and modified, renormalized val-
ues for the couplings of the forward-scattering processes but with no backward
scattering.

The situation is different for g1‖−g2‖ +g2⊥ < |g1⊥|. As seen in Fig. 32.34,
the scaling curves flow out, the couplings get stronger and stronger under
renormalization. This happens also when the coupling g1⊥ is arbitrarily small
but finite provided that g1‖ − g2‖ + g2⊥ < 0. Backward scattering is then
relevant: the model scales away from the TL model.

We mention, without doing the calculations here, that the combination
g1‖ − g2‖ − g2⊥ is not invariant when umklapp processes with coupling g3⊥
are taken into account in a half-filled system. The scaling equations are
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d(g1‖ − g2‖ − g2⊥)
dD

=
1
D

1
π�vF

g2
3⊥,

dg3⊥
dD

=
1
D

1
π�vF

g3⊥(g1‖ − g2‖ − g2⊥) .
(32.5.51)

Umklapp processes are irrelevant; they can be transformed out, if g1‖ − g2‖ −
g2⊥ ≥ |g3⊥|. Otherwise they are relevant and drive the system toward the
strong-coupling limit, away from Luttinger-liquid behavior.

We can now return to the problem of why the Hubbard model behaves as
a Luttinger liquid in spite of the fact that backward-scattering processes are
allowed in the bare Hamiltonian. Since the strength U of the interaction is
independent of the momentum transfer and only electrons with opposite spins
interact,

g1‖ = g2‖ = 0 , g1⊥ = g2⊥ = U, (32.5.52)
which means that

g1‖ − g2‖ − g2⊥ = −U, g1‖ − g2‖ + g2⊥ = U, g1⊥ = U. (32.5.53)

When U is positive, g1⊥ and g1‖ − g2‖ + g2⊥ scale to zero according to the
scaling equations, and g1‖ − g2‖ − g2⊥ remains invariant. Hence in the fixed
point of the renormalization transformation we have

g∗1‖ − g∗2‖ − g∗2⊥ = −U, g∗1‖ − g∗2‖ + g∗2⊥ = g∗1⊥ = 0 . (32.5.54)

The solution of these equations is

g∗1‖ − g∗2‖ = − 1
2U, g∗2⊥ = 1

2U, g∗1⊥ = 0 , (32.5.55)

and the fixed-point couplings can be chosen as

g∗1‖ = g∗1⊥ = 0 , g∗2‖ = g∗2⊥ = 1
2U. (32.5.56)

This shows that the backward-scattering terms of the Hubbard model are
irrelevant; they can be transformed out. Only the forward-scattering processes
survive. That is why the Hubbard model behaves like a Luttinger liquid.

The situation is different in the half-filled case, when umklapp processes
have to be taken into account. The couplings between the spin degrees of
freedom, g1⊥ and g1‖ − g2‖ + g2⊥, still scale in the same way as above. The
backward scattering is irrelevant and the spin modes are soft bosons with
linear dispersion curve. The bare couplings in the charge sector are

g1‖ − g2‖ − g2⊥ = −U, g3⊥ = U. (32.5.57)

The condition g1‖−g2‖−g2⊥ ≥ |g3⊥| for the irrelevance of the umklapp terms
is not satisfied in the Hubbard model and the renormalization transformation
scales the couplings to strong values, away from Luttinger-liquid behavior. Al-
though the present approximation, in which only the lowest order corrections
were calculated to the scaling equations, does not allow one to calculate the
fixed-point values in the strong-coupling limit and to determine the physical
properties, it may not be surprising that the umklapp terms generate a gap
in the charge sector, as will be discussed later.



306 32 Fermion Liquids

32.5.4 Experimental Results

We have seen already in Chapter 7, where a selection of possible crystal struc-
tures was presented, that there exist materials in which the chemical binding
is strongly anisotropic, as if they were built up from weakly coupled chains of
atoms. Further examples will be shown in Chapter 33. Although the atoms
form a regular three-dimensional lattice, the electrons can propagate in practi-
cally only one preferred direction, since the overlap between the wavefunctions
of neighboring atoms is extremely weak in the other directions. These materi-
als are quasi-one-dimensional from the point of view of electronic properties
and can be modeled by a one-dimensional interacting electron gas. The theo-
retical results discussed until now are valid strictly speaking only for exactly
one-dimensional models. We are never dealing with such an ideal situation
when the behavior of quasi-one-dimensional systems of weakly coupled chains
is studied. Nevertheless we can claim, based on experimental results and the-
oretical considerations, that there exists a temperature range, where the one-
dimensional features are dominant and Luttinger-liquid properties might be
observed.

Below a certain crossover temperature T ∗, where the thermal energy is
comparable with the kinetic energy of the hopping between the chains, the
coupling between the chains cannot be neglected. The electron system is then
truly three dimensional. In strongly anisotropic systems another characteristic
temperature T ∗∗ can be defined from the width of that portion of the band
where the dispersion curve is well approximated by that of a one-dimensional
model. When the overlap integrals between the wavefunctions of neighboring
atoms are much weaker between the chains than within the chains, T ∗ may
be much smaller than T ∗∗, and there is an appreciable temperature interval
between them where the properties are one-dimensional-like. Similarly, when
frequency-dependent quantities are measured, the coupling between chains
may distort the one-dimensional spectrum at very low energies, but there
might be an intermediate frequency window where one-dimensional physics
could be observed.

These crossover temperatures are not sharply defined and it is difficult
to find experimental results where the non-Fermi-liquid behavior can be
demonstrated in a wide temperature interval without symmetry breaking.
Nevertheless, there are indications of one-dimensional behavior in quasi-one-
dimensional materials. The Bechgaard salts [(TMTSF)2X with X=PF6, AsF6,
and ClO4] to be discussed in more detail in the next chapter are well-known
examples. Although a gap is opened in their spectrum, the optical conductivity
shows anomalous behavior at somewhat higher energies (higher frequencies),
where the interchain couplings become ineffective. As shown in Fig. 32.35,
the optical conductivity of Bechgaard salts has a power-law frequency depen-
dence, σ(ω) ∼ ω−ν , over more than a decade with an anomalous exponent,
which is characteristic for a Luttinger liquid.
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Fig. 32.35. Frequency-dependent optical conductivity of Bechgaard salts. The nor-
malized conductivities are shown on a log–log scale. The solid line is a fit of the form
σ(ω) ∼ ω−ν [Reprinted with permission from A. Schwartz et al., Phys. Rev. B 58,
1261 (1998). © (1998) by the American Physical Society]

The single-particle excitation spectrum can be probed by angle-resolved
photoemission spectroscopy (ARPES). The experimental spectra on TTF–
TCNQ, which is another well-known example of quasi-one-dimensional organic
conductors, indicate marked deviations from conventional metallic behavior.
The unconventional features, namely the absence of a Fermi edge and the
spectroscopic evidence for spin–charge separation, can be explained by the
physics of Luttinger liquids.

Tunneling experiments are suitable to measure the density of states. The
derivative of the current with respect to voltage is proportional to the con-
volution of the densities of states on the two sides. If the density of states is
structureless on one side, the dI/dV signal measures the density of states of
the other side directly. Figure 32.36 shows the dI/dV spectrum of the so-called
purple bronze (Li0.9Mo6O17), a highly anisotropic quasi-one-dimensional con-
ductor.

The experimental result can be fit by a form

dI
dV

∝ |V |α (32.5.58)

with α = 0.6. This corresponds to a density of states

ρ(ε) ∝ |ε− εF|α , (32.5.59)

which is precisely the functional form we obtained for the density of states of
Luttinger liquids.
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Fig. 32.36. The dI/dV spectrum of purple bronze at low temperatures near zero
bias plotted in both (a) linear and (b) double logarithmic scale. The dashed lines
are power-law fits with exponent α = 0.6 [Reprinted with permission from J. Hager
et al., Phys. Rev. Lett. 95, 186402 (2005). © (2005) by the American Physical
Society]

An interesting development of the last decades was the discovery of carbon
nanotubes, which are either metallic or insulating depending on the chirality
of the tube. The low-energy part of the band structure of the metallic nano-
tubes can be well approximated by a multicomponent TL model. The voltage
and temperature dependence of the conductance exhibit anomalous power-law
behavior just as expected for a Luttinger liquid. The results of such measure-
ments are shown in Fig. 32.37.

Fig. 32.37. Scaled differential conductance of differently contacted nanotubes
[M. Bockrath et al., Nature 397, 598 (1999)]
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32.5.5 Luttinger Liquids in Higher Dimensions

The Tomonaga–Luttinger model is by definition a one-dimensional model.
There is no simple generalization to higher dimensions. The question whether
Luttinger-liquid behavior is possible in higher dimensions or not remains an
interesting and as yet unsolved problem. The question is especially relevant in
connection with the attempts to understand the “normal-state” properties of
high-temperature superconductors. The anomalous behavior above the super-
conducting state indicates that these layered, quasi-two-dimensional systems
are not normal Fermi liquids. One possibility is that they behave as Luttinger
liquids. Studying the two-dimensional Hubbard model and its generalizations
may help to elucidate this problem. There are only a few exact statements
about the two-dimensional Hubbard model. One can show that the half-filled
model is not Fermi liquid for weak couplings apart from an exponentially
small temperature region, but it is not Luttinger liquid since a gap is gener-
ated in the excitation spectrum. However, away from half-filling, the model
can be shown to be Fermi liquid at least for weak couplings. Luttinger-liquid
behavior can thus only be observed, if at all, in two-dimensional models with
more complicated interactions.

32.6 Alternatives to Luttinger-Liquid Behavior

The Luttinger-liquid behavior discussed up to now is a generic feature of a
large class of one-dimensional models, but it is only one possible low-energy
state of one-dimensional Fermi systems. Although strictly one-dimensional
systems may not undergo a phase transition at any finite temperature, broken-
symmetry phases may appear in quasi-one-dimensional systems, as will be
discussed in the next chapter. Here we will consider other alternatives with
no broken symmetry.

32.6.1 Mott Insulator

Luttinger-liquid behavior was found in the repulsive Hubbard model away
from half filling, when umklapp processes can be neglected. The umklapp
processes were neglected also in our study of the TL model. The scaling ap-
proach predicted that the coupling of the umklapp term (g3⊥) scales to strong
coupling in the half-filled Hubbard model, indicating that this coupling is rel-
evant, and the Luttinger-liquid state is not a stable fixed point.

The Hubbard model can be solved exactly in the half-filled (ne = 1) case
as well. The parameter k0 takes the value k0 = π and the equations for the
root densities given in (32.4.27) can be solved in terms of Bessel functions to
yield
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ρ(k) =
1
2π

+ cos k

∞∫

−∞

dξ
2π

J0(ξ) cos(ξ sin k)
1 + e2u|ξ| ,

σ(λ) =

∞∫

−∞

dξ
2π

J0(ξ)
2 cosh(uξ)

e−iξλ .

(32.6.1)

The ground-state energy per site can be expressed in the form

E0/N = −4t

∞∫

0

dξ
ξ

J0(ξ)J1(ξ)
1 + e2uξ

. (32.6.2)

Since the ground-state energy is an analytic function of u = U/4t for real U ,
except for U = 0, no phase transition occurs as a function of U for any U > 0.

Just as in a non-half-filled model, the excited states are combinations of
spinons, holons, and antiholons, but the holons and antiholons of the half-filled
model are different in nature from their counterparts in the non-half-filled case.
The spinon dispersion relation is obtained by eliminating the parameter λs
from the equations

εs(λs) = 2t

∞∫

0

dξ
ξ

J1(ξ) cos(ξλs)
cosh(ξu)

,

q(λs) = 2

∞∫

0

dξ
ξ

J0(ξ) sin(ξλs)
cosh(ξu)

.

(32.6.3)

The holon dispersion curve can be calculated similarly from

εh(kh) = 2t cos kh + U/2 + 2t

∞∫

0

dξ
ξ

J1(ξ) cos(ξ sin kh)
cosh(ξu)

e−ξu ,

q(kh) = kh + 2

∞∫

0

dξ
ξ

J0(ξ) sin(ξ sin kh)
1 + e2uξ

(32.6.4)

by eliminating kh. The momentum of spinons covers only half of the Brillouin
zone; it varies in the range [−π/2, π/2] and a gapless spectrum is obtained.
On the other hand, the momentum of holons covers the entire Brillouin zone,
and the spectrum is gapped. For small q values

εh =
√
Δ2

0 + u2
cq

2 (32.6.5)

with

Δ0 = U/2 − 2t+ 2t

∞∫

0

dξ
ξ

J1(ξ)e−ξU/4t

cosh(ξU/4t)
. (32.6.6)
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In the weak-coupling limit

Δ0 =
4t
π

√
U/te−2πt/U , uc = 2t (32.6.7)

and in the strong-coupling limit

Δ0 = U/2 − 2t+ 4 ln 2
t2

U
, uc = t

√
U/t . (32.6.8)

Antiholons were defined for a non-half-filled band in the ranges [−π,−2kF]
and [π, 2kF]. These regions shrink to zero in the half-filled case. Nevertheless,
antiholons can be defined by studying excitations with an extra added particle.
Since Ne ≤ N was assumed from the very beginning, such states should be
considered in the complementer space by studying the motion of Ne − 1 holes
through a lattice of doubly occupied sites. Removing a hole from the half-
filled band creates a spinon and an antiholon. Antiholons are defined in the
entire Brillouin zone and they have identical dispersion relation to holons
by electron–hole symmetry. The same dispersion relation can be derived by
considering particle–hole excitations in the half-filled band.

Although the gap in the holon and antiholon spectrum is exponentially
small for weak Coulomb repulsion, it is finite for arbitrary finite U . While
metallic behavior is found away from half filling in the one-dimensional Hub-
bard model, the half-filled model is nonmetallic for arbitrary positive values of
the Coulomb repulsion. The critical value of U for the metal–insulator transi-
tion from the metalliclike free electron behavior at U = 0 to the gapped phase
for U > 0 is Uc = 0, and the transition is of BKT type.

The field-theoretical treatment of the one-dimensional Fermi system given
in Appendix L sheds more light on what happens in the half-filled case. The
Hamiltonian of the TL model can be rewritten in terms of charge and spin
phase fields and their conjugates in the form of a harmonic model,

H = 1
2�uc

∫
dx
[
KcΠ

2
c (x) +

1
Kc

(
∂xφc(x)

)2
]

+ 1
2�us

∫
dx
[
KsΠ

2
s (x) +

1
Ks

(
∂xφs(x)

)2
]
,

(32.6.9)

and the umklapp term that depends only on the charge degrees of freedom
gives rise to a term

Hu =
2g3⊥

(2πα)2

∫
dx cos

(√
8πφc(x)

)
. (32.6.10)

The spin part is unaffected; hence, the low-energy part of the spectrum of
spin excitations is identical to that of the TL model. The spin bosons have
linear dispersion relation and propagate with velocity us. Owing to the extra
term the charge part is described by the sine-Gordon model well known in
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field theory. It has a massive, gapped spectrum. The relevance or irrelevance
of the umklapp term can be studied by analyzing the scaling dimension of the
umklapp operator cos(

√
8πφc(x)). This operator transfers two right-moving

particles to the left-moving branch, δN+,↑ = δN+,↓ = 1, δN−,↑ = δN−,↓ =
−1, that is Jc = 4, δNc = Ns = Js = 0 and thereforeΔc,± = Kc andΔs,± = 0.
The scaling dimension of the operator is d = 2Kc. Umklapp processes are
marginal if d = 2, that is if Kc = 1. They are relevant for Kc < 1 and
irrelevant for Kc > 1. The condition for the irrelevance is g2c < 0 in the TL
model. When the forward-scattering term with coupling g1‖ is also taken into
account, the umklapp term is relevant if

g2‖ − g1‖ + g2⊥ > 0 . (32.6.11)

This is in agreement with the result of the scaling theory, where we saw that
the fixed line g3⊥ is unstable if g1‖ − g2‖ − g2⊥ < 0.

The cos(
√

8πφc(x)) term in the Hamiltonian pins the value of φc(x) when
its coupling gets larger and larger under the scaling transformation. The low-
energy phase fluctuations are eliminated and a gap arises in the charge part
of the spectrum leading to a nonmetallic behavior. This gap is a many-body
effect and the insulating state is due to the interactions between electrons. It
is for this reason that this phase is known as a Mott insulator.

32.6.2 Luther–Emery Liquid

We have seen that backward scattering is irrelevant if g1‖− g2‖ + g2⊥ ≥ |g1⊥|,
and the fixed line g1⊥ = 0 is stable for g1‖−g2‖+g2⊥ > 0. It becomes relevant
for g1‖ − g2‖ + g2⊥ < 0. This result can be derived from the field-theoretic
formulation of the one-dimensional electron gas in complete analogy with
our previous considerations for the umklapp process. Backward scattering
contributes a term

Hbw =
2g1⊥

(2πα)2

∫
dx cos

(√
8πφs(x)

)
(32.6.12)

to the Hamiltonian in field-theoretical language. This operator is marginal
if Ks equals unity, relevant for Ks < 1 and irrelevant for Ks > 1. Thus
backward scattering becomes relevant for g2s > 0. This gives precisely the
previous conditions when g1‖ is also taken into account. A relevant backward
scattering fixes the phase φs and a gap appears in the spin part of the exci-
tation spectrum. This is the case for U < 0 in the Hubbard model. The state
with gapped spin excitations and gapless charge excitations is referred to as
a Luther–Emery liquid.16 For the negative-U Hubbard model we get

Δ(s)
0 =

8
π
t

√
|U |
t

sin3(πne/2)e−2πt sin(πne/2)/|U | , (32.6.13)

16
A. Luther and V. J. Emery, 1974.



32.7 Quantum Hall Liquid 313

for the spin gap from the Bethe ansatz in the weak-coupling limit. The opening
of the gap is again exponentially slow; the transition to the Luther–Emery
liquid at U = 0 is of Berezinskii–Kosterlitz–Thouless type.

In multicomponent Luttinger liquids, where there are several charge and
spin modes, gaps may be generated in them independently and the phase may
be characterized by the number of remaining gapless modes.

32.6.3 Phase separation

For strong Coulomb repulsion, when doubly occupied sites are forbidden, the
half-filled Hubbard model is equivalent to a Heisenberg model. When the band
is close to half filling, the so-called t–J model is obtained with a few holes
propagating between the localized spins. Such a system behaves as a Lut-
tinger liquid in one dimension for weak exchange coupling J . The elementary
excitations are holons and spinons. For larger values of J/t the holon liquid
becomes unstable and separates into a hole-rich and a hole-poor phase. Phase
separation and stripe formation is a particularly interesting question in the
non-Fermi-liquid phases of two-dimensional systems.

32.7 Quantum Hall Liquid

We mentioned already that the problem of an eventual non-Fermi-liquid be-
havior of the two-dimensional electron gas is an unsolved problem in general,
even though many efforts have been devoted to it recently. It is well estab-
lished, however, that in one special case, namely in strong magnetic field,
the two-dimensional interacting electron gas is definitely not a Fermi liquid
and the elementary excitations of the particular quantum liquid are unusual
quasiparticles. They can be observed in the quantum Hall effect.

32.7.1 Fractional Quantum Hall Effect

It was shown in Chapter 24 that plateaus may be observed in the magnetic-
field dependence of the nondiagonal components of the conductivity of MOS-
FET devices, where carriers are constrained to a narrow region near the in-
terface forming a two-dimensional electron gas (2DEG). Similar plateaus are
found when the conductivity is measured as a function of the charge den-
sity for a fixed magnetic field. When the electrons can move only parallel to
the z = 0 plane and the magnetic field is oriented in the z-axis, σxy takes
quantized values

σxy = ν
e2

h
(32.7.1)

on the plateaus. The resistivity ρxx vanishes in the same regions.
The occurrence of plateaus with integer ν is known as the integer quantum

Hall effect. It could be explained in the one-particle picture by assuming that
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the Landau levels become broadened in the presence of impurities and some of
these states become localized. Plateaus appear in the nondiagonal elements of
the conductivity and the resistivity vanishes, when the chemical potential falls
into the range of localized states as the magnetic field or the charge density
is varied.

Soon after the discovery of the integer quantum Hall effect, D. C. Tsui,
H. L. Störmer, and A. C. Gossard

17 observed a new plateau in a
GaAs/GaxAl1−xAs heterostructure at very low temperatures, below about
1K, in very strong fields at ρxy = 3h/e2. This corresponds to a value ν = 1/3,
that is to a one-third-filled lowest Landau level. The experimental results are
shown in Fig. 32.38.

Fig. 32.38. First observation of the fractional quantum Hall effect at ν = 1/3
[Reprinted with permission from D. C. Tsui, H. L. Stormer, and A. C. Gossard,
Phys. Rev. Lett. 48, 1559 (1982). © (1982) by the American Physical Society]

It soon turned out that fractional quantization of the Hall plateaus appear
not only at ν = 1/3, but at many other fractional ν values as well, e.g., at
ν = 2/3, 2/5, 3/5, 3/7, 4/7 with accuracy 10−3–10−5. Similar effects could be
observed at fractional values larger than unity, at ν = 4/3, 5/3, 9/7, 10/7, 11/7.
The plateaus are always accompanied by the vanishing of ρxx. Weaker anoma-
lies could be seen at further ν = p/q values with q odd. Somewhat different

17 See the footnote on page 6 of Volume 1.
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anomalies were found at ν = 1/2 or 3/2. Figure 32.39 shows the anomalies
for a multitude of ν values.

Fig. 32.39. Overview of diagonal resistivity ρxx and Hall resistance ρxy measured
on a GaAs/AlGaAs heterostructure at about 100mK up to 30 T. N indicates the
Landau-level quantum number and ν is the filling factor [Reprinted with permission
from R. Willett et al., Phys. Rev. Lett. 59, 1776 (1987). © (1987) by the American
Physical Society]

These results arose enormous interest because the plateaus at fractional
ν values are strong indications that the interaction between electrons opens
gaps inside the Landau level for special fractional fillings. The situation is
similar to the metal–insulator transition to be discussed later. Systems that
would be metallic according to band structure calculations may turn out to
be insulators since interactions destroy the single-particle picture and open a
gap, a forbidden region, in the neighborhood of the Fermi energy.

32.7.2 Laughlin State

As the interaction between electrons seems to play an important role in the
fractional quantum Hall effect we cannot content ourselves with the solution of
the problem of noninteracting electrons in strong magnetic field as presented
in Chapter 22. Instead of considering the Hamiltonian given in (22.1.1) we
have to study the eigenvalue problem of the Hamiltonian
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H =
1

2me

Ne∑

i=1

[(
pi + eA(ri)

)2 + V (ri)
]

+ 1
2

∑

i�=j

ẽ2

|ri − rj | , (32.7.2)

where the Coulomb repulsion between electrons and the potential of the neu-
tralizing homogeneous background are explicitly taken into account. As the
most pronounced effect appears at filling ν = 1/3 of the lowest Landau level,
we first consider this case.

The degeneracy of the Landau levels [see (22.1.25)] is given by

Np =
LxLy

2πl2H
. (32.7.3)

We assume that Ne = 1
3Np. When the interaction is neglected, the wavefunc-

tions in the lowest (n = 0) Landau level can be written according to (22.1.88)
in the symmetric gauge in the form

ψm(z) = (2πl2H2mm!)−1/2

(
z

lH

)m

e−|z|2/4l2H (32.7.4)

with z = x + iy. The quantum number m takes integer values from 0 to
Np−1. The many-particle wavefunction ofNe electrons can be given as a linear
combination of Slater determinants formed from the one-particle functions. In
a magnetic field when Ne particles fill completely the lowest Landau level, a
single Slater determinant can be constructed:

Ψ(z1, z2, . . . , zNe) = D(z1, z2, . . . , zNe) exp

(
−

Ne∑

i=1

|zi|2
4l2H

)
, (32.7.5)

where, apart from a normalizing factor,

D(z1, z2, . . . , zNe) =

∣∣∣∣∣∣∣∣∣

1 z1 z2
1 . . . zNe−1

1

1 z2 z2
2 . . . zNe−1

2
...

...
...

. . .
...

1 zNe
z2

Ne
. . . zNe−1

Ne

∣∣∣∣∣∣∣∣∣

. (32.7.6)

This Vandermonde determinant can be written in the simple form

D(z1, z2, . . . , zNe) =
∏

i>j

(zi − zj) . (32.7.7)

When the lowest Landau level is not completely filled, the wavefunction
could be written as a linear combination of Slater determinants. Instead of
that R. B. Laughlin

18 (1983) proposed to modify the wavefunction of the
completely filled level by a Jastrow factor19 f(zi − zj):
18 See footnote on page 6 of Volume 1.
19

R. Jastrow, 1955.
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Ψ =
∏

i>j

(zi − zj)f(zi − zj) exp

(
−

Ne∑

i=1

|zi|2
4l2H

)
. (32.7.8)

This factor was invented to incorporate the effect of Coulomb repulsion be-
tween particles into the wavefunction, reducing thereby its contribution to the
energy. The Pauli exclusion principle requires that f(zi −zj) be an even func-
tion under the exchange of the coordinates. As the simplest choice Laughlin

proposed the function

Ψ =
∏

i>j

(zi − zj)2p+1 exp

(
−

Ne∑

i=1

|zi|2
4l2H

)
. (32.7.9)

When the product of the functions (zi−zj)2p+1 is expanded in a power series,
the wavefunction contains the (2p+ 1)(Ne − 1)th power of the coordinates of
each particle. However, the highest power that may occur in the wavefunction
of the lowest Landau level is Np − 1 if it is formed from the one-particle
functions (32.7.4). The Laughlin wavefunction can be used only if

Ne <
Np

2p+ 1
. (32.7.10)

The one-third-filled Landau level can thus be described by this wavefunction
with p = 1. For somewhat larger filling (in somewhat weaker field for un-
changed number of electrons) the Jastrow factor with power p = 1 may not
occur for every pair of particles. On the other hand, when the filling factor
is smaller (the field is stronger for unchanged number of electrons) also the
power p = 2 may occur for some pairs. Similar arguments can be used for
fillings ν = 1/(2p + 1). This change in the character of the wavefunction at
these particular fillings may give rise to a discontinuity in the chemical po-
tential as a function of the filling (or magnetic field), implying that a finite
energy is needed to add a particle: the ground state is incompressible at fill-
ings ν = 1/(2p + 1). At these particular fillings the ground state cannot be
obtained from the ground state of the noninteracting two-dimensional electron
gas by adiabatic continuation, hence this state is not a Fermi liquid. It is a new
quantum liquid state of matter with particular properties. Electrons are not
localized into a Wigner-crystal-like structure despite the repulsion between
them; their spatial distribution is homogeneous and the state is liquidlike.
This state of matter is referred to as the quantum Hall liquid.

Although the Laughlin wavefunction does not contain a variational pa-
rameter, it could be considered as the best available wavefunction at filling
ν = 1/(2p + 1) of the lowest Landau level. Comparing it with the results of
exact numerical calculations for systems with relatively small number of parti-
cles, it gives the ground-state energy with surprising accuracy, and its overlap
with the exact ground-state wavefunction of finite systems is very close to
unity.
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32.7.3 Quasiparticles in the Quantum Hall Liquid

The ground state of the two-dimensional electron gas in a strong magnetic field
is not a Fermi liquid and the low-lying excitations are not fermionic quasi-
particles. Laughlin constructed the wavefunction of the state containing one
elementary excitation, a quasiparticle or a quasihole, and calculated the gap
in their excitation spectrum. Moreover, he has shown that these quasiparti-
cles have fractional charge, e∗ = e/(2p+1). Measurement of the current noise
spectrum gave evidence that the charge of the elementary excitations is indeed
fractional. Owing to this anomalous charge, these quasiparticles are neither
bosons nor fermions. They obey an intermediate, fractional statistics depend-
ing on the charge and are called anyons . They play an important role at other
fillings as well. The fractional quantum Hall effect at fillings ν = q/(2p + 1)
with q > 1 is explained in this theory as being due to a Laughlin-like state in
the system of anyon quasiparticles. Thus, a hierarchical model can be built
up for the series of anomalies.

Although the low-energy excitations are suppressed in the bulk, there are
gapless excitations at the edge. We have seen already in Chapter 22 that edge
states play an important role in the quantized Hall conductance. These edge
states can be described as a chiral Luttinger liquid. Their treatment is beyond
the scope of this brief presentation of the fractional quantum Hall effect.

A different approach has been proposed by J. K. Jain (1989) to visu-
alize the quasiparticles and to describe the fractional quantum Hall effect.
He assumed that the quasiparticles of the two-dimensional electron system in
strong magnetic field are composite fermions that are bound states of an elec-
tron of charge −e and an even number of magnetic flux quanta 2pΦ∗

0, where
Φ∗

0 = h/e is the flux quantum used in the Landau theory of electrons in strong
magnetic field (it is twice the flux quantum used in superconductivity). When
each quasiparticle carries such a flux, the Ne particles generate an internal
field ±Ne2pΦ∗

0/F . Subtracting it from the applied field B the effective field
inside the sample is

Beff = B −Ne2pΦ∗
0/F . (32.7.11)

Taking into account the relationship

Np =
B

Φ∗
0

F (32.7.12)

between the magnetic induction and the degeneracy of the Landau level given
in (22.1.27) we find

Beff = B(1 − 2pNe/Np) . (32.7.13)

At the particular filling ν = 1/(2p+ 1) we have

Beff = B/(2p+ 1) . (32.7.14)

The effective field sensed by the composite fermions is much smaller than the
applied magnetic field, the degeneracy of the Landau levels of quasiparticles
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is 2p + 1-times smaller than the usual degeneracy of the Landau levels, and
thus Ne = Np/(2p+1) quasiparticles fill completely a quantized Landau level,
although the same number of particles would fill the lowest Landau level only
to a fraction 1/(2p+1) in the noninteracting case. Thus the fractional quantum
Hall effect is the analog of the integer quantum Hall effect if the composite
fermion quasiparticles are used instead of electrons. The anomalies at other
fillings q′/(2p′ +1) are explained by assuming that the composite fermions fill
several sublevels into which the lowest Landau level is split by the interaction.

32.7.4 Anisotropic Hall Liquids

It was assumed in the foregoing treatment of the quantum Hall effect that the
system remains homogeneous in space. Periodic variations of the charge, for
which we will see examples in quasi-one-dimensional systems in the next chap-
ter, were found numerically to be energetically unfavorable in two-dimensional
interacting electron systems. Recently it has been found experimentally that
the two-dimensional electron gas becomes anisotropic in not too strong mag-
netic fields at special fillings of the Landau levels. As seen in Fig. 32.40, the re-
sistivity of GaAs/AlGaAs heterostructures exhibits strong anisotropy in fields
of a few teslas at low temperatures, below 150mK, at fillings ν = 9/2, 11/2,
13/2, 15/2.
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Fig. 32.40. Resistivity of the two-dimensional electron gas in a GaAs/AlGaAs
heterostructure in two directions at T = 25mK and the increase of the anisotropy
as the temperature is lowered from T = 100 to 25mK [Reprinted with permission
from M. P. Lilly et al., Phys. Rev. Lett. 82, 394 (1999). © (1999) by the American
Physical Society]

It has been proposed that new quantum liquid phases may exist in the two-
dimensional electron gas with symmetries resembling the liquid-crystalline
smectic and nematic phases. This would result in an anisotropy of the
resistivity.
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Electronic Phases with Broken Symmetry

It was shown in the previous chapter that the normal Fermi-liquid state of an
isotropic Fermi system is stable if the Landau parameters characterizing the
interaction between quasiparticles satisfy the inequalities F s(a)

l > −(2l+1) for
all l. Otherwise a characteristic physical quantity, e.g., the effective mass, the
compressibility, the sound velocity, or the magnetic susceptibility, vanishes or
diverges. When this happens, fluctuations are enhanced so drastically in the
channel where the Pomeranchuk condition fails that the system undergoes
a transition to a new phase. For example, a divergence in the paramagnetic
susceptibility of the Fermi liquid indicates that a magnetic phase transition
occurs to a magnetically ordered state.

The occupations of states with ↑ and ↓ spin orientations are identical in the
paramagnetic phase both globally and locally. The paramagnetic state is in-
variant not only under spin reversal but also under rotation of all spins by the
same angle. The continuous spin-rotation symmetry of the Hamiltonian, still
retained in the paramagnetic state, is spontaneously broken at the transition
to the magnetically ordered state. The ↑ and ↓ spin states are occupied differ-
ently in the ferromagnetic state, while the densities of spin-up and spin-down
electrons oscillate in space with opposite phase in antiferromagnets.

Spontaneous breaking of a symmetry is a quite common phenomenon. As
was mentioned in Chapter 6, it often happens that the state realized in na-
ture (in mathematical terms the solution of the eigenvalue problem of the
Hamiltonian) does not possess all symmetries of the Hamiltonian. An inho-
mogeneous charge distribution may result from a translationally invariant
Hamiltonian. The crystalline state itself is a good example: the basic Hamil-
tonian is invariant under arbitrary, continuous translation, but the ground
state possesses discrete translational symmetry only. Usually the spatial ar-
rangement of the ions and the electronic subsystem display the same peri-
odicity. When an inhomogeneous charge distribution occurs in the electronic

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_6, © Springer-Verlag Berlin Heidelberg 2010
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subsystem with periodicity different from that of the underlying lattice, we
speak of charge-density waves. It can also happen that the charge density has
the same translational symmetry as the ions, but the spin density varies with
a different spatial periodicity. We are then dealing with a spin-density wave.

Breaking of symmetry is usually not observed at high temperatures, since
thermal fluctuations destroy any ordering. Order and breaking of a symmetry
occurs at a well-defined temperature Tc, because symmetry cannot change
continuously, as stated by the first theorem of condensed matter physics. A
symmetry is either absent or present in a system. Transitions, where the new
state can be characterized by an order parameter, are quite often of second
order and Tc is the critical temperature, though first-order transitions are also
common.

Some properties of the ordered phase are quite different from that of the
high-temperature disordered symmetric phase. One reason is the difference
in the spectrum of excited states. This spectrum depends strongly on the
type of symmetry that is broken. The Goldstone theorem mentioned in Chap-
ter 6 states that soft bosonic excitations have to show up in the ordered
phase whenever a continuous symmetry is broken. The simplest example is
that of acoustic phonons. The three acoustic branches that are always gap-
less and have linear dispersion relations in the long-wavelength limit are the
consequences of breaking the continuous translational symmetry in the three
directions of space. Similarly, gapless magnons are found in isotropic ferro-
and antiferromagnets, when the continuous spin-rotation symmetry of the
Heisenberg Hamiltonian is broken.

Similar soft modes appear in the density-wave states of electronic systems
owing to the broken translation or spin-rotation symmetry. In the supercon-
ducting state that will be studied in the next chapter, there are no collective
Goldstone bosons since the long-range Coulomb interaction is not screened.
For the same reason only the two transverse modes are soft in a Wigner crys-
tal; the longitudinal excitations have finite energy.

We will first study the properties of the homogeneous ferromagnetic phase.
We then turn to the inhomogeneous density-wave states, presenting first a
mean-field theory and then a discussion of the soft collective modes. Some ex-
perimental results on density-wave materials will be discussed in this context
at the end of this chapter.

The Hamiltonian may have less obvious symmetries, e.g., gauge symme-
try, which is related to charge conservation. It is broken in the supercon-
ducting state which is one of the most studied broken-symmetry phases of
fermion systems both experimentally and theoretically. A phenomenologi-
cal description of superconductivity has already been given in Chapter 26,
but the presentation of the microscopic theory was postponed because su-
perconductivity is a true many-body effect which cannot be understood in
the one-particle picture. Because of its importance a separate chapter will be
devoted to it.
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33.1 Ferromagnetic Instability

The interacting electron system was assumed to be unpolarized in most of the
previous treatments, i.e., equal numbers of electrons occupy up- and down-spin
states. Some of the calculations can easily be extended to polarized electron
systems. As the simplest example we consider the ferromagnetic instability in
the homogeneous electron gas and in the Hubbard model.

33.1.1 Ferromagnetism in the Homogeneous Electron Gas

Consider a homogeneous electron gas with Ne electrons, all with spin ↑. They
fill a Fermi sphere of radius kF↑ which can be determined from the relation

Ne =
V

(2π)3
4k3

F↑π
3

. (33.1.1)

Combining it with (16.2.24) where the Fermi wave number kF of the unpolar-
ized electron gas was given we find the relation kF↑ = 3

√
2 kF. If the radius r0

belonging to an electron in real space is used [see (16.2.31)] we find

kF↑ =
(

9π
2

)1/3 1
r0
. (33.1.2)

The ground-state energy of the fully polarized homogeneous electron gas
can be calculated in the Hartree–Fock approximation very simply without
repeating the procedure used in Chapter 30. The kinetic energy is proportional
to k2

F and the exchange energy to kF according to (30.1.13). Substituting kF↑
in both terms we find

EHF

Ne
=

ẽ2

2a0

[
3
5

(kF↑a0)
2 − 3

2π
(kF↑a0)

]

=
ẽ2

2a0

[
3
5

(
9π
2

)2/3(
a0

r0

)2

− 3
2π

(
9π
2

)1/3(
a0

r0

)]

=
[
1.754
r2s

− 0.577
rs

]
ẽ2

a0
(33.1.3)

for the energy per particle. It is readily seen by comparing this expression with
the energy of the unpolarized electron gas given in (30.1.13) that the polarized
state has lower energy if rs > 5.47. If this estimate were correct, an appreciable
number of metals would have magnetic ground states. That this is not so is
a consequence of correlations. One finds in Monte Carlo calculations that the
polarized state is favorable at much lower densities. A second-order transition
to the partially polarized state occurs at rs ≈ 50. The interacting electron gas
becomes fully polarized at rs ≈ 106, at the density where a first-order freezing
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transition takes place to the paramagnetic body-centered cubic Wigner-crystal
phase.1 For Bloch electrons, especially in transition metals, where the narrow
d-bands play an important role, the condition for magnetism can be satisfied
more easily and magnetic instability may occur at much lower, physically more
realistic densities.

33.1.2 Stoner Model

We have seen in Chapter 29 that the Hubbard model becomes unstable in the
mean-field approximation if either the Coulomb repulsion is strong enough
or the density of states is high enough at the Fermi energy. The stability
condition of the paramagnetic state is Uρσ(εF) < 1. Otherwise the suscep-
tibility diverges and a magnetically ordered state may be formed in which
the spin-rotation symmetry is broken. Assuming that this magnetic state is
homogeneous, we arrive at the Stoner model2 of metallic ferromagnetism. We
consider here the properties of such a state.

When the Hubbard model is treated in the Hartree–Fock approximation,
the renormalized one-particle energy can be written either as

ε̃kσ = εk + UH〈ni,−σ〉 (33.1.4)

or equivalently in the form

ε̃kσ = εk +
U

V

∑

k′
〈nk′,−σ〉 . (33.1.5)

The expectation value 〈ni,σ〉 is independent of the site index in the ferromag-
netic state and the notation

nσ = 〈ni,σ〉 (33.1.6)

will be used. It is convenient to introduce the spin-symmetric and spin-
antisymmetric combinations

ns = 1
2 (n↑ + n↓) , na = 1

2 (n↑ − n↓) , (33.1.7)

and to measure the energy shift due to the polarization relative to

ε̃k = εk + UHn
s, (33.1.8)

which is equal to the spin-independent energy in the unpolarized state. We
then have
1 The phase diagram of the two-dimensional electron system is not so well estab-

lished. The spin-polarized Fermi liquid is probably never the stable ground state
without external magnetic field. The ferromagnetic triangular Wigner crystal has
lower energy than the paramagnetic fluid phase for rs > 33, but an antiferromag-
netic Wigner-crystal phase seems to intervene between the paramagnetic fluid
and the ferromagnetic Wigner crystal for densities 31 < rs < 38.

2
E. C. Stoner, 1938.
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ε̃kσ = ε̃k − 1
2UH (nσ − n−σ) , (33.1.9)

that is
ε̃k↑ = ε̃k − UHn

a , ε̃k↓ = ε̃k + UHn
a . (33.1.10)

The energy levels are shifted oppositely for the two spin orientations; the band
splits into two subbands. This phenomenon is known as exchange splitting.
The split bands are displayed in Fig. 33.1 for a very simple free-electron-like
dispersion relation.

∼ ∼

(a) (b)

k k

k k

Fig. 33.1. Splitting of the energy band in a polarized electron gas (a) for partial
polarization, (b) in a fully polarized state

The states are filled up to the same chemical potential in the subbands;
hence, the Fermi momentum is different for spin-up and spin-down electrons.
It may happen that the splitting is so large that all electrons are in the same
subband and the other is empty. This situation corresponds to full polariza-
tion. We will assume in our further calculations that the polarization is only
partial.

The energy shift and the asymmetry in the occupation numbers strongly
depend on the Coulomb repulsion and have to be calculated self-consistently.
This will then give the self-consistent value of magnetization, since the mag-
netic moment per site is given by

m = 1
2geμB(n↑ − n↓) = geμBn

a . (33.1.11)

The total number of electrons with spin σ is obtained from

Nσ =
∑

k

f0(ε̃kσ) = V

∫
ρ̃σ(ε)f0(ε)dε , (33.1.12)

where ρ̃σ(ε) is the density of states for electrons with spin σ in the polarized
state and f0 is the Fermi distribution function. The bands are shifted rigidly
in the polarized state in the mean-field approximation and we have

ρ̃σ(ε) = ρσ(ε+ σUHn
a) , (33.1.13)
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where ρσ(ε) is the density of states per spin in the unpolarized state. Substi-
tuting this into (33.1.12) we get

N↑ = V

∫
ρσ(ε+ UHn

a)f0(ε)dε = V

∫
ρσ(ε)

1
eβ(ε−UHna−μ) + 1

dε ,

(33.1.14)

N↓ = V

∫
ρσ(ε− UHn

a)f0(ε)dε = V

∫
ρσ(ε)

1
eβ(ε+UHna−μ) + 1

dε .

The change in the number of electrons per site compared to the unpolarized
state is given by

δn↑ =
V

N

∫
ρσ(ε)

1
eβ(ε−UHna−μ) + 1

dε− V

N

∫
ρσ(ε)

1
eβ(ε−μ0) + 1

dε ,

(33.1.15)

δn↓ =
V

N

∫
ρσ(ε)

1
eβ(ε+UHna−μ) + 1

dε− V

N

∫
ρσ(ε)

1
eβ(ε−μ0) + 1

dε ,

where μ0 is the chemical potential in the unpolarized state and μ is the chem-
ical potential in the polarized state. At temperature T = 0

δn↑ =
V

N

μ+UHna∫

μ0

ρσ(ε) dε , δn↓ =
V

N

μ−UHna∫

μ0

ρσ(ε) dε . (33.1.16)

The chemical potential μ can be determined from the condition that the total
number of particles is unchanged, that is

δn↑ + δn↓ = 0 . (33.1.17)

For an explicit calculation of the magnetization in the polarized state we
expand the density of states about the Fermi energy μ0 = εF in the form

ρσ(ε) = ρσ(εF)
[
1 + a(ε− εF) + 1

2b(ε− εF)2 + · · · ] . (33.1.18)

For a free electron gas, where the density of states is given by (16.2.54),

a =
1

2εF
, b = − 1

4ε2F
. (33.1.19)

The parameters are somewhat different in a more general case, but we assume
that a second-order expansion is sufficient and b < 0. Inserting this expansion
into (33.1.16) the leading correction in na gives

μ = μ0 − 1
2a(UHn

a)2 . (33.1.20)

The asymmetry na in the occupation number has to be determined self-con-
sistently from the relation
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na =
V

2N

μ+UHna∫

μ−UHna

ρσ(ε) dε . (33.1.21)

Using again the expanded form of the density of states, but keeping now the
next-to-leading (cubic) corrections as well, we get

na =
V

N
UHρσ(εF)na

[
1 − 1

2

(
a2 − 1

3b
)
(UHn

a)2
]
. (33.1.22)

A trivial solution of this equation is na = 0. The coefficient of the cubic term
is negative for b < 0 and a nontrivial solution exists if

V

N
UHρσ(εF) = Uρσ(εF) > 1 . (33.1.23)

This is the condition for the occurrence of spontaneous magnetization. The
critical value of the Coulomb repulsion is given by

Ucρσ(εF) = 1 (33.1.24)

in agreement with the stability condition of the paramagnetic phase derived
earlier.

For U not much larger than the critical value, where the magnetization is
small and the expansion in (33.1.22) is applicable, the saturation value of the
magnetic moment per site takes the simple form

m0 ∝
√

1 − 1
Uρσ(εF)

=

√
U − Uc

U
. (33.1.25)

With the parameters valid for a parabolic dispersion relation we have

m0 = |ge|μB

√
6εF
UH

√
U − Uc

U
. (33.1.26)

33.1.3 Stoner Excitations

Just as in the paramagnetic phase, electron–hole pair excitations can be gen-
erated in the ferromagnetic state. These pairs created either in the spin-up or
spin-down subbands form a similar continuum as in a paramagnet. Since the
Fermi momenta are different for the two spin orientations, low-energy pairs
can be generated up to a total momentum 2kF↑ or 2kF↓, respectively. These
spin-conserving excitations (the spin of the electron compensates the missing
spin due to the hole in the same subband) are not relevant for the magnetic
properties. The temperature dependence of the magnetization is determined
by spin-flip excitations, where electrons from an occupied state of the spin-up
subband are excited to an empty state of the spin-down subband or vice versa.



328 33 Electronic Phases with Broken Symmetry

Such electron–hole pair excitations are displayed in Fig. 33.2. They are for-
bidden if the interaction processes in the Hamiltonian conserve the total spin.
This is the case, e.g., in the Hubbard model. They can, however, be excited
spontaneously when spin–orbit coupling is present. The angular momentum
is transferred from the electron system to the lattice.

k k

∼
k

∼
k

Fig. 33.2. Low-energy electron–hole pair excitations in the polarized electron gas
with the electron and the hole in different subbands

The ground state of the polarized Fermi sea, denoted by |ΨPFS〉, can be
given in second quantization in the form

|ΨPFS〉 =
∏

|k|<kF↑

c†k↑
∏

|k′|<kF↓

c†k′↓|0〉 . (33.1.27)

The wavefunction of the state with one excited electron–hole pair is

c†k+q↑ck↓|ΨPFS〉 . (33.1.28)

The excitation energy is easily obtained in the mean-field approximation using
(33.1.10) for the single-particle energies. We find

�ωq = ε̃k+q↑ − ε̃k↓ = ε̃k+q − ε̃k − 2UHn
a , (33.1.29)

or, if the magnetic moment per site is used,

�ωq = εk+q − εk +
2

|ge|μB
UHm0 . (33.1.30)

For small values of q this energy is equal to the exchange splitting between
the subbands,

Δ0 =
2

|ge|μB
UHm0 . (33.1.31)

The excitation energies form a continuum for finite q as seen in Fig. 33.3.
These electron–hole pair excitations involving both the spin-up and the
spin-down subbands are called Stoner excitations. Their continuum is the
Stoner continuum.
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q

q

Δ 0

Fig. 33.3. Continuum of electron–hole pair excitations when the electron and the
hole are created in the oppositely polarized subbands

33.1.4 Stoner Model at Finite Temperatures

Thermally excited electron–hole pairs with spin reversal decrease the differ-
ence between the fillings of the two subbands at finite temperatures. This gives
rise to a decrease of the exchange splitting and of the magnetization. A self-
consistent calculation of this decrease allows us to determine the temperature
dependence of the magnetization. The temperature-dependent corrections to
the integrals in (33.1.15) can be evaluated using the Sommerfeld expansion.
For the chemical potential we obtain

μ = μ0 − 1
2a(UHn

a)2 − π2

6
a(kBT )2 , (33.1.32)

and the asymmetry of the filling of the subbands has to be determined from

na =
V

N
UHρσ(εF)na

[
1 − 1

2

(
a2 − 1

3b
)
(UHn

a)2 − π2

6
(
a2 − b

)
(kBT )2

]
.

(33.1.33)
This leads to a quadratic temperature dependence of the magnetization:

M(T ) = M0

[
1 −
(
T

TC

)2
]1/2

, (33.1.34)

where TC is the Curie temperature which is obtained from (33.1.33) as the
temperature where the magnetization vanishes. Using the parameters valid
for a free-electron-like density of states we find

kBTC =
2
√

3
π

εF

√
1 − 1

Uρσ(εF)
. (33.1.35)

The situation is different if the ground state is fully polarized, that is if
all electrons occupy the same subband, as shown in Fig. 33.1(b). Since the
bottom of the empty subband is above the chemical potential, there are no
low-energy electron–hole excitations between the subbands. If the minimum
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excitation energy to the empty band is denoted by Δε0, the temperature
dependence of the magnetization is given by

M(T ) = M0

(
1 −Be−Δε0/kBT

)
. (33.1.36)

33.1.5 Failure of the Stoner Model

Some of the results obtained in the Stoner model are not supported by ex-
perimental findings. A T 2 temperature dependence of the magnetization is
not observed in itinerant ferromagnets at low temperatures, neither is an
exponentially slow variation. Recall that a similar discrepancy was found in
the mean-field treatment of the Heisenberg model and the measured T 3/2 de-
pendence of the magnetization could be explained only in the spin-wave theory
as coming from the thermally excited soft bosonic magnons with quadratic
dispersion relation. That the same temperature dependence is observed in
metallic ferromagnets is a strong indication that similar low-energy collec-
tive magnetic excitations exist there as well, in addition to the gapped
electron–hole pairs. These excitations will be studied in the next section.

Another problem is related to the value of the Curie temperature. The ther-
mal energy kBTC is on the order of the Fermi energy according to (33.1.35),
that is TC should be on the order of 104 K, whereas the typical experimen-
tal values are one or two orders of magnitude smaller. The too high Curie
temperature is the consequence of the mechanism assumed for the thermal
destruction of magnetization in the Stoner model. Magnetism is calculated
from the difference in the fillings of the subbands and this difference appears
in the exchange splitting. When the magnetization vanishes at the Curie tem-
perature, so does the exchange splitting as well as the local magnetic moment.
The same number of spin-up and spin-down electrons sit on every site in the
homogeneous paramagnetic phase. Since the exchange splitting is on the or-
der of the Fermi energy at T = 0, high temperatures are needed to destroy it
uniformly. The physical picture of a vanishing local magnetic moment in the
paramagnetic phase is, however, in contradiction with the experimental find-
ings. The susceptibility of metallic ferromagnets above their Curie points is
not Pauli-like but displays a Curie–Weiss-like temperature dependence. This
can be understood if we assume that the electron states remain locally polar-
ized, on an atomic scale, even in the paramagnetic phase, but are disordered
in space and fluctuate in time. The vanishing of the magnetization is due
to the fluctuations in the direction rather than in the amplitude of the local
moments. A proper treatment of these effects far exceeds the scope of this
book, just as the treatment of the magnetic properties of materials based on
a realistic band structure.

33.1.6 Spin Waves in the Ferromagnetic Electron Gas

We have seen earlier in Chapter 31 that if an electron gas is polarized by
an external magnetic field, the continuum of electron–hole pair excitations
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starts at a finite energy. Collective excitations, called spin waves, appear below
the continuum when Uρσ(εF) is close to the critical value, although with a
finite gap, because the breaking of the continuous rotational symmetry is not
spontaneous in the polarized state but is implemented by the external field.
Similar collective excitations corresponding to spin-density fluctuations are
expected to appear in itinerant ferromagnets as well but now as soft Goldstone
bosons. They, too, are called spin waves.

These collective excitations can be constructed by taking linear combi-
nations of the states in which one electron–hole pair with opposite spins is
excited [see (33.1.28)]. The state

|Ψq〉 =
∑

k

φkqc
†
k+q↑ck↓|ΨPFS〉 (33.1.37)

is generated from the polarized ground state |ΨPFS〉 by the operator

α†
q =

∑

k

φkqc
†
k+q↑ck↓ ; (33.1.38)

hence, it can be considered as the creation operator of a spin wave. The
annihilation operator is its Hermitian adjoint. The excited state contains one
elementary excitation if [H, α†

q

]
− = �ωqα

†
q , (33.1.39)

that is the Hamiltonian can be transformed to the form

H =
∑

q

�ωqα
†
qαq (33.1.40)

describing a free gas of bosons with excitation energies �ωq.
The coefficients φkq are fixed by the condition

[
H,
∑

k

φkqc
†
k+q↑ck↓

]

−
= �ωq

∑

k

φkqc
†
k+q↑ck↓ , (33.1.41)

which follows from (33.1.39). Since the electron states are described in a mo-
mentum representation, it is convenient to consider also the Hamiltonian of
the Hubbard model in a momentum representation:

H =
∑

kσ

εkσc
†
kσckσ +

U

V

∑

kk′q

c†k+q↑c
†
k′−q↓ck′↓ck↑ . (33.1.42)

Using the results given in detail in Chapter 29 we find
[
H, c†k+q↑ck↓

]

−
=
(
εk+q − εk

)
c†k+q↑ck↓ −

U

V

∑

k′q′
c†k+q↑c

†
k′−q′↑ck′↑ck−q′↓

− U

V

∑

k′q′
c†k′+q′↓c

†
k+q−q′↑ck′↓ck↓ . (33.1.43)
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Clearly, (33.1.41) cannot be exactly satisfied with any choice of φkq. States
with one electron–hole pair will be mixed with states containing several pairs.
|Ψq〉 can, however, be chosen so as to satisfy (33.1.41) approximately by ap-
plying a decoupling procedure in the commutator which replaces products of
two operators in the four-operator terms in (33.1.43) with their expectation
values. Care must be taken of the order of the operators. Every exchange of
fermion operators gives a factor −1. Such a linearization gives
[
H, c†k+q↑ck↓

]

−
=
(
εk+q − εk

)
c†k+q↑ck↓ (33.1.44)

−U
V

∑

k′
〈nk′↑〉c†k+q↑ck↓ +

U

V

∑

q′
〈nk+q↑〉c†k+q−q′↑ck−q′↓

+
U

V

∑

k′
〈nk′↓〉c†k+q↑ck↓ −

U

V

∑

k′
〈nk↓〉c†k′+q↑ck′↓ .

In two of the terms you may recognize the Hartree–Fock correction to
the quasiparticle energy. Incorporating them in the renormalized energies and
changing the summation variable q′ to k − k′ we get

[
H, c†k+q↑ck↓

]

−
=
(
ε̃k+q↑ − ε̃k↓

)
c†k+q↑ck↓

− U

V

(〈nk↓〉 − 〈nk+q↑〉
)∑

k′
c†k′+q↑ck′↓ .

(33.1.45)

Substitution of this expression into the left-hand side of (33.1.41) gives
∑

k

φkq

(
�ωq − ε̃k+q↑ + ε̃k↓

)
c†k+q↑ck↓

=
U

V

∑

kk′

(〈nk+q↑〉 − 〈nk↓〉
)
φkqc

†
k′+q↑ck′↓ .

(33.1.46)

We may require – after a change of variables k ↔ k′ – that the equality

φkq

(
�ωq − ε̃k+q↑ + ε̃k↓

)
=
U

V

∑

k′
φk′q

(〈nk′+q↑〉 − 〈nk′↓〉
)

(33.1.47)

holds for each k separately. To solve this equation we introduce the quantity

Aq =
U

V

∑

k′
φk′q

(〈nk′+q↑〉 − 〈nk′↓〉
)
. (33.1.48)

The formal solution of (33.1.47) is

φkq =
Aq

�ωq − ε̃k+q↑ + ε̃k↓
. (33.1.49)
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Substitution of this expression into the definition of Aq leads to the self-
consistency condition

1 =
U

V

∑

k′

〈nk′+q↑〉 − 〈nk′↓〉
�ωq − ε̃k′+q↑ + ε̃k′↓

. (33.1.50)

When the occupation numbers are expressed in terms of the Fermi distribution
functions we have

1 =
U

V

∑

k′

f0(ε̃k′+q↑) − f0(ε̃k′↓)
�ωq − ε̃k′+q↑ + ε̃k′↓

. (33.1.51)

The �ωq values satisfying this equation are the allowed excitation energies.
The solutions can be found graphically, as was done already in many cases,
by analyzing the behavior of the function

g(ω) =
U

V

∑

k′

f0(ε̃k′+q↑) − f0(ε̃k′↓)
�ω − ε̃k′+q↑ + ε̃k′↓

. (33.1.52)

g(  )

1

Fig. 33.4. Graphical solution of (33.1.51) for the collective spin waves and the
electron–hole excitations in the Stoner continuum

The function g(ω) displayed in Fig. 33.4 diverges every time when �ω =
ε̃k′+q↑ − ε̃k′↓. The solutions of g(ω) = 1 between subsequent singular points
give the excitations in the Stoner continuum. In addition to these there is an
extra solution below the continuum. This solution, which can be considered
as a bound state of electron–hole pairs, corresponds to a collective spin-wave
excitation. The full spectrum is displayed in Fig. 33.5.

The dispersion relation of spin waves can be obtained analytically for small
values of ω and q by expanding the right-hand side of (33.1.51). Keeping only
the leading terms when the exchange splitting Δ0 is large compared to the
spin-wave energy, we find
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Stoner continuum

Spin wave

q

0

q

Fig. 33.5. Spin waves below the Stoner continuum in a ferromagnetic electron gas

U

V

∑

k′

f0(ε̃k′+q↑) − f0(ε̃k′↓)
�ωq − εk′+q + εk′ + 2UHna

= 1 +
�ωq

Δ0
−Dq2 , (33.1.53)

where the order of magnitude of D is 1/k2
F. For a free-electron-like disper-

sion relation the prefactor is D = 1/(12k2
F). Combining this expression with

(33.1.50) we readily find that the spin waves have a quadratic dispersion re-
lation,

�ωq ∼ Δ0(q/kF)2 , (33.1.54)

just like magnons of the Heisenberg model of localized spins.
We can recognize on the right-hand side of (33.1.51) the quantityΣ0

⊥(q, ωq)
defined in (29.8.52). Thus the dispersion relation of the spin waves has to be
determined from

UΣ0
⊥(q, ωq) = 1 (33.1.55)

in accordance with (31.4.12). Looking back at (29.8.54) we see that this re-
lationship is equivalent to the statement that spin excitations can propagate
in the system with frequency ωq at a given q for which the transverse sus-
ceptibility diverges, i.e., the spin waves can be obtained from the poles of χ⊥.
The poles are at real frequencies for small values of q, indicating that the
spin waves are well-defined excitations with infinite lifetime in this approxi-
mation. It is worthwhile to make a connection between these excitations and
the overdamped spin-fluctuation modes, the paramagnons, found in nearly
ferromagnetic metals when Uρσ(εF) is close to the critical value. The para-
magnons can also be obtained from the pole of the transverse susceptibility
given in (31.4.2), but the pole is now pure imaginary. The spin fluctuations
are overdamped, but can produce a relatively sharp peak in the cross section
for magnetic scattering. Thus the paramagnons of nearly ferromagnetic met-
als are the precursors of spin waves (magnons), which are the soft Goldstone
bosons of the ferromagnetic state.

33.1.7 Role of Spin Waves in the Ferromagnetic Electron Gas

The thermodynamic properties of ferromagnets, such as the temperature de-
pendence of the heat capacity or the magnetization, are determined by the
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dispersion relation of the elementary excitations and their statistics. As seen
in Fig. 33.5, spin waves are well-defined excitations for small momenta only
where they are below the continuum of Stoner excitations. They merge into
it at a momentum q0 of the order of Δ0/�vF. Δ0 being proportional to the
magnetization we have

qc ∝ kF
√
Uρσ(εF) − 1 . (33.1.56)

A crossover temperature can be defined as the temperature where the thermal
energy is comparable with the maximum spin-wave energy. We find

kBT
∗ ∝ Δ0(qc/kF)2 ∝ εF

[
Uρσ(εF) − 1

]3/2
. (33.1.57)

Spin waves are the dominant excitations below this energy. Their dispersion
relation is similar to that of magnons in the Heisenberg model, and the ther-
modynamic behavior is qualitatively similar in the two cases at low tempera-
tures, below T ∗. The magnetization decreases as T 3/2 instead of T 2 found in
(33.1.34). Based solely on measurements of macroscopic quantities, one cannot
decide whether magnetism originates from localized moments or from itiner-
ant electrons. However, measuring the magnetic form factor, and thereby the
magnetic-moment density, by magnetic scattering of neutrons can give infor-
mation about the nature of the magnetic moment.

When T exceeds the crossover temperature T ∗, the damped spin waves
within the Stoner continuum (indicated by the dashed line in Fig. 33.5) be-
come the dominant thermal excitations. They are insensitive to the spon-
taneous magnetization and behave like paramagnons of large wave number,
where the dispersion curve is cubic:

�ω ∝ εF(q/kF)3 . (33.1.58)

They are referred to as paramagnons even in the ferromagnetic state. It can
be shown that they are responsible for destroying ferromagnetism. A self-
consistent calculation of the Curie temperature gives

kBTC ∝ Δ0

√
Δ0

εF
∝ εF

[
Uρσ(εF) − 1

]3/4
, (33.1.59)

which is smaller than the mean-field result, but larger than the crossover
temperature.

33.2 Itinerant Antiferromagnets

We assumed in our previous considerations that the magnetic moment is ho-
mogeneous in space. A simple justification can be found in the RPA. The
susceptibility of the paramagnetic phase of the Hubbard model can be writ-
ten according to (29.8.43) in the form
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χ(q, ω) =
1
2g

2
eμ

2
Bμ0Σ0(q, ω)

1 − UΣ0(q, ω)
, (33.2.1)

where Σ0 is − 1
2 times the Lindhard function, that is

Σ0(q, ω) =
1
V

∑

k

f0(εk+q) − f0(εk)
�ω − εk+q + εk + iδ

. (33.2.2)

We know from Chapter 29 that the Lindhard function has a very broad max-
imum at q = 0 in an isotropic three-dimensional system. The stability condi-
tion

UΣ0(q, ω) < 1 (33.2.3)

of the paramagnetic phase fails first at q = 0 as U increases. That is why we
expected a homogeneous magnetization in the broken-symmetry phase.

Σ0(q, ω) may have a different q dependence when the dispersion relation
deviates essentially from that of free electrons. We have seen in Chapter 29
that if the Fermi surface has the nesting property, the dielectric function
(or the susceptibility) of the noninteracting system has a maximum at the
nesting vector q0. The paramagnetic phase becomes unstable at this q0 and
the ordered magnetic phase is expected to display a periodic spatial variation
corresponding to q0.

33.2.1 Slater’s Theory of Antiferromagnetism

Such a perfectly nested Fermi surface is found in the simple cubic lattice in
the tight-binding approximation, where the dispersion relation has the form

εk = ε0 + γ (cos kxa+ cos kya+ cos kza) (33.2.4)

if the band is half filled, i.e., ε0 is equal to the Fermi energy. The Fermi surface
is then given by the k vectors satisfying

cos kxa+ cos kya+ cos kza = 0 . (33.2.5)

It is readily seen from this equation and from Fig. 33.6, where the Fermi
surface is displayed, that if k is on the Fermi surface, then k+q0 is also on the
Fermi surface provided that q0 is one of the vectors q0 = (π/a)(±1,±1,±1),
which are halves of a reciprocal-lattice vector. This means that if a piece of the
Fermi surface is displaced by one of these vectors, perfect nesting is achieved.
[The same perfect nesting is found in a square lattice for q0 = (π/a)(±1,±1).]

The nesting property of the Fermi surface is even more spectacular for
the body-centered cubic lattice with a half-filled tight-binding s-band. The
electronic energy spectrum is given by

εk = ε0 + γ cos(kxa/2) cos(kya/2) cos(kza/2) , (33.2.6)
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(a)

R2 R2 R3

R4
R1R1
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q0

Fig. 33.6. (a) Nested Fermi surface for the half-filled tight-binding band in a simple
cubic lattice. (b) A section of the Fermi surface (cutting the Brillouin zone diagonally
through the points R1, R2, R3, and R4) with the nesting vector q0

and the Fermi surface is a regular cube. The opposite faces are separated by
one of the vectors q0 = (2π/a)(±1, 0, 0), (2π/a)(0,±1, 0), or (2π/a)(0, 0,±1),
which are halves of a vector of the reciprocal lattice.

If the energies are measured from the Fermi energy in a system with per-
fectly nesting Fermi surface, the quantity ξk = εk−εF satisfies the relationship

ξk = −ξk+q0
(33.2.7)

for k vectors near the Fermi surface. It follows from this nesting property that
the q dependence of the quantity Σ0(q, ω) is similar to that of one-dimensional
systems. Σ0(q, ω) is singular at q = q0 at zero temperature and this singular-
ity is rounded off at finite temperatures: the peak is broadened and its height
decreases with increasing temperature. The paramagnetic phase is stable at
high temperatures and may become unstable below a critical temperature.
Electrons in the localized Wannier states are expected to be polarized in the
low-temperature phase. The spin-up and spin-down electrons order statically
into two sublattices with the on-site occupation varying as

〈niσ〉 = 1
2 + σnaeiq0·Ri , (33.2.8)

where na is the spin asymmetry in the site occupations, q0 is one of the nesting
vectors, and the factor eiq0·Ri takes the value +1 and −1, respectively, on
the two sublattices. In a simple cubic lattice, the periodicity of the magnetic
structure is doubled in all three directions compared to the chemical cell, just
as in a type G antiferromagnet shown in Fig. 14.2. The magnetic structure
is face-centered cubic with primitive translation vectors a1 = a(0, 1, 1), a2 =
a(1, 0, 1), and a3 = a(1, 1, 0); the volume of the magnetic cell is twice that of
the chemical cell.

The magnetic primitive cell of the antiferromagnetic structure appearing
in the body-centered cubic lattice owing to the nesting property coincides
with the Bravais cell of the bcc lattice. The magnetic moment at the center
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and at the vertices are oriented oppositely, and the volume of the magnetic
cell is again twice that of the chemical cell.

Inserting (33.2.8) into the mean-field approximation of the Hubbard
Hamiltonian we get

H =
∑

〈ij〉σ
tijc

†
iσcjσ − UHn

a
∑

iσ

σeiq0·Riniσ . (33.2.9)

When transforming the operators of the Wannier states into the momentum
representation it is convenient to use k vectors that are in the Brillouin zone
corresponding to the magnetic structure. Owing to the doubling of the prim-
itive cell in the antiferromagnetic phase, the volume of the corresponding
Brillouin zone is smaller and contains only N/2 allowed k vectors. The an-
nihilation operators of the Wannier states of the N sites should therefore be
given in terms of the annihilation operators of the Bloch states in the form

ciσ =
1√
N

∑

k

′
ckσeik·Ri +

1√
N

∑

k

′
ck+q0σei(k+q0)·Ri , (33.2.10)

where the prime indicates that the summation goes over the Brillouin zone of
the magnetic state.

If the one-particle energies are measured from the chemical potential and
(33.2.7) is made use of, we find

H =
∑

kσ

′ [
ξkc

†
kσckσ − ξkc

†
k+q0σck+q0σ − UHn

aσ(c†kσck+q0σ + c†k+q0σckσ)
]

(33.2.11)
apart from a constant term. This bilinear Hamiltonian can be diagonalized by
a Bogoliubov transformation

α†
kσ = ukc

†
kσ + σvkc

†
k+q0σ ,

β†
kσ = −σvkc

†
kσ + ukc

†
k+q0σ

(33.2.12)

with real coefficients. The new operators obey fermionic anticommutation
relations if

u2
k + v2

k = 1 . (33.2.13)

Requiring the vanishing of the off-diagonal terms yields

u2
k =

1
2

(
1 − ξk

Ek

)
, v2

k =
1
2

(
1 +

ξk
Ek

)
, ukvk =

UHn
a

2Ek
, (33.2.14)

where
Ek =

√
ξ2k + (UHna)2 , (33.2.15)

and the diagonal Hamiltonian is
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H =
∑

kσ

[(− Ek + εF
)
α†

kσα
†
kσ +

(
Ek + εF

)
β†

kσβ
†
kσ

]
. (33.2.16)

The negative energy states are completely filled in the ground state of the
half-filled system. The ground-state wavefunction can be written in the form

|ΨAF〉 =
∏

|k|<kF

α†
k↑α

†
k↓|0〉 . (33.2.17)

This state is separated from the first excited states by a gap Δ0 = 2UHn
a.

Although the spin-up and spin-down states of the α particles are filled equally,
there is a spin imbalance in the filling of the states created by the operators
c†kσ. The sublattice magnetization has to be calculated self-consistently from

na =
4
N

∑

k

ukvk =
2
N

∑

k

UHn
a

√
ξ2k + (UHna)2

. (33.2.18)

The magnetically ordered state of one electron per atom on a bipartite
lattice3 is an insulator. It is a consequence of the doubling of the unit cell due
to the establishment of antiferromagnetic order and the concomitant halving
of the Brillouin zone. The band is split into two, the lower band is completely
filled, and a gap appears in the spectrum of charge excitations. There exist
low-energy magnetic excitations, antiferromagnons, in the ordered phase, just
as in isotropic antiferromagnets of localized spins, but it costs a finite en-
ergy to add a particle to the system. The finite charge gap is in agreement
with our expectation for large on-site Coulomb repulsion. That an insulat-
ing state is found for arbitrary positive U is the consequence of the perfect
nesting property of the Fermi surface at half filling. As the temperature is
increased, the sublattice magnetization decreases together with the gap. The
lower and upper bands merge at the Néel temperature, where antiferromag-
netic ordering is destroyed, and a continuous (second-order) transition to a
metallic Fermi liquid takes place. This is the so-called Slater transition,4 and
the antiferromagnetic insulator is a Slater insulator.

33.2.2 Antiferromagnetic Exchange

A simple physical picture can be obtained about the formation of the antifer-
romagnetic state in the large-U limit of the half-filled Hubbard model, when
U is much larger than the bandwidth. Taking a single orbital per site, a site
can be empty, singly occupied by a spin-up or a spin-down electron, or doubly
occupied by two electrons of opposite spins. Double occupancy is energetically

3 A bipartite lattice, such as the simple cubic or body-centered cubic lattice, can
be decomposed into two sublattices such that the nearest neighbors of a lattice
site are located on the other sublattice.

4
J. C. Slater, 1951.
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unfavorable for large U and it becomes forbidden in the limit U → ∞. All
sites are occupied by exactly one electron. They are frozen to the sites and are
unable to move. Because their spin configuration can be arbitrary, the ground
state is highly degenerate, with degeneracy 2N for N sites.

When U is large but finite, most of the sites are still occupied by one
electron, although electrons can hop to neighboring sites for a short time even
if that site is occupied by another electron with opposite spin. Figure 33.7
shows a snapshot of a portion of the lattice before and after such hopping
processes.

Fig. 33.7. Two-step exchange process in the half-filled Hubbard model

The energy of the intermediate state with one doubly occupied and one
empty site is high; therefore, one of the electrons hops back to the empty
site. When the electron that hopped there in the first place hops back, the
original spin configuration is recovered. If, however, the other electron hops
to the empty site, a new configuration is obtained in which two spins are
reversed, exchanged. Such second-order processes lift the degeneracy of the
spin configurations and the ground state may become ordered.

We can restrict ourselves to the Hilbert space of the 2N disordered spin
configurations by neglecting all higher lying states that are well separated in
energy and cannot be excited thermally. This portion of the spectrum can be
mapped onto the spectrum of a spin model, where the exchange of spins is
described by an effective exchange coupling. Its strength can be calculated
in second-order degenerate perturbation theory. An alternative procedure is
to perform a canonical transformation as outlined in Appendix I. When the
Coulomb repulsion is strong compared to the bandwidth, the hopping term
of the Hamiltonian can be chosen as perturbation. The total Hamiltonian is
then separated into two terms:

H0 = UH
∑

i

ni↑ni↓ , λH1 =
∑

i,j,σ

tijc
†
iσcjσ . (33.2.19)

The hopping term is eliminated if the operator S in the canonical transfor-
mation

H̃ = eSHe−S (33.2.20)

is chosen to satisfy the relation
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λH1 + [S,H0]− = 0 . (33.2.21)

The leading terms of the transformed Hamiltonian are then

H̃ = H0 + 1
2 [S, λH1]− + · · · . (33.2.22)

The matrix elements of the effective Hamiltonian between the degenerate
configurations |m〉 and |n〉 with energy E0 are given according to (I.1.14) by

〈n|H̃|m〉 = 〈n|H0|m〉 −
∑

k

〈n|λH1|k〉〈k|λH1|m〉
Ek − E0

+ · · · , (33.2.23)

where |k〉 denotes the intermediate states. They are finite in a second-order
calculation if the spin configurations in states |m〉 and |n〉 differ at most on
two sites. We can pick two neighboring sites i and j since nothing happens
with the rest of the lattice. The state c†iσc

†
jσ′ |0〉 will be denoted by |Ψσσ′〉.

Calculating the matrix elements between |Ψ↑↑〉, |Ψ↑↓〉, |Ψ↓↑〉, and |Ψ↓↓〉 it is
readily seen that the effective Hamiltonian is equivalent to a Heisenberg-like
spin model in the restricted Hilbert space.

If the electrons have identical spins on the two neighboring sites, hopping
cannot occur. Acting with H1 on such a state gives zero. Hence

〈
Ψ↑↑
∣∣H̃∣∣Ψ↑↑

〉
=
〈
Ψ↓↓
∣∣H̃∣∣Ψ↓↓

〉
= 0 . (33.2.24)

If the electrons have opposite spins, one of the electrons can hop to the other
site. The intermediate state has a doubly occupied and an empty site. There
are two possibilities for the intermediate states:

|k〉 = c†i↑c
†
i↓|0〉 , |k′〉 = c†j↑c

†
j↓|0〉 . (33.2.25)

Owing to the double occupancy of a site the energy of the intermediate state
is higher by UH compared to the states in which all sites are singly occupied.
Thus (33.2.23) gives

〈
Ψ↑↓
∣∣H̃∣∣Ψ↑↓

〉
= −〈Ψ↑↓|λH1|k〉〈k|λH1|Ψ↑↓〉

Ek − E0
− 〈Ψ↑↓|λH1|k′〉〈k′|λH1|Ψ↑↓〉

Ek′ − E0

= −2t2

UH
(33.2.26)

for the diagonal matrix element.
The off-diagonal matrix element between

∣∣Ψ↑↓
〉

and
∣∣Ψ↓↑

〉
is also finite.

It corresponds to the spin exchange mentioned above. This process gives a
contribution similar to the diagonal matrix element, apart from a factor −1
which comes from the different order of the fermion operators. We find

〈
Ψ↑↓
∣∣H̃∣∣Ψ↓↑

〉
=

2t2

UH
. (33.2.27)
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The same matrix elements are obtained when the s = 1/2 Heisenberg
exchange Hamiltonian

H̃ = −2Jsi · sj + 1
2J (33.2.28)

acts on the spins of the electrons, provided that the strength of the effective
exchange coupling is

J = −2
t2

UH
. (33.2.29)

The Coulomb repulsion UH being positive, the coupling constant J is negative
and the effective exchange is antiferromagnetic. We conclude that in the large-
U limit, where the lowest 2N states of the Hilbert space are well separated
from the higher lying ones, the low-energy physics of the Hubbard model is
equivalent to that of a spin-1/2 Heisenberg antiferromagnet described by the
Hamiltonian

H̃ = −J
∑

〈i,j〉
si · sj (33.2.30)

with the exchange coupling between nearest-neighbor sites 〈i, j〉 given above.
The Néel temperature, where the antiferromagnetic order is destroyed, is

of order J/kB. The Hartree–Fock theory, on the other hand, gives a Néel
temperature, which, just as in the Stoner model, is of order U/kB. This dis-
crepancy is due to the absence of correlations in the Hartree–Fock approach.
The true ordering temperature is TN ∝ J/kB, but the moments survive in
the paramagnetic state. They would be thermally destroyed at a much higher
temperature of order U/kB.

33.3 Spin-Density Waves

The itinerant antiferromagnetism occurring in the half-filled tight-binding
model in a simple cubic or body-centered cubic lattice is a special example
of more general situations where the Stoner condition UΣ0(q, ω) < 1 for the
stability of the paramagnetic phase readily fails due to the nesting property of
the Fermi surface. Σ0(q, ω) exhibits a sharp maximum at the nesting vector
q0 with the peak height increasing with decreasing temperature. The insta-
bility occurs at this wave vector at the temperature where UΣ0(q0, 0) = 1
and the system orders magnetically into an inhomogeneous state breaking the
continuous translational symmetry. The total magnetization vanishes, but a
spatially oscillating magnetic-moment density appears below the transition
point. The variations in space are characterized by the wave vector q0. Such
a state is known as spin-density-wave (SDW) state. The archetypal example
is chromium, an itinerant antiferromagnet, where – as predicted by A. W.

Overhauser (1962) – the incommensurate spin-density wave appearing at
TN = 311K is characterized by a wave vector determined by the nesting prop-
erties of the Fermi surface. The stability condition of the paramagnetic phase
fails especially easily in strongly anisotropic, quasi-one-dimensional materials
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built up from weakly coupled chains. To get a simple physical picture of the
formation of the SDW a one-dimensional model will be studied. We will return
to the role of interchain couplings after a similar treatment of charge-density
waves.

33.3.1 Susceptibility of the One-Dimensional Model

We consider the usual expression

Σ0(q, ω) =
1
V

∑

k

f0(εk+q) − f0(εk)
�ω − εk+q + εk + iδ

(33.3.1)

for the spin-density–spin-density response function. A linear dispersion rela-
tion given in (32.3.1) with a scalar k will be used in the neighborhood of the
Fermi points ±kF. When the energy measured from the chemical potential,
ξk = εk − μ, is used we have

Σ0(q, ω) =
1
L

∑

k

f0(ξk+q) − f0(ξk)
�ω − ξk+q + ξk + iδ

. (33.3.2)

We will evaluate it at finite temperatures for wave numbers near q = 2kF.
Precisely at q = 2kF the relationship

ξk+2kF = −ξk (33.3.3)

is satisfied for the linearized spectrum if k is near −kF and k + 2kF is near
+kF. The response function of the noninteracting one-dimensional electron
gas is then given at ω = 0 by

Σ0(2kF) =
1
L

∑

k<0

f0(−ξk) − f0(ξk)
2ξk

. (33.3.4)

Summation goes over wave numbers near −kF. Note that half filling of the
band is not needed for the nesting property to hold in the one-dimensional
model. The results are qualitatively similar in the half-filled case although a
factor of 2 appears in some of the formulas. This is because 2kF and −2kF are
equivalent, they differ by the reciprocal-lattice vector 2π/a, and the summa-
tion has to be extended to the region k > 0.

When replacing the sum by an integral, only half of the density of states
has to be taken for a non-half-filled band. Assuming a symmetric band with
bandwidth 2D around the Fermi energy and approximating the density of
states with

ρσ(εF) =
me

π�2kF
=

1
π�vF

, (33.3.5)

its value at the Fermi energy, we have
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Σ0(2kF) = 1
2ρσ(εF)

D∫

−D

dξ
f0(−ξ) − f0(ξ)

2ξ
. (33.3.6)

Making use of the relation

1
ex + 1

= 1
2

(
1 − tanh

x

2

)
(33.3.7)

for the Fermi distribution function gives

Σ0(2kF) = 1
2ρσ(εF)

D∫

−D

dξ
2ξ

tanh
ξ

2kBT

= 1
2ρσ(εF)

D∫

0

dξ
ξ

tanh
ξ

2kBT
.

(33.3.8)

By introducing the variable x =
ξ

2kBT
we have

Σ0(2kF) = 1
2ρσ(εF)

D/2kBT∫

0

dx
x

tanhx . (33.3.9)

When the thermal energy is much smaller than the bandwidth, which is
usually the case, the function tanhx is near unity over a large part of the
domain of integration, and it can be approximated by

tanhx ≈
{
x for 0 ≤ x ≤ 1,

1 for x ≥ 1 ,
(33.3.10)

and the integral can be estimated to give

D/2kBT∫

0

dx
x

tanhx ≈ ln
D

2kBT
+ 1 = ln

eD
2kBT

, (33.3.11)

which shows that the integral is logarithmically singular. To get a better
estimate of the constant term we integrate by parts:

D/2kBT∫

0

dx
x

tanhx = ln
D

2kBT
−

D/2kBT∫

0

lnx
cosh2 x

dx . (33.3.12)

The value of the remaining integral is known if it is performed up to infinity:
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∞∫

0

lnx
cosh2 x

dx = − ln
4 eγ

π
, (33.3.13)

where γ = 0.5772 . . . is the Euler–Mascheroni constant defined in (C.3.32)
and C = eγ = 1.781 . . . . Thus

D/2kBT∫

0

dx
x

tanhx = ln
2eγD

πkBT
(33.3.14)

and
Σ0(2kF) = 1

2ρσ(εF) ln
2eγD

πkBT
. (33.3.15)

The calculations cannot be done exactly for arbitrary values of q at finite
temperatures. Writing the wave number in the form q = 2kF + q′, for small
values of q′ and ω we get

Σ0(2kF + q′, ω) = 1
2ρσ(εF)

{
ln

2eγD

πkBT
+ ψ

(
1
2

)
(33.3.16)

−1
2

[
ψ

(
1
2

+
i�(vFq′ − ω)

4πkBT

)
+ ψ

(
1
2
− i�(vFq′ + ω)

4πkBT

)]}
,

where ψ is the digamma function defined in (C.3.30). The sharp peak at
q = 2kF is rounded off more and more as the temperature increases. This is
depicted in Fig. 33.8.

1

T = 0

T1 ≠ 0

T2 > T1

2k
q

Fig. 33.8. Rounding of the q = ±2kF singularity in the spin density–spin density
response function of the one-dimensional electron gas at finite temperatures

If the Coulomb interaction is taken into account in the RPA, the 2kF
component of the susceptibility takes the form

χ(2kF) =
1
2g

2
eμ

2
Bμ0Σ0(2kF)

1 − UΣ0(2kF)
=

1
2g

2
eμ

2
Bμ0χ

0(2kF)

1 − 1
2Uρσ(εF) ln

2eγD

πkBT

. (33.3.17)
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As will be discussed later, the application of the RPA cannot be justified in a
strictly one-dimensional system. It does, however, give a good estimate of the
role of magnetic fluctuations in quasi-one-dimensional materials.

The susceptibility is positive at high temperatures and the system is para-
magnetic. The paramagnetic phase becomes unstable at a critical temperature
Tc where

1 = UΣ0(2kF) = 1
2Uρσ(εF) ln

2eγD

πkBTc
, (33.3.18)

from which we have

kBTc = 2
eγ

π
D e−2/Uρσ(εF) = 1.134D e−2/Uρσ(εF) . (33.3.19)

33.3.2 The Spin-Density-Wave Ground State

As the temperature is lowered, the stability condition fails first at a finite Tc
at frequency ω = 0 and wave number q = ±2kF. We may therefore assume
that a static ordered state appears below Tc in which the magnetic-moment
density varies periodically in space with wavelength λ = 2π/2kF. The ±2kF
Fourier components of the magnetic-moment density are finite,

〈m(±2kF)〉 �= 0 , (33.3.20)

and they can serve as the order parameter.
The magnetic-moment density is proportional to the z-component of the

spin density which can be written in second quantization in the form

〈
sz(±2kF)

〉
= 1

2

∑

k

[〈
c†k↑ck±2kF↑

〉− 〈c†k↓ck±2kF↓
〉]
. (33.3.21)

The charge density remains homogeneous in the magnetically ordered phase,

〈n(q)〉 ≡
∑

kσ

〈
c†kσck+qσ

〉
= Neδq,0 , (33.3.22)

which implies that
∑

k

〈
c†k↑ck±2kF↑

〉
= −

∑

k

〈
c†k↓ck±2kF↓

〉
, (33.3.23)

and thus 〈
sz(±2kF)

〉
=
∑

k

〈
c†k↑ck±2kF↑

〉
. (33.3.24)

It is readily shown by a change of variables that
∑

k

〈
c†kσck±2kFσ

〉
=
∑

k

〈
c†kσck∓2kFσ

〉∗ (33.3.25)
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and 〈
sz(±2kF)

〉
=
〈
sz(∓2kF)

〉∗
. (33.3.26)

All other Fourier components vanish. The magnetic-moment density can be
written as

m(x) =
1
V

[〈
m(2kF)

〉
ei2kFx +

〈
m(−2kF)

〉
e−i2kFx

]

=
2
V

∣∣〈m(2kF)
〉∣∣ cos(2kFx+ φ) ,

(33.3.27)

where φ is the phase of the complex order parameter. The spin density of
the one-dimensional model displays 2kF oscillations in the spin-density-wave
state. Both the continuous translation symmetry and the SU(2) symmetry of
spin rotation are broken in this phase.

Note that the wavelength of the spin-density wave is determined by the
number of electrons, i.e., by the filling of the band, via kF. The filling can be
arbitrary, it can be changed continuously by adding carriers to the system,
and the wavelength is not related in any way to the periodicity of the lattice.
When the ratio of the wavelength λ = π/kF and the lattice constant is an
irrational number, we speak of incommensurate spin-density wave. When the
ratio is a rational number, the SDW is commensurate with the lattice. Writing
the Fermi wave number in the form

kF =
π

a

n

m
(33.3.28)

with m and n integers, m is the order of commensurability. The spin-density
wave interacts with the underlying lattice, but this effect averages out in the
incommensurate situation where all atoms experience a different phase of the
SDW. That is why the phase can be arbitrary in this case. Commensurability
effects will be discussed in the next section in connection with charge-density
waves.

Note also that the expectation value of the electron density with spin σ,

nσ(x) =
1
L

∑

k

〈
c†kσck+2kFσ

〉
ei2kFx +

1
L

∑

k

〈
c†kσck−2kFσ

〉
e−i2kFx , (33.3.29)

and the magnetic-moment density can be calculated by expressing the creation
and annihilation operators of electrons in terms of the quasiparticle operators
to be introduced in the next section. The result is

n↑(x) = 1
2ne

[
1 +

Δ

�vFkFUρσ(εF)
cos(2kFx+ φ)

]
,

n↓(x) = 1
2ne

[
1 − Δ

�vFkFUρσ(εF)
cos(2kFx+ φ)

]
.

(33.3.30)

The value of Δ will be evaluated later. The up- and down-spin electron den-
sities oscillate in opposite phase producing a net oscillation in the magnetic
moment, but no oscillation in the total density.
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33.3.3 One-Particle Excitation in the SDW State

Forgetting about the lattice and considering only the SDW, it has a discrete
translational symmetry. It is invariant under translations by integer multiples
of λ = π/kF. The electrons feel an effective potential with such a period
and this effective potential modifies the dispersion relation of one-particle
excitations. Its effect is best seen if the electron states are described in the
Brillouin zone of the corresponding reciprocal lattice.

The reciprocal-lattice vectors are integer multiples of 2π/λ = 2kF, and the
boundaries of the new Brillouin zone are precisely at the Fermi points, ±kF.
The effect of the periodic potential is usually strongest at the zone boundary
and the lifting of degeneracy often leads to the opening of a gap there. We
may therefore expect the opening of a gap in the charge excitations. Since the
zone boundary coincides with the Fermi momenta, the opening of a gap there
should imply a Slater-type metal–insulator transition.

We apply the mean-field approximation to calculate the excitation spec-
trum. Writing the on-site repulsion of the Hubbard model in the momentum
representation, the four-operator term is decoupled as usual to yield

c†k+q↑c
†
k′−q↓ck′↓ck↑ ≈ 〈c†k′−q↓ck′↓

〉
c†k+q↑ck↑ +

〈
c†k+q↑ck↑

〉
c†k′−q↓ck′↓

− 〈c†k′−q↓ck′↓
〉〈
c†k+q↑ck↑

〉
. (33.3.31)

According to our earlier considerations the q = 0 and q = ±2kF components
of 〈nσ(q)〉 are nonvanishing. Neglecting the constant terms that contribute
to the total energy but are not relevant for the spectrum, after appropriate
changes of variables we find

H =
∑

kσ

εkc
†
kσckσ +

UH

N

∑

kk′

(〈
c†k′↑ck′↑

〉
c†k↓ck↓ +

〈
c†k′↓ck′↓

〉
c†k↑ck↑ (33.3.32)

+
〈
c†k′+2kF↑ck′↑

〉
c†k−2kF↓ck↓ +

〈
c†k′+2kF↓ck′↓

〉
c†k−2kF↑ck↑

+
〈
c†k′−2kF↑ck′↑

〉
c†k+2kF↓ck↓ +

〈
c†k′−2kF↓ck′↓

〉
c†k+2kF↑ck↑

)
.

The terms coming from the q = 0 component give the Hartree–Fock correction
to the one-particle energies. The remaining terms can be written in a more
concise form if we introduce the notation

Δ =
UH

N

∑

k′

〈
c†k′−2kF↓ck′↓

〉
= −UH

N

∑

k′

〈
c†k′−2kF↑ck′↑

〉
. (33.3.33)

Using (33.3.25) we find

H =
∑

kσ

ε̃kc
†
kσckσ+

∑

k

(
−Δ∗c†k−2kF↓ck↓ +Δ∗c†k−2kF↑ck↑

−Δc†k+2kF↓ck↓ +Δc†k+2kF↑ck↑
)
.

(33.3.34)
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The same unperturbed dispersion relation is assumed as in the Tomonaga–
Luttinger model shown in Fig. 32.6 with a band symmetric to the Fermi
energy with bandwidth 2D. The interaction mixes the right- and left-moving
electrons. The summation over k in the interaction terms is restricted to the
neighborhood of either +kF or −kF depending on whether the wave number
of the other operator is k−2kF or k+2kF. If the wave numbers are measured
from the Fermi points ±kF, and the notations c and d are used for the right
and the left movers, respectively, we have

H =
∑

kσ

(
ε̃kF+kc

†
kF+k,σckF+k,σ + ε̃−kF+kd

†
−kF+k,σd−kF+k,σ

)

+
∑

k

(
−Δ∗d†−kF+k↓ckF+k↓ +Δ∗d†−kF+k↑ckF+k↑

−Δc†kF+k↓d−kF+k↓ +Δc†kF+k↑d−kF+k↑
)
.

(33.3.35)

This expression is bilinear in the creation and annihilation operators and can
be diagonalized by a unitary transformation. Instead of applying the general
procedure outlined in Appendix I we make an inverse transformation. New
states are combined out of the states of right- and left-moving particles and
the Hamiltonian is required to be diagonal in terms of the new operators.

For this we rewrite the Hamiltonian by introducing the column vector
⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ (33.3.36)

and its adjoint, the row vector
(
c†kF+k,σ d

†
−kF+k,σ

)
. (33.3.37)

The Hamiltonian then takes the form

H =
∑

kσ

(
c†kF+k,σ d

†
−kF+k,σ

)( ε̃kF+k σΔ

σΔ∗ ε̃−kF+k

)⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ . (33.3.38)

The annihilation and creation operators of the new states are defined by
⎛

⎝
αkσ

βkσ

⎞

⎠ =

(
ukσ vkσ

−v∗kσ u
∗
kσ

)⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ (33.3.39)

and
(
α†

kσ β
†
kσ

)
=
(
c†kF+k,σ d

†
−kF+k,σ

)(u∗kσ −vkσ

v∗kσ ukσ

)
. (33.3.40)
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The transformation is unitary, with the new operators obeying fermionic an-
ticommutation rules, if

|ukσ|2 + |vkσ|2 = 1 . (33.3.41)

Inverting the transformation yields
⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ =

(
u∗kσ −vkσ

v∗kσ ukσ

)⎛

⎝
αkσ

βkσ

⎞

⎠ ,

(
c†kF+k,σ d

†
−kF+k,σ

)
=
(
α†

kσ β
†
kσ

)
(

ukσ vkσ

−v∗kσ u
∗
kσ

)
.

(33.3.42)

Substituting these expressions into the mean-field Hamiltonian (33.3.38) the
diagonalization condition can be written in terms of the matrices as
⎛

⎝
E

(1)
kσ 0

0 E
(2)
kσ

⎞

⎠ =

(
ukσ vkσ

−v∗kσ u
∗
kσ

)(
ε̃kF+k σΔ

σΔ∗ ε̃−kF+k

)(
u∗kσ −vkσ

v∗kσ ukσ

)
. (33.3.43)

The coefficient ukσ can be chosen to be independent of σ, while vkσ = σvk.
The off-diagonal terms vanish if

(ε̃kF+k − ε̃−kF+k)ukvk −Δu2
k +Δ∗v2

k = 0 . (33.3.44)

Although this equation can be satisfied by real coefficients and realΔ, complex
coefficients should be allowed for if we are interested in the wavefunction of
the system. Since only the relative phase of uk and vk is relevant, uk can be
chosen real and the phase of vk coincides with the phase of Δ. [It is the same
phase that appeared in (33.3.27).] Self-consistency of the equations requires
that this phase be independent of k, that is

vk = |vk|eiφ , Δ = |Δ|eiφ . (33.3.45)

The coefficients are chosen in the form

uk = cos θk , |vk| = sin θk (33.3.46)

to satisfy (33.3.41). Simple algebra yields

u2
k = 1

2

[
1 +

ξk√
ξ2k + |Δ|2

]
, |vk|2 = 1

2

[
1 − ξk√

ξ2k + |Δ|2

]
, (33.3.47)

where
ξk =

ε̃kF+k − ε̃−kF+k

2
. (33.3.48)

The value of |Δ|2 will be evaluated later. The k dependence of the coefficients
is displayed in Fig. 33.9.
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Fig. 33.9. Variations of the coefficients uk and vk as a function of the wave number

The diagonalization transformation leads to the Hamiltonian

H =
∑

kσ

(
E

(1)
kσ α

†
kσαkσ + E

(2)
kσ β

†
kσβkσ

)
(33.3.49)

with

E
(1)
kσ = ε̃kF+k|uk|2 + ε̃−kF+k|vk|2 +Δukv

∗
k +Δ∗u∗kvk ,

E
(2)
kσ = ε̃kF+k|vk|2 + ε̃−kF+k|uk|2 −Δukv

∗
k −Δ∗u∗kvk .

(33.3.50)

The operators α†
k and β†

k are the creation operators of quasiparticles, and the
SDW state can be described in this approximation as a noninteracting gas
of these quasiparticles. The right- and left-moving electrons are mixed with
equal weight in the α and β particles at k = 0. The weight of right movers
is larger in the α particles, and the β particles are more left-moving-like, for
k > 0. The situation is reversed for negative k.

Using the explicit expressions for uk and vk we get

E
(1)
kσ =

ε̃kF+k + ε̃−kF+k

2
+

√(
ε̃kF+k − ε̃−kF+k

2

)2

+ |Δ|2 ,

E
(2)
kσ =

ε̃kF+k + ε̃−kF+k

2
−
√(

ε̃kF+k − ε̃−kF+k

2

)2

+ |Δ|2
(33.3.51)

for the energies of the new particles. With the linearized dispersion relation
near ±kF, where

ε̃kF+k = μ+ ξk = μ+ �vFk ,

ε̃−kF+k = μ− ξk = μ− �vFk ,
(33.3.52)

we find

E
(1)
kσ = μ+

√
ξ2k + |Δ|2 = μ+

√
(�vFk)2 + |Δ|2 ,

E
(2)
kσ = μ−

√
ξ2k + |Δ|2 = μ−

√
(�vFk)2 + |Δ|2 .

(33.3.53)
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Fig. 33.10. Dispersion relation of one-particle excitations in the spin-density-wave
state. (a) In the representation where the wave number is measured from the zone
boundary ±kF. (b) In the extended-zone scheme, shifting the wave numbers by ±kF

Figure 33.10(a) shows this spectrum for small values of k. Its most relevant
feature is the opening of a gap of width 2Δ at k = 0.

Noting that the Brillouin zone in the SDW state extends from −kF to kF
it is convenient to redefine the new particles to have wave numbers near ±kF
via ⎛

⎝
α−kF+k,σ

β−kF+k,σ

⎞

⎠ =

(
ukσ vkσ

−v∗kσ u
∗
kσ

)⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ (33.3.54)

for k > 0 and
⎛

⎝
αkF+k,σ

βkF+k,σ

⎞

⎠ =

(
ukσ vkσ

−v∗kσ u
∗
kσ

)⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ (33.3.55)

for k < 0. A simple picture is obtained for the dispersion relation when it is
displayed in the extended-zone scheme [see Fig. 33.10(b)]. As expected, a gap
opens up at the zone boundaries compared to the free particle spectrum. The
states are doubly degenerate and spin independent. The number of allowed
states in the lower band is equal to the number of electrons in the system. The
originally metallic system becomes an insulator in the SDW state. Contrary to
band insulators where the position of the gap is determined by the underlying
lattice, it is fixed in the SDW state by the number of electrons. The gap always
opens at ±kF. Adding electrons to the system modifies the value of the Fermi
momentum and the system remains insulating.

33.3.4 The Energy Gap

The quantity Δ defined in (33.3.33) is an effective potential that scatters
right-moving electrons into left-moving states and vice versa. It appears in
the parameters uk and vk and through them in the excitation energies and
the gap. Its value can be calculated from a self-consistency condition.

Using the notation c and d for right and left movers, Δ is given by

Δ =
UH

N

∑

k′

〈
d†−kF+k′↓ckF+k′↓

〉
. (33.3.56)
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If these operators are expressed in terms of the quasiparticle operators using
(33.3.42) we have

Δ =
UH

N

∑

k

u∗kvk

[〈
β†

k↓βk↓
〉− 〈α†

k↓αk↓
〉]
. (33.3.57)

The states with energy E
(1)
kσ created by the operators α†

kσ are all empty in
the ground state, while the lower band with energies E(2)

kσ is completely filled.
This gives

Δ =
UH

N

∑

k

u∗kvk . (33.3.58)

With the aid of (33.3.47) we find

Δ =
UH

N

∑

k

1
2

Δ√
ξ2k + |Δ|2 . (33.3.59)

A trivial solution is Δ = 0. A nontrivial solution can be obtained for a repul-
sive (UH > 0) Coulomb term from

1 =
UH

N

∑

k

1
2

1√
ξ2k + |Δ|2 . (33.3.60)

This gives the energetically stable broken-symmetry phase. Replacing the
summation over k by integration over energy, taking again only half of the
density of states per spin [the sum over k′ in (33.3.33) goes over the wave
numbers of right-moving particles only] we have

1 = U

∫
dξ 1

4ρσ(ξ)
1√

ξ2 + |Δ|2 , (33.3.61)

where U = UHV/N . Integration can be performed for a symmetric unper-
turbed band of width 2D with a constant density of states. We get

1 = 1
4Uρσ(εF)

D∫

−D

dξ√
ξ2 + |Δ|2 = 1

2Uρσ(εF)arsinh
D

|Δ| . (33.3.62)

This gives

|Δ| =
D

sinh(2/Uρσ(εF))
. (33.3.63)

In the weak-coupling limit Uρσ(εF) � 1 the expression for the gap reduces to

|Δ| = 2De−2/Uρσ(εF). (33.3.64)

Combining it with (33.3.19) obtained for the critical temperature we get
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eγ

π
|Δ| = kBTc . (33.3.65)

The ratio of the energy gap and the critical temperature,

2|Δ|
kBTc

=
2π
eγ

= 3.528 . . . , (33.3.66)

is a universal quantity independent of the material properties. This is not
surprising since both quantities are determined from similar integrals. The
critical temperature is obtained from the condition 1 = UΣ0(2kF) which leads
to

1 = 1
2Uρσ(εF)

D∫

0

dξ
ξ

tanh
ξ

2kBTc
, (33.3.67)

while the gap is determined from

1 = 1
2Uρσ(εF)

D∫

0

dξ√
ξ2 + |Δ|2 . (33.3.68)

The Coulomb repulsion and the density of states drop out in the comparison.
Since the bandwidth is much larger than kBTc or Δ, the high-energy states
give identical contributions to the integrals, and thus the value of D is also
irrelevant.

Relationship (33.3.57) allows us to extend the calculation of the energy
gap to finite temperatures. Since the quasiparticles are fermions and their
thermal occupation is given by the Fermi distribution function, we have

Δ(T ) =
UH

N

∑

k

u∗kvk

[
f0
(
E

(2)
k↓
)− f0

(
E

(1)
k↓
)]
. (33.3.69)

Expressing the Fermi functions in terms of tanhx using (33.3.7) we find

Δ =
UH

N

∑

k

Δ

2
√
ξ2k + |Δ|2 tanh

√
ξ2k + |Δ|2
2kBT

. (33.3.70)

The nontrivial solution has to satisfy the equation

1 =
UH

N

∑

k

tanh

√
ξ2k + |Δ|2
2kBT

2
√
ξ2k + |Δ|2 . (33.3.71)

As the temperature increases, the gap diminishes and vanishes at a critical
temperature Tc which can be determined from

1 =
UH

N

∑

k

tanh
|ξk|

2kBTc
2|ξk| . (33.3.72)
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Only the trivial solution Δ = 0 survives above Tc.
This equation, obtained from the vanishing of the gap as the temperature

increases in the ordered phase, is identical to the equation obtained from the
instability condition 1 = UΣ0(2kF) as the temperature is decreased in the
high-temperature phase. The same Tc given in (33.3.19) is found.

The temperature dependence of the gap can be calculated from (33.3.71).
Near the critical point we find

Δ(T ) ∝
√
Tc − T , (33.3.73)

which is typical for the temperature dependence of the order parameter in
mean-field theories. The thermodynamic behavior in the ordered phase can
also be determined. We do not go into these details here and will return
to these problems in our study of superconductivity in Chapter 34, where
formally rather similar equations are obtained. The same results apply to
density-wave systems as well.

33.3.5 Collective Excitations

The single-particle excitations were found to have a finite gap. We expect
in fact two soft Goldstone modes in the ordered phase since two continuous
symmetries are broken. The breaking of the translational symmetry implies
the existence of acoustic-phonon-like excitations. The nature of this excitation
can be understood if we recall that an incommensurate SDW can slide freely,
without cost of energy, over the lattice, which means that the uniform phase
can be arbitrarily chosen. Long-wavelength fluctuations of the phase, which
correspond to slow variations of the wavelength of the SDW, cost a small
energy. These modes are known as phasons. On the other hand, the breaking
of the spin-rotation symmetry should lead to spin-wave-like excitations. To
get their dispersion relation the dynamics of the SDW has to be studied.
They are obtained in a microscopic theory from the poles of the dynamical
susceptibility.

Both the amplitude and the phase of the order parameter may fluctuate
in space and time. These variations can be described by taking a form

Δ(x, t) =
[
Δ0 + δ(x, t)

]
eiφ′(x,t) , (33.3.74)

where Δ0 is the equilibrium value of the order parameter which – apart from
a factor containing the Coulomb interaction – is related to the expectation
value of the spin density:

Δ0 ∝ 〈sz(2kF)〉 = 1
2

∑

k

[〈
c†k↑ck+2kF↑

〉− 〈c†k↓ck+2kF↓
〉]
. (33.3.75)

The long-wavelength fluctuations of the order parameter are related to the
2kF + q Fourier components of the spin density with small q values, that is to



356 33 Electronic Phases with Broken Symmetry

Δ(q, t) ∝ 〈sz(2kF+q, t)〉 = 1
2

∑

k

[〈
c†k↑(t)ck+2kF+q↑(t)

〉− 〈c†k↓(t)ck+2kF+q↓(t)
〉]
.

(33.3.76)
To lowest order in the fluctuations, the variations in the amplitude are given
by the symmetric combinations of 〈sz(2kF + q, t)〉 and 〈sz(−2kF − q, t)〉 while
the phase fluctuations are connected to the antisymmetric combination:

σA(q, t) ≡ 〈sz(2kF + q, t)〉 + 〈sz(−2kF − q, t)〉 = 2
[
Δ0 + δ(q, t)

]
,

σφ(q, t) ≡ 〈sz(2kF + q, t)〉 − 〈sz(−2kF − q, t)〉 = 2iφ′(q, t)Δ0 .
(33.3.77)

The system exhibits spontaneous collective excitations for q, ω values for which
the generalized susceptibilities

ΠσAσA(q, ω) = − i
�

1
L

∞∫

0

dteiωt
〈[
σA(q, t), σA(−q, 0)

]
−
〉
,

Πσφσφ
(q, ω) = − i

�

1
L

∞∫

0

dteiωt
〈[
σφ(q, t), σφ(−q, 0)

]
−
〉

(33.3.78)

are singular. Without going into details we note that the phase modes, the
phasons, have a linear dispersion relation,

�ωφ(q) = �vF
[
1 + Uρσ(εF)

]
q . (33.3.79)

The group velocity is close to the Fermi velocity at low temperatures, de-
creases with increasing temperature, and vanishes at the critical temperature.
The amplitude fluctuations, called amplitudons, are not soft. Their dispersion
relation is

�ωA(q) =
√

(2Δ)2 + (�vFq)2 . (33.3.80)

Their minimum energy is the same as that of electron–hole excitations across
the gap.

Spin waves, the other soft Goldstone modes, can be obtained by calculating
the singularity in the transverse susceptibility. One finds a linear dispersion
relation,

�ω(q) ∝ Jeffq , (33.3.81)

with an effective exchange coupling

Jeffa = 1
2�vF

[
1 − Uρσ(εF)

]1/2 (33.3.82)

in the weak-coupling limit, while Jeff ∝ t2/U in the strong-coupling limit.
Alternatively, one can study the dynamics phenomenologically, starting

from a time-dependent Ginzburg–Landau free energy density. A somewhat
more detailed discussion will be given in the next section in connection with
charge-density waves.
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33.4 Charge-Density Waves

It is clear from our earlier considerations that the spin-density waves appearing
under favorable conditions (in systems where the Fermi surface has the nesting
property) are due to the Coulomb repulsion between electrons. The same
interaction suppresses charge-density fluctuations. This can easily be seen by
looking at the RPA form of the density–density response function,

Π(q, ω) =
Π0(q, ω)

1 − UΠ0(q, ω)
, (33.4.1)

if we recall that Π0(q, ω) = −2Σ0(q, ω) and the static, long-wavelength limit,
Π0(0, 0), is equal to −ρ(εF). An attractive interaction, on the other hand,
can enhance charge fluctuations and eventually lead to the instability of the
homogeneous state against the formation of static periodic charge oscillations
known as charge-density waves (CDWs). We know from Chapter 23, where
the consequences of electron–phonon interactions were studied, that the pro-
cess, in which the phonon emitted by an electron is absorbed by another
electron, is equivalent to an effective attractive interaction between the two
electrons. This attraction is responsible for the formation of Cooper pairs and
for superconductivity in conventional superconductors. Phonons mediate the
interaction, but they are not directly involved in the anomalous electrody-
namic properties. That is why the microscopic theory of this phenomenon
can be formulated, as will be done in the next chapter, to a large extent
by treating the electrons only. Phonons and electrons play equally important
roles in charge-density waves and we have to start the theoretical description
with a Hamiltonian that contains explicitly the kinetic energy of both elec-
trons and phonons as well as their interactions. For the sake of simplicity we
will use the Hamiltonian of the Fröhlich model [see (23.3.43)] with a single
longitudinal acoustic phonon branch, but with the electron spin included. In
the conventional notation

H =
∑

kσ

εkc
†
kσckσ +

∑

q

�ωqa
†
qaq +

1√
L

∑

kqσ

gqc
†
k+qσckσ

(
aq + a†−q

)
. (33.4.2)

This interaction can be interpreted as if phonons generated an effective po-
tential

Φ(q) =
√
Lgq

(
aq + a†−q

)
(33.4.3)

that couples to the electron density n(−q).

33.4.1 Peierls Transition

We have seen in Chapter 23 that the energy of phonons is renormalized due
to electron–phonon interaction, and this effect is strongest at q = 2kF. This
is the Kohn anomaly. The change in the energy was calculated in second
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order of perturbation theory, since the frequency shift is relatively small un-
der normal conditions in three-dimensional materials. The correction to the
energy can be so big, the softening of the phonon so drastic, in quasi-one-
dimensional systems that the renormalized phonon energy vanishes, and a
structural transition takes place. This is the Peierls instability, also known
as Peierls–Fröhlich instability.5 Low-order perturbation theory is no longer
applicable and a better procedure must be found to see what happens to the
phonon and the electron systems around the transition point.

The simplest procedure is to write the equation of motion for the operators
aq and a†−q that couple to the electron density. The most relevant phonons
are the ones near q = ±2kF. The coupling constant will be taken real and
independent of the wave number. We find

�

i
d
dt
aq = −�ωqaq −

1√
L

∑

kσ

gc†k−qσckσ ,

�

i
d
dt
a†−q = �ω−qa

†
−q +

1√
L

∑

kσ

gc†k−qσckσ .

(33.4.4)

Since the phonon frequency is an even function of q, the sum of the left- and
right-hand sides gives

�

i
d
dt

(
aq + a†−q

)
= −�ωq

(
aq − a†−q

)
. (33.4.5)

If this equation is differentiated once more with respect to time we get
(

�

i
d
dt

)2 (
aq + a†−q

)
=
(
�ωq

)2 (
aq + a†−q

)
+

2�ωq√
L

∑

kσ

gc†k−qσckσ . (33.4.6)

The second term on the right-hand side contains n(q), the Fourier transform
of the electron density. In a mean-field approximation it can be replaced with
its expectation value and this quantity can be calculated to linear order in
the electron–phonon coupling. Since the effective potential Φ(q) couples to the
electron density, the proportionality factor Π(q) in

〈n(q)〉 = Π(q)Φ(q) (33.4.7)

is the density–density response function according to linear response theory.
With this approximation
(

�

i
d
dt

)2 (
aq + a†−q

)
=
(
�ωq

)2 (
aq + a†−q

)
+ 2�ωqg

2Π(q)
(
aq + a†−q

)
.

(33.4.8)
For a harmonic time dependence with frequency ω̃q this equation gives

5
R. E. Peierls, 1955, H. Fröhlich, 1954.
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(�ω̃q)2 =
(
�ωq

)2 + 2�ωqg
2Π(q) , (33.4.9)

from which the renormalized energy of phonons, �ω̃q, can be calculated. If the
interaction between electrons is neglected, Π(q) is replaced with its value for
a free electron gas. An analytic expression for wave numbers close to 2kF can
be inferred from (33.3.16) through the relationship Π0 = −2Σ0. We have

Π0(±2kF + q′, ω) = − 1
π�vF

{
ln

2eγD

πkBT
+ ψ( 1

2 ) (33.4.10)

− 1
2

[
ψ
(1

2
+

i�(vFq′ − ω)
4πkBT

)
+ ψ
(1

2
− i�(vFq′ + ω)

4πkBT

)]}
.

We then find
(
�ω̃2kF+q′

)2 =
(
�ω2kF

)2 − 2�ω2kFg
2ρσ(εF) ln

2eγD

πkBT

+ 2�ω2kFg
2ρσ(εF)

7ζ(3)
16π2

v2
Fq

′2

k2
BT

2
.

(33.4.11)

The softening of phonons near q = 2kF as the temperature is lowered is seen
in Fig. 33.11.

q

Tc

T1

T2

T3

q
2kF

Fig. 33.11. Softening of phonons near q = 2kF due to electron–phonon interaction
in one-dimensional systems

The static charge-density wave appears at the temperature where the
renormalized phonon frequency vanishes first at 2kF. The critical tempera-
ture of the Peierls transition is given by

kBTc =
2eγ

π
De−1/λ , (33.4.12)

where

λ =
2g2ρσ(εF)

�ω2kF

(33.4.13)

is the dimensionless coupling constant.
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33.4.2 The CDW State

The zero-energy q = 2kF phonons may be excited in macroscopic number at
the transition point. The new phase below Tc may be considered as their Bose
condensate. Following the Bogoliubov theory6 of superfluidity we assume that
the operators a±2kF

and a†±2kF
, which change the number of particles in the

condensate by one, behave as c-numbers; they have a finite mean value,
〈
a±2kF

〉 �= 0 . (33.4.14)

The complex quantity

Δ = |Δ|eiφ =
1√
L
g
[〈
a2kF

〉
+
〈
a†−2kF

〉]
(33.4.15)

can then serve as an order parameter.
The finite value of

〈
a±2kF

〉
implies that the atoms are displaced from

their equilibrium positions and a static lattice deformation occurs with wave
number 2kF. The displacement of ions is given according to (12.1.39) by

〈u(Rn)〉 =

√
�

2MNω2kF

[(〈
a2kF

〉
+
〈
a†−2kF

〉)
ei2kFRn + c.c.

]

=

√
�L

2MNω2kF

2|Δ|
g

cos(2kFRn + φ) .

(33.4.16)

The new periodicity (with repetition length π/kF) of the ion positions
results in a rearrangement of the electron states. The primitive vector of the
reciprocal lattice is 2kF and the boundaries of the new Brillouin zone are at
±kF. Just as in the SDW state, we expect a gap to open at the zone boundary.
This gap transforms the metal into insulator.

To calculate the electronic energy spectrum we consider the Fröhlich
Hamiltonian in the mean-field approximation where the phonon creation and
annihilation operators are replaced with their expectation values. With the
notation introduced in (33.4.15) we get

H =
∑

kσ

εkc
†
kσckσ +

∑

kσ

(
Δ∗c†k−2kFσckσ +Δc†kσck−2kFσ

)
(33.4.17)

for the electronic part of the Hamiltonian. Separating the contributions of the
right- and left-moving electrons in the kinetic energy, we have

H =
∑

kσ

(
εkF+kc

†
kF+k,σckF+k,σ + ε−kF+kd

†
−kF+k,σd−kF+k,σ

)

+
∑

kσ

(
Δ∗d†−kF+k,σckF+k,σ +Δc†kF+k,σd−kF+k,σ

)
. (33.4.18)

6
N. N. Bogoliubov, 1947.
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In matrix notation

H =
∑

kσ

(
c†kF+k,σ d

†
−kF+k,σ

)(εkF+k Δ

Δ∗ ε−kF+k

)⎛

⎝
ckF+k,σ

d−kF+k,σ

⎞

⎠ . (33.4.19)

Comparison with (33.3.38) shows that this Hamiltonian can be diagonalized
in terms of the operators α†

k and β†
k defined in (33.3.39) and (33.3.40), with

the only difference that both ukσ and vkσ are spin independent. The creation
operators of the new particles are defined by

(
α†

kσ β
†
kσ

)
=
(
c†kF+k,σ d

†
−kF+k,σ

)(u∗k −vk

v∗k uk

)
, (33.4.20)

where uk can be taken as real and

u2
k + |vk|2 = 1 (33.4.21)

from unitarity. The off-diagonal terms of the transformed Hamiltonian vanish
if

u2
k = 1

2

[
1 +

ξk√
ξ2k + |Δ|2

]
, |vk|2 = 1

2

[
1 − ξk√

ξ2k + |Δ|2

]
, (33.4.22)

with
ξk =

εkF+k − ε−kF+k

2
, (33.4.23)

and the diagonal terms give

E
(1)
kσ =

εkF+k + ε−kF+k

2
+

√(
εkF+k − ε−kF+k

2

)2

+ |Δ|2 ,

E
(2)
kσ =

εkF+k + ε−kF+k

2
−
√(

εkF+k − ε−kF+k

2

)2

+ |Δ|2
(33.4.24)

for the one-particle energies. This spectrum has the same form as in an SDW
state. A gap opens in the spectrum at k = 0 (at ±kF in the original momenta)
and the CDW state is insulating.

So far we have shown that the ions are displaced in the CDW state. We now
show that a similar spatial variation occurs in the electron density, thereby
justifying the name of charge-density wave. The electron density is calculated
from the expression

ρ(x) = −e
∑

σ

〈Ψ0|ψ̂†
σ(x)ψ̂σ(x)|Ψ0〉 , (33.4.25)

where |Ψ0〉 is the ground-state wavefunction of the CDW. The lower band is
fully occupied and the upper band is empty in the ground state, that is
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|Ψ0〉 =
∏

−kF≤k≤kF

β†
k↑β

†
k↓|0〉 , (33.4.26)

and ψ̂σ(x) is the electronic field operator:

ψ̂σ(x) =
1√
L

∑

k

[
ckF+k,σei(kF+k)x + d−kF+k,σe−i(kF−k)x

]
. (33.4.27)

The ground-state expectation value can be easily calculated if the operators
c and d are expressed in terms of α and β. In the weak-coupling limit we find

ρ(x) = ρ0

[
1 +

Δ

�vFkFλ
cos(2kFx+ φ)

]
, (33.4.28)

where ρ0 is the homogeneous charge density in the metallic phase.
Similar to spin-density waves, we can distinguish commensurate and in-

commensurate charge-density waves. Obviously one can always find a com-
mensurate density wave close to any incommensurate situation such that the
wavelengths differ only a little. We might expect that their physical properties,
too, differ only a little. This is not the case when the order of commensurabil-
ity is small, m = 2, 3, 4, . . . . Energy is gained in the commensurate situation
when the maxima and minima of the density wave occupy special positions
with respect to the lattice sites. This energy gain pins the phase of the CDW.
The effect is strongest for low orders of commensurability and gives rise to
a deformation of the lattice. For half-, one-third-, two-thirds-, quarter-, or
three-quarters-filled bands, where the period of density oscillations is pre-
cisely twice, three times, or four times bigger than the lattice constant, it may
be energetically favorable for the lattice to deform by doubling, tripling, or
quadrupling this period.

33.4.3 Determination of the Gap

The self-consistent calculation of the energy gap cannot be done in the same
way as for SDW, since the gap in the electronic excitation spectrum of the
CDW state is defined in terms of the expectation value of the creation and
annihilation operators of ±2kF phonons. The gap can be obtained from the
minimum of the total energy. The electronic contributions, including the renor-
malization due to electron–phonon interaction, come from the energy of the
completely filled lower band. Taking, as usual, a finite bandwidth 2D = 2�vFkc
we have

Ee = 2
kc∑

k=−kc

E
(2)
k , (33.4.29)

where
E

(2)
k = εF − [(�vFk)2 + |Δ|2]1/2

. (33.4.30)
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This energy can be evaluated by converting the sum to an integral. Neglecting
the constant term NeεF we find

Ee = −L
π

kc∫

−kc

[
(�vFk)2 + |Δ|2]1/2

dk

= − L

π�vF

[
D
√
D2 + |Δ|2 + |Δ|2 arsinh

D

|Δ|
]
.

(33.4.31)

In the weak-coupling limit it yields

Ee = −Lρσ(εF)
[
D2 + |Δ|2 ln

2D
|Δ| + O (|Δ|2)

]
, (33.4.32)

where we made use of the relation ρσ(εF) = 1/(π�vF). The correction
|Δ|2 ln |Δ| comes from the opening of the gap. Since the energy of the filled
states is pushed downward by the interaction, the electronic energy is always
lower in the gapped CDW state than in the homogeneous state. Moreover,
this energy reduction is always larger in absolute value than the increase in
the lattice energy due to the deformation. This elastic term is obtained from
the expectation value of

Hph =
∑

q

�ωqa
†
qaq . (33.4.33)

Owing to the macroscopic occupation of the phonon states with wave numbers
±2kF, a reasonable estimate of the elastic energy is

Eph =
〈Hph

〉
= 2�ω2kF

∣∣〈a†2kF

〉∣∣2 . (33.4.34)

In terms of the order parameter Δ and the dimensionless coupling constant λ
we have

Eph = L�ω2kF

|Δ|2
2g2

= Lρσ(εF)
|Δ|2
λ

. (33.4.35)

This quadratic term is indeed always smaller than the decrease in the elec-
tronic energy. Thus the one-dimensional electron–phonon system is always
unstable against lattice distortion. The deformation of the lattice is such that
the boundaries of the new Brillouin zone coincide with the Fermi points; a
gap opens there and the system becomes insulating. Minimization of the total
energy gives

|Δ| = 2De−1/λ . (33.4.36)

Note that the same universal number is obtained for the ratio of the gap and
kBTc as for spin-density waves [see (33.3.66)].

The gap was calculated at T = 0. It can also be evaluated at finite temper-
atures. Due to the formal similarity between the theory of superconductivity
and density waves we refer to the results presented in the next chapter.
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33.4.4 Collective Excitations

The one-particle excitations were calculated by assuming a rigid periodic lat-
tice distortion, but phase and amplitude fluctuations of the order parameter

Δ(x, t) =
[
Δ+ δ(x, t)

]
eiφ(x,t) (33.4.37)

may also be described in terms of collective excitations, just like in the SDW
state. Fluctuations can be studied microscopically by calculating the response
functions

ΠnAnA(q, ω) = − i
�

∞∫

0

eiωt
〈[
nA(q, t), nA(−q, 0)

]
−
〉

(33.4.38)

and

Πnφnφ
(q, ω) = − i

�

∞∫

0

eiωt
〈[
nφ(q, t), nφ(−q, 0)

]
−
〉
, (33.4.39)

where

nA(q) = n(2kF + q) + n(−2kF + q) ,
nφ(q) = n(2kF + q) − n(−2kF + q)

(33.4.40)

are the symmetric and antisymmetric combinations of the ±2kF Fourier com-
ponents of the density and as such they are related to the amplitude and
phase fluctuations.

In an incommensurate CDW, where the phase is not pinned to the lattice,
the energy of phase fluctuations is low in the long-wavelength limit. In contrast
to SDW, the electrons oscillate together with the ions in a CDW. The inertia
of the ions can be taken into account by an effective mass

m∗ = me

(
1 +

4|Δ|2
λ�2ω2

2kF

)
(33.4.41)

of the moving CDW, where λ is the dimensionless coupling of the
electron–phonon interaction, in terms of which the energy of phasons is given
by

�ωφ =
(me

m∗
)1/2

�vFq . (33.4.42)

The ratio m∗/me can be quite large.7 It is about m∗/me ≈ 103 in the Krog-
mann salt at low temperatures, and it is about 60 in TTF–TCNQ. Thus the
phason velocity

vφ = vF

(me

m∗
)1/2

(33.4.43)

7 There is no similar mass enhancement in SDW, since it does not couple to the
lattice. That is why the phason velocity is vF in SDW.
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is much smaller than the Fermi velocity. As the temperature approaches the
transition temperature from below, the order parameter and the mass en-
hancement decrease, while the phason velocity increases.

The oscillations of the amplitude of a density wave are accompanied by
periodic charge accumulations or depletions. Hence the energy of amplitudons
is finite even in the long-wavelength limit. At low temperatures we find

�ωA =
[
λ�

2ω2
2kF

+
1
3
me

m∗ �
2v2

Fq
2

]1/2

. (33.4.44)

It is instructive to plot the dispersion relation of phasons and amplitudons
in the extended-zone scheme, as seen in Fig. 33.12, shifting the wave num-
bers by 2kF. Comparison with Fig. 33.11, which shows the vanishing of the
frequency of 2kF phonons at Tc, justifies the interpretation that the phason
and the amplitudon branches are the continuations of the soft phonon branch
to temperatures below Tc. The single branch of soft phonons splits into two
below the transition temperature owing to the change in the periodicity. The
phason branch remains soft, corresponding to acoustic oscillations, and a gap
opens in the amplitudon branch which is the analog of optical excitations.

2kFkF

ωq

ωA

ωφ
q

∼

Fig. 33.12. Dispersion curves of phasons and amplitudons in the extended-zone
scheme

Note that phasons are soft only in incommensurate CDWs, where the
ionic background can be considered as a uniform but deformable continuum.
It is only in this case that the phase can be arbitrarily chosen. This is not
so in the commensurate situation where the phase is pinned to the lattice.
The charge accumulations and depletions are arranged relative to the ionic
positions in such a way as to minimize the energy. Fluctuations around the
energy minimum cost finite energy and phasons are no longer soft even in the
long-wavelength limit.

33.4.5 Dynamics of Charge-Density Waves

Because of their low energy, fluctuations of the phase are more relevant than
amplitude variations in CDW systems. They determine the dynamics. We
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assume now that the phase may vary in space and time and will study the
equations governing these variations.

The variations of the charge density are written in the form

ρ(x, t) = ρ0 + δρ cos[2kFx+ φ(x, t)] (33.4.45)

with a position- and time-dependent phase. For slow variations of the phase
the spatial oscillations can be characterized by a local effective wavelength
which can be defined by

2kFλeff + φ(λeff, t) − φ(0, t) = 2π , (33.4.46)

that is [
2kF +

∂φ(x, t)
∂x

]
λeff = 2π . (33.4.47)

Alternatively, an effective Fermi wave number can be introduced via

2kF,eff = 2kF +
∂φ(x, t)
∂x

. (33.4.48)

That means that the local variation of the Fermi wave number is

δkF(x, t) =
1
2
∂φ(x, t)
∂x

. (33.4.49)

In a semiclassical description this leads to a locally varying electronic band
structure, where the Fermi points and the zone boundaries are shifted to

±
[
kF +

1
2
∂φ(x, t)
∂x

]
. (33.4.50)

Electrons fill the lower band completely, leaving the upper band empty. This
implies that the electron density varies as

δne(x, t) =
2
π

δkF(x, t) =
1
π

∂φ(x, t)
∂x

, (33.4.51)

and the local pileup of the electric charge is given by

δρ(x, t) = − e

π

∂φ(x, t)
∂x

. (33.4.52)

In deriving these expressions we have taken into account that the spacing
between the allowed k values is 2π/L, one factor of 2 coming from the two
Fermi points and another from the spin.

Temporal variations of the phase correspond to a displacement of the
CDW, as if it moved along the chain. The drift velocity of this motion can be
obtained from the equation

2kFx+ φ(x, t) = const (33.4.53)
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that determines the motion of points with a fixed phase. We find

vdr = − 1
2kF

∂φ(x, t)
∂t

. (33.4.54)

The particle-current density carried by the sliding CDW is

jn = nevdr . (33.4.55)

If all electrons are condensed into the CDW, the particle density is related to
the Fermi wave number via

ne =
2kF

π
. (33.4.56)

The particle-current density carried by the CDW is then

jn =
2kF

π

(
− 1

2kF

∂φ(x, t)
∂t

)
= − 1

π

∂φ(x, t)
∂t

, (33.4.57)

and the electric-current density is

j =
e

π

∂φ(x, t)
∂t

. (33.4.58)

Note that the charge and current densities satisfy the continuity equation

∂ρ(x, t)
∂t

+
∂j(x, t)
∂x

= 0 . (33.4.59)

In order to get an explicit expression for the current and the conductivity,
we have to find the equation that governs the spatial and temporal variations
of the phase. It can be derived from the Lagrangian containing the kinetic
energy arising from the temporal variations of the phase and the elastic energy
coming from the spatial deformations.

Taking an effective mass m∗ that contains the renormalization effect of
the comoving ions, the kinetic energy of the electron condensate moving with
velocity vdr is given by

T = ne
1
2m

∗v2
dr . (33.4.60)

Combining this expression with (33.4.54) and (33.4.56) we have

T =
m∗

4πkF

(∂φ(x, t)
∂t

)2

. (33.4.61)

The deformation energy can be estimated if we recall that the Fermi points
are shifted by (33.4.49) and the states of the lower band are filled between
the Fermi points. The local change in the number of particles is given by

4δkF
L

2π
= L

1
π

∂φ(x, t)
∂x

, (33.4.62)
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and the mean energy of these particles measured from the Fermi energy is
1
2�vFδkF. Hence the deformation energy per unit length is

Edef =
�vF
4π

(
∂φ(x, t)
∂x

)2

=
�

2kF

4πme

(
∂φ(x, t)
∂x

)2

. (33.4.63)

Although this estimate was obtained for a gapless spectrum, it is expected to
hold in the CDW state as well. The Lagrangian is then

L =
m∗

4πkF

(
∂φ

∂t

)2

− �
2kF

4πme

(
∂φ

∂x

)2

=
m∗

4πkF

[(
∂φ

∂t

)2

−
(

�kF

me

)2
me

m∗

(
∂φ

∂x

)2
]
.

(33.4.64)

The equation of motion obtained from the Euler–Lagrange equation,

∂

∂t

∂L
∂φt

+
∂

∂x

∂L
∂φx

− ∂L
∂φ

= 0 , (33.4.65)

where
φt =

∂φ

∂t
and φx =

∂φ

∂x
, (33.4.66)

is a wave equation,
∂2φ

∂t2
− v2

F
me

m∗
∂2φ

∂x2
= 0 , (33.4.67)

which describes the propagation of the CDW with the phason velocity given
in (33.4.42). The equations derived here will be used in studying the motion
of the CDW in an external electric field.

33.4.6 Topological Excitations

The collective excitations were obtained on the assumption that the oscilla-
tions of the order parameter are small. Other types of excitations, where the
deformations of the order parameter are not small, may also exist in CDWs.
First, we consider such excitations in commensurate systems. For simplicity
we visualize them in a half-filled model with one electron per atom. The Fermi
points are at kF = ±π/2a and the 2kF instability of the lattice gives rise to a
doubling of the periodicity. The phase of the CDW cannot be arbitrary; it is
pinned to the lattice. There are two degenerate configurations for the lattice
deformation displayed in Fig. 33.13.

The energy minima correspond to phases differing by π. In the case of
m-fold commensurability there are m degenerate ground states with phases
differing by 2π/m. The pinning of the phase is due to the commensurability
energy

Ecomm ∝ 1 − cos(mφ) . (33.4.68)
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Fig. 33.13. Two equivalent deformation patterns and the corresponding CDWs in
the dimerized lattice

When the phase varies by a nonzero integer multiple of 2π/m between the
two ends of the chain, the lattice deformations at the two ends correspond to
different deformation patterns and a domain wall of finite width has to appear
between them. Such situations are seen in Fig. 33.14.

Fig. 33.14. Solitons between oppositely dimerized domains. The density wave is
compressed or stretched in the domain wall

The domain walls are topological excitations. Their existence is related to
the boundary condition, to the phase difference between the two ends. They
cannot decay, but can propagate with a finite velocity along the chain. The
effect of the lattice can be taken into account in the classical description by
adding the commensurability energy to the deformation energy (33.4.63) in
the Lagrangian. This leads to the equation of motion

∂2φ(x, t)
∂t2

− v2
φ

∂2φ(x, t)
∂x2

+
ω2

0

m
sinmφ(x, t) = 0 (33.4.69)

known as the sine-Gordon equation. It has solitary wave solutions, propagating
kinks, of the form

φ(x, t) =
4
m

arctan eγω0(±x−vt)/vφ , (33.4.70)

where γ = (1 − v2/v2
φ)−1/2. The kink, the rapid variation of the phase by

2π/m, can propagate with any velocity less than the phason velocity. The
corresponding topological excitations in the CDW state are know as solitons.
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Solitons have rather unusual, reversed spin–charge relations. Unlike an
electron, which has charge −e and spin s = 1/2, a soliton has no charge and
s = 1/2 or charge ±e and no spin. To show this we can repeat the derivation of
(33.4.51) that gives the electron density accumulated due to the deformation
of the phase, but now separately for the two spin orientations. If the phase
variations are different for the up- and down-spin electrons, we find

δn↑(x) =
1
π

δkF↑(x) =
1
2π

dφ↑(x)
dx

,

δn↓(x) =
1
π

δkF↓(x) =
1
2π

dφ↓(x)
dx

(33.4.71)

and

δρ↑(x) = − e

π
δkF↑(x) = − e

2π
dφ↑(x)

dx
,

δρ↓(x) = − e

π
δkF↓(x) = − e

2π
dφ↓(x)

dx
.

(33.4.72)

We consider a deformed CDW in which the phase changes by ±π between
−∞ and +∞ and varies relatively sharply at the position of the soliton, but
the width of the domain wall, the region over which the phase varies by ±π, is
large compared to the wavelength of the CDW. The extra charge accumulated
in the domain wall is the line integral of the charge density. Since

Δρ↑ = − e

2π
Δφ↑ = − e

2π
[
φ↑(∞) − φ↑(−∞)

]
,

Δρ↓ = − e

2π
Δφ↓ = − e

2π
[
φ↓(∞) − φ↓(−∞)

]
,

(33.4.73)

the total accumulated charge is

Δρ = − e

2π
(
Δφ↑ + Δφ↓

)
. (33.4.74)

If the phases of the two component waves vary in the same way, with π or
−π for both spin orientations, the charge of the soliton is −e or +e. Since
the phase difference between the spin-up and spin-down electron densities
vanishes along the entire chain, this charged soliton has no spin.

The situation is different when the phases of the spin-up and spin-down
components of the density wave vary oppositely in the domain wall; one varies
by π, the other by −π. One of the component waves is stretched, the other is
compressed. The ↑ spin and ↓ spin electron densities are in registry with each
other and with the underlying lattice at the two ends if

[
φ↑(∞) − φ↑(−∞)

]− [φ↓(∞) − φ↓(−∞)
]

= 2πn (33.4.75)

with n an integer. In the present case n = ±1. No charge is accumulated in
the domain wall; this soliton is neutral. On the other hand, the spin density
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sz(x) = 1
2 [δn↑(x) − δn↓(x)] (33.4.76)

is finite inside the domain wall and the spin of the neutral soliton calculated
from

sz =
1
2

1
2π
(
Δφ↑ − Δφ↓

)
(33.4.77)

is sz = ±1/2. This is a spin soliton. It should be emphasized that these solitons
cannot be generated thermally individually, neither by adding a single electron
to the system, owing to their topological nature. They are always created in
pairs, such that their total charge and spin correspond to the usual quantum
numbers of electrons. However, unlike classical soliton solutions of the sine-
Gordon equations, solitons of a deformable CDW interact. A charge and a
spin soliton attract each other and form a polaron with usual spin–charge
relation.

Fractionally charged solitons exist in CDWs with higher order commen-
surability. When the band is one-third filled, the Fermi wave number is
kF = π/(3a) and the wavelength of the CDW is 3a. Owing to the tripling of
the primitive cell, there are three degenerate CDW ground states with phases
differing by ±2π/3. Soliton configurations may appear in which Δφ↑ and Δφ↓
take values ±2π/3 or ±4π/3 with restriction (33.4.75). The charge of the soli-
ton may be fractional, one-third, or two-thirds of the elementary charge. The
spin of the soliton with Δρ = ±e/3 is sz = ±1/2 and the soliton with charge
Δρ = ±2e/3 is spinless. In general, in an m-fold commensurate CDW the
charge of the soliton may be a fraction ±2/m of the elementary charge.

Solitons exist in SDW as well. The spin-up and spin-down component
waves do not have the same phase far from the soliton. However, their varia-
tions between the two sides have to satisfy (33.4.75), which is simply a sym-
metry requirement. A similar reversed spin–charge relation is found as for
solitons in a CDW. A new type of soliton appears when the vector nature of
the spin is taken into account. The unit vector e(x) in

S(x) = e(x)s cos(2kFx+ φ) (33.4.78)

may rotate from e0 to −e0 as we move along the chain. Such a domain wall
is known as polarization soliton.

The solitons discussed until now are due to deformations of the phase
of the CDW. Another type of soliton, called amplitude soliton, may appear
in incommensurate CDW systems with continuous degeneracy. Adding an
electron to the system, this particle, instead of occupying a state of the empty
upper band, distorts the CDW. It introduces a phase slip π by modifying the
amplitude of the CDW and becomes localized or self-trapped. It carries a spin
s = 1/2 but no charge. The charge of the extra electron is compensated by the
distortion of the electronic wavefunctions of the valence band. The position
dependence of the order parameter is described by

Δ(x) = Δ tanh(x/ξ)eiφ (33.4.79)
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with the width of the domain wall given by ξ = �vF/Δ. The amplitude goes
through zero at the position of the soliton, as seen in Fig. 33.15.

Fig. 33.15. Amplitude soliton in an incommensurate CDW

The same variations are observed in the ionic displacement between the
two ends,

〈u(Rn)〉 =

√
�L

2MNω2kF

2|Δ|
g

tanh
(
x

ξ

)
cos(2kFRn + φ) . (33.4.80)

The energy level of the electron is right in the middle of the gap (midgap
state). When the energy associated with the deformation of the lattice is also
taken into account, the excitation energy to create a soliton is found to be

ε =
2Δ
π
. (33.4.81)

These solitons, which can be created individually, have been observed in tun-
neling experiments. As seen in Fig. 33.16, an extra peak appears at voltages
eV = ±2Δ/π in addition to the peaks at ±2Δ corresponding to interband
tunneling across the gap.

(a) (b)

Fig. 33.16. Tunneling conductivity dI/dV of NbSe3 (a) in transverse geometry, at
various magnetic fields, and (b) in longitudinal geometry, at various temperatures
[Reprinted with permission from Yu. I. Latyshev et al., Phys. Rev. Lett. 95, 266402
(2005). © (2005) by the American Physical Society]



33.4 Charge-Density Waves 373

33.4.7 Soliton Lattice

An interesting situation occurs when the CDW is incommensurate but its
wavelength is close to a low-order commensurate value,

λ ≈ λ0 = a
m

n
(33.4.82)

with small integer m and n. The repetition distance of the commensurate
CDW is nλ0, if measured in the wavelength of the CDW, while it is ma, if
measured in lattice constant units. The wave number 2kF of the incommen-
surate CDW can be written as

2kF = 2k0
F + δq , (33.4.83)

where 2k0
F = (2π/a)(n/m), and δq = 2(kF − k0

F) is small compared to 2k0
F.

The factor describing the spatial oscillations of the incommensurate CDW can
be written as

cos
(
2kFx+ φ0

)
= cos

(
2k0

Fx+ δq x+ φ0

)
. (33.4.84)

This variation of the oscillating function can be interpreted as a slow variation
of the phase

φ(x) = δq x+ φ0 (33.4.85)

of the commensurate CDW with wave vector 2k0
F. This variation is shown in

Fig. 33.17(a).

(b)(a) x x

Fig. 33.17. Variations of the phase in an incommensurate CDW: (a) relative to a
nearby commensurate case and (b) in the soliton lattice

We know that the energy of a commensurate CDW is lower than that of
an incommensurate CDW with nearly identical wavelength, and the commen-
surability energy decreases with increasing order of commensurability. It may
be energetically favorable to deform the homogeneous CDW by pinning its
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phase to the lattice over large segments. The wavelength is λ0 there and φ(x)
varies relatively sharply between the segments.

An m-fold commensurate CDW has m equivalent, degenerate positions
relative to the lattice. They are displaced by one lattice constant relative to
each other and their phases differ by multiples of 2π/m. The deformation of
the incommensurate CDW and the energy increase due to this distortion are
smallest if the phase difference between neighboring commensurate segments
is just 2π/m.8 Such a situation is shown schematically in Fig. 33.18.

Deformed CDW

Rigid CDW

Fig. 33.18. Rigid CDW of wavelength slightly larger than 2a and a deformable
CDW with a discommensuration between two commensurate domains with wave-
length 2a

The deformed CDW contains commensurate regions separated by shorter
incommensurate regions, domain walls, also known as discommensurations.
On the other hand it can be viewed as containing a periodic array of solitons.
This explains the name soliton lattice for this configuration. Figure 33.17(b)
shows the variation of the phase in the soliton lattice. The distance d between
solitons is determined by the difference of the wavelengths of the commen-
surate and incommensurate CDW and the order of commensurability. The
change of the phase on large distances should on the average be equal to the
phase change in the rigid incommensurate CDW. Since the phase remains un-
changed in the commensurate regions and varies by 2π/m within the soliton,
we have

δq d = 2π/m . (33.4.86)

If the phase changes in the same way for both spin orientations, a charge
−2e/m is accumulated in the soliton. It compensates the charge redistribution
caused by the commensurate regions.

No soliton lattice has ever been observed experimentally in incommensu-
rate CDW systems probably owing to the coupling between the chains. The
deformation of the CDW costs too high an energy due to the Coulomb in-
teraction between the electronic charges forming the CDW on the chains and
the counterions sitting between the chains.

8 The wavelength in the deformed region is smaller than λ0 if 2kF > q0. It is larger
than λ0 if 2kF < q0.



33.4 Charge-Density Waves 375

33.4.8 Electrodynamics of Charge-Density Waves

An incommensurate CDW can slide freely, without cost of energy, in an ideal
lattice. This led Fröhlich

9 to the idea that the CDW state is not an insulator,
but it is in fact superconducting. It soon turned out that this is not so in real
materials. In our previous discussion of the CDW state the lattice was assumed
ideal, defectless. That is why the phase of the CDW can be arbitrary in an
incommensurate situation and the phason modes are gapless. Impurities have
a profound effect on the CDW state. The system loses translational invariance
in their presence; the appearance of a CDW does not break a continuous
symmetry and soft bosons should not appear. Phasons have a finite frequency
even in the limit q → 0. To understand it in more physical terms we recall
that impurities interact with the charges accumulating in the CDW with a
Coulomb interaction and can pin the phase at the position of the impurity.
This gives rise to unusual electrodynamic properties of the CDW state.

When an external electric field E is switched on, it interacts with the local
charge density. The energy density that has to be added to the Lagrangian
(33.4.64) is given by

ε(x, t) = δρ(x, t)ϕ(x, t) = − e

π

∂φ(x, t)
∂x

ϕ(x, t) , (33.4.87)

where ϕ(x, t) is the scalar potential. The equation of motion then becomes

∂2φ

∂t2
− v2

F
me

m∗
∂2φ

∂x2
=

2kFe

m∗ E . (33.4.88)

For a periodic variation of the electric field, E = E(k, ω) exp(ikx − iωt), the
phase and the current will have similar periodic variations. Inserting the so-
lution for φ(k, ω) into (33.4.58) we get

σ(k, ω) =
nee

2

m∗
iω

ω2 − v2
F
me

m∗ k
2

(33.4.89)

for the conductivity of the CDW. In the long-wavelength limit

σ(ω) = i
nee

2

m∗
1

(ω + iδ)
, (33.4.90)

where δ is a positive infinitesimal. It ensures the correct analytical properties.
The real and imaginary parts,

Reσ(ω) = π
nee

2

m∗ δ(ω) , Imσ(ω) =
nee

2

m∗ω
, (33.4.91)

satisfy the Kramers–Kronig relations. This is precisely the result of the Drude
model in the limit of infinitely long relaxation time, with the difference that
9

H. Fröhlich, 1954.
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the effective mass m∗ appears in place of the electron mass me. The infinitely
narrow and high Drude peak means infinite conductivity. This would be the
Fröhlich superconductivity.

It is never observed. Impurities and defects that are always present in
real materials hinder the free sliding of the CDW. The phase is pinned at
the position of the randomly distributed impurities, and the periodic CDW is
deformed statically. Assuming that the interaction between the impurities and
the CDW is local, the effect of interaction can be given by the Hamiltonian

H =
�vF
4π

∫
dx
(∂φ
∂x

)2

− V0δρ
∑

i

cos[2kFxi + φ(xi)] , (33.4.92)

where the first term describes the energy due to the deformation, V0 in the
second term is the strength of the impurity potential, and δρ is the amplitude
of the CDW. If the impurity potential is strong, the phase is deformed in the
neighborhood of each impurity rather strongly to gain the largest energy. The
phase is pinned and the CDW cannot freely slide. Impurity pinning occurs for
weak impurity potential as well. Although the phase is deformed less, it adjusts
itself to the impurity configuration on the average. Not only the Fröhlich
superconductivity is killed in both cases, but also the electrons condensed
into the CDW give no contribution to the current for small biases. Another
consequence of impurity pinning is the generation of a gap in the phason
spectrum at q = 0.

When the phase deviates from the value determined by the impurities,
a restoring force pulls the CDW back to its initial position. As the simplest
approximation we assume a harmonic force. The phase could oscillate around
its pinned value by a frequency ω0. Introducing a relaxation time τ∗ due to
friction, the variations of the phase are described in the presence of an external
electric field by the equation

∂2φ

∂t2
+

1
τ∗
∂φ

∂t
+ ω2

0φ = π
nee

m∗ E . (33.4.93)

Its solution gives

Reσ(ω) =
nee

2τ∗

m∗
(ω/τ∗)2

(ω2
0 − ω2)2 + (ω/τ∗)2

,

Imσ(ω) =
nee

2τ∗

m∗
(ω2 − ω2

0)ω/τ∗

(ω2
0 − ω2)2 + (ω/τ∗)2

.

(33.4.94)

The frequency dependence of the real part of the conductivity is shown in
Fig. 33.19(b). Comparing it with the result valid for a clean sample we find
that the peak due to the collective modes is shifted to the frequency ω0. The
spectral weight of the collective modes is suppressed by the large effective mass
m∗ of the CDW motion. Nearly all contribution comes from single-particle
excitations. The situation is reversed in SDW systems. The band mass is not
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Fig. 33.19. Frequency dependence of the real part of the optical conductivity: (a)
in an ideal CDW and (b) in the presence of impurities

enhanced by the ions and the dominant contribution to the optical conduc-
tivity comes from the collective excitations.

The figure also shows the contributions of one-particle excitations to the
optical conductivity. The minimum energy of excitations across the gap being
2Δ, they contribute to the optical conductivity above a frequency threshold
2Δ/�.

We remark already here that although impurities kill the Fröhlich su-
perconductivity, they cannot destroy conventional superconductivity. Cooper
pairs form a particular condensate which is very different from the condensed
state in CDW. The impurity potential can hardly influence the superconduct-
ing pairs. The situation is different for magnetic impurities. They lower the
value of the order parameter appreciably, but do not kill superconductivity
completely.

33.4.9 The Role of Fluctuations and Interchain Couplings

Our previous calculations for both charge- and spin-density waves were done
in the mean-field approximation. The RPA for the magnetic susceptibility, the
summation of the contribution of the simple series of bubbles, is equivalent to
this approximation. That is why a finite transition temperature was obtained,
although we know from statistical physics that no phase transitions can take
place at finite temperatures in strictly one-dimensional systems unless the
forces are long ranged. The energy of the disordered phase is higher than
that of the ordered phase, but this is compensated by the term −TS in the
free energy owing to the increased entropy. The fluctuations neglected in the
mean-field theory are so large in one-dimensional systems that they destroy
long-range order at any finite temperature.

To go beyond mean-field approximation, we would have to sum the con-
tribution of a much larger class of diagrams. The effect of fluctuations can
be taken into account much simpler in a generalized Ginzburg–Landau-type
theory, expanding the free energy functional in terms of the order parameter
and its gradient. The order parameter Δ being a complex quantity, the free
energy density of a homogeneous system could be written in the neighborhood
of the transition temperature as
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f = f0 +A(T )|Δ|2 +B(T )|Δ|4 + · · · . (33.4.95)

When the order parameter fluctuates in space, a gradient term should appear
as in (14.5.17) or as in the Ginzburg–Landau theory of superconductivity. We
have

f(x) = f0 +A(T )|Δ(x)|2 +B(T )|Δ(x)|4 + C(T )
∣∣∣∣
dΔ(x)

dx

∣∣∣∣
2

+ · · · . (33.4.96)

In Fourier representation, assuming that the Fourier components slightly away
from 2kF are finite, we have the form

f [Δq] = f0 +A(T )|Δq|2 +B(T )|Δq|4 +C(T )
(
q−2kF

)2|Δq|2 + · · · . (33.4.97)

The coefficients of the expansion can be calculated from the microscopic the-
ory, similar to the microscopic derivation of the Ginzburg–Landau functional
and of the Ginzburg–Landau equations in the theory of superconductivity (see
the next chapter), but starting now with the Fröhlich Hamiltonian. We find

A(T ) = ρσ(εF) ln(T/Tc) ≈ ρσ(εF)(T − Tc)/Tc ,

B(T ) = ρσ(εF)7ζ(3)/(4πkBT )2 ,

C(T ) = ρσ(εF)ξ20(T )

(33.4.98)

with ξ20(T ) = 7ζ(3)�2v2
F/(4πkBT )2, and Tc the mean-field transition temper-

ature given in (33.4.12).
A somewhat tedious calculation gives the result that the amplitude of

the order parameter fluctuates about zero above the mean-field transition
temperature. The amplitude would take a finite value at lower temperatures,
where the minimum of the free energy density is at a finite |Δ|; however,
the phase of the order parameter is free to rotate and the order parameter
averages out owing to phase fluctuations. The correlation function of the order
parameter decays exponentially with distance as

〈
Δ∗(x)Δ(0)

〉 ∝ e−x/ξ‖ , (33.4.99)

where the correlation length ξ‖ along the chain diverges as 1/T in the limit
T → 0. This shows that fluctuations do in fact wash out ordering at finite tem-
peratures. Strictly speaking the Peierls transition occurs at T = 0. However,
the correlation length becomes very large at about a quarter of the mean-field
Tc, and a pseudogap appears in the density of states, as seen in Fig. 33.20.
Weak interchain couplings may drive the system into the ordered state.

The interaction between chains is the Coulomb interaction in CDW sys-
tems. It is energetically favorable to have a phase difference π between neigh-
boring chains. This coupling diminishes the fluctuations and allows ordering
at finite temperatures. Coulomb interaction does not play a dominant role in
SDW materials, but interchain hopping can couple chains. The nesting prop-
erty of the Fermi surface is not destroyed if the hopping matrix element is
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Fig. 33.20. Forbidden region in the density of states at T = 0 and its smearing at
finite T due to thermal fluctuations [Reprinted with permission from P. A. Lee, T.
M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973). © (1973) by the
American Physical Society]

much smaller between chains than between molecules along the chain, and
this interchain coupling can stabilize the density wave at low temperatures.

We might expect three-dimensional ordering to occur at the temperature
where the thermal energy is comparable with the energy of the bare interchain
coupling. In estimating this energy we should, however, take into account that
the coherence length ξ‖ along the chain would diverge at T = 0. The coupling
between the large coherent regions yields a Tc which is higher than the naive
estimate.

In reality, the transition occurs at the temperature where the appropriate
response function (the density–density response function for the CDW and
the spin-density–spin-density response function for the SDW) first diverges.
These response functions can be written in the form

Π(q, ω) =
Π̃(q, ω)

1 − (4πẽ2/q2)Π̃(q, ω)
(33.4.100)

for an electron system interacting via the bare Coulomb repulsion, while for
the spin density in the Hubbard model

Σ(q, ω) =
Σ̃(q, ω)

1 − UΣ̃(q, ω)
, (33.4.101)

where Π̃(q, ω) and Σ̃(q, ω) are the irreducible parts of these response func-
tions. Assuming that the weak interchain coupling can be treated in a
mean-field approximation, we have
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Π3d(q, ω) =
Π1d(q‖, ω)

1 − c⊥(q⊥)Π1d(q‖, ω)
(33.4.102)

and

Σ3d(q, ω) =
Σ1d(q‖, ω)

1 − c⊥(q⊥)Σ1d(q‖, ω)
, (33.4.103)

where c⊥(q⊥) is the Fourier transform of the interchain coupling, while
Π1d(q‖, ω) and Σ1d(q‖, ω) are the response functions for the chains. The latter
are divergent at T = 0 at wave number q‖ = 2kF; hence, the three-dimensional
response diverges at a finite temperature T3d where

1 = c⊥(q⊥)Π1d(2kF, ω = 0, T3d) (33.4.104)

or
1 = c⊥(q⊥)Σ1d(2kF, ω = 0, T3d) . (33.4.105)

A static density wave occurs along the chains at this temperature. The phase
relations between neighboring chains, the periodicity perpendicular to the
chains, is given by q⊥. In most cases this perpendicular structure is commen-
surate with the lattice, but it could be incommensurate.

The correlation function of the order parameter decays exponentially above
the transition point, but the correlation length is drastically different along
the chains or perpendicular to them:

〈Δ(r)Δ(0)〉 ∝ e−reff

reff
, (33.4.106)

where

reff =

[(
x

ξ‖

)2

+
(

r⊥
ξ⊥

)2
]1/2

. (33.4.107)

Both correlation lengths diverge at the true ordering temperature. The
perpendicular correlation length might become comparable with the distance
between chains at some higher temperature T ∗, which is still below the mean-
field transition temperature. This is the crossover temperature, where the
system loses its three-dimensional character and can be treated as quasi-one-
dimensional.

33.5 Density Waves in Quasi-One-Dimensional Materials

The one-dimensional models of the electron–phonon system or that of the in-
teracting electron gas are not just of theoretical interest. We know from Chap-
ter 5 that chainlike structures are not uncommon in nature. Several classes of
materials, both organic and inorganic compounds, built up of weakly coupled
chains have been discovered from the 1970s on. If the distance between neigh-
boring chains is very much larger than between the atoms within a chain,
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the wavefunction overlap between chains is much smaller than from atom to
atom along the chain. The electronic properties of such materials are strongly
anisotropic because electrons can propagate practically only along the chains
with only occasional hopping between them. The ratio of the conductivities
measured parallel and perpendicular to the chains, σ‖/σ⊥, can be as high as
105 corresponding to a ratio t‖/t⊥ ≈ 102 − 103 of the overlap integrals. First,
we present some characteristic classes of quasi-one-dimensional materials pos-
sessing a density-wave ground state and then present some peculiarities of
their transport properties.

33.5.1 Quasi-One-Dimensional Materials

One of the first quasi-one-dimensional material studied in detail is the Krog-
mann salt10 of composition K2Pt(CN)4X0.3 · 3H2O (KCP) where X = Cl or
Br. The Pt2+ ions are close to each other at a distance 2.89Å along one of the
crystallographic axes. The overlap between the wavefunctions of d-electrons is
strong in this direction. The Pt–Pt distance being almost four times as big in
the perpendicular directions, the overlap is negligibly small. The ratio of the
conductivities along the chain and perpendicular to it is about σ‖/σ⊥ ≈ 105.
The halogens only serve as a reservoir of carriers. They remove electrons from
the highest occupied band of the otherwise insulating material transforming
it into a hole conductor. The Krogmann salt exhibits static incommensurate
density waves on the chains below 100K with a phase difference π between
neighboring chains, although, surprisingly, no sharp transition could be ob-
served. A giant Kohn anomaly, seen in Fig. 33.21, is found in the dispersion
relation of longitudinal acoustic phonons already at room temperature.

Fig. 33.21. Dispersion curve of LA phonons in K2Pt(CN)4Br0.3 · 3H2O in the [001]
direction at room temperature [Reprinted with permission from B. Renker et al.,
Phys. Rev. Lett. 30, 1144 (1973). © (1973) by the American Physical Society]

10
K. Krogmann, 1969.
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It was discovered in the early 1970s that there is a large class of organic
compounds built up from two kinds of large planar molecules: donors and
acceptors, in such a way that the molecules of the same type are stacked
upon each other forming segregated chains. Due to the electron transfer
between the donors and acceptors these compounds are known as charge-
transfer complexes or donor–acceptor salts. The most famous example is TTF–
TCNQ (tetrathiafulvalene–tetracyanoquinodimethane). The arrangement of
the molecules in the crystal structure is shown in Fig. 33.22, viewed from the
direction of the stacks and perpendicular to it.

Fig. 33.22. Crystal structure of TTF–TCNQ viewed from two directions

Substituting selenium for sulfur in TTF we get TSF (tetraselenafulvalene).
When methyl (−CH3) groups are attached to the TTF or TSF molecules, we
get the molecules TMTTF (tetramethyltetrathiafulvalene) or TMTSF (tetra-
methyltetraselenafulvalene). HMTSF (hexamethylenetetraselenafulvalene) is
obtained by substituting methylene (−CH2−) groups in place of hydrogen
atoms. An even larger polycyclic donor molecule is BEDT-TTF [bis(ethylene-
dithio) tetrathiafulvalene]. On the other hand, when methyl or ethyl groups
are attached to the benzene ring in TCNQ, we get the molecules MTCNQ
(methyl-TCNQ), DMTCNQ (dimethyl-TCNQ), or DETCNQ (diethyl-TCNQ).
The acceptors TNAP (tetracyanonaphthoquinodimethane) and TCNDQ
(tetracyanodiphenoquinodimethane) contain two benzene rings. Figure 33.23



33.5 Density Waves in Quasi-One-Dimensional Materials 383

shows a few typical donor and acceptor molecules. The charge-transfer com-
plexes built up from the derivatives of the parent molecules TTF and TCNQ
possess similar crystal structures where the donors and acceptors form segre-
gated stacks. The structure of HMTTF–TCNQ was already shown in Fig. 7.24
as a typical chainlike structure.

(a) TTF
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Fig. 33.23. Planar (a) donor and (b) acceptor molecules that form linear-chain
charge-transfer complexes. The carbon atoms and the hydrogens attached to the
rings are not marked

Both the TTF and the TCNQ molecule are neutral with closed outer
shells. However, TTF, as a donor, can readily give an electron away and
TCNQ, as an acceptor, can easily accept an extra electron to become an
open shell anion. This electron transfer takes place in the TTF–TCNQ crystal
resulting in partially filled π-orbitals making this compound an organic con-
ductor. The conductivity is, however, strongly anisotropic, since the overlap is
mainly in the chain direction. TTF–TCNQ behaves as a quasi-one-dimensional
metal. The room-temperature conductivity along the chain is only of order
104 (Ωm)−1, but it increases with decreasing temperature much faster than
in normal metals. Depending on sample quality it may reach a peak value
of almost 107 (Ωm)−1 before it starts to drop suddenly with an exponential
temperature dependence (Arrhenius law11) typical for semiconductors due to
the opening of the Peierls gap. This is seen in Fig. 33.24(a) which shows the
temperature dependence of the conductivity of several TTF–TCNQ samples.

The formation of a CDW and the transition from metallic to semicon-
ducting behavior is typical for quasi-one-dimensional charge-transfer salts.
The transition temperature, the value of the gap, and the wave vector q0 of
the CDW are given in Table 33.1 for some of them. The wave vector is given
in terms of its components in the coordinate system spanned by the primitive
vectors of the reciprocal lattice, a∗, b∗, c∗.

11
S. Arrhenius, 1889. Svante August Arrhenius (1859–1927) was awarded
the Nobel Prize in chemistry in 1903 “in recognition of the extraordinary services
he has rendered to the advancement of chemistry by his electrolytic theory of
dissociation”.
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Fig. 33.24. (a) Temperature dependence of the conductivity of several TTF–TCNQ
samples [A. J. Heeger and A. F. Garito, in Low-Dimensional Cooperative Phenom-
ena, Ed. by H. J. Keller, Plenum Press (1975)]. (b) Temperature dependence of
the wave number of the CDW in TTF–TCNQ [W. D. Ellenson et al., Solid State
Commun. 20, 53 (1976)]

Table 33.1. Critical temperature Tc of the CDW formation, the value of the gap,
the dimensionless ratio 2Δ/kBTc, and the wave vector q0 in units of the primitive
vectors of the reciprocal lattice for some charge-transfer complexes

Compound Tc (K) 2Δ (eV) 2Δ/kBTc q0

TTF–TCNQ 54 (1/2, 0.295, 0)
38 0.04 12.1 (1/4, 0.295, 0)

TSF–TCNQ 29 0.02 8.6 (1/2, 0.317, 0)
HMTSF–TCNQ 24 (0, 0.37, 0)
HMTTF–TCNQ 43 0.04 11.2 (0.420, 0.360, 0)

In several cases there are two or even three subsequent phase transitions
as the temperature is lowered. Further phases may appear under pressure.
In TTF–TCNQ, for example, the a∗ component of the wave vector takes
the value qa = 1/2 at the CDW ordering temperature Tc1 = 54K, which
means that the periodicity is doubled in the a direction in the CDW state.
As seen in Fig. 33.24(b), this component remains constant down to about
Tc2 = 49K where it starts to decrease. Finally, it jumps to the value qa = 1/4
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at Tc3 = 38K and is locked there. The periodicity is quadrupled in the a
direction in the low-temperature phase.

Another much studied class of quasi-one-dimensional materials is that of
the Bechgaard salts.12 Their composition is (TMTSF)2X with X = PF6, AsF6,
TaF6, NO3, BF4, ClO4, or ReO4.13 The molecules TMTSF are stacked to
form conducting chains while the inorganic anions are well separated and only
serve as a charge reservoir. The crystal structure is shown in Fig. 33.25. The
temperature dependence of the resistivity gives clear indication of a metal–
nonmetal transition in all of them.

Fig. 33.25. Crystal structure of (TMTSF)2PF6 viewed from two crystallographic
directions [N. Thorup et al., Acta Cryst. B37, 1236 (1981)]

Perhaps the most studied Bechgaard salt is (TMTSF)2PF6 with a transi-
tion temperature Tc = 12K to an SDW state. A similar transition is observed
in the salts with anions AsF−

6 , SbF−
6 , and NO−

3 with almost identical critical
points. Their magnetic properties are similar to antiferromagnets possessing
localized spins and described by the Heisenberg Hamiltonian. This is best seen
12

K. Bechgaard, 1980. A particularly interesting feature of Bechgaard salts is
that they were the first known organic superconductors. We will return briefly to
the physics of organic superconductors in the next chapter.

13 The salts (TMTTF)2X are known as Fabre salts. J. M. Fabre, 1982.
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when the temperature dependence of the susceptibility of (TMTSF)2AsF6

shown in Fig. 33.26 is compared with the theoretical result given in Fig. 14.14
for an anisotropic antiferromagnet. The susceptibility depends on the orien-
tation of the external magnetic field relative to the sublattice magnetization.
The parallel susceptibility vanishes at T = 0, while the perpendicular compo-
nent remains finite, just as in a Heisenberg antiferromagnet.

Fig. 33.26. Temperature dependence of the static spin susceptibility of a single crys-
tal (TMTSF)2AsF6 with field applied parallel to three crystallographic directions,
a, b∗, and c∗ [Reprinted with permission from K. Mortensen, Y. Tomkiewicz, and
K. Bechgaard, Phys. Rev. B 25, 3319 (1982). © (1982) by the American Physical
Society]

A spin-density wave appears below Tc = 20K in several other salts, e.g.,
in (MDT-TTF)2Au(CN)2 where MDT-TTF stands for methylenedithiotetra-
thiafulvalene and in (DMET)2Au(CN)2 where DMET stands for dimethyl-
(ethylenedithio)diselenadithiafulvalene.

Density waves are found in inorganic compounds as well. One typical ex-
ample is the group of transition-metal trichalcogenides. Their composition is
MX3, where M = Nb or Ta, and X = S or Se. The tetrachalcogenides (MX4)nY
with Y = I, Br, Cl, and n = 2, 3, 10/3, 4 exhibit similar behavior. Their
structure is shown in Fig. 33.27. Finally a third group is formed by the oxides
of molybdenum (blue bronze) with composition A0.3MoO3 (A = K, Rb). A
CDW is formed in many of these materials at relatively high temperatures.
Characteristic data for some of them, the critical temperature, the gap, and
the wave vector of the CDW are given in Table 33.2.
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Fig. 33.27. Crystal structure of linear-chain tri- and tetrachalcogenides

Table 33.2. The critical temperature, the value of the gap, the dimensionless ratio
2Δ/kBTc, and the wave vector in units of the primitive vectors of the reciprocal
lattice for some CDW materials

Compound Tc (K) 2Δ (eV) 2Δ/kBTc q0

KCP 189 0.12 7.41 (1/2, 1/2, 0.3)
NbS3 340 0.38 13.3 (1/2, 0.298, 0)
NbSe3 145 (0, 0.243, 0)

59 0.06 11.9 (1/2, 0.259, 1/2)
TaS3 (monoclinic) 240 (0, 0.254, 0)

160 0.16 11.9 (1/2, 0.245, 1/2)
TaS3 (orthorhombic) 216 0.14 7.44 (1/2, 1/8, 1/4)
(TaSe4)2I 263 0.24 11.4 (0.05, 0.05, 0.085)
(NbSe4)10I3 285 0.34 13.7 (0, 0, 0.487)
K0,3MoO3 183 0.079 5.03 (0, 0.748, 1/2)

It should not surprise us that the measured value of the dimensionless
ratio 2Δ/kBTc is much larger than the theoretical prediction in the mean-
field approximation. As mentioned earlier the transition to the true ordered
phase is a result of the interplay between diverging intrachain fluctuations and
interchain couplings, and a reasonable estimate is to expect the transition at
about a quarter of the mean-field value.

Note that charge-density waves have been discovered not only in quasi-
one-dimensional systems. Several quasi-two-dimensional compounds as well
as different polytypes of the layered transition-metal dichalcogenides of com-
position MX2 with M = Nb, Ta, V and X = S, Se have a CDW ground state.
Their Fermi surfaces have flat portions and the nesting property induces an
instability against the formation of CDW.
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33.5.2 Nonlinear and Oscillation Phenomena

Most of the electrons of the valence band are condensed into the density
wave in these materials at low temperatures. Since impurities pin locally the
phase, the density wave cannot slide freely. An external electric field induces
only a weak current arising from normal electrons. If the pinning force can
be overcome by a strong enough electric field, the density wave can start to
slide. This occurs when the electric field exceeds a threshold value ET, and a
highly nonlinear conductivity is measured, as displayed in Fig. 33.28. Similar
non-ohmic behavior can be observed in SDW materials as well.

Fig. 33.28. (a) Normalized differential resistance of NbSe3 as a function of the
electric field at two temperatures [Reprinted with permission from R. M. Fleming,
Phys. Rev. B 22, 5606 (1980). © (1980) by the American Physical Society]. (b)
Normalized conductivity of several quasi-one-dimensional CDW materials vs. elec-
tric field normalized by the threshold field [P. Monceau, in Electronic Properties of
Inorganic Quasi-One-Dimensional Materials, D. Reidel Publishing Company, Vol.
II. p. 139 (1985)]

As the CDW is depinned above the threshold, the electric field drags it
over a random arrangement of impurities, over a random (bumpy) potential.
A fluctuating voltage called broad-band noise is expected to appear. However,
the CDW itself is periodic, and it returns to the same position relative to
the impurities whenever the CDW is shifted by one wavelength. This happens
regularly in time with period t0 = λ/vdr, where vdr is the drift velocity of the
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density wave. Hence a characteristic frequency

ν0 = 1/t0 = vdr/λ = vdrkF/π (33.5.1)

and its harmonics appear in the motion of the CDW. This gives the so-called
narrow-band noise in the Fourier spectrum of the voltage, which is superim-
posed on the broad-band noise. Such characteristic frequencies can indeed be
observed experimentally as shown in Fig. 33.29.

Fig. 33.29. Fourier spectrum of the time-dependent voltage in NbSe3 for increasing
currents from zero to I = 270 μA. The frequency increases with current and a second
frequency appears at higher currents [Reprinted with permission from R. M. Fleming
and C. C. Grimes, Phys. Rev. Lett. 42, 1423 (1979). © (1979) by the American
Physical Society]

Since the current per chain is

j = −enevdr , (33.5.2)

the ratio of the current density and the characteristic frequency is given by

j

ν0
= −eneλ . (33.5.3)
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The particle density is related to the Fermi wave number via (33.4.56) at low
temperatures, where all particles are assumed to be condensed into the CDW,
and λ = π/kF. Hence

j

ν0
= −2e . (33.5.4)

It is independent of the current driven through the sample, in agreement with
experiments. The number of electrons condensed into the CDW decreases
with increasing temperature, and this ratio decreases accordingly, but remains
independent of the current.

An interesting phenomenon can be observed if the current–voltage charac-
teristics are measured on samples exposed to a radio-frequency field. As seen
in Fig. 33.30, steps appear in the characteristics at integer multiples of the
current where the internal characteristic frequency ν0 is equal to the frequency
of the radio-frequency field, νrf, that is for all harmonics of the external field,
when

ν0 = pνrf . (33.5.5)

Fig. 33.30. Current–voltage characteristics of NbSe3 at 42 K when a radio-
frequency field of amplitude Vac is applied at frequency 100 MHz [Reprinted with
permission from A. Zettl and G. Grüner, Phys. Rev. B 29, 755 (1984). © (1984)
by the American Physical Society]
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These steps are the analogs of the Shapiro steps exhibited in Fig. 26.29,
since the equations describing the motion of the CDW are formally similar to
the equations describing the behavior of Josephson junctions.14

A new feature appears in the current–voltage characteristics of CDW ma-
terials compared to similar measurement in Josephson junctions due to the
internal structure of the CDW. As seen in Fig. 33.31, sharp peaks in the dif-
ferential resistance (steps in the current–voltage characteristics) appear not
only at higher harmonics of the frequency of the radio-frequency field, but at
subharmonics as well, where

qν0 = pνrf , (33.5.6)

that is when any harmonic of the internal frequency is equal to any harmonic
of the external field. The values p/q are also indicated in the figure.

Fig. 33.31. Differential resistance of NbSe3 with and without an applied radio-
frequency voltage at 25 MHz. The numbers indicate the various subharmonic steps
[Reprinted with permission from S. E. Brown, G. Mozurkewich, and G. Grüner,
Phys. Rev. Lett. 52, 2277 (1984). © (1984) by the American Physical Society]

14 The electric field plays the role in the motion of the CDW that is played by
the current in a Josephson junction. Current oscillations in the current-carrying
CDW with j/ν0 = 2e per chain corresponds to the AC Josephson effect with
voltage–current relation ν/V = 2e/h [see (26.5.26)].



392 33 Electronic Phases with Broken Symmetry

Further Reading

1. A. Auerbach, Interacting Electrons and Quantum Magnetism, Springer-
Verlag, Berlin (1994).

2. Charge Density Waves in Solids, Editors: L. P. Gorkov and G. Grüner,
in Modern Problems in Condensed Matter Sciences, North Holland, Am-
sterdam (1989).

3. G. Grüner, The dynamics of charge-density waves, Rev. Modern Phys. 60,
1129 (1988).

4. G. Grüner, Density Waves in Solids, Addison-Wesley Publishing Co.,
Reading, MA (1994).

5. D. Jérome and H. J. Schulz, Organic conductors and superconductors,
Adv. Phys. 31, 299 (1982).

6. P. Mohn, Magnetism in the Solid State, An Introduction, Springer Series
in Solid-State Sciences, Vol. 134, Springer-Verlag, Berlin (2003).

7. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer
Series in Solid-State Sciences, Vol. 56, Springer-Verlag, Berlin (1985).

8. J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977 (1994).



34

Microscopic Theory of Superconductivity

Superconductivity was introduced in Chapter 26 of the previous volume.
It was shown there that the unusual electrodynamic properties of supercon-
ductors are accompanied by anomalous thermodynamic behavior. After the
presentation of some experimental results a phenomenological description was
given using the London equations and the Ginzburg–Landau equations. Now
that we have acquainted ourselves with the microscopic theory of some broken-
symmetry phases, we return to the theory of superconductivity and attempt
to give a microscopic description of this particular state of matter.

Usually, superconductivity is observed at low temperatures, at much lower
temperatures than the typical critical temperature of magnetic ordering or the
typical transition temperature to density-wave states. A thermal energy on the
order of a few millielectron volts can destroy it. This indicates that the inter-
action responsible for this phenomenon is much weaker than the Coulomb re-
pulsion or the exchange which are the dominant interactions in electronic sys-
tems. Such considerations independently led H. Fröhlich and J. Bardeen

in 1950 to the idea that electron–phonon interactions may be responsible for
superconductivity. The discovery of the isotope effect in the same year made
clear that the ions and their vibrations play a nonnegligible role. In fact, the
direct interaction between electrons is irrelevant in a large class of supercon-
ductors. Nonetheless, we treat the microscopic theory of superconductivity
in this volume, after the broken-symmetry phases caused by the electron–
electron interaction, since their theoretical descriptions are formally rather
similar, and many of the calculational procedures and results learned there can
be taken over once we know how to characterize the superconducting order.

34.1 Instability Against Pair Formation

We have seen in Chapter 23 that the process in which a phonon is emitted
by an electron and the same phonon absorbed by another electron can be
interpreted as an effective interaction between the two electrons. We have also

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_7, © Springer-Verlag Berlin Heidelberg 2010
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shown that this phonon-mediated interaction is attractive when both electrons
are near the Fermi surface, within a range of width 2�ωD determined by the
phonon spectrum. Pictorially we could say that the first electron deforms and
polarizes the lattice, and this polarization attracts the other electron. If this
attraction is strong enough, it can overcome the Coulomb repulsion between
the electrons. The effects of electrons far from the Fermi energy, outside the
range of width 2�ωD, where the interaction is repulsive, can be eliminated by a
renormalization transformation. We will therefore assume in what follows that
the interaction between electrons lying near the Fermi energy is attractive, and
the contributions coming from electrons lying further away can be neglected.

These considerations are valid for conventional superconductors. Attrac-
tion between electrons can, however, be generated by other mechanisms as
well, e.g., by interactions of magnetic origin. Superconductivity seems to com-
pete with magnetic ordering in high-temperature superconductors and the
“normal” state above the critical temperature often does not exhibit normal
Fermi-liquid behavior. Since magnetic ordering is due to exchange and thus
due to the Coulomb interaction between electrons, it is conceivable that the
anomalous properties of high-Tc materials are caused by interactions acting
within the electron system. The theoretical treatment of this competition is
made extremely difficult by the complicated band structure. Although the
origin of the superconductivity and the nature of the interactions responsible
for it in these materials is still a subject of intensive research since the dis-
covery of high-temperature superconductors, we cannot go into these details.
In what follows, an effective attraction between the electrons will be simply
assumed without specifying its origin. Nevertheless, many of our subsequent
results can be applied not only to the case when the interaction is mediated
by phonons, but in part more generally, for other mechanisms as well.

34.1.1 Cooper Pairs

An important step toward the microscopic theory of superconductivity was
made by L. N. Cooper in 1956, when he demonstrated that a bound state is
formed between a pair of electrons moving through the background of a filled
Fermi sea if the pair potential between them is attractive. The bound electron
pair is called a Cooper pair. The presence of the Fermi sea is essential and the
electrons filling it play an active role in the formation of the bound state.

Consider a Fermi sea in its ground state and add two electrons to it. Ne-
glecting the interaction between the electrons for the moment the Hamiltonian
of the system is

H0 = HFS +
1

2me

[(
�

i
∇1

)2

+
(

�

i
∇2

)2
]
, (34.1.1)

where HFS contains the kinetic energy of the electrons in the Fermi sea. If
the extra electrons are in plane-wave states with wave vectors k1 and k2, the
wavefunction of the full system is
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Ψ(r1, r2) =
1
V

eik1·r1eik2·r2ΨFS , (34.1.2)

where ΦFS denotes the filled Fermi sea. This form does not satisfy the antisym-
metry requirement. It is expected that the lowest energy state be symmetric
in the spatial variables, because then the wavefunctions of the electrons can
overlap and the particles can take advantage of the attraction to lower their
energy. The spin part of the wavefunction is then antisymmetric and the spins
of the two electrons form a spin singlet.1 The appropriate wavefunction is

Ψ(r1, r2) = 1
2

[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2
] 1
V

(
eik1·r1eik2·r2 + eik2·r1eik1·r2

)
ΨFS .

(34.1.3)
The unperturbed energy of this state is EFS + εk1 + εk2 .

When the interaction between the electrons is switched on, the two extra
electrons can be scattered to states with wave vectors k1 + q and k2 − q. The
wavefunction of the perturbed state could be looked for as a linear combination
of such states. Instead of trying to solve this problem in this general form, we
will consider a state with total momentum zero, that is k1 = −k2 ≡ k, as
this is expected to have lower energy than states with finite momentum. The
wavefunction is then chosen in the form

Ψ(r1, r2) = 1
2

[| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2
] 1
V

∑

k

αkeik·(r1−r2)ΨFS (34.1.4)

with αk = α∗
−k to satisfy the symmetry requirement, and the summation over

the wave vector runs over |k| > kF, since all states inside the Fermi sphere
are filled. The coefficients αk and the energy have to be determined from the
Schrödinger equation in the presence of a two-particle potential U(r1 − r2)
between the electrons.

The problem is easier to solve if reformulated in second quantization. The
wavefunction is written in the form

|Ψ〉 =
∑

k′
αk′c†k′↑c

†
−k′↓|ΨFS〉 , (34.1.5)

and the Schrödinger equation to be solved is
[
H0+

1
2V

∑

q

∑

k1k2σσ′
U(k1,k2, q)c†k1+qσc

†
k2−qσ′ck2σ′ck1σ

]
|Ψ〉 = (EFS +ε)|Ψ〉 ,

(34.1.6)
where ε is the change in the energy of the Fermi system owing to the two
extra particles. Multiplying this equation by the adjoint of c†k↑c

†
−k↓|ΨFS〉 from

the left we get
1 A pair with different symmetry should be found in the superfluid phase of 3He.

Since the helium atoms cannot overlap, the spatial part of the wavefunction has
to be antisymmetric and the spin part is a symmetric triplet.
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(2εk − ε)αk +
1
V

∑

k′
U(k′,−k′,k − k′)αk′ = 0 . (34.1.7)

To comply with the convention in the superconductivity literature, the pair
potential will be denoted by V and the volume of the sample by Ω. In what
follows the notation Vkk′ will be used for the potential when a singlet pair with
momenta k′ and −k′ is scattered into a pair state with momenta k and −k.

For the sake of simplicity we assume, as was mentioned already, that the
interaction matrix element is negative and constant for electrons lying in a
range of width 2�ωD about the Fermi energy and vanishes otherwise, that is
for

Vkk′ =

{−V0 for εF − �ωD < εk, εk′ < εF + �ωD ,

0 otherwise.
(34.1.8)

With this assumption, taking into account that the extra electrons are initially
above the Fermi energy and therefore they can be scattered only into states
above the Fermi energy, the equation for the coefficients αk takes the form

αk =
V0

2εk − ε

1
Ω

∑

k′
αk′ (34.1.9)

with k′ restricted to the range εF < εk′ < εF + �ωD.
Summing both sides over k a solution with nonvanishing αk exists if the

self-consistency condition

1 =
1
Ω

∑

k

V0

2εk − ε
, εF < εk < εF + �ωD (34.1.10)

is satisfied. The energy eigenvalues can be obtained from the graphical so-
lution used several times already, e.g., in Chapter 20, where the energy of
impurity levels was calculated, or in the previous chapter, when the spectrum
of collective excitations was determined. When the interaction is attractive,
V0 > 0, there is a solution with energy below 2εF, which means that there is
a bound state of the two electrons for arbitrarily weak attractive interaction.
The two electrons form a bound Cooper pair.

When the sum over k in (34.1.10) is replaced by an integral over energy,
this equation is transformed into

1 = V0

εF+�ωD∫

εF

1
2ρ(ε

′)
1

2ε′ − ε
dε′ . (34.1.11)

The factor 1/2 appeared since ρ(ε) is the full density of states whereas the
density of states for one spin orientation is needed. An analytic expression can
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be obtained for the binding energy if the density of states can be approximated
by a constant in the energy range of the integration. Taking the density of
states at the Fermi energy we get

2
V0ρ(εF)

=

εF+�ωD∫

εF

1
2ε′ − ε

dε′ = 1
2 ln

2εF + 2�ωD − ε

2εF − ε
. (34.1.12)

The lowest energy the two extra free particles could have is 2εF. The
binding energy Δ is therefore defined via ε = 2εF − Δ. Assuming that it
is much smaller than the relevant bandwidth 2�ωD – this will be checked
afterwards – we have

2
V0ρ(εF)

= 1
2 ln

2�ωD

Δ
, (34.1.13)

from which
Δ = 2�ωDe−4/V0ρ(εF) . (34.1.14)

Owing to the exponential factor this binding energy is indeed much smaller
than 2�ωD in the weak-coupling limit, when V0ρ(εF) � 1.

Note that the approximation to replace Vkk′ by a constant is not always
admissible. The dependence on the angle ξ between k and k′ might be relevant.
The dependence on the length of k and k′ is much less important since the
wave vectors of the electrons participating in the scattering processes have
to be in the neighborhood of the Fermi surface. The ξ dependence of the
potential can be expanded in Legendre polynomials or – if the polar and
azimuthal angles θ, ϕ and θ′, ϕ′ of the unit vectors in the directions of k and
k′ are used – in terms of the spherical harmonics applying (C.4.36):

Vkk′ =
∞∑

l=0

Vl

l∑

m=−l

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′) . (34.1.15)

With this form for Vkk′ the coefficients αk satisfy the equation

(2εk − ε)αk − 1
Ω

∑

k′

∞∑

l=0

Vl

l∑

m=−l

Y m
l (θ, ϕ)Y m

l
∗(θ′, ϕ′)αk′ = 0 . (34.1.16)

It is readily seen by expanding αk in spherical harmonics in the form

αk =
∞∑

l=0

l∑

m=−l

αlm(k)Y m
l (θ, ϕ) (34.1.17)

and using the orthogonality relations that the amplitudes Vl do not mix for
different l values, and a self-consistency condition analogous to (34.1.11) is
obtained for each l:
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1 = Vl

εF+�ωD∫

εF

1
2ρ(ε

′)
1

2ε′ − ε
dε′ . (34.1.18)

The binding energy of the pairs in channel l is given by

Δl = 2�ωDe−4/Vlρ(εF) . (34.1.19)

The Cooper pairs with l = 0, 1, 2, . . . have s-, p-, d-wave symmetries. The
l dependence of the binding energy implies that pairs of different symme-
try appear at different temperatures. According to the experimental findings,
Cooper pairs with s-wave symmetry are found in the vast majority of super-
conductors, perhaps exclusively in the superconductors known before the 80s
of the last century. For this reason and for the sake of simplicity, pairs with
s-wave symmetry will be assumed in the bulk of this chapter. We will return
to unconventional superconductors at the end of the chapter.

In the previous calculation we considered the formation of a single Cooper
pair and determined its binding energy. For obtaining the bound state it was
necessary to have a filled Fermi sea which constrained the possible final states
of the scattered electrons. In fact, if the interaction is attractive between the
electrons, the pairs are formed not individually, but the entire Fermi sea be-
comes unstable against their formation below a critical temperature Tc. The
electron states are rearranged and a completely novel state appears with prop-
erties that differ drastically from the “normal-state” properties of the Fermi
system. The nonanalyticity of the binding energy of the Cooper pairs as a func-
tion of the interaction potential indicates that this state, the superconducting
state, cannot be obtained from the noninteracting Fermi sea in perturbation
theory.

34.1.2 Instability at Finite Temperatures

Before going on to the problem of the superconducting ground state, where
all electrons are bound into pairs, we consider now the interacting electron
gas at finite temperatures, in the normal phase. Adding two electrons to the
Fermi gas right on the Fermi surface with opposite momenta and spins, we
will calculate the temperature where the bound state first appears.

Assuming that the Fermi system is in the state |Ψn〉 which occurs with
probability pn in thermodynamic equilibrium we take the state with two extra
electrons,

|Ψk〉 = c†k↑c
†
−k↓|Ψn〉 , (34.1.20)

as the initial state. The energy of this state is Ek = En + 2εF. It can be
scattered owing to the interaction into the state

|Ψk′〉 = c†k′↑c
†
−k′↓|Ψn〉 , (34.1.21)
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where the wave vectors of the two electrons are changed from k and −k to k′

and −k′. The scattered electrons have to be on the Fermi surface to conserve
energy. To calculate the strength of this scattering process we consider the
matrix elements of the scattering matrix defined via

T (z) = Hint + Hint
1

z −H0
T (z) , (34.1.22)

where Hint is the interaction Hamiltonian. If this equation is iterated,

T (z) = Hint+Hint
1

z −H0
Hint+Hint

1
z −H0

Hint
1

z −H0
Hint+· · · . (34.1.23)

Since we are considering the scattering of electrons with opposite spins,
the most important processes are expected to be those in which electrons
of opposite spins are scattered in every elementary process. We will therefore
assume that the interaction Hamiltonian can be written in second quantization
in the form

Hint = −V0

Ω

∑

k1k2q

c†k1+q↑c
†
k2−q↓ck2↓ck1↑ , (34.1.24)

where a constant amplitude is taken for the potential according to (34.1.8).
To first order in the interaction we find

〈Ψk′ |Hint|Ψk〉 = 〈Ψn|c−k′↓ck′↑Hintc
†
k↑c

†
−k↓|Ψn〉 = −V0/Ω , (34.1.25)

since the only nonvanishing contribution is given by the term where k1 = k,
k2 = −k, and q = k′ − k.

The second-order matrix element is

〈Ψk′ |Hint
1

z −H0
Hint|Ψk〉

= 〈Ψn|c−k′↓ck′↑Hint
1

z −H0
Hintc

†
k↑c

†
−k↓|Ψn〉 (34.1.26)

= 〈Ψn|c−k′↓ck′↑

(
−V0

Ω

) ∑

k1k2q

c†k1+q↑c
†
k2−q↓ck2↓ck1↑

1
z −H0

×
(
−V0

Ω

) ∑

k3k4q′
c†k3+q′↑c

†
k4−q′↓ck4↓ck3↑c

†
k↑c

†
−k↓|Ψn〉.

The scattering processes contributing to this matrix element can be visual-
ized by diagrams. The two lines entering the diagram from the right represent
the two electrons added to the system and the scattering processes are drawn
from right to left as they stand in the matrix element. The two lines arriv-
ing at the left represent the two electrons in the final state. There are two
second-order processes displayed in Fig. 34.1.

In one possible process the two electrons with k ↑ and −k ↓ are scattered
into an intermediate state containing the pair (k′′ ↑,−k′′ ↓). This happens
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Fig. 34.1. Second-order scattering processes with electron pair and hole pair inter-
mediate states

when k3 = k, k4 = −k, and q′ = k′′ − k3 = k′′ − k. The energy of the
intermediate state is En + 2εk′′ . This pair is then scattered in the next step
into the pair state (k′↑,−k′↓). For this to happen, the wave vectors of the
electrons in the second process have to satisfy the relations k1 = k′′, k2 =
−k′′, and q = k′ − k′′. The role of the Fermi sea is to restrict the possible
intermediate states, as this scattering process can take place only if the pair
with (k′′↑,−k′′↓) is not present initially in the state |Ψn〉. Since the electron
system is assumed to be in thermal equilibrium, a thermal average of the
matrix elements between the states |Ψn〉 has to be taken. This condition gives
a factor

[
1 − f0(εk′′)

][
1 − f0(ε−k′′)

]
as the weight of this process.

If the energy variable z is identified with the energy of the initial state,
Ek, the energy difference −(2εk′′ − 2εF) appears in the denominator of the
T -matrix and the contribution of this process is

(
V0

Ω

)2∑

k′′

[
1 − f0(εk′′)

]2

2εF − 2εk′′
. (34.1.27)

Looking now at the other scattering process, nothing happens with the
two extra electrons in the first interaction. Two electrons with k′′↑ and −k′′↓
are scattered from the Fermi sea into the final states k′↑ and −k′↓ leaving
two holes behind. The intermediate state has four electrons and two holes in
addition to the Fermi sea. The energy of this state is

En + εk + ε−k + εk′ + ε−k′ − εk′′ − ε−k′′ = En + 4εF − 2εk′′ , (34.1.28)

and the energy denominator is 2εk′′ − 2εF. Creation of holes is possible in the
intermediate state if the states k′′↑ and −k′′↓ were initially occupied, which
gives a factor [f0(εk′′)]2. These holes are then filled in the next step when the
initial extra electrons are scattered into these states. The contribution of this
process is (

V0

Ω

)2∑

k′′

[
f0(εk′′)

]2

2εk′′ − 2εF
. (34.1.29)

Adding up the contributions of the second-order processes we have

−
(
V0

Ω

)2∑

k′′

1 − 2f0(εk′′)
2εk′′ − 2εF

, (34.1.30)
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which together with the first-order contribution gives

〈T 〉 = −V0

Ω
−
(
V0

Ω

)2∑

k′′

1 − 2f0(εk′′)
2εk′′ − 2εF

. (34.1.31)

The pair (k′′ ↑,−k′′ ↓) is present in the intermediate state either as an
electron pair or as a hole pair. We will see below that the sum appearing in
the second-order contribution is logarithmically singular, proportional to lnT ,
at low temperatures.2 We expect that the most important contributions to the
T -matrix in higher orders of perturbation theory come from similar processes,
in which electron pairs and hole pairs are present in the intermediate states.
Such third-order processes are depicted in Fig. 34.2.

Fig. 34.2. Third-order scattering processes of two electrons with electron pair and
hole pair intermediate states

The contributions of these processes form a geometric progression which
can be summed up to yield

〈T 〉 =
−V0/Ω

1 − V0

Ω

∑

k′′

1 − 2f0(εk′′)
2εk′′ − 2εF

. (34.1.32)

The denominator is always less than unity in the attractive (V0 > 0) case; the
higher order corrections enhance the strength of the T -matrix compared to the
bare potential. Similar enhancement is found when the temperature is lowered
2 At zero temperature electrons with energy ξk = εk − εF contribute a term to the

T -matrix which is proportional to ln ξk . It diverges logarithmically as the energy
of the scattered electrons approaches the Fermi energy.
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starting from high temperatures. Since the sum diverges at zero temperature,
the thermal average of the scattering matrix over the configurations of the
Fermi sea becomes infinitely large at the temperature where

1 =
V0

Ω

∑

k′′

1 − 2f0(εk′′)
2εk′′ − 2εF

, (34.1.33)

and the electron system becomes unstable against the formation of pairs.
To calculate the critical temperature of this instability we rewrite the

right-hand side in terms of the quantity ξk = εk − εF using the relation

1 − 2f0(ξk) = 1 − 2
eξk/kBT + 1

= tanh
ξk

2kBT
. (34.1.34)

The equation determining the critical temperature is then

1 =
V0

Ω

∑

k

1
2ξk

tanh
ξk

2kBTc
. (34.1.35)

Replacing the sum by an integral and using the fact that the electrons are
assumed to interact in an energy range of width 2�ωD we have

1 = 1
2V0

�ωD∫

−�ωD

dξ
2ξ
ρ(ξ) tanh

ξ

2kBTc
. (34.1.36)

If the density of states is approximated by its value at the Fermi energy, ρ(εF),
the even parity of the integrand allows us to transform this equation into

1 = 1
2V0ρ(εF)

�ωD∫

0

dξ
ξ

tanh
ξ

2kBTc
. (34.1.37)

Introducing the variable x =
ξ

2kBTc
gives

1 = 1
2V0ρ(εF)

�ωD
2kBTc∫

0

dx
x

tanhx . (34.1.38)

This integral has been evaluated in the previous chapter when the critical
temperature of the spin-density-wave state was determined. We can use the
result derived there, since kBTc � �ωD, and we have

1 = 1
2V0ρ(εF)

(
ln

�ωD

2kBTc
−

�ωD
2kBTc∫

0

lnx
cosh2 x

dx

)

= 1
2V0ρ(εF)

(
ln

�ωD

2kBTc
+ ln

4eγ

π

)
.

(34.1.39)
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Algebraic manipulations lead to

kBTc =
eγ

π
2�ωD exp

(
− 2
V0ρ(εF)

)
(34.1.40)

for the instability temperature of the electron system. Formally it is similar
to the expression obtained for density-wave systems in the mean-field approx-
imation. There is, however, an important difference concerning its accuracy,
as will be shown below.

Thus far we considered a special class of processes in which an electron
pair of total momentum zero is scattered into another pair state with total
momentum zero in each intermediate step, although the momenta of the elec-
trons in the pair are different before and after the scattering. We neglected
those higher order processes in which only one member of the pair is scattered
at a given time. Such scattering events are displayed in Fig. 34.3.

k k k’ ”

k’ k’

k’
k’

k k

k
k

k” k k k’ ”k”

Fig. 34.3. Second-order scattering processes with electron–hole pairs in the inter-
mediate state

The energy denominators and the probability of finding empty or occupied
states can easily be given. The contribution of the first process to the T -matrix
is

−
(
V0

Ω

)2∑

k′′

[
1 − f0(εk+k′+k′′)

]
f0(εk′′)

εk′′ − εk+k′+k′′
, (34.1.41)

and the second process gives

−
(
V0

Ω

)2∑

k′′

[
1 − f0(εk′′)

]
f0(εk+k′+k′′)

εk+k′+k′′ − εk′′
. (34.1.42)

Adding up the two contributions we can recognize in

−
(
V0

Ω

)2∑

k′′

f0(εk+k′+k′′) − f0(εk′′)
εk+k′+k′′ − εk′′

(34.1.43)

the expression appearing in the Lindhard form of the dielectric function. This
is not surprising since an electron–hole pair is present in the intermediate
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state just as in the polarization bubble. The contribution of these processes is a
smooth function of k+k′ contrary to the logarithmically singular contribution
of the processes discussed earlier. That is the reason why it suffices to consider
only the processes with electron pair intermediate states.

The situation is different in one-dimensional systems. The instability
against the formation of density waves is caused by the logarithmic singu-
larity of the propagation of an electron–hole pair with total momentum 2kF.
The polarization bubble and the susceptibility display precisely the same type
of logarithmic singularity at q = 2kF as the Cooper channel does for total mo-
mentum zero. Note that the singularity in the Cooper channel is in fact inde-
pendent of the dimension, while the electron–hole channel is singular only in
one dimension. That is why it was not sufficient to treat the density waves of
one-dimensional systems in the RPA, and that is why the role of fluctuations
had to be considered. Similarly, a mean-field treatment of superconductivity
would give unsatisfactory results in one dimension.

34.2 The Bardeen–Cooper–Schrieffer Theory

The discovery of the instability of the electron gas against the formation of
Cooper pairs was an important ingredient that allowed J. Bardeen, L. N.

Cooper, and J. R. Schrieffer
3 to elaborate the microscopic theory of

superconductivity by 1957. From the initials of their names, it is known as
the BCS theory.

34.2.1 BCS Hamiltonian and BCS Ground State

The effective electron–electron interaction mediated by phonons was given in
(23.3.51). The BCS theory uses a simplified form for this attractive interaction.
Assuming that singlet Cooper pairs play the dominant role, we consider only
those processes in which singlet pairs with total momentum zero are scattered
into singlet pairs. The reduced BCS Hamiltonian acting in this restricted
Hilbert space of the q = 0 singlet pair states has the form

HBCS =
∑

k

εk

(
c†k↑ck↑ + c†−k↓c−k↓

)
+

1
Ω

∑

kk′
Vkk′c†k↑c

†
−k↓c−k′↓ck′↑ . (34.2.1)

The restriction to singlet pairs is not admissible in the superfluid phase of
3He. Moreover, there are experimental indications that some unconventional
superconductors have triplet pairs. We will return to their theoretical treat-
ment later on.

As mentioned earlier, the interaction Vkk′ depends weakly on the length
of k and k′, since only electrons near the Fermi surface participate in the

3 See page 4 in Volume 1.
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formation of Cooper pairs. On the other hand, the dependence on the angle
ξ between k and k′ can be appreciable. Expanding the potential in Legendre
polynomials the interaction can be characterized by the amplitudes Vl. It
is usual to take a contact potential in real space, which corresponds to a
momentum-independent interaction for electrons near the Fermi energy as
given in (34.1.8). Only the l = 0 component of the potential is nonvanishing,
and the wavefunction of the pair has s-wave symmetry. This leads to the
BCS theory of conventional superconductors. There are, however, materials,
where this simplification cannot be justified, and a more general treatment is
needed. We will therefore keep the momentum dependence of Vkk′ in most of
the calculations. It will be dropped when explicit expressions for the critical
temperature or the gap are given for conventional superconductors. A separate
section will be devoted to unconventional superconductors.

Another important assumption of the BCS theory is that all electrons are
condensed into Cooper pairs in the ground state of superconductors. If a state
with wave vector k and spin ↑ is occupied, the state with wave vector −k and
spin ↓ is also occupied. The ground state of the noninteracting Fermi gas
satisfies this requirement. This is best seen if it is written in the form

|ΨFS〉 =
∏

|k|<kF

c†k↑c
†
−k↓|0〉 , (34.2.2)

where |0〉 is the vacuum of electrons. Electrons cannot take advantage of
the attraction between them since there are no available empty states into
which they could be scattered elastically. If the discontinuity in the momentum
distribution function is smeared out, that is if there are empty states below
the chemical potential and then necessarily filled states above the chemical
potential, the kinetic energy is increased compared to the free electron ground
state, but this increase could be compensated by the binding energy of the
Cooper pairs. It could be energetically favorable for the system to undergo a
transition to a new state in which the smearing of the distribution function
extends to a finite energy range, but all electrons present are dynamically
bound into pairs by the attractive effective interaction.

The BCS theory assumes that the superconducting ground state is a
coherent linear combination of states involving products of Cooper pairs with
all possible values of k. A natural choice for Ne electrons would be

|ΨNe〉 =
∑

k1

· · ·
∑

kNe/2

αk1 . . . αkNe/2c
†
k1↑c

†
−k1↓ . . . c

†
kNe/2↑c

†
−kNe/2↓|0〉 . (34.2.3)

Further calculations with this wavefunction would be rather tedious. Bardeen,
Cooper, and Schrieffer proposed a different form

|ΨBCS〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓
)
|0〉 , (34.2.4)
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where all possible values of k appear in the product. This is the BCS wave-
function.

According to the probabilistic interpretation of the wavefunction, |vk|2 is
the probability of finding the pair in the system and |uk|2 gives the probability
of its absence. The relation

|uk|2 + |vk|2 = 1 (34.2.5)

has to be satisfied, which is at the same time the normalization condition of
the wavefunction. The factor uk can be chosen real without restricting the
generality; the factor vk should, however, be allowed to take complex values.
We will see that the superconducting order parameter has a complex phase and
the same phase appears in vk independently of k. This phase which appears
in the wavefunction in the form

|ΨBCS〉 =
∏

k

(
uk + |vk|eiφc†k↑c

†
−k↓
)
|0〉 (34.2.6)

gives rise to macroscopic quantum phenomena.
An essential difference compared to the wavefunction given in (34.2.3) is

that the number of pairs is not fixed in the BCS state; it is a linear combination
of states with 0, 2, 4, . . . , N, . . . electrons

|ΨBCS〉 =
∑

N

λN |ΨN 〉 , (34.2.7)

with the normalization condition
∑

N

|λN |2 = 1 . (34.2.8)

The probability amplitude λN of the state with N particles (N/2 Cooper
pairs) contains a phase factor exp(iNφ/2). The state with N particles can be
recovered from the BCS state by multiplying it with the inverse of the phase
factor and integrating over φ:

|ΨN 〉 =

2π∫

0

dφ e−i N
2 φ
∏

k

(
uk + |vk|eiφc†k↑c

†
−k↓
)
|0〉 . (34.2.9)

The particle number N and the phase φ are conjugate variables; they cannot
take sharp values at the same time. The uncertainty relation

δNδφ ≥ 1 (34.2.10)

has to be satisfied.
The BCS wavefunction is a natural choice when tunneling phenomena

are studied, where the number of electrons is not conserved on the left and
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right sides of the junction. In other cases a wavefunction with fixed number
of particles corresponds to the physical situation. Nevertheless, the physical
quantities are obtained correctly, when we work with the BCS wavefunction
with a fixed phase, since the probability amplitude λN is strongly peaked
around the mean number of particles in a macroscopic system. In order to
show that we calculate the mean number of particles and the root-mean-
square fluctuations in the number of particles. The expectation value of the
number of particles,

N =
∑

k,σ

c†kσckσ =
∑

k

(
c†k↑ck↑ + c†−k↓c−k↓

)
, (34.2.11)

is
〈N〉 = 〈ΨBCS|N |ΨBCS〉 =

∑

k

2|vk|2 (34.2.12)

in the BCS state and the mean-square deviation from the average number is
〈
(δN)2

〉
= 〈ΨBCS|N2|ΨBCS〉 − 〈ΨBCS|N |ΨBCS〉2 =

∑

k

4u2
k|vk|2 . (34.2.13)

The summation over the wave vectors gives values proportional to the volume
for both quantities, which means that

√〈
(δN)2

〉
〈
N
〉 ∝ Ω−1/2 ∝ 〈N〉−1/2

. (34.2.14)

The width in the distribution of the probability amplitude is proportional to
the square root of the average number of particles, which indicates, as dis-
played in Fig. 34.4, that the probability amplitude is indeed strongly peaked.
The relative difference between the results calculated with fixed number of
particles or with the BCS wavefunction should therefore be extremely small,
on the order of 10−11, for a macroscopic sample with 1023 electrons.

N

N

N

N

Fig. 34.4. The probability amplitude λN of finding a configuration with N particles
in the BCS ground state

Since the particle number is not fixed in the BCS theory, we work with a
grand canonical ensemble and the Hamiltonian
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H′
BCS = HBCS − μN (34.2.15)

has to be considered instead of HBCS. In what follows we drop the prime from
H′

BCS and will use

HBCS =
∑

k

ξk

(
c†k↑ck↑ + c†−k↓c−k↓

)
+

1
Ω

∑

kk′
Vkk′c†k↑c

†
−k↓c−k′↓ck′↑ ,

(34.2.16)
where ξk = εk − μ is the energy of the electrons measured from the chemical
potential. This reduced Hamiltonian contains explicitly only the interaction
between the Cooper pairs. The effects of other processes can partially be
incorporated into the energy ξk by assuming that the operator c†kσ is the
creation operator of a Landau quasiparticle with effective mass m∗.

Our next task is to determine the coefficients uk and vk in the BCS state
and to calculate the ground-state energy.

34.2.2 Variational Calculation of the Coherence Factors

The restriction to consider the reduced Hamiltonian was based on physical
considerations. Further approximations are needed to determine the ground
state and the excited states. One usual approach is to treat the interaction
between the pairs in mean-field theory. We will apply this method when the
finite-temperature properties will be considered. Here we follow the original
ideas of Bardeen, Cooper, and Schrieffer and calculate the ground state
and its energy from the variational principle, minimizing the expectation value
of the BCS Hamiltonian,

E0
BCS = 〈ΨBCS|HBCS|ΨBCS〉 , (34.2.17)

with respect to the free parameters of the trial wavefunction.
We introduce the creation and annihilation operators of pairs via

bk = c−k↓ck↑ , b†k = c†k↑c
†
−k↓ . (34.2.18)

These operators are not truly bosonic; their commutation relation is
[
bk, b

†
k′
]
− = δkk′ (1 − nk↑ − n−k↓) , (34.2.19)

nevertheless, the superconducting state is sometimes interpreted as the Bose
condensate of bosonic Cooper pairs. The kinetic energy can be rewritten using

nk↑ + n−k↓ = 1 − bkb
†
k + b†kbk . (34.2.20)

The interaction can also be given in terms of bk and b†k since pairs are scattered
into pairs in the reduced BCS Hamiltonian. Finally, we get an expression that
is bilinear in the operators,
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HBCS =
∑

k

ξk

(
1 − bkb

†
k + b†kbk

)
+

1
Ω

∑

kk′
Vkk′b†kbk′ , (34.2.21)

and the BCS wavefunction takes the form

|ΨBCS〉 =
∏

k

(
uk + vkb

†
k

)
|0〉 . (34.2.22)

It is readily seen that

E0
BCS =

∑

k

ξk
(
1 − |uk|2 + |vk|2

)
+

1
Ω

∑

kk′
Vkk′v∗ku

∗
k′ukvk′ , (34.2.23)

since the pair (k′↑,−k′↓) can be scattered into the pair state (k↑,−k↓) if the
pair (k′↑,−k′↓) is initially present in |ΨBCS〉 and the other pair is absent, and
the reverse is true after the interaction.

The total energy has to be minimized with the constraint |uk|2+ |vk|2 = 1,
which can be taken into account by a Lagrange multiplier. The values of the
coherence factors that provide the energy minimum are to be determined from
the equations

−ξku∗k +
1
Ω

∑

k′
Vkk′v∗ku

∗
k′vk′ − λu∗k = 0 ,

−ξkuk +
1
Ω

∑

k′
Vk′kv

∗
k′uk′vk − λuk = 0 ,

ξkv
∗
k +

1
Ω

∑

k′
Vk′kv

∗
k′uk′u∗k − λv∗k = 0 ,

ξkvk +
1
Ω

∑

k′
Vkk′uku

∗
k′vk′ − λvk = 0 .

(34.2.24)

Introducing the quantity

Δk = − 1
Ω

∑

k′
Vkk′u∗k′vk′ (34.2.25)

and using the relation
Vkk′ = V ∗

k′k (34.2.26)

that follows from the properties of the Fourier components, the system of
equations for the coherence factors takes the form

−ξku∗k −Δkv
∗
k − λu∗k = 0 ,

−ξkuk −Δ∗
kvk − λuk = 0 ,

ξkv
∗
k −Δ∗

ku
∗
k − λv∗k = 0 ,

ξkvk −Δkuk − λvk = 0 .

(34.2.27)
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If uk is real, the complex phase of vk should be independent of k and is
equal to the phase of Δk. This was anticipated when the wavefunction was
written in the form given in (34.2.6). Since the pairs occur with the same
phase in the total wavefunction, the wavefunction has a macroscopic phase.
This explains the macroscopic quantum phenomena such as the Josephson
effects. The fixed phase implies that the superconducting state is not gauge
invariant; the continuous gauge symmetry is broken in superconductors, as
already mentioned in Chapter 26. The phase can be arbitrary, but a fixed
phase is realized in nature, just as the magnetization points in a fixed direction
in a ferromagnet, although this direction can be arbitrary in an isotropic
system.

The Lagrange multiplier λ can be eliminated if the first equation is mul-
tiplied by vk, the fourth is multiplied by u∗k, and the two equations are sub-
tracted. We find

2ξku∗kvk = Δk

(|uk|2 − |vk|2
)
. (34.2.28)

The solution of this equation satisfying the auxiliary condition as well is

|uk|2 =
1
2

[
1 +

ξk√
ξ2k + |Δk|2

]
, |vk|2 =

1
2

[
1 − ξk√

ξ2k + |Δk|2

]
, (34.2.29)

and
u∗kvk =

Δk

2
√
ξ2k + |Δk|2

. (34.2.30)

The energy dependence of the coherence factors uk and vk is displayed in
Fig. 34.5.

1

0k k

vk

2
uk

2

k

Fig. 34.5. Energy dependence of the coherence factors |uk |2 and |vk |2 giving the
probability of absence and presence of Cooper pairs in the BCS ground state

It follows from the BCS form of the wavefunction that |vk|2 is the proba-
bility that the state with wave vector k is occupied,

〈nkσ〉 = 〈ΨBCS|c†kσckσ|ΨBCS〉 = |vk|2 . (34.2.31)

This probability is nearly unity, |vk|2 ≈ 1, well below the chemical potential
and |vk|2 ≈ 0 far above the chemical potential. High-energy pairs are practi-
cally not present in the system. Compared to the sharp discontinuity in the
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distribution function, |vk|2 is a smooth function of ξk and the occupation
probability is smeared over a range of width 2Δ about the Fermi energy. The
Fermi edge is absent in superconductors.

Substitution of (34.2.30) into (34.2.25) gives a self-consistency condition
for Δk:

Δk = − 1
Ω

∑

k′

Vkk′Δk′

2
√
ξ2k′ + |Δk′ |2

. (34.2.32)

The quantity Δk itself becomes independent of the wave vector for a struc-
tureless attractive potential given in (34.1.8). Denoting it by Δ0 we get

1
V0

=
1
Ω

∑

k′

1

2
√
ξ2k′ +Δ2

0

. (34.2.33)

Transforming the sum over wave vector to an integral over energy, the integra-
tion can be carried out if the density of states is approximated by a constant
in the range of width 2�ωD. Since there is no summation over the spin, only
half of the density of states ρ(εF) should be taken and we have

2
V0ρ(εF)

=

�ωD∫

−�ωD

dξ
2
√
ξ2 +Δ2

0

= ln

(
�ωD

Δ0
+

√(
�ωD

Δ0

)2

+ 1

)
, (34.2.34)

from which
Δ0 = �ωD sinh−1

(
2

V0ρ(εF)

)
. (34.2.35)

In the weak-coupling limit, when V0ρ(εF) � 1 and also Δ0 � �ωD,

Δ0 = 2�ωD exp
(
− 2
V0ρ(εF)

)
. (34.2.36)

This expression is analogous to (34.1.14) obtained for the binding energy of a
Cooper pair. Note, however, the factor of 2 in the exponent.

34.2.3 Coherence Length

The Cooper pairs as bound states of pairs of electrons are formed in momentum
space, not in real space. They are in fact wave packets formed from electrons
with quantum numbers k ↑ and −k ↓, in which states from the neighbor-
hood of the Fermi energy, from a region of width Δ0, are mixed. This region
corresponds to a range of width

�|Δk| ≈ Δ0

vF
(34.2.37)

in momentum space. The linear extension of the wave packet is then
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ξ0 ≈ �vF
Δ0

. (34.2.38)

The same characteristic length is obtained if the root-mean-square distance of
the two elements of the pair is calculated using (34.1.4) for the wavefunction
of the Cooper pair. Substituting this form into

〈r2〉 =
∫ |Ψ(r)|2r2 dr∫ |Ψ(r)|2 dr

, (34.2.39)

where r = r1 − r2, simple algebra gives

〈r2〉 =
∑

k |∇kαk|2∑
k |αk|2 . (34.2.40)

Using (34.1.9) for αk we get

〈r2〉 =
4
3

(
�vF
Δ0

)2

. (34.2.41)

Since electrons are correlated up to this distance in the superconducting state,
this characteristic distance is called the coherence length and is denoted by
ξ0. Since Δ0 is much smaller than the Fermi energy, ξ0 can be as large as
10−6−10−7 m, that is, it is typically much longer than the atomic dimensions.

A better picture can be obtained about correlations between electrons in
the BCS state if the pair distribution function of opposite-spin electrons de-
fined in (28.4.47) and (28.4.50) is considered. We have seen in Chapter 28 that
there are no correlations between electrons of opposite spins in the Hartree–
Fock approximation. Such correlations occur, however, in the superconducting
state. The pair distribution function can be evaluated if the electron operators
are expressed in terms of the operators of the quasiparticles to be introduced
later, in Section 34.2.6. We get

g↑↓(r − r′) =
[
1 −
(

1
Ne

∑

k

eik·(r−r′)Δ0

Ek

)2]
(34.2.42)

instead of (28.4.57). Replacing the sum by an integral, its value can be es-
timated. Correlations are appreciable only up to a distance ξ0 defined in
(34.2.38). The pair distribution function g↑↓(r − r′) takes practically unit
value beyond that, that is correlations vanish for |r − r′| > ξ0.

34.2.4 Energy of the Superconducting State

We now return to the problem of calculating explicitly the ground-state energy
given in (34.2.23) and we prove that it is lower than the energy

E0
FS = 2

∑

|k|<kF

ξk (34.2.43)
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of the completely filled Fermi sea with a sharp Fermi edge. Their difference is

E0
BCS − E0

FS =
∑

k

ξk
(
1 − |uk|2 + |vk|2

)

+
1
Ω

∑

kk′
Vkk′v∗kuku

∗
k′vk′ − 2

∑

|k|<kF

ξk .
(34.2.44)

The sum in the first term is divided into two parts, into the contributions
coming from the regions |k| < kF and |k| > kF. Using the normalization
condition |uk|2 + |vk|2 = 1 we have

E0
BCS − E0

FS = −2
∑

|k|<kF

ξk|uk|2 + 2
∑

|k|>kF

ξk|vk|2

+
1
Ω

∑

kk′
Vkk′v∗kuku

∗
k′vk′ .

(34.2.45)

With the change of variables ξk → −ξk in the first term and using (34.2.29)
and (34.2.30) for the coherence factors we find

E0
BCS − E0

FS = 4
∑

|k|>kF

ξk|vk|2 +
1
Ω

∑

kk′
Vkk′v∗kuku

∗
k′vk′ (34.2.46)

= 2
∑

|k|>kF

ξk

(
1 − ξk√

ξ2k + |Δk|2

)
−
∑

k

|Δk|2
2
√
ξ2k + |Δk|2

= 2
∑

|k|>kF

(
ξk − ξ2k√

ξ2k + |Δk|2
− |Δk|2

2
√
ξ2k + |Δk|2

)
.

The explicit calculation will be done for s-wave superconductors. Simple
algebra gives

E0
BCS − E0

FS = 2
∑

|k|>kF

[
ξk

Δ2
0√

ξ2k +Δ2
0

(√
ξ2k +Δ2

0 + ξk

) − Δ2
0

2
√
ξ2k +Δ2

0

]

= −2Δ2
0

∑

|k|>kF

1
2
√
ξ2k +Δ2

0

Δ2
0(√

ξ2k +Δ2
0 + ξk

)2 . (34.2.47)

Converting the sum over k to an integral over ξ using a constant density of
states we get

E0
BCS − E0

FS = −ΩΔ2
0ρ(εF)

�ωD∫

0

dξ
2
√
ξ2 +Δ2

0

Δ2
0(√

ξ2 +Δ2
0 + ξ

)2 . (34.2.48)

With a change of variables from ξ to x defined via sinhx = ξ/Δ0 and using
(34.2.35) we get
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E0
BCS − E0

FS = − 1
2ΩΔ

2
0ρ(εF)

2/V0ρ(εF)∫

0

dx
(sinhx+ coshx)2

, (34.2.49)

from which

E0
BCS −E0

FS = − 1
4ΩΔ

2
0ρ(εF)

[
1 − e−4/V0ρ(εF)

]

= −Ωρ(εF) (�ωD)2
1

e4/V0ρ(εF) − 1
.

(34.2.50)

The lowering of the energy in the weak-coupling limit is given by

E0
BCS − E0

FS = −Ωρ(εF) (�ωD)2 e−4/V0ρ(εF) = −Ω 1
4ρ(εF)Δ2

0 . (34.2.51)

This can be easily understood if we recall that those electrons can form bound
Cooper pairs which are in a range of width �ωD below the Fermi energy (the
density of states can be approximated by ρ(εF) in this range) and the binding
energy per particle is �ωDe−4/V0ρ(εF).

We know that the transition from the superconducting state to the normal
state occurs at the critical magnetic field Hc where the energy of the magnetic
field is equal to the energy lowering due to the condensation energy of the
Cooper pairs, that is when

1
4ρ(εF)Δ2

0 = 1
2μ0H

2
c , (34.2.52)

from which we get

Hc(0) =
[

1
2μ0

ρ(εF)
]1/2

Δ0 (34.2.53)

for the critical field at T = 0.

34.2.5 Excited States of Superconductors

Excited states can be obtained when one or more Cooper pairs are removed
from the condensate ground-state configuration. As the simplest example we
assume that all pairs are in the configuration uk + vkb

†
k corresponding to

the BCS state except for the pair (k1 ↑,−k1 ↓) which is in an orthogonal
configuration. Such a state can easily be constructed:

|Ψ (1)
exc〉 =

(
u∗k1

b†k1
− v∗k1

) ∏

k �=k1

(
uk + vkb

†
k

)
|0〉 . (34.2.54)

It is indeed true that
〈
ΨBCS|Ψ (1)

exc
〉

= 0.
To calculate the energy of this state we first consider the energy needed to

remove the pair (k1↑,−k1↓) from the ground state and then add the change
in energy when the electrons are put back into a different configuration. The
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change in energy when a pair is removed is readily obtained from (34.2.23) by
picking the terms from the sum in which the wave vector k1 occurs. We find

ξk1

(
1 − |uk1 |2 + |vk1 |2

)
+

1
Ω

∑

k′

[
Vk1k′v∗k1

uk1
u∗k′vk′ + Vk′k1v

∗
k′uk′u∗k1

vk1

]

= 2ξk1 |vk1 |2 −Δk1
v∗k1

uk1
−Δ∗

k1
u∗k1

vk1
. (34.2.55)

It is instructive to look back at the ground-state energy of the superconductor
given in (34.2.23). It can be rewritten in the alternative forms

E0
BCS = 2

∑

k

ξk|vk|2 −
∑

k

Δkv
∗
kuk

= 2
∑

k

ξk|vk|2 −
∑

k′
Δ∗

k′u∗k′vk′
(34.2.56)

or
E0

BCS = 2
∑

k

ξk|vk|2 − 1
2

∑

k

(
Δkv

∗
kuk +Δ∗

ku
∗
kvk

)
. (34.2.57)

Only half of the term coming from the interaction in (34.2.55) has to be
summed when the total energy is calculated. This is natural, since only half
of the energy correction has to be attributed to each electron to avoid double
counting.

When the pair (k1↑,−k1↓) is in state u∗k1
b†k1

−v∗k1
instead of uk1 +vk1b

†
k1

,
its energy can be obtained from (34.2.55) by the replacements uk1

→ −v∗k1
,

vk1
→ u∗k1

. The energy needed to add such a pair is then

ξk1

(
1 − |vk1 |2 + |uk1 |2

)− 1
Ω

∑

k′

[
Vk1k′uk1

v∗k1
u∗k′vk′ + Vk′k1v

∗
k′uk′vk1

u∗k1

]

= 2ξk1 |uk1 |2 +Δk1
uk1

v∗k1
+Δ∗

k1
vk1

u∗k1
. (34.2.58)

The excitation energy is equal to the difference between (34.2.58) and (34.2.55):

E(1)
exc − E0

BCS = 2ξk1

[|uk1 |2 − |vk1 |2
]
+ 2Δk1

uk1
v∗k1

+ 2Δ∗
k1
u∗k1

vk1

= 2
√
ξ2k1

+ |Δk1 |2 . (34.2.59)

In conventional superconductors, where Δk takes the same finite value in all
k points of the Fermi surface of the normal state, the minimum excitation
energy is 2Δ0.

Another type of excited state is obtained when all electrons are in their
ground-state pair configurations except for two which occupy the states k1↑
and k2↓ with k2 �= −k1. Clearly the pairs with quantum numbers (k1↑,−k1↓)
and (−k2↑,k2↓) may not be present and the wavefunction is

|Ψ (2)
exc〉 = c†k1↑c

†
k2↓

∏

k �=k1,k2

(
uk + vkb

†
k

)
|0〉 . (34.2.60)
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To get the energy of this excited state we take (34.2.55) which gives the change
of energy due to the removal of the pair (k1↑, −k1↓) and add ξk1 which is the
energy needed to fill the state k1↑. We get

Ek1 = ξk1 −
(
2ξk1 |vk1 |2 −Δk1v

∗
k1
uk1

−Δ∗
k1
u∗k1

vk1

)

=
ξ2k1√

ξ2k1
+ |Δk1 |2

+
Δk1Δ

∗
k1√

ξ2k1
+ |Δk1 |2

=
√
ξ2k1

+ |Δk1 |2 .

(34.2.61)

Similar expression is obtained for the particle with wave vector k2. The energy
of this excited state is then

E(2)
exc − E0

BCS = Ek1 + Ek2 =
√
ξ2k1

+ |Δk1 |2 +
√
ξ2k2

+ |Δk2 |2 . (34.2.62)

The minimum energy is again 2Δ0. This gap in the excitation spectrum
explains the exponentially small heat capacity of superconductors at low tem-
peratures, well below the critical temperature.

34.2.6 Quasiparticles in the Superconducting State

In order to get a better picture of the excited states we reformulate the BCS
theory. We introduce new operators instead of the creation and annihilation
operators of the electron states by a unitary transformation, which will turn
out to be the creation and annihilation operators of the quasiparticles of the
superconducting state.

The procedure is similar to the one used in the previous chapter to treat
broken-symmetry phases; however, since the Cooper pairs, which play a dom-
inant role now, are present in a macroscopic number, we will assume that the
anomalous averages 〈c†k↑c†−k↓〉 and 〈c−k↓ck↑〉 containing the operators of the
pairs take nonvanishing values. The mean-field theory of superconductivity
corresponds to neglecting the terms

(
c†k↑c

†
−k↓ −

〈
c†k↑c

†
−k↓
〉)(

c−k′↓ck′↑ −
〈
c−k′↓ck′↑

〉)
(34.2.63)

in the BCS Hamiltonian. This leads to the expression

HBCS =
∑

k

ξk

(
c†k↑ck↑ + c†−k↓c−k↓

)
+

1
Ω

∑

kk′
Vkk′c†k↑c

†
−k↓
〈
c−k′↓ck′↑

〉

(34.2.64)

+
1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉
c−k′↓ck′↑ −

1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
.

Using the BCS wavefunction we readily find
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〈
c−k′↓ck′↑

〉
= u∗k′vk′ ,

〈
c†k′↑c

†
−k′↓

〉
= uk′v∗k′ .

(34.2.65)

Comparison with (34.2.25) suggests that the order parameter should be
defined via

Δk = − 1
Ω

∑

k′
Vkk′

〈
c−k′↓ck′↑

〉
,

Δ∗
k = − 1

Ω

∑

k′
Vk′k

〈
c†k′↑c

†
−k′↓

〉
.

(34.2.66)

The Hamiltonian then becomes

HBCS = − 1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
+
∑

k

ξk

(
c†k↑ck↑ + c†−k↓c−k↓

)

−
∑

k

(
Δkc

†
k↑c

†
−k↓ +Δ∗

kc−k↓ck↑
)
. (34.2.67)

Being bilinear in the creation and annihilation operators this Hamiltonian can
be diagonalized by a Bogoliubov transformation also known as Bogoliubov–
Valatin transformation.4 For this we define new operators by a unitary trans-
formation:

αk↑ = ukck↑ − vkc
†
−k↓ , α−k↓ = ukc−k↓ + vkc

†
k↑ ,

α†
k↑ = u∗kc

†
k↑ − v∗kc−k↓ , α†

−k↓ = u∗kc
†
−k↓ + v∗kck↑ .

(34.2.68)

Fermionic anticommutation relations are obeyed if |uk|2 + |vk|2 = 1. Inverting
the transformation gives

ck↑ = u∗kαk↑ + vkα
†
−k↓ , c−k↓ = u∗kα−k↓ − vkα

†
k↑ ,

c†k↑ = ukα
†
k↑ + v∗kα−k↓ , c†−k↓ = ukα

†
−k↓ − v∗kαk↑ .

(34.2.69)

Substituting these expressions in the mean-field Hamiltonian we get

HBCS =
∑

k

ξk
(|uk|2 − |vk|2

) (
α†

k↑αk↑ + α†
−k↓α−k↓

)
+
∑

k

2ξk|vk|2

+
∑

k

(Δkukv
∗
k +Δ∗

ku
∗
kvk)

(
α†

k↑αk↑ + α†
−k↓α−k↓ − 1

)

+
∑

k

2ξk
(
ukvkα

†
k↑α

†
−k↓ + u∗kv

∗
kα−k↓αk↑

)
(34.2.70)

+
∑

k

[(
Δkv

∗
k
2 −Δ∗

ku
∗
k
2
)
α−k↓αk↑ +

(
Δ∗

kv
2
k −Δku

2
k

)
α†

k↑α
†
−k↓

]

− 1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
.

4
N. N. Bogoliubov, 1958, J. G. Valatin, 1958.
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The off-diagonal terms vanish if

2ξkukvk +Δ∗
kv

2
k −Δku

2
k = 0 . (34.2.71)

It is readily seen that this equation is satisfied if the expressions given in
(34.2.29) and (34.2.30) are used for the coherence factors and the diagonal
Hamiltonian takes the form

HBCS = E0
BCS +

∑

k

Ek

(
α†

k↑αk↑ + α†
−k↓α−k↓

)
(34.2.72)

with

E0
BCS = − 1

Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
+ 2
∑

k

ξk|vk|2

−
∑

k

(Δkukv
∗
k +Δ∗

ku
∗
kvk)

(34.2.73)

and

Ek = ξk
(|uk|2 − |vk|2

)
+ (Δkukv

∗
k +Δ∗

ku
∗
kvk)

= ξk
ξk√

ξ2k +Δ2
k

+Δk
Δ∗

k√
ξ2k + |Δk|2

=
√
ξ2k + |Δk|2 .

(34.2.74)

E0
BCS is the ground-state energy of the superconductor and the operators α†

k↑
and α†

−k↓ generate excited states with energy

Ek =
√
ξ2k + |Δk|2 . (34.2.75)

They can be considered as the creation operators of the quasiparticles of the
superconducting state. These quasiparticles should be distinguished from the
Landau quasiparticles of normal Fermi liquids and are known as Bogoliubov
quasiparticles, or bogolons, or bogoliubons. They are electronlike above the
Fermi energy and holelike below it. They correspond to particles whose pair
is missing. A further justification of this quasiparticle picture is provided by
the fact that the ground-state wavefunction of the BCS theory can be written,
apart from a normalization factor, in the form

|ΨBCS〉 =
∏

k

α−k↓αk↑|0〉 , (34.2.76)

which implies that |ΨBCS〉 is the vacuum of bogolons,

αk↑|ΨBCS〉 = 0 , α−k↓|ΨBCS〉 = 0 . (34.2.77)
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Furthermore, the excited states considered previously can be written as

|Ψ (1)
exc〉 = α†

k1↑α
†
−k1↓|ΨBCS〉 (34.2.78)

and
|Ψ (2)

exc〉 = α†
k1↑α

†
k2↓|ΨBCS〉, (34.2.79)

that is they contain two Bogoliubov quasiparticles.
The number of quasiparticles may change by one in tunneling experiments

when a pair is broken up into two quasiparticles and one of them tunnels to
the other side of the junction. The state with one Bogoliubov quasiparticle on
the superconducting side is

α†
k↑|ΨBCS〉 =

(
u∗kc

†
k↑ − v∗kc−k↓

)∏

k′

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉

=
(
|uk|2c†k↑ + |vk|2c†k↑

) ∏

k′ �=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉

= c†k↑
∏

k′ �=k

(
uk′ + vk′c

†
k′↑c

†
−k′↓

)
|0〉 . (34.2.80)

The energy of this state is readily obtained from our earlier considerations.
We find

Ek =
√
ξ2k + |Δk|2 . (34.2.81)

Note that the same state is obtained if an electron with quantum numbers
k ↑ is added to the BCS state or if an electron with quantum numbers −k ↓
is removed. The minimum energy of these excitations is Δ0. The spectrum of
quasiparticles is displayed in Fig. 34.6.

Ek

n F
s Ek

E

Fig. 34.6. Spectrum and density of states of quasiparticles of the superconducting
state

The density of states of the quasiparticles can be calculated from the
relation

ρs(E) dE = ρn(ξ) dξ , (34.2.82)
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where the subscripts s and n refer to the superconducting and the normal
states, respectively. Assuming that the density of states is constant in the
normal state we find

ρs(E) =

⎧
⎨

⎩
ρn(εF)

E√
E2 −Δ2

0

E > Δ ,

0 E < Δ .
(34.2.83)

This is also shown in Fig. 34.6. The states expelled from the gap give rise to
an inverse-square-root singularity in the density of states. This will be used
to interpret the tunneling characteristics.

34.2.7 BCS Theory at Finite Temperatures

Knowing the ground state and the low-lying excited states we can now turn to
the problem of calculating the thermodynamic behavior of superconductors
at finite temperatures. This can be achieved most simply in a mean-field
approach by self-consistently calculating the nonvanishing anomalous averages
〈c†k↑c†−k↓〉 and 〈c−k↓ck↑〉 at finite temperature as thermal averages, neglecting
their fluctuations. The mean-field Hamiltonian takes the same form as in
(34.2.67),

HBCS = − 1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
+
∑

k

ξk
(
c†k↑ck↑ + c†−k↓c−k↓

)

−
∑

k

(
Δkc

†
k↑c

†
−k↓ +Δ∗

kc−k↓ck↑
)

(34.2.84)

with a temperature-dependent order parameter defined in analogy to (34.2.66)
via

Δk = − 1
Ω

∑

k′
Vkk′

〈
c−k′↓ck′↑

〉
, Δ∗

k = − 1
Ω

∑

k′
Vk′k

〈
c†k′↑c

†
−k′↓

〉
.

(34.2.85)
This Hamiltonian can be diagonalized by repeating formally the same steps

that were made at T = 0. The creation and annihilation operators of the
quasiparticles are defined in terms of the creation and annihilation operators of
electron states by a unitary transformation similar to (34.2.68) with complex
coefficients:

αk↑ = ukck↑ − vkc
†
−k↓ , α−k↓ = ukc−k↓ + vkc

†
k↑ ,

α†
k↑ = u∗kc

†
k↑ − v∗kc−k↓ , α†

−k↓ = u∗kc
†
−k↓ + v∗kck↑ .

(34.2.86)

The inverse transformation is

ck↑ = u∗kαk↑ + vkα
†
−k↓ , c−k↓ = u∗kα−k↓ − vkα

†
k↑ ,

c†k↑ = ukα
†
k↑ + v∗kα−k↓ , c†−k↓ = ukα

†
−k↓ − v∗kαk↑ .

(34.2.87)
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The Hamiltonian takes the diagonal form

H = Econd(T ) +
∑

k

Ek

(
α†

k↑αk↑ + α†
−k↓α−k↓

)
(34.2.88)

with
Ek =

√
ξ2k + |Δk|2 (34.2.89)

and

Econd(T ) = − 1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
+ 2
∑

k

ξk|vk|2

−
∑

k

(
Δkukv

∗
k +Δ∗

ku
∗
kvk

)
,

(34.2.90)

if the coherence factors uk and vk satisfy the relations

|uk|2 =
1
2

[
1 +

ξk
Ek

]
, |vk|2 =

1
2

[
1 − ξk

Ek

]
, (34.2.91)

u∗kvk =
Δk

2Ek
. (34.2.92)

The temperature dependence of the coherence factors and of the quasipar-
ticle energy is due to the temperature dependence of Δk which has to be
determined self-consistently. Combining (34.2.85) with (34.2.87) we have

Δk = − 1
Ω

∑

k′
Vkk′

〈(
u∗k′α−k′↓ − vk′α

†
k′↑
)(
u∗k′αk′↑ + vk′α

†
−k′↓

)〉
. (34.2.93)

Assuming that only the usual, normal averages are finite for the quasiparticles
we get

Δk = − 1
Ω

∑

k′
Vkk′u∗k′vk′

(〈
α−k′↓α

†
−k′↓

〉− 〈α†
k′↑αk′↑

〉)
. (34.2.94)

The quasiparticles are fermions; their thermal occupation in thermodynamic
equilibrium is given by the Fermi distribution function at the quasiparticle
energy:

f0(Ek) =
1

eβEk + 1
. (34.2.95)

The self-consistency condition then leads to

Δk = − 1
Ω

∑

k′
Vkk′u∗k′vk′

[
1 − 2f0(Ek′)

]

= − 1
Ω

∑

k′
Vkk′

Δk′

2
√
ξ2k′ + |Δk′ |2

tanh

√
ξ2k′ + |Δk′ |2

2kBT
.

(34.2.96)
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In the case of conventional superconductors, where the potential Vkk′ can
be approximated by a constant, the gap equation (34.2.33) is recovered in the
limit T → 0. Taking a real gap, the temperature dependence is obtained from
the self-consistent solution of

1 =
V0

Ω

∑

k′

1

2
√
ξ2k′ +Δ2(T )

tanh

√
ξ2k′ +Δ2(T )

2kBT
. (34.2.97)

Combining it with the equation valid for T = 0 we have

∑

k

1
2
√
ξ2k +Δ2

0

=
∑

k

1
2
√
ξ2k +Δ2(T )

tanh

√
ξ2k +Δ2(T )

2kBT
, (34.2.98)

or if the function tanhx is expressed in terms of the Fermi function,

∑

k

[
1

2
√
ξ2k +Δ2(T )

− 1
2
√
ξ2k +Δ2

0

]

=
∑

k

1√
ξ2k +Δ2(T )

f0

(√
ξ2k +Δ2(T )

)
.

(34.2.99)

Converting the sums to integrals

1
2ρ(εF)

�ωD∫

0

[
1√

ξ2 +Δ2(T )
− 1√

ξ2 +Δ2
0

]
dξ

= ρ(εF)

�ωD∫

0

dξ√
ξ2 +Δ2(T )

f0

(√
ξ2 +Δ2(T )

)
.

(34.2.100)

The integral on the right-hand side cuts off sharply at high energies owing
to the Fermi function; hence the upper limit of integration can be shifted to
infinity. Expanding the Fermi function in inverse powers of the exponential
function we can recognize the integral representation of the modified Bessel
function K0:

K0(nz) =

∞∫

0

1√
t2 + z2

exp
(− n

√
t2 + z2

)
dt . (34.2.101)

The dominant contribution to the integral on the left-hand side comes from
the lower limit and we find

ln
Δ0

Δ(T )
= 2

∞∑

n=1

(−1)n+1K0

(
n
Δ(T )
kBT

)
. (34.2.102)
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At low temperatures, where kBT � Δ(T ), we can use the asymptotic form of
the modified Bessel function given in (C.3.59). An exponentially small tem-
perature correction is obtained:

Δ(T ) = Δ0

[
1 −
√

2πkBT

Δ0
e−Δ0/kBT

]
. (34.2.103)

Δ(T ) decreases faster at higher temperatures and vanishes at a Tc where the
thermal energy is on the order of Δ0. The critical temperature is determined
from the gap equation as the temperature where the self-consistency condition
(34.2.97) is met with Δ(Tc) = 0, that is when

1 =
V0

Ω

∑

k

1
2ξk

tanh
ξk

2kBTc
. (34.2.104)

This is the same equation as (34.1.35) which was obtained for the instability
temperature against pair formation. Its solution is known to give

kBTc =
eγ

π
2�ωD exp

(
− 2
V0ρ(εF)

)
. (34.2.105)

We thus find, just as for density waves, that the same temperature is obtained
irrespective of whether the instability of the disordered phase is studied on ap-
proaching the transition from the high-temperature phase or by the vanishing
of the order parameter in the low-temperature phase.

Close to the critical temperature, where the gap and hence also the ar-
gument of the modified Bessel function in (34.2.102) is small, it is no longer
sufficient to take the leading term given in (C.3.59), but we must take into
account the quadratic corrections. A more convenient procedure is to rewrite
the integral form of (34.2.97),

1 = 1
2V0ρ(εF)

�ωD∫

0

dξ√
ξ2 +Δ2(T )

tanh

√
ξ2 +Δ2(T )

2kBT
, (34.2.106)

in the equivalent form

2
V0ρ(εF)

= 2kBT

∞∑

n=−∞

�ωD∫

0

dξ
(�ωn)2 + ξ2 +Δ2(T )

, (34.2.107)

where the summation goes over the frequencies �ωn = (2n + 1)πkBT . The
equivalence of the two expressions can be readily verified by recalling that
tanh z has simple poles at z = i(n+ 1

2 )π for integer n and hence

tanh z =
∞∑

n=−∞

1
z + i(n+ 1

2 )π
=

1
2

∞∑

n=−∞

[
1

z + i(n+ 1
2 )π

+
1

z − i(n+ 1
2 )π

]

=
∞∑

n=−∞

z

z2 + (n+ 1
2 )2π2

. (34.2.108)
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With the variable z/2kBT we have

tanh
z

2kBT
= 2kBT

∞∑

n=−∞

z

z2 + (�ωn)2
. (34.2.109)

Alternatively we can make use of (K.2.63) on the right-hand side of (34.2.107)
and then take into account that the integrand has poles at �ω = ±

√
ξ2 +Δ2.

Expanding the right-hand side of (34.2.107) for small values of Δ(T ),
the zeroth-order terms can be summed up to yield an integral containing
tanh(ξ/2kBT ) and we get

2
V0ρ(εF)

=

�ωD∫

0

dξ
ξ

tanh
ξ

2kBT
− 2kBTΔ

2(T )
∞∑

n=−∞

�ωD∫

0

dξ
[
(�ωn)2 + ξ2

]2 .

(34.2.110)
The expression on the left-hand side can be written according to (34.1.39) as

2
V0ρ(εF)

= ln
�ωD

2kBTc
+ ln

4eγ

π
. (34.2.111)

The integral in the first term on the right-hand side of (34.2.110) was evaluated
in (33.3.14):

�ωD∫

0

dξ
ξ

tanh
ξ

2kBT
= ln

�ωD

2kBT
+ ln

4eγ

π
. (34.2.112)

The integration over ξ in the second term can be extended to infinity since
�ωD  kBT , and we find

∞∑

n=−∞

�ωD∫

0

dξ
[
(�ωn)2 + ξ2

]2 =
π

4

∞∑

n=−∞

1
|�ωn|3 =

π

2
1

(πkBT )3

∞∑

n=0

1
(2n+ 1)3

.

(34.2.113)
Combining these expressions gives

ln
T

Tc
= −7ζ(3)

8π2

Δ2(T )
(kBT )2

, (34.2.114)

that is

Δ2(T ) = − 8π2

7ζ(3)
(kBT )2 ln

T

Tc
. (34.2.115)

Expansion in the neighborhood of Tc yields

Δ(T ) =

√
8π2

7ζ(3)
kBTc

√
1 − T

Tc
≈ 3.06 kBTc

√
1 − T

Tc
. (34.2.116)

Figure 34.7 compares the theoretically calculated temperature dependence
of the gap with experimental data in the full T < Tc range. The measured
temperature dependence is in good agreement with the predictions of the BCS
theory for type I elemental superconductors.
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Fig. 34.7. Measured values of the reduced superconducting gap for some elemental
superconductors as a function of reduced temperature, compared to the curve cal-
culated in BCS theory [Reprinted with permission from P. Townsend and J. Sutton,
Phys. Rev. 128, 591 (1962). © (1962) by the American Physical Society]

34.2.8 Critical Temperature and the Gap

The quantity Δk appearing in the coherence factors has a direct physical
meaning: it gives the width of the forbidden region in the excitation spectrum.
In conventional superconductors, where the gap is independent of k, it is
very simply related to the critical temperature. Comparison of (34.2.36) with
(34.2.105) gives

kBTc =
eγ

π
Δ0 = 0.567Δ0 , (34.2.117)

which is conventionally written in the form

2Δ0

kBTc
= 3.528 . . . . (34.2.118)

The ratio of the gap and the critical temperature takes the same value that
was found for density waves. It was pointed out there that this ratio is uni-
versal, independent of material properties. The same is true in the BCS the-
ory, which is essentially a mean-field theory. There is, however, an important
difference compared to quasi-one-dimensional density-wave materials. Fluctu-
ation effects, which are neglected in mean-field theory, become nonnegligible
near the critical point, where the correlation length starts to diverge. The
Ginzburg criterion (also known as the Levanyuk–Ginzburg criterion5) gives
an estimate for the width of this range by comparing the root-mean-square
fluctuations of the order parameter to the order parameter itself. Fluctuations
5

A. P. Levanyuk, 1959, V. L. Ginzburg, 1960.
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are so prevalent in quasi-one-dimensional systems that the transition temper-
ature is drastically lowered compared to the mean-field value. In contrast to
that, the BCS theory is a very good approximation for conventional super-
conductors because of the large coherence length, much larger than atomic
dimensions. Taking a sphere with a radius on the order of the distance be-
tween the two electrons in a Cooper pair, there might be about 106 other
pairs in that volume and fluctuations are averaged out. Critical phenomena,
deviations from mean-field behavior, could be observed in an extremely nar-
row, experimentally inaccessible temperature range of order 10−6 K on both
sides of Tc. We therefore expect good agreement between the BCS theory and
experiments in conventional superconductors. In high-temperature supercon-
ductors, where – as seen in Table 26.12 – the coherence length can be as small
as the lattice constant, the applicability of a mean-field theory is questionable.

There are several methods of measuring the gap. The most direct and most
reliable value is obtained from the tunneling experiments discussed at the end
of the chapter, but also ultrasound- or phonon-absorption experiments can
be used. Even though the measured gap values are somewhat uncertain, the
ratios of the experimental values are rather close to the theoretically predicted
one for elemental superconductors. They vary between 3 and 4.5 as seen in
Table 34.1. There are, however, materials where this ratio is appreciably dif-
ferent. This points up the limitations of the BCS theory.

Table 34.1. The ratio 2Δ0/kBTc for some superconductors

Material 2Δ0/kBTc Material 2Δ0/kBTc

Al 3.53 Hg 4.6
Cd 3.44 Pb 4.3
In 3.65 Os 4.8
Nb 3.65 Ir 5.6
Sn 3.59 YBa2Cu3O7−δ 4.0
Ta 3.63 Bi2Sr2Ca2Cu3O10 5.7

34.3 Thermodynamics and Electrodynamics
of Superconductors

The thermodynamics and electrodynamics of superconductors were discussed
in Chapter 26 using the London equations and in the framework of the phe-
nomenological Ginzburg–Landau theory. These properties will now be con-
sidered in the BCS theory. In particular we will calculate the temperature
dependence of the heat capacity, will explain the vanishing of the resistivity,
and will show that the magnetic field is indeed expelled from the bulk of
homogeneous superconductors.
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34.3.1 Thermodynamic Properties

The energy of superconductors at finite temperatures is the sum of the con-
densation energy given in (34.2.90) and the thermal energy of the fermionic
bogolons:

Es = Econd(T ) + 2
∑

k

Ekf0(Ek) (34.3.1)

with

Econd(T ) = − 1
Ω

∑

kk′
Vkk′

〈
c†k↑c

†
−k↓
〉〈
c−k′↓ck′↑

〉
+ 2
∑

k

ξk|vk|2

−
∑

k

(Δkukv
∗
k +Δ∗

ku
∗
kvk) .

(34.3.2)

Expressing the anomalous averages as well as the order parameter in terms of
the distribution function of quasiparticles, we have

〈
c†k↑c

†
−k↓
〉

= ukv
∗
k

[
1 − 2f0(Ek)

]
,

〈
c−k↓ck↑

〉
= u∗kvk

[
1 − 2f0(Ek)

]
,

Δk = − 1
Ω

∑

k′
Vkk′u∗k′vk′

[
1 − 2f0(Ek′)

]
.

(34.3.3)

Then, making use of

Ek = ξk
(|uk|2 − |vk|2

)
+ (Δkukv

∗
k +Δ∗

ku
∗
kvk) , (34.3.4)

the energy can be written as

Es = 2
∑

k

ξk
[|vk|2 +

(
u2

k − |vk|2
)
f0(Ek)

]

+
1
Ω

∑

kk′
Vkk′ukv

∗
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∗
k′vk′

[
1 − 2f0(Ek)

][
1 − 2f0(Ek′)

]
.

(34.3.5)

This form could have been derived directly by taking the expectation value of
the BCS Hamiltonian, in which the electron operators are expressed in terms
of the quasiparticle operators using the Bogoliubov transformation.

Since the BCS Hamiltonian is diagonal in terms of the bogolon operators,
the entropy of superconductors can be written in a form analogous to that of
free fermion systems,

Ss = −2kB
∑

k

{
f0(Ek) ln f0(Ek) +

[
1 − f0(Ek)

]
ln
[
1 − f0(Ek)

]}

=
2
T

∑

k

Ekf0(Ek) + 2kB
∑

k

ln
(
1 + e−βEk

)
,

(34.3.6)
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and the free energy takes the form

Fs = Econd(T ) − 2kBT
∑

k

ln
(
1 + e−βEk

)
. (34.3.7)

Alternatively we can proceed from a formula given in Chapter 30. We have
seen that the change in the free energy caused by the interaction can be given
according to (30.1.49) via

F (λ) = F (λ = 0) +

λ∫

0

dλ′

λ′
〈Hint(λ′)

〉
, (34.3.8)

where λ is the coupling constant of the interaction. Using the Hamiltonian of
the BCS theory for s-wave superconductors, we have

Fs = Fn −
V0∫

0

dV ′
0

V ′
0

〈 1
Ω

∑

kk′
V ′

0c
†
k↑c

†
−k↓c−k′↓ck′↑

〉
. (34.3.9)

The mean value of the product of the four operators can be decoupled, in the
spirit of mean-field theory, into the product of the expectation values of two
operators. The relevant two-operator terms are related to the order parameter
Δ, hence

Fs = Fn −Ω

V0∫

0

dV ′
0

V ′
0
2 |Δ(V ′

0)|2 = Fn +Ω

V0∫

0

d(1/V ′
0)|Δ(V ′

0)|2 , (34.3.10)

where we denoted explicitly that the order parameter belonging to the
potential V ′

0 has to be used. Changing to the variable Δ′ ≡ Δ(V ′
0) from V ′

0

we get

Fs = Fn +Ω

Δ∫

0

dΔ′ d(1/V ′
0)

dΔ′ |Δ′|2 . (34.3.11)

The relationship between 1/V0 and Δ given in (34.2.97) can be rewritten as

1
V0

=
1
Ω

∑

k′

1

2
√
ξ2k′ + |Δ|2

tanh

√
ξ2k′ + |Δ|2
2kBT

(34.3.12)

=
1
Ω

∑

k′

1

2
√
ξ2k′ + |Δ|2

− 1
Ω

∑

k′

1√
ξ2k′ + |Δ|2

f0

(√
ξ2k′ + |Δ|2

)
.

Replacing the summation by integration, the integrals can be expressed in
terms of the modified Bessel function K0. At low temperatures, where the
asymptotic form of K0 can be used, we find
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Fs − Fn

Ω
= 1

6π
2ρ(εF)(kBT )2 (34.3.13)

− 1
4ρ(εF)

[
Δ2

0 +
√

8πΔ3
0kBT

(
1 +

15
8
kBT

Δ0

)
e−Δ0/kBT

]
.

The first term is the negative of the leading thermal correction to the free
energy of normal metals. It gives the well-known linear specific heat. The term
proportional toΔ2

0 is the lowering of the free energy due to the condensation of
electrons into pairs. The thermal corrections are exponentially small owing to
the gap in the excitation spectrum. The low-temperature form of the entropy
and of the heat capacity are

Ss

Ω
= ρ(εF)Δ0

√
2π
(
Δ0

kBT

)1/2

e−Δ0/kBT ,

Cs

Ω
= ρ(εF)Δ0kB

√
2π
(
Δ0

kBT

)3/2

e−Δ0/kBT .

(34.3.14)

Near Tc, where the gap is small compared to the thermal energy, we start
from the relationship

1
V0

= kBTρ(εF)
∞∑

n=−∞

�ωD∫

0

dξ
(�ωn)2 + ξ2 +Δ2(T )

, (34.3.15)

which follows from (34.2.107), and expand the right-hand side for small values
of the gap. We find
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dξ
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]2 . (34.3.16)

Since �ωD  kBT , the integration may be extended to infinity and we get
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(34.3.17)

This gives

Ss − Sn

Ω
= − 4π2

7ζ(3)
ρ(εF)k2

BTc

(
1 − T

Tc

)
(34.3.18)
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for the entropy and
Cs − Cn

Ω
=

4π2

7ζ(3)
ρ(εF)k2

BT (34.3.19)

for the heat capacity. As was displayed in Fig. 26.13, the entropy of the super-
conducting state is lower than that of the normal state owing to the ordering
of the electrons into pairs. The heat capacity is, however, larger in the super-
conducting state near Tc. Right at the transition

Cs(Tc) − Cn(Tc)
Ω

=
4π2

7ζ(3)
ρ(εF)k2

BTc . (34.3.20)

Using the expression derived for the heat capacity of normal metals in the
Sommerfeld model, the relative jump of the heat capacity is

Cs(Tc) − Cn(Tc)
Cn(Tc)

=
12

7ζ(3)
= 1.426 . (34.3.21)

This result was already given in (26.1.6). We pointed out there that the
experimental results presented in Table 26.2 are often in good agreement with
this theoretical prediction of the BCS theory.

Knowing the lowering of the free energy of the superconducting state with
respect to the normal state we can calculate the temperature dependence of
the thermodynamic critical magnetic field, which is defined as the field where
this condensation energy is compensated by the energy of the magnetic field.
At low temperatures, taking the leading terms from (34.3.13), we have

Fs − Fn

Ω
= − 1

4ρ(εF)Δ2
0 + 1

6π
2ρ(εF)(kBT )2 . (34.3.22)

This gives
H2

c (T ) = H2
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]
, (34.3.23)

from which
Hc(T ) ≈ Hc(0)

[
1 − 1.07(T/Tc)2

]
, (34.3.24)

where Hc(0) =
[
1
2ρ(εF)Δ2

0/μ0

]1/2. On the other hand, near the critical point,
where the change in the free energy is given by (34.3.17), we find

Hc(T ) = Hc(0)eγ

(
8

7ζ(3)

)1/2(
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)

= 1.74Hc(0)
(

1 − T

Tc

)
.

(34.3.25)

Note that the experimental data can be well fit in almost the full temperature
range T < Tc by a parabolic temperature dependence.
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34.3.2 Infinite Conductivity

The Cooper pairs of the BCS state are formed by electrons with wave vectors
k and −k. Their total momentum is zero. Pairs with finite momentum �q are
obtained if electrons with k + q/2 and −k + q/2 are bound together. If q is
the same for all pairs, this is equivalent to considering the original BCS state
in a moving frame that is boosted with velocity −�q/2me. Since the centers
of mass of the pairs drift with velocity �q/2me, a current flows in the sample
with current density

j = −ene
�q

2me
. (34.3.26)

The generation of the current is accompanied by an increase of the energy by
the amount

ΔE = Ne
�

2q2

8me
. (34.3.27)

We demonstrate that impurities or other defects, which contribute essentially
to the destruction of current in normal metals, cannot efficiently break up the
Cooper pairs.

The most important contribution to the resistivity of normal metals comes
from backward scattering, when an electron is scattered to the opposite side
of the Fermi sphere. The current decays even if the scattering is elastic. The
interaction with defects can lead to a decay of the current in superconductors
if Cooper pairs are broken up. Consider a pair (k + q/2↑,−k + q/2↓). If this
pair is broken and the electron with wave vector k + q/2 propagating in the
direction of the current is scattered elastically into the state with wave vector
−k + q/2, the conservation of energy can be met provided that

�
2(k + q/2)2

2me
≥ �

2(−k + q/2)2

2me
+ 2Δ0 , (34.3.28)

since the minimum energy needed to break up a pair is 2Δ0. This leads to the
condition

q
�

2kF

me
≥ 2Δ0 . (34.3.29)

It can be satisfied only if q exceed a certain critical value, which gives the
estimate

jc = −eneΔ0

�kF
(34.3.30)

for the critical current density. Taking a value 1meV for the gap at T = 0,
our estimate for the critical current density is 107 A/cm2. The experimentally
observed values are often a few orders of magnitude smaller than that, since
we did not take into account that no current can flow inside a homogeneous
superconductor from where the magnetic field is expelled. The critical current
has to flow on the surface, within a distance on the order of the penetration
depth.
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Our considerations are valid for elastic potential scattering by nonmag-
netic impurities. Breaking up of Cooper pairs occurs more easily when para-
magnetic impurities are present, since the spin of the electron can be flipped
by such impurities. The gap decreases fast with the concentration of mag-
netic impurities and superconductivity can be destroyed completely when the
concentration exceeds a few percent. A particularly interesting feature of su-
perconductors doped with paramagnetic impurities is that the vanishing of
the gap does not coincide with the destruction of superconductivity. There is
a narrow concentration range where the superconducting order parameter is
finite, Cooper pairs are present, the electrical properties are those of super-
conductors, but there is no gap in the excitation spectrum of quasiparticles.
This phenomenon is known as gapless superconductivity.

34.3.3 The Meissner–Ochsenfeld Effect

Consider now a superconductor in an external magnetic field. Since the kinetic
energy contains the kinetic momentum, the Hamiltonian of the interaction
with the field can be written as

H′ =
1

2me
(p + eA)2 − 1

2me
p2 ≈ e

2me
(p · A + A · p) , (34.3.31)

if the effect of the field is treated up to first order in the vector potential. In
second quantization

H′ =
e�

2meΩ

∑

kk′σ

∫
dr ei(k′−k)·rA · (k + k′)c†kσck′σ
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2meΩ
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A(−q) · (2k + q)c†kσck+qσ ,

(34.3.32)

where A(−q) is the Fourier transform of the vector potential.
When the quantum mechanical current operator

ĵ =
ie�
2me

(ψ∗∇ψ − ψ∇ψ∗) − e2

me
Aψ∗ψ (34.3.33)

is written in second quantization in terms of the creation and annihilation
operators,
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]
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(34.3.34)

As usual, the current is divided into two parts: j = jp + jd. The diamagnetic
current, the expectation value of the second term, contains the vector potential
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explicitly; hence,
〈
c†kσck+qσ

〉
is calculated in the absence of magnetic field.

Only the q = 0 component is nonvanishing and we have

jd = 〈ĵd〉 = − e2

meΩ
A
∑

kσ

〈
c†kσckσ

〉
= −e

2ne

me
A . (34.3.35)

This contribution remains unchanged at the transition from the normal to the
superconducting state; it has to be compensated by the paramagnetic current
in the superconducting state.

To calculate the paramagnetic contribution we have to determine the ex-
pectation value of

ĵp(q) = − e�

2meΩ

∑

kσ

(2k + q)c†kσck+qσ (34.3.36)

in the presence of the magnetic field to first order in the vector potential.
Comparison with (34.3.32) shows that the same expression appears in the
interaction with the external field,

H′ = −ĵp(q)A(−q) . (34.3.37)

Hence, according to the linear response theory, the kernel K(q) that relates
the Fourier components of the current to the vector potential in

j(q) = −K(q)A(q) (34.3.38)

is the retarded current–current response function. Its full q dependence is
needed to get the nonlocal relationship in real space in type I superconduc-
tors. Tedious, partly numerical calculations give in fact a spatial dependence,
which is rather close to the form proposed by Pippard [see (26.3.50)], with
an explicit expression

ξ0 =
�vF
πΔ0

(34.3.39)

for the coherence length.
The full form of K(q) is not needed if we are interested in the Meissner–

Ochsenfeld effect, in the expulsion of the magnetic induction from the bulk
of a superconductor. It is sufficient to show that K(q) takes a finite positive
value in the long-wavelength limit, when q → 0. In this limit we get

j(q) = −ns(T )e2

me
A(q) , (34.3.40)

which resembles the second London equation with ns(T ), the density of
superconducting electrons, given by

ns(T ) = ne − �
2

3π2me

∞∫

0

k4

[
−∂f0(Ek)

∂Ek

]
dk . (34.3.41)
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Evaluating it with the excitation energies of the BCS theory we find

ns(T )
ne

=
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⎪⎪⎪⎨
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1 −
(

2πΔ0
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)1/2

e−Δ0/kBT T → 0 ,

2
(

1 − T

Tc

)
T → Tc .

(34.3.42)

In type II superconductors, where the kernel K(q) is independent of q and the
second London equation expresses a local relationship between the current and
the vector potential, the temperature-dependent prefactor in (34.3.40) gives
a temperature-dependent penetration depth:

(
λ(T )
λL

)2

=
ne

ns(T )
. (34.3.43)

It diverges at the critical temperature Tc, where the density of superconduct-
ing electrons vanishes.

34.4 Inhomogeneous Superconductors and Retardation
Effects

So far we have considered the uniform superconducting state. This is certainly
not true in the Shubnikov phase of type II superconductors. Spatial nonuni-
formity may appear in type I superconductors as well, when the sample is
doped with impurities or when the boundary effects of a finite sample cannot
be neglected. The mean-field theory is in principle applicable also to the case
when the order parameter is position dependent. Here we only write down the
equations that the order parameter has to satisfy and show, using the Green
functions of many-body theory, how the phenomenological Ginzburg–Landau
equations discussed in Chapter 26 can be derived from the microscopic theory.

Another important element of the BCS theory is the assumption that the
effective interaction mediated by phonons between electrons is instantaneous;
there is no time delay between the emission and the absorption of the phonon.
This is a reasonable approximation when the electron–phonon interaction is
weak. Retardation effects become important for stronger couplings, and the
frequency dependence of the effective interaction in Fourier representation
cannot be neglected. The propagation of phonons and electrons can be treated
simultaneously using Green functions and this allows us to discuss the effect
of retardation on the superconducting state.

34.4.1 Bogoliubov Equations

Nonuniform superconductors are conveniently studied in real-space represen-
tation by writing the Hamiltonian in terms of the field operators. Assuming a
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spin-independent, local, attractive two-particle potential −V0δ(r−r′) between
electrons, the interaction Hamiltonian takes the form

Hint = − 1
2

∑

σσ′

∫
ψ̂†

σ(r)ψ̂†
σ′(r)V0ψ̂σ′(r)ψ̂σ(r) dr . (34.4.1)

It will be treated in the mean-field approximation assuming a nonvanishing,
position-dependent value for the anomalous average,

Δ(r) = −V0

〈
ψ̂↓(r)ψ̂↑(r)

〉
= V0

〈
ψ̂↑(r)ψ̂↓(r)

〉
,

Δ∗(r) = −V0

〈
ψ̂†
↑(r)ψ̂†

↓(r)
〉

= V0

〈
ψ̂†
↓(r)ψ̂†

↑(r)
〉
,

(34.4.2)

in addition to the Hartree term. Dropping the c-number terms the total Hamil-
tonian becomes

H = H0 +
∫ [

Δ(r)ψ̂†
↑(r)ψ̂†

↓(r) +Δ∗(r)ψ̂↓(r)ψ̂↑(r)
]

dr , (34.4.3)

where the unperturbed part,

H0 =
∑

σ

∫
dr ψ̂†

σ(r)

[
1

2me

(
�

i
∇ + eA

)2

+ U(r) − μ

]
ψ̂σ(r) , (34.4.4)

contains the kinetic energy and a local one-particle potential

U(r) = U0(r) − V0

〈
ψ̂†
↑(r)ψ̂↑(r)

〉
= U0(r) − V0

〈
ψ̂†
↓(r)ψ̂↓(r)

〉
, (34.4.5)

which is the sum of the external potential U0(r) and the Hartree term. The
nondiagonal part contains the pairing potential Δ(r).

It is convenient to introduce the row and column vectors,

Ψ̂ †(r) =
(
ψ̂†
↑(r) ψ̂↓(r)

)
, Ψ̂(r) =

(
ψ̂↑(r)

ψ̂†
↓(r)

)
, (34.4.6)

and the Hamiltonian matrix

Ĥ(r) =

(He(r) Δ(r)

Δ∗(r) −He(r)

)
(34.4.7)

with

He(r) =
1

2me

(
�

i
∇ + eA

)2

+ U(r) − μ . (34.4.8)

The Hamiltonian then takes the form

H =
∫

dr Ψ̂ †(r)Ĥ(r)Ψ̂(r) . (34.4.9)
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We attempt to diagonalize it by a generalized Bogoliubov transformation by
expanding the field operators in terms of a set of fermionic operators αnσ and
α†

nσ in the form

ψ̂↑(r) =
∑

n

[
un(r)αn↑ − v∗n(r)α†

n↓
]
,

ψ̂↓(r) =
∑

n

[
un(r)αn↓ + v∗n(r)α†

n↑
]
.

(34.4.10)

The corresponding Hermitian conjugate operators are

ψ̂†
↑(r) =

∑

n

[
u∗n(r)α†

n↑ − vn(r)αn↓
]
,

ψ̂†
↓(r) =

∑

n

[
u∗n(r)α†

n↓ + vn(r)αn↑
]
.

(34.4.11)

Written in matrix form,

Ψ̂ †(r) =
∑

n

α̂†
nU

†
n , Ψ̂(r) =

∑

n

Unα̂n (34.4.12)

with

Un =

(
un(r) −v∗n(r)

vn(r) u∗n(r)

)
, (34.4.13)

where the row and column vectors formed from the new operators are defined
via

α̂†
n =

(
α†

n↑ αn↓
)
, α̂n =

(
αn↑

α†
n↓

)
. (34.4.14)

The anticommutation relations of the field operators are satisfied if
∑

n

[
u∗n(r)un(r′) + vn(r)v∗n(r′)

]
= δ(r − r′) ,

∑

n

[
un(r)v∗n(r′) − v∗n(r)un(r′)

]
= 0 .

(34.4.15)

The inverse transformations are then given by

αn↑ =
∫

dr
[
un(r)ψ̂↑(r) − vn(r)ψ̂†

↓(r)
]
,

α†
n↓ =

∫
dr
[
u∗n(r)ψ̂↓(r) + v∗n(r)ψ̂↑(r)

]
,

(34.4.16)

and their fermionic anticommutation relations are satisfied if
∫ [

u∗m(r)un(r) + v∗m(r)vn(r)
]
dr = δmn ,

∫ [
vm(r)un(r) − um(r)vn(r)

]
dr = 0 .

(34.4.17)
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The complex functions un(r) and vn(r) are determined from the require-
ment that the full Hamiltonian assume the diagonal form

H = E0s +
∑

nσ

εnα
†
nσαnσ , (34.4.18)

which is equivalent to the commutators
[H, αnσ

]
− = −εnαnσ,

[H, α†
nσ

]
− = εnα

†
nσ . (34.4.19)

The commutators of the Hamiltonian with the field operators are easily
calculated to yield

[H, ψ̂↑(r)
]
− = −Heψ̂↑(r) −Δ(r)ψ̂†

↓(r) ,
[H, ψ̂↓(r)

]
− = −Heψ̂↓(r) +Δ(r)ψ̂†

↑(r) .
(34.4.20)

Substituting the expansion (34.4.10) into this equation the diagonalization
conditions are satisfied if

Heun(r) +Δ(r)vn(r) = εnun(r) ,

Δ∗(r)un(r) −Hevn(r) = εnvn(r) .
(34.4.21)

These relations are equivalent to the statement that the column vector func-
tion (

un(r)

vn(r)

)
(34.4.22)

is an eigenfunction of (34.4.7). This coupled set of differential equations for
the coefficients un(r) and vn(r) and for the eigenvalues εn are the Bogoliubov
equations also known as the Bogoliubov–de Gennes (BdG) equations.6 The
one-particle potential and the pairing potential have to be determined self-
consistently from the equations

U(r) = U0(r) − V0

∑

n

{
|un(r)|2f0(εn) + |vn(r)|2[1 − f0(εn)

]}
,

Δ(r) = V0

∑

n

un(r)v∗n(r)
[
1 − 2f0(εn)

]
.

(34.4.23)

The BdG equations are readily generalized to spin-dependent potentials,
when the term containing the one-particle potential U0(r) is replaced in the
Hamiltonian by

6
N. N. Bogoliubov, 1958, P. G. de Gennes, 1966. Pierre-Gilles de Gennes

(1932–2007) was awarded the Nobel Prize in 1991 “for discovering that methods
developed for studying order phenomena in simple systems can be generalized to
more complex forms of matter, in particular to liquid crystals and polymers”.
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∑

σσ′

∫
dr ψ̂†

σ(r)U (0)
σσ′(r)ψ̂σ′(r) . (34.4.24)

The off-diagonal terms correspond to spin-flip processes. The properties of
inhomogeneous non-s-wave superconductors can also be treated using the Bo-
goliubov equations if the effective interaction between electrons is chosen in
the most general form

Hint = − 1
2

∑

σ1σ2σ3σ4

∫∫
ψ̂†

σ1
(r)ψ̂†

σ2
(r′)Vσ1σ2σ3σ4(r, r

′)ψ̂σ3
(r′)ψ̂σ4

(r) dr dr′ .

(34.4.25)
As mentioned above, the Bogoliubov equations allow us to study situa-

tions where the order parameter is position dependent, e.g., to determine the
detailed structure of the vortex in a type II superconductor or to consider ef-
fects taking place at a normal–superconductor interface, such as the Andreev
reflection.7 Near the critical point, where the order parameter is small, in-
homogeneous superconductors are treated mostly in the framework of the
phenomenological Ginzburg–Landau theory exposed in Chapter 26.

34.4.2 Derivation of the Ginzburg–Landau Equations

An equivalent set of equations can be derived for nonuniform superconductors
by using the Green functions. Starting again with the Hamiltonian given in
(34.4.3) and (34.4.4) we write the equation of motion for the Green function
and treat it in the mean-field approximation. This will lead us to the Gorkov
equations also known as Gorkov–Nambu equations8 from which the Ginzburg–
Landau equations can be derived.

The causal Green function is defined in real space and time in the usual
way via

Gσσ′(r, t; r′, t′) = − i
�

〈
T
{
ψ̂σ(r, t)ψ̂†

σ′(r′, t′)
}〉

, (34.4.26)

where 〈· · · 〉 denotes the thermodynamic average. Since the interaction Hamil-
tonian is bilinear in the field operators, an anomalous Green function

Fσσ′(r, t; r′, t′) = − i
�

〈
T
{
ψ̂σ(r, t)ψ̂σ′(r′, t′)

}〉
(34.4.27)

7
A. F. Andreev, 1964. An electron approaching the normal–superconductor in-
terface from the normal side with wave vector k is unable to penetrate deep
into the superconductor if its energy measured from the chemical potential is
smaller than the gap in the superconductor. It can be specularly reflected from
the interface. Alternatively, the incident electron together with another electron
of momentum −k can penetrate into the superconductor to form a Cooper pair
there. The electron with −k missing from the normal side can be interpreted as
a reflected hole with wave vector k. It retraces the path of the incident electron.

8
L. P. Gorkov, 1959, Y. Nambu, 1960.
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and its complex conjugate,

F ∗
σσ′(r, t; r′, t′) = − i

�

〈
T
{
ψ̂†

σ(r, t)ψ̂†
σ′(r′, t′)

}〉
, (34.4.28)

appear in the equation of motion. When the equation of motion is written for
the anomalous Green function, no new functions appear, and a closed set of
equations is obtained.

The Green function matrix Gσσ′ can be given in terms of a single function
in the unpolarized state,

Gσσ′(r, t; r′, t′) = δσσ′G(r, t; r′, t′) . (34.4.29)

For singlet superconductors, where only the off-diagonal terms of the anoma-
lous Green function are nonzero,

F↑↓(r, t; r′, t′) = −F↓↑(r, t; r′, t′) = F (r, t; r′, t′) (34.4.30)

and
F ∗
↑↓(r, t; r

′, t′) = −F ∗
↓↑(r, t; r

′, t′) = F ∗(r, t; r′, t′) . (34.4.31)

The order parameter defined earlier by

Δ(r) = −V0〈ψ̂↓(r)ψ̂↑(r)〉 , Δ∗(r) = −V0〈ψ̂†
↑(r)ψ̂†

↓(r)〉 (34.4.32)

is simply related to the anomalous Green function

Δ(r) = i�V0F (r, t+ δ; r, t) , Δ∗(r) = −i�V0F
∗(r, t+ δ; r, t) (34.4.33)

with a positive infinitesimal δ to ensure the correct order of the operators.
The equation of motion for the Green functions can readily be obtained

from the time derivative of the field operators. Using (34.4.20) we find

− �

i
∂

∂t
ψ̂↑(r, t) = Heψ̂↑(r, t) +Δ(r)ψ̂†

↓(r, t) (34.4.34)

and
− �

i
∂

∂t
ψ̂†
↓(r, t) = −H∗

e ψ̂
†
↓(r, t) +Δ∗(r)ψ̂↑(r, t) . (34.4.35)

These equations lead to
(
−�

i
∂

∂t
−He

)
G(r, t; r′, t′) +Δ(r)F ∗(r, t; r′, t′)

= δ(r − r′)δ(t− t′)

(34.4.36)

and

Δ∗(r)G(r, t; r′, t′) +
(
−�

i
∂

∂t
+ H∗

e

)
F ∗(r, t; r′, t′) = 0 . (34.4.37)
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These are the Gorkov equations. They form a closed set of equations if
(34.4.33) is also taken into account.

The results of the BCS theory are recovered for a homogeneous, stationary
system. The derivation of the gap equation (34.2.96) is shown in Appendix K.
Here we only discuss the relationship to the Ginzburg–Landau theory near
Tc, where the order parameter Δ(r) is small and the Gorkov equations can
be expanded in powers of Δ keeping only the leading terms. The calculations
outlined in the appendix lead to the result that the quantity

Ψ(r) =
[

7ζ(3)ne

8(πkBTc)2

]1/2

Δ(r) (34.4.38)

satisfies the equation

1
4me

(
�

i
∇ + 2eA(r)

)2

Ψ(r) (34.4.39)

+
6(πkBTc)2

7ζ(3)εF

[
−
(

1 − T

Tc

)
Ψ(r) +

1
ne
Ψ(r)|Ψ(r)|2

]
= 0 ,

which can be identified with the first Ginzburg–Landau equation if the pa-
rameters e∗ and m∗ are replaced with e∗ = 2e, m∗ = 2me. The microscopic
expressions for the coefficients α and β of the Ginzburg–Landau expansion
are given by

α = −6(πkBTc)2

7ζ(3)εF

(
1 − T

Tc

)
, β =

6(πkBTc)2

7ζ(3)εFne
. (34.4.40)

The second Ginzburg–Landau equation can be derived by writing the quantum
mechanical expression for the current operator in terms of the field operators

ĵ(r) = − lim
r′→r

e�

2mei

∑

σ

[
ψ̂†

σ(r′)∇rψ̂σ(r) − ∇r′ ψ̂†
σ(r′)ψ̂σ(r)

]

− e2

me
A(r)

∑

σ

ψ̂†
σ(r)ψ̂σ(r) .

(34.4.41)

Its expectation value can be expressed in terms of the one-particle Green
function as

j(r) = 〈ĵ(r)〉 = lim
r′→r

e�2

me
[∇r − ∇r′ ]G(r, t; r′, t+ δ)

− 2e2�

mei
A(r)G(r, t; r, t+ δ) .

(34.4.42)

Inserting the solution of the Gorkov equations for the Green function keeping
only the leading terms in powers of Δ(r) and expressing Δ(r) by Ψ(r) accord-
ing to (34.4.38), the current can be written after a lengthy but straightforward
calculation as
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j(r) = − 2e
4me

Ψ∗(r)
(

�

i
∇ + 2eA(r)

)
Ψ(r) + c.c. , (34.4.43)

which is precisely the second Ginzburg–Landau equation.
We have seen in the phenomenological description of superconductivity

that the two characteristic lengths, the penetration depth and the coherence
length, can be expressed in terms of the α and β parameters of the Ginzburg–
Landau expansion. Using the result given above we have

λ2(T ) = − m∗β
μ0e∗2α

=
me

2μ0e2ne

(
1 − T

Tc

)−1

,

ξ2(T ) = − �
2

2m∗α
=

7ζ(3)�2εF
24me(πkBTc)2

(
1 − T

Tc

)−1

.

(34.4.44)

Expressing them in terms of the London penetration depth λL(0) and the
coherence length ξ0 = �vF/πΔ0 of the BCS theory we find

λ(T ) =
1√
2
λL(0)

(
1 − T

Tc

)−1/2

,

ξ(T ) = ξ0πe−γ

[
7ζ(3)
48

]1/2(
1 − T

Tc

)−1/2

.

(34.4.45)

34.4.3 Eliashberg Equations

The use of Green functions allows us to consider the effects which are due
to the retardation of the effective interaction mediated by phonons. For that,
following G. M. Eliashberg (1960), we have to treat the electron and the
phonon subsystems on equal footing. In addition to the normal Green function
describing the propagation of electrons and the anomalous Green function
related to the pairs we introduce the phonon propagator and study the coupled
set of their equations of motion. Since we only consider homogeneous systems
here, the Green functions will be given in momentum space.

The causal Green function of electrons is defined by the usual expression

Gσ(k, t− t′) = − i
�

〈
T
{
ckσ(t)c†kσ(t′)

}〉
. (34.4.46)

For the sake of simplicity a single phonon branch is taken and the polarization
index λ will be dropped. We will use the propagator of the Fourier transform
of the phonon field, φq(t) = aq(t) + a†−q(t), which is defined via

D(q, t− t′) = − i
�

〈
T
{
φq(t)φ−q(t′)

}〉
. (34.4.47)

Using (23.2.14) for the Hamiltonian of the electron–phonon interaction,
the equation of motion of the electron Green function is
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[
�

i
d
dt′

− εkσ

]
Gσ(k, t− t′) = δ(t− t′) (34.4.48)

− i
�

∑

q

Dq

〈
T
{
ckσ(t)c†k+qσ(t′)φq(t′)

}〉
.

A new, higher order Green function,

G2(k, q, t, t1, t′) = − i
�

〈
T
{
ckσ(t)c†k+qσ(t1)φq(t′)

}〉
, (34.4.49)

appeared on the right-hand side, containing both electron and phonon oper-
ators. The equation of motion for this new Green function gives

�

i
d
dt′
G2(k, q, t, t1, t′) = −�ωq

(
− i

�

)〈
T
{
ckσ(t)c†k+qσ(t1)πq(t′)

}〉
,

(34.4.50)
where πq(t) = aq(t) − a†−q(t). Taking the time derivative once more we find

[(
�

i
d
dt′

)2

− (�ωq)2
]
G2(k, q, t, t1, t′) = 2�ωqD−q (34.4.51)

×
(
− i

�

)∑

k′σ′

〈
T
{
ckσ(t)c†k+qσ(t1)c

†
k′−qσ′(t′)ck′σ′(t′)

}〉
.

The Green function of free phonons satisfies the equation
[(

�

i
d
dt′

)2

− (�ωq)2
]
D0(q, t− t′) = 2�ωqδ(t− t′) . (34.4.52)

Combining this equation with the previous one for G2 it is readily seen that

G2(k, q, t, t1, t′) =
∑

k′σ′

∫
dt2D−qD0(q, t2 − t′) (34.4.53)

×
(
− i

�

)〈
T
{
ckσ(t)c†k+qσ(t1)c

†
k′−qσ′(t2)ck′σ′(t2)

}〉
.

Substitution of this expression in the equation for the electron propagator
gives
[

�

i
d
dt′

− εkσ

]
Gσ(k, t− t′) = δ(t− t′) +

∑

q

|Dq|2
∑

k′σ′

∫
dt2 D0(q, t2 − t′)

×
(
− i

�

)〈
T
{
ckσ(t)c†k+qσ(t′)c†k′−qσ′(t2)ck′σ′(t2)

}〉
. (34.4.54)

At this point we can decouple the higher order Green function. As has been
done repeatedly, the expectation value of the product of four operators is
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approximated by the product of the expectation values of two-operator terms.
A natural choice for the decoupling in a normal system would be

〈
T
{
ckσ(t)c†k+qσ(t′)c†k′−qσ′(t2)ck′σ′(t2)

}〉 ≈ δk,k′−qδσσ′ (34.4.55)

×
〈
T
{
ckσ(t)c†kσ(t2)

}〉〈
T
{
ck+qσ(t2)c

†
k+qσ(t′)

}〉
.

The resulting equation for the single-particle Green function can be integrated
out formally by making use of the equation for the Green function of free
particles. We get

Gσ(k, t− t′) = G0
σ(k, t− t′) +

∫
dt1G0

σ(k, t1 − t′)
∑

q

|Dq|2 (34.4.56)

×
∫

dt2 D0(q, t2 − t1)
(
−�

i

)
Gσ(k + q, t2 − t1)Gσ(k, t− t2) .

This equation is visualized diagrammatically by the first three diagrams in
Fig. 34.8(a). Thin lines denote the free propagation of electrons while heavy
lines stand for the full propagator, in which all self-energy corrections are taken
into account. As the diagrams show, an electron propagates either freely or
it can emit and then reabsorb a phonon. As for the emitted phonon, it is
absorbed without participating in other scattering processes, since self-energy
corrections in the phonon propagation and vertex correction to the electron–
phonon interaction can be neglected in three-dimensional systems according
to the Migdal theorem.9

Fig. 34.8. (a) Diagrammatic equation for the one-particle propagator showing the
processes in which a phonon is emitted and then absorbed. (b) Diagrammatic equa-
tion for the anomalous Green function

We should, however, take into account in the decoupling procedure that the
anomalous average

〈
c−k↓ck↑

〉
takes a nonvanishing value in a superconductor.

An alternative decoupling of the four-operator term in (34.4.55) yields

− δkk′δσ,−σ′
〈
T
{
ckσ(t)c−k,−σ(t2)

}〉〈
T
{
c†k+qσ(t′)c†−k−q,−σ(t2)

}〉
, (34.4.57)

that is the anomalous Green function
9

A. B. Migdal, 1958.
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F (k, t) = − i
�

〈
T
{
ck↑(t)c−k↓(0)

}〉
(34.4.58)

will also appear in the equation for the one-particle propagator. The term
corresponding to this decoupling is represented by the last diagram in the
diagrammatic equation in Fig. 34.8(a) for the one-particle Green function,
where the lines with two incoming or two outgoing arrows denote the anoma-
lous Green functions. The fact that the terms corresponding to both the nor-
mal and the anomalous decoupling schemes have to be taken into account
simultaneously can be shown in a more rigorous treatment of this many-body
problem, using the Wick theorem for the causal Green functions. To get a
closed set of equations we write the equation of motion for the anomalous
Green function as well, as was done in the derivation of the Gorkov equations.
These are the Eliashberg equations. They are depicted in diagrammatic form
in Fig. 34.8.

The excitation spectrum is rather similar to that obtained in the BCS
theory. The excited states are separated from the ground state by a finite
gap. The thermodynamic and electrodynamic properties are not essentially
modified when retardation effects are included. However, the temperature de-
pendence of the gap and the value of the critical temperature have to be deter-
mined from more complicated equations. Numerical solution of the Eliashberg
equations taking a screened Coulomb interaction in addition to the electron–
phonon coupling leads to the McMillan formula10 for the critical temperature,

kBTc =
�ωD

1.45
exp
[
− 1.04(1 + λ)
λ− μ∗(1 + 0.62λ)

]
, (34.4.59)

where the dimensionless parameter λ characterizes the electron–phonon inter-
action,

λ = 2

ωD∫

0

α2F (ω)
dω
ω
, (34.4.60)

and the function α2F (ω) can be calculated from

α2F (ω) = ρ(εF)

2kF∫

0

q dq
2�k2

F
|Dq|2δ(ω − ωq) (34.4.61)

if the phonon spectrum and the coupling constant of the electron–phonon
interaction are known. The other dimensionless parameter, μ∗, is related to
the strength of the electron–electron interaction

μ∗ =
ρ(εF)U

1 + ρ(εF)U ln(εF/�ωD)
. (34.4.62)

10
W. L. McMillan, 1968.
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Retardation of the effective interaction is not relevant in the weak-coupling
limit where the results of the BCS theory are recovered. Deviations from
the BCS theory occur for strong electron–phonon couplings. One remarkable
result of this theory is that the critical temperature cannot increase arbitrarily
up to the Debye temperature but saturates in the strong-coupling limit.

34.5 Unconventional Superconductors

A basic assumption of BCS theory is that superconductivity is due to singlet
Cooper pairs formed by electrons in a certain energy range about the Fermi
energy. The phonon-mediated attraction between electrons is approximated
by a nonretarded, momentum-independent effective electron–electron inter-
action. A further assumption is that this interaction can be treated at the
mean-field level owing to the large coherence length. This theory provides a
good description of the thermodynamics and electrodynamics of type I ele-
mental superconductors. It has become clear, however, recently that the BCS
theory is not capable of explaining many of the unusual properties of high-Tc
and heavy-fermion superconductors. These questions will be discussed in this
section.

34.5.1 Non-s-Wave Superconductors

We assume that the pairs responsible for superconductivity have total mo-
mentum zero, but we allow for a spin-dependent effective electron–electron
interaction and the pairs are not required to be in a spin-singlet state. The
most general form of the reduced Hamiltonian is

H =
∑

kσ

εkc
†
kσckσ +

1
2Ω

∑

kk′
σ1σ2σ3σ4

Vσ1σ2σ3σ4(k,k
′)c†kσ1

c†−kσ2
c−k′σ3

ck′σ4
,

(34.5.1)
where the two-particle potential satisfies the usual symmetry requirements:

Vσ1σ2σ3σ4(k,k
′) = −Vσ2σ1σ3σ4(−k,k′)

= −Vσ1σ2σ4σ3(k,−k′)
= Vσ4σ3σ2σ1(k

′,k) .
(34.5.2)

The spin dependence and the momentum dependence of the potential can be
separated if the spin–orbit coupling is negligible and we have

Vσ1σ2σ3σ4(k,k
′) = Vkk′Γσ1σ2σ3σ4 . (34.5.3)

In the vicinity of the Fermi surface, where the dependence on the length
of k and k′ can be neglected, only the polar angles matter, Vkk′ can be
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expanded according to (34.1.15) in spherical harmonics. The spin structure of
the potential depends on l. The symmetry requirements given in (34.5.2) can
be satisfied for even l – taking into account the symmetry properties of the
spherical harmonics – if the spin factor is chosen in the form

Γσ1σ2σ3σ4 = 1
2 (iσy)σ1σ2(iσy)†σ3σ4

. (34.5.4)

The Cooper pairs are spin singlets as in the l = 0 s-wave case. The spin state
has to be triplet for odd l, which can be achieved by the spin factor

Γσ1σ2σ3σ4 = 1
2 (iσσy)σ1σ2 · (iσσy)†σ3σ4

. (34.5.5)

Assuming that the anomalous average
〈
c†kσ1

c†−kσ2

〉
takes a nonvanishing

value in these superconductors, the mean-field approximation leads to

H =
∑

kσ

εkc
†
kσckσ +

1
2Ω

∑

kk′
σ1σ2σ3σ4

Vσ1σ2σ3σ4(k,k
′)
〈
c†kσ1

c†−kσ2

〉
c−k′σ3

ck′σ4

+
1

2Ω

∑

kk′
σ1σ2σ3σ4

Vσ1σ2σ3σ4(k,k
′)c†kσ1

c†−kσ2

〈
c−k′σ3

ck′σ4

〉
(34.5.6)

− 1
2Ω

∑

kk′
σ1σ2σ3σ4

Vσ1σ2σ3σ4(k,k
′)
〈
c†kσ1

c†−kσ2

〉〈
c−k′σ3

ck′σ4

〉
.

Introducing the notations

Δkσ1σ2 =
1
Ω

∑

k′σ3σ4

Vσ1σ2σ3σ4(k,k
′)
〈
c−k′σ3

ck′σ4

〉
,

Δ∗
−kσ1σ2

= − 1
Ω

∑

k′σ3σ4

Vσ3σ4σ1σ2(k,k
′)
〈
c†k′σ3

c†−k′σ4

〉 (34.5.7)

and neglecting the constant terms in the Hamiltonian, we have

H =
∑

kσ

εkc
†
kσckσ + 1

2

∑

kσ1σ2

[
Δkσ1σ2c

†
kσ1

c†−kσ2
−Δ∗

−kσ1σ2
c−kσ1

ckσ2

]
.

(34.5.8)
It is convenient to write the kinetic energy in a more symmetric form by
measuring the electron energy from the chemical potential

H = 1
2

∑

kσ

ξk
[
c†kσckσ − c−kσc

†
−kσ

]

+ 1
2

∑

kσ1σ2

[
Δkσ1σ2c

†
kσ1

c†−kσ2
−Δ∗

−kσ1σ2
c−kσ1

ckσ2

]
.

(34.5.9)

This bilinear Hamiltonian can be written in a concise form,
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H =
∑

k

ĉ†kε̂kĉk , (34.5.10)

in terms of the column and row vectors

ĉk =

⎛

⎜⎜⎜⎝

ck↑
ck↓
c†−k↑
c†−k↓

⎞

⎟⎟⎟⎠ , ĉ†k =
(
c†k↑, c

†
k↓, c−k↑, c−k↓

)
, (34.5.11)

where

ε̂k =

⎛

⎜⎜⎜⎜⎜⎝

ξk 0 Δk↑↑ Δk↑↓

0 ξk Δk↓↑ Δk↓↓

−Δ∗
−k↑↑ −Δ∗

−k↑↓ −ξk 0

−Δ∗
−k↓↑ −Δ∗

−k↓↓ 0 −ξk

⎞

⎟⎟⎟⎟⎟⎠
. (34.5.12)

This Hamiltonian can be diagonalized by a generalized Bogoliubov transfor-
mation

ckσ =
∑

σ′

(
ukσσ′αkσ′ + vkσσ′α

†
−kσ′

)
,

c†kσ =
∑

σ′

(
u∗kσσ′α

†
kσ′ + v∗kσσ′α−kσ′

)
.

(34.5.13)

If written in terms of the column vector

α̂k =

⎛

⎜⎜⎜⎝

αk↑
αk↓
α†
−k↑
α†
−k↓

⎞

⎟⎟⎟⎠ (34.5.14)

and its adjoint, the row vector

α̂†
k =

(
α†

k↑, α
†
k↓, α−k↑, α−k↓

)
, (34.5.15)

the Bogoliubov transformation takes the concise form

ĉk = Ukα̂k , (34.5.16)

with

Uk =

⎛

⎜⎜⎜⎜⎜⎝

uk↑↑ uk↑↓ vk↑↑ vk↑↓

uk↓↑ uk↓↓ vk↓↑ vk↓↓

v∗−k↑↑ v∗−k↑↓ u∗−k↑↑ u∗−k↑↓
v∗−k↓↑ v∗−k↓↓ u∗−k↓↑ u∗−k↓↓

⎞

⎟⎟⎟⎟⎟⎠
. (34.5.17)
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It follows from the fermionic anticommutation rules of the α and c operators
that

∑

σ′′
(ukσσ′′u∗kσ′σ′′ + vkσσ′′v∗kσ′σ′′) = δσσ′ ,

∑

σ′′

(
ukσσ′′v−kσ′σ′′ + vkσσ′′u−kσ′σ′′

)
= 0 ,

(34.5.18)

which are equivalent to the condition that the matrix Uk be unitary,

UkU †
k = 1 . (34.5.19)

Inserting this into (34.5.10) we get

H =
∑

k

ĉ†kUkU †
kε̂kUkU †

kĉk =
∑

k

α̂†
kU †

kε̂kUkα̂k . (34.5.20)

The matrix elements of Uk are determined from the diagonalization condition,
that is the matrix

Êk = U †
kε̂kUk (34.5.21)

has to take the form

Ek =

⎛

⎜⎜⎜⎝

Ek↑ 0 0 0
0 Ek↓ 0 0
0 0 −E−k↑ 0
0 0 0 −E−k↓

⎞

⎟⎟⎟⎠ . (34.5.22)

The diagonal Hamiltonian is then

H = E0 +
∑

kσ

[
Ekσα

†
kσαkσ − E−kσα−kσα

†
−kσ

]
. (34.5.23)

It follows from the symmetry properties of the interaction and the fermionic
anticommutation rule that Δkσ1σ2 , which is related to the wavefunction of the
Cooper pairs, has the symmetry property

(
Δk↑↑ Δk↑↓

Δk↓↑ Δk↓↓

)
= −

(
Δ−k↑↑ Δ−k↓↑

Δ−k↑↓ Δ−k↓↓

)
. (34.5.24)

This can be satisfied for spin-singlet pairs if the matrix is chosen as

Δ̂k = Δd0(k)iσy = Δ

(
0 d0(k)

−d0(k) 0

)
, (34.5.25)

where d0(k) is an even function of k. Since it is defined only in the vicinity of
the Fermi surface, it is normalized by the condition
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∫

dΩ
4π

|d0(k)|2 = 1 , (34.5.26)

where dΩ is the elementary solid angle. The excitation energies are

Ekσ =
[
ξ2k + |Δd0(k)|2]1/2

. (34.5.27)

Just as in conventional superconductors, a gap appears in the excitation
spectrum at the Fermi energy. The width of this gap is given by Δd0(k),
which means that the gap depends on the direction of k. The angular depen-
dence of d0(k) can be expanded in Legendre polynomials, where only even l
components appear due to the even parity. In the simplest case, for s-wave
superconductors, the gap is independent of k. When the angular dependence
of the gap is described by the l = 2 Legendre polynomial, we are dealing with
d-wave superconductivity. There are points in k-space on the Fermi surface,
where the gap vanishes. Since the density of states remains finite, although
small, even at low energies, the thermodynamics of d-wave superconductors
is different from that of conventional superconductors. The equations deter-
mining the critical temperature and the temperature dependence of the gap
are similar to those derived earlier.

Before going on to present experimental results on unconventional su-
perconductors we note that the Hamiltonian can be diagonalized for triplet
superconductors as well. The gap function can be given in terms of a vector
function d(k), which is odd in k, in the form

Δ̂k = Δd(k) · σiσy = Δ

(−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
, (34.5.28)

and the excitation energies can be written in the same form as for singlet
superconductors. Such pairs are found in the superfluid phases of the fermionic
3He. There are also experimental indications for triplet superconductivity in
Sr2RuO4 below Tc = 1.5K.

34.5.2 High-Temperature Superconductors

We mentioned in Chapter 26, where the phenomenology of superconductivity
was outlined, that although more and more superconducting materials were
found over the decades following the discovery of superconductivity in 1912,
the highest observed critical temperature increased only slowly, up to about
23K, by the middle of the 1980s. The discovery of high-temperature super-
conductors (HTSC), revealing a sudden jump to much higher Tc in several
classes of materials, was surprising and challenging because such high values
were thought to be excluded by the theory in conventional, phonon-mediated
superconductors. Although the critical temperature could be as high as the
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Debye temperature in the BCS theory for strong enough electron–phonon in-
teraction, more precise calculations based on the Eliashberg equations do not
support this result. Taking into account the retardation effect and also the
screened Coulomb interaction between electrons, McMillan derived the ex-
pression given in (34.4.59). Since the dimensionless coupling constant of the
electron–phonon interaction appears in both the numerator and the denomi-
nator of the exponent, the critical temperature calculated from this formula
saturates in the strong-coupling limit. On these grounds, superconductors
with transition temperatures in excess of 30–40K were thought not to be
possible, a not wholly counterintuitive result because although increasing the
strength of the electron–phonon interaction might at first sight be expected to
increase the binding energy of Cooper pairs, and so the critical temperature,
the stronger coupling to the lattice could result in a deformation where the
electronic system lowers its energy more by adapting to the deformed lattice
than by forming Cooper pairs.

The critical temperature of high-temperature superconductors is much
higher than this upper limit. The high Tc is accompanied by unusual mag-
netic properties. As was shown in Fig. 26.25, the vortex lattice can melt into
a vortex-liquid phase before Hc2 is reached. Further complications arise from
the strong anisotropy of their crystalline structure. As presented in Chap-
ter 26, their structure exhibits a common feature, namely they contain CuO2

planes or pairs of CuO2 planes, which are relatively well separated by the
other components. The conductivity is much higher in the planes than per-
pendicular to the planes, indicating that the electrons in the CuO2 planes
play a dominant role. The cores of the vortices appearing above Hc1 are not
rigid straight lines. Pancake vortices are formed in the planes moving almost
independently owing to the weak interplane coupling.

Another interesting feature of these materials is the almost complete ab-
sence of the isotope effect. It is therefore thought that the mechanism re-
sponsible for superconductivity is not the electron–phonon-mediated coupling
but some other interaction. This seems to be supported by the typical phase
diagram of high-Tc superconductors depicted in Fig. 34.9.

x

T

TN

T *

Tc

SC

AF

Fermi
liquid

Anomalous
metal

Fig. 34.9. Typical phase diagram of high-temperature cuprate superconductors.
The control parameter x is the concentration of a dopant or the pressure
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High-temperature superconductors are typically nonstoichiometric com-
pounds; they contain dopants in a certain concentration range. The ground
state of the undoped or slightly doped samples would be antiferromagnetic.
The Néel temperature decreases with dopant concentration and vanishes be-
fore the superconducting state appears at somewhat higher concentrations.
The critical temperature itself varies nonmonotonically with concentration.
A characteristic feature of these materials is that superconductivity appears
close to a magnetically ordered phase. Another typical feature is the anoma-
lous behavior in the “normal” state, above Tc. The metallic behavior can be
described by the Landau theory of normal Fermi liquids far from the mag-
netically ordered state. Two relatively well-defined regions, although without
sharp boundaries, can be distinguished between the antiferromagnetic and
normal Fermi-liquid phases. In the region marked as “anomalous metal” in
Fig. 34.9, the resistivity increases linearly with temperature, but no quasipar-
ticles are observed and the material behaves like a Luttinger liquid. Closer
to the magnetic phase, below a not very well-defined crossover temperature
T ∗, the resistivity increases with decreasing temperature and the density of
states decreases in the vicinity of the Fermi energy as if a gap were forming
before the true superconducting gap appears. This part of the phase diagram
is dubbed the pseudogap region.

The two types of anomalous behavior are well established experimentally,
but there is as yet no consensus on their theoretical interpretation, despite
various proposals.11 Similarly, there is no consensus on the mechanism re-
sponsible for the superconductivity.12 There is no doubt, however, that the
superconductivity is unconventional in these materials and that the order pa-
rameter has d-wave symmetry, more precisely dx2−y2 symmetry, which means
that the angular dependence of the gap can be described by

d(k) = cos kx − cos ky . (34.5.29)

The best proof of this is provided by the results of the Josephson experiments
shown in Fig. 34.10.

As was shown in Fig. 26.33, where the Josephson effect was studied, the
field dependence of the current flowing through a junction placed in an ex-
ternal magnetic field displays a Fraunhofer-like interference pattern. If the
junction is threaded by a magnetic flux Φ, the current is given by

I ∝
∣∣∣∣
sin(πΦ/Φ0)
πΦ/Φ0

∣∣∣∣ . (34.5.30)

The same pattern can be observed in s-wave superconductors, if the junction
is at the corner of the sample. If, however, one of the superconductors is a
11 Whether these materials behave as Luttinger liquids in the anomalous metallic

phase could not be proved beyond doubt experimentally.
12 We will see in Chapter 35 that the phase diagram of the two-dimensional Hubbard

model has similar features to the phase diagram discussed here. This model is,
however, too simplified to capture the physical reality of these systems.
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Fig. 34.10. Left panels: (a) Fraunhofer diffraction pattern for current vs. magnetic
flux in a single edge Josephson junction and (b) expected interference pattern for a
corner junction for superconductors with s-wave and dx2−y2 symmetry. The right
panels show the experimental results on YBCO for (a) an edge junction and (b) a
corner junction [Reprinted with permission from D. A. Wollman et al., Phys. Rev.
Lett. 74, 797 (1995). © (1995) by the American Physical Society]

d-wave superconductor with symmetry dx2−y2 , the flux dependence of the
current should be given by

I ∝
∣∣∣∣
sin2(πΦ/2Φ0)
πΦ/2Φ0

∣∣∣∣ (34.5.31)

owing to the angular dependence of the gap. As seen in Fig. 34.10, the exper-
iments are in good agreement with this expression. Further theoretical efforts
are, however, needed to fully understand the mechanism responsible for super-
conductivity in these materials and to explain the anomalous behavior above
the superconducting state.

34.5.3 Heavy-Fermion Superconductors

Another class of materials where unconventional superconductivity has been
observed is heavy-fermion superconductors. In contrast to the strongly an-
isotropic, quasi-two-dimensional structure of cuprate superconductors, heavy-
fermion superconductors are truly three dimensional. We mentioned in Chap-
ter 16, when the heat capacity of metals was discussed, that there are materials
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where the Sommerfeld coefficient γ of the linear term is two or even three or-
ders of magnitude larger at low temperatures than expected in normal metals.
This huge increase of γ could originate from an anomalously large effective
mass of the quasiparticles. Hence the name heavy-fermion materials.

We know that the effective mass of Bloch electrons differs from the elec-
tron mass owing to the periodic potential of the lattice. In addition to that,
the interactions between quasiparticles in the Landau theory of Fermi liquids
give a further renormalization of the effective mass, but these effects are not
expected to produce such a huge mass increase. It rather arises from strong
correlations, a point to which we will return when we discuss strongly corre-
lated systems in Chapter 35. Here we only note that some of the heavy-fermion
materials become superconductors at low temperatures. We list some of them
in Table 34.2 with their critical temperatures and Sommerfeld coefficients.

Table 34.2. Critical temperature of the superconducting phase, the Sommerfeld
coefficient, the effective mass, and the Néel temperature of the antiferromagnetic
phase for some heavy-fermion materials

Material Tc (K) γ (mJ/mol K2) m∗/me TN (K)

CeCu2Si2 0.65 1000 < 380 0.8
URu2Si2 1.2 65 140 17
UPd2Al3 1.9 145 66 14
UNi2Al3 1.0 120 48 4.6
UPt3 0.55 450 180 5.0
UBe13 0.85 1100 260
CeCoIn5 2.3 290 121
CeIrIn5 0.4 720 100
PrOs4Sb12 1.85 310 44

As shown in the table, some of these materials exhibit a transition to an
antiferromagnetically ordered state with TN > Tc. The coexistence of super-
conducting and antiferromagnetic orders supports the assumption that, as in
high-temperature superconductors, magnetic fluctuations may be responsible
for superconductivity. This is probably the case in other materials as well,
such as CeIn3, CePd2Si2, CeRh2Si2, CeCu2Ge2, or CeRhIn5, which become
superconductors under high pressure and are antiferromagnets at ambient
pressure. As seen in the phase diagrams of CeIn3 and CePd2Si2 displayed in
Fig. 34.11, superconductivity appears in both cases near the quantum critical
point where the Néel temperature would go to zero and quantum fluctuations
become important. The quantum criticality may also explain the anomalous
temperature dependence of the resistivity in the “normal” phase.

Unconventional pairing may exist with different symmetries giving rise to
several different superconducting phases for the same material, just as 3He has
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Fig. 34.11. Phase diagram of (a) CeIn3 and (b) CePd2Si2. The insets show the
temperature dependence of the resistivity [N. D. Mathur et al., Nature 394, 39
(1998)]

two superfluid phases. This might be the case in UPt3 whose phase diagram
shown in Fig. 34.12 can be described as having a tetracritical point between
superconducting phases with different symmetries. The lower critical field Hc1
is so small that the boundary of the homogeneous phase cannot be seen.

Fig. 34.12. Phase diagram of UPt3 for two different orientations of the magnetic
field with respect to the crystalline axes. The three superconducting phases meet at
a tetracritical point [Reprinted with permission from S. Adenwalla et al., Phys. Rev.
Lett. 65, 2298 (1990). © (1990) by the American Physical Society]
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The theory of heavy-fermion superconductors is made difficult by the fact
that the characteristic energy scale of the superconducting state, the gap,
is not much smaller than the bandwidth of the electronic states, since the
heavy electrons responsible for superconductivity form a very narrow band.
Moreover, these materials are extreme type II superconductors with κ  1.
The penetration depth may be larger than 1000Å owing to the heavy mass
and the coherence length is only on the order of 100Å.

34.5.4 Organic Superconductors

Organic superconductors constitute another special class. Superconductivity
was first observed in 1979 in (TMTSF)2PF6, which was known to have an
insulating spin-density-wave ground state at ambient pressure. It becomes
superconducting under a pressure of about 6.5 kbar, but the highest tran-
sition temperature is only 1.2K. Several related compounds, where PF−

6 is
replaced by other ions, become superconducting under pressure. The com-
pound (TMTSF)2ClO4 is superconducting already at ambient pressure below
Tc = 1.4K. Several other families of organic superconductors have also been
discovered since then. Tc may be as high as 10K in the quasi-two-dimensional
compounds containing BEDT-TTF.

SDW

TSDW

SC

Tc

Pressure [kbar]

(TMTSF)2 PF6

T2T + T2

Pc

Fig. 34.13. Phase diagram of (TMTSF)2PF6 [Reprinted with permission from
N. Doiron-Leyrand et al., Phys. Rev. B 80, 214531 (2009). © (2009) by the Amer-
ican Physical Society]

There is an obvious similarity between the phase diagram shown in
Fig. 34.13 and the phase diagram of heavy-fermion superconductors or that
of high-temperature superconductors. The control parameter, which is the
concentration in high-Tc materials, is now the pressure. The same effect, the
modification of the lattice parameters, can be achieved by changing the con-
centration of a component of the compound. The fact that superconductivity
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appears close to the quantum critical point of the antiferromagnetic state in
all these cases is a strong indication that magnetic fluctuations may indeed
play a more or less decisive role in the formation of Cooper pairs. This is sup-
ported by experimental indications that the superconducting order parameter
has perhaps p-wave symmetry with triplet pairs in (TMTSF)2PF6.

34.5.5 Coexistence of Superconductivity and Ferromagnetism

In some of the materials discussed so far superconductivity appeared next
to an antiferromagnetic phase or these phases even coexisted. It is readily
seen that conventional superconductivity cannot coexist with ferromagnetic
order. The ferromagnetic polarization of the conduction electron band forbids
the singlet pairing of Cooper pairs.13 Recently, several materials have been
discovered in which superconductivity appears within the ferromagnetic phase
with very low critical temperature. Figure 34.14 shows two examples.

Fig. 34.14. The temperature–pressure phase diagrams of (a) UGe2 and (b) ZrZn2.
TC and TFM denote the Curie temperatures and TSC is the superconducting transi-
tion temperature magnified by a factor of 10 [S. S. Saxena et al., Nature 406, 587
(2000) and C. Pfleiderer et al., Nature 412, 58 (2001)]

The superconducting state disappears in both cases exactly at the same
hydrostatic pressure where the ferromagnetic Curie temperature vanishes, in-
dicating that superconducting order can only exist in the presence of magnetic
order. A somewhat different situation occurs in URhGe, where superconduc-
tivity and ferromagnetism coexist at ambient pressure below Tc = 0.25K (the
Curie temperature is TC = 9.5K), but the Curie temperature and the critical
temperature have opposite pressure dependence. TC increases with pressure,
13 The coexistence of antiferromagnetism and superconductivity is not excluded,

since the coherence length, the spatial extension of the Cooper pairs, is typically
much larger than the spatial periodicity of the antiferromagnetic order or the
wavelength of the spin-density wave.
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while Tc decreases. Since the magnetic interactions prefer a parallel alignment
of the spins, triplet Cooper pairs are formed. The order parameter has to have
odd parity; it may be of p-wave symmetry.

34.6 Tunneling Phenomena

The most direct experimental evidence for the gap in the energy spectrum of
superconductors is provided by tunneling measurements. First, we discuss the
single-particle effects14 in junctions where one or both sides are superconduc-
tors and then give a microscopic description of the tunneling current.

34.6.1 General Description of Tunneling

The two electrodes of the tunneling junction are separated by a thin insulating
layer. The electronic wavefunctions decay exponentially in the insulator, but
their overlap establishes a weak coupling between the two sides, and electrons
can be transferred from one side to the other. This process can be described by
a simple, phenomenologically introduced Hamiltonian. Denoting the creation
operator of electrons on the left side by c†kσ and the creation operator on the
right side by d†qσ, the tunneling Hamiltonian is chosen in the form

HT =
∑

qkσ

(
Tkqc

†
kσdqσ + h.c.

)
, (34.6.1)

where Tkq is related to the overlap of the wavefunctions. Its absolute square
gives the transition probability. In addition to this term, the total Hamiltonian
contains the Hamiltonians HL and HR of the electrons in the left and right
electrodes, respectively.

Since the bias normally applied in tunneling experiments is on the order
of millivolts, only electrons in the vicinity of the chemical potential can par-
ticipate. The coupling Tkq can be approximated by a constant in the relevant
energy range. We note that practically only electrons which arrive perpen-
dicularly to the interface can go across the insulating layer. That is why the
anisotropy of the gap in non-s-wave superconductors can be studied by choos-
ing interfaces with different crystallographic orientations.

The application of the tunneling Hamiltonian is not always satisfactory.
Although the energy is conserved in normal tunneling, inelastic processes may
occur when the electron emits or absorbs a phonon in the insulating layer. This
process, which opens a new channel for electron transfer, is known as phonon-
assisted tunneling. The tunneling electron can flip its spin if it is scattered
by magnetic impurities. The Kondo effect gives rise to zero-bias anomalies in

14 The Josephson effect related to the supercurrent between superconducting elec-
trodes was discussed in Chapter 26.
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the tunneling characteristics. The description of these phenomena is beyond
the scope of this brief presentation of tunneling effects, where we concentrate
more on how the tunneling current is modified when one or both sides are
superconducting.

In experiments we usually measure the current I flowing across the junc-
tion when a voltage V is applied between the two sides,15 that is the current–
voltage characteristic. The junction is in thermal equilibrium without applied
voltage; the chemical potentials are identical on the two sides. When the junc-
tion is biased, the voltage drop occurs entirely in the insulating layer, if the
coupling between the two sides is weak. The electrodes can be thought to be
in local thermodynamic equilibrium and the distribution of electrons can be
described by the Fermi distribution function with, however, different chemical
potentials on the two sides. The difference of the chemical potentials is equal
to the energy of electrons in the applied voltage. If the left side is chosen as
the positive electrode, the chemical potential is higher by −eV owing to the
negative charge of the electrons,

μR − μL = eV. (34.6.2)

The filling of states at T = 0 and at a finite temperature when both electrodes
are normal metals are shown in Fig. 34.15.

Fig. 34.15. Filling of the electron states on the two sides of a tunnel junction
between normal metals (a) at T = 0 and (b) at finite temperature. The horizontal
arrows indicate the allowed elastic tunneling processes

Electrons can tunnel elastically from right to left for V > 0, if their energy
is below the chemical potential μR, but above μL. At finite temperatures
tunneling is allowed in both directions with finite probability. The total current
is the difference between the current components flowing in the two directions:

I = −e (PL–R − PR–L) , (34.6.3)

15 The effective two-particle interaction V does not occur in the rest of this chapter,
V denotes the voltage.
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where PL–R is the probability of transition from left to right. It can be cal-
culated using the standard rules of quantum mechanics. Denoting the wave
vector of electrons on the left side by q and the wave vector of electrons on
the right side by k, tunneling from left to right can take place if the state with
q is occupied and the state with k, into which the electron tunnels, is empty.
We thus find

PL–R = 2
2π
�

∑

kq

|T |2 f0
L(εq)

[
1 − f0

R(εk)
]
δ(εk − εq) . (34.6.4)

The extra factor 2 comes from the spin which is assumed to be conserved
during tunneling.16 From now on we will measure the electron energies from
the respective chemical potential, that is we will use the quantity

ξq = εq − μL (34.6.5)

on the left side and
ξk = εk − μR (34.6.6)

on the right side. Using (34.6.2) we have

PL–R = 2
2π
�

∑

kq

|T |2 f0(ξq)
[
1 − f0(ξk)

]
δ(ξk − ξq + eV ) , (34.6.7)

where the indices L and R are dropped from the Fermi functions, since the
argument shows unequivocally which side they refer to.

The transition probability for tunneling from right to left is expressed
analogously,

PR–L = 2
2π
�

∑

kq

|T |2 f0(ξk)
[
1 − f0(ξq)

]
δ(ξk − ξq + eV ) , (34.6.8)

and the total tunneling current is given by

I = 2
2πe
�

∑

kq

|T |2 [f0(ξk) − f0(ξq)
]
δ(ξk − ξq + eV ) . (34.6.9)

Converting the sum over wave vectors to an integral over energy, we find

I =
πe

�

∫∫
dξR dξL |T |2 [f0(ξR) − f0(ξL)

]
ρR(ξR)ρL(ξL)δ(ξR − ξL + eV )

=
πe

�

∫
dξ |T |2 [f0(ξ) − f0(ξ + eV )

]
ρR(ξ)ρL(ξ + eV ) , (34.6.10)

where ρL(ξ) and ρR(ξ) are the full densities of states on the two sides. The
current–voltage characteristic is determined mostly by the densities of states.
16 As mentioned before, we are not considering the case when magnetic impurities

are present in the insulating layer.
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When both electrodes are normal metals (MIM junction17), the densities of
states can be approximated by constants for small voltages, when eV � εF.
The remaining integral can be done, the current is proportional to V , and the
junction exhibits usual ohmic behavior,

I =
πe2

�
|T |2 ρR(εF)ρL(εF)V (34.6.11)

with the normal-state conductance given by

Gn =
πe2

�
|T |2 ρR(εF)ρL(εF) . (34.6.12)

34.6.2 Tunneling in SIN Junctions

As shown already in Fig. 26.14, the current–voltage characteristics are dras-
tically different when one or both electrodes are superconducting. To under-
stand this, we consider the electron transfer processes that contribute to the
tunneling current. We consider first the case when the left side is a normal
metal and the right side is superconducting. Such an arrangement is known as
a SIN or NIS junction. The densities of states and the filled and empty states
at T = 0 are depicted in Fig. 34.16.

(a) (b) ( )c

L R

R

R

L L

Fig. 34.16. Filled and empty states in a SIN junction at T = 0 for (a) V = 0,
(b) V < 0, and (c) V > 0. Arrows depict allowed electron transfer processes

Electrons can tunnel from the normal side to empty states on the super-
conducting side at T = 0 if a large enough negative voltage is applied to the
normal electrode, raising the chemical potential above the bottom of the quasi-
particle continuum in the superconductor. This happens if V ≤ −Vc = −Δ/e.
The derivative of the current with respect to voltage is singularly large at the
threshold owing to the inverse-square-root singularity in the density of states.

When a positive voltage is applied, the chemical potential of the super-
conductor lies higher than the Fermi energy on the normal side. Since all
17 MIM stands for metal–insulator–metal. The notation NIN for normal(metal)–

insulator–normal(metal) is also used.
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electrons are bound into Cooper pairs in the superconductor, electrons can
tunnel to the normal side only if some of the Cooper pairs are broken up. If
one of the electrons is transferred to the normal side, it loses an energy eV .
This energy is taken up by the other electron to occupy a quasiparticle state
in the single-particle continuum. The minimum energy the quasiparticle has
to gain is Δ; hence, quasiparticle current starts to flow only if the voltage
exceeds a threshold value Vc = Δ/e.

These considerations show that the same threshold is found for V < 0
and V > 0, although the physical processes are different. Since electrons of
the normal metal tunnel directly into the single-particle continuum of the
superconductor in the first case, the description of the tunneling current in
terms of the density of states of the single-particle excitations seem to be
justified, provided the strongly energy dependent

ρs(E) = ρ(εF)
E√

E2 −Δ2
(34.6.13)

is used for the density of states of quasiparticles in the superconductor. For
V > 0, when a Cooper pair has to be broken, we still have to understand
why the coherence factors uk and vk, which are related to the probability of
finding an electron with a given k in the BCS state, do not show up in the
tunneling current. We recall that a Bogoliubov quasiparticle with energy Ek

can be constructed in two ways. It follows from the expression

Ek =
√
ξ2k +Δ2 (34.6.14)

for the quasiparticle energy that breaking up the pair (k ↑,−k ↓) formed
by electrons above the normal-state Fermi energy costs the same energy as
breaking up the pair (k′ ↑,−k′ ↓) formed by electrons below the normal-
state Fermi energy, if ξk = −ξk′ . Since the pair (k ↑,−k ↓) is present with
probability v2

k in the BCS ground state, and the pair (k′ ↑,−k′ ↓) is present
with probability v2

k′ , the factor v2
k+v2

k′ should appear in the expression for the
tunneling current when both processes are taken into account. Using (34.2.29)
for the coherence factors we readily see that

v2
k + v2

k′ = v2
k + u2

k = 1 , (34.6.15)

if ξk = −ξk′ , that is the coherence factors drop out from the total current.
At finite temperatures, where there are thermally excited electrons above

the Fermi energy in the normal metal and there are thermally broken pairs in
the superconductor, there is no threshold voltage in the current–voltage char-
acteristic. Current can flow at arbitrarily small voltage, although the charac-
teristic is strongly nonlinear at temperatures below the critical temperature
of the superconducting electrode. An exponentially weak current flows for
voltages less than Vc. The theoretical prediction for the current–voltage char-
acteristic is shown schematically in Fig. 34.17(a). It is in good agreement with
the experimental results.
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Fig. 34.17. (a) Current–voltage characteristics of a normal metal–insulator–super-
conductor junction. (b) Differential conductance of the SIN junction

We still can use (34.6.10) for describing the current in terms of the density
of states of single-particle excitations, but only the density of states of the
normal electrode can be approximated by a constant. This yields

I =
πe

�
|T |2 ρL(εF)

∫
dξ ρR(ξ)

[
f0(ξ) − f0(ξ + eV )

]
. (34.6.16)

Changing the integration variable from ξ to the energy E of the Bogoliubov
quasiparticles we find the expression

G =
dI
dV

=
πe2

�
|T |2 ρL(εF)

∫
dE ρs(E)

(
−∂f0(E + eV )

∂(eV )

)
(34.6.17)

for the differential conductance. At T = 0, where the only contribution to the
integral comes from E + eV = 0 we have

G =
2πe2

�
|T |2 ρL(εF)ρs(−eV ) . (34.6.18)

The same result is obtained for positive V since the current is an odd func-
tion of the voltage. The differential conductance measures directly the density
of states of the single-particle excitations in the superconductor. The con-
ductance at finite temperatures can only be calculated numerically since the
Sommerfeld expansion cannot be used owing to the singularity in the density
of states. The differential conductance is shown schematically in Fig. 34.17(b).

Since the coherence factors dropped out from the expression of the current,
the tunneling characteristics can be obtained in a semiconductor model, where
the superconductor is represented by an ordinary semiconductor with a gap
of width 2Δ and the singularity in the density of states characteristic for
superconductors [see (34.2.83)] appears both at the top of the “valence band”
and at the bottom of the “conduction band.” The chemical potential lies in
the middle of the gap. As can be seen from Fig. 34.18, current starts to flow
at the threshold voltages ±Δ/e and the characteristics are identical to that
found in SIN junctions.
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Fig. 34.18. Semiconductor model of tunneling in a SIN junction. Horizontal arrows
depict the allowed tunneling processes

34.6.3 Tunneling in SIS Junctions

The tunneling current flowing between two superconducting electrodes can
be obtained similarly. The electron states and the allowed tunneling processes
are shown in Fig. 34.19.

Fig. 34.19. (a) Cooper pairs at the chemical potential and the empty bands of
single-particle excitations at T = 0 in an SIS junction for V = 0. Pair-breaking
processes with single-particle tunneling for (b) V < 0 and (c) V > 0

Current starts to flow at T = 0, irrespective of whether the voltage dif-
ference is positive or negative, only above a critical voltage. A Cooper pair is
broken up on the side with higher chemical potential and one of the electrons is
transferred to the other side, into a lower lying state of the single-particle con-
tinuum, giving enough energy to the other electron to be excited to the quasi-
particle continuum. Such a process can take place if V ≥ Vc = (ΔL +ΔR)/e
or V ≤ −Vc = −(ΔL +ΔR)/e. Since the densities of states are singular at the
gap on both sides, the current, which vanishes below the threshold, appears
with a discontinuous jump,
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I(Vc) =
π

4
GnV , (34.6.19)

where Gn is the conductance of the junction in its normal state, that is the
current above threshold is a fraction π/4 of the value of the normal current
at the same voltage.

Nonvanishing current is observed already for smaller voltage differences at
finite temperatures with a reduced discontinuous jump at V = ±(ΔL +ΔR)/e
and a weak logarithmic singularity at V = ±(ΔL −ΔR)/e. To understand its
origin we consider the tunneling events displayed in Fig. 34.20 for the case
when the gap is larger on the right side.

Fig. 34.20. Single-particle tunneling processes in an SIS junction at finite temper-
ature contributing to the anomaly at V = ±(ΔL − ΔR)/e

A singular contribution occurs for V < 0, when the bottoms of the quasi-
particle continua are at the same height [see Fig. 34.20(a)]. Although the
densities of states are singularly large on both sides, only a small number of
quasiparticles are excited thermally. That is why only a weak singularity is
found in the current. For V > 0 [see Fig. 34.20(b)], a Cooper pair is broken up
on the side where the chemical potential lies higher. One electron is excited to
the quasiparticle continuum on the same side, and the other electron tunnels
to the other side. Such a process alone is forbidden by energy conservation. It
becomes allowed when a thermally excited quasiparticle forms a Cooper pair
with the electron coming from the other side. When V = |ΔL − ΔR|/e, an
electron can be excited into the bottom of the quasiparticle continuum on the
right side while a quasiparticle is deexcited from the bottom of the continuum
on the left side. The singularity in the current is again due to the singularities
in the density of states at the bottom, and the weakness of the singularity is
due to the small number of thermally excited quasiparticles. The differential
resistivity is negative above this singular point. The theoretical prediction for
the current–voltage characteristics is shown in Fig. 34.21.

The semiconductor model can be used for SIS junctions as well. This is
shown in Fig. 34.22. The densities of states have gaps of width 2ΔL and
2ΔR, respectively, with the chemical potential lying in the middle of the gap.
Current starts to flow at T = 0 above a threshold V = (ΔL + ΔR)/e, when
electrons from the “valence” band can tunnel into states of the “conduction”
band on the other side. Weak singularity appears at V = |ΔL −ΔR|/e, when
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Fig. 34.21. I-V curve of superconductor–insulator–superconductor junctions

thermally excited electrons can tunnel from the bottom of the “conduction”
band to states of the bottom of the “conduction” band on the other side or
thermally excited holes from the top of the “valence” band can tunnel to the
states at the top of the “valence” band on the other side.

Fig. 34.22. Semiconductor model of tunneling in an SIS junction. Horizontal arrows
depict the tunneling processes

34.6.4 Microscopic Calculation of the Current

The physical picture used to explain tunneling phenomena, when one or both
electrodes of the junction are superconductors, gives a qualitatively correct
description. A microscopic, quantitatively correct theory can be worked out
when the current is calculated from linear response theory.

The Hamiltonian of the junction can be divided into three parts:

H = HR + HL + HT. (34.6.20)
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The terms HR and HL describe the electrons in the right and left sides of
the junction, respectively, which can be either normal metals or superconduc-
tors. The term HT is the tunneling Hamiltonian given in (34.6.1). It describes
the tunneling of electrons between the two sides. The entire system is not
in thermodynamic equilibrium; the difference between the chemical poten-
tials is proportional to the applied voltage according to (34.6.2), but the two
sides of the junction are in separate thermodynamic equilibrium. Moreover,
apart from the weak tunneling coupling, the two sides are independent, their
Hamiltonians commute,

[HR,HL]− = 0 . (34.6.21)

The current, which is assumed to flow from left to right for positive voltage,
can be calculated as the negative of the expectation value of the change in
the number of particles on the left side multiplied by the electron charge:

I(t) = e
〈ṄL(t)

〉
, (34.6.22)

where
NL =

∑

qσ

d†qσdqσ . (34.6.23)

If the tunnel coupling HT is a weak perturbation, the time derivative of
NL(t) can be calculated in linear response theory. According to the formulas
given in Appendix J, the thermal average of ṄL(t) in the presence of HT is

〈ṄL(t)
〉

= − i
�

t∫

−∞

〈[ṄL(t),HT(t′)
]
−
〉

dt′ , (34.6.24)

where the time dependence of the operators is governed by the unperturbed
Hamiltonian H0 = HR + HL via

ṄL(t) = eiH0t/�ṄLe−iH0t/� ,

HT(t′) = eiH0t′/�HTe−iH0t′/� .
(34.6.25)

The time derivative of the particle-number operator is obtained from the usual
quantum mechanical relation

ṄL(t) =
i
�

[H,NL(t)
]
− . (34.6.26)

Since the number of particles is conserved by both HR and HL irrespective of
the form of the interaction between electrons, only the commutator with HT
is left which gives

ṄL(t) =
i
�

[HT,NL(t)
]
−

=
i
�

∑

kqσ

[
Tkqc

†
kσ(t)dqσ(t) − T ∗

kqd
†
qσ(t)ckσ(t)

]
.

(34.6.27)
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Introducing the quantity

A(t) =
∑

kqσ

Tkqc
†
kσ(t)dqσ(t) (34.6.28)

both the time derivative of the particle number and the tunneling Hamiltonian
can be expressed through it. We have

ṄL(t) =
i
�

[
A(t) −A†(t)

]
(34.6.29)

and
HT(t′) = A(t′) +A†(t′) . (34.6.30)

Combining these expressions with (34.6.24) and (34.6.22) the current takes
the form

I(t) =
e

�2

t∫

−∞
dt′
〈[ (

A(t) −A†(t)
)
,
(
A(t′) +A†(t′)

) ]
−
〉
. (34.6.31)

Since the number of particles is not fixed in the BCS theory, the Hamiltonian

H′ = H− μN (34.6.32)

was used throughout the calculation dropping the prime for convenience. The
time-dependent operators, where the time evolution is calculated with either
H0 or H′

0 = H0 − μLNL − μRNR, are simply related:

A(t) = ei(μR−μL)t/�Ã(t) = eieV t/�Ã(t) , (34.6.33)

where
Ã(t) = eiH′

0t/�A e−iH′
0t/� . (34.6.34)

The total current can be written as the sum of two terms:

I = Iqp + IJ, (34.6.35)

where

Iqp =
e

�2

∞∫

−∞
dt′ θ(t− t′)

{
eieV (t−t′)/�

〈[
Ã(t), Ã†(t′)

]
−
〉

− e−ieV (t−t′)/�

〈[
Ã†(t), Ã(t′)

]
−
〉}

(34.6.36)

and

IJ =
e

�2

∞∫

−∞
dt′ θ(t− t′)

{
eieV (t+t′)/�

〈[
Ã(t), Ã(t′)

]
−
〉

− e−ieV (t+t′)/�

〈[
Ã†(t), Ã†(t′)

]
−
〉}

.

(34.6.37)
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The first term describes the quasiparticle tunneling and the second is the
supercurrent associated with the Josephson effect.

The quasiparticle current is readily calculated between normal metals in
the free electron approximation. The time dependence of the creation and
annihilation operators is a simple exponential function, and the commutators
are nonvanishing only if k = k′, q = q′, and σ = σ′. The expectation values
can be given in terms of the Fermi distribution functions and we find

Iqp =
e

�2

∞∫

−∞
dt′ θ(t− t′)

∑

kqσ

|Tkq|2
{

eieV (t−t′)/�ei(εk−εq)(t−t′)/�

× [f0
R(εk)(1 − f0

L(εq)) − f0
L(εq)(1 − f0

R(εk))
]

−e−ieV (t−t′)/�e−i(εk−εq)(t−t′)/� (34.6.38)

× [f0
L(εq)(1 − f0

R(εk)) − f0
R(εk)(1 − f0

L(εq))
] }
.

Performing the integration yields

Iqp(t) =
e

�2

∑

kqσ

|Tkq|2
[
f0
R(εk) − f0

L(εq)
]

×
{

i�
εk − εq + eV + iδ

− i�
εk − εq + eV − iδ

}
.

(34.6.39)

It is readily seen, making use of (C.3.3), that the expression derived for the
current is precisely the same as (34.6.9) if the energies measured from the
respective chemical potentials given in (34.6.5) and (34.6.6) are used.

When the electrode is superconducting on one side or on both sides, the
creation and annihilation operators of the electron states on the supercon-
ducting electrode could be expressed in terms of the Bogoliubov quasiparticles
using transformation (34.2.68). This formulation has a drawback which was
uninteresting until now. The quasiparticles have a well-defined momentum,
but their charge is not well defined, since the creation operators of a bogolon
adds an electron with charge −e to the system, but it can also remove a parti-
cle changing the charge by +e. This difficulty can be remedied by introducing
the operator S, which removes a Cooper pair from the condensate, and its
adjoint S†, which adds a Cooper pair to the condensate. The operators

α†
e k↑ = u∗kc

†
k↑ − v∗kS

†c−k↓ , α†
e k↓ = u∗kc

†
−k↓ + v∗kS

†ck↑ (34.6.40)

add an electron to the system; they are the creation operators of an excited
state with extra charge −e. Similarly the operators

α†
h k↑ = u∗kSc

†
k↑ − v∗kc−k↓ , α†

h k↓ = u∗kSc
†
−k↓ + v∗kck↑ (34.6.41)

add a hole to the system; they create excited states where the charge is
changed by +e. Note that
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α†
h k↑ = Sα†

e k↑ , α†
h k↓ = Sα†

e k↓ , (34.6.42)

that is creating a holelike excitation is equivalent to creating an electron-
like excitation and annihilating a pair. This transformation should be used
for both the left and the right superconductors, taking into account that the
phases in the coherence factors are different on the two sides.

Straightforward but tedious calculations lead to the result that the co-
herence factors as well as the pair-creation and pair-annihilation operators
drop out, and the single-particle current can be described in terms of the den-
sity of states of the Bogoliubov quasiparticles. When one of the electrodes is
superconducting, we find

Iqp =
(
Gn

e

)
θ(eV −Δ)

[
(eV )2 −Δ2

]1/2 (34.6.43)

at T = 0 in agreement with the behavior shown in Fig. 34.17(a). Similarly,
when both electrodes are superconducting, the same expression is derived as
in the naive calculation. For superconductors with gap ΔL and ΔR on the two
sides we find

Iqp =
(
Gn

e

) ∞∫

−∞
dE

|E|
[
E2 −Δ2

L

]1/2

|E + eV |
[
(E + eV )2 −Δ2

R

]1/2

[
f0(E)−f0(E+eV )

]
,

(34.6.44)
where the ranges |E| < |ΔL| and |E + eV | < |ΔR| have to be excluded from
the integration. The current can be calculated only numerically to yield the
characteristics displayed in Fig. 34.21.

The term IJ, which was neglected until now, contributes to the current in
SIS junctions. The coherence factors and the creation and annihilation opera-
tors, S† and S, of the pairs do not drop out. There will be terms that contain
the products SLS

†
R or S†

LSR, which describe the tunneling of Cooper pairs
from one side to the other. Since the electrons are bound into pair states on
both sides, their energy is unchanged during the transition. Such a process
can take place at zero external potential, if the current is driven by a cur-
rent generator. This is the DC Josephson effect discussed phenomenologically
in Chapter 26. The microscopic treatment of the Josephson effect allows us
to derive its most important feature, the dependence of the current on the
difference between the phases of the two superconductors

IJ(t) = I0(eV ) sin(ωt+ φ) (34.6.45)

with ω = 2eV/�. One can also derive (26.5.18), according to which the maxi-
mum supercurrent that can be driven through the junction without any volt-
age drop is given by

I0(eV = 0) =
πΔ

2e
Gn , (34.6.46)
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and the Ambegaokar–Baratoff formula18 (26.5.19)

I0(eV = 0, T ) =
πΔ

2e
Gn tanh

Δ

2kBT
(34.6.47)

that gives the temperature dependence of the maximum supercurrent.

34.6.5 Green-Function Theory of Tunneling

These results can be derived much more simply by using Green-function tech-
niques. The single-particle current was expressed in (34.6.36) as a retarded
Green function of the quantity A(t), which has to be evaluated in the ab-
sence of direct coupling between the two sides. The tunneling coupling was
already taken into account in the derivation of the current formula from linear
response theory and the voltage appears in the time-dependent exponential
factor. One can show that the quasiparticle tunneling current can be expressed
in terms of the spectral functions of the one-particle Green functions of the
two sides in the form

Iqp =
e

�2

∑

kqσ

|Tkq|2
∞∫

−∞

dω
2π

AR(k, ω)AL(q, ω + eV/�)
[
f0(�ω) − f0(�ω + eV )

]
,

(34.6.48)
where the spectral function is

A(k, ω) = 2π�δ(�ω − ξk) (34.6.49)

for normal metals if lifetime effects are neglected, and

A(k, ω) = 2π�
[
u2

kδ(�ω − Ek) + v2
kδ(�ω + Ek)

]
(34.6.50)

for superconductors. Since the spectral function is related to the density of
states, the results derived earlier for the quasiparticle current are recovered.

Green functions can be used in evaluating the Josephson current (34.6.37)
as well, but now the Fourier transform, F (k, ω), of the anomalous Green
function and its complex conjugate appear in the current formula. We recover
the results mentioned earlier.
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Strongly Correlated Systems

Electron–electron interactions were mostly treated at the mean-field level in
the previous chapters. Restricting ourselves to the Hartree–Fock approach or
the RPA seems to be justified if the interaction term is small compared to
the kinetic energy or, more precisely, when the Coulomb repulsion U result-
ing from the intra-atomic interaction is small compared to the bandwidth W .
The band structure and the spectrum of single-particle states can then be de-
termined using a one-particle potential which includes exchange. As we have
seen in Chapter 28, there are no correlations between electrons of opposite
spin in the Hartree–Fock approximation. The Fermi hole (exchange hole), the
dip in the pair distribution function of parallel-spin electrons, is due to the
Pauli principle. The corrections beyond the Hartree–Fock approximation are
known as the correlation contributions. They can be treated as weak per-
turbations when U � W . This is not always the case in physically realistic
systems. Often the two energy scales set by the bandwidth and the Coulomb
repulsion are quite comparable or the relation is even inverted. Such systems
are known as strongly correlated systems. This is the case in particular in com-
pounds containing lanthanoid (rare-earth) ions1 with localized 4f electrons or
actinoids with incomplete 5f shells.2

We saw in Chapter 33 that magnetically ordered phases may appear in
interacting electron systems if the Coulomb repulsion is strong enough. It was
emphasized there that the single-particle picture with spin-split bands is too
simplistic to describe the symmetry-broken ferromagnetic state. This would
lead to an overly high critical temperature and would not be able to account
1 Although lanthanoid means “like lanthanum” and so should not include lan-

thanum, the lanthanoid series comprises the 15 elements with atomic numbers
57–71, from lanthanum to lutetium. Following common usage in the solid-state
physics literature rare earth and lanthanoid (previously lanthanide) are used syn-
onymously, though the name “rare earth” is used in chemistry to describe the
lanthanoids together with scandium and yttrium.

2 The f -block elements, from cerium to lutetium and from thorium to lawrencium
are also known as inner transition metals.

J. Sólyom, Fundamentals of the Physics of Solids,
DOI 10.1007/978-3-642-04518-9_8, © Springer-Verlag Berlin Heidelberg 2010
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for the thermal spin fluctuations which destroy magnetism as the temperature
is increased.

Similar difficulties are encountered in the theoretical description of the an-
tiferromagnetic state of itinerant electron systems with a half-filled band. A
simple-minded band structure calculation might be quite misleading for these
materials. They turn out to be insulators in many cases where metallic be-
havior would be expected for a half-filled situation. An even more challenging
theoretical problem is the appearance of a nonmetallic phase without mag-
netic ordering as a result of the strong correlations between electrons. This
metal–insulator transition (MIT) is one of the subjects of this chapter.

The Kondo effect was touched upon briefly when the transport properties
of metals were discussed. The scattering of conduction electrons by paramag-
netic impurities gives rise to a logarithmic temperature-dependent correction
to the resistivity and other observables. This singularity indicates that per-
turbation theory breaks down at low temperatures. Although the leading and
next-to-leading logarithmic corrections can be summed up by a scaling pro-
cedure, this is not sufficient to get the true low-temperature behavior. Non-
perturbative approaches are needed to describe the screening of the magnetic
moment and the asymptotic behavior as T → 0.

As a preliminary to the Kondo problem, we will study the formation of
localized magnetic moments on impurity atoms in dilute alloys with the help
of the Anderson model. A generalization of these models will lead us to a
description of mixed-valence compounds and heavy-fermion materials, where
the atoms with incomplete d or f shells form a regular lattice. We will have
to consider the effects of the interactions of conduction electrons with the
magnetically active electrons in the narrow d or f bands.

35.1 The Mott Metal–Insulator Transition

The transition between metallic and insulating phases can be interpreted in
some cases in the usual band picture. Consider a simple metal with an even
number of electrons per atom. Since the number of states in any band is
twice the number of elementary cells, materials possessing an even number of
electrons per atom and which crystallize in a structure with a monatomic unit
cell should have completely filled or empty bands unless the bands overlap
in energy. It is precisely due to the overlap of the bands that the divalent
elements of the second group of the periodic table are metals. When the
distance between the atoms is increased, the overlap of the wavefunctions of
neighboring atoms decreases and the bands narrow. The atomic energy levels
are recovered in the large-distance limit, when the atoms become independent.
This narrowing of the bands is displayed in Fig. 35.1.

The overlap between the bands vanishes at a critical value of the inter-
atomic distance. If the lower band is completely filled and the upper band
is empty, the system becomes insulating. For smaller lattice parameters the
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Fig. 35.1. Variation of the bandwidth with the distance between the atoms

material is metallic. This type of metal–nonmetal transition occurring as the
lattice parameter is changed (it can be achieved, e.g., by applying pressure)
is known as the band-overlap or Wilson transition.3 The insulating state is a
band insulator or Bloch–Wilson insulator . The interaction with the periodic
one-particle potential plays the dominant role in the formation of bands and
this transition can be interpreted in the one-particle picture without having
to take the electron–electron interaction into account.

By the same token, systems with an odd number of electrons per atom
should always be metals in the one-particle band picture. This, however, is
not the case in reality. We have already seen in Chapter 33 that the electron–
phonon interaction may induce charge-density waves in quasi-one-dimensional
solids and the formation of the CDW is accompanied by a displacive distor-
tion of the regular array of atoms. The unit-cell size of the superstructure is
increased, usually by period doubling (dimerization). This Peierls transition
is a metal–insulator transition, since the folding of the Brillouin zone leads to
a completely filled lower band. The decrease in the electronic energy due to
the opening of a gap at the boundary of the new Brillouin zone outweighs the
increase in elastic energy. A similar metal–insulator transition, owing to the
folding of the Brillouin zone in the ordered phase, was suggested by Slater

[see Section 33.2.1] for repulsive electron–electron interaction, when itiner-
ant electrons order antiferromagnetically and a spin-density wave is formed.
Hartree–Fock theory predicts a continuous transition from the normal Fermi-
liquid to the magnetic insulator state.

Such a continuous transition from metallic to antiferromagnetic insulating
state produced by the doubling of the unit cell at the Néel temperature has
been observed recently in Cd2Os2O7 at TN = 226K. There are, however,
several counter examples.4 The classical example is NiO. The 3d level of the
nickel atom splits into two with symmetries eg and t2g which can accommodate
four and six electrons, respectively. These levels broaden into bands in NiO.

3
A. H. Wilson, 1931.

4 We only consider here metal–insulator transitions due to electronic correlations.
As will be shown in the next chapter, a similar transition can take place – although
for completely different reasons – when the number of carriers is modified by
varying the dopant concentration in a disordered system.



476 35 Strongly Correlated Systems

The Ni2+ ion has eight 3d electrons outside the [Ar] core. Although the band
states cannot be filled by the eight electrons to form a full and an empty band,
NiO is not metallic but a good insulator. This contradiction cannot be resolved
by attributing the insulating behavior to antiferromagnetic ordering, since
NiO is insulating even in the paramagnetic phase. The magnetically ordered
state is not a Slater insulator. A similar transition from paramagnetic insulator
to antiferromagnetic insulator is observed in CoO with an odd number of d
electrons.

Another example is V2O3. The low-temperature antiferromagnetic insu-
lating state undergoes a first-order phase transition into a metallic state where
the conductivity changes discontinuously by several orders of magnitude. An
even richer phase diagram is found when the pressure is changed or – in a
certain sense equivalently – the lattice constants are varied by varying the
composition. Three phases are seen in Fig. 35.2, a paramagnetic metallic, a
paramagnetic insulating, and an antiferromagnetic insulating phase.

Fig. 35.2. The phase diagram of V2O3 doped with Cr and Ti under pressure
[Reprinted with permission from D. B. McWhan et al., Phys. Rev. B 7, 1920 (1973).
© (1973) by the American Physical Society]

These findings indicate that the intra-atomic correlations responsible for
the appearance or disappearance of magnetic moments may play an impor-
tant role in the nonmagnetic insulating state. N. F. Mott suggested already
in 1949 that if the band in the vicinity of the Fermi energy is not filled com-
pletely and is narrow enough, the interaction between electrons opens up a
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gap in the spectrum of charge excitations and this leads to an insulating
state. If the bands are widened as the distance between atoms is decreased,
a sharp, discontinuous (first-order) transition from insulating, strongly corre-
lated to metallic, weakly correlated behavior is expected. This Mott transition
occurs as the ratio U/W is altered by temperature or pressure variations or by
changing the dopant concentration. In this chapter we first present the phys-
ical picture proposed by Mott and then we treat the present status of the
metal–nonmetal transition in the framework of the Hubbard model, pointing
out the unsolved questions.

A different, well-known example of a metal–insulator transition that will
not be discussed in what follows is the Verwey transition5 in magnetite,
Fe3+[Fe3+Fe2+]O4, where a spontaneous, intercorrelated change of both lat-
tice symmetry and electrical conductivity is observed below TV = 125K, well
inside the ferrimagnetic regime. As explained in Section 14.1.4, the tetrahe-
dral A sites of the inverse spinel structure are occupied by Fe3+ ions, while the
octahedral B sites are occupied by an equal mixture of Fe3+ and Fe2+ ions.
They are randomly distributed on the B sites above TV permitting valency ex-
change by means of thermally activated electron hopping. The rapid increase
of the resistivity below TV is due to charge ordering within the sublattice of
the octahedral sites.

35.1.1 Physical Picture for the Mott Transition

In order to form a physical picture for the Mott transition consider a crystal
built of monovalent atoms. The electrons outside the closed shell form a half-
filled band and the system is metallic even if the distance between atoms is
so large that the overlap of the wavefunctions is exponentially small and the
probability for an electron to hop to neighboring sites is almost negligible. This
is because electron–electron interactions are neglected in the band structure
calculations. If the wavefunction of the half-filled band described in terms of
extended Bloch functions is expressed in terms of localized Wannier states,
configurations with two electrons on some atoms and no electrons on others
occur with high probability. These configurations have much higher energy
than the configurations with one electron sitting on each atom when the intra-
atomic Coulomb repulsion is taken into account. Therefore, when the band is
sufficiently narrow, the relatively high-energy charge fluctuations are expected
to be blocked and the electrons become localized.

To make an estimate when this happens, Mott suggested that the domi-
nant factor determining whether an electron system is metallic or nonmetallic
is the competition between the kinetic energy and the Coulomb energy that
tends to bind electrons to the atoms. A simple estimate can be given by as-
suming that the system is metallic if the Fermi energy εF, which characterizes

5
E. J. W. Verwey, 1939, 1947.
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the kinetic motion of electrons, is larger than the Coulomb energy. For elec-
trons with an effective mass m∗ moving in a medium with dielectric constant
εr, the Coulomb energy can be estimated via

e2

4πε0εra∗0
, (35.1.1)

where a∗0 = a0εrme/m
∗ is the effective Bohr radius of the medium with a0 =

4πε0�
2/e2me the true Bohr radius. This energy can also be written as

�
2

εrme

1
a0a∗0

=
�

2

m∗
1
a∗0

2 . (35.1.2)

Expressing the Fermi energy in terms of the electron density,

εF = (3π2)2/3 �
2

2m∗n
2/3
e . (35.1.3)

Comparison of the two expressions gives

a∗0n
1/3
e > C (35.1.4)

as the condition for the metallic phase with C of order unity. The system is
insulating for smaller densities.

A somewhat different consideration leads to the same result. When the
atoms are far apart, the electrons are bound to the positive ions by the
Coulomb potential. The radius of the lowest energy state is the Bohr radius,
the electrons are localized, and the system is insulating. When the atoms are
closer and the density of mobile electrons is ne, a detached electron is attracted
by the positive ion left behind via a potential screened by the other electrons.
The screening length can be estimated as the inverse of the Thomas–Fermi
wave number given according to (29.2.13) via

q2TF = 4πẽ2ρ(εF) = (3π2)1/3 4ẽ2me

�2π
n1/3

e =
(

3
π

)1/3 4
a0
n1/3

e . (35.1.5)

When the screening length 1/qTF is less than the Bohr radius, the screened
potential cannot bind the electron any more, the electrons are free to move,
and the system becomes metallic. Comparing 1/qTF with a0 leads to condition
(35.1.4) for the existence of a metallic state.

Although these considerations do not say anything about it, Mott em-
phasized that the localized electrons will have localized magnetic moments in
the insulating state, and these moments will persist in the correlated metallic
state. The insulating nature of the state is not due to magnetism, but due
to the on-site Coulomb repulsion, which operates in the paramagnetic state
as well. The moments disappear at higher electron densities. J. Hubbard

(1963) proposed a model now known as the Hubbard model which incorpo-
rates electron–electron interactions and accomodates the eventual magnetic
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properties of the electron system.6 In its simplest form the model assumes
that there is a single nondegenerate Wannier state at each lattice site with
energy ε0. Electrons can freely hop to neighboring sites if that site is empty.
However, when two electrons with opposite spin share the same site, they
repel each other. This repulsion is characterized by the Hubbard U .7

H =
∑

i,σ

ε0c
†
i,σci,σ +

∑

<ij>σ

tc†i,σcj,σ + U
∑

i

ni,↑ni,↓ . (35.1.6)

To understand the physics of the model we consider first the case where
the number of electrons is equal to the number of lattice sites and treat the
interaction between electrons in the mean-field approximation, an approxima-
tion which might be reasonable for weak couplings, when U is smaller than
the bandwidth determined by the hopping amplitude. The electrons fill half
of a band in the one-particle picture and the system is metallic.

On the other hand, in the opposite limit, when U  t, the half-filled
Hubbard model is equivalent to an antiferromagnetic Heisenberg model with
exchange coupling J = −2t2/U , as was shown in Chapter 33. The spins can be
exchanged but the electrons do not carry current; the system is insulating. If
an electron hops to a neighboring site, double occupancy lasts only for a very
short time due to the strong on-site repulsion and one of the electrons has to
hop back to the temporarily empty site. The electron energies are around ε0
and ε0 +U , around meaning that the atomic energy levels are broadened into
bands of width W = 2zt owing to the finite hopping probability, z being the
number of nearest neighbors. The number of allowed states is equal to the
number of sites in both bands, even if the spin quantum number is taken into
account. The bands are well separated when W is small compared to U . They
are the so-called lower and upper Hubbard bands. For one electron per site,
which would give a half-filled band in the usual electronic band structure, the
lower Hubbard band is completely filled and the upper is empty. The system
behaves as an insulator.

Thus, as a consequence of the competition between the Coulomb repulsion
and the hopping to neighboring sites, the system behaves differently in the
limits U � t and U  t. We may expect that separated bands exist above
a certain critical value of the dimensionless coupling U/t. The gap between
them disappears at (U/t)c and the two bands merge into one. The expected
density of states is depicted in Fig. 35.3.

Whether the system is metallic or insulating is determined by the ratio
of the energy scales, U/t. We know, however, that the exchange coupling
J ∝ −t2/U between the localized moments introduces another energy scale
into the problem which is typically smaller than the band splitting and is
related to the formation of localized moments. Mott insulators, where the

6 That is why this type of insulating state is also known as Mott–Hubbard insulator.
7 The on-site Coulomb repulsion of the Hubbard model will be denoted by U instead

of UH in this chapter.
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Fig. 35.3. The expected density of states of the Hubbard model in the limits t � U ,
t � U , and at the critical value of the coupling

moments are ordered antiferromagnetically by this exchange coupling, are
sometimes denoted as Mott–Heisenberg insulators, restricting the name Mott–
Hubbard insulator to materials in which the localized magnetic moments do
not display long-range order.

35.1.2 Simple Treatment of the Hubbard Model

As suggested above the Mott metal–insulator transition can be most simply
discussed in terms of the Hubbard model. We consider first the atomic limit,
where hopping between neighboring sites is neglected. The Hamiltonian will
be written in the form

H0 = ε0
∑

iσ

ni,σ + 1
2U
∑

iσ

ni,σni,−σ , (35.1.7)

where ε0 is the energy of the atomic level. This model can be solved exactly.
For this we introduce the retarded Green function

Gij,σ(t) = − i
�
θ(t)
〈[
ciσ(t), c†jσ(0)

]
+

〉
(35.1.8)

and write down its equation of motion:

− �

i
d
dt
Gij,σ(t) = δ(t)

[
ciσ, c

†
jσ

]
+

+
i
�
θ(t)
〈[

[H0, ciσ(t)]−, c
†
jσ(0)

]
+

〉
. (35.1.9)

Using the anticommutation rules of fermions, the commutator with the Hamil-
tonian yields

[H0, ciσ]− = −ε0ciσ − Uciσni,−σ , (35.1.10)

and the Fourier transform of the Green function satisfies the equation

�ωGij,σ(ω) = δij + ε0Gij,σ(ω) + UΓij,σ(ω) , (35.1.11)

where the last term contains the Fourier transform of a higher order Green
function,
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Γij,σ(t) = − i
�
θ(t)
〈[
ciσ(t)ni,−σ(t), c†jσ(0)

]
+

〉
. (35.1.12)

The equation of motion is easily derived for this Green function as well. Mak-
ing use of n2

iσ = niσ,
[H0, ciσni,−σ

]
− = −(ε0 + U)ciσni,−σ (35.1.13)

and [
ciσni,−σ, c

†
jσ

]
+

= δijni,−σ , (35.1.14)

which lead to

�ωΓij,σ(ω) = δij〈ni,−σ〉 + ε0Γij,σ(ω) + UΓij,σ(ω) . (35.1.15)

The hierarchy of Green functions closes at this level and no new functions
appear. The formal solution is

Γij,σ(ω) = δij
〈ni,−σ〉

�ω − ε0 − U
(35.1.16)

and
Gij,σ(ω) = δij

[
1 − 〈ni,−σ〉

�ω − ε0
+

〈ni,−σ〉
�ω − ε0 − U

]
. (35.1.17)

This solution is not unique. Imaginary parts with Dirac deltas are also so-
lutions and they are needed to ensure the correct analytic properties of the
retarded Green functions. We find

Gij,σ(ω) = δij

[
1 − 〈ni,−σ〉
�ω − ε0 + iδ

+
〈ni,−σ〉

�ω − ε0 − U + iδ

]
. (35.1.18)

The density of states is obtained from the imaginary part of the Green
function. It has two Dirac delta peaks, one at ε0, the other at ε0 + U :

ρσ(E) =
(
1 − 〈n−σ〉

)
δ(E − ε0) + 〈n−σ〉δ(E − ε0 − U) . (35.1.19)

The first term is associated with the energy of adding an electron to an empty
atom. When the atomic level is filled by one electron, the energy needed to add
another electron with opposite spin is ε0 +U owing to the Coulomb repulsion.

When the overlap between the atomic wavefunctions of neighboring sites
is taken into account, the two sharp peaks broaden and their width is propor-
tional to the hopping amplitude. We again apply the equation of motion but
now to the system described by the Hamiltonian

H =
∑

ij,σ

tijc
†
iσcjσ + 1

2U
∑

iσ

ni,σni,−σ (35.1.20)

with tii = ε0. The new terms in the equation of motion contain the single-
particle Green function and we find
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�ωGij,σ(ω) = δij +
∑

l

tilGlj,σ(ω) + UΓij,σ(ω) . (35.1.21)

The equation for the higher order Green function is more complicated. A new
function appears on the right-hand side which involves four operators on three
lattice sites. In Fourier representation with respect to time we have

�ωΓij,σ(ω) = δij〈ni,−σ〉 + ε0Γij,σ(ω) +
∑

l

tilΓ
(2)
liij,σ(ω)

+
∑

l

tliΓ
(2)
ilij,σ(ω) −

∑

l

tilΓ
(2)
iilj,σ(ω) + UΓij,σ(ω) ,

(35.1.22)

where

Γ
(2)
iklj,σ(t) = − i

�
θ(t)
〈[
ciσ(t)c†k,−σ(t)cl,−σ(t), c†jσ(0)

]
+

〉
. (35.1.23)

Writing the equation of motion for this Green function, the system of
equations does not close. New higher order Green functions appear. As an
approximation, we can apply the decoupling procedure by writing Γ (2) in
terms of lower order Green functions and mean values of operator products.
With the decoupling

Γ
(2)
liij,σ(t) = − i

�
θ(t)
〈[
clσ(t)c†i,−σ(t)ci,−σ(t), c†jσ(0)

]
+

〉

≈ 〈c†i,−σci,−σ

〉
Glj,σ(t) ,

(35.1.24)

the contributions coming from the terms Γ (2)
ilij,σ and Γ (2)

iilj,σ cancel and we get

�ωΓij,σ(ω) = δij〈ni,−σ〉+(ε0+U)Γij,σ(ω)+〈ni,−σ〉
∑

l �=i

tilGlj,σ(ω) . (35.1.25)

The solution of this equation is

Γij,σ(ω) =
〈ni,−σ〉

�ω − ε0 − U

[
δij +

∑

l �=i

tilGlj,σ(ω)
]
. (35.1.26)

In a homogeneous system, where tij , Gij,σ, and Γij,σ depend solely on the
distance between the lattice sites i and j, and 〈ni,−σ〉 ≡ 〈n−σ〉 is indepen-
dent of the position, it is convenient to work in momentum space by taking
the Fourier transform of these equations. The Fourier transform of tij is the
dispersion relation εk of the tight-binding model and we have

Γσ(k, ω) =
〈n−σ〉

�ω − ε0 − U

[
1 + (εk − ε0)Gσ(k, ω)

]
. (35.1.27)

The Fourier transform of (35.1.21) gives
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�ωGσ(k, ω) = 1 + εkGσ(k, ω) + UΓσ(k, ω) . (35.1.28)

Combining the two equations we find

Gσ(k, ω) =
�ω − ε0 − U

(
1 − 〈n−σ〉

)

(�ω − εk)(�ω − ε0 − U) + 〈n−σ〉(ε0 − εk)U
. (35.1.29)

This expression can be rewritten in the form

Gσ(k, ω) =
Z

(+)
kσ

�ω − E
(+)
kσ

+
Z

(−)
kσ

�ω − E
(−)
kσ

, (35.1.30)

where E(+)
kσ and E(−)

kσ are the roots of the equation

(E − εk)(E − ε0 − U) + 〈n−σ〉(ε0 − εk)U = 0 (35.1.31)

and
Z

(+)
kσ + Z

(−)
kσ = 1 . (35.1.32)

We find

E
(±)
kσ = 1

2

(
εk + ε0 + U

)± 1
2

√
(εk − ε0 − U)2 + 4U〈n−σ〉(εk − ε0) (35.1.33)

and

Z
(±)
kσ = ±E

(±)
kσ − ε0 − U

(
1 − 〈n−σ〉

)

E
(+)
kσ − E

(−)
kσ

. (35.1.34)

As before, the correct analytical properties can be ensured by infinitesimal
imaginary terms in the denominators

Gσ(k, ω) =
Z

(+)
kσ

�ω − E
(+)
kσ + iδ

+
Z

(−)
kσ

�ω − E
(−)
kσ + iδ

. (35.1.35)

The Green function has poles at E(+)
kσ and E(−)

kσ . As usual, they give the en-
ergies of the quasiparticles. Thus, in this approximation, there are two quasi-
particle states for each k with infinite lifetime, but with reduced quasiparticle
weights. Note also that the energies E(+)

kσ and E(−)
kσ depend on the number of

electrons. That is why the energy eigenstates of the interacting system cannot
be determined in the single-particle picture. Nevertheless, as a rough approx-
imation we may think that the lower band is formed by the electronic states
of electrons put on empty sites. The states associated with electrons that are
put on an already singly occupied site form the upper band.

In the atomic limit, where εk = ε0, the earlier result is recovered. There are
two levels, one at ε0 and another at ε0+U . These levels broaden into subbands
when the wavefunctions of neighboring sites overlap and the electrons can hop
to nearest neighbors. In the large-U limit, when U is large compared to the
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bandwidth W of the noninteracting electrons given by the energy spread of
εk − ε0, we find

E
(+)
kσ = ε0 + U + 〈n−σ〉(εk − ε0) ,

E
(−)
kσ = ε0 +

(
1 − 〈n−σ〉

)
(εk − ε0) .

(35.1.36)

The two well-separated bands formed by the energies E(+)
kσ and E(−)

kσ are the
upper and lower Hubbard bands. The bandwidths are shrunk by factors 〈n−σ〉
and

(
1−〈n−σ〉

)
, respectively, but they are finite, indicating that the electrons

are not localized on the lattice sites. The number of states available for the
electrons in the bands depends on the Coulomb coupling and the electron
density, showing that the Hubbard bands are not the usual one-particle bands.
When the number of electrons is equal to the number of lattice sites, n↑ =
n↓ = 1/2, the quasiparticle weights are Z(±)

kσ ≈ 1/2 for large U . The lower
Hubbard band is completely filled, the upper band is empty, and the system
is insulating, as expected.

This approximate solution gives a surprising result for weak Coulomb re-
pulsion. It can be shown that

E
(−)
kσ < ε0 + U

(
1 − 〈n−σ〉

)
< E

(+)
kσ , (35.1.37)

showing that the upper and lower Hubbard bands do not overlap for arbitrary
positive value of U . This is in contradiction with our physical expectations
that the metallic state survives if the electrons are weakly correlated and the
uncorrelated metallic band only splits into two at a finite critical (U/W )c as
U increases. The insulating phase should appear at this interaction strength.
This necessitates a better treatment of the Hubbard model. Hubbard him-
self proposed an improved approximation scheme. The so-called Hubbard-III
solution provides a finite (U/W )c for the metal–insulator transition. This so-
lution still has some inadequacies in that antiferromagnetic correlations are
missing in the insulating phase, and neither antiferromagnetic ordering nor a
Curie-like susceptibility is obtained at low temperatures. More serious is the
finding that the metallic state is not a Fermi liquid, since the quasiparticles
acquire a finite lifetime even at the Fermi energy. The latter problem can be
corrected by a different approach.

35.1.3 The Gutzwiller–Brinkman–Rice Approach

W. F. Brinkman and T. M. Rice (1970) proposed a different approach
to the metal–insulator transition based on the Gutzwiller wavefunction,8 in
which the on-site repulsion between opposite-spin electrons is taken into ac-
count by a single variational parameter. When the ground-state wavefunction
of the noninteracting Fermi sea,
8

M. C. Gutzwiller, 1963.
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|ΨFS〉 =
∏

|k|<kF

c†k↑
∏

|k′|<kF

c†k′↓|0〉 , (35.1.38)

is written in a Wannier instead of k-space representation, it would be a linear
combination of all possible configurations with empty, singly occupied and
doubly occupied sites. All these configurations would appear with equal weight
in a noninteracting system. When the on-site repulsion is switched on, the
energy of two singly occupied sites is lower than the energy of the configuration
in which one of the sites is doubly occupied and the other is empty. Hence this
latter configuration has a lower thermodynamic weight and should occur with
smaller probability in the wavefunction. As one of the simplest approaches
Gutzwiller suggested taking this diminished probability into account by
a factor g for every doubly occupied site. The limit g = 0 corresponds to
forbidding completely double occupancy, while electrons are uncorrelated for
g = 1.

Such a state can formally be written as

|ΨG〉 = gD|ΨFS〉 , (35.1.39)

where
D =

∑

i

ni↑ni↓ (35.1.40)

is the number operator of doubly occupied states. It follows from the fermionic
properties of the electron operators that this Gutzwiller wavefunction can be
written in the form

|ΨG〉 =
∏

i

[
1 − (1 − g)ni↑ni↓

]|ΨFS〉 . (35.1.41)

To check it, we rewrite the prefactor in an exponential form

∏

i

[
1 − (1 − g)ni↑ni↓

]
= exp

{∑

i

ln
[
1 − (1 − g)ni↑ni↓

]}
. (35.1.42)

Noting that

ln
[
1 − (1 − g)ni↑ni↓

]
=

{
0 for ni↑ni↓ = 0 ,

ln g for ni↑ni↓ = 1 ,
(35.1.43)

we indeed recover (35.1.39). g is a free parameter whose value can be deter-
mined from the condition that the wavefunction provides the lowest energy
for the ground state, that is

E0 =
〈ΨG|H|ΨG〉
〈ΨG|ΨG〉 (35.1.44)

should be minimized with respect to g.
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The contribution of the Coulomb repulsion is easily obtained. It gives
U〈D〉, where 〈D〉 is the average number of doubly occupied sites. The prob-
ability of double occupancy, 〈D〉/N , where N is the number of lattice sites,
will be denoted by d. The evaluation of the expectation value of the kinetic
energy necessitates further approximations. We denote the mean number of
up- and down-spin electrons by 〈N↑〉 and 〈N↓〉, respectively. Their densities
are nσ = 〈Nσ〉/N , and n = n↑ +n↓ stands for the electron density. The prob-
ability of finding an empty site is then 1 − n↑ − n↓ + d. Lengthy calculation
gives

E0

N
=
∑

σ

qσεσ + Ud , (35.1.45)

where
εσ =

1
N

∑

|k|<kF

εkσ (35.1.46)

is the average kinetic energy of electrons without correlations and the reduc-
tion factor qσ is

qσ =

[√
(1 − n+ d)(nσ − d) +

√
d(n−σ − d)

]2

nσ(1 − nσ)
. (35.1.47)

For a nonmagnetic half-filled band, where n↑ = n↓ = 1/2, the energy per site
is

E0

N
= 8d(1 − 2d)ε+ Ud . (35.1.48)

Note that ε < 0 for a half-filled tight-binding band. Minimization with respect
to d gives

dmin =
8ε+ U

32ε
≡ 1

4 (1 − U/Uc) , (35.1.49)

where Uc = 8|ε|, and the minimum energy per site is

E0min

N
= ε(1 − U/Uc)2 . (35.1.50)

These expressions are meaningful for U ≤ Uc, since dmin must be positive.
As U increases from U = 0 toward Uc, the density of doubly occupied sites
decreases from the uncorrelated value 1/4 and vanishes at Uc. This state
persists for larger values of U . All sites are singly occupied; the electrons
are localized and frozen on the sites in the ground state. Excitations involve
hopping to an already occupied site. Since this requires overcoming the large
Coulomb energy, a gap appears in the spectrum of charge excitations. The
system that was metallic for small U becomes insulating at Uc.

We thus have the following picture of the metal–insulator transition in
the Brinkman–Rice approach. Electrons move somewhat freely but correlated
when U < Uc. The possible hops are restricted not only by the Pauli exclusion
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principle but also by the Coulomb repulsion. Hopping to a site occupied by
another electron with the same spin is forbidden, whereas hopping to a site
occupied by another electron with opposite spin is allowed, but with a smaller
probability than to an empty site. This latter restriction becomes more and
more stringent as U increases. The effective mass of quasiparticles increases
and the bandwidth narrows. The density of states of the quasiparticles is
displayed in Fig. 35.4. The bandwidth shrinks to zero at the transition and
the effective mass diverges as

m∗ = me
[
1 − (U/Uc)2

]−1
. (35.1.51)

The susceptibility exhibits a similar divergence.

Fig. 35.4. Density of states of quasiparticles in the Brinkman–Rice model of the
metal–insulator transition (a) for U < Uc and (b) for U ≈ Uc

A somewhat different physical picture is obtained when the number of
electrons is varied at a fixed U > Uc. For electron concentration n↑ = n↓ =
1/2−δ, the system is metallic. As the band filling increases, a metal–insulator
transition takes place at δ = 0, where the number of free carriers vanishes. In
contrast to the “bandwidth-controlled” MIT occurring at U = Uc in the half-
filled system, the quasiparticle mass does not diverge in the “filling-controlled”
MIT.

The merit of this variational approach is that it takes into account the
suppression of charge fluctuations by the on-site Coulomb repulsion, but it
fails to include spin–spin correlations between sites.

35.1.4 Numerical Results

The two approaches, the equation-of-motion method and the Brinkman–Rice
model based on the Gutzwiller wavefunction, give different physical pictures
for the metal–nonmetal transition. The existence of narrow bands above and
below the Fermi energy in the insulating state, as predicted in the first method,
seems to be a correct feature. On the other hand, the second approach gives
a better description of the quasiparticles near the Fermi energy, but says
nothing about the states farther away. Calculations for infinite-dimensional
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models indicate that the correct theory should probably unify these features.
Consider a d-dimensional hypercubic lattice, where each atom has 2d nearest
neighbors. The kinetic energy is comparable with the energy correction coming
from the electron–electron interaction in the limit d → ∞, if the hopping
matrix element tij , which is restricted to nearest neighbors, is scaled as t/

√
2d.

The unperturbed density of states is a Gaussian,

ρ(ε) =
1

t
√

2π
exp
(
− ε2

2t2

)
. (35.1.52)

The dynamical mean-field theory is exact owing to the large coordination
number and the transition can be studied with both analytic and numerical
methods.

The results for the infinite-dimensional model are displayed in Fig. 35.5.
Starting from the metallic state in the weak-U limit, the weight of the states
far from the Fermi energy increases gradually as U increases. Two additional
peaks appear in the density of states. They are the precursors of the Hubbard
bands. The central peak at the Fermi energy narrows, the quasiparticle weight
decreases, and the effective mass increases. The density of states gradually
diminishes between the quasiparticle peak and the side peaks, and a pseudogap
develops. Finally, the central peak becomes infinitely narrow at a critical value
of the Coulomb interaction, the effective mass of the quasiparticles diverges,
and the upper and lower Hubbard bands are separated by a true gap of finite

Fig. 35.5. Density of states of the infinite-dimensional half-filled Hubbard model
for several values of U/t. The ratio U/t increase from top to bottom [Reprinted with
permission from A. Georges et al., Rev. Mod. Phys. 68, 13 (1996). © (1996) by the
American Physical Society]
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width. The transition from the metallic phase with quasiparticles near the
Fermi energy to the insulating phase with a completely filled lower Hubbard
band and an empty upper band is of first order.

The first-order nature of the transition is supported by finite-temperature
calculations, which at the same time provide a somewhat different picture for
the appearance of the gap. The spectral function, which is closely related to
the density of states, has a narrow central peak at high temperatures for small
U . The weight of this peak diminishes gradually, as displayed in Fig. 35.6(a),
when U increases. The metalliclike behavior changes into insulatorlike with
no sharp transition at these temperatures.

Fig. 35.6. Frequency dependence of the spectral function of the infinite-dimensional
half-filled Hubbard model for several values of U/W , where W is the bandwidth, at
temperatures (a) T = 0.0276W and (b) T = 0.0103W [Reprinted with permission
from R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001). ©
(2001) by the American Physical Society]

A true metal–insulator transition takes place at lower temperatures. As U
increases, the density of states at the Fermi energy jumps from a finite value
to zero at some Uc1. As expected for first-order transitions and displayed in
Fig. 35.6(b), the transition takes place at a somewhat different Uc2 when U
decreases.

Numerical calculations for the two-dimensional half-filled Hubbard model
give a somewhat different picture for the metal–insulator transition. The two
Hubbard bands are separated by a finite gap for arbitrary positive U in the
ground state. The density of states is finite and the gap is gradually filled
in as the temperature is increased. As seen in Fig. 35.7, the gap turns into a
pseudogap. A broad peak emerges at the Fermi energy at higher temperatures.
The quasiparticles in this peak are responsible for the metallic behavior.



490 35 Strongly Correlated Systems

T t
T t

T t
T t

T tU t

)
(

)
( T t

T t
T t

T t
T t

T t
U t

Fig. 35.7. The density of states of the two-dimensional half-filled Hubbard model
for two values of U/t at different temperatures [S. Onoda and M. Imada, J. Phys.
Soc. Japan, 70, 3398 (2001)]

It is not yet clear which of these scenarios describes better the metal–
insulator transition in three-dimensional models. It is clear, however, that
these mechanisms can explain the transition only in half-filled systems. Dif-
ferent mechanisms, such as the Anderson localization due to disorder, should
also be taken into account if we want to explain the occurrence of the insu-
lating phase for electron concentrations away from half filling.

35.1.5 Other Phases of the Hubbard Model

It was assumed in the foregoing discussion that the uncorrelated band is half
filled. In that case the Coulomb repulsion may localize the electrons to the
lattice sites. Since doubly occupied sites tend to be forbidden, all sites are
singly occupied and the motion of electrons is frozen out. It may be more
interesting to ask what happens if the number of carriers is varied by changing
the dopant concentration and the band filling deviates slightly from half filling.
When the number of electrons is somewhat less than the number of sites, the
empty sites allow the propagation of electrons even if U is large and doubly
occupied sites are forbidden. Electrons on singly occupied sites can exchange
their spins and the effective Hamiltonian can be written in the form

H = t
∑

i,j,σ

c†i,σcj,σ − J
∑

〈i,j〉
si · sj . (35.1.53)

This model, known as the t–J model, should be solved with the condition
that only empty and singly occupied sites are permitted. Doubly occupied
sites are forbidden. The propagation of empty sites (holes) gives a metallic
character to the otherwise magnetic system. This can be of particular interest
in two-dimensional materials, where the metallic phase might become super-
conducting.

We consider first the case when the band is almost half filled. There are
just a few empty sites, holes. An electron can hop to an empty site from a
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neighboring singly occupied site. Formulating differently, the holes propagate.
This has two consequences. The system gains in kinetic energy, but at the same
time the antiferromagnetic order of the spins created by the antiferromagnetic
coupling J is partially destroyed and the exchange energy increases. For large
U , where J ∝ t2/U is small, the gain in kinetic energy may compensate
this loss and the ferromagnetic or paramagnetic state may be energetically
more favorable than the antiferromagnetic state. This is indeed the result in
a mean-field approximation. The phase diagrams determined for the two- and
three-dimensional Hubbard models in MFA are displayed in Fig. 35.8.

8
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d = 2 d = 3
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n
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Fig. 35.8. Mean-field phase diagram of the Hubbard model as a function of U/t and
the band filling in two and three dimensions. P, AF, and F represent paramagnetic,
antiferromagnetic, and ferromagnetic phases, respectively. The spiral phases are not
marked for simplicity. Solid lines indicate second-order transitions and dashed lines
indicate first-order transitions [Reprinted with permission from J. E. Hirsch, Phys.
Rev. B 31, 4403 (1985) and D. R. Penn, Phys. Rev. 142, 350 (1966). © by the
American Physical Society]

The antiferromagnetic phase is only stable at and near half-band filling.
The critical coupling for antiferromagnetic ordering is Uc = 0, since bipartite
lattices were considered, where the Fermi surface of the half-filled model has
the perfect nesting property. The electron system is metallic except for n = 1.
The antiferromagnetic region near half filling may become insulating when
Anderson localization due to disorder is taken into account. As the electron
density is increased or decreased, the paramagnetic state has lower energy in
the weakly correlated phase, while a transition to a ferromagnetic state occurs
for large U values, as predicted by the Stoner condition. The paramagnetic
phase is stable for large concentrations of holes.

Although mean-field theory usually provides a good approximation for
three-dimensional system, it is not necessarily so for the Hubbard model
with nearest-neighbor hopping on a bipartite lattice. The Fermi surface of
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the tight-binding model may have the nesting property and anomalies charac-
teristic of quasi-one-dimensional systems may appear. An additional difficulty
arises in the two-dimensional model from the Van Hove singularities of the
density of states, all of which may lead to the appearance of new phases. Such
a possible new phase is the unconventional d-wave superconducting state with
dx2−y2 symmetry.

There are strong indications from numerical calculations that the electrons
do indeed form Cooper pairs with d-wave symmetry, even though the only
interaction taken into account is the Coulomb repulsion. The superconducting
state may be the stable phase close to half filling if U is not too large compared
to the bandwidth. The numerically determined phase diagram of the two-
dimensional Hubbard model is shown in Fig. 35.9 for fixed U as a function of
temperature and band filling.

Fig. 35.9. Numerically determined temperature–doping phase diagram of the two-
dimensional Hubbard model [M. Jarrell et al., Europhys. Lett. 56, 563 (2001)]

d-wave superconductivity can be further stabilized when hopping to next-
to-nearest neighbors is also allowed. To what extent these results on the two-
dimensional Hubbard model are relevant in understanding the experimentally
observed unconventional superconductivity in a variety of materials is still an
open question.

35.2 Magnetic Impurities in Metals

We have learned from the Hubbard model that new features may show up com-
pared to the noninteracting electron gas if the intra-atomic Coulomb repulsion
is comparable to the bandwidth. It is even more so when we are dealing not
with one type of electrons, but with two bands of different symmetry, when an
s and a d band or an s and an f band, are close to the Fermi energy and both
affect the behavior of the system. Before turning to this problem we discuss
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a simpler situation when a single transition metal or rare-earth atom with an
incomplete d or f shell is embedded in a metallic host with a single s band.
In what follows, for the sake of simplicity, we will talk about a d level, but
the results are valid for rare-earth impurities as well.

First, we consider the Anderson model and study the condition for the for-
mation of a localized magnetic moment. We then turn to the Kondo problem
and try to answer the question about what happens around the paramag-
netic impurity as conduction electrons scattered off it. This problem is of
interest not only on its own right. The methods worked out for solving the
Kondo problem can be used in many other fields of physics. We will use the
renormalization group and scaling arguments to describe the behavior down
to the Kondo temperature, and then the local-Fermi-liquid theory and the
numerical renormalization-group method to get the ground state and the low-
temperature properties.

35.2.1 The Anderson Model

For the sake of simplicity we will forget about the degeneracy of the d and f
shells of the transition metal and rare-earth ions, respectively, and assume that
the impurity atom has a single nondegenerate level. It will be called a d level
and its energy is denoted by εd. This level can be at most doubly occupied.
Because of the Coulomb repulsion, the energy of the doubly occupied state is
not simply 2εd but 2εd +U . Moreover, since the wavefunction of the d level is
not orthogonal to the states of the conduction band, they may be hybridized.
P. W. Anderson (1961) proposed the Hamiltonian

H =
∑

kσ

εkc
†
kσckσ +

∑

σ

εdd
†
σdσ + Und↑nd↓

+
1√
V

∑

kσ

(
Vdkc

†
kσdσ + Vkdd

†
σckσ

) (35.2.1)

to describe the system of conduction electrons interacting with a single im-
purity. This is the nondegenerate single-impurity Anderson model. It could
be extended to the degenerate case by taking into account the intra-atomic
exchange processes mentioned in Chapter 28 when the Hubbard model was
introduced.

Consider first a free ion. It has four possible states. The d level is empty
in state |d0〉, it is occupied by an electron with spin σ in state |d1

σ〉, and it is
doubly occupied by electrons with opposite spins in state |d2〉. The energies
of these states are

ε(d0) = 0 , ε(d1
σ) = εd , ε(d2) = 2εd + U . (35.2.2)

The ground state of the ions has a magnetic moment if the magnetic doublet
is the lowest energy state, that is if
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ε(d2) − ε(d1
σ) = εd + U > 0 ,

ε(d0) − ε(d1
σ) = −εd > 0 .

(35.2.3)

Written in a different form,

− 1
2U < εd + 1

2U < 1
2U . (35.2.4)

When this ion is an impurity atom in a metal, the filling of the level depends
on its position relative to the chemical potential. If hybridization is weak,
conduction electrons can be distinguished from d electrons, and the states of
both subsystems are filled up to the Fermi energy. The relevant one-particle
energies, εk and εd, are measured from the Fermi energy and the notation
ξk = εk − μ will be used. We expect that the situations when both εd and
εd + U are well below or well above the Fermi energy are physically not very
interesting. The d level is practically filled with two electrons in the first
case and the impurity atom has no magnetic moment. On the other hand,
the d level is practically always empty in the other case; it is unavailable for
conduction electrons near the Fermi energy. These states do not participate
in the interesting scattering processes.

The interaction between the impurity atom and the conduction electrons
will strongly influence the properties of the metallic host in two special cases.
First, when εd or εd + U is close to the Fermi energy. Hybridization with the
conduction electrons broadens the sharp d levels of the ion. The empty, singly
occupied, and doubly occupied states occur with nonvanishing probability and
the fluctuating magnetic moment may disappear. It is dissolved in the metal.
Charge fluctuations are then more important than spin fluctuations, and the
number of electrons on the d level is not an integer. The impurity atom has
an intermediate valence or mixed valence. We encounter this situation in rare-
earth compounds where the paramagnetic ions constitute a regular sublattice
and the f levels form a narrow band. We will return to the physics of such
systems later on.

Another interesting situation occurs when εd is well below the Fermi energy
and εd+U lies well above. The impurity is then practically always singly occu-
pied notwithstanding the hybridization. It has a localized magnetic moment,
although the orientation of the moment is not fixed rigidly. The interaction
of the conduction electrons with this rapidly fluctuating magnetic moment
opens a new channel for the scattering of electrons. The fundamental ques-
tions the Anderson model has to answer are as follows: when will a fluctuating
localized magnetic moment appear, how will conduction electrons scattering
off them influence the properties of the metal, and if charge fluctuations are
more important than spin fluctuations, what is their role.

35.2.2 Formation of the Localized Moment

We will neglect the Coulomb repulsion in the first step and study the effect
of hybridization on the atomic level when εd is below the Fermi energy but
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within the conduction band. Since hybridization is described by a bilinear
operator, the Hamiltonian

H =
∑

kσ

ξkc
†
kσckσ + εdd

†
σdσ +

1√
V

∑

k

(
Vdkc

†
kσdσ + Vkdd

†
σckσ

)
(35.2.5)

can readily be diagonalized by the unitary transformation

α†
nσ =

1√
V

∑

k

φ∗nkσc
†
kσ + φ∗ndσd

†
σ , αnσ =

1√
V

∑

k

φnkσckσ + φndσdσ .

(35.2.6)
If these operators are the creation and annihilation operators of new particles
with energies Enσ, and the Hamiltonian is diagonal in terms of them, they
should satisfy the relations

[H, α†
nσ

]
− = Enσα

†
nσ ,

[H, αnσ

]
− = −Enσαnσ . (35.2.7)

The unknown coefficients of the transformation and the eigenvalues can be
calculated from these equations using the relations

[H, c†kσ

]
− = ξkc

†
kσ +

1√
V
Vkdd

†
σ ,

[H, d†σ
]
− = εdd

†
σ +

1√
V

∑

k

Vdkc
†
kσ .

(35.2.8)

We find

Enσφnkσ = ξkφnkσ + Vkdφndσ ,

Enσφndσ = εdφndσ +
1
V

∑

k

Vdkφnkσ .
(35.2.9)

Expressing φnkσ from the first equation and inserting it into the second one
give a self-consistency condition:

Enσ = εd +
1
V

∑

k

|Vkd|2
Enσ − ξk

. (35.2.10)

The solutions of this equation can be found numerically in the usual way.
They lie inside the conduction band, slightly shifted from the unperturbed
energies. They get somewhat closer to each other near εd, which results in
an increase in the density of states. This increase can be interpreted as the
broadened density of states of the d level. It can be calculated from the Green
function of d electrons via

ρdσ(ε) = − 1
π

ImGdσ(ε/�) , (35.2.11)

where Gdσ(ω) is the Fourier transform of the retarded Green function
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Gdσ(t) = − i
�
θ(t)
〈[
dσ(t), d†σ(0)

]
+

〉
. (35.2.12)

Solving the equation of motion of the Green function we readily find in the
limit U = 0 that the density of states of the d level is a Lorentzian,

ρdσ(ε) =
1
π

Δ

(ε− εd)2 +Δ2
(35.2.13)

with width

Δ = π
1
V

∑

k

|Vkd|2δ(ε− ξk) = 1
2π
〈|Vkd|2

〉
ρ(εF) , (35.2.14)

where ρ(εF) is the density of states of conduction electrons at the Fermi energy.
If the interaction with the impurity is treated as a scattering problem, this
peak in the density of states can be viewed as a consequence of the phase shift
suffered by the conduction electrons when they are scattered by the impurity.
The two are related according to scattering theory via

ρdσ(ε) =
1
π

dδ(ε)
dε

. (35.2.15)

For scattering by d electrons, the phase shift of the l = 2 partial wave is
the relevant quantity, but the factor 2l + 1 in (16.4.53) is neglected since we
consider a nondegenerate level.

The narrow peak in the density of states is then interpreted as a resonance
occurring at the position of the d level owing to the hybridization. The phase
shift

δ(ε) =
π

2
+ arccot

ε− εd

Δ
(35.2.16)

is 0 or π for energies far from εd and it is π/2 at εd. We know that the scattering
cross section and the resistivity contain the square of sin δ taken at the Fermi
energy. Thus scattering by the impurity gives an important contribution to
the resistivity only if the resonance is close to the Fermi energy.

Returning now to the question of the formation of the localized magnetic
moment, we will consider the effect of the Coulomb term in a mean-field
approximation. If, as usual, the four-operator term is decoupled by replacing
products of two operators with their mean values, the effective Hamiltonian
for spin σ electrons is

Hσ =
∑

k

ξkc
†
kσckσ + εdd

†
σdσ + U〈nd,−σ〉ndσ

+
1√
V

∑

k

(
Vdkc

†
kσdσ + Vkdd

†
σckσ

)
.

(35.2.17)

It is similar to the Hamiltonian discussed for U = 0 if εd is replaced with
εd +U〈nd,−σ〉. Repeating the same steps as above, the energy eigenvalues are
obtained from the solution of the equation



35.2 Magnetic Impurities in Metals 497

Enσ = εd + U〈nd,−σ〉 +
1
V

∑

k

|Vkd|2
Enσ − ξk

. (35.2.18)

Comparison with (35.2.10) shows that the Coulomb repulsion yields a spin-
dependent energy shift. The density of states is given by

ρdσ(ε) =
1
π

Δ
[
ε− (εd + U〈nd,−σ〉)

]2 +Δ2
, (35.2.19)

that is a resonance of width Δ appears at εd +U〈nd,−σ〉. The actual filling of
the d level at T = 0 is given by the integral of the density of states up to the
Fermi energy, which – since the one-particle energies are measured from the
Fermi energy – is at ε = 0. We find

〈ndσ〉 =
1
π

0∫

−∞

Δ
[
ε− (εd + U〈nd,−σ〉)

]2 +Δ2
dε

=
1
π

arccot
εd + U〈nd,−σ〉

Δ
.

(35.2.20)

When the equations for the two spin orientations are solved self-consistently,
one possible solution is an unpolarized state: 〈nd↑〉 = 〈nd↓〉 = 1

2nd. The so-
lution is especially simple in the symmetric case, when εd + 1

2U = 0, which
means that the empty and doubly occupied levels lie symmetrically with re-
spect to the Fermi energy. If the d level is half filled, nd = 1, 〈ndσ〉 = 1

2 , and
the resonance is right at the Fermi energy for both spin orientations, as shown
in Fig. 35.11(a). Note that the resonance is not exactly at the Fermi energy
in the nonsymmetric case. The filling of the d level is such that εd + 1

2Und;
the position of the resonance peak should be close to the Fermi energy.

This nonmagnetic solution is stable for weak Coulomb repulsion. It be-
comes unstable for large values of U/Δ. The states for the two spin orien-
tations are unequally populated in the stable solution and the d level has
a paramagnetic moment. The critical Uc above which this happens can be
calculated from the equations derived above. For this we assume that

〈ndσ〉 = 1
2nd + σδnd (35.2.21)

and substitute it into (35.2.20). The zeroth-order terms in δnd on the two
sides of the equation yield

nd =
2
π

arccot
εd + 1

2Ucnd

Δ
, (35.2.22)

and the first-order terms give

1 =
Uc

πΔ

1

1 +
[
(εd + 1

2Ucnd)/Δ
]2 . (35.2.23)
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This system of equations can be solved self-consistently at a fixed value of
εd/Δ for Uc/Δ. Localized magnetic moment appears for U/Δ larger than this
critical value. Figure 35.10 displays the region where this happens compared
to the region where the s = 1/2 doublet is the energetically favored solution
for a free atom.

d U

U U

d 0

d 2

d
1

( )a ( )b

d U

Fig. 35.10. The domain in the space εd + U/2 vs. U where (a) the doublet is
energetically favored in the free atom and (b) localized paramagnetic moment is
predicted by the Anderson model

Hybridization with the conduction electrons makes the formation of mag-
netic moment more difficult, since hybridization broadens the d level. The
spin splitting which might arise from the Coulomb repulsion does not occur
unless the splitting is larger than the level broadening. The critical coupling
for the appearance of the localized moment is Uc = πΔ in the symmetric case.
When U exceeds this critical value, two resonances are found, one below, the
other above the Fermi energy. Their widths are identical and their positions
shift gradually toward εd and εd +U . This situation is shown in Fig. 35.11(b).
Practically only one of the resonances is filled.

d ( )d ( )

d Ud
( )a ( )b

Fig. 35.11. Mean-field result for the d-level density of states: (a) in the unpolarized
state, for U < πΔ and (b) in the polarized state, for U > πΔ

35.2.3 Better Treatment of the Anderson Model

The localized magnetic moment appears at a well-defined critical value of the
Coulomb repulsion in the Hartree–Fock treatment of the Anderson model. The
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impurity being a zero-dimensional object, one can ask how quantum fluctua-
tions, which are strongly enhanced in low dimensions, modify this result.

Consider the Anderson model in the parameter range where the Hartree–
Fock approach predicts a localized moment. We know that even if U is large
and the singly occupied site is energetically more favorable than the empty
or doubly occupied site, the d electron can hop into the conduction band or a
conduction electron can hop onto a singly occupied site for a short period. Al-
though the impurity is singly occupied most of the time, the orientation of the
magnetic moment may fluctuate with a characteristic time τ via these hopping
processes. This time defines a characteristic temperature by the relation

kBTK =
�

τ
. (35.2.24)

We expect that at temperatures above TK the impurity behaves as if it had
a well-defined paramagnetic moment, exhibiting a Curie-like temperature de-
pendence of the susceptibility. Correlations between the d electrons responsible
for the magnetic moment and the conduction electrons become important at
temperatures below TK, and the model has to be treated in a better approxi-
mation than mean-field theory.

The scaling theory and the numerical renormalization group to be dis-
cussed later in connection with the Kondo problem can be applied to the
Anderson model as well. As shown in Fig. 35.12, three distinct types of be-
havior are found in the symmetric model.

T

TD

U

plane

plane

Free-orbital regime

Local-
moment
regime

Strong-

coupling

regime Surface

U

T

T TK( )

U

U,

Fig. 35.12. Schematic phase diagram for the symmetric Anderson model in the
space spanned by the temperature T , the Coulomb energy U , and the d-level width
Δ [Reprinted with permission from H. R. Krishna-murthy, J. W. Wilkins, and K. G.
Wilson, Phys. Rev. B 21, 1003 (1980). © (1980) by the American Physical Society]

One possibility is that the impurity is decoupled from the conduction elec-
trons. We are then dealing with a free electron system plus a free impurity.
This free orbital limit, where the empty, singly occupied, and doubly occupied



500 35 Strongly Correlated Systems

impurity states occur with equal probability, is realized at high temperatures.
Localized magnetic moment is formed at lower temperatures, for kBT < U/10,
if U > πΔ, that is in the parameter range where mean-field theory predicts
the appearance of a localized moment. The impurity atom is singly occupied
and gives a Curie-like 1/T contribution to the susceptibility, as expected for
a paramagnetic impurity. The susceptibility does not diverge, however, when
T → 0. At very low temperatures, below a characteristic TK, the localized mo-
ment is frozen out as if the correlation between the conduction electrons and
the electron sitting on the impurity was screening the magnetic moment, and
the susceptibility saturates at a finite value at zero temperature. In the limit
when the conduction electron bandwidth is larger than U , the characteristic
temperature is given by

kBTK =
(

2UΔ
π2

)1/2

exp
(
πεd(εd + U)

2UΔ

)
. (35.2.25)

The electron system behaves as a normal Fermi liquid in this strong-coupling
regime. The free orbital regime directly crosses over to Fermi-liquid behavior
as the temperature is decreased for U < πΔ.

An interesting new feature of the asymmetric Anderson model is the ap-
pearance of a fourth régime in which the energy difference between the empty
and singly occupied levels is comparable with the thermal energy and the
doubly occupied state lies much higher. The impurity then fluctuates between
the d0 and the d1 configurations. This is the valence-fluctuation regime. Lo-
calized moment may be formed at lower temperatures but will eventually be
quenched below TK.

These results on the behavior in the various regimes were confirmed an-
alytically when it was discovered that the Anderson model, if reformulated
somewhat without changing its physical content, can be solved exactly by the
Bethe ansatz.

The density of states and the correlation functions, however, are not ac-
cessible from the exact solution. Detailed numerical and analytical studies,
which cannot be repeated here, have shown that an extra, resonancelike peak
appears in the density of states at low temperatures near the Fermi energy in
addition to the two peaks corresponding to the spin-split d level. The extra
peak, which arises from the interaction of the conduction electrons with the
d electrons, is exactly at the Fermi energy in the symmetric model. This is
displayed in Fig. 35.13.

It can be shown that the peak at the Fermi energy exists for arbitrary
values of U/Δ and its height is exactly

ρdσ(0) =
1
πΔ

(35.2.26)

in the symmetric case. This peak is known as the Abrikosov–Suhl reso-
nance9 or Kondo peak . Its existence is important in understanding the low-
9

A. A. Abrikosov, 1965, and H. Suhl, 1965.
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Fig. 35.13. (a) Density of states of the Anderson model for several values of U/Δ
[T. A. Costi and A. C. Hewson, Phil. Mag. B 65, 1165 (1992)]. (b) Broadening of the
central Abrikosov–Suhl resonance as the temperature is increased [Reprinted with
permission from B. Horvatić et al., Phys. Rev. B 36, 675 (1987). © (1987) by the
American Physical Society]

temperature behavior of localized magnetic moments. We shall return to it
when the Kondo model is studied, where the configurations d0 and d2 of the
impurity can be neglected and only the dynamics of the localized moment is
considered.

35.2.4 Kondo Model

We have learned above that when the energy of the d level is below the
Fermi energy and U is large, the impurity is in the local-moment regime. The
d level is singly occupied in the physically relevant states and its filling is
practically unity. The empty and doubly occupied states can be neglected. J.

R. Schrieffer and P. A. Wolff (1966) have shown that if only the spin-
doublet state of the impurity is kept, the Hamiltonian of the Anderson model
can be mapped by a canonical transformation to the s–d exchange model,

H =
∑

kσ

ξkc
†
kσckσ − 1

V

∑

kk′
αβ

Jkk′S · σαβc
†
k′αckβ , (35.2.27)

where ξk = εk−μ is the electron energy measured from the chemical potential
and, as shown in Appendix I, the strength of the exchange coupling is given
by

Jkk′ = − 1
2VkdVdk′

[
1

εd + U − ξk
+

1
εd + U − ξk′

+
1

ξk − εd
+

1
ξk′ − εd

]
.

(35.2.28)
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In addition to this term a spin-independent scattering potential also appears,
though its effect can be neglected in most of the calculations.

Since εd < 0 and εd + U > 0 in the local-moment regime, the exchange
coupling is antiferromagnetic, Jkk′ < 0, for electrons in the vicinity of the
Fermi energy where

|ξk|, |ξk′ | � |εd| and |ξk|, |ξk′ | � |εd + U | . (35.2.29)

In what follows, we will neglect the momentum dependence of this coupling,
and – following the literature – the interaction is chosen in the form

Hint =
J

V

∑

kk′

[
S+c†k′↓ck↑ + S−c†k′↑ck↓ + Sz

(
c†k′↑ck↑ − c†k′↓ck↓

)]
, (35.2.30)

where J > 0 corresponds to the antiferromagnetic case.
This interaction was used by Kondo in his celebrated paper in 1964 to

explain the resistivity minimum in metals (see Section 24.4.3) at low tem-
peratures. The s–d interaction is therefore often referred to as the Kondo
Hamiltonian and the problem of a single magnetic impurity embedded in a
metal as the Kondo problem.

35.2.5 Perturbative Treatment of the Kondo Problem

We have seen in our study of the transport properties in Chapter 24 that
scattering by paramagnetic impurities gives rise to a strongly temperature-
and energy-dependent cross section. Perturbation theory gives a logarithmi-
cally singular cross section at T = 0 for electrons on the Fermi surface and a
logarithmically increasing contribution was found in the resistivity:

Rimp ∼ Ni

[
J + J2ρ ln

D

kBT
+ · · ·

]2
. (35.2.31)

A band of width 2D symmetric about the Fermi energy with a constant density
of states ρ was assumed in this calculation. This infrared divergence is the
consequence of an internal degree of freedom, the spin, of the paramagnetic
impurity, which can be flipped without cost of energy.

Similar logarithmic corrections appear in perturbation theory for other
physical quantities as well. The first logarithmic correction to the susceptibil-
ity of the paramagnetic atom appears in second order in J . When calculating
the magnetization and the change in the susceptibility, we also have to take
into account the contributions of the conduction electrons. For simplicity we
assume that the g factor of the localized spin is the same ge as for free elec-
trons. The magnetization is then

Mimp(H,T ) = geμB
(〈Sz + σz

cond〉 − 〈σz
cond〉0

)
, (35.2.32)
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where σz
cond is the component of the total spin of conduction electrons in the

direction of the external field. The term to be subtracted is the value for a
noninteracting electron system. The perturbative result is

χimp =
S(S + 1)

3kBT
(geμB)2μ0

(
1 − Jρ− J2ρ2 ln

D

kBT
+ · · ·

)
. (35.2.33)

At T = 0, where a small magnetic field can saturate the magnetic moment,
logarithmic corrections are found in the field dependence of the magnetization:

Mimp(H) = geμBS

(
1 − Jρ− J2ρ2 ln

D

μBμ0H
+ · · ·

)
. (35.2.34)

In contrast to the temperature-dependent corrections, which can be observed
above a characteristic temperature TK, this logarithmic field dependence can-
not be observed. As will be seen, the impurity spin will not be aligned at low
temperatures in the direction of the field owing to a screening cloud.

The first logarithmic corrections to the entropy and the heat capacity
appear in the fourth and fifth powers of J ,

Simp(T ) = kB ln(2S + 1) − π2

3
kBS(S + 1)(Jρ)3

×
(

1 + 3Jρ ln
D

kBT
+ 6J2ρ2 ln2 D

kBT
+ · · ·

)
,

(35.2.35)

and

Cimp(T ) = T
∂Simp

∂T
= kBπ

2S(S+1)(Jρ)4
(

1+4Jρ ln
D

kBT
+ · · ·

)
. (35.2.36)

It was pointed out already in Chapter 24 that the higher order corrections
involve higher powers of the logarithmic temperature-dependent factor. In the
resistivity or susceptibility, for example, the most singular contributions are
of the type

Jn lnn−1 D

kBT
(35.2.37)

in nth order of perturbation theory. When self-energy corrections to conduc-
tion electrons are considered at T = 0, corrections of the type

Jn lnn−1 D

ε
(35.2.38)

appear. These are the so-called leading logarithmic corrections. When the
properties of the impurity spin or the conduction electron system are studied
at low temperatures, at kBT � D, or close to the Fermi energy, for ε � D,
all these corrections have to be collected and summed up to infinity. This
can be achieved if we notice that the coefficients of the leading logarithmic
corrections for the resistivity, susceptibility, entropy, and heat capacity are
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simply related. The terms form geometric progressions which can be summed
up to yield

Rimp ∼ Ni
J2

[1 − Jρ ln(D/kBT )]2
,

χimp =
S(S + 1)

3kBT
(geμB)2μ0

[
1 − Jρ

1 − Jρ ln(D/kBT )

]
,

Simp(T ) = kB ln(2S + 1) − π2

3
kBS(S + 1)(Jρ)3

[
1 − Jρ ln(D/kBT )

]3 ,

Cimp(T ) =
π2kBS(S + 1)(Jρ)4
[
1 − Jρ ln(D/kBT )

]4 .

(35.2.39)

Introducing the Kondo temperature defined by

kBTK = De−1/Jρ , (35.2.40)

the previous results take very simple concise forms:

Rimp ∼ Ni
1

ln2(T/TK)
,

χimp =
S(S + 1)

3kBT
(gμB)2μ0

[
1 − 1

ln(T/TK)

]
,

Simp(T ) = kB ln(2S + 1) − π2

3
kBS(S + 1)
ln3(T/TK)

,

Cimp(T ) =
π2kBS(S + 1)

ln4(T/TK)
.

(35.2.41)

These expressions demonstrate that the physical quantities have a univer-
sal temperature dependence through ln(T/TK). Everything that is specific to
the host (bandwidth, density of states) or that characterizes the interaction
(the coupling constant J) is incorporated into TK.

35.2.6 Scaling Theory of the Kondo Problem

Note that lower powers of the logarithmic factor ln(D/kBT ) may also appear
in perturbation theory. These subleading corrections should also be collected
if we wish to correctly describe the physical properties at low temperatures.
The summation of the leading and next-to-leading logarithmic corrections
can be achieved and the universal behavior of the Kondo problem can be
demonstrated more simply in the scaling theory. For this we take a more
general model, in which the coupling constant of the spin-flip processes differs
from that of the spin-conserving processes. Instead of using (35.2.30), we write
the interaction Hamiltonian in the form
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Hint =
1
V

∑

kk′αβ

[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]
c†k′αckβ (35.2.42)

and apply the “poor man’s” scaling procedure described in Appendix M. We
eliminate the states near the band edges by reducing the cutoff D to D− δD.
The contribution of these degrees of freedom should be compensated by a
change of the coupling constants to describe the same physics. The invariance
of the physical properties is enforced in this procedure by requiring invariance
of the matrix elements of the scattering matrix T for states in the vicinity of
the Fermi energy.

The first correction to the effective interaction is

δHint =
(

1
V

)2 ∑

k1k2αβ

[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]
c†k1αck2β

(35.2.43)

×P 1
z −H0

∑

k3k4γδ

[
J±
(
S+σ−

γδ + S−σ+
γδ

)
+ JzS

zσz
γδ

]
c†k3γck4δ

according to (M.1.30), where z is the energy of the initial state, and P is a
projection operator. It projects onto the subspace in which the intermediate
state contains at least one particle near the upper band edge in the range
of width δD, or at least one hole near the lower band edge, in the range of
width δD. In our specific example the electron created by the operator c†k3γ

has to be near the upper band edge and the hole created by the annihilation
operator ck4δ has to be near the lower band edge.

The correction to the Hamiltonian, δHint, describes an effective impurity-
scattering process of an electron lying near the Fermi surface if the electron
created near the upper band edge in the first interaction is destroyed in the
second interaction, or if the hole created near the lower band edge in the first
scattering process is filled by an electron in the second step. This means that
k2 = k3, β = γ in the first case and k1 = k4, α = δ in the second case. These
processes are displayed in Fig. 35.14.

Fig. 35.14. Effective single-particle scattering processes in the lowest order of renor-
malization

The details of the calculations are given in Appendix M. Here we only list
the result. Neglecting the terms which yield a potential scattering, since they



506 35 Strongly Correlated Systems

are irrelevant for the physics of the Kondo problem, the same types of spin-flip
and spin-conserving terms are obtained that exist in the bare Hamiltonian.
After a change of the summation variables we get

δHint =
1
V

∑

kk′αβ

[
δJ±
(
S+σ−

αβ + S−σ+
αβ

)
+ δJzS

zσz
αβ

]
c†k′αckβ , (35.2.44)

where
δJ± = − ρ δD

z −D
J±Jz , δJz = − ρ δD

z −D
J2
± . (35.2.45)

When the scattering of particles in the vicinity of the Fermi energy is consid-
ered, their energy can be neglected compared to the cutoff and we find

δJ± =
ρ δD

D
J±Jz , δJz =

ρ δD

D
J2
± . (35.2.46)

These equations can be written in a differential form for an infinitesimal
change of the cutoff. Since the bandwidth was decreased by δD (the cutoff D
was changed by −δD), a minus sign appears in the differential equation:

dJ±
dD

= − ρ

D
J±Jz ,

dJz

dD
= − ρ

D
J2
± . (35.2.47)

Integration of these equations gives the renormalized value of the coupling
for a given cutoff. Figure 35.15 shows the flow diagram of the renormalized
couplings. Arrows indicate the variations of the couplings as the cutoff is
decreased.

Fig. 35.15. Flow diagram of the renormalized couplings of the anisotropic Kondo
model

The renormalized coupling weakens and vanishes at the fixed point for
an isotropic ferromagnetic (J± = −Jz) model. A potential-scattering term
may survive, but the amplitude of the spin-flip processes is scaled out. This
indicates that a ferromagnetic s–d coupling is irrelevant. In contrast to this
behavior, the antiferromagnetic exchange (J± = Jz > 0) is relevant.10 The
10 It is only marginally relevant in a strict sense, since the renormalized coupling

increases quadratically and not linearly for small bare couplings.
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coupling constant of the effective model increases as the states near the band
edge are gradually integrated out. The Kondo model scales toward strong
coupling. Similar behavior is found in the anisotropic model when both J± and
Jz are positive, or when Jz is negative but J± > |Jz|. The scaling equations
have a fixed line, J± = 0. This line is stable for Jz < 0 and unstable for
Jz > 0.

When the couplings are relevant and scale to strong coupling, the higher
order corrections to the flow equations cannot be neglected. The next, third-
order corrections are determined in Appendix M. We then get the scaling
equations given in (M.1.42):

dJ±
dD

= − ρ

D

[
J±Jz − 1

4

(
J±J2

z + J3
±
)
ρ+ · · · ] ,

dJz

dD
= − ρ

D

[
J2
± − 1

2J
2
±Jzρ+ · · · ] .

(35.2.48)

A new fixed point appears for antiferromagnetic couplings with a fixed-
point value of order unity. Since the further corrections are of equal impor-
tance, this fixed point is an artifact of the approximation. The third-order
corrections to the scaling equations can only be used to sum up the next-to-
leading logarithmic corrections and to extend the validity of the perturbative
expressions to somewhat lower temperatures, but they cannot predict the
ground-state properties.

Introducing the dimensionless coupling g = Jρ in the isotropic case, the
scaling equations in (35.2.48) take the form

D
dg
dD

≡ dg
d lnD

= −(g2 − 1
2g

3 + · · · ) , (35.2.49)

or dividing both sides by g,

d ln g
d lnD

= −(g − 1
2g

2 + · · · ) . (35.2.50)

Written in a more general form, the renormalized coupling satisfies a differ-
ential equation

d ln g
d lnD

= β(g) . (35.2.51)

The zeros of the β function give the fixed points of the renormalization trans-
formation. The coupling remains unchanged when it reaches a fixed-point
value. The sign of the β function near the fixed point determines whether the
flow of the coupling is toward the fixed point (such a fixed point is stable,
the deviation of the coupling from the fixed-point value is irrelevant) or away
from the fixed point (such a fixed point is unstable, the coupling is relevant).

The solution of (35.2.51) yields the renormalized coupling when the band-
width cutoff is scaled from D to D′. In an implicit form
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g(D′)∫

g

dg′

g′
1

β(g′)
=

D′∫

D

dD′′

D′′ . (35.2.52)

Only the first two terms of the power series of the β function are known for the
Kondo problem. Taking the first term, the renormalized coupling is obtained
from the solution of the equation

g(D′)∫

g

dg′

g′2
= −

D′∫

D

dD′′

D′′ . (35.2.53)

It is readily found that

g(D′) =
g

1 + g ln(D′/D)
. (35.2.54)

This expression can be used to sum up the leading logarithmic corrections in
perturbation theory. Looking at the perturbative corrections for the Kondo
problem we readily see that all logarithmic corrections vanish at a finite tem-
perature TD where the thermal energy kBTD is equal to the bandwidth D.
The susceptibility, for example, for which the perturbation series is given in
(35.2.33), takes the form

χimp(TD) =
S(S + 1)
3kBTD

(geμB)2μ0 (1 − g) (35.2.55)

at kBTD = D. It follows from the scaling theory that if this quantity is to be
determined at a temperature T , this expression can be used by substituting g
with the renormalized coupling calculated with the cutoff DT = kBT , that is

χimp(T ) =
S(S + 1)

3kBT
(geμB)2μ0

[
1 − g(DT )

]

=
S(S + 1)

3kBT
(geμB)2μ0

[
1 − g

1 + g ln(kBT/D)

]
.

(35.2.56)

This is indeed identical with the expression given in (35.2.39), which was
derived by summing up the leading logarithmic corrections. The perturbative
expressions derived for the other physical quantities, e.g., for the entropy or
heat capacity, can be obtained similarly. Thus the scaling hypothesis allows us
to sum up the leading logarithmic terms if the first perturbative logarithmic
correction is known.

The renormalized coupling of the Kondo problem increases as the cutoff
decreases and diverges in our present approximation when a small but finite
bandwidth D∗ is reached, before all band states are scaled out. Although this
scaling theory, which is based on perturbation theory, makes sense only until
the renormalized coupling does not exceed unity, we might formally continue
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using the scaling equations to D∗. Introducing the characteristic temperature
T ∗ defined by D∗ = kBT

∗, we integrate the scaling equation up to this cutoff.
We have

∞∫

g

dg′

g′2
= −

kBT∗∫

D

dD′′

D′′ . (35.2.57)

The solution of this equation gives

kBT
∗ = D exp (−1/Jρ) (35.2.58)

for the characteristic temperature. This temperature is the same as the Kondo
temperature TK introduced earlier. Expressing the renormalized coupling in
terms of it we get

g(T ) =
1

ln(T/TK)
. (35.2.59)

This indicates that the physical quantities depend on the temperature only
through ln(T/TK), as has been seen earlier.

The expressions obtained by summing up the leading logarithmic correc-
tions are valid for T  TK, where the scaled coupling is still weak. We can go
beyond this approximation by taking into account the next-to-leading correc-
tion to the β function. For this we have to solve the equation

g(D′)∫

g

dg′

g′2 − 1
2g

′3 = −
D′∫

D

dD′′

D′′ . (35.2.60)

Expanding the integrand on the left-hand side for g < 1 we get

g(D′)∫

g

dg′
[

1
g′2

+
1

2g′

]
= −

D′∫

D

dD′′

D′′ , (35.2.61)

which yields
1

g(D′)
− 1
g
− 1

2
ln
g(D′)
g

= ln
D′

D
. (35.2.62)

The renormalized coupling does not diverge any more, but it can still be of
order unity. We define a new Kondo temperature where this happens, and
beyond which the perturbative approach is not applicable. For g = Jρ � 1,
the solution of

− 1
g

+
1
2

ln g = ln
kBTK

D
(35.2.63)

yields
kBTK = D (Jρ)1/2 exp (−1/Jρ) . (35.2.64)

The equation for the renormalized coupling can then be written as
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1
g(D′)

− 1
2 ln g(D′) = ln

(
D′/kBTK

)
(35.2.65)

and its solution is

g(D′) =
1

ln
(
D′/kBTK

) +
ln (ln(D′/kBTK))
2 ln2(D′/kBTK)

+ · · · . (35.2.66)

As we saw above, the physical quantities can be calculated at a tempera-
ture T from the perturbative expression valid at the cutoff, if the coupling
is substituted by its renormalized value obtained by scaling the cutoff to
DT = kBT , e.g., for the susceptibility we have

χimp =
S(S + 1)

3kBT
(geμB)2μ0

[
1− 1

ln(T/TK)
− ln

(
ln(T/TK)

)

2 ln2(T/TK)
+ · · ·

]
. (35.2.67)

Just as in the leading logarithmic approximation, in this improved theory as
well, everything that is characteristic of the system or of the interaction with
the impurity, e.g., the density of states at the Fermi energy, the bandwidth,
and the bare coupling strength, is incorporated into a single parameter TK. It
gives the energy or temperature scale on which all variations in the physical
quantities take place. The temperature dependence is a universal function
when expressed via the dimensionless ratio T/TK.

When we are interested in the field dependence of the magnetization at
T = 0, we can scale down the cutoff until it reaches the magnetic energy of
the impurity spin. We find

Mimp = geμBS

[
1 − 1

2 ln(μBμ0H/kBTK)
− ln

(
ln(μBμ0H/kBTK)

)

4 ln2(μBμ0H/kBTK)
+ · · ·

]
,

(35.2.68)
which is a universal function of the dimensionless variable μ0H/kBTK.

Taking realistic values for the density of states and the exchange coupling,
the Kondo temperature may be on the order of a few kelvin. The logarithmic
behavior can be observed above this temperature. At lower temperatures,
especially in the study of the ground-state properties of the Kondo model, the
summation of the leading and next-to-leading corrections is not sufficient. A
completely different approach is needed.

35.2.7 Wilson’s Solution of the Kondo Problem

We have learned from the perturbative treatment of the Kondo problem that
the infrared divergences that show up in the form of logarithmic singulari-
ties are due to the fact that the electrons scattered by the impurity have an
internal degree of freedom, the spin, which can be flipped without costing
energy. Although the singularity appears at low temperatures at low energies,
the bandwidth appears in the logarithmic expressions as a cutoff and the per-
turbative corrections would diverge in the limit D → ∞. The entire band, in
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a wide range of energies from the upper and lower band edges to low ener-
gies (energies near the Fermi energy), has to be taken into account and every
energy scale makes a contribution. Second, we have learned from the scaling
theory of the Kondo problem that even if the coupling constant J is weak, it
gets stronger and stronger during the renormalization procedure, though the
scaling equations derived from perturbation theory did not allow us to de-
termine unambiguously the fixed points of the renormalization-group trans-
formation. Therefore, a nonperturbative approach is needed through which
the contribution of the different energy scales can be equally treated. This
can be achieved with the help of the numerical renormalization group (NRG)
proposed by K. G. Wilson (1973).

The key idea of the NRG approach is that any quantum impurity problem
can be mapped, after a series of transformations, to a hopping Hamiltonian
on a semi-infinite chain. The impurity is sitting at one end and the hopping
amplitude decreases exponentially far from the impurity. The energy spectrum
is calculated by an iterative diagonalization starting at the impurity site. Here
we only sketch the general strategy for the example of the Kondo model and
list the results. Further details are given in Appendix M.

If the Kondo coupling Jkk′ is independent of k and k′, the Kondo Hamil-
tonian for a single impurity at Ri = 0 can be written as

HK = J
∑

αβ

S · ψ̂†
α(0)σαβψ̂β(0) , (35.2.69)

where ψ̂α(0) is the field operator of electrons with spin α at the position
of the impurity. The interaction is local and the impurity spin couples to
the spin density of conduction electrons. Since only s waves are scattered
by a contact potential, it is convenient to use orbital-momentum eigenstates
and to expand the field operator in terms of spherical waves, keeping only
the l = 0 components. The wave number k, which could go from zero to
infinity, is restricted in such a way that the energy should be in a band of
width 2D around the Fermi energy. This continuous band is discretized by a
logarithmic discretization procedure adapted to the logarithmic contribution
of the various parts of the band. Leaving out the degrees of freedom that do
not couple directly to the impurity, the on-site interaction takes the form

HK = Jρ
∑

αβ

S · σαβf
†
0,αf0,β , (35.2.70)

where f†0,α is the creation operator of a fermionic state, which is the sum over
a discrete set of states covering the entire band.

The kinetic energy can be transformed using the same procedure into a
hopping Hamiltonian along a semi-infinite chain

H0 =
∞∑

n=0

∑

σ

(
tnf

†
n,σfn+1,σ + t∗nf

†
n+1,σfn,σ

)
, (35.2.71)
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with

tn ≈ 1 + Λ−1

2Λn/2
(35.2.72)

for large n, where Λ > 1 is a discretization parameter, and the operators
f†n,σ (fn,σ) are fermionic creation (annihilation) operators. This is indeed the
Hamiltonian of fermions hopping between nearest neighbors along a semi-
infinite chain, if the index n is identified as the site index.

Taking into account the interaction with the impurity, the Kondo model
is finally mapped onto a tight-binding model on a semi-infinite chain. The
electrons hop between nearest-neighbor sites and interact with the impurity
spin sitting at n = 0 only locally, when they hop to the impurity site. A spin
exchange process can occur. Apart from an overall multiplicative factor we
have

H =
∑

n,σ

Λ−n/2
(
f†n,σfn+1,σ + f†n+1,σfn,σ

)
+ J̃

∑

αβ

S · σαβf
†
0,αf0,β , (35.2.73)

where J̃ is proportional to J .
Wilson calculated the physically interesting low-energy part of the spec-

trum by iterative diagonalization adding one extra site of the chain in each
step of the iterative scheme. The number of states would increase expo-
nentially as new sites are added. This problem is avoided and a numeri-
cally tractable scheme is obtained if the higher lying levels are truncated
in each step by keeping a fixed number of low-lying levels (typically of or-
der 103). The splitting of the levels is evaluated numerically and the flow
of the low-lying part of the energy spectrum is studied as the chain length
increases.

The Kondo model has two fixed points: the trivial fixed point J̃ = 0
and a strong-coupling fixed point J̃ = ∞. Wilson’s numerical calculations
have shown that the energy spectrum has the same structure in the N → ∞
limit as the infinitely strong-coupling fixed point irrespective of the initial
value of the coupling, provided that J > 0. An electron is trapped at the
impurity site forming an infinitely strongly bound singlet with the impurity
spin. The remaining Ne − 1 electrons are free to move on the chain, except
that they feel an infinitely high potential barrier at the impurity site. The
phase of the electron states in the presence of this barrier is shifted by π/2
compared to the noninteracting case. This led to a simple physical picture
for the Kondo problem, namely, the impurity is surrounded by an electron
cloud which is polarized oppositely to the spin of the impurity. They form
a tightly bound singlet in the ground state. In other words the polarized
electron cloud completely screens the magnetic moment if the s–d coupling is
antiferromagnetic. Since the magnetic moment of the impurity is frozen out,
the system is expected to behave as a normal Fermi liquid. The susceptibility
should be Pauli-like instead of Curie-like at low temperatures.
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35.2.8 Low-Temperature Behavior of the Kondo Model

The low-temperature properties of the Kondo model are determined by the
strong-coupling fixed point and the way the renormalized coupling scales to it.
When the coupling is large but still finite, there are terms in the renormalized
Hamiltonian which couple the n = 0 impurity site to neighboring sites. Since
they are irrelevant perturbations, they can be treated in perturbation theory.
Wilson found

χimp =
(geμB)2μ0

4kBT0
(35.2.74)

for the susceptibility and

cimp =
π2kB

6T0
T (35.2.75)

for the heat capacity. The low-temperature value of the Wilson ratio,

RW =
4π2k2

BT

3g2
eμ

2
Bμ0

χimp

cimp
= 2 , (35.2.76)

is thus twice as big as for noninteracting electrons.
The characteristic temperature T0 is not identical to TK, the characteristic

temperature scale at higher temperatures. The relationship between them can
be obtained from the NRG calculations. Their ratio,

w ≡ TK

T0
= 0.4128 , (35.2.77)

is the so-called Wilson number.
The numerical solution was made possible by the assumption that the de-

tails of the dispersion relation of the conduction electrons are irrelevant in
the sense that they do not influence the universal properties of the Kondo
problem. Soon after the realization of this fact, P. Wiegmann (1980) and
N. Andrei (1980) have shown independently that the model is exactly solv-
able by the Bethe ansatz if the dispersion relation is appropriately chosen. All
the results obtained by Wilson could be reproduced in the exact solution.
All physical quantities are universal functions of log T/TK at temperatures
above TK. Conduction electrons start to screen the localized magnetic mo-
ment around TK. The density of states is deformed below TK and a narrow
resonance, the Abrikosov–Suhl resonance, of width kBTK appears near the
Fermi energy, just as in the Anderson model. At low temperatures, where the
impurity is screened, the system is a Fermi liquid with a characteristic tem-
perature T0. The screened impurity scatters the conduction electrons as would
a nonmagnetic impurity and the contribution of the magnetic impurity to the
resistivity saturates smoothly at T = 0 with a T 2 temperature dependence:

Rimp(T ) = R0

[
1 − π4

16

(
T

T0

)2

+ O
(
T

T0

)4 ]
, (35.2.78)
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where R0 is the resistivity corresponding to the unitarity limit of the scat-
tering, that is to a phase shift δ0 = π/2 for the l = 0 partial wave (s wave).
Knowing the relationship between the two characteristic temperatures the
Bethe-ansatz solution allows us to study the crossover between the perturba-
tive and the truly low-temperature regimes.

35.2.9 Nozières’s Local-Fermi-Liquid Theory

The low-temperature properties of the Kondo problem can be described in a
simple phenomenological model proposed by P. Nozières (1974). The start-
ing point is the strong-coupling fixed point J → ∞, where a singlet bound
state is formed between the impurity and an electron on the n = 0 site. The
rearrangement of the conduction electron states is confined to a range of width
kBTK in the vicinity of the Fermi energy. The singlet state is not an eigenstate
of the z-component of the impurity spin and the spin fluctuates between the
↑ and ↓ states with a characteristic spin-flip relaxation time τs determined by
the binding energy kBTK of the singlet,

�/τs ∼ kBTK . (35.2.79)

Spin fluctuations are fast below TK and the electrons propagating in the sys-
tem see a vanishing average moment as if it were a nonmagnetic impurity.
The spin relaxation time slows considerably above the Kondo temperature.
Its temperature dependence is given by the Korringa relation

�/τs ∼ (Jρ)2kBT . (35.2.80)

In this temperature range, the conduction electrons experience a well-defined
impurity spin owing to the slow relaxation.

Although the impurity spin vanishes below TK, the electrons can polarize
it, which induces a scattering of the conduction electrons by the singlet. Nozi-

ères assumed that the scattering is elastic and can be described by a spin-
and energy-dependent phase shift δσ(ε). The key element of the theory is the
assumption that – in analogy with Landau’s Fermi-liquid theory – the phase
shift depends on the distribution of the other quasiparticles, and for electrons
near the Fermi surface it can be expanded in the form

δ0σ(εk) = δ0(εk) +
∑

k′σ′
φσσ′(εk, εk′)δnσ′(εk′) , (35.2.81)

where δnσ′(εk′) is the number of quasiparticles present in the system with en-
ergy εk′ . The parameters φσσ′(εk, εk′) can be taken independent of the energy
for electrons near the Fermi energy. Approximating the energy dependence of
δ0(εk) by

δ0(εk) = δ0 + α(εk − μ) + · · · , (35.2.82)

the behavior of the system is characterized by the parameters α and φσσ′ .
Since there is no interaction between electrons with identical spins owing to
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the Pauli principle, φσσ = 0. Introducing the symmetric and antisymmetric
combinations by

φs = 1
2 (φ↑↑ + φ↑↓) , φa = 1

2 (φ↑↑ − φ↑↓) , (35.2.83)

we have the relation
φs + φa = 0 . (35.2.84)

Moreover, since the singularity is tied to the Fermi energy in the Kondo prob-
lem, the phase shift δ0σ(εk) remains unchanged if the energy and the chemical
potential are shifted by the same amount δε. However, the shift of the chemical
potential increases the number of quasiparticles by an amount

δnσ = ρσ(εF)δε . (35.2.85)

The requirement of the invariance of the phase shift leads to

α+ 2ρσ(εF)φs = 0 , (35.2.86)

hence the theory contains a single free parameter.
We know that the number of electrons accumulated around the impurity

is simply related to the phase shift. Generalizing (16.4.52) and (16.4.53) to
spin-dependent phase shifts the change in the number of states below the
Fermi energy due to an impurity is given by

δNσ(εF) =
1
π

∞∑

l=0

(2l + 1)δlσ(εF) , (35.2.87)

and the change in the density of states is

δρσ(εF) =
1
π

∞∑

l=0

(2l + 1)
dδσl(ε)

dε

∣∣∣
ε=εF

. (35.2.88)

Since only the l = 0 partial wave suffers phase shift, it follows from (35.2.81)
and (35.2.82) that

δρσ(εF) =
α

π
, (35.2.89)

and the change in the total density of states is

δρ(εF) = 2
α

π
. (35.2.90)

This gives rise to a change in the heat capacity, which is known to be propor-
tional to the density of states at the Fermi energy. The impurity contribution
to the heat capacity is obtained by substituting the change of the density of
states in (16.2.91). This gives

cimp = 2
α

π

π2

3
k2
BT , (35.2.91)
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and the relative change of the heat capacity is

cimp/cel = 2
α

π

1
ρ(εF)

=
δρ(εF)
ρ(εF)

. (35.2.92)

The one-particle energies are shifted in an external magnetic field,

εkσ = εk − 1
2σgeμBB , (35.2.93)

which means that the electron states are filled up to

εFσ = εF + 1
2σgeμBB , (35.2.94)

where σ = ±1 is used for the spin orientations. The number of quasiparticles
created by the field is given by

δnσ =
∑

k

δnσ(εk) = 1
2σgeμBBρσ(εF). (35.2.95)

Substituting this expression into the magnetization,

M = 1
2geμB(δn↑ − δn↓) , (35.2.96)

the Pauli susceptibility is recovered.
The scattering by the impurity gives rise to an additional contribution

to the susceptibility. It follows from (35.2.87) that the number of particles
accumulated around the impurity is related to the phase shift at the Fermi
energy via

δnimp
σ =

1
π
δ0σ(εFσ) . (35.2.97)

Their contribution to the magnetization is

Mimp =
1
2π
geμB

[
δ0↑(εFσ) − δ0↓(εFσ)

]
. (35.2.98)

Using (35.2.95) for the number of quasiparticles created by the field and mak-
ing use of (35.2.86) the phase shift can be written as

δ0σ(εFσ) = δ0 + α 1
2σgeμBB + 2φsδn−σ

= δ0 + α 1
2σgeμBB − φsσgeμBBρσ(εF)

= δ0 + ασgeμBB .

(35.2.99)

This gives

Mimp =
α

π
g2
eμ

2
BB , χimp =

α

π
g2
eμ

2
Bμ0 (35.2.100)

for the impurity contribution to the magnetization and susceptibility. Com-
paring the latter with the Pauli susceptibility, we find
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χimp/χP = 4
α

π

1
ρ(εF)

= 2
δρ(εF)
ρ(εF)

. (35.2.101)

Thus the relative changes of the susceptibility and the heat capacity differ by
a factor of 2:

χimp

χP
= 2

cimp

cel
. (35.2.102)

The Wilson ratio defined in (35.2.76)

RW =
4π2k2

BT

3g2
eμ

2
Bμ0

χimp

cimp
=
χimp/χP

cimp/cel
(35.2.103)

now has the value
RW = 2 (35.2.104)

in agreement with the result obtained in the numerical renormalization group.
The deviation from unity – the value for a noninteracting electron system –
is the indication of strong correlations in the Kondo problem.

35.3 Mixed-Valence and Heavy-Fermion Compounds

We have discussed above the questions related to the behavior of a single
magnetic impurity. In the rest of this section we will consider compounds
containing a periodic array of paramagnetic rare-earth or actinoid ions. The
feature that distinguishes the latter from compounds with 3d ions and makes
their behavior particularly interesting is that the 4f or 5f band is much
narrower than the 3d band. This is because the maximum of the f -electron
density is closer to the nucleus than for the completely filled 5s–5p levels and
the 4f (5f) wavefunctions hardly overlap between nearest neighbors.

The relevant part of the band structure of lanthanoid compounds is the
broad, hybridized 5d–6s band containing two or three electrons and the flat
4f band. The spin and orbital momentum of the localized f electrons can be
determined from Hund’s rules taking into account the crystal field splitting.
This system can be described by a generalized Anderson or Kondo model,
where the paramagnetic ions are not situated far apart in the sea of con-
duction electrons, but are arranged in a regular, crystalline order. This may
lead to a completely new type of behavior, such as the appearance of heavy
quasiparticles.

A different type of behavior is found if the highest occupied f level is close
to the Fermi energy. Even though the f band is narrow, part of it may lie
above the Fermi energy due to the broadening caused by hybridization with
the conduction electrons. The band is then only partially filled so that the
occupancy of the f level may be noninteger. An especially interesting situation
occurs if a lanthanoid atom has two different ionization states and the energy
of both of them is close to the Fermi energy. Both states will occur with
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nonvanishing probability and the average valence will be an intermediate value
between the two integers. This happens in the mixed-valence compounds.

A similar situation occurs in actinoids, where the narrow 5f band is filled
in gradually and the broad conduction band is the 6d–7s band. In what fol-
lows, we will talk about lanthanoids and 4f states, but all the results can be
naturally generalized to actinoids.

After a brief presentation of the properties of the mixed-valence and heavy-
fermion compounds we will consider the models proposed for their description:
the generalization of the single-impurity Anderson and Kondo models to the
case when the paramagnetic atoms form a regular lattice. These models are
known as the periodic Anderson model and the Kondo lattice.

35.3.1 Mixed-Valence Compounds

We know that there are two electrons on the 6s shell outside the [Xe] core
in the lanthanoids and the 4f shell is gradually filled in. Gadolinium is an
exception where one electron sits on the 5d shell. One might therefore expect
that the lanthanoid ions are divalent, except for gadolinium.11 This is not
the case in most rare-earth compounds. The rare-earth ions are usually in the
trivalent state. That is why the 3+ ions were listed in Table 3.6 where the spin
and orbital moments were given, and we could claim that these values are in
good agreement with experiments. The reason for this is that rare-earth ions
form a stronger bound in solids if one of the 4f electrons is excited into the
broad hybridized 5d–6s band. Cerium, praseodymium, and terbium may even
lose two 4f electrons to become tetravalent. Notable exceptions are europium
and ytterbium, which are divalent in many of their compounds. Samarium
and thulium, too, occur sometimes as 2+ ions.

The majority of rare-earth and actinoid compounds have localized mag-
netic moments: charge fluctuations are suppressed, the f orbitals are filled by
an integral number of electrons, and the ions have an integral valence. This is,
however, not always the case. We mentioned in connection with the problem
of the formation of localized moment in the single-impurity Anderson model
that a valence-fluctuation regime occurs when one of the impurity levels, εf

or εf +U , is close to the Fermi energy, since the filling of the level will not be
integer. Zero or one electron may be present on the impurity in the first case,
while one or two in the other case. In a more realistic model, where the degen-
eracy of the f level is taken into account, the 4fn and 4fn−15d configurations
may have similar energies for a given n and may therefore coexist.

The typical fluctuation time of the ions between the two configurations
is 10−12 s. In experiments with a shorter time scale we see a snapshot of the
system, that is a random mixture of ions in the two ionic states. In X-ray
photoelectron spectroscopy (XPS), for example, where the characteristic time

11 The valence of rare-earth ions in a solid is defined as the number of electrons
donated to the 5d–6s conduction band.
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scale is 10−15– 10−18 s, lines characteristic for both ionicities are observed.
When the measurement is made on a longer timescale, e.g., in Mössbauer
experiments, the fluctuations average out the individual properties of the ions
and the result can be understood as if the valence of all the ions had an
intermediate value. This state is known as the homogeneous mixed-valence,
intermediate-valence, or fluctuating-valence state. The different names refer to
the fact that one or the other aspect is dominant depending on the timescale
on which the ion is studied.

Typical examples are EuCu2Si2, EuPd2Si2, EuPd3S4, YbCu2Si2, YbPd3S4,
YbAgCu4, YbAl2, CeBe13, CeSn3, SmS, SmB6, TmSe. In EuCu2Si2, for ex-
ample, the Eu2+ and Eu3+ states are only separated by 0.07 eV.

It is worthwhile to recall that we have already met a material, the mag-
netite of composition Fe3O4, in the context of ferrimagnetism in Chapter 14
where both divalent and trivalent iron atoms are simultaneously present. An
important difference is, however, that the Fe2+ and Fe3+ ions are located
on different sublattices, at inequivalent crystallographic positions, and their
ionicities do not fluctuate in time.

The behavior of some samarium monochalcogenides is even more unusual.
The ground state of the divalent Sm2+ ion with electron configuration 4f6 is
the nonmagnetic 7F0 state according to Hund’s rules. The compounds SmS,
SmSe, and SmTe are nonmagnetic semiconductors at ambient pressure. The
position of the f level is shifted relative to the conduction band under pressure
and a 4f electron can be transferred to the conduction band above a critical
pressure where the f level comes close enough to the Fermi energy. Trivalent
Sm3+ ions appear suddenly with electron configuration 4f5. Since their radius
is smaller than that of the divalent ions, the lattice parameter exhibits a jump
at a certain pressure or decreases sharply with pressure. The lattice shrinks,
the volume collapses, and the system reverts to a paramagnetic metallic phase.

35.3.2 Heavy-Fermion Materials

Since the 1980s more and more new materials have been discovered in which
the electronic part of the low-temperature specific heat is linear, but the Som-
merfeld coefficient is two to three orders of magnitude larger than in simple
metals. The γ coefficient, which can be of the order of J/molK2, has been
given for some of them in Table 16.7. We mentioned there that this behav-
ior can be understood by assuming that the density of states is extremely
large at the Fermi energy. A further interesting property of these materials is
that the susceptibility shows Curie-like 1/T temperature dependence at high
temperatures, indicating that localized magnetic moments are present in the
system. The heavy-fermion materials contain rare-earth ions (such as cerium)
or actinoids (such as uranium), and the 4f or 5f electrons might be responsi-
ble for the magnetic properties. The localized moments disappear, however, at
low temperature owing to the interactions with the conduction electrons and
with each other by a Kondo-like mechanism. A sharp Kondo peak appears in
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the density of states near the Fermi energy. The system behaves on this very
narrow energy scale as a Fermi liquid with large effective mass,12 whence the
name heavy fermion. “Classical” heavy-fermion systems are CeAl3, CeCu6,
CeCu2Si2, UPt3, UBe13, and NpBe13.

The anomalously large γ is accompanied by an anomalously large tempe-
rature-independent Pauli susceptibility, since the susceptibility, too, is propor-
tional to the density of states at the Fermi energy. The Fermi-liquid behavior
can be characterized by the Wilson ratio defined in this case as

RW =
χ

γ

π2k2
B

g2
Jμ

2
BJ(J + 1)

, (35.3.1)

where gJ is the Landé factor and J is the total angular momentum of the
ions. Taking the experimentally measurable effective magnetic moment μeff
from the high-temperature Curie-type behavior,

RW =
χ

γ

π2k2
B

μ2
eff

. (35.3.2)

As shown in Table 35.1, the Wilson ratio is relatively close to unity in most
heavy-fermion systems.

Table 35.1. Wilson ratio for some heavy-fermion compounds

Compound RW Compound RW Compound RW

CeAl3 0.7 UPt3 0.6 UCd11 1.7
CeCu6 0.6 UBe13 0.5 NpBe13 2.1
CeCu2Si2 0.2 U2Zn17 0.8 YbBiPt 2.6

Further confirmation of the Fermi-liquid behavior of heavy-fermion sys-
tems is obtained when the Sommerfeld coefficient γ of the linear term of the
specific heat is compared with the coefficient A of the T 2 term of the resistiv-
ity in ρ = ρ0 +AT 2. The specific heat is proportional to m∗, while A ∝ (m∗)2

according to the Fermi-liquid theory; thus, the ratio A/γ2 has to be universal.
The Kadowaki–Woods relation,13

RKW = A/γ2 ≈ 1 × 10−5[μΩ cm (mol K/mJ)2] , (35.3.3)

is rather well satisfied at low temperatures in a large class of heavy-fermion
systems that do not order antiferromagnetically even though strong magnetic
fluctuations may be observed as, e.g., in CeAl3.
12 Also the cyclotron mass determined in the de Haas–van Alphen effect is one or

two orders of magnitude larger than the electron mass.
13

K. Kadowaki and S. B. Woods, 1986.
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The magnetic moments of the cerium or uranium atoms are ordered at low
temperatures in many of the heavy-fermion systems. It was a great surprise
that some of these materials become superconductors at a lower tempera-
ture. The most interesting parameters of these compounds were already given
in Table 34.2. It was mentioned there that the origin of superconductivity
may be related to magnetic fluctuations and these materials are probably
unconventional superconductors. The compound PrOs4Sb12 is special, where
indications for the dominant role of nonmagnetic quadrupolar interactions
have been found experimentally. Table 35.2 contains the parameters for some
heavy-fermion materials which order antiferromagnetically but are not super-
conductors at ambient pressure.

Table 35.2. Néel temperature and Sommerfeld coefficient of some antiferromagnet-
ically ordered heavy-fermion compounds

Compound TN (K) γ (mJ/mol K2) Compound TN (K) γ (mJ/mol K2)

CeCu2Ge2 4.1 100 UCd11 5.0 840
CeNi2Sn2 1.8 600 U2Zn17 9.7 500
CeRhIn5 3.8 420 NpBe13 3.4 900
Ce2RhIn8 2.8 400 YbNiSi3 5.1 190

A model that might describe the behavior of intermediate-valence or
heavy-fermion compounds should have electrons in at least two bands, a broad
s band and a narrow d or f band. The simplest such model is the periodic
Anderson model, which might be capable of describing heavy-fermion, mixed-
valence, and Kondo behavior depending on the values of the parameters.

35.3.3 Periodic Anderson Model

The periodic Anderson model (PAM) or Varma–Yafet model14 is a straightfor-
ward generalization of the single-impurity Anderson model given in (35.2.1).
Instead of considering a single ion with a d or f level embedded in the sea
of conduction electrons, we assume that the ions with partially filled f levels
form a regular periodic lattice. There is no direct overlap between the wave-
functions of the rare-earth ions so that the f band is infinitely narrow, but
the f electrons can hybridize with the conduction electrons. We write the
Hamiltonian in the form

H =
∑

kσ

εkc
†
kσckσ +

∑

iσ

εff
†
iσfiσ +

∑

i

Unf
i↑n

f
i↓

+
1√
N

∑

ikσ

(
Vke

−ik·Ric†kσfiσ + V ∗
k e

ik·Rif†iσckσ

)
,

(35.3.4)

14
C. M. Varma and Y. Yafet, 1976.
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where nf
iσ = f†iσfiσ is the number of f electrons with spin σ on site i. The

kinetic energy of f electrons and their hybridization with the conduction elec-
trons could have been written equivalently in the Bloch representation as

∑

kσ

εff
†
kσfkσ +

∑

kσ

(
Vkc

†
kσfkσ + V ∗

k f
†
kσckσ

)
, (35.3.5)

but the on-site Coulomb term is written most conveniently in the Wannier
representation.

Neglecting for the moment the interaction between the f electrons, the
bilinear Hamiltonian

H =
∑

kσ

εkc
†
kσckσ +

∑

kσ

εff
†
kσfkσ +

∑

kσ

(
Vkc

†
kσfkσ + V ∗

k f
†
kσckσ

)
(35.3.6)

can be diagonalized by the unitary transformation

α
(+)
kσ = ukckσ + vkfkσ , α

(−)
kσ = −vkckσ + ukfkσ . (35.3.7)

The diagonalization condition yields

|uk|2 =
1
2

[
1 +

εk − εf√
(εk − εf )2 + 4|Vk|2

]
,

|vk|2 =
1
2

[
1 − εk − εf√

(εk − εf )2 + 4|Vk|2

] (35.3.8)

with
ukvk =

Vk√
(εk − εf )2 + 4|Vk|2

(35.3.9)

for the parameters of the transformation and the eigenvalues are

E±
k = 1

2

(
εk + εf ±

√
(εk − εf )2 + 4|Vk|2

)
. (35.3.10)

Two well-separated bands are obtained with a hybridization gap around εf

if Vk is independent of k. The density of states is substantially increased on
both sides of the gap compared to the density of states of the conduction band.
The hybridized spectrum and the corresponding density of states is displayed
schematically in Fig. 35.16. Note that if Vk vanishes at certain points of the
Brillouin zone, no forbidden region appears, but the density of states has a
deep minimum around εf with sharp peaks above and below this minimum.

In the ground state electrons fill the lowest energy states. The system is
insulating for two electrons (one conduction electron and one f electron) per
atom, since the lower band is completely filled, and this band is separated by
a gap from the upper band. The system is metallic if extra electrons or holes
are added to it.
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k

k

f

Fig. 35.16. (a) Dispersion relation of hybridized s and f electrons. (b) Density of
states of the hybridized bands

We assume for the sake of simplicity that the number of conduction elec-
trons is equal to or less than the number of f electrons. The upper band is
empty and the ground-state wavefunction takes the form

|Ψ0〉 =
∏

k∈FS

∏

σ

α
(−)†
kσ |0〉 . (35.3.11)

The single-particle states have both s and f character according to the hy-
bridization,

|Ψ0〉 =
∏

k∈FS

∏

σ

(− vkc
†
kσ + ukf

†
kσ

)|0〉

=
∏

k∈FS

∏

σ

(
1 + a

(0)
k f†kσckσ

)|ΨFS〉
(35.3.12)

with
a
(0)
k =

2Vk

εf − εk +
√

(εk − εf )2 + 4|Vk|2
. (35.3.13)

Rewriting the creation operators of f -electron states in the Wannier represen-
tation, this state is obviously a linear combination of configurations in which
the f level is empty, singly occupied, or doubly occupied. These configura-
tions occur with roughly the same probability. This is because the on-site
Coulomb interaction has been neglected so far. Its effect is to eliminate the
configurations with double occupancy or at least to make them less probable.
Different approximation schemes can be devised to cope with this problem. In
the mixed-valent regime, the f0 and f1 configurations may be almost degen-
erate with the f -block ions fluctuating between the two ionicities. The energy
of the f2 configuration is much higher and the U → ∞ limit may be taken.
Double occupancy can be completely suppressed by a projection operator

P =
∏

i

(
1 − nf

i↑n
f
i↓
)
, (35.3.14)
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and a variational wavefunction can be chosen in the form

|Ψ〉 = P
∏

k∈FS

∏

σ

(
1 + akf

†
kσckσ

)|ΨFS〉 (35.3.15)

with a set of variational parameters ak, which may be different from a
(0)
k .

When εf is close to the Fermi energy and hybridization is relatively strong,
a broad peak appears in the total density of states of s and f electrons.
The average number of f electrons will be between 0 and 1, as it should in
intermediate-valence compounds.

Alternatively, the Gutzwiller method can be used to take the effect of U
into account. Following the prescription given in (35.1.41) the configurations
are weighted by a factor g every time a site is doubly occupied. The trial
wavefunction is then chosen in the form

|ΨG〉 =
∏

i

[
1 − (1 − g)nf

i↑n
f
i↓
]
|Ψ0〉 . (35.3.16)

Since |Ψ0〉 contains the hybridization parameters uk and vk, they can be taken
as variational parameters together with g. The energy contribution coming
from the Coulomb interaction can again be written as UdN , where d is the
density of doubly occupied f orbitals. The expectation value of the remaining
part of the Hamiltonian calculated with the Gutzwiller wavefunction turns out
to be identical to the expectation value of an effective Hamiltonian evaluated
with |Ψ0〉,

E ≡ 〈ΨG|H|ΨG
〉

=
〈
Ψ0|Heff|Ψ0

〉
+ UdN (35.3.17)

with

Heff =
∑

kσ

εkc
†
kσckσ+

∑

kσ

ε̃ff
†
kσfkσ+V

∑

kσ

q(nf
σ)
(
c†kσfkσ+f†kσckσ

)
. (35.3.18)

This means that the Gutzwiller projection can be transformed out at the
expense of renormalizing the hybridization terms by a factor q(nf

σ) and shifting
the energy of the f level. The mixed-valence compounds correspond to the
situation where the f level broadened by the hybridization is near the Fermi
energy and is only partially filled. On the other hand, heavy-fermion behavior
is observed when εf is well below the Fermi energy and εf +U lies well above
it and the valence is close to unity. The renormalization of the hybridization
is proportional to the probability that the f level is empty, q2 ∝ 1−nf in the
large-U limit. The hybridization is drastically suppressed resulting in a very
narrow peak in the density of states with a narrow hybridization band around
the renormalized ε̃f .

To construct the wavefunction of the heavy-fermion state, we take a non-
interacting Fermi sea with Ne conduction electrons and Nf f electrons. The
state |ΨFS〉Ne+Nf

has much higher energy than the true ground state since
the one-particle states fill a “large” Fermi sphere. The ground state can be
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obtained by removing high-energy electrons from the “large” Fermi sea and
putting them on the localized f level with finite probability |vk|2. This can
be achieved by introducing a factor

uk + vkf
†
kσckσ (35.3.19)

in the wavefunction. To make sure that the f level is occupied by exactly one
electron on each site, the wavefunction contains a projection operator

P =
∏

i

[
nf

i↑(1 − nf
i↓) + nf

i↓(1 − nf
i↑)
]
. (35.3.20)

The trial wavefunction is then

|Ψ〉 = P
∏

kσ

(
uk + vkf

†
kσckσ

)|ΨFS〉Ne+Nf
, (35.3.21)

where uk and vk are variational parameters. Lengthy calculation leads to the
result that all electrons inside the “large” Fermi sphere containing Ne + Nf

electron states participate in the formation of a collective singlet state. The
momentum distribution is displayed in Fig. 35.17.

k

nk

Fig. 35.17. Momentum distribution in the collective singlet state

The Fermi edge is at the “large” Fermi surface. The k-space volume en-
closed by it remains unchanged when the Coulomb interaction is switched on,
in agreement with the Luttinger theorem, but the discontinuity, the quasi-
particle weight, is much smaller than at U = 0, which is equivalent to an
increase of the effective mass. The momentum distribution rises sharply at
the k value corresponding to the “small” Fermi surface which encloses Ne
conduction electron states. One might say that the interaction with magnetic
electrons on the f level smears out the “small” Fermi surface, while states up
to the “large” Fermi surface are partially filled, though with small probability.
This increase in the kinetic energy is amply compensated by the gain in the
exchange energy.

In the special case when the conduction band is half filled in the noninter-
acting model, the Ne +Nf electrons fill the entire lower band and the system
is a nonmagnetic insulator. One can prove exactly that if the lanthanoid (acti-
noid) ions occupy one sublattice of a bipartite lattice, the ground state is a
nondegenerate singlet. These materials are called Kondo insulators. Typical
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examples are the cerium compounds: CeNiSn, CeRhSb, and Ce3Bi4Pt3, or
the compound YbB12 which contains an element from the high end of the
lanthanoid series. The width of the gap is only a few millielectron volts, so
these compounds might be considered as narrow-gap semiconductors.

When the “large” Fermi surface is situated within the narrow peak around
the hybridization gap, the density of states at the Fermi energy is large, as can
be deduced from Fig. 35.16(b). The large effective mass in the heavy-fermion
compounds is the consequence of the narrowness of the peak.

The existence of a sharp peak in the density of states and the hybridization
gap are substantiated by calculations using the dynamical mean-field theory,
which is exact when the dimensionality of the system tends to infinity, al-
though the physical picture is somewhat different. The density of states of
f electrons is displayed in Fig. 35.18 for the symmetric (2εf + U = 0) and
asymmetric periodic Anderson models.

Fig. 35.18. f density of states for the periodic Anderson model (full line) and the
single impurity Anderson model (dashed line) (a) in the particle–hole symmetric
case and (b) in the asymmetric case [Reprinted with permission from Th. Pruschke,
R. Bulla, and M. Jarrell, Phys. Rev. B 61, 12799 (2000). © (2000) by the American
Physical Society]

The peaks in the density of states at εf and εf + U are quite similar in
the single impurity and the periodic models. A narrow third peak signaling a
coherent heavy-electron band corresponds to the Abrikosov–Suhl resonance of
the single-impurity Anderson model. It appears at the Fermi energy below TK
in the periodic Anderson model as well. It is, however, split into two by the
hybridization gap, which is a consequence of the periodicity of the structure.

35.3.4 Kondo Lattice

When εf is well below the Fermi energy and εf + U is well above, the empty
and doubly occupied configurations occur with negligible probability. They
only appear virtually, for very short periods of time, as intermediate states.
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Because the occupancy of the f level is close to unity, the rare-earth ions have
a localized moment, but its orientation fluctuates owing to the hybridization
with the conduction electrons. The low-energy physics can be described by a
model where the f -electron degrees of freedom are represented by a localized
spin, just as in the Kondo problem. This model is the periodic Kondo lattice.

We assume that a spin Si sits on every site Ri of a regular lattice and the
spins interact with the conduction electrons via an s–d interaction of coupling
J . The Hamiltonian of this Kondo lattice is chosen in the form

H =
∑

kσ

εkc
†
kσckσ +

J

V

∑

kk′

∑

αβ

∑

i

Si · σαβc
†
k′αckβei(k−k′)·Ri . (35.3.22)

We know from the solution of the single-impurity Kondo problem that the con-
duction electrons screen the localized moment at low temperatures, below the
characteristic Kondo temperature. The dominant role is played by electrons
in a range of width kBTK about the Fermi energy. It was thought for a long
time that this screening cannot occur in a Kondo lattice, only in a dilute alloy,
since there are not enough electrons in that range to screen all momenta. All
electrons of the conduction band, even those lying quite far (at a few electron
volts) from the Fermi energy, would be needed, but the thermal energy is not
sufficient to rearrange these states. We might therefore expect a magnetically
ordered ground state. As we have seen, magnetically ordered states do indeed
occur in rare-earth and actinoid compounds with heavy quasiparticle mass
in the normal state. There are quite a few heavy-fermion systems, however,
where no magnetic ordering takes place. Their ground state is a collective
singlet. Which of the two cases is found in a given material is determined by
a delicate balance between two effects.

There is a single characteristic energy, kBTK, in the single-impurity prob-
lem, and the conduction electrons screen the localized moment below the
Kondo temperature. When several localized moments are present, they inter-
act through the intermediary of the conduction electrons. The RKKY interac-
tion tends to align spins parallel or antiparallel depending on the distance be-
tween the magnetic atoms. The characteristic energy scale of the RKKY inter-
action is proportional to the square of the s–d exchange, kBTRKKY ≈ J2ρ(εF).
S. Doniach (1977) pointed out that two mechanisms, the Kondo screening
of the magnetic moment and the ordering tendency due to the RKKY in-
teraction, compete in a dense Kondo system. Whether the ground state is
nonmagnetic or magnetically ordered depends on the outcome of this compe-
tition.

The Kondo temperature depends exponentially on the coupling J . The en-
ergy scale of the RKKY interaction is larger for small values of Jρ(εF) and the
magnetic moments order into a magnetic state before the Kondo screening be-
comes effective. The Kondo energy is also larger for larger values of J , and the
ground state may then be nonmagnetic. A quantum critical point [Jρ(εF)]c,
which is of order unity according to Monte Carlo calculations, separates the
(anti)ferromagnetically ordered state from the Fermi-liquid state. The critical
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temperature of the magnetically ordered state for small Jρ(εF) should be on
the order of TRKKY. This magnetic order is destroyed near the critical value
of Jρ(εF) when the critical temperature of the ordered state decreases to zero
as shown in the schematic phase diagram in Fig. 35.19.

Metal

Antiferro-
magnet

Fermi
liquid

J

T

TRKKY J
2

( )J c

TK e 1/J

Fig. 35.19. Schematic phase diagram of the Kondo lattice

For stronger couplings and at high temperatures the spins are incoherent,
the scattering is weak, and the system behaves as a normal metal, if the
band is not half filled. The narrow Kondo peak in the density of states, which
is related to the heavy mass of the quasiparticles, emerges gradually as the
temperature is lowered and survives down to T = 0. The transition into the
coherent singlet state at TK is a crossover phenomenon, not a sharp phase
transition. For a half-filled system the insulating nonmagnetic state is the
Kondo spin-liquid state.

35.3.5 Open Problems

We have presented in the foregoing the simplest possible model of heavy-
fermion compounds in simplifying immensely the electronic structure of lan-
thanoids by considering a wide conduction band and a flat f band. While the
solution of the single-impurity problem, a single f level, is known, the periodic
model could only be solved, even for such a simplified band structure, after
drastic approximations in the treatment of the effect of the on-site Coulomb
repulsion between the f electrons.

The relevance of numerical results obtained in, e.g., the dynamical mean-
field theory can also be questioned, since they are exact only for infinite di-
mensional models. Moreover, there are strong indications that the realistic
electronic structure, the degeneracy of the f level, the crystal field splitting,
etc., probably play a much more important role than assumed until now.
We might expect, for example, that Yb3+ ions behave similar to Ce3+ ions
owing to electron–hole symmetry, since Yb3+ has one hole in the f shell.
The number of heavy-fermion ytterbium compounds is, however, much less
than the number of cerium compounds. Thus much more refined models are
needed to understand why cerium and uranium compounds play a special role.
We should also bear in mind that heavy-fermion behavior is not restricted
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to them. It is observed in some compounds of the element next to cerium,
praseodymium, as well. In fact, one of the heaviest mass (Sommerfeld coeffi-
cient γ = 6.5 J/molK2) was found in PrInAg2, but the Pr3+ ions are proba-
bly in a nonmagnetic state owing to the crystal-field splitting and quadrupole
interaction may be the dominant mechanism just as in the heavy-fermion
superconductor PrOs4Sb12.

We did not discuss the problem of superconductivity of heavy-fermion
materials, nor the role of the magnetic ions in forming the probably uncon-
ventional pairs. Spin fluctuations were also neglected although they can be
strong as indicated by a T 3 lnT term in the specific heat, which appears in
addition to the linear term due to the heavy quasiparticles and the T 3 term
due to phonons.

A further open question is the role of quantum fluctuations at the quan-
tum critical point separating the magnetically ordered phase from the heavy-
fermion Fermi liquid. They may destroy the normal metallic behavior at finite
temperatures at the critical coupling just as in high-temperature supercon-
ductors. These problems are the subject of intensive ongoing research.
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36

Disordered Systems

It was pointed out at the very beginning of the presentation of the physics
of solids that defects are inevitably present in macroscopic number even in
crystalline materials. A fraction of them are thermally generated, but the
majority of them are frozen in in the course of the crystal growth process. The
structural aspects were discussed in Chapter 9. Every single property of the
material is affected by the defects, though to different degrees. Nonetheless,
the spectrum of electronic states and lattice vibrations were calculated for
ideal crystal structures and the electronic and thermal properties of solids were
explained in most of our previous considerations with the tacit assumption
that the defect-related effects are negligible.

This is true for some properties of the solids. The thermodynamic or trans-
port properties of metals are only weakly influenced by the defects, except for
very low temperatures where the other scattering processes are frozen out and
the impurities are responsible for the residual resistivity. Magnetic impurities
play an even more spectacular role via the Kondo effect. The behavior of
semiconductors cannot be understood at all if we forget about the donor and
acceptor levels induced by the intentionally introduced impurities.

In studying these problems the dopants or impurities were assumed to
be present in relatively low concentration and to act independently of each
other. It was a legitimate approximation to consider the change in the elec-
tronic states around a single impurity. The impurity contribution to, e.g., the
resistivity, the heat capacity, or the susceptibility is simply proportional to
the number of impurities. A completely different treatment is needed when
deviations from the regular arrangement of atoms are appreciable. When the
positions of the atoms still form a regular crystalline lattice, but a fraction of
the sites are randomly occupied by a different chemical substance, we are deal-
ing with disordered alloys. The coherent potential approximation invented to
tackle this problem will be briefly presented at the beginning of this chapter.

A different type of disorder is found in amorphous systems where the atoms
do not form a regular lattice in the solid phase. As discussed in Chapter 10,
the atomic arrangement is liquid like, as if the atoms were suddenly frozen at
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their positions in the liquid phase. Indeed, the easiest way to obtain amorphous
materials is to quench them from the liquid state by rapid cooling. This type
of disorder is found in glasses, too. That is why amorphous metals are also
known as metallic glasses. The structural aspects of amorphous materials
were touched upon briefly in Chapter 10. The ions are densely and randomly
packed in metallic systems, while topological disorder is found when the ions
are covalently bonded. As illustrated in Fig. 36.1, the covalent bonds may
hold the ions together even when the ions are displaced from their crystalline
positions. Whereas all bonds can be satisfied for slight displacements, dangling
bonds occur for stronger disorder. Electrons that do not participate in the
covalent bonding will strongly affect the physical properties of these materials.
We will not go into such details, nor into the physics of metallic glasses.
We restrict ourselves to one particularly interesting problem, namely to the
question whether the electron states remain extended or become localized in
a disordered system.

( )a ( )b

Fig. 36.1. (a) Distorted lattice where all covalent bonds are satisfied. (b) An amor-
phous structure with dangling bonds

We will consider a special problem at the end of the chapter. Disorder can
be achieved by randomly placing atoms with magnetic moments into a non-
magnetic matrix. Depending on the distance between the magnetic ions the
exchange coupling between them may be ferromagnetic or antiferromagnetic.
Although the atomic moments are oriented in the direction of the local field
at low temperatures, there is no global ordering, since the orientation of the
local field generated by the randomly positioned neighbors is itself random.
This static, randomly frozen-in, globally nonmagnetic state of the spin system
is called a spin glass. We will present the most interesting properties of such
systems and sketch the methods worked out to theoretically explain them.

36.1 Disordered Alloys

Alloys represent a simple class of disordered systems. Consider a binary alloy
containing two types of atoms, A and B, with a fixed composition AxB1−x,
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where the atoms randomly occupy the sites of a regular lattice.1 A basic ques-
tion concerning alloys is to what extent their electronic structure differs from
that of the regular crystals composed exclusively of atoms of type A or atoms
of type B. The theoretical description of disordered systems is more difficult
than that of the crystalline state owing to the absence of an underlying lattice,
owing to the absence of invariance under discrete translations. The states can-
not be characterized by a wave vector for k is not a good quantum number.
The density of states remains, however, a physically meaningful quantity, and
a series of observable physical quantities can be determined once the density of
states is known. The density of states can be obtained from the one-particle
Green function, so our primary aim is to show how the Green function of
disordered alloys can be calculated.

For the sake of simplicity we consider a tight-binding model with a single
electron state for each atom. Neglecting the spin and denoting the creation
(annihilation) operator of the electron state at site i by c†i (ci ) the Hamiltonian
of the model is

H =
∑

i

εic
†
i ci +

∑

i�=j

tijc
†
i cj , (36.1.1)

where the energy εi in the diagonal part may take one of the two values: εA
or εB. They appear with probability x and 1−x corresponding to the concen-
tration of the atoms. The hopping integral between neighboring sites depends
on whether the neighbors are of A–A, B–B, or A–B type. For simplicity the
disorder in the overlap of the wavefunctions is usually neglected and a con-
stant t is taken. This is a reasonable approximation when the potentials of
the atoms do not differ significantly. The hopping integral t defines a band-
width D = 2zt, where z is the coordination number (the number of nearest
neighbors). The properties of the alloy depend on the parameter

δ = (εA − εB)/D (36.1.2)

and on the concentrations cA = x and cB = 1 − x.
The problem of the electronic structure will be considered as a scattering

problem, how the electrons propagating in the system scatter on the random
atomic potentials. We therefore write the Hamiltonian in the form

H = H0 + V, (36.1.3)

where H0 describes the homogeneous propagation and V is the sum of the
atomic potentials. In what follows the atomic potentials will be denoted by
VA and VB, respectively.

36.1.1 Averaged T -Matrix Approximation

An alloy can most simply be described by considering an equivalent regular
crystal with an effective average potential. The methods described in
1 Even if the composition is stoichiometric and the atoms are ordered on two sub-

lattices in the ground state, disordering may occur above a critical temperature.
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Chapter 19 to calculate the electronic band structure of crystalline materi-
als can then be used to get the electronic states. The simplest natural choice
is a weighted average of the atomic potentials:

Vav = cAVA + cBVB . (36.1.4)

This is the virtual-crystal approximation. This might be a reasonable approx-
imation when the potentials of the two types of atoms are not very different.

As mentioned before, the calculation of the electronic structure can be
considered as a scattering problem. A natural generalization of the virtual-
crystal approximation is then to use the scattering operator T and to average
it instead of the potential. We recall some results of scattering theory. If the
scattering potential is denoted by V , the scattering operator is defined via

T = V + V G0T or T = V + TG0V, (36.1.5)

where
G0 =

1
ε−H0

(36.1.6)

is the Green function operator of the noninteracting system. The formal
solution is

T =
V

1 −G0V
. (36.1.7)

The full Green operator in the presence of the potential,

G =
1

ε−H0 − V
, (36.1.8)

can be written formally as

1
ε−H0 − V

=
1

ε−H0

(
1 + V

1
ε−H0 − V

)
, (36.1.9)

or in the concise form
G = G0 +G0V G , (36.1.10)

which is just the Dyson equation for the scattering problem. Iteration of this
equation and comparison with (36.1.5) leads to the relationship

V G = TG0 , (36.1.11)

and the full Green operator can be written as

G = G0 +G0TG0 . (36.1.12)

The T -matrix for scattering by a single atom with potential Vi satisfies
the equation

ti = Vi + ViG0ti =
Vi

1 −G0Vi
. (36.1.13)
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For a collection of atoms with random potentials, the full potential is

V =
∑

i

Vi (36.1.14)

and the total T -matrix can also be written as a sum over lattice sites

T =
∑

i

Ti (36.1.15)

by introducing the quantity

Ti = Vi + TiG0V =
Vi

1 −G0V
. (36.1.16)

Using the relationship

TiG0V =
Vi

1 −G0V
G0V = ViG0T, (36.1.17)

we find
Ti = Vi + ViG0T . (36.1.18)

Separating from the total T -matrix the term belonging to site i and rearrang-
ing the terms give

(1 − ViG0)Ti = Vi + ViG0

∑

j �=i

Tj , (36.1.19)

from which after division by 1 − ViG0 and making use of (36.1.13) we get

Ti = ti + ti
∑

j �=i

G0Tj . (36.1.20)

While ti is the scattering operator of a single scattering center, the quantity
Ti gives the contribution of the ith scattering center in the presence of other
scatterers. Inserting this expression into the total T -matrix and then into the
Green function, iteration leads to

G = G0 +
∑

i

G0tiG0 +
∑

i

∑

j �=i

G0tiG0tjG0 + · · · , (36.1.21)

which has a simple physical interpretation. The particle propagates freely
until it first scatters at site i. After multiple scattering there described by ti,
it propagates to another site j, where it can again suffer multiple scattering
before continuing. A succession of further multiple scatterings can occur.

The density of states can be obtained from the configurational average of
the Green function. In the averaged T -matrix approximation the correlations
between atoms are neglected and the approximation



536 36 Disordered Systems

〈G〉 ≈ G0 +
∑

i

G0〈ti〉G0 +
∑

i

∑

j �=i

G0〈ti〉G0〈tj〉G0 + · · · (36.1.22)

is used. It is equivalent to

〈Ti〉 ≈ 〈ti〉 + 〈ti〉
∑

j �=i

G0〈Tj〉 . (36.1.23)

If the number of lattice sites N is large,

〈Ti〉 ≈ 〈ti〉
1 −N〈ti〉G0

, (36.1.24)

and the expectation value of the total T -matrix is

〈T 〉 ≈ N〈ti〉
1 −N〈ti〉G0

. (36.1.25)

Substituting this expression into (36.1.12), the average of the Green function
operator is

〈G〉 = G0 +G0〈T 〉G0 =
G0

1 −N〈ti〉G0
. (36.1.26)

The Green function, the density of states, and other physical quantities are
thus obtained from the average of the atomic t-matrix.

36.1.2 Coherent-Potential Approximation

The coherent-potential approximation (CPA)2 goes one step further. To ap-
preciate the underlying physical idea we recall that the KKR equations of the
band structure calculation are equivalent to the self-consistency condition that
the system is in a stationary state, when the wave incident on any muffin-tin
sphere should be equal to the sum of the waves scattered from all other cells.
We will therefore consider a homogeneous system with an as yet unknown
coherent potential VCPA which is chosen from the requirement that no scat-
tering occurs on the average if this fictitious uniform potential is replaced by
the true atomic potential at a single site with the appropriate probability.

The Green operator of the fictitious homogeneous system is

G−1
C = G−1

0 − VCPA . (36.1.27)

Taking now V i = Vi − VCPA as a perturbation, the scattering operator for
scattering on site i alone is

t̄i = V i + V iGCPAt̄i =
V i

1 −GCPAV i

, (36.1.28)

2
P. Soven, 1967.
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and the total Green function satisfies the equation

G = GCPA +
∑

i

GCPAt̄iGCPA+

+
∑

i

∑

j �=i

GCPAt̄iGCPAt̄jGCPA + · · · .
(36.1.29)

The total T -matrix can be written as

T =
∑

i

T i , (36.1.30)

where
T i = t̄i + t̄i

∑

j �=i

GCPAT j . (36.1.31)

So far these transformations are exact. Since we require that deviations from
VCPA do not give rise to scattering on the average, CPA is equivalent to the
condition 〈

t̄i
〉

= 0 . (36.1.32)

If short-range order in the spatial distribution of atoms is neglected, the con-
figurational average of the Green function is equal in a good approximation
(up to third order in V i) to the Green function of the regular crystal with the
coherent potential

〈G〉 ≈ GCPA . (36.1.33)

Using (36.1.28) we readily find

VCPA = cAVA + cBVB +
(
VCPA − VA

)
GCPA

(
VCPA − VB

)
. (36.1.34)

Taking the first two terms on the right-hand side, the virtual-crystal
approximation is recovered. Combining the CPA with the methods of the
band structure calculation the electronic spectrum of disordered alloys can be
described quite reasonably. A merit of this approach is that it can be extended
to other disordered problems as well. It can be used, for example, to calculate
the magnetic properties of metals in both the ferromagnetic and paramagnetic
phases, where disorder is due to the fluctuating magnetic moment.

36.2 The Anderson Metal–Insulator Transition

The knowledge of the energy spectrum is not sufficient for describing the phys-
ical properties of disordered systems. It was pointed out by P. W. Anderson

as early as in 1958 that the character of the electronic states may change in
the presence of disorder. The extended Bloch-like wavefunctions with nonva-
nishing |ψ(r)|2 in the entire sample may be transformed into localized states
owing to multiple scattering by impurities. Taking the absolute square of the
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wavefunction at positions r and r′, that is the probability density of finding
the electrons there, the average of their product over the random configu-
rations decays exponentially. The localization length ξloc is defined by the
relation [|ψ(r)|2|ψ(r′)|2]av ∝ e−|r−r′|/ξloc . (36.2.1)

It is a fundamental problem to know under what circumstances electrons in the
vicinity of the Fermi surface become localized. If the localization conditions
are met, the material, which is metallic in the absence of disorder, becomes
insulating. We will only consider some of the aspects of this problem which
have far-reaching consequences.

36.2.1 Anderson Localization

The problem can be formulated very simply in the tight-binding description
of electron states. Neglecting the interaction between electrons and the spin
variable, we will study the states of the Hamiltonian

H =
∑

i

εic
†
i ci +

∑

i�=j

tijc
†
i cj . (36.2.2)

Disorder might occur for two reasons. First, in contrast to alloys, where εi can
take a few discrete values associated with the different types of atoms, the
atomic energy εi may be distributed randomly over an energy range in amor-
phous systems. Second, the hopping amplitude between neighboring atoms
may vary randomly. The former is called diagonal disorder, the latter off-
diagonal disorder. Anderson assumed for the sake of simplicity that the
off-diagonal disorder is negligible, each atom is surrounded by z nearest neigh-
bors, and the amplitude of the hopping matrix element between them has the
same value t. Disorder appears in the atomic energies which are distributed
uniformly over a range of width W , that is, the probability distribution of the
on-site energies is

P (εi) =

⎧
⎨

⎩

1
W

for |εi| ≤ W

2
,

0 otherwise.
(36.2.3)

In an ordered system, where εi is identical for all sites, the tight-binding model
would give extended Bloch states in a band of width D = 2zt. The prod-
uct |ψ(r)|2|ψ(r′)|2 would be independent of the distance between r and r′.
P. W. Anderson raised the question in 1958 whether a particle can diffuse
to arbitrary distance when impurities are present.

The answer is known for one-dimensional systems. The effect of disorder
can be determined exactly in the Kronig–Penney model,3 where the atomic

3
R. de L. Kronig and W. G. Penney, 1931.
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potential is approximated by a square potential well. All states are local-
ized for arbitrarily weak randomness in the depth of the potential wells. The
product

[|ψ(r)|2|ψ(r′)|2]av decays exponentially as announced in (36.2.1). A
disordered one-dimensional system cannot be metallic. The question is what
happens in higher dimensions.

Anderson has shown that diffusion of electrons remains possible in three-
dimensional systems for electrons near the Fermi energy as long as the param-
eter W characterizing the disorder is weak compared to the bandwidth. Diffu-
sion stops when W exceeds a critical value (an early estimate gave Wc ≈ 5D)
and all electron states become localized. This localization owing to the pres-
ence of disorder is known as Anderson localization.

Mott
4 pointed out that a so-called mobility edge lying inside the band

separates the extended electron states from the localized ones for weak disor-
der. This is illustrated in Fig. 36.2. The density of states may be nonvanishing
in a broader energy range than in the ordered system, the band develops tails
both above and below the band, but the mobility μ(ε) defined in connection
with the Kubo–Greenwood formula vanishes near the band edges. The states
in the middle part of the band remain extended. The position of the mobility
edge varies with the disorder.

00

Fig. 36.2. Electronic density of states of a disordered system with the mobility
edge. Dashed line indicates the density of states in the absence of disorder

These observations have been followed by extensive numerical studies on
the localized and delocalized nature of the electronic states. The results ob-
tained for the three-dimensional model defined by (36.2.2) and (36.2.3) are
displayed in Fig. 36.3. The bandwidth, which would have been 12t without
disorder, is enhanced. The states in the tails are localized. For strong disor-
der, when W/t exceeds a critical value of (W/t)c = 16.5 for the above model
according to the numerical calculations, all states become localized.

Similar results are obtained for other distributions of the atomic energies.
Taking a Gaussian probability distribution,

P (εi) =
1√

2πW 2
exp
(
− ε2i

2W 2

)
, (36.2.4)

4
N. F. Mott, 1966.
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Fig. 36.3. Position of the mobility edge as a function of the diagonal disorder for
a simple cubic lattice. States in the hashed region are localized [Reprinted with
permission from A. D. Zdetsis et al., Phys. Rev. B 32, 7811 (1985). © (1985) by
the American Physical Society]

the critical disorder above which all state are localized is (W/t)c = 6.1, while
for a Lorentzian distribution

P (εi) =
1
π

W

ε2i +W 2
(36.2.5)

we find (W/t)c = 4.3.
The effect of disorder, either diagonal or off-diagonal, is drastically different

in two-dimensional systems. We will return to this problem later on.

36.2.2 Continuous or Discontinuous Transition

It follows from the foregoing results that a three-dimensional metal becomes
insulating if the mobility edge crosses the Fermi energy as disorder increases.
This is the Anderson metal–insulator transition. An important difference com-
pared to the Mott metal–insulator transition is the absence of gap in the en-
ergy spectrum. All band energies remain allowed. However, the states near
the Fermi energy become localized with the result that they cannot conduct
current at T = 0.

It seems plausible to assume that the Boltzmann equation based on the
semiclassical approximation can be applied on the metallic side of the transi-
tion provided that the mean free path of electrons5 is longer than the Fermi
wavelength (the distance over which the phase of electrons at the Fermi sur-
face changes by 2π), that is, if kFl > 1. This is the Ioffe–Regel criterion6

for the existence of extended states. Electron states may exist in the opposite
limit, when the mean free path is shorter than the Fermi wavelength, but they
are localized. The transition from extended to localized states, from metallic
5 The statement will be refined later. It will be argued that the relevant distance

is the phase-breaking length over which the electron wavefunction loses phase
coherence.

6
A. F. Ioffe and A. R. Regel, 1960.
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to insulating behavior, occurs when the mean free path reaches the Ioffe–Regel
limit, kFl ≈ 1.

Mott assumed that the transition is discontinuous, first order. It then
follows that there exists a minimum metallic conductivity. To get an estimate
we take the Drude form for the conductivity,

σ =
nee

2τ

me
=
nee

2l

�kF
, (36.2.6)

where the relaxation time is expressed in terms of the mean free path using
τ = l/vF. In a three-dimensional system, where ne = k3

F/3π
2 and therefore

σ3D =
1

3π2

e2

�
kF(kFl) , (36.2.7)

the conductivity has to be larger than

σmin
3D ≈ 1

3π2

e2

�

1
a
, (36.2.8)

where a is a microscopic length scale, since the inverse of kF is on the order of
atomic distances. The minimum metallic conductivity should then be of order
105 S/m. For two-dimensional systems, where ne = k2

F/2π, and consequently

σ2D =
1
2π

e2

�
(kFl) , (36.2.9)

the minimum metallic conductivity would have a universal value with no
length scale in it,

σmin
2D ≈ 0.1

e2

�
≈ 3 × 10−5 Ω−1 . (36.2.10)

It corresponds to a maximum universal metallic sheet resistance7 of order
R� ≈ 30 kΩ/�. The same minimum metallic conductivity has been predicted
by Mott for the metal–insulator transition due to electron–electron interac-
tions.

It can be seen from Fig. 36.4, which shows the conductivity extrapolated
to T → 0 of silicon doped with phosphorus as a function of the dopant con-
centration, that the conductivity starts to decrease rather sharply when it
comes close to the minimum metallic conductivity – the donor concentration,
where this happens, corresponds to the Ioffe–Regel criterion – one can mea-
sure conductivities which are orders of magnitude smaller than the predicted
minimum value. The metal–insulator transition is extremely sharp, but con-
tinuous, the conductivity vanishes as some power of the deviation from the
critical concentration.
7 The sheet resistance R� or Rs is the resistance of a thin film of thickness t if

the length L and the width W of the film are equal and the current flows in the
plane of the film. Rs = ρ/t. The unit for sheet resistance is the ohm, but ohm per
square (Ω/�) is also commonly used.
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Fig. 36.4. Zero-temperature conductivity of metallic P-doped Si as a function of
the donor density [Reprinted with permission from T. F. Rosenbaum, Phys. Rev.
Lett., 45, 1723 (1980). © (1980) by the American Physical Society]

36.2.3 Phase Coherence and Interference of Electrons

To get a physical picture of the mechanism underlying localization, consider
the propagation of a particle from r1 to r2. A few possible diffusive trajectories
are depicted in Fig. 36.5.

r1

r2

Fig. 36.5. Several paths for the diffusive propagation of a particle from r1 to r2

If the probability amplitude for the ith path is denoted by Ai, the proba-
bility of reaching the point r2 is given by

W =
∣∣∣∣
∑

i

Ai

∣∣∣∣
2

=
∑

i

∣∣Ai

∣∣2 +
∑

i�=j

AiA
∗
j . (36.2.11)

The classical transport theory is based on the assumption that electrons lose
their quantum mechanical phase during the scattering processes and when
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there is no phase coherence between particles following the different paths,
the wavefunctions cannot interfere and the second term on the right-hand
side is averaged out. The transition probability to get to r2 is then equal to
the sum of the probabilities of the individual trajectories.

The situation may change at low temperatures. The inelastic electron–
phonon processes, which are dominant at higher temperatures, and also the
inelastic electron–electron interactions are gradually frozen out as the temper-
ature decreases. The average time τin between inelastic scattering processes
may become longer than the scattering time τ due to elastic processes. The
distinction is important since the wave vector (or momentum) is changed in
elastic potential scattering, but the phase of the wavefunction is conserved,
while electrons lose their phase coherence in inelastic processes and also in
spin-flip scattering by magnetic impurities. The inelastic scattering time τin
is also known as the phase-coherence time, phase-breaking time, or dephasing
time and will be denoted by τφ. Classical transport theory can be applied when
τφ � τ . The inequality may be reversed at low temperatures, where inelastic
processes become less frequent. Even though the electrons are frequently scat-
tered elastically and propagate diffusively, not ballistically, between inelastic
processes, phase coherence is maintained for a time τφ  τ and quantum
interference can occur.

Along with the two characteristic timescales, we have to distinguish several
length scales. l = vFτ is the mean free path for elastic scatterings and lφ =
vFτφ is the inelastic mean free path. At low temperatures, where τφ  τ , the
relevant distance over which the wave packet loses its phase coherence is the
phase-coherence length or phase-breaking length, also known as the Thouless
length,8 given by

Lφ =
(
Dτφ

)1/2
, (36.2.12)

where D is the diffusion coefficient. The elastic scattering time and the mean
free path being related to the diffusion coefficient via

D = v2
Fτ/d = vFl/d (36.2.13)

for a d-dimensional system, the phase-coherence length is the geometric mean
of the elastic and inelastic mean free paths,

Lφ ≈ (l lφ
)1/2

. (36.2.14)

To see the effect of coherence consider a self-intersecting trajectory from
r1 to r2 shown in Fig. 36.6(a) together with the path, where the electron
travels along the closed loop in opposite direction.

The change of the phase along a path is given by the line integral

Δφ =
1
�

r2∫

r1

p · dl . (36.2.15)

8
D. J. Thouless, 1977.
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Fig. 36.6. (a) Self-intersecting diffusive trajectory in real space. (b) The correspond-
ing path in momentum space

When the electron traverses the closed loop in the opposite direction and
all processes are elastic, the same phase difference is obtained; since the two
paths are related by time reversal, they can be transformed into each other by
reversing p and dl simultaneously (p → −p and dl → −dl). The contribution
of these processes to the quantum mechanical probability of diffusion from r1

to r2 is
Wquant = 2 |A|2 + 2AA∗ = 4 |A|2 (36.2.16)

instead of the classical result

Wclass = 2 |A|2 , (36.2.17)

since the interference term does not vanish. This shows that if phase coherence
is maintained along the paths, the quantum mechanical interference enhances
the return probability. The particle has a higher chance to return to the origin
than a particle that diffuses incoherently. This implies that the probability to
diffuse away from the origin decreases at low temperatures in a disordered
system. Consequently the electron states become less extended and the con-
ductivity decreases. Ultimately this may lead to the localization of electrons
when the probability of return to an initial position is so overwhelming that
the electron cannot escape. Since it is more likely to find self-intersecting
paths in low dimensions, this effect manifests itself much more strongly in
low-dimensional systems (films and wires).

It is worthwhile to show the two time-reversed paths in momentum repre-
sentation. Assume that the electron undergoes a series of elastic scatterings
with momentum transfers q1, q2, . . . , qn remaining always on the Fermi sur-
face as shown in Fig. 36.6(b). The initial momentum k changes to −k at the
end:

k → k′
1 = k + q1 → k′

2 = k′
1 + q2 → · · · → −k = k′

n−1 + qn . (36.2.18)

Consider now the process where the momentum transfer is qn in the first step,
qn−1 in the second step, and q1 in the last step:
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k → k′′
1 = k + qn → k′′

2 = k′′
1 + qn−1 → · · · → −k = k′′

n−1 + q1 . (36.2.19)

The electron with momentum k is scattered into the state with −k at
the end. The interference of these events gives rise to an increased proba-
bility of backward scattering, increasing the resistivity, i.e., decreasing the
conductivity.

36.2.4 Oscillation Phenomena due to Phase Coherence

A direct consequence of the phase coherence is that oscillatory phenom-
ena can be observed experimentally in normal metals at low temperatures.
Y. Aharonov and D. Bohm proposed a particular interference effect in
1959. If a beam of electrons of charge −e is split into two and the two beams
propagate on opposite sides of a region traversed by a magnetic flux, the in-
terference pattern of the beams depends on the strength of the magnetic field
even if the electron beams do not penetrate into the region where B �= 0.
An analogous phenomenon has already been discussed in Chapter 26 in con-
nection with the Josephson effect: the relative phase of two superconductors
connected in parallel depends on the enclosed flux. Our considerations there
concerned the macroscopic phase of superconductors. Here we consider the
quantum mechanical phase of normal electrons.

If an electron propagates in a region where the vector potential is nonvan-
ishing, the probability amplitude Ai associated with the trajectory is modified
by a multiplicative factor,

Ai → Ai exp
(

ie
�

∫
A · dl

)
. (36.2.20)

The change in the phase as the particle travels from r1 to r2 is given by the
line integral

φ(r2) − φ(r1) =
e

�

r2∫

r1

A · dl . (36.2.21)

If the beam is split into two and the two parts follow different paths, but come
together at one point, the difference between the phase changes along the two
trajectories is

Δφ =
e

�

∮
A · dl =

e

�

∫
curl A · dS =

e

�
Φ = π

Φ

Φ0
, (36.2.22)

where Φ is the flux going through the surface enclosed by the split beams
and Φ0 = h/2e is the SI unit of the magnetic flux quantum. An oscillation
with period ΔΦ = 2Φ0 should be observed as the magnetic field is varied,
if the phase coherence of the electron beams is not destroyed by scattering
processes.
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Analogous oscillations can easily be observed in superconductors where
the phase is a macroscopic quantity, but the oscillation period is ΔΦ = Φ0

and not ΔΦ = 2Φ0 since the carriers are Cooper pairs with charge −2e. It was
thought for a long time that the Aharonov–Bohm effect cannot be observed
in normal metals since electrons lose the phase coherence in the scattering
processes over a relatively short distance, on a mesoscopic length scale. The
developments in nanotechnology allowed us to fabricate samples where these
quantum effects are observable. As shown in Fig. 36.7, the resistivity as a
function of the magnetic field oscillates with period h/e at low temperatures
in very small samples with linear extension smaller than the phase-coherence
length.

Fig. 36.7. Aharonov–Bohm oscillations with period h/e measured in a normal gold
ring with inner diameter less than 1 μm. The left panel shows the magnetoresistance
at several temperatures and the right panel is the Fourier spectrum of the data on
the left panel [Reprinted with permission from R. A. Webb et al., Phys. Rev. Lett.
54, 2696 (1985). © (1985) by the American Physical Society]

A different oscillation was predicted by B. L. Altshuler, A. G. Aronov,
and B. Z. Spivak in 1981, a few years before the usual Aharonov–Bohm
oscillations could be observed in normal metals. They pointed out that the
conductance of a thin-walled cylinder is an oscillatory function of the magnetic
flux inside the cylinder with period h/2e and not h/e, even if the sample is
not superconducting. The experimental results are shown in Fig. 36.8.

The difference between the Aharonov–Bohm effect and the Altshuler–
Aronov–Spivak effect can be best understood by looking at the schematic
representation of the geometry of the measurements seen in Fig. 36.9. The
electron wave propagates in the Aharonov–Bohm effect in the two arms of
the interferometer. The phase difference given in (36.2.22) comes from the
difference between the phases in the left and right arms. In contrast to this,
the Altshuler–Aronov–Spivak effect arises from the interference of trajectories
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Fig. 36.8. Resistivity oscillations with period h/2e for a narrow cylinder [D. Yu.
Sharvin, Yu. V. Sharvin, JETP Lett., 34, 272 (1981)]

( )a ( )b

Fig. 36.9. Trajectory of electrons (a) in the Aharonov–Bohm effect of period h/e
and (b) in the Altshuler–Aronov–Spivak effect of period h/2e

going fully around the cylinder, but in opposite directions. The electron makes
a full turn on both trajectories; its phase changes by

δφ =
e

�
Φ = πΦ/Φ0 (36.2.23)

in one direction and by −πΦ/Φ0 when it goes around the cylinder in the
opposite direction. The contribution of the two paths to the return probability
is

W (B) = [2A cosπΦ/Φ0]
2 = 2|A|2 [1 + cos 2πΦ/Φ0] . (36.2.24)

Hence the magnetoresistance oscillates with period ΔΦ = h/2e in this
geometry.

36.2.5 Quantum Corrections to Conductivity, Weak Localization

The constructive interference discussed above occurs on paths that are shorter
than the phase-coherence length. In other words the trajectory should be tra-
versed in less than the phase-coherence time τφ. As the dephasing time τφ
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exhibits a T−p temperature dependence with p depending on the scattering
mechanism (its value is typically between 1 and 2), interference effects may
become relevant at low temperatures and may drastically change the conduc-
tivity of the sample.

To get an estimate of the effect we make use of the fact that the electron
propagates ballistically for times shorter than the elastic relaxation time τ ,
and the propagation is diffusive for longer times. The probability P (r, t) that
the particle gets to a distance r during time t can be obtained from solving
Fick’s second law9 for diffusion,

∂P (r, t)
∂t

= D∇2P (r, t) , (36.2.25)

where D ∝ v2
Fτ is the diffusion coefficient. The normalized solution for a

d-dimensional system is

P (r, t) =
(
4πDt

)−d/2e−r2/4Dt . (36.2.26)

We will apply it to one-, two-, and three-dimensional systems. Note that we
have in mind one- and two-dimensional systems in the physical sense. A sample
can be considered as effectively one dimensional, if the linear extension is on
the order of the Fermi wavelength in two directions and much longer in the
third direction. Similarly, a sample is effectively two dimensional if the linear
extension is small, on the order of the Fermi wavelength, in one direction only.
The thickness of a film or the radius of a wire can in fact be even bigger. Since
the most relevant timescale for seeing the quantum effects is the dephasing
time, a film is two dimensional in its physical behavior if the time – on the
order of a2/D – needed for an electron to diffuse across the film of thickness
a is much smaller than τφ. A similar limit can be set for the radius of a wire.

The diffusive range of an electron in time t is (Dt)1/2, and the probability
of return to the neighborhood of the origin after a time t is proportional to
the inverse of the volume (Dt)d/2 within which the electron has diffused. The
probability of return to precisely the origin is of course zero for a pointlike
object. However, the electron can be viewed as a wave packet with linear
extension on the order of the Fermi wavelength λF ∼ 1/kF. It sweeps out a
volume element λd−1

F vFdt in a time dt by ballistic motion. The wave packet
can interfere with itself provided it returns to such a volume element about
the origin at some time t. The probability for this to happen in the interval
dt after time t is

P (r = 0, t)λd−1
F vFdt =

λd−1
F vF

(4πDt)d/2
dt . (36.2.27)

The decrease of the conductivity is proportional to the return probability

9
A. E. Fick, 1855.
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δσ

σ0
∼ −

τφ∫

τ

λd−1
F vF

(4πDt)d/2
dt . (36.2.28)

The lower and upper limits of integration are obtained from physical consid-
erations. The diffusive motion sets in after the elastic mean free time. The
propagation is ballistic for shorter times; there is no chance for return. As for
the upper limit, phase coherence is lost for times longer than τφ, an electron
returning after a longer time cannot interfere with itself. When τφ  τ we
find

δσ

σ0
∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1
(kFl)2

[
1 −
(
τ

τφ

)1/2
]

d = 3 ,

− 1
kFl

ln(τφ/τ) d = 2 ,

− (τφ/τ)
1/2

d = 1 .

(36.2.29)

Expressed in terms of the phase-coherence length,

δσ

σ0
∼

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
(kFl)2

[
1 − l

Lφ

]
d = 3 ,

− 1
kFl

ln(Lφ/l) d = 2 ,

−Lφ/l d = 1 .

(36.2.30)

The prefactors can be determined using the methods of the many-body
problem. We have seen in Chapter 29 that the conductivity can be calculated
according to the Kubo formula from the current–current correlation function.
The Drude result for scattering by impurities can be recovered by summing up
to infinite order the contributions of a series of special processes depicted in
Fig. 36.10(a). The dashed lines with a cross denote scattering by the impurity.
The leading correction to the Drude result comes from another special class of
diagrams, the so-called maximally crossed diagrams depicted in Fig. 36.10(b).
These processes correspond to the self-intersecting trajectories with closed
loops shown in Fig. 36.6.

( )a ( )b

Fig. 36.10. Diagrams representing the current–current correlation function. Dashed
lines indicate the impurity scattering. (a) Typical diagram corresponding to the
Drude result. (b) Example of maximally crossed diagrams contributing to the leading
quantum corrections
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The inelastic processes are frozen out at T = 0 and the propagation of
electrons is limited by the size of the sample. Taking a d-dimensional hyper-
cube of edge length L, the contributions of the maximally crossed diagrams
give

δσ(L) = −cd
(
e2

�

)
l2−d

d− 2

[
1 −
(
L

l

)2−d
]
, (36.2.31)

where cd = (2/π)Sd/(2π)d and Sd is the surface area of the d-dimensional
unit sphere. For a three-dimensional system we have

σ3D(L) = σ0 − e2

π3�

[
1
l
− 1
L

]
, (36.2.32)

whereas in two dimensions

σ2D(L) = σ0 − e2

π2�
ln
L

l
, (36.2.33)

while in one dimension

σ1D(L) = σ0 − e2

π�
(L− l) . (36.2.34)

In the regime where the first quantum corrections become observable, we
speak of weak localization.

The inelastic processes and the loss of phase coherence caused by them
on a length scale Lφ should be taken into account at finite temperatures.
The conductivity can be obtained by replacing the size of the sample L in
the previous formulas with the temperature-dependent Lφ. We then recover
(36.2.30). With the assumption τφ ∝ T−p for the inelastic relaxation time,
Lφ ∝ T−p/2, and we have

σ(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ0 +
e2

π3�

1
a
T p/2 d = 3 ,

σ0 +
p

2
e2

π2�
ln
(
T

T0

)
d = 2 ,

σ0 − ae2

π�
T−p/2 d = 1 ,

(36.2.35)

where a is a microscopic length scale. The conductivity decreases in all
three cases with decreasing temperature. This decrease is rather small in
three dimensions, the quantum mechanical interference only gives a slight
correction to the classical Drude result. Quantum corrections are more pro-
nounced in two- and one-dimensional systems. The resistance of thin-film sam-
ples displayed in Fig. 36.11 exhibits one of the most spectacular consequences
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Fig. 36.11. (a) Resistance of thin films vs. voltage on a logarithmic scale for var-
ious temperatures. (b) The plateau values of the resistance plotted against log T
[Reprinted with permission from G. J. Dolan and D. D. Osheroff, Phys. Rev. Lett.
43, 721 (1979). © (1979) by the American Physical Society]

of weak localization, namely the logarithmic dependence of the resistance on
temperature in a two-dimensional system.

As seen in the figure, the dependence of the resistance on the voltage
is similarly logarithmic. The phase of the electrons can be modified by an
external magnetic field and this can destroy the interference. The conductance
increases (resistance decreases) when magnetic field is applied, as seen in
Fig. 36.12. The measured field dependence is in good agreement with the
prediction of the theory of weak localization.

Fig. 36.12. Low-field magnetoresistance of a silicon(111) MOSFET at several tem-
peratures [Reprinted with permission from D. J. Bishop, R. C. Dynes, and D. C.
Tsui, Phys. Rev. B 26, 773 (1982). © (1982) by the American Physical Society]
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36.2.6 Strong Localization, Hopping Conductivity

The semiclassical treatment of conduction with quantum corrections is ap-
plicable to the diffusive motion of electrons, when the electron states are
extended. Electrons in localized states do not contribute to the conductivity
at zero temperature. They may be thermally excited to extended states or
to an empty localized state at finite temperature and electrical current may
be generated by an electric field. Electrons can “hop” by quantum mechani-
cal tunneling between localized states if there is a finite overlap between the
wavefunctions. The system has to be at finite temperatures since the energy of
the overlapping nearby states is normally different, and this energy difference
has to be transferred to or gained from another degree of freedom, usually the
phonon system.

The hopping probability is proportional to the overlap and depends on
the energy mismatch. It is a plausible assumption that the contribution of
hopping over a distance r to the conductivity depends exponentially on the
distance and on the energy difference, that is

σ ∝ exp(−2αr − Δε/kBT ) . (36.2.36)

An electron can jump with the same probability to a greater spatial distance if
the energy difference between the states is smaller. This mechanism is known
as the variable-range hopping (VRH). Taking a d-dimensional sphere of radius
r, the number of states in an energy interval ΔE is

Crdρ(εF)ΔE , (36.2.37)

where C is constant of order unity and ρ(ε) is the density of states. The typical
energy difference between the levels an electron sees, if it can hop to a distance
r, is given by

Δε =
1

Crdρ(εF)
, (36.2.38)

The biggest contribution to the current comes from the most probable hopping
distance determined from the extremum condition

d
dr

(
2αr +

1
Crdρ(εF)kBT

)
= 0 . (36.2.39)

Assuming that the hops to the most probable distance, which increases with
decreasing temperature as T−1/(d+1), dominate the conductivity, the temper-
ature dependence of the conductivity exhibits an activated form,

σ ∝ exp
[
−(T0/T )1/(d+1)

]
. (36.2.40)

The logarithm of the conductivity due to the variable-range hopping plot-
ted against T−1/4 shows a linear characteristic with negative slope for three-
dimensional systems. This relationship is known as the Mott T−1/4 law.10

10
N. F. Mott, 1968.
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The theory predicts the values −1/3 and −1/2 for the exponent for two- and
one-dimensional systems, respectively. Hopping conduction has been observed
in many materials. Figure 36.13(a) displays the temperature dependence of
the conductivity of three differently doped compensated n-type GaAs sam-
ples. The temperature dependence is in agreement with Mott’s prediction for
three-dimensional systems. Figure 36.13(b) shows the resistivity of a strongly
disordered two-dimensional electron system produced in a semiconductor het-
erojunction. The density can be varied by changing the gate voltage. In the
density range where the conductance is much smaller than the Mott mini-
mum metallic conductance, the logarithm of the resistance varies as T−1/3,
as expected for two-dimensional systems.

Fig. 36.13. (a) Logarithm of the conductivity plotted against T−1/4 for three sam-
ples of compensated n-type GaAs [Reprinted with permission from M. Benzaquen
and D. Walsh, Phys. Rev. B 30, 7287 (1984). © (1984) by the American Physical
Society]. (b) Temperature dependence of the resistance for a strongly disordered two-
dimensional electron gas generated in a GeAs/AlGeAs heterojunction [Reprinted
with permission from H. W. Jiang, C. E. Johnson, and K. L. Wang, Phys. Rev. B
46, 12830 (1992). © (1992) by the American Physical Society]

Note that the Coulomb interaction between electrons has been neglected
in Mott’s argument. This interaction has to be taken into account at very
low temperatures, since screening is not effective in the regime where electrons
are more or less localized. The temperature dependence of the conductivity is
then given by the Efros–Shklovskii law11

11
A. L. Efros and B. I. Shklovskii, 1975.
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σ ∝ exp
[
−(T0/T )1/2

]
(36.2.41)

irrespective of the dimensionality.
The variable-range hopping mechanism gives a nonvanishing conductivity

if the electrons can hop from one end of the sample to the other. This requires,
in the language of percolation theory, a dopant concentration exceeding the
percolation threshold. The conductance shows a power-law dependence on the
dopant concentration in agreement with percolation theory.

36.2.7 Scaling Theory of Localization

The two particular cases treated until now, weak localization and strong local-
ization, allowed us to determine the temperature dependence of the resistivity
in the two limits. Weak localization is not really localization. As mentioned
before, it is just the first sign of the wave nature of electrons in the electri-
cal conductivity that reveals itself in the constructive interference of electron
waves traveling along closed paths in opposite directions. Although one cannot
tell from the perturbative result when the states become localized and when
not, it is instructive to look at the length dependence of the conductivity
given in (36.2.32), (36.2.33), and (36.2.34). The correction to the conductivity
is small in three-dimensional systems and remains finite as the linear dimen-
sions of the sample increase. The logarithmic correction in two-dimensional
systems, if it is not destroyed by further corrections, can become compara-
ble with σ0 and the conductivity may vanish. A similar situation may occur
in one-dimensional systems, where the conductivity decreases linearly with
the system size. Thus, weak localization gives some hint that the resistance
of one- and two-dimensional systems diverges as the system size increases,
implying that the electron states become localized. This argument is only a
naive extrapolation from the first corrections, but since we are interested in
how the conductivity changes as the length of the system varies, the scal-
ing considerations used, e.g., for critical phenomena, might be applicable to
the localization problem. Indeed, earlier theories of the Anderson localization
indicated that the dimensionless conductance

g(L) =
G(L)
G0

(36.2.42)

with G0 = e2/� has scaling properties as a function of the system size L.
The basic assumptions of the scaling theory of localization12 can be for-

mulated as follows. Consider a d-dimensional hypercubic sample of size L in
all dimensions. The dimensionless conductance is a function of L and may
depend on some other parameters, e.g., the degree of disorder. Denoting this
parameter by x, we will consider the function g(L, x). Taking now a sample
12

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Rama-

krishnan, 1979.
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of size bL with b > 1, the dimensionless conductance, g(bL, x), of the larger
sample is assumed to depend only on the change in the length scale and on
the conductivity of the original sample, that is

g(bL, x) = f
[
b, g(L, x)

]
, (36.2.43)

where f is an as yet unknown scaling function. This assumption implies that
there is a unique characteristic length ξ in the problem, where of course ξ
depends on the parameter x, and the conductance g(L, x) of a sample of size
L is a function only of L/ξ,

g(L, x) = g(L/ξ) . (36.2.44)

This characteristic length is the localization length ξloc in the localized regime,
while it is the correlation length ξcorr in the metallic regime. Both of them
diverge as the transition point is approached.

When the length scale is changed by a small amount, b = 1+a with a� 1,
both sides of (36.2.43) can be expanded to linear order in a. Collecting the
zeroth- and first-order terms we get

g(L, x) = f
[
1, g(L, x)

]
,

L
dg(L, x)

dL
=

df
(
b, g(L, x)

)

db

∣∣∣∣∣
b=1

.
(36.2.45)

Introducing the quantity

β(g(L, x)) =
1

g(L, x)
df(b, g(L, x))

db

∣∣∣∣
b=1

, (36.2.46)

it is a function of g(L, x) alone, and the scaling equation leads to

β(g(L, x)) =
L

g(L, x)
dg(L, x)

dL
=

d ln g(L, x)
d lnL

. (36.2.47)

The variation of the conductance can be determined provided the β function
is known. The scaling theory uses the known results in the limiting cases, for
weak and strong localization, to extrapolate to arbitrary g.

In a good conductor, the resistance is proportional to the length of the
sample in the direction of the current divided by the cross section. In a d-
dimensional hypercubic sample the conductance is

G = σLd−2 , (36.2.48)

and the dimensionless conductance is proportional to Ld−2. The logarithmic
derivative of the functional form

g(L) ∝ Ld−2 (36.2.49)
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leads to
β(g) = d− 2 . (36.2.50)

The first correction to this leading term in the β function can be calculated
in the weak-localization limit from (36.2.31). The correction is proportional
to 1/g in any dimension,

β(g) = d− 2 − cd
g
, (36.2.51)

where cd is a positive number of order unity.
In the opposite limit, when the states near the Fermi energy are localized,

and the localization can be characterized by a localization length ξloc, the
conductance decays exponentially with the system size for L ξloc, that is

g(L) ∝ e−L/ξloc . (36.2.52)

from which, for small values of g,

β(g) = − L

ξloc
= ln g + const . (36.2.53)

Knowing the β function for large and small values of g, in the metallic and
in the insulating regimes, it is natural to assume a smooth, monotonic inter-
polation between them. The expected profiles of the β function are depicted
in Fig. 36.14 for d = 1, 2, and 3.

1 1

0

1
d 1

g d

d

2

0
1

4
0

g

Fig. 36.14. Expected profiles of the β function of the localization problem for
dimensions d = 1, 2, and 3

If the function β(g) is smooth and the higher order corrections do not
reverse the trends seen in the two limits, β(g) is always negative for d ≤ 2.
This implies that the conductance decreases as the system size grows. There
is a single fixed point, g = 0, and therefore all states become localized as
L → ∞. The conductivity of a small thin film or a short wire could seem
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metallic, but the conductance decreases as the size increases and it finally
disappears.

The localization length of two-dimensional systems can be estimated from
the formulas of weak localization. It follows from (36.2.33) that

g(L) = g0 − 1
π2

ln
L

l
, (36.2.54)

where
g0 =

1
2π
kFl . (36.2.55)

The localization length can be defined as the size where the correction to g0
is comparable with g0 itself, that is when

1
π2

ln
ξloc

l
= g0 , (36.2.56)

from which we get
ξloc = l exp

(π
2
kFl
)
. (36.2.57)

The system is in the regime of weak localization when the localization length
ξloc is larger than the phase-coherence length Lφ. The conductance decreases
logarithmically with the system size. Strong, exponential localization sets in
when Lφ > ξloc. The conductance is on the order of e2/2π2

� at the crossover
between the two regimes. This can be interpreted as the minimum metal-
lic conductance in the sense that the conductance cannot be smaller if the
underlying mechanism is the diffusive propagation of electrons.

An unstable fixed point exists for d > 2 at a g∗ where β(g∗) = 0. When
the dimensionless conductance is smaller than this critical value, g < g∗,
the conductance decreases as the size increases. The electron states become
localized and the system turns into an insulator. If, however, g > g∗, the
conductance increases with the system size, the sample remains metallic. The
initial value of the conductivity can be influenced by ordering or disordering
the sample. A continuous Anderson metal–insulator transition may occur as
the degree of disorder is changed.

The behavior near a second-order phase transition can be characterized
by the critical exponents. To derive them we linearize the β function in the
vicinity of the fixed point and define a quantity ν by the relation

β(g) =
1
ν

g − g∗

g∗
≈ 1
ν

g − g∗

g
. (36.2.58)

As will be seen, ν will play the role of a critical exponent. Its value cannot
be determined in the framework of this scaling theory, since the β function
is known only for small and large values of g; nevertheless, several interesting
features of the metal–insulator transition can be expressed in terms of this
single parameter.
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Consider a sample where the mean free path and the conductance can be
controlled by the degree of disorder. There is a critical value of disorder, xc,
where the conductance is equal to the fixed-point value,

g(L, xc) = g∗ . (36.2.59)

Since the conductance is scale independent at the fixed point, xc is indepen-
dent of the system size. We take now a sample with edge length equal to
the mean free path and assume that the conductance g(l, x) is close to the
fixed-point value,

g(l, x) = g∗ + g∗C(x− xc) , (36.2.60)

with C > 0. The difference x−xc, which characterizes the disorder, is positive
on the metallic side and negative on the insulating side. Rearranging the
linearized scaling equation

d ln g
d lnL

=
1
ν

g − g∗

g
(36.2.61)

into the form
dg

g − g∗
=

1
ν

dL
L

(36.2.62)

and integrating from l to L, that is from g(l) to g(L), we get

g(L) − g∗ =
[
g(l) − g∗

](L
l

)1/ν

= g∗C(x− xc)
(
L

l

)1/ν

. (36.2.63)

A localization length ξloc can be defined on the insulating side, for x < xc,
as the length where the change of the conductance is comparable with the
fixed-point conductance itself, that is

C|x− xc|
(
ξloc

l

)1/ν

≈ 1 . (36.2.64)

As we approach the metal–insulator transition by varying x, the localization
length diverges with the critical exponent ν:

ξloc ≈ l|x− xc|−ν . (36.2.65)

This linearized calculation, which yields a power-law dependence of the
conductance on the length of the system, cannot be true close to the fixed
point as it would give negative conductance. In a better treatment the β
function is approximated in the vicinity of the fixed point by

β(g) =
1
ν

(ln g − ln g∗) , (36.2.66)

which coincides with (36.2.58) when g − g∗ � 1. Integration of the scaling
equation
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d ln g
d lnL

=
1
ν

ln
g

g∗
(36.2.67)

then gives
ln(g(L)/g∗)
ln(g(l)/g∗)

=
(
L

l

)1/ν

, (36.2.68)

or in another form

g(L) = g∗
(
g(l)
g∗

)(L/l)1/ν

. (36.2.69)

Combining with (36.2.60)

g(L) = g∗
[
1 + C(x− xc)

](L/l)1/ν

. (36.2.70)

This expression can be taken as the expansion for small x−xc of the function

g(L) = g∗ exp
[
C(x− xc)

(L
l

)1/ν
]
. (36.2.71)

The conductance decreases exponentially with the system size on the insulat-
ing side, for x < xc, a physically more reasonable result than the power-law
behavior. The localization length ξloc given in (36.2.64) is identified as the lin-
ear extension L where the exponent takes the value −1. Combining (36.2.71)
with (36.2.64),

g(L) = g∗ exp
[− L/ξloc

]
. (36.2.72)

On the metallic side, for x > xc, the conductance increases with the sys-
tem size. Quantum corrections should become negligible beyond some char-
acteristic length ξcorr, which is the natural length scale on this side of the
metal–insulator transition, and the ohmic behavior

G = σLd−2 (36.2.73)

should be recovered. This happens when the β function becomes of order
unity, or equivalently when the exponent in (36.2.71) is of order unity, that is

ξcorr ∝ l(x− xc)−ν . (36.2.74)

The conductivity of a metal should be independent of the system size. Ex-
pressed in terms of the dimensionless conductance,

σ =
2e2

�
Ld−2g(L, x) =

2e2

�
Ld−2g(L/ξcorr) ; (36.2.75)

hence, g(L/ξcorr) should be proportional to (L/ξcorr)−(d−2). This gives

σ ∝ ξd−2
corr ∝ (x− xc)ν(d−2) . (36.2.76)
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The conductance does not exhibit a jump at the metal–insulator transition;
it vanishes continuously with some power s of x−xc. The exponent s satisfies
the Wegner scaling law,13

s = ν(d− 2) . (36.2.77)

This continuous vanishing of the conductance can be observed in the ex-
perimental results displayed in Fig. 36.11. The value s = 1 is obtained for the
critical exponent of the conductivity by mapping the problem of Anderson lo-
calization to field theory models. This would give ν = 1 for three-dimensional
systems. The experiments and numerical solutions of models with various
types of disorder give a different value. The value ν = 1.58 was found nu-
merically for the Anderson model with diagonal disorder. In the presence of
an external magnetic field, when the hopping probability is modified by a
phase factor containing the line integral of the vector potential, a somewhat
different value, ν = 1.43, was obtained. The numerical calculations allow us
to reconstruct the β function. The results are in agreement with the scaling
theory. The β function is found to have a zero, the scaling transformation has
a nontrivial fixed point in three dimensions, while only the trivial fixed point
g∗ = 0 exists in one and two dimensions.

36.2.8 The Role of Electron–Electron Interaction

The scaling theory, as presented above, predicts that all electron states are
localized in a large enough two-dimensional disordered system. This is corrob-
orated by numerical calculations on models with different types of disorder.
This implies that the conductance of two-dimensional systems should van-
ish at zero temperature. The logarithmic temperature dependence has indeed
been observed on thin films. The experimental results displayed in Fig. 36.15
came therefore as a big surprise.

The two-dimensional electron system in the inversion layer of an
Si:MOSFET at low carrier densities behaves as expected for an insulator show-
ing a monotonic increase in resistivity with decreasing temperature. However,
when the carrier density exceeds a critical value, the tendency is reversed,
metallic behavior is found as T → 0. The resistivity curves can be scaled
by an appropriate choice of the temperature scale on two universal scaling
curves, one for the metallic, the other for the insulating regime, demonstrat-
ing clearly that a metal–insulator transition takes place at zero temperature
at a critical electron density. One explanation could be that this transition is
the consequence of electron–electron interactions neglected until now. It can
be shown that interaction effects are more important than weak-localization
(interference) effects in three-dimensional samples. They become observable
at temperatures satisfying kBT � �/τ with the elastic mean free time. In con-
trast the interference effects dominate in wires. Two-dimensional systems are
marginal in this respect. Electron–electron interactions give rise to a similar
13

F. Wegner, 1976.
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Fig. 36.15. Temperature dependence of the resistivity of the two-dimensional elec-
tron gas in an Si:MOSFET for various carrier densities and the same data plotted
against the scaled temperature [Reprinted with permission from S. V. Kravchenko
et al., Phys. Rev. B 51, 7038 (1995). © (1995) by the American Physical Society]

logarithmic temperature dependence of the resistivity as disorder. Interaction
effects and disorder should therefore be treated on an equal footing. Pertur-
bative treatments of the interactions in the weak-localization regime indicate
that localization effects may be suppressed. However, the full interplay be-
tween localization and interaction is a yet unsolved problem.

36.3 Spin Glasses

Our preceding discussion concerned systems with positional disorder of
nonmagnetic atoms. We have seen in Chapter 35 that magnetic impurities
give rise to interesting new effects in metals. At low concentrations, when
the interaction between the impurities can be neglected, understanding the
Kondo problem presented a big challenge. At high concentrations, when the
concentration of the magnetic ions exceeds the percolation threshold, ferro-
magnetism may appear. We will discuss here an intermediate state occurring
for an intermediate concentration range. The interaction between the ran-
domly distributed magnetic ions cannot be neglected in the systems to be
considered; nevertheless, the magnetic moments do not order even at low
temperatures. The couplings between the magnetic ions, which can be fer-
romagnetic or antiferromagnetic depending on the separation between them,
cannot align the spins in a crystallographically preferred direction on a finite
number of sublattices. Each spin is oriented in a different direction. This new
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type of magnetic state with properties different from both paramagnets and
ordered magnets is called spin glass.

36.3.1 Experimental Findings

Alloys of noble metals (copper or gold) with a few percent of manganese or
iron atoms exhibit the following unusual properties:

1. As displayed in Fig. 36.16, the low-field susceptibility exhibits an increas-
ingly sharp peak as the measuring field is lowered, turning into a cusp
at some characteristic temperature Tg in the zero-field limit. A Curie-like
behavior characteristic for random paramagnetic impurities is observed in
the temperature range above Tg. The susceptibility reaches a finite value
there before starting to fall.

Fig. 36.16. Temperature dependence of the zero-field susceptibility of copper con-
taining a few atomic percent of manganese atoms. The right panel shows the round-
ing of the cusp in weak fields on an enlarged scale [Reprinted with permission from
V. Cannella and J. A. Mydosh, Phys. Rev. B 6, 4220 (1972). © (1972) by the
American Physical Society]

2. The nonlinear terms become appreciable in the magnetization. The non-
linear susceptibility χnl defined via

M = χH − χnlH
3 (36.3.1)

diverges at Tg as (T − Tg)−γ .
3. As displayed in Fig. 36.17, the cusp in the zero-field susceptibility is

rounded off when the susceptibility is measured at finite frequencies.
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Fig. 36.17. Temperature dependence of the zero-field susceptibility for copper with
0.94 at.% Mn at four different frequencies ranging from 1.33 kHz to 2.6 Hz [Reprinted
with permission from C. A. M. Mulder et al., Phys. Rev. B 23, 1384 (1981). © (1981)
by the American Physical Society]

4. No magnetic ordering and no magnetic Bragg peaks characteristic of long-
range order can be detected below Tg in neutron-scattering experiments.
The magnetic moments are frozen into a static configuration, the time
average of each individual moment is finite, but there are no long-range
correlations between the orientations of different moments. The Fourier
transform of the spatial distribution of the moments vanishes for any k,

1
N

∑

i

〈Si〉eik·Ri = 0 . (36.3.2)

5. A remarkable feature is the lack of any visible anomaly in the heat capacity
at Tg. The heat capacity exhibits a broad peak slightly above Tg.

6. The response to magnetic field depends on the history of the sample below
Tg. As seen in Fig. 36.18 the magnetization and susceptibility are higher
for a field-cooled (FC) sample than for a zero-field-cooled (ZFC) sample.
The latter corresponds to the usual situation: The magnetic field, in which
the susceptibility is measured, is applied at the measurement temperature.
On the other hand, in the field-cooled case the magnetic field is applied
at a temperature above Tg before the sample is cooled to a temperature
below Tg where the measurement is done.

The magnetization and the susceptibility are virtually constant in the
field-cooled case, irrespective of whether the measurements are done on de-
creasing or increasing temperatures. The zero-field-cooled samples exhibit
irreversibility. The susceptibility increases with temperature.
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Fig. 36.18. The static susceptibility as a function of temperature taken in a weak
field (H = 5.9 Oe) for two copper samples with 1.08 and 2.02 at.% Mn. Curves (a)
and (c) were obtained on field-cooled samples and curves (b) and (d) were taken
on zero-field-cooled samples for increasing temperature [Reprinted with permission
from S. Nagata et al., Phys. Rev. B 19, 1633 (1979). © (1979) by the American
Physical Society]

7. When the external field applied to a field-cooled sample is switched off,
the magnetization decreases rapidly to a value called remanent magneti-
zation followed by a slow nonexponential decay of the remanent magne-
tization to zero. If we switch on the magnetic field below Tg, a reversible
component of the magnetization is developed immediately, followed by a
slow increase of the magnetization. Saturation occurs only after a very
long time.

8. The frequency dependence of the susceptibility and the relaxation phe-
nomena do not define a unique characteristic relaxation time for the spins.
Relaxation processes exist at all timescales, from microscopic (10−12 s) to
macroscopic (105 s) times. The nonexponential decay of correlations can
also be observed above Tg, up to the temperature where the heat capacity
has its maximum.

9. A characteristic feature of spin glasses is aging. The relaxation time of
the magnetization of a field-cooled sample depends on its history, on
the waiting time between the quench and the switch-off of the magnetic
field.

10. As displayed in Fig. 36.19, there are examples where – in a special range
of concentrations – the spin-glass phase goes over above Tg into a ferro-
magnetic state and not into a paramagnetic phase.
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Fig. 36.19. (a) Phase diagram of EuxSr1−xS as a function of x [Reprinted with
permission from H. Maletta and P. Convert, Phys. Rev. Lett. 42, 108 (1979). ©
(1979) by the American Physical Society]. (b) Phase diagram of gold containing
14 and 15 at.% Fe as a function of the quenching temperature [Reprinted with
permission from S. Crane and H. Claus, Phys. Rev. Lett. 46, 1693 (1981). © (1981)
by the American Physical Society]

36.3.2 Models of Spin Glasses

Spin-glass behavior is observed experimentally in disordered alloys containing
typically a relatively low concentration of magnetic ions. The randomly lo-
cated magnetic moments interact with each other via some kind of exchange
and freeze at low temperatures into random orientations without long-range
order, because the competition between the couplings does not allow a global
ordering. The exchange coupling could be the RKKY interaction, since the
first known, so-called canonical spin glasses, AuFe and CuMn, are metallic,
but it could as well be the superexchange, since there are several semiconduct-
ing and insulating spin glasses. Whatever the cause, the magnetic properties
are described by the well-known Heisenberg model,

H = −
∑

ij

JijSi · Sj , (36.3.3)

where, however, the indices i and j refer to the random magnetic impurities.
Assuming that the magnetic atoms randomly occupy the sites of an under-
lying regular lattice, the spin-glass model can be considered as a site-diluted
Heisenberg model with an extra complication caused by the fact that the
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RKKY interaction oscillates with the distance between the magnetic atoms.
It can be either ferro- or antiferromagnetic. Therefore, the strength and the
sign of the coupling Jij varies randomly in the sample.

While the experimentally investigated spin glasses are site diluted, most
theoretical models assume random bonds. They have the common feature
that the underlying perfect crystal lattice is preserved, a localized moment is
supposed to sit on every site of a lattice, but the exchange coupling between
them varies randomly, it can be antiferromagnetic or ferromagnetic with vari-
able strength. The spins might be classical Ising variables and the coupling
between them is an Ising-like interaction, or vector spins may interact with
Heisenberg coupling. The models differ in the choice of the form of the random
distribution for Jij . In most work either a Gaussian probability distribution
is taken with a width Δ,

P (Jij) =
1

(2πΔ2)1/2
exp
(
− J2

ij

2Δ2

)
, (36.3.4)

or Jij is given only two values, +J and −J , and the ferro- and antiferromag-
netic couplings are distributed randomly with equal probability. The proba-
bility distribution of this symmetric bimodal model is given by

P (Jij) = 1
2

[
δ(Jij − J) + δ(Jij + J)

]
. (36.3.5)

A bond-diluted bimodal model is obtained if the couplings ±J appear with
probability p < 1 and the spins are not coupled with probability 1 − p,

P (Jij) = p 1
2

[
δ(Jij − J) + δ(Jij + J)

]
+ (1 − p)δ(Jij) . (36.3.6)

Ferro- or antiferromagnetic couplings may be preferred by shifting the center
of the distribution function from zero.

More importantly, the spin-glass models differ in the range of the exchange
interaction. Only nearest-neighbor spins are coupled in short-range models,
while, as we will see, for computational reasons infinite-range models are often
considered, where all spins are coupled irrespective of their separation.

36.3.3 Quenched Disorder

In the materials we are interested in, the spins are frozen into a nonequilib-
rium configuration by rapid cooling (quenching) during the preparation of the
sample. The couplings between them are also frozen into fixed values for each
sample. This quenched disorder should be treated differently from annealed
disorder, which is achieved if the impurity spins are free to diffuse during the
very slow cooling process to reach thermal equilibrium. The resulting Jijs are
then thermodynamic variables. The free energy of an annealed system is to
be calculated from a partition function in which the trace is taken not only
over the orientations of the spins but also over the positions of the magnetic
impurities. Hence the partition function
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Z =
∑

{Si}

∏

ij

exp (JijSi · Sj/kBT ) (36.3.7)

has to be averaged over the random spatial arrangements of the magnetic
atoms (over the random distribution of the couplings), and the free energy is
calculated from the logarithm of the averaged partition function. In contrast
to that, in a quenched system, the partition function Z{Jij} and the free
energy

F{Jij} = −kBT lnZ{Jij} (36.3.8)

corresponding to it have to be calculated in a first step for a fixed configu-
ration {Jij} of the random couplings taking into account all possible states
of the spins. We then imagine the macroscopic sample to be divided into a
large number of subsystems, which are themselves macroscopic, such that the
previous calculation is valid for each. To get the free energy of the entire sys-
tem, the free energies of the subsystems are summed, which is equivalent to
averaging over the random configurations of the couplings:

F =
[
F{Jij}

]
av = −kBT [lnZ{Jij}]av . (36.3.9)

Thus, in the spin-glass problem, for a quenched disorder, the logarithm of the
partition function has to be averaged and not the partition function. This is
technically much more difficult than calculating the free energy of a disordered
system in thermal equilibrium. This difficulty can partially be circumvented
by the so-called replica trick which relies on the relation

lnx = lim
n→0

1
n

(
xn − 1

)
. (36.3.10)

The free energy can formally be written in the form

F = −kBT lim
n→0

1
n

{
[Zn{Jij}]av − 1

}
. (36.3.11)

Averaging the free energy over disorder leads to averaging Zn over disorder.
A simple interpretation of this trick is that we make n copies (replicas) of the
real system with the same disorder and average the partition function of this
effective system over disorder. Obviously n is integer and the calculation can
be carried out in principle for all n. Then we analytically continue to small n
to get the averaged free energy.

36.3.4 Frustration

It was mentioned in Chapter 14 that spins are frustrated in an antiferromag-
netic chain, if the second-neighbor antiferromagnetic coupling is comparable
to the nearest-neighbor coupling. This frustration is the consequence of the
topology of the couplings in a geometrically ordered lattice. Similar frustra-
tion exists in the antiferromagnetic triangular lattice. If two neighboring spins
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are antiferromagnetically coupled and are therefore oppositely oriented, the
orientation of the third spin at the vertex of an elementary triangle cannot be
chosen so as to satisfy the antiferromagnetic couplings with both neighbors.
The spins may resolve the frustration dilemma by forming a non-collinear
magnetic structure. In other cases the spins remain disordered, resulting in a
spin-singlet spin liquid the ground state.

The random distribution of ferro- and antiferromagnetic couplings in spin
glasses may lead to frustration even when the topology of the lattice allows
a nonfrustrated spin arrangement. This is illustrated in Fig. 36.20 for the
example of a square plaquette with nearest-neighbor interactions, where three
couplings are ferromagnetic and the fourth is antiferromagnetic.

Fig. 36.20. Frustrated spin configurations on a square plaquette with three ferro-
magnetic and one antiferromagnetic couplings. The spin orientations are chosen to
satisfy three couplings. The unsatisfied bond is denoted by a slash

The spins would order ferromagnetically or antiferromagnetically if all
couplings were ferromagnetic or antiferromagnetic. In the example, when one
coupling is different from the three others, the spin orientations cannot be cho-
sen to satisfy all four couplings. If classical spins are placed on three corners
respecting the couplings between them to have the lowest energy, the fourth
spin will be frustrated. Its two neighbors will want to orient it oppositely.
The frustration is accompanied by a large degree of degeneracy. The spins
with components sz = ±1/2 can be placed in 16 ways on the plaquette. The
ground states are doubly degenerate when all couplings are ferromagnetic. All
spins are pointing up or all spins are pointing down. The classical antiferro-
magnetic state is also doubly degenerate. In contrast to these situations, the
ground state is eightfold degenerate when there are three ferromagnetic and
one antiferromagnetic couplings on the plaquette. The eight degenerate spin
configurations depicted in Fig. 36.20 are all frustrated; there is always one
bond that cannot be satisfied.
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To see the condition for frustration consider a closed path on a lattice
with randomly arranged ferro- and antiferromagnetic couplings and take the
product of the signs of the couplings,

∏
sgn Jij . (36.3.12)

Obviously it takes the value +1 or −1. On paths where this product is nega-
tive, one of the spins is frustrated. Topological frustration on regular lattices
with particular topology may lead to a spin liquid state even if the distribution
of the couplings is uniform, while frustration is due to disorder in the spin-
glass phase. Spin liquids are in a global spin-singlet state, where the individual
spins fluctuate rapidly. On the other hand, in a spin glass the individual spins
are quenched into disordered directions and do not fluctuate.

36.3.5 Edwards–Anderson Model of Spin Glasses

The first attempt to theoretically describe the unusual properties of spin
glasses is due to S. F. Edwards and P. W. Anderson (1975). They rec-
ognized that 〈Si〉 is not a good order parameter. Although the spins are
quenched below Tg and the mean value of any individual spin is finite, the
spins point in different directions and hence their configurational average van-
ishes. Since the thermal fluctuations of the spins are slowed down, there is a
nonvanishing probability that the spin points in the same direction at t = 0
and at a much later time. This can be formulated mathematically by the
nonvanishing of the auto-correlation function, that is, the thermal average
of the product of the same spin at site Ri, for long time differences. The
configurational average of this quantity,

qEA = lim
t→∞

[〈
Si(0)Si(t)

〉
T

]
av, (36.3.13)

defines the Edwards–Anderson order parameter. Alternatively the configura-
tional average of the square of the thermal average of the spin at site Ri, that
is

q =
[〈Si〉2T

]
av , (36.3.14)

can be used as an order parameter. The two should be identical in an ergodic
system. As we will see, ergodicity is broken in spin glasses. Nevertheless, both
qEA and q can be used to characterize the spin-glass phase.

We apply the replica trick to determine the free energy. For a fixed
quenched configuration of the couplings

Zn{Jij} = Tr
n∏

α=1

exp
(
−H{Jij ,S

α
i }/kBT

)

= Tr exp
(
−

n∑

α=1

H{Jij ,S
α
i }/kBT

)
,

(36.3.15)
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where Sα
i denotes the spin at site Ri in the αth replica. The trace should be

taken over all possible states of all spins. With the use of the Hamiltonian
given in (36.3.3) we have

Zn{Jij} = Tr
∏

〈i,j〉
exp
(
Jij

n∑

α=1

Sα
i · Sα

j /kBT

)
. (36.3.16)

Averaging over the configurations of the exchange couplings requires cal-
culating the quantity

[
Zn{Jij}

]
av =

∞∫

−∞

( ∏

〈i,j〉
dJijP (Jij)

)
Tr
∏

〈i,j〉
exp
(
Jij

n∑

α=1

Sα
i · Sα

j /kBT

)
,

(36.3.17)
where P (Jij) is the distribution function of the couplings. Assuming that
the trace over the spin configurations and the averaging over the random
configurations of the couplings can be interchanged in the replicated system,
this expression is reduced to

[
Zn{Jij}

]
av = Tr

∞∫

−∞

∏

〈i,j〉
dJijP (Jij) exp

(
Jij

n∑

α=1

Sα
i · Sα

j /kBT

)
. (36.3.18)

Edwards and Anderson assumed a Gaussian distribution for the exchange
couplings between nearest neighbors as given in (36.3.4). The averaging with
this distribution can be carried out and we get

∞∫

−∞
dJijP (Jij) exp

{
Jij

kBT

n∑

α=1

Sα
i · Sα

j

}

= exp
{

1
2

n∑

α,β=1

(
Sα

i · Sα
j

)(
Sβ

i · Sβ
j

)( Δ

kBT

)2}
.

(36.3.19)

Further approximations are needed in performing the trace over the spin con-
figurations. If quantum fluctuations are negligible in the spin-glass phase,
mean-field theory may be applicable. We thus assume that the spins are frozen
in the direction of the effective field produced by the neighboring spins. This
effective field is different for each moment owing to the disorder. Its self-
consistent calculation is a much more complicated task than in ordered mag-
netic systems.

Without going into details we mention that it seemed quite natural to
assume that the replicas behave identically, the correlation between spins on
the same site in different replicas,

qαβ = 〈Sα
i Sβ

i 〉 , α �= β , (36.3.20)



36.3 Spin Glasses 571

are equal, qαβ = q, and q is identical with the Edwards–Anderson order
parameter, qEA. The self-consistent solution for this order parameter gives
q = 0 above a critical temperature Tg, while a nontrivial solution exists below
it. The order parameter behaves as

q(T ) = −1
2

[
1 −
(
Tg

T

)2
]
≈ Tg − T

Tg
(36.3.21)

in the vicinity of Tg given by

kBTg =
(∑

j

〈
2
9
J2

ij

〉

av

)1/2

, (36.3.22)

and

q(T ) = 1 −
(

2
3π

)1/2
T

Tg
(36.3.23)

at low temperatures, in the limit T → 0.
The susceptibility takes the simple form

χ(T ) =
g2μ2

Bμ0

3kBT

[
1 − q(T )

]
. (36.3.24)

The 1/T Curie susceptibility is obtained above the glass transition tempera-
ture, but its increase with decreasing temperature stops at Tg,

χ(T ) =
g2μ2

Bμ0

3kBTg
−O(Tg − T )2 , (36.3.25)

whereas at low temperatures

χ(T ) =
(

2
3π

)1/2
g2μ2

Bμ0

3kBTg
. (36.3.26)

This is in qualitative agreement with the measurements on field-cooled sam-
ples, where the behavior is reversible.

36.3.6 Sherrington–Kirkpatrick Model

Since the applicability of the mean-field approximation may be questioned for
a short-range model, D. Sherrington and S. Kirkpatrick (1975) proposed
a different model to describe the properties of spin glasses. They have taken
Ising spins, but most importantly they assumed an infinite-range interaction.
Each spin interacts with all other spins and the distribution function P (Jij)
is the same irrespective of the distance between the spins. The mean-field
approximation is then exact; fluctuations can be neglected.
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If a spin interacts equally strongly with N − 1 other spins, thermal aver-
aging yields finite values in the thermodynamic limit provided the exchange
coupling is proportional to 1/N . If ferromagnetic and antiferromagnetic cou-
plings are not equally probable but the distribution is biased in one direction
with a nonvanishing average, the distribution function can be chosen as

P (Jij) =
(

N

2πΔ2

)1/2

exp
(
− N(Jij − J0/N)2

2Δ2

)
. (36.3.27)

The mean value and the width of the distribution are given by

[
Jij

]
av =

J0

N
and

[
J2

ij

]
av − [Jij

]2
av =

Δ2

N
. (36.3.28)

The order parameter has again to be solved self-consistently. Since the
distribution of the couplings is centered around a finite value, a ferromagnetic
solution may also exist. For this we allow a finite value for

m =
[〈Si〉T

]
av . (36.3.29)

Obviously q is finite in the ferromagnetic phase as well. The spin-glass phase
exists in the parameter range where the stable solution gives a finite q with
m = 0.

The two order parameters, q and m, satisfy a coupled system of equations
in the Sherrington–Kirkpatrick model:

q =

∞∫

−∞

dz
(2π)1/2

e−z2/2 tanh2

[
Δq1/2z

kBT
+
J0m

kBT

]
,

m =

∞∫

−∞

dz
(2π)1/2

e−z2/2 tanh
[
Δq1/2z

kBT
+
J0m

kBT

]
.

(36.3.30)

The phase diagram obtained from the self-consistent solution is displayed in
Fig. 36.21.

1

2

0
0 1 2–1

Paramagnet

Ferro-
magnet

k TB

J0

Fig. 36.21. Phase diagram of the Sherrington–Kirkpatrick model of spin glasses
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The spin-glass order parameter q(T ) behaves rather similar to that found
in the Edwards–Anderson model. It starts to increase linearly in Tg−T below
Tg and approaches unity linearly at low temperatures. The susceptibility is
Curie-like above the glass transition. The slope changes discontinuously at
Tg and the susceptibility decreases slowly below Tg reaching a finite value at
T = 0.

The infinite-range model turned out to be solvable for classical, n-compo-
nent vector spins with Heisenberg exchange. The phase diagram is displayed
in Fig. 36.22.

1

0
0 1 2

Paramagnet

Spin glass

Ferro-
magnet

k TB

J0

M2

M1

Fig. 36.22. Phase diagram of the infinite-range vector-spin model of spin glasses
according to M. Gabay and G. Toulouse [Reprinted with permission from Phys. Rev.
Lett. 47, 201 (1981). © (1981) by the American Physical Society]

The most important difference compared to the Ising spin glass is the
appearance of mixed phases below the ferromagnetic phase for J0/Δ > 1.
The phase denoted by M1 is characterized by the coexistence of long-range
ferromagnetic order with spin-glass order. The vector spins are aligned spon-
taneously in one direction and the transverse components of the spins exhibit
spin-glass order. The other mixed phase denoted by M2 exhibits the same co-
existence of orderings as phase M1; nevertheless, the two phases are separated
by a well-defined transition line. To understand what happens, we have to
present some further developments in spin-glass theory.

36.3.7 Recent Developments

The mean-field approximation based on the assumption that all replicas be-
have identically turned out to be internally inconsistent. It gives negative
entropy at low temperatures. These inconsistencies could be corrected by as-
suming that replica symmetry may be broken at low temperatures and in
weak fields. The replica-symmetric solution of the Sherrington–Kirkpatrick
model was shown to become unstable below the de Almeida–Thouless line14

in the H–T plane. That is precisely what happens in the M2 phase. The tran-
sition from phase M1 to M2 is characterized by the spontaneous breaking of
14

J. R. L. de Almeida and D. J. Thouless, 1978.
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the replica symmetry. The theory that can adequately describe the properties
of the infinite-range spin-glass models was worked out by G. Parisi (1979).
He pointed out that the spin-glass phase cannot be characterized by a scalar
order parameter q when the replica symmetry is broken. A distribution of the
qαβ parameters or a continuous function q(x, T ) is needed, which depends, in
addition to the temperature, on a continuous parameter defined in the interval
0 ≤ x ≤ 1. Its calculation is a rather difficult task. We only mention that the
Edwards–Anderson order parameter is equal to q(x, t) at x = 1,

qEA(T ) = q(1, T ) , (36.3.31)

and the susceptibility is given by

χ(T ) =
g2μ2

Bμ0

3kBT

1∫

0

[
1 − q(x, T )

]
dx (36.3.32)

instead of (36.3.24). This expression gives better agreement with the field-
cooled measurements.

The study of the spin-glass problem raised some fundamental issues in
the theory of disordered systems. A large number of configurations may ex-
ist in disordered systems owing to frustration, which all correspond to local
energy minima, to metastable states. When the system finds itself in one of
the valleys of the free energy landscape at low temperature, it may be stuck
there and may be unable to overcome the barrier by thermal fluctuations to
get into the true minimum. The ergodic hypothesis is a fundamental assump-
tion of statistical physics, postulating that a system can explore the entire
phase space over a long period of time, all microstates being equally proba-
ble, so that ensemble averages and time averages yield the same result. In spin
glasses, though, ergodicity does not hold. Ergodicity breaking is not uncom-
mon in solids. Whenever a symmetry is broken spontaneously, ergodicity is
broken trivially. For example, when a paramagnetic system undergoes a phase
transition to the ferromagnetic state, the system chooses one of the equiva-
lent minima, which are related by the symmetry that is broken in the ordered
phase. Since it would take an infinitely long time in the thermodynamic limit
to go from one minimum to another, we only trace over a limited set of states
about the selected minimum when physical quantities are calculated. A non-
trivial ergodicity breaking occurs in the spin glass. A large number of valleys,
not related by symmetry, appear below Tg in the space of states separated by
high barriers. (The number of valleys separated by infinite barriers goes to
infinity in the thermodynamic limit.) As the temperature is lowered, further
new valleys appear inside each valley. This process goes on continuously down
to T = 0. The properties of the system depend on which valley it is trapped in.
Moreover, there are metastable states within each valley which are separated
by finite free energy barriers. The time it takes to go from one metastable state
to another depends on the barrier height between them. The broad distribu-
tion of the barrier heights explains why the dynamics of the system cannot be



36.3 Spin Glasses 575

described by a unique relaxation time and why a broad distribution of the re-
laxation times is needed. The quenched disorder is also the underlying reason
of the remanence observed in spin glasses. From the theoretical point of view,
the existence of the hierarchy of metastable states can help in understanding
why the spin-glass phase cannot be described by a simple, Edwards–Anderson-
like order parameter, but requires an order-parameter function as proposed
in the Parisi theory.

The Parisi solution of the Sherrington–Kirkpatrick model gives a continu-
ous phase transition from the paramagnetic to the spin-glass phase. However,
the relevance of an infinite-ranged model for the low-temperature physics of
three-dimensional spin-glass materials is questionable. Recently, large-scale
numerical calculations have been performed on a wide class of more realistic
short-range models. Consensus seems to emerge on the existence of a true
phase transition for both Ising and Heisenberg spin glasses. The coherence
length diverges as T approaches Tg. The critical behavior is probably uni-
versal. The same critical exponents are found for the Gaussian and bimodal
models; moreover, bond dilution does not seem to modify the values. The
critical exponent of the coherence length is ν = 2.45 for the Ising spin glass
and ν = 1.5 for the Heisenberg spin glass.
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Response to External Perturbations

Conventionally statistical physics deals with the properties of systems in ther-
mal equilibrium and with the methods to describe them. When experiments
are performed on solids, the measurements are done, on many occasions, on
samples that are out of equilibrium. We might study, for example, the electric
current resulting from an electric field, the magnetization due to a magnetic
field, or we might consider how the charge distribution is modified in the pres-
ence of a spatially varying potential. We might also be interested in processes
that occur when the system is disturbed by a time-dependent external per-
turbation. When the external perturbation is weak and the variations in the
observables (measurable physical quantities) are proportional to the strength
of the perturbing field, the response of the system to the disturbance can be
given in terms of retarded correlation functions calculated for the system in
equilibrium. In this appendix we present the general formalism, the properties
of response functions, and the procedures that can be used to calculate them.
As an example we will consider in detail the response to an external scalar
potential.

J.1 Linear Response Theory

Consider an interacting system described by a time-independent Hamiltonian
H and assume that the eigenfunctions |Ψn〉 and the energies En are known.
When the system is in thermal equilibrium, the expectation value of an observ-
able associated with the operator A can be calculated using the well-known
formula

〈A〉 =
1
Z

∑

n

e−βEn 〈Ψn|A|Ψn〉 , (J.1.1)

where the summation goes over the complete set of eigenstates and the nor-
malizing factor Z is the partition function:

Z =
∑

n

e−βEn . (J.1.2)
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The expectation value can be written in a concise form as the trace (the sum
of the diagonal matrix elements) of the product of A with the equilibrium
density matrix,

〈A〉 = Tr (ρ0A) (J.1.3)

with
ρ0 =

1
Z

e−βH . (J.1.4)

When an external perturbation, e.g., a static electric or magnetic field, is
switched on, the physical properties of the system may change. The exter-
nal perturbation couples directly to an observable (for example, the magnetic
field couples to the magnetization and the electric potential couples to the
charge density), their product appearing in the Hamiltonian, but other phys-
ical quantities can also be influenced indirectly. When the external field is
weak, the change in the expectation values of observables can be given in
terms of generalized susceptibilities. Linear response theory expresses these
susceptibilities in terms of retarded correlation functions of the equilibrium
system.

J.1.1 Time-Dependent Response

Time-dependent external perturbations are described by a time-dependent
Hamiltonian Hext(t). When a space- and time-dependent external magnetic
induction B(r, t) is applied,

Hext(t) = −
∫

dr m(r) · B(r, t) , (J.1.5)

where m(r) is the operator of the magnetic-moment density. An external
scalar potential ϕext(r, t) couples to the charge density ρ(r),

Hext(t) =
∫

dr ρ(r)ϕext(r, t) =
∫

dr n(r)Vext(r, t) . (J.1.6)

We assume that the perturbation can be written quite generally in the form

Hext(t) = −
∫

drB(r)F (r, t) , (J.1.7)

where B(r) is an operator and the strength of the perturbation is given by
F (r, t). Both B and F can be scalar or vector quantities. Owing to the locality
of the interaction, the Hamiltonian of the external perturbation takes a simple
form when expressed in terms of the Fourier transforms:

Hext(t) = − 1
V

∑

q

B(−q)F (q, t) . (J.1.8)
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Assume for simplicity that the perturbation is spatially uniform but acts
momentarily at t = 0 as a sharp impulse,

F (r, t) = F (t) = F0δ(t) . (J.1.9)

If the amplitude F0 of the perturbation is small, the change in the expectation
value of an observable A can be written as

〈
ΔA(t)

〉
= χAB(t)F0 , (J.1.10)

and the coefficient χAB(t) is called the response function. Of course, such
a perturbation can modify the physical quantities only for t > 0 owing to
causality, that is the response function can take finite values only for t > 0
and has to vanish for t < 0.

When the perturbation varies continuously in time, it can be represented
as a sequence of impulses. Written in an integral form

F (t) =

∞∫

−∞
F (t′)δ(t− t′) dt′ . (J.1.11)

Owing to the linearity of the response, the effects of the impulses are added up.
The change in the quantity A at time t is influenced only by the disturbance
prior to t,

〈
ΔA(t)

〉
=

t∫

−∞
dt′ χAB(t− t′)F (t′) . (J.1.12)

After a change of variables t− t′ → t′

〈
ΔA(t)

〉
=

∞∫

0

dt′ χAB(t′)F (t− t′) . (J.1.13)

There are three interesting special cases for the time dependence of the
perturbation. We may switch on the perturbation suddenly at t = 0 with
amplitude F0. This corresponds to the choice

F (t) =

{
0 for t < 0 ,
F0 for t > 0 .

(J.1.14)

The response of the system is then given by

〈
ΔA(t)

〉
=

t∫

0

dt′ χAB(t′)F0 . (J.1.15)
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The quantity

ΦE
AB(t) =

t∫

0

dt′ χAB(t′) (J.1.16)

is called the excitation function.
A perturbing field which has been acting on the system for a long time

already may be switched off suddenly at t = 0. We then study how the system
relaxes to the new equilibrium state. This situation corresponds to

F (t) =

{
F0eδt for t < 0 ,
0 for t > 0 ,

(J.1.17)

where δ is a positive infinitesimal. The exponential factor describes the fact
that initially the external perturbation was switched on adiabatically. The
relaxation of the expectation value of A is given by

〈
ΔA(t)

〉
=

0∫

−∞
dt′ χAB(t− t′)F0 =

∞∫

t

dt′ χAB(t′)F0 ; (J.1.18)

therefore, the quantity

ΦR
AB(t) =

∞∫

t

dt′ χAB(t′) (J.1.19)

is called the relaxation function.
Finally, we often study the case of periodically varying external perturba-

tions. The response of the system is then described by frequency-dependent
susceptibilities.

J.1.2 Generalized Susceptibilities

If the external perturbation varies in space, the response of the system is in
general nonlocal. The variation of A at position r depends on the strength of
the perturbation at other points of the system. Causality still holds, imposing
that the expectation value of A at time t depends only on the values of the
perturbation prior to t. The space- and time-dependent response function is
defined by the linear relationship

〈
ΔA(r, t)

〉
=

t∫

−∞
dt′
∫

dr′ χAB(r, r′, t− t′)F (r′, t′) . (J.1.20)

If the unperturbed system is spatially uniform, the response may depend only
on the difference between r and r′, and we have
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〈
ΔA(r, t)

〉
=

t∫

−∞
dt′
∫

dr′ χAB(r − r′, t− t′)F (r′, t′) . (J.1.21)

Taking the Fourier transforms of A(r, t), χAB(r − r′, t − t′), and F (r′, t′)
with respect to the spatial variables, the product of the Fourier components
– instead of a convolution – appears on the right-hand side:

〈
ΔA(q, t)

〉
=

t∫

−∞
dt′χAB(q, t− t′)F (q, t′) , (J.1.22)

or after a change of variables t− t′ → t′

〈
ΔA(q, t)

〉
=

∞∫

0

dt′χAB(q, t′)F (q, t− t′) . (J.1.23)

A physically meaningful result is obtained only if the external perturbation
is switched on adiabatically. This is achieved mathematically by including a
factor e−δ|t| in the amplitude F (r, t), with δ a positive infinitesimal.

The frequency Fourier transform of (J.1.22) yields
〈
ΔA(q, ω)

〉
= χAB(q, ω)F (q, ω) , (J.1.24)

where the quantity χAB(q, ω) is the wave-vector- and frequency-dependent
susceptibility. It determines the response of the system to an external pertur-
bation with wave vector q and angular frequency ω. In fact, since the response
function vanishes for negative time argument, its Fourier transform is defined
by

χAB(q, ω) =

∞∫

0

χAB(q, t)eiωt dt . (J.1.25)

As the response to a real perturbation is real, the complex susceptibilities
have to satisfy the relation

χAB(q, ω) = χ∗
AB(q,−ω) . (J.1.26)

When they are decomposed into real and imaginary parts in the form

χAB(q, ω) = χ′
AB(q, ω) + iχ′′

AB(q, ω) , (J.1.27)

the real part is an even function of the frequency, while the imaginary part is
an odd function:

χ′
AB(q, ω) = χ′

AB(q,−ω) , χ′′
AB(q, ω) = −χ′′

AB(q,−ω) . (J.1.28)
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J.1.3 Kubo Formula

Just as in an equilibrium situation, the expectation values of observables can
also be calculated in terms of the density matrix in nonequilibrium systems:

〈
A
〉

= Tr (ρA) . (J.1.29)

However, (J.1.4) cannot be generalized to a simple exponential form

ρ �= 1
Z

e−β(H+Hext(t)) (J.1.30)

and rather has to be calculated from the equation of motion:

dρ(t)
dt

=
i
�

[
ρ(t),H + Hext(t)

]
− . (J.1.31)

This equation can be solved by making use of the relation

d
dt

eiHt/�ρ(t)e−iHt/� =
i
�
eiHt/�

[H, ρ(t)]−e−iHt/�

+
i
�
eiHt/�

[
ρ(t),H + Hext(t)

]
−e−iHt/�

=
i
�
eiHt/�

[
ρ(t),Hext(t)

]
−e−iHt/� . (J.1.32)

When this equation is integrated with the boundary condition ρ(t→ −∞) =
ρ0 that follows from the adiabatic switching on of the perturbation, we get

eiHt/�ρ(t)e−iHt/� = ρ0 +
i
�

t∫

−∞
eiHt′/�

[
ρ(t′),Hext(t′)

]
−e−iHt′/� dt′ , (J.1.33)

which, after rearrangement, leads to an implicit integral equation:

ρ(t) = ρ0 +
i
�

t∫

−∞
e−iH(t−t′)/�

[
ρ(t′),Hext(t′)

]
−eiH(t−t′)/� dt′ . (J.1.34)

An iterative solution of this equation up to first order in the perturbation
gives

ρ(t) = ρ0 +
i
�

t∫

−∞
e−iH(t−t′)/�

[
ρ0,Hext(t′)

]
−eiH(t−t′)/� dt′ . (J.1.35)

Substituting this expression into (J.1.29) the second term on the right-hand
side gives rise to a correction which is linear in the perturbing field. The
change in the thermal average of A is then
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〈
ΔA(r, t)

〉
=

i
�

t∫

−∞
Tr
{
A(r)e−iH(t−t′)/�

[
ρ0,Hext(t′)

]
−eiH(t−t′)/�

}
dt′

=
i
�

t∫

−∞
Tr
{
A(r, t− t′)

[
ρ0,Hext(t′)

]
−
}

dt′ (J.1.36)

= − i
�

t∫

−∞
Tr
{
ρ0

[
A(r, t− t′),Hext(t′)

]
−
}

dt′ ,

where we made use of the invariance of the trace under cyclic permutations
of the operators and the time dependence of the operator A is given in the
Heisenberg picture by the relation

A(t) = eiHt/�Ae−iHt/� . (J.1.37)

For a perturbation given by (J.1.7) we have

〈
ΔA(r, t)

〉
=

i
�

t∫

−∞
dt′
∫

dr′
〈[
A(r, t− t′), B(r′)

]
−
〉
F (r′, t′) . (J.1.38)

Comparison with (J.1.20) yields the explicit expression

χAB(r, r′, t− t′) =

⎧
⎨

⎩

i
�

〈[
A(r, t− t′), B(r′)

]
−
〉

for t > t′ ,

0 for t < t′
(J.1.39)

for the generalized susceptibility. After a rearrangement of the exponential
factors associated with the time dependence of the operators we obtain

χAB(r, r′, t− t′) =

⎧
⎨

⎩

i
�

〈[
A(r, t), B(r′, t′)

]
−
〉

for t > t′ ,

0 for t < t′ .
(J.1.40)

It is commonly written with the aid of the Heaviside unit step function as

χAB(r, r′, t− t′) =
i
�
θ(t− t′)

〈[
A(r, t), B(r′, t′)

]
−
〉
. (J.1.41)

This formula, which expresses the response to the perturbation in terms of a
retarded correlation function of the equilibrium system, is known as the Kubo
formula.1

If the system is translation invariant, the response function depends only
on r − r′, and the Fourier transform with respect to the spatial variable is
1

R. Kubo, 1956.
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χAB(q, t− t′) =
i
�
θ(t− t′)

1
V

〈[
A(q, t), B(−q, t′)

]
−
〉
. (J.1.42)

Its Fourier transform with respect to time gives

χAB(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′) 1
V

〈[
A(q, t), B(−q, t′)

]
−
〉
. (J.1.43)

As we will see later, the integrand has to be cut off at infinity by a factor
exp[−δ(t − t′)], which corresponds to the adiabatic switching on of the per-
turbation.

J.1.4 Alternative Form of the Kubo Formula

An alternative form of the generalized susceptibility can be derived by
using the invariance of the trace of the product of operators under cyclic
permutations:
〈[
A(r, t), B(r′, t′)

]
−
〉

= Tr
{
ρ0A(r, t)B(r′, t′) − ρ0B(r′, t′)A(r, t)

}

= Tr
{[
B(r′, t′), ρ0

]
−A(r, t)

}
,

(J.1.44)

and the operator identity

[
B(r′, t′), ρ0

]
− = −iρ0

β�∫

0

dλḂ(r′, t′ − iλ) , (J.1.45)

where Ḃ stands for the time derivative of B. This operator identity follows
from

eβHB(r′, t′)e−βH −B(r′, t′) =
1
�

β�∫

0

dλ eλH/�
[H, B(r′, t′)

]
−e−λH/�

=
1
�

β�∫

0

dλ
[H, B(r′, t′ − iλ)

]
− , (J.1.46)

which can be readily checked by taking the matrix elements between the
complete set of eigenstates of H. We then find

χAB(r, r′, t− t′) =
1
�
θ(t− t′)

β�∫

0

dλ
〈
Ḃ(r′, t′ − iλ)A(r, t)

〉
(J.1.47)

and
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χAB(q, ω) =
1

�V

∞∫

0

dt eiωt

β�∫

0

dλ
〈
Ḃ(−q,−iλ)A(q, t)

〉
. (J.1.48)

Taking the classical limit � → 0 we obtain

χAB(q, ω) =
1

kBTV

∞∫

0

dt eiωt
〈
Ḃ(−q, 0)A(q, t)

〉
. (J.1.49)

J.1.5 Analytic Properties of Susceptibilities

The thermal average can be calculated if we know the complete set of
eigenstates of the Hamiltonian. The diagonal matrix elements between these
states have to be weighted by the appropriate Boltzmann factors:

χAB(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′) 1
V

∑

n

e−βEn

Z

× 〈Ψn

∣∣A(q, t)B(−q, t′) −B(−q, t′)A(q, t)
∣∣Ψn

〉
.

(J.1.50)

A complete set of states is inserted between the operators A and B using their
completeness relation. Interchanging the labels n↔ m in the second term, we
find

χAB(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′) 1
V

∑

mn

e−βEn

Z

×[〈Ψn|A(q, t)|Ψm

〉〈
Ψm|B(−q, t′)|Ψn

〉

−〈Ψn|B(−q, t′)|Ψm

〉〈
Ψm|A(q, t)|Ψn

〉]
(J.1.51)

=
i
�

∞∫

0

d(t− t′) eiω(t−t′) 1
V

∑

mn

e−βEn

Z

×〈Ψn|A(q, t)|Ψm

〉〈
Ψm|B(−q, t′)|Ψn

〉 [
1 − e−β(Em−En)

]
.

Writing out the time dependence explicitly,

χAB(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′) 1
V

∑

mn

e−βEn

Z
ei(En−Em)(t−t′)/�

× 〈Ψn|A(q)|Ψm

〉〈
Ψm|B(−q)|Ψn

〉 [
1 − e−β(Em−En)

]
.

(J.1.52)

The time integral can be evaluated using the Fourier transform of the Heavi-
side step function given in (C.1.54)
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∞∫

0

eiω(t−t′) d(t− t′) =

∞∫

−∞
θ(t− t′)eiω(t−t′) d(t− t′) =

i
ω + iδ

. (J.1.53)

with δ a positive infinitesimal. This result follows from the Fourier represen-
tation of the unit step function,

θ(t− t′) = −
∞∫

−∞

dω
2πi

e−iω(t−t′)

ω + iδ
, (J.1.54)

which can be verified by closing the contour of integration in the lower half-
plane, where the integrand has a simple pole at ω = −iδ with residue −1 for
t > t′, while closing the contour in the upper half-plane for t < t′.

Performing now the time integral in (J.1.52) we obtain the spectral repre-
sentation of the response function

χAB(q, ω) = − 1
V

∑

mn

e−βEn

Z

〈
Ψn|A(q)|Ψm

〉〈
Ψm|B(−q)|Ψn

〉

× 1 − e−β(Em−En)

�ω − Em + En + iδ
.

(J.1.55)

The same expression is obtained if the frequency-dependent susceptibility is
defined by

χAB(q, ω) =
i
�

∞∫

0

d(t− t′) eiω(t−t′)−δ(t−t′) 1
V

∑

n

e−βEn

Z

× 〈Ψn

∣∣A(q, t)B(−q, t′) −B(−q, t′)A(q, t)
∣∣Ψn

〉
,

(J.1.56)

in which the perturbation is switched on adiabatically.
This form shows that if the variable ω is continued in the complex plane,

the Fourier transform of the retarded response function is analytic in the upper
half-plane. This statement about the analytic properties could be obtained
much more simply and more generally by using the fact that the response
function appearing in (J.1.22) is a well-behaved function in both the physical
and mathematical sense. To demonstrate we write the response function in
Fourier representation:

χAB(q, t) =

∞∫

−∞

dω
2π
χAB(q, ω)e−iωt . (J.1.57)

When t < 0, the exponential factor of the integrand, e−iωt, vanishes on the
infinite semicircle in the upper half-plane and the integration path can be
closed without changing the result by adding the integral on a semicircle of
radius R→ ∞ in the upper half-plane, as shown in Fig. J.1.
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Fig. J.1. Closing the integration contour in the upper half-plane for t < 0

Thus for negative times we have

χAB(q, t) =
∫

C

dω
2π
χAB(q, ω)e−iωt . (J.1.58)

On the other hand we know that χAB(q, t) has to vanish for t < 0 owing to
causality. Hence the integral vanishes on the closed contour C. This implies
that the function χAB(q, ω) may not have any singularity in the upper half-
plane; it is analytic there. Its poles appear in the lower half-plane.

For physical reasons the response function is a retarded correlation func-
tion. One can define the advanced correlation function via

χA
AB(r, r′, t− t′) = − i

�
θ(t′ − t)

〈[
A(r, t), B(r′, t′)

]
−
〉
. (J.1.59)

Its Fourier transform is

χA
AB(q, t− t′) = − i

�
θ(t′ − t)

1
V

〈[
A(q, t), B(−q, t′)

]
−
〉
. (J.1.60)

Taking the Fourier transform with respect to t we have

χA
AB(q, ω) = − i

�

0∫

−∞
d(t− t′) eiω(t−t′)+δ(t−t′) 1

V

〈[
A(q, t), B(−q, t′)

]
−
〉
.

(J.1.61)
The spectral representation now gives

χA
AB(q, ω) = − 1

V

∑

mn

e−βEn

Z

〈
Ψn|A(q)|Ψm

〉〈
Ψm|B(−q)|Ψn

〉

× 1 − e−β(Em−En)

�ω − Em +En − iδ
.

(J.1.62)

The advanced function is analytic in the lower half-plane and has poles in the
upper half-plane. Comparison with (J.1.55) shows that

χA
AB(q, ω) = χ∗

B†A†(q, ω) . (J.1.63)

When both A and B are observables and hence Hermitian operators, we have

χA
AB(q, ω) = χ∗

BA(q, ω) . (J.1.64)
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J.1.6 Kramers–Kronig Relations

Let us consider now the integral
∫

χAB(q, ω′)
ω′ − ω + iδ

dω′ . (J.1.65)

The positive infinitesimal δ ensures that the pole of the integrand at ω′ = ω−iδ
lies in the lower half-plane. The integrand is analytic in the upper half-plane
and the integral has to vanish along any closed contour C in the upper half-
plane: ∫

C

χAB(q, ω′)
ω′ − ω + iδ

dω′ = 0 . (J.1.66)

We will choose the contour as in Fig. J.1, closing the real axis on the upper
half-plane by a semicircle with radius R tending to infinity.

If χAB(q, ω′) as a function of ω′ decays fast enough at infinity, faster
than 1/ω′, then not only does the integrand vanish on the semicircle, but the
integral itself as well. Hence the integral on the real axis, too, has to vanish,

∞∫

−∞
dω′ χAB(q, ω′)

ω′ − ω + iδ
= 0 . (J.1.67)

Using the relationship
1

x± iδ
= P

1
x
∓ iπδ(x) (J.1.68)

given in (C.3.3), where P denotes the principal value, we find

P
∞∫

−∞
dω′ χAB(q, ω′)

ω′ − ω
− iπχAB(q, ω) = 0 . (J.1.69)

This is the Cauchy relation for functions that are analytic in the upper half-
plane.

It then follows that the real and imaginary parts of χAB(q, ω) are Hilbert
transforms of one another and satisfy the Kramers–Kronig relations:

χ′
AB(q, ω) =

1
π

P
∞∫

−∞
dω′ χ

′′
AB(q, ω′)
ω′ − ω

, (J.1.70-a)

χ′′
AB(q, ω) = − 1

π
P

∞∫

−∞
dω′ χ

′
AB(q, ω′)
ω′ − ω

, (J.1.70-b)

and the full response function can be expressed in terms of its imaginary
part as
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χAB(q, ω) =
1
π

∞∫

−∞
dω′ χ

′′
AB(q, ω′)

ω′ − ω − iδ
. (J.1.71)

Since the real part is an even function of the frequency while the imaginary
part is odd, the Kramers–Kronig relations can be written in the form

χ′
AB(q, ω) =

2
π

P
∞∫

0

dω′ χ′′
AB(q, ω′)

ω′

ω′2 − ω2
, (J.1.72-a)

χ′′
AB(q, ω) = −2ω

π
P

∞∫

0

dω′ χ′
AB(q, ω′)

1
ω′2 − ω2

. (J.1.72-b)

It follows from these relations that the static susceptibility can be given in
terms of the imaginary part of the frequency-dependent susceptibility:

χAB =
1
π

∞∫

−∞

χ′′
AB(ω)
ω

dω =
2
π

∞∫

0

χ′′
AB(ω)
ω

dω . (J.1.73)

This is known as the thermodynamic sum rule.

J.1.7 Response Functions and Correlation Functions

The correlation function of two operators A and B is defined as

KAB(r − r′, t− t′) =
〈
A(r, t)B(r′, t′)

〉
. (J.1.74)

Its Fourier transform with respect to the spatial variable is

KAB(q, t− t′) =
1
V

〈
A(q, t)B(−q, t′)

〉
. (J.1.75)

Taking the Fourier transform with respect to time, too, we have

KAB(q, ω) =
1
V

∞∫

−∞

〈
A(q, t)B(−q, t′)

〉
eiω(t−t′) d(t− t′) . (J.1.76)

The correlations are invariant under inversion in a homogeneous system, hence

KAB(q, ω) = KAB(−q, ω) . (J.1.77)

If the thermal average is written as the sum of the diagonal matrix elements
weighted by the appropriate Boltzmann factors and a complete set of states
is inserted using their completeness relation we find
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KAB(q, ω) =

∞∫

−∞
d(t− t′) eiω(t−t′)

× 1
V

∑

mn

e−βEn

Z

〈
Ψn|A(q, t)|Ψm

〉〈
Ψm|B(−q, t′)|Ψn

〉
.

(J.1.78)

Since the states |Ψm〉 and |Ψn〉 are eigenstates of the Hamiltonian with energies
Em and En, respectively, the time dependence of the operators can be given
explicitly, and the integral over the variable t− t′ can be performed. We have

KAB(q, ω) =

∞∫

−∞
d(t− t′) eiω(t−t′)ei(En−Em)(t−t′)/�

× 1
V

∑

mn

e−βEn

Z

〈
Ψn|A(q)|Ψm

〉〈
Ψm|B(−q)|Ψn

〉

= 2π�
1
V

∑

mn

e−βEn

Z

〈
Ψn|A(q)|Ψm

〉

× 〈Ψm|B(−q)|Ψn

〉
δ(�ω + En − Em) .

(J.1.79)

Comparison with (J.1.55) gives

χAB(q, ω) = − 1
2π�

∞∫

−∞
dω′KAB(q, ω′)

ω − ω′ + iδ

(
1 − e−β�ω′)

. (J.1.80)

A similar relation holds for the advanced function:

χA
AB(q, ω) = − 1

2π�

∞∫

−∞
dω′KAB(q, ω′)

ω − ω′ − iδ

(
1 − e−β�ω′)

. (J.1.81)

Therefore

χAB(q, ω) − χA
AB(q, ω) =

i
�
KAB(q, ω)

(
1 − e−β�ω

)
. (J.1.82)

Let us consider now the correlation function

KBA(q, t− t′) =
1
V

〈B(q, t)A(−q, t′)〉 (J.1.83)

=
1
V

∑

mn

e−βEn

Z

〈
Ψn|B(q, t)|Ψm

〉〈
Ψm|A(−q, t′)|Ψn

〉
.

Its Fourier transform with respect to time is
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KBA(q, ω) =

∞∫

−∞
d(t− t′)eiω(t−t′)ei(En−Em)(t−t′)/�

× 1
V

∑

mn

e−βEn

Z

〈
Ψn|B(q)|Ψm

〉〈
Ψm|A(−q)|Ψn

〉

= 2π�
1
V

∑

mn

e−βEn

Z

〈
Ψn|A(−q)|Ψm

〉〈
Ψm|B(q)|Ψn

〉

× e−β(Em−En)δ(�ω + Em − En) .

(J.1.84)

The labels n and m were interchanged in the last expression. Comparison with
(J.1.79) leads to the relationship

KBA(q, ω) = eβ�ωKAB(−q,−ω) = eβ�ωKAB(q,−ω) . (J.1.85)

Using this relationship in (J.1.80) we find

χAB(q, ω) = − 1
2π�

∞∫

−∞
dω′KAB(q, ω′)

ω − ω′ + iδ
+

1
2π�

∞∫

−∞
dω′KBA(q,−ω′)

ω − ω′ + iδ
. (J.1.86)

J.1.8 Fluctuation–Dissipation Theorem

We encounter fairly often the situation where the operator B is the Hermitian
adjoint of A. Then

〈
Ψn|A(q)|Ψm

〉∗ =
〈
Ψm|A†(−q)|Ψn

〉
(J.1.87)

and hence

KAA†(q, ω) = 2π�
1
V

∑

mn

e−βEn

Z

∣∣〈Ψn|A(q)|Ψm

〉∣∣2δ(�ω + En − Em) (J.1.88)

is a real positive semidefinite quantity. It follows from (J.1.80) that

χ′′
AA†(q, ω) =

1
2�
KAA†(q, ω)

(
1 − e−β�ω

)
, (J.1.89)

and thus
KAA†(q, ω) = 2�

1
1 − e−β�ω

χ′′
AA†(q, ω) . (J.1.90)

In the classical limit, when � → 0, we have

KAA†(q, ω) = 2
kBT

ω
χ′′

AA†(q, ω) . (J.1.91)

The equal-time correlation function is obtained by integrating over the
variable ω:
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KAA†(q) =
1
V

〈
A(q)A†(−q)

〉
=

∞∫

−∞

dω
2π
KAA†(q, ω)

=
�

π

∞∫

−∞

1
1 − e−β�ω

χ′′
AA†(q, ω) dω .

(J.1.92)

In the limit T → 0 we have

KAA†(q) =
�

π

∞∫

0

dω χ′′
AA†(q, ω) . (J.1.93)

If the operators appear in reversed order, then according to (J.1.85)

KA†A(q, ω) = eβ�ωKAA†(q,−ω) . (J.1.94)

Thus
KA†A(q, ω) = 2�

1
eβ�ω − 1

χ′′
AA†(q, ω) (J.1.95)

and the static correlation function is

KA†A(q) =
�

π

∞∫

−∞

1
eβ�ω − 1

χ′′
AA†(q, ω) dω . (J.1.96)

The quantum mechanical transition rate between states |Ψm〉 and |Ψn〉 is inde-
pendent of the direction of the transition, but the transition rates are weighted
in the correlation functions by the thermal occupation of the states. This ex-
plains the above relationship between KAA† and KA†A.

When we are interested in the fluctuations of an observable associated
with the Hermitian operator A at a wave vector q, we have to consider the
quantity

1
V

〈 |A(q)|2 〉 . (J.1.97)

The volume factor appears for normalization. If the components at q and −q
do not commute, the symmetric combination

1
2V
〈[
A(q)A†(−q) +A†(−q)A(q)

]〉
(J.1.98)

should be retained. Using the expressions derived above we have

1
V

〈 |A(q)|2 〉 =
�

2π

∞∫

−∞

eβ�ω + 1
eβ�ω − 1

χ′′
AA†(q, ω) dω

=
�

2π

∞∫

−∞
coth

�ω

2kBT
χ′′

AA†(q, ω) dω .

(J.1.99)
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The imaginary part of the susceptibility being an odd function of ω this can
be written as

1
V

〈 |A(q)|2 〉 =
�

π

∞∫

0

coth
�ω

2kBT
χ′′

AA†(q, ω) dω . (J.1.100)

The imaginary part of the susceptibility is related to the energy dissipated
during the quantum mechanical transitions. For this reason this relationship,
which expresses the fluctuations of A(q) in terms of χ′′

AA†(q, ω), is known as
the fluctuation–dissipation theorem.2 It is the generalization of the Nyquist
relation3 connecting the thermal noise of the electric current to the electrical
resistance.

In the classical limit, when the thermal energy kBT is larger than �ω for
the frequencies at which the energy is absorbed (where the imaginary part is
finite), we have

1
V

〈 |A(q)|2 〉 =
2kBT

π

∞∫

0

χ′′
AA†(q, ω)

ω
dω . (J.1.101)

J.2 Density–Density Response Function

It was shown in Chapter 29 [see (29.1.25)] that the dielectric function of the
system of electrons can be written in the form

1
εr(q, ω)

= 1 +
4πẽ2

q2
Π(q, ω) , (J.2.1)

where Π(q, ω) is the generalized susceptibility that relates the variations of
the spatial distribution of electrons to the external potential. According to
linear response theory this susceptibility is the Fourier transform with respect
to both space and time of the retarded density–density correlation function

Π(r, r′, t− t′) = − i
�
θ(t− t′)

〈[
n(r, t), n(r′, t′)

]
−
〉
, (J.2.2)

that is

Π(q, ω) = − i
�

1
V

∞∫

0

d(t− t′) eiω(t−t′)
〈[
n(q, t), n(−q, t′)

]
−
〉
. (J.2.3)

2
H. B. Callen and T. A. Welton, 1951.

3
H. Nyquist, 1928.
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This susceptibility is defined with a negative sign since the perturbation
Hamiltonian (J.1.6) does not have a negative sign in contrast to the general
form (J.1.7).

The density–density correlation function

Knn(q, t) =
1
V

〈
n(q, t)n(−q)

〉
(J.2.4)

is simply related to the imaginary part of the response function. Because of
the sign difference mentioned above we have

Knn(q, ω) = −2�
1

1 − e−β�ω
Π ′′(q, ω) . (J.2.5)

A differently normalized quantity

Γ (q, t) =
1
Ne

〈
n(q, t)n(−q, 0)

〉
=

1
ne
Knn(q, t) (J.2.6)

defined in (28.4.86) is often used in the literature. The dynamical structure
factor S(q, ω) is obtained from the Fourier transform of Γ (q, t) by discarding
the q = 0 component. We will show that the moments of the dielectric function
and those of the structure factor satisfy exact relations, called sum rules. Their
knowledge may help in the evaluation of optical absorption experiments. At
the end of this section simple methods will be presented that allow us to
calculate approximately the density–density response function.

J.2.1 Sum Rules

The dielectric function describes the causal relationship between the electric
displacement and the electric field; hence, it satisfies the Kramers–Kronig
relations. According to (16.1.65)

ε1(q, ω) − 1 =
2
π
P

∞∫

0

dω′ ε2(q, ω′)
ω′

ω′2 − ω2
. (J.2.7)

We know from (31.2.6) that the dielectric function is real for small values of
q and sufficiently large values of ω and its asymptotic form is

εr(q, ω) = 1 − ω2
p

ω2
, (J.2.8)

where ωp is the plasma frequency defined in (16.1.69).
On the other hand, in that regime

ε1(q, ω) = 1 − 2
π

∞∫

0

dω′ ε2(q, ω′)
ω′

ω2
. (J.2.9)
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Comparison of the two expressions leads to the first sum rule:

∞∫

0

ωε2(q, ω) dω =
π

2
ω2

p . (J.2.10)

Making use of relationship (16.1.64) between the imaginary part of the
dielectric function and the real part of the conductivity [see also (29.6.81)]
we arrive at the conductivity sum rule

∞∫

0

Reσ(q, ω) dω = ε0
π

2
ω2

p = π
nee

2

2me
. (J.2.11)

In optical experiments the optical constants n(ω) and κ(ω) (the real and
imaginary parts of the complex refractive index) are used preferentially instead
of the dielectric function or the optical conductivity. Their relationship is given
in (25.1.44). We thus find a sum rule for the optical constants:

∞∫

0

ωn(ω)κ(ω) dω =
π

4
ω2

p . (J.2.12)

The response function appearing in (29.1.25) describes a causal response;
hence, the inverse of the dielectric function, too, satisfies the Kramers–Kronig
relations. We find

Re
1

εr(q, ω)
− 1 =

2
π
P

∞∫

0

dω′ Im
1

εr(q, ω′)
ω′

ω′2 − ω2
. (J.2.13)

It then follows that for large values of ω

Re
1

εr(q, ω)
− 1 = − 2

π
P

∞∫

0

dω′ Im
1

εr(q, ω′)
ω′

ω2
. (J.2.14)

On the other hand we know that

1
εr(q, ω)

= 1 +
ω2

p

ω2
. (J.2.15)

Comparison of the two expressions yields the longitudinal f -sum rule:

∞∫

0

ωIm
1

εr(q, ω)
dω = −π

2
ω2

p . (J.2.16)
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Looking at the static, ω = 0 case the Kramers–Kronig relations give

Re
1

εr(q)
− 1 =

2
π

P
∞∫

0

dω′

ω′ Im
1

εr(q, ω′)
. (J.2.17)

The static dielectric function diverges – its inverse vanishes – in metals in the
long-wavelength q → 0 limit as 1/q2, hence

lim
q→0

∞∫

0

Im
1

εr(q, ω)
dω
ω

= −π
2
. (J.2.18)

At T = 0, where the density–density correlation function vanishes for
negative frequencies, it follows from (29.1.35) and (29.1.36) that the dynamical
structure factor satisfies the relations

S(q, ω) = −2�

ne
Π ′′(q, ω) = −2�

ne

q2

4πẽ2
Im

1
εr(q, ω)

for ω > 0 . (J.2.19)

Substituting this into the sum rule (J.2.16) we find

1
2π

∞∫

0

ωS(q, ω) dω =
�q2

2me
. (J.2.20)

Inserting the same relation into (J.2.18) a sum rule

1
2π

∞∫

0

S(q, ω)
ω

dω =
�q2

2meω2
p

(J.2.21)

valid for small but finite values of q is obtained.
The dynamical structure factor is sometimes defined in the literature with-

out the factor 2π/Ne. This quantity will be denoted by S̃(q, ω):

S̃(q, ω) =
∑

mn

e−βEn

Z
|〈Ψn|n(q)|Ψm〉|2δ(ω − (Em − En)/�) . (J.2.22)

When the sum rules are given for this quantity,

∞∫

−∞
ωS̃(q, ω) dω = Ne

�q2

2me
, (J.2.23-a)

∞∫

0

S̃(q, ω)
ω

dω = V
�q2

8πẽ2
. (J.2.23-b)
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We can prove sum rule (J.2.20) for the first moment of the structure factor
in a different way, too, which derivation leads to another, much used sum rule.
We follow the procedure applied in Chapter 29 in calculating the dielectric
function of semiconductors. For this let us consider the double commutator

[
[n(q),H]− , n(−q)

]
− . (J.2.24)

The inner commutator can readily be obtained:

[n(q),H]− = − �
2

2me

[∑

i

e−iq·ri ,
∑

j

∇2
rj

]

−

= −iq
�

2

2me

∑

i

(∇rie
−iq·ri + e−iq·ri∇ri

)
.

(J.2.25)

This result is independent of the electron–electron interaction as the inter-
action Hamiltonian depends only on the spatial coordinates of electrons and
hence commutes with the density.

Recognizing in this expression the current-density operator given in (29.6.7)
we find that

[n(q),H]− = �q · j(q) . (J.2.26)

This relationship could have been derived directly from the continuity equa-
tion as well. Evaluating now the second commutator we have

[
[n(q),H]− , n(−q)

]
− = [�q · j(q), n(−q)]− =

Ne�
2q2

me
. (J.2.27)

On the other hand, the ground-state expectation value of the double commu-
tator can be calculated directly by inserting a complete set of eigenstates of
the total Hamiltonian. We have
〈
Ψ0

∣∣[ [n(q),H]− , n(−q)
]
−
∣∣Ψ0

〉
=
∑

m

2(Em − E0)
∣∣ 〈Ψ0 |n(q)|Ψm〉 ∣∣2. (J.2.28)

Comparison of the two equations yields the Bethe sum rule:4

∑

m

(Em − E0)
∣∣ 〈Ψ0 |n(q)|Ψm〉 ∣∣2 =

Ne�
2q2

2me
. (J.2.29)

The dynamical structure factor as the Fourier transform of the density–density
correlation function can also be given in a spectral representation. We readily
find

S(q, ω) = 2π�
1
Ne

∑

m

〈Ψ0|n(q)|Ψm〉 〈Ψm|n(−q)|Ψ0〉 δ(�ω−Em+E0) . (J.2.30)

4
H. Bethe, 1930.
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The integral of the first moment of S(q, ω) gives

∞∫

−∞
ωS(q, ω) dω =

2π
�

1
Ne

∑

m

(Em − E0)
∣∣ 〈Ψ0 |n(q)|Ψm〉 ∣∣2. (J.2.31)

Comparing this expression with (J.2.29) we recover the sum rule

1
2π

∞∫

−∞
ωS(q, ω) dω =

�q2

2me
. (J.2.32)

The optical transitions from the ground state to the excited states were
conveniently characterized by the oscillator strength defined in (25.2.13) when
the optical properties of solids were studied. A formal comparison of the ex-
pression obtained for the dielectric function of electrons bound to atoms with
the expression derived for itinerant electrons yields

f0m =
2me

�2q2
(Em − E0)

∣∣ 〈Ψ0 |n(q)|Ψm〉 ∣∣2 (J.2.33)

for the oscillator strength of transitions in the electron system from the ground
state to the excited state |Ψm〉. Summing the oscillator strengths over all
excited states and comparing the expression with (J.2.29) we obtain

∑

m

f0m = Ne . (J.2.34)

This relationship is known as the f-sum rule or Thomas–Reiche–Kuhn sum
rule.5

J.2.2 Equation-of-Motion Method

The response function or generalized susceptibility can be considered as a
many-particle-retarded Green function. The methods presented in the next
appendix to calculate the Green functions can also be used to calculate the
response functions. Although a consistent perturbation theory based on the
Feynman diagram technique can only be formulated for the causal functions,
the retarded functions can be obtained by analytic continuation in the ω-plane.
The elements of diagram technique will be given in the next appendix on
Green functions. Here we present a simpler approach based on the equation
of motion of the operators appearing in the correlation functions.

Within this approach we still have several possibilities. We could write
the equation of motion directly for the response function in the equilibrium
system, or alternatively we could write an equation for the expectation value of

5
W. Thomas, F. Reiche, and W. Kuhn, 1925.
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the operator A associated with the observable in the presence of the perturbing
field. Whichever procedure is used, more complicated, higher order terms will
appear in the equation of motion. Writing the equation of motion for them, a
hierarchy is generated which has to be truncated at some point by decoupling
the averages of products of operators. This decoupling procedure is well suited
to get a rough picture of the behavior of the system although its accuracy is
not well controlled.

As an example we consider the Fourier transform of the retarded density–
density correlation function appearing in the dielectric function. It is defined by

Π(q, ω) = − i
�

∞∫

0

d(t− t′) eiω(t−t′)−δ(t−t′) (J.2.35)

× 1
V

∑

kk′σσ′

〈[
c†kσ(t)ck+qσ(t), c†k′+qσ′(t′)ck′σ′(t′)

]
−
〉
.

The thermal average has to be calculated for an equilibrium system taking
into account the electron–electron interaction as precisely as possible. We will
write the equation of motion for a single term of the sum over k and σ, for

Πσσ′(k, q, t− t′) = − i
�
θ(t− t′)

1
V

〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉
. (J.2.36)

Taking the time derivative with respect to t a Dirac delta function arising
from the derivative of the Heaviside step function appears with the equal-
time commutator of the operators c†kσck+qσ and nσ′(−q). This commutator
gives
[
c†kσ(t)ck+qσ(t), nσ′(−q, t)

]
− = δσσ′

[
c†kσ(t)ckσ(t) − c†k+qσ(t)ck+qσ(t)

]
.

(J.2.37)
Besides that we need the commutators appearing in the expression

d
dt

(
c†kσ(t)ck+qσ(t)

)
=

dc†kσ(t)
dt

ck+qσ(t) + c†kσ(t)
dck+qσ(t)

dt
(J.2.38)

=
i
�

[H, c†kσ(t)
]
−ck+qσ(t) +

i
�
c†kσ(t)

[H, ck+qσ(t)
]
− .

For a homogeneous electron gas, where the one-particle potential is canceled
by the q = 0 component of the Coulomb repulsion, we find

(
−�

i
d
dt

+ εk

)
c†kσ(t) = − 1

V

∑

k′q′σ′′
U(q′)c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)

(J.2.39)
and
(
−�

i
d
dt

− εk+q

)
ck+qσ(t) =

1
V

∑

k′q′σ′′
U(q′)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t) .

(J.2.40)
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Multiplying the first equation by ck+qσ from the right and the second by c†kσ

from the left, they can be combined to yield
(
−�

i
d
dt

− εk+q + εk

)
c†kσ(t)ck+qσ(t)

= − 1
V

∑

k′q′σ′′
U(q′)c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t)

+
1
V

∑

k′q′σ′′
U(q′)c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t) .

(J.2.41)

Using these expressions in the equation of motion for the response function
we get
(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσ(t)ckσ(t)

〉− 〈c†k+qσ(t)ck+qσ(t)
〉]

+
i
�
θ(t− t′)

1
V 2

∑

k′q′σ′′
U(q′)

×
〈[
c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

− i
�
θ(t− t′)

1
V 2

∑

k′q′σ′′
U(q′)

×
〈[
c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉
.

(J.2.42)

The first term on the right-hand side contains the occupation of the states
with wave vectors k and k + q. They are given by the Fermi distribution
function

〈c†kσckσ〉 = 〈nkσ〉 = f0(εkσ) . (J.2.43)

Neglecting for the moment the terms containing the electron–electron inter-
action we have

(
−�

i
d
dt

− εk+q + εk

)
Π0σσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[
f0(εk) − f0(εk+q)

]
.

(J.2.44)

Its Fourier transform with respect to time satisfies the equation

(�ω − εk+q + εk)Π0σσ′(k, q, ω) = δσσ′
1
V

[
f0(εk) − f0(εk+q)

]
. (J.2.45)

The formal solution
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Π0σσ′(k, q, ω) = δσσ′
1
V

f0(εk) − f0(εk+q)
�ω − εk+q + εk

(J.2.46)

is not quite correct. Also

Π0σσ′(k, q, ω) = δσσ′
1
V

f0(εk) − f0(εk+q)
�ω − εk+q + εk

+ aδ(�ω − εk+q + εk) (J.2.47)

is a solution, and the value of a has to be determined from the correct analytic
properties, dictated by the requirement that the retarded response function
has to be analytic in the upper half-plane. This leads to

Π0σσ′(k, q, ω) = δσσ′
1
V

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

. (J.2.48)

Summing over k and σ gives

Π0(q, ω) =
2
V

∑

k

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

, (J.2.49)

which is the well-known Lindhard function.

J.2.3 Decoupling Procedures

The equation of motion cannot be solved exactly when the electron–electron
interaction is taken into account. As the simplest approximation we decouple
the four-operator terms, that is we approximate the product of two equal-time
operators by their expectation values. The two operators that are taken out
of the commutator can be chosen in four different ways:

U(q′)
〈[
c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

≈ −δk+q′,k′δσσ′′U(k′ − k)〈c†k′σck′σ〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

+ δq,q′U(q)〈c†k+qσck+qσ〉
〈[
c†k′−qσ′′(t)ck′σ′′(t), nσ′(−q, t′)

]
−
〉

(J.2.50)

+ δq′,0U(q = 0)〈c†k′σ′′ck′σ′′〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

− δq′,k′−k−qδσσ′′U(q′)〈c†k+qσck+qσ〉
〈[
c†k′−qσ(t)ck′σ(t), nσ′(−q, t′)

]
−
〉

and similarly

U(q′)
〈[
c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉

≈ −δkk′δσσ′′U(q′)〈c†kσckσ〉
〈[
c†k−q′σ(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉

+ δqq′U(q)〈c†kσckσ〉
〈[
c†k′−qσ′′(t)ck′σ′′(t), nσ′(−q, t′)

]
−
〉

(J.2.51)

+ δq′,0U(q′ = 0)〈c†k′σ′′ck′σ′′〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

− δq,k′−kδσσ′′U(q′)〈c†k′−q′σck′−q′σ〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉
.

We will consider the various terms separately.
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Hartree–Fock Decoupling

As a first step we keep only the terms that contain the expression
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉
. (J.2.52)

In this decoupling scheme

U(q′)
〈[
c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

(J.2.53)

≈ −δk+q′,k′δσσ′′U(k′ − k)〈c†k′σck′σ〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

+ δq′,0U(q = 0)〈c†k′σ′′ck′σ′′〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

and

U(q′)
〈[
c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉

(J.2.54)

≈ δq′,0U(q′ = 0)〈c†k′σ′′ck′σ′′〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

− δq,k′−kδσσ′′U(q′)〈c†k′−q′σck′−q′σ〉
〈[
c†kσ(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉
.

Substituting these expressions into the equation of motion forΠσσ′(k, q, t−t′),
(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]

+
1
V

∑

k′σ′′
δσσ′′U(k′ − k)〈c†k′σck′σ〉Πσσ′(k, q, t− t′)

− 1
V

∑

k′σ′′
U(q = 0)〈c†k′σ′′ck′σ′′〉Πσσ′(k, q, t− t′)

+
1
V

∑

k′σ′′
U(q = 0)〈c†k′σ′′ck′σ′′〉Πσσ′(k, q, t− t′)

− 1
V

∑

q′σ′′
δσσ′′U(q′)〈c†k+q−q′σck+q−q′σ〉Πσσ′(k, q, t− t′) .

(J.2.55)

After a change of variables q′ → k+q−k′ we may recognize the Hartree–Fock
self-energy correction of quasiparticles in the new terms appearing due to the
interaction and we have

(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]

−ΣkσΠσσ′(k, q, t− t′) +Σk+qσΠσσ′(k, q, t− t′) .

(J.2.56)
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Incorporating these corrections into the renormalized energies of the quasi-
particles the equation of motion takes the form

(
−�

i
d
dt

− ε̃k+q + ε̃k

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]
.

(J.2.57)

It is natural to require that the occupation of the states be calculated with
the renormalized energy, that is

〈
c†kσckσ

〉
= f0(ε̃kσ) . (J.2.58)

The solution of the equation of motion then yields

Πσσ′(k, q, ω) = δσσ′
1
V

f0(ε̃k) − f0(ε̃k+q)
�ω − ε̃k+q + ε̃k + iδ

, (J.2.59)

from which, after summation over k and σ, we obtain

Π(q, ω) =
2
V

∑

k

f0(ε̃k) − f0(ε̃k+q)
�ω − ε̃k+q + ε̃k + iδ

. (J.2.60)

This decoupling thus corresponds to taking the self-energy corrections of the
Hartree–Fock approximation into account in the Lindhard function. In dia-
grammatic language this approximation corresponds to independently dress-
ing the electron and hole lines of the polarization bubble by the Hartree–Fock
corrections.

The RPA

As a next approximation we take those terms from the decoupling that are
proportional to U(q), that is we assume that

U(q′)
〈[
c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

≈ δqq′U(q)〈c†k+qσck+qσ〉
〈[
c†k′−qσ′′(t)ck′σ′′(t), nσ′(−q, t′)

]
−
〉 (J.2.61)

and

U(q′)
〈[
c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉

≈ δqq′U(q)〈c†kσckσ〉
〈[
c†k′−qσ′′(t)ck′σ′′(t), nσ′(−q, t′)

]
−
〉
.

(J.2.62)

The equation of motion then takes the form
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(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]

− 1
V

∑

k′σ′′
U(q)〈c†k+qσck+qσ〉Πσ′′σ′(k′ − q, q, t− t′)

+
1
V

∑

k′σ′′
U(q)〈c†kσckσ〉Πσ′′σ′(k′ − q, q, t− t′) .

(J.2.63)

U(q) and the thermal average of the fermion occupation number can be taken
out of the sum in the last two terms. The sum over k′ gives the total spin-
resolved response function. Taking the frequency Fourier transform we have

(
�ω − εk+q + εk

)
Πσσ′(k, q, ω) = δσσ′

1
V

[f0(εk) − f0(εk+q)] (J.2.64)

+
1
V

[
f0(εk) − f0(εk+q)

]
U(q)

∑

σ′′
Πσ′′σ′(q, ω) ,

from which we find

Πσσ′(k, q, ω) = δσσ′
1
V

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

(J.2.65)

+
1
V

f0(εk) − f0(εk+q)
�ω − εk+q + εk + iδ

U(q)
∑

σ′′
Πσ′′σ′(q, ω) .

Summation over the wave vector and spin gives

Π(q, ω) = Π0(q, ω) +Π0(q, ω)U(q)Π(q, ω) . (J.2.66)

The solution of this equation,

Π(q, ω) =
Π0(q, ω)

1 − U(q)Π0(q, ω)
, (J.2.67)

is precisely identical to the result of the RPA. Thus this decoupling corre-
sponds to summing the infinite series of polarization bubbles.

Hubbard Approximation

Finally, we consider the decoupling

U(q′)
〈[
c†k+q′σ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+qσ(t), nσ′(−q, t′)

]
−
〉

(J.2.68)

≈ −δq′,k′−k−qδσσ′′U(q′)〈c†k+qσck+qσ〉
〈[
c†k′−qσ(t)ck′σ(t), nσ′(−q, t′)

]
−
〉

and
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U(q′)
〈[
c†kσ(t)c†k′−q′σ′′(t)ck′σ′′(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉

(J.2.69)

≈ −δkk′δσσ′′U(q′)〈c†kσckσ〉
〈[
c†k−q′σ(t)ck+q−q′σ(t), nσ′(−q, t′)

]
−
〉
.

When this is inserted into the equation of motion we find
(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]
(J.2.70)

+
1
V

∑

k′σ′′
δσσ′′U(k + q − k′)〈c†k+qσck+qσ〉Πσσ′(k′ − q, q, t− t′)

− 1
V

∑

q′σ′′
δσσ′′U(q′)〈c†kσckσ〉Πσσ′(k − q′, q, t− t′) .

With a change of variables in the last term we have
(
−�

i
d
dt

− εk+q + εk

)
Πσσ′(k, q, t− t′)

= δσσ′δ(t− t′)
1
V

[〈
c†kσckσ

〉− 〈c†k+qσck+qσ

〉]
(J.2.71)

+
1
V

∑

k′σ′′
δσσ′′U(k + q − k′)〈c†k+qσck+qσ〉Πσσ′(k′ − q, q, t− t′)

− 1
V

∑

k′σ′′
δσσ′′U(k + q − k′)〈c†kσckσ〉Πσσ′(k′ − q, q, t− t′) .

The processes taken into account in this approximation can also be visualized
by diagrams. They correspond to summing the contribution of the graphs
depicted in Fig. J.2.

Fig. J.2. Diagrams taken into account in the Hubbard approximation

Unlike in the RPA, the potential U(k + q − k′) cannot be taken out of
the summation over k′. Nevertheless, as pointed out by J. Hubbard (1957),
the new terms may be approximated by an expression proportional to U(q).
Taking the bare Coulomb repulsion for U(q) and realizing that the most
important contribution comes from terms in which |k − k′| is close to the
Fermi wave number,

U(q) − U(k + q − k′)δσ,σ′ ≈ 4πẽ2
(

1
q2

− δσσ′
1

q2 + k2
F

)
. (J.2.72)
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Exchange is possible only between electrons of identical spins; therefore, the
second term can compensate only half of the direct repulsion for large q values.
Taking that into account, Hubbard proposed the following approximate form

∑

k′
U(k + q − k′)Πσσ′(k′ − q, q, t− t′)

= G(q)
∑

k′
U(q)Πσσ′(k′ − q, q, t− t′)

(J.2.73)

with

G(q) =
1
2

q2

q2 + k2
F
, (J.2.74)

as given in (29.2.70). There are also other, perhaps better, approximate forms
in the literature, with somewhat different expressions for G(q).

Using this approximation in the equation of motion and comparing it with
(J.2.63) obtained in the RPA, we see that the Hubbard decoupling leads to
similar expressions as the RPA, except that the potential U(q) is multiplied
everywhere by −G(q). Since the contributions corresponding to the two kinds
of decoupling have to be added, the potential has to be multiplied by 1−G(q)
compared to the RPA result, that is

Π(q, ω) =
Π0(q, ω)

1 − [1 −G(q)
]
U(q)Π0(q, ω)

. (J.2.75)

Since the RPA is also known as the time-dependent Hartree approximation,
the Hubbard approximation, where exchange terms are taken into account,
might be called the time-dependent Hartree–Fock approximation.

Note that when the Hartree–Fock self-energy corrections are also taken
into account, the Lindhard function Π0(q, ω) should be calculated with the
renormalized energies.

J.2.4 Alternative Derivation

In an alternative approach we solve the equation of motion for the induced
electron density

nind(q, t) =
〈
n(q, t)

〉
=
∑

kσ

〈
c†kσ(t)ck+qσ(t)

〉
(J.2.76)

in the presence of an external perturbation

Hext(t) =
∫
Vext(r, t)n(r) dr =

1
V

∑

kqσ

Vext(q, t)c
†
k+qσckσ (J.2.77)

to first order in Vext, while trying to take into account the effect of the electron–
electron interaction U(q) as precisely as we can.
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We first write the equation of motion for the product c†kσ(t)ck+qσ(t):

d
dt

(
c†kσ(t)ck+qσ(t)

)
=

dc†kσ(t)
dt

ck+qσ(t) + c†kσ(t)
dck+qσ(t)

dt

=
i
�

[
(H + Hext) , c

†
kσ(t)

]
−ck+qσ(t)

+
i
�
c†kσ(t)

[
(H + Hext) , ck+qσ(t)

]
− ,

(J.2.78)

where H is the sum of the kinetic energy term and the two-particle interaction.
The time derivative of the creation and annihilation operators gives

(
−�

i
d
dt

+ εk

)
c†kσ(t) = − 1

V

∑

k′q′σ′
U(q′)c†k+q′σ(t)c†k′−q′σ′(t)ck′σ′(t)

− 1
V

∑

q′
Vext(q′, t)c†k+q′σ(t) , (J.2.79)

(
−�

i
d
dt

− εk+q

)
ck+qσ(t) =

1
V

∑

k′q′σ′
U(q′)c†k′−q′σ′(t)ck′σ′(t)ck+q−q′σ(t)

+
1
V

∑

q′
Vext(q′, t)ck+q−q′σ(t) . (J.2.80)

Multiplying the first equation by ck+qσ from the right and the second equa-
tion by c†kσ from the left and taking the thermal average of the resulting
expressions, the two equations can be combined to give
(
−�

i
d
dt

− εk+q + εk

)〈
c†kσ(t)ck+qσ(t)

〉
(J.2.81)

= − 1
V

∑

k′q′σ′
U(q′)

〈
c†k+q′σ(t)c†k′−q′σ′(t)ck′σ′(t)ck+qσ(t)

〉

+
1
V

∑

k′q′σ′
U(q′)

〈
c†kσ(t)c†k′−q′σ′(t)ck′σ′(t)ck+q−q′σ(t)

〉

− 1
V

∑

q′
Vext(q′, t)

[〈
c†k+q′σ(t)ck+qσ(t)

〉− 〈c†kσ(t)ck+q−q′σ(t)
〉]
.

Being interested in the linear response, the thermal average in the last
term should be calculated for the unperturbed system. Only the term q = q′

contributes. A satisfactory treatment of the electron–electron interaction is
more difficult. The four-operator terms could be decoupled into products of the
thermal averages of two operators, as it is usually done in mean-field theory.
The decoupling should be done in all possible ways, taking into account that
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in normal metals the nonvanishing averages contain one creation and one
annihilation operator. Accordingly the first term on the right-hand side of
(J.2.81) is approximated as

〈
c†k+q′σ(t)c†k′−q′σ′(t)ck′σ′(t)ck+qσ(t)

〉

=
〈
c†k+q′σ(t)ck+qσ(t)

〉〈
c†k′−q′σ′(t)ck′σ′(t)

〉

− 〈c†k+q′σ(t)ck′σ′(t)
〉〈
c†k′−q′σ′(t)ck+qσ(t)

〉
.

(J.2.82)

The sign of the terms is determined by the number of permutations of the
fermion operators necessary to achieve the given order.

We want to collect the contributions that are proportional to the external
potential. If one of the factors in the decoupled expression is assumed to be
proportional to the perturbation, the other factor can be calculated for the
unperturbed system. This linearization in the perturbation of the right-hand
side of (J.2.82) leads to four terms. Taking into account that the only non-
vanishing thermal average for an unperturbed normal system is the number
of particles with a given wave vector, that is the creation and annihilation
operators have to have the same momentum and spin, we find

〈
c†k+q′σ(t)c†k′−q′σ′(t)ck′σ′(t)ck+qσ(t)

〉

= δq′,q
〈
c†k+qσ(t)ck+qσ(t)

〉〈
c†k′−q′σ′(t)ck′σ′(t)

〉

+ δq′,0
〈
c†kσ(t)ck+qσ(t)

〉〈
c†k′σ′(t)ck′σ′(t)

〉

− δq′,k′−kδσ,σ′
〈
c†k′σ(t)ck′σ(t)

〉〈
c†kσ(t)ck+qσ(t)

〉

− δq′,k′−k−qδσ,σ′
〈
c†k′−qσ(t)ck′σ(t)

〉〈
c†k+qσ(t)ck+qσ(t)

〉
.

(J.2.83)

If the Fermi distribution function is used for the occupation of electron states,
we have

〈
c†k+q′σ(t)c†k′−q′σ′(t)ck′σ′(t)ck+qσ(t)

〉

= δq′,qf0(εk+q)
〈
c†k′−qσ′(t)ck′σ′(t)

〉

+ δq′,0f0(εk′)
〈
c†kσ(t)ck+qσ(t)

〉

− δq′,k′−kδσ,σ′f0(εk′)
〈
c†kσ(t)ck+qσ(t)

〉

− δq′,k′−k−qδσ,σ′f0(εk+q)
〈
c†k′−qσ(t)ck′σ(t)

〉
.

(J.2.84)

A similar procedure for the second term on the right-hand side of (J.2.81)
yields

〈
c†kσ(t)c†k′−q′σ′(t)ck′σ′(t)ck+q−q′σ(t)

〉

=
〈
c†kσ(t)ck+q−q′σ(t)

〉〈
c†k′−q′σ′(t)ck′σ′(t)

〉

− 〈c†kσ(t)ck′σ′(t)
〉〈
c†k′−q′σ′(t)ck+q−q′σ(t)

〉
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= δq′,q
〈
c†kσ(t)ckσ(t)

〉〈
c†k′−qσ′(t)ck′σ′(t)

〉

+ δq′,0
〈
c†kσ(t)ck+qσ(t)

〉〈
c†k′σ′(t)ck′σ′(t)

〉
(J.2.85)

− δk,k′δσ,σ′
〈
c†kσ(t)ckσ(t)

〉〈
c†k−q′σ(t)ck+q−q′σ(t)

〉

− δk′,k+qδσ,σ′
〈
c†kσ(t)ck+qσ(t)

〉〈
c†k+q−q′σ(t)ck+q−q′σ(t)

〉

= δq′,qf0(εk)
〈
c†k′−qσ′(t)ck′σ′(t)

〉
+ δq′,0f0(εk′)

〈
c†kσ(t)ck+qσ(t)

〉

− δk,k′δσ,σ′f0(εk)
〈
c†k−q′σ(t)ck+q−q′σ(t)

〉

− δk′,k+qδσ,σ′f0(εk+q−q′)
〈
c†kσ(t)ck+qσ(t)

〉
.

Substituting these expressions into (J.2.81) and after some algebra we have
(
−�

i
d
dt

− εk+q + εk

)〈
c†kσ(t)ck+qσ(t)

〉

=
1
V

∑

k′σ′

[
U(k − k′) − U(k + q − k′)

]
δσ,σ′f0(εk′)

〈
c†kσ(t)ck+qσ(t)

〉

− 1
V

∑

k′σ′

[
U(q) − U(k + q − k′)δσ,σ′

]
(J.2.86)

× [f0(εk+q) − f0(εk)
]〈
c†k′−qσ′(t)ck′σ′(t)

〉

+
1
V
Vext(q, t)

[
f0(εk) − f0(εk+q)

]
.

Note that the first term on the right-hand side gives precisely the Hartree–
Fock corrections to εk and εk+q. The part containing U(q) in the second term
is proportional to the density n(q). This is not true, however, for the other
part containing U(k + q − k′). A term proportional to n(q) can be obtained
by using the Hubbard approximation discussed previously. We assume that
∑

k′
U(k + q − k′)

〈
c†k′−qσ(t)ck′σ(t)

〉
= G(q)

∑

k′
U(q)

〈
c†k′−qσ(t)ck′σ(t)

〉

(J.2.87)
with

G(q) =
1
2

q2

q2 + k2
F
. (J.2.88)

The procedure can be made self-consistent if the occupation of the states is
determined for the renormalized energies. We then have
(
−�

i
d
dt

− ε̃k+q + ε̃k

)〈
c†kσ(t)ck+qσ(t)

〉

=
1
V

∑

k′σ′
U(q) [1 −G(q)]

〈
c†k′−qσ′(t)ck′σ′(t)

〉[
f0(ε̃k) − f0(ε̃k+q)

]

+
1
V
Vext(q, t)

[
f0(ε̃k) − f0(ε̃k+q)

]
. (J.2.89)
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Taking the Fourier transform with respect to time we have

(�ω − ε̃k+q + ε̃k)
〈
c†kσ(t)ck+qσ(t)

〉
FT

=
1
V

[
Vext(q, ω) +

∑

k′σ′
U(q)

[
1 −G(q)

]〈
c†k′−qσ′(t)ck′σ′(t)

〉
FT

]

× [f0(ε̃k) − f0(ε̃k+q)
]
. (J.2.90)

Dividing both sides by the energy factor and summing over k and σ, the
Fourier component of the density appears:

〈
n(q, ω)

〉
=
[
Vext(q, ω) +U(q)

[
1−G(q)

]〈
n(q, ω)

〉] 1
V

∑

kσ

f0(ε̃k) − f0(ε̃k+q)
�ω − ε̃k+q + ε̃k

,

(J.2.91)
from which we find

〈
n(q, ω)

〉
=

Vext(q, ω)Π0(q, ω)
1 − U(q)

[
1 −G(q)

]
Π0(q, ω)

, (J.2.92)

where
Π0(q, ω) =

1
V

∑

kσ

f0(ε̃k) − f0(ε̃k+q)
�ω − ε̃k+q + ε̃k

(J.2.93)

is the Lindhard function calculated with the renormalized quasiparticle ener-
gies. The full response function has the same form as obtained in the Hubbard
approximation,

Π(q, ω) =
Π0(q, ω)

1 − [1 −G(q)
]
U(q)Π0(q, ω)

, (J.2.94)

but with the renormalized Π0(q, ω). Substituting this into (29.1.23) we get

1
εr(q, ω)

= 1 +
4πẽ2

q2
Π0(q, ω)

1 − U(q)
[
1 −G(q)

]
Π0(q, ω)

, (J.2.95)

and the dielectric function can be written as

εr(q, ω) = 1 − U(q)
Π0(q, ω)

1 + U(q)G(q)Π0(q, ω)
. (J.2.96)

Further Reading

1. G. D. Mahan, Many-Particle Physics, Third Edition, Plenum Press, New
York (2000).

2. S. W. Lovesey, Condensed Matter Physics: Dynamical Correlations, W.
A. Benjamin, New York (1980).



K

Green Functions of the Many-Body Problem

Solids are inherently interacting many-particle systems. Correlations between
the constituents and the response to external perturbations may be strongly
influenced by the internal interactions. Therefore, the application of the meth-
ods of the many-body problem is often unavoidable in the theoretical descrip-
tion of the properties of solids. The methods based on calculating Green func-
tions allow us to account for the effects of interactions, in principle exactly.
Although we have referred to them in many places, and diagrams were used
to visualize interaction processes, the consistent application of Green function
methods and diagrammatic perturbation theory was avoided. In this appendix
some basic concepts of many-body physics are presented. We give a physically
motivated definition of Green functions and discuss the information they can
provide about the system. The perturbative procedures to calculate the Green
functions can be found in many classic textbooks on the many-body problem.
We review only very briefly the fundamentals of diagram techniques. At the
end, as an application of the Green function technique, we will present a
simple treatment of superconductivity.

The path-integral formulation of quantum mechanics can also be applied
to Green functions of the many-body problem. For fermions, which are of
primary interest for us, the path integrals should be given in terms of Grass-
mann variables and not by functions owing to the anticommutation rules. The
presentation of this method is beyond the scope of this appendix.

K.1 Green Functions

The basic elements of the many-body theory are the one-particle Green func-
tions. We define them quite generally for fermion and boson systems and study
their analytic properties and their relationship to the correlation functions. Al-
though the Green functions can be defined for arbitrary temperature, special
temperature Green functions have to be introduced to work out a consistent
perturbation theory at finite temperatures.
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K.1.1 One-Particle Green Function

Let us consider a system of bosons or fermions in the Heisenberg picture,
where the time dependence of the operators is given by

A(t) = eiHt/�Ae−iHt/� (K.1.1)

with the full Hamiltonian, while the states are time independent. When we
work with a grand canonical ensemble, H − μN is used instead of H with μ
the chemical potential and N the particle-number operator.

The field operator ψ̂†
σ(r′, t′) adds a particle with spin σ to the system at

position r′ at time t′. Its propagation can be characterized by the retarded
correlation function

θ(t− t′)
〈
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
〉

(K.1.2)

that gives the probability of finding the particle at a later time t at position
r. The Heaviside unit step function θ(t − t′) ensures that the propagation is
forward in time. For mathematical reasons the propagator or Green function
of the particle is defined by

Gσ(r, t; r′, t′) = − i
�

〈
T
{
ψ̂σ(r, t)ψ̂†

σ(r′, t′)
}〉
, (K.1.3)

where T is the time-ordering operator which orders the operators in decreas-
ing time sequence from left to right. For bosons the operator T simply inter-
changes the operators, whereas for fermions a factor −1 appears every time
two operators are interchanged. That is

Gσ(r, t; r′, t′) =

⎧
⎪⎨

⎪⎩

− i
�

〈
ψ̂σ(r, t)ψ̂†

σ(r′, t′)
〉

for t > t′ ,

∓ i
�

〈
ψ̂†

σ(r′, t′)ψ̂σ(r, t)
〉

for t′ > t .

(K.1.4)

Here and in what follows, the upper sign refers to bosons and the lower one
to fermions. The time-ordered Green function is also referred to as the causal
Green function. Note that if the spin of the particle can be flipped during the
propagation due to scattering processes, the Green function matrix

Gσσ′(r, t; r′, t′) = − i
�

〈
T
{
ψ̂σ(r, t)ψ̂†

σ′(r′, t′)
}〉
, (K.1.5)

which has nondiagonal elements in the spin indices, has to be studied.
It is sometimes more convenient to work with the retarded Green function

defined by

GR
σ (r, t; r′, t′) = − i

�
θ(t− t′)

〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
∓
〉
, (K.1.6)

where the commutator is used for bosons and the anticommutator for fermions.
The advanced Green function
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GA
σ (r, t; r′, t′) =

i
�
θ(t′ − t)

〈[
ψ̂σ(r, t), ψ̂†

σ(r′, t′)
]
∓
〉

(K.1.7)

accounts for the time development in the opposite direction. They obey the
same equation of motion but differ in their analytic properties.

Instead of working with Green functions defined in space and time, it is
often more convenient to use their Fourier transforms. If the field operators
are written in terms of the creation and annihilation operators of plane-wave
states in the form

ψ̂σ(r, t) =
1√
V

∑

k

ckσ(t)eik·r ,

ψ̂†
σ(r′, t′) =

1√
V

∑

k′
c†k′σ(t′)e−ik′·r′

,

(K.1.8)

we have

Gσ(r, t; r′, t′) = − i
�

1
V

∑

kk′

〈
T
{
ckσ(t)c†k′σ(t′)

}〉
eik·re−ik′·r′

. (K.1.9)

In a homogeneous system, where the Green function depends on r − r′, only
the term k = k′ gives a finite contribution. Equivalently we may say that the
momentum �k′ of the particle added to the system has to be conserved in a
translation-invariant system and so

Gσ(k, t− t′) = − i
�

〈
T
{
ckσ(t)c†kσ(t′)

}〉
. (K.1.10)

The Green function of noninteracting particles can be calculated exactly.
The time dependence of the creation and annihilation operators is given in
the Heisenberg picture by

ckσ(t) = eiH0t/�ckσe−iH0t/� = ckσe−iεkt/� ,

c†kσ(t) = eiH0t/�c†kσe−iH0t/� = c†kσeiεkt/� .
(K.1.11)

We will consider a grand canonical ensemble in which the number of particles
is not fixed. Then the time dependence of the operators has to be calculated
by using H0 − μN instead of H0 and the excitation energies ξk are measured
from the chemical potential, ξk = εk − μ. Therefore we have

ck(t) = cke−iξkt/� , c†k(t) = c†keiξkt/� . (K.1.12)

For the same reason the thermodynamic weight of a state with energy E and
particle number N is

e−β(E−μN)/Z (K.1.13)

with
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Z = Tr e−β(H0−μN ) . (K.1.14)

We then find

G(0)
σ (k, t− t′) = − i

�
e−iξk(t−t′)/�

⎧
⎨

⎩
〈ckσc

†
kσ〉 for t > t′

±〈c†kσckσ〉 for t < t′
(K.1.15)

for the Fourier transform with respect to the spatial variable. If the expecta-
tion values are written in terms of the Bose or Fermi distribution functions,

G(0)
σ (k, t− t′) =

⎧
⎪⎪⎨

⎪⎪⎩

− i
�
(1 ± nkσ)e−iξk(t−t′)/� for t > t′ ,

∓ i
�
nkσe−iξk(t−t′)/� for t < t′ ,

(K.1.16)

where
nkσ =

1
exp(ξk/kBT ) ∓ 1

. (K.1.17)

Its Fourier transform with respect to time is

G(0)
σ (k, ω) =

∞∫

−∞
d(t− t′)G(0)

σ (k, t− t′)eiω(t−t′)

= − i
�

∞∫

−∞
d(t− t′) θ(t− t′)(1 ± nkσ)ei(�ω−ξk)(t−t′)/�

∓ i
�

∞∫

−∞
d(t− t′) θ(t′ − t)nkσei(�ω−ξk)(t−t′)/� .

(K.1.18)

We use (J.1.53) and the analogous relation

0∫

−∞
eiω(t−t′) d(t− t′) =

∞∫

−∞
θ(t′ − t)eiω(t−t′) d(t− t′) = − i

ω − iδ
(K.1.19)

in evaluating these integrals. We then find

G(0)
σ (k, ω) =

1 ± nkσ

�ω − ξkσ + iδ
∓ nkσ

�ω − ξkσ − iδ
. (K.1.20)

A similar calculation for the retarded and advanced Green functions of
noninteracting particles gives

G(0)R
σ (k, ω) =

1
�ω − ξkσ + iδ

,

G(0)A
σ (k, ω) =

1
�ω − ξkσ − iδ

.

(K.1.21)
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When the electrons move in a one-particle potential, e.g., in the periodic
potential of the lattice, and the complete set of eigenfunction φn(r) and eigen-
values εn are known, the field operators should be expanded in terms of the
creation and annihilation operators of these states, and we find

GR
σ (r, t; r′, t′) = − i

�
θ(t− t′)

∑

n

φn(r)φ∗n(r′)e−i(εn−μ)(t−t′)/� (K.1.22)

in real space and time, while in frequency representation

GR
σ (r, r′, ω) =

∑

n

φn(r)φ∗n(r′)
�ω − εn + μ+ iδ

. (K.1.23)

The Green function of electrons in the presence of a periodic potential is
defined conveniently in momentum representation not as the Fourier transform
of Gσ(r, t; r′, t′), but in terms of the creation and annihilation operators of
Bloch electrons in the nth band:

Gnσ(k, t− t′) = − i
�

〈
T
{
cnkσ(t)c†nkσ(t′)

}〉
. (K.1.24)

The frequency Fourier transform of the Green function of noninteracting Bloch
electrons has the simple form

G(0)
nσ(k, ω) =

1 − nnkσ

�ω − εnkσ + μ+ iδ
+

nnkσ

�ω − εnkσ + μ− iδ
. (K.1.25)

The Green function of noninteracting particles exhibits an undamped os-
cillatory time dependence. The probability of finding the particle in its initial
state is constant in time. The interaction between the particles will modify
their energies and thereby the frequency of oscillations. Moreover, the parti-
cles will acquire a finite lifetime, and the probability of finding them decreases
exponentially in time with a time constant which is the inverse of the lifetime.
The Green function is expected to behave as

Gσ(k, t) ∝ e−i(ε̃kσ−μ)t/�e−Γkσt/� , (K.1.26)

yielding

GR,A
σ (k, ω) ≈ Zkσ

�ω − ε̃kσ + μ± iΓkσ
. (K.1.27)

When the Green function has such a form (this is not always the case as we
will see in the next appendix), the retarded (advanced) Green function has a
simple pole in the lower (upper) half-plane. When the lifetime is long enough,
quasiparticles can be defined. The real part of the location of the pole gives
the renormalized energy ε̃kσ of the quasiparticle, while the imaginary part
is proportional to the inverse of the lifetime, 1/τ = Γkσ/�. The prefactor
Zkσ is the quasiparticle weight. The methods of the many-body problem can
be employed to calculate the Green function of interacting particles and to
determine these quantities.
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K.1.2 Phonon Propagator

The phonons being bosons, one could use the boson form of the Green function
to describe the propagation of phonons in the system. It is, however, more
convenient to treat phonons somewhat differently. The interaction of electrons
with longitudinal acoustic phonons can be written in the simple form

Hel-ph = g
∑

σ

∫
drψ̂†

σ(r)ψ̂σ(r)φ̂(r) (K.1.28)

in terms of the continuous phonon field

φ̂(r) =
i√
V

∑

q

√
�ωq

2
[
aqeiq·r − a†qe−iq·r] , (K.1.29)

which is the gradient of the displacement field with a†q and aq the creation
and annihilation operators for LA phonons.

The phonon Green function is then defined as

D(r, t; r′, t′) = − i
�

〈
T
{
φ̂(r, t)φ̂(r′, t′)

}〉
. (K.1.30)

In a homogeneous system, where the propagator depends on r− r′ and t− t′,
its Fourier transform is

D(q, ω) =
∫

d(r − r′)e−iq(r−r′)
∫

d(t− t′)eiω(t−t′)D(r − r′, t− t′) . (K.1.31)

The zero-temperature propagator of free phonons is

D(0)(r − r′, t− t′) = − i
V

∑

q

ωq

2

⎧
⎨

⎩
ei[q·(r−r′)−ωq(t−t′)] for t > t′ ,

e−i[q·(r−r′)−ωq(t−t′)] for t′ > t ,

(K.1.32)
and in Fourier representation

D(0)(q, ω) =
ωq

2

[
1

ω − ωq + iδ
− 1
ω + ωq − iδ

]
=

ω2
q

ω2 − ω2
q + iδ

. (K.1.33)

K.1.3 Spectral Representation

The thermal average appearing in the definition of the Green function can be
expressed by using a complete set of eigenstates |ΨN

n 〉 of the full Hamiltonian.
Working with a grand canonical ensemble the upper index stands for the
number of particles. Denoting the energy of this state by EN

n we find
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Gσ(k, t) = − i
�

〈
T
{
ckσ(t)c†kσ(0)

}〉
(K.1.34)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− i
�

∑

N,n

1
Z

e−β(EN
n −μN) 〈ΨN

n

∣∣ ckσ(t)c†kσ(0)
∣∣ΨN

n

〉
t > 0 ,

∓ i
�

∑

N,n

1
Z

e−β(EN
n −μN) 〈ΨN

n

∣∣ c†kσ(0)ckσ(t)
∣∣ΨN

n

〉
t < 0 .

Inserting the completeness relation
∑

N ′,m

∣∣ΨN ′
m

〉〈
ΨN ′

m

∣∣ = 1 (K.1.35)

between the creation and annihilation operators we find

Gσ(k, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− i
�

∑

N,n,m

1
Z

e−β(EN
n −μN)ei(EN

n −EN+1
m +μ)t/�

× ∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2 t > 0 ,

∓ i
�

∑

N,n,m

1
Z

e−β(EN
n −μN)ei(EN−1

m −EN
n +μ)t/�

× ∣∣ 〈ΨN−1
m

∣∣ ckσ

∣∣ΨN
n

〉 ∣∣2 t < 0 .

(K.1.36)

With a change of variables for t < 0 we have

Gσ(k, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− i
�

∑

N,n,m

1
Z

e−β(EN
n −μN)ei(EN

n −EN+1
m +μ)t/�

× ∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2 t > 0 ,

∓ i
�

∑

N,n,m

1
Z

e−β(EN
n −μN)ei(EN

n −EN+1
m +μ)t/�

× eβ(EN
n −EN+1

m +μ)∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2 t < 0 .

(K.1.37)

The Fourier transform with respect to time gives

Gσ(k, ω) =
1
Z

∑

N,n,m

e−β(EN
n −μN)∣∣ 〈ΨN

n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2 (K.1.38)

×
{

1 ∓ eβ(EN
n −EN+1

m +μ)

�ω + EN
n −EN+1

m + μ
− iπδ

(
�ω + EN

n − EN+1
m + μ

) (
1 ± e−β�ω

)
}
.

Let us introduce the spectral function Aσ(k, ω) with the definition

Aσ(k, ω) = 2π�
(
1 ∓ e−β�ω

) 1
Z

∑

N,n,m

e−β(EN
n −μN)

× ∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2δ(�ω + EN
n −EN+1

m + μ) .

(K.1.39)
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The real part of the Green function can then be written as

ReGσ(k, ω) =
1

2π�
P

∞∫

−∞

Aσ(k, ω′)
ω − ω′ dω , (K.1.40)

while the imaginary part is

ImGσ(k, ω) =

⎧
⎪⎨

⎪⎩

− 1
2�
Aσ(k, ω) coth

β�ω

2
for bosons,

− 1
2�
Aσ(k, ω) tanh

β�ω

2
for fermions.

(K.1.41)

We then find

Gσ(k, ω) =

∞∫

−∞

dω′

2π�

[
P

1
ω − ω′ − iπδ(ω − ω′) coth

β�ω′

2

]
Aσ(k, ω′) (K.1.42)

for bosons, while for fermions

Gσ(k, ω) =

∞∫

−∞

dω′

2π�

[
P

1
ω − ω′ − iπδ(ω − ω′) tanh

β�ω′

2

]
Aσ(k, ω′) .

(K.1.43)
The thermal factors can be written in terms of the distribution functions of
the Bose–Einstein and Fermi–Dirac statistics, respectively:

coth
β�ω

2
= 1 + 2g0(�ω) , tanh

β�ω

2
= 1 − 2f0(�ω) , (K.1.44)

with
g0(ε) =

1
eβε − 1

and f0(ε) =
1

eβε + 1
. (K.1.45)

Using these formulas we get

Gσ(k, ω) =

∞∫

−∞

dω′

2π�

[
1 + g0(�ω′)
ω − ω′ + iδ

− g0(�ω′)
ω − ω′ − iδ

]
Aσ(k, ω′) (K.1.46)

for bosons and

Gσ(k, ω) =

∞∫

−∞

dω′

2π�

[
1 − f0(�ω′)
ω − ω′ + iδ

+
f0(�ω′)

ω − ω′ − iδ

]
Aσ(k, ω′) (K.1.47)

for fermions. This representation of the Green function in terms of the spec-
tral function is known as the Lehmann representation or Källén–Lehmann
representation.1

1 G. Källén, 1952, H. Lehmann, 1954.
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The time dependence of the Green function is obtained by inverting the
Fourier transform. The integral over ω along the real axis can be closed by an
infinite semicircle in the lower half-plane if t > 0 or in the upper half-plane
for t < 0. The integral can be evaluated using the residue theorem. We get

Gσ(k, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− i
�

∞∫

−∞

dω
2π

e−iωtAσ(k, ω) [1 + g0(�ω)] t > 0

− i
�

∞∫

−∞

dω
2π

e−iωtAσ(k, ω)g0(�ω) t < 0

(K.1.48)

for bosons and

Gσ(k, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− i
�

∞∫

−∞

dω
2π

e−iωtAσ(k, ω) [1 − f0(�ω)] t > 0

i
�

∞∫

−∞

dω
2π

e−iωtAσ(k, ω)f0(�ω) t < 0

(K.1.49)

for fermions.
The retarded and advanced Green functions can also be represented in

terms of the spectral function. Using the definition of the retarded Green
function and repeating the same steps used for the causal Green function

GR
σ (k, t) = − i

�

∑

N,n,m

1
Z

e−β(EN
n −μN)ei(EN

n −EN+1
m +μ)t/�

× ∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2
[
1 ∓ eβ(EN

n −EN+1
m +μ)

]
.

(K.1.50)

Its Fourier transform is

GR
σ (k, ω) =

1
Z

∑

N,n,m

e−β(EN
n −μN)∣∣ 〈ΨN

n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2

× 1 ∓ eβ(EN
n −EN+1

m +μ)

�ω + EN
n − EN+1

m + μ+ iδ
.

(K.1.51)

It is readily seen that

GR
σ (k, ω) =

∞∫

−∞

dω′

2π�

1
ω − ω′ + iδ

Aσ(k, ω′) . (K.1.52)

A similar calculation for the advanced Green function yields

GA
σ (k, ω) =

∞∫

−∞

dω′

2π�

1
ω − ω′ − iδ

Aσ(k, ω′) . (K.1.53)
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The retarded function is analytic in the upper half-plane, while the advanced
function is analytic in the lower half-plane. Their difference along the real axis
is just the spectral function:

Aσ(k, ω) = i�
[
GR

σ (k, ω) −GA
σ (k, ω)

]
. (K.1.54)

To understand the physical meaning of the spectral function we calculate
the expectation value of the particle number. It follows from the definition of
the Green function that in the limit t→ 0 − δ

lim
t→0−δ

Gσ(k, t) = ∓〈nkσ〉 , (K.1.55)

and thus

〈nkσ〉 =

∞∫

−∞

dω
2π
Aσ(k, ω)

{
g0(�ω) ,

f0(�ω) .
(K.1.56)

The total number of particles is

N = V
∑

σ

∫
dk

(2π)3

∞∫

−∞

dω
2π
Aσ(k, ω)

{
g0(�ω) ,

f0(�ω) .
(K.1.57)

Thus Aσ(k, ω) is related to the density of states via

ρσ(ε) =
1

2π�

∫
dk

(2π)3
Aσ(k, ε/�) . (K.1.58)

On the other hand, when we integrate over the frequency, the spectral function
satisfies the relation ∞∫

−∞

dω
2π
Aσ(k, ω) = 1 . (K.1.59)

This relation can be derived from the defining equation of the spectral func-
tion. It can be readily shown that

∞∫

−∞
dt eiωt

〈
ckσ(t)c†kσ(0)

〉
= Aσ(k, ω)

eβ�ω

eβ�ω ∓ 1
(K.1.60)

and ∞∫

−∞
dt eiωt

〈
c†kσ(0)ckσ(t)

〉
= Aσ(k, ω)

1
eβ�ω ∓ 1

, (K.1.61)

and therefore
∞∫

−∞
dt eiωt

〈[
ckσ(t), c†kσ(0)

]
∓
〉

= Aσ(k, ω) . (K.1.62)
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Integrating both sides over ω and making use of the commutation (anticommu-
tation) relations of the creation and annihilation operators, we indeed recover
(K.1.59).

For noninteracting particles

Aσ(k, ω) = 2π�δ(�ω − ξk) . (K.1.63)

The operator c†kσ is not the creation operator of an exact one-particle state in
an interacting system. The added particle decays in time, and the uncertainty
in time is accompanied by an uncertainty in the energy. Therefore Aσ(k, ω)
as a function of ω is a broadened Lorentzian with half-width Γk,

Aσ(k, ω) ∼ Γk

(�ω − ξ̃k)2 + Γ 2
k

. (K.1.64)

Note that if this functional form is used for the spectral function, we recover
(K.1.27) for the retarded and advanced Green functions.

(  ,

k

k

kA )

Fig. K.1. Spectral function at a fixed wave vector as a function of frequency

The spectral function is displayed in Fig. K.1. The position of the peak
corresponds to the renormalized energy of the one-particle excitation and the
width is proportional to the inverse of the decay time. This is easily seen if
the time dependence of the Green function calculated from the inverse Fourier
transform of the spectral representation is compared with the form given in
(K.1.26).

The spectral function has an incoherent background in addition to the
Lorentzian peak. The integral of Aσ(k, ω) over ω has to satisfy (K.1.59). When
only the coherent part corresponding to the Lorentzian peak is integrated, it
gives the quasiparticle weight Zkσ < 1. The remaining part comes from the
incoherent background.

Finally, we note also that the total energy of the interacting electron sys-
tem,

〈H〉 =
∑

kσ

εk

〈
c†kσckσ

〉
+

1
2V

∑

kk′σσ′
U(q)

〈
c†k+qσc

†
k′−qσ′ck′σ′ckσ

〉
, (K.1.65)

can be written in terms of the spectral function. When the equation of motion
for the creation operator,
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(

�

i
d
dt′

− εk

)
c†kσ(t′) =

1
V

∑

k′qσ′
U(q)c†k+qσ(t′)c†k′−qσ′(t′)ck′σ′(t′) , (K.1.66)

is multiplied by ckσ(t) from the right and the similar equation for the annihi-
lation operator,
(
−�

i
d
dt

− εk

)
ckσ(t) =

1
V

∑

k′qσ′
U(q)c†k′−qσ′(t)ck′σ′(t)ck−qσ(t) , (K.1.67)

is multiplied by c†kσ(t′) from the left, we find

lim
t′→t

1
4

∑

kσ

(
− �

i
d
dt

+
�

i
d
dt′

− 2εk

)
c†kσ(t′)ckσ(t) (K.1.68)

=
1

2V

∑

kk′qσσ′
U(q)c†k+qσ(t)c†k′−qσ′(t)ck′σ′(t)ckσ(t) .

The contribution of the interaction to the total energy can thus be expressed
in terms of

〈
c†kσ(t′)ckσ(t)

〉
and the total energy is

〈H〉 = lim
t′→t

1
4

∑

kσ

(
2εk − �

i
d
dt

+
�

i
d
dt′

)〈
c†kσ(t′)ckσ(t)

〉

= lim
t′→t+δ

1
4

∑

kσ

(
2εk − �

i
d
dt

+
�

i
d
dt′

)
�

i
Gσ(k, t− t′) .

(K.1.69)

When the Green function is written in terms of the spectral function we find

〈H〉 =
∑

kσ

∫
dω
2π

1
2
(εk + �ω)f0(�ω)Aσ(k, ω) . (K.1.70)

K.1.4 Green Function and Density of States

The density of states was shown to be related to the spectral function via
(K.1.58). Since

ImGR
σ (k, ω) = − 1

2�
Aσ(k, ω′) (K.1.71)

according to (K.1.52), the density of states can be expressed in terms of the
retarded Green function as

ρσ(ε) = − 1
π

∫
dk

(2π)3
ImGR

σ (k, ε/�) . (K.1.72)

We derive here a generalized relationship in another representation.
The Green operator of a system described by the Hamiltonian H is

defined via
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G±(ω) =
1

�ω −H± iδ
. (K.1.73)

Suppose we know the complete set of eigenstates of the Schrödinger equation

H|Ψn〉 = En|Ψn〉 . (K.1.74)

Using the completeness relation we readily find that

G±(ω) =
∑

n

|Ψn〉〈Ψn|
�ω − En ± iδ

. (K.1.75)

The retarded and advanced Green functions are obtained by taking the matrix
elements of the Green operator between a complete set of basis functions.
Working in real space

GR(r, r′, ω) =
∑

n

〈r|Ψn〉〈Ψn|r′〉
�ω − En + iδ

=
∑

n

Ψn(r)Ψ∗
n(r′)

�ω − En + iδ
, (K.1.76)

while in k-space

GR(k,k′, ω) =
∑

n

〈k|Ψn〉〈Ψn|k′〉
�ω − En + iδ

. (K.1.77)

Taking the imaginary part of the diagonal terms,

ImGR(k, ω) = −π
∑

n

∣∣〈k|Ψn〉
∣∣2δ(�ω −En) . (K.1.78)

When this is summed over k, making use of the completeness relation yields
∑

k

ImGR(k, ω) = −π
∑

n

δ(�ω − En) . (K.1.79)

Recognizing that the density of states

ρ(ε) =
1
V

∑

n

δ(ε− En) (K.1.80)

appears on the right-hand side apart from simple factors, we find the relation

ρ(ε) = − 1
π

1
V

∑

k

ImGR(k, ε/�) (K.1.81)

between the density of states and the Green function. For particles with spin,
a sum over the spin variables is needed to get the full density of states.

Note that more generally

ImG+(ω) = −π
∑

n

|Ψn〉〈Ψn|δ(�ω − En) , (K.1.82)
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and the density of states is the sum of the diagonal matrix elements,

ρ(ε) = − 1
π

Tr ImG+(ε/�) . (K.1.83)

The quantity obtained from the diagonal matrix elements of the real-space
Green function GR(r, r′, ω),

ρ(r, ε) = − 1
π

1
V

ImGR(r, r, ε/�) , (K.1.84)

can be considered as the local density of states. Its integral over the volume
gives the full density of states:

ρ(ε) =
∫
ρ(r, ε) dr . (K.1.85)

K.1.5 Temperature Green Function

The Green function introduced above was defined for arbitrary temperature.
However, as will be discussed later in this appendix, a consistent perturbation
theory can be worked out for it only at zero temperature. At finite tem-
peratures the thermal average is taken with the appropriate real Boltzmann
weights,

Gσ(r, t; r′, t′) = − i
�

1
Z

Tr
(
e−βHT

{
ψ̂σ(r, t)ψ̂†

σ(r′, t′)
})

, (K.1.86)

while the time dependence of the operators is given in the Heisenberg repre-
sentation by complex factors,

A(t) = eiHt/�A e−iHt/� . (K.1.87)

In a perturbative treatment of the Green function both the real Boltzmann
factor and the complex exponentials coming from the time dependence of
the operators have to be expanded in powers of the perturbation. Owing to
the mixing of the real and complex coefficients, this expression cannot be
consistently treated in perturbation theory. As a way out T. Matsubara

(1955) proposed to formally introduce an imaginary time variable τ . The
“time” dependence of the field operators is given by

ψ̂σ(r, τ) = eτH/�ψ̂σ(r)e−τH/�, ψ̂†
σ(r, τ) = eτH/�ψ̂†

σ(r)e−τH/� , (K.1.88)

and the imaginary-time Green function known as the temperature Green func-
tion or Matsubara Green function is defined by

Gσ(r, τ ; r′, τ ′) = −1
�

〈
Tτ

{
ψ̂σ(r, τ)ψ̂†

σ(r′, τ ′)
}〉

= −1
�

1
Z

Tr
(
e−βHTτ

{
ψ̂σ(r, τ)ψ̂†

σ(r′, τ ′)
})

.

(K.1.89)
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Here Tτ is again an ordering operator, ordering the field operators according
to the value of the argument τ , with the smallest on the right. For fermions
a sign factor (−1)P is also included, where P is the number of permutations
needed to go from the original ordering to the “time-ordered” form. Note that
ψ̂†

σ(r, τ) is not the Hermitian adjoint of ψ̂σ(r, τ) if τ is real.
If the Hamiltonian is independent of time, the Green function depends

only on τ − τ ′. This is easily seen using the invariance of the trace under
a cyclic permutation of the operators. Writing out the τ dependence of the
operators explicitly,

Gσ(r, τ ; r′, τ ′)=−1
�

1
Z

Tr
(
e−βHTτ

{
eτH/�ψ̂σ(r)e−τH/�eτ ′H/�ψ̂†

σ(r′)e−τ ′H/�
})
.

(K.1.90)
Cyclic permutation yields

Gσ(r, τ ; r′, τ ′) = −1
�

1
Z

Tr
(
e−βHTτ

{
e(τ−τ ′)H/�ckσe−(τ−τ ′)H/�c†kσ

})

= Gσ(r, r′, τ − τ ′). (K.1.91)

The temperature Green function, as defined above, is meaningful only
when both τ and τ ′ are in the interval [0, β�]. High-energy states would other-
wise give a divergent contribution, which is not compensated by the smallness
of their thermodynamic weight. The “time” difference τ − τ ′ is then restricted
to the interval −β� ≤ τ − τ ′ ≤ β�.

A periodic extension to arbitrary τ and τ ′ is, however, possible. Choosing
τ ′ in the interval [0, β�] and using again the cyclic property of the trace we
find

Gσ(r, β�; r′, τ ′) = −1
�

1
Z

Tr
(
e−βHeβHψ̂σ(r)e−βHψ̂†

σ(r′, τ ′)
)

= −1
�

1
Z

Tr
(
e−βHψ̂†

σ(r′, τ ′)ψ̂σ(r)
)

= ∓1
�

1
Z

Tr
(
e−βHTτ

{
ψ̂σ(r)ψ̂†

σ(r′, τ ′)
})

= ±Gσ(r, 0; r′, τ ′) ,

(K.1.92)

and similarly
Gσ(r, τ ; r′, β�) = ±Gσ(r, τ ; r′, 0) . (K.1.93)

The temperature Green function is then defined for arbitrary τ and τ ′ by
requiring that it be periodic (antiperiodic) in each “time” variable with period
β�. As a function of the difference τ − τ ′ the Green function is then periodic
with period 2β� both for bosons and for fermions.

As a periodic function, Gσ(r, r′, τ − τ ′) may be expanded in a Fourier
series:

Gσ(r, r′, τ − τ ′) =
kBT

�

∑

n

e−iωn(τ−τ ′)Gσ(r, r′, ωn) , (K.1.94)
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where ωn = nπkBT/�. The Fourier coefficients are given by

Gσ(r, r′, ωn) =
1
2

�β∫

−�β

d(τ − τ ′)eiωn(τ−τ ′)Gσ(r, r′, τ − τ ′) . (K.1.95)

There is an extra symmetry that allows for further simplifications. When
−β� ≤ τ − τ ′ ≤ 0, and therefore τ − τ ′ + β� > 0, the cyclic property of the
trace yields

Gσ(r, r′, τ − τ ′ < 0) = ±Gσ(r, r′, τ − τ ′ + β�) . (K.1.96)

Owing to this property only those Fourier coefficients which correspond to
even frequencies (ωn with n even) are finite for bosons, while only the coeffi-
cients belonging to n odd survive for fermions. Therefore

Gσ(r, r′, ωn) =

�β∫

0

d(τ − τ ′)eiωn(τ−τ ′)Gσ(r, r′, τ − τ ′) (K.1.97)

with

ωn =

{
2nπkBT/� for bosons ,

(2n+ 1)πkBT/� for fermions .
(K.1.98)

For a noninteracting system the real-space temperature Green function re-
duces to

G(0)(r, r′, ωn) =
∑

j

φj(r)φ∗j (r
′)

i�ωn − εj + μ
, (K.1.99)

where φj(r) is an eigenfunction of the unperturbed Hamiltonian with energy
εj .

In a translation-invariant system, where the Green function depends on
r − r′ only, it is convenient to work in momentum representation. The Green
function is defined in terms of the creation and annihilation operators via

Gσ(k, τ, τ ′) = −1
�

〈
Tτ

{
ckσ(τ)c†kσ(τ ′)

}〉

= −1
�

1
Z

Tr
(
e−βHTτ

{
ckσ(τ)c†kσ(τ ′)

})
.

(K.1.100)

For noninteracting particles we find

G(0)
σ (k, ωn) =

1
i�ωn − ξkσ

. (K.1.101)
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K.1.6 Relation Between the Retarded, Advanced,
and Temperature Green Functions

When the thermal average is written as the sum of the matrix elements over a
complete set of states with the appropriate Boltzmann weight, and the same
complete set is inserted between the creation and annihilation operators,

Gσ(k, τ > 0) = − 1
�

∑

N,n,m

1
Z

e−β(EN
n −μN)e(EN

n −EN+1
m +μ)τ/�

× ∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2 .
(K.1.102)

Calculating the Fourier coefficients from the integral

Gσ(k, ωn) =

�β∫

0

dτeiωnτGσ(k, τ − τ ′) (K.1.103)

we find

Gσ(k, ωn) =
1
Z

∑

N,n,m

e−β(EN
n −μN)

∣∣ 〈ΨN
n

∣∣ ckσ

∣∣ΨN+1
m

〉 ∣∣2

× 1 ∓ eβ(EN
n −EN+1

m +μ)

i�ωn + EN
n − EN+1

m + μ
.

(K.1.104)

When expressed in terms of the spectral function we have

Gσ(k, ωn) =

∞∫

−∞

dω′

2π�

1
iωn − ω′Aσ(k, ω′) . (K.1.105)

Introduce now the function

Γσ(k, z) =

∞∫

−∞

dω′

2π�

1
z − ω′Aσ(k, ω′) , (K.1.106)

where z is a complex variable. Clearly it reproduces the temperature Green
function at the discrete points z = iωn along the imaginary axis:

Γσ(k, iωn) = Gσ(k, ωn) . (K.1.107)

On the other hand, the retarded or advanced Green functions are recovered
when z approaches the real axis from above or from below. Comparison with
(K.1.52) and (K.1.53) shows that

GR
σ (k, ω) = Γσ(k, ω + iδ) ,

GA
σ (k, ω) = Γσ(k, ω − iδ) .

(K.1.108)
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Thus, once the temperature Green function has been determined by some
method in the discrete points iωn, and the expression is analytically con-
tinued in the upper (lower) half-plane, the value on the real axis gives the
retarded (advanced) Green function. This is formally achieved by the substi-
tution iωn = ω ± iδ,

GR
σ (k, ω) = Gσ(k, ωn)|iωn=ω+iδ ,

GA
σ (k, ω) = Gσ(k, ωn)|iωn=ω−iδ .

(K.1.109)

The spectral function is then obtained via

Aσ(k, ω) = i�
[
Gσ(k, ωn)|iωn=ω+iδ − Gσ(k, ωn)|iωn=ω−iδ

]
, (K.1.110)

from which the physical quantities can be calculated.

K.2 Calculating the Green Functions

A convenient procedure for calculating the Green function is to solve its equa-
tion of motion. As an example we will consider a system of fermions moving
in a one-particle potential V (r) and interacting with each other via a two-
particle potential U(ri−rj). The equation of motion for the field operators or
for the creation and annihilation operators leads to terms with three opera-
tors. Therefore, two-particle Green functions appear in the equation of motion
for the one-particle Green function. Their equations of motion contain even
higher order Green functions, and an infinite hierarchy may appear. This hi-
erarchy may be truncated at some point by a decoupling procedure, and a
closed system of equations can be obtained, which might be solvable. A draw-
back of this procedure is that the accuracy is difficult to estimate. A different
method is based on perturbation theory. A consistent theory can be worked
out both at zero and at finite temperature and the contribution of the various
processes can be visualized by Feynman diagrams. The accuracy is then set
by the processes that can be taken into account.

K.2.1 Equation of Motion for Green Functions

The equation of motion for the retarded Green function of interacting fermions
has already been given in (31.1.9). To better see the relationship to the dia-
gram technique we consider now the equation of motion for the causal Green
function:

[
�

i
d
dt′

+
�

2

2me
∇2

r′ − V (r′)
]
Gσ(r, t; r′, t′) = δ(t− t′)δ(r − r′)

− i
�

∑

σ′

∫
dr2 U(r′ − r2) (K.2.1)

×
〈
T
{
ψ̂σ(r, t)ψ̂†

σ(r′, t′)ψ̂†
σ′(r2, t

′)ψ̂σ′(r2, t
′)
}〉

.
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Neglecting for the moment the interaction between the particles, the Green
function of particles exposed only to the one-particle potential is
[

�

i
d
dt′

+
�

2

2me
∇2

r′ − V (r′)
]
G(0)

σ (r, t; r′, t′) = δ(t− t′)δ(r − r′) . (K.2.2)

The equation for the full Green function can then be formally integrated:

Gσ(r, t; r′, t′) = G(0)
σ (r, t; r′, t′) (K.2.3)

− i
�

∑

σ′

∫
dr1

∞∫

−∞
dt1
∫

dr2G
(0)
σ (r1, t1, r

′, t′)U(r1 − r2)

×
〈
T
{
ψ̂σ(r, t)ψ̂†

σ(r1, t1)ψ̂
†
σ′(r2, t1)ψ̂σ′(r2, t1)

}〉
.

The contributions to the one-particle Green function can be visualized
pictorially by Feynman diagrams.2 The full Green function Gσ(r, t; r′, t′) that
describes the propagation of a particle in the interacting system from r′, where
it is added to the system at time t′, to r, where it is measured at time t, is
represented by a heavy solid line, while thin lines denote the free propagation
of particles between two successive scattering events. A wavy line represents
the interaction between the particles. The expression containing four operators
in the second term on the right-hand side can be thought of as describing the
propagation of two interacting particles. The two-particle propagator with
two incoming and two outgoing lines is shown in Fig. K.2. Equation (K.2.3)
describing the propagation of a single particle is visualized by the diagrams
in Fig. K.3.

r t

r t r t2

1 1 1

3 3 3 2 2

r t44 4

Fig. K.2. Graphical representation of the two-particle propagator

r t ’’ r t ’’ r t ’’rt rt rtr t11

r t12

Fig. K.3. Graphical equation for the propagation of a particle in real space

The processes displayed in the diagrammatic equation can be summarized
as follows. It may happen that the particle propagates freely from r′ to r

2 R. P. Feynman, 1948.
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without being involved in any scattering process. In other cases, the particle
propagates freely only until the first interaction. This takes place at some
point r1 at time t1, while the particle with which it interacts is at some other
point r2 at the same time. Since r1 and r2 can be anywhere in the sample, we
have to integrate over these variables. Similarly we have to integrate over the
time variable of the first interaction. As a result of this scattering process the
electron is scattered into another state while an electron–hole pair is created.
As the two electrons and the hole propagate further in the system, they may
interact with each other and with the other electrons of the Fermi system
until an electron arrives at r at time t, while the Fermi system returns to its
initial state.

In a homogeneous system that is invariant under arbitrary translations
the Green function depends only on r − r′ and t − t′ and it is often more
convenient to work in the momentum representation. The equation of motion
for Gσ(k, t− t′) has a similar structure,

Gσ(k, t− t′) = G(0)
σ (k, t− t′)− i

�

1
V 2

∑

qk′σ′

∞∫

−∞
dt1G(0)

σ (k, t1− t′)U(q) (K.2.4)

×
〈
T
{
ckσ(t)c†k+q,σ(t1)c

†
k′−q,σ′(t1)ck′σ′(t1)

}〉
.

Note that the wave vector (momentum) is conserved both in the elementary
interaction process and in the two-particle propagator. The diagrammatic
equation in momentum space is shown in Fig. K.4.

t’ t’ t’ kkkk t t t1 t

k’

k’ q

k q

Fig. K.4. Graphical representation of (K.2.5) describing the propagation of an
electron in momentum space

The part of the diagram that is linked to the incoming and outgoing elec-
tron lines is the improper (reducible) self-energy Σ∗. In this approach it is
defined by the relation

Gσ(r, t; r′, t′) = G(0)
σ (r, t; r′, t′)

+
∫

dr1

∞∫

−∞
dt1
∫

dr2

∞∫

−∞
dt2G(0)

σ (r1, t1, r
′, t′)

×Σ∗
σ(r2, t2, r1, t1)G(0)

σ (r, t; r2, t2)

(K.2.5)
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in the real-space representation and via

Gσ(k, ω) = G(0)
σ (k, ω) +G(0)

σ (k, ω)Σ∗
σ(k, ω)G(0)

σ (k, ω) (K.2.6)

when the Fourier transforms are used. The proper (irreducible) self-energy
will be defined later.

The simplest way to truncate the hierarchy of Green functions is to de-
couple the four-operator term on the right-hand side of (K.2.3). For general
space and time arguments we have

〈
T
{
ψ̂σ(r1, t1)ψ̂σ′(r2, t2)ψ̂

†
σ′(r3, t3)ψ̂†

σ(r4, t4)
}〉

=
〈
T
{
ψ̂σ(r1, t1)ψ̂†

σ(r4, t4)
}〉〈

T
{
ψ̂σ′(r2, t2)ψ̂

†
σ′(r3, t3)

}〉

−
〈
T
{
ψ̂σ(r1, t1)ψ̂

†
σ′(r3, t3)

}〉〈
T
{
ψ̂σ′(r2, t2)ψ̂†

σ(r4, t4)
}〉

.

(K.2.7)

In both terms, the two particles propagate independently of each other; there
is no interaction between them, as shown diagrammatically in Fig. K.5. The
heavy lines indicate that the propagators are renormalized; the self-energy
corrections due to the interaction with the rest of the system are incorporated
in the Green functions. As we will see, this approximation is equivalent to
the Hartree–Fock approximation. The first process is the direct process, the
second the exchange term.
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Fig. K.5. Self-consistent Hartree–Fock approximation for the two-particle propa-
gator in real space

The same decoupling procedure in the momentum representation can be
visualized by the diagrams shown in Fig. K.6.

k
k

k

k’k’ q

k q

k’
k’

q,0 q, ’-k k

Fig. K.6. Self-consistent Hartree–Fock approximation for the two-particle propa-
gator in momentum representation
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Applying this decoupling in real-space representation to (K.2.3) we have
〈
T
{
ψ̂σ(r, t)ψ̂†

σ(r1, t1)ψ̂
†
σ′(r2, t1)ψ̂σ′(r2, t1)

}〉

=
〈
ψ̂†

σ′(r2, t1)ψ̂σ′(r2, t1)
〉〈

T
{
ψ̂σ(r, t)ψ̂†

σ(r1, t1)
}〉

−
〈
ψ̂†

σ(r1, t1)ψ̂σ′(r2, t1)
〉〈

T
{
ψ̂σ(r, t)ψ̂†

σ′(r2, t1)
}〉

,

(K.2.8)

and the equation of motion yields

Gσ(r − r′, t− t′) = G(0)
σ (r − r′, t− t′) (K.2.9)

+
∑

σ′

∫∫
dr1 dr2

∫
dt1G(0)

σ (r1 − r′, t1 − t′)

× U(r1 − r2)
〈
ψ̂†

σ′(r2, t1)ψ̂σ′(r2, t1)
〉
Gσ(r − r1, t− t1)

−
∑

σ′

∫∫
dr1 dr2

∫
dt1G(0)

σ (r1 − r′, t1 − t′)δσσ′

× U(r1 − r2)
〈
ψ̂†

σ′(r1, t1)ψ̂(r2, t1)
〉
Gσ(r − r2, t− t1) .

In momentum representation we find

Gσ(k, t− t′) = G(0)
σ (k, t− t′) (K.2.10)

−i�
1
V

∑

k′σ′

∫
dt1G(0)

σ (k, t1 − t′)U(q = 0)Gσ′(k′,−δ)Gσ(k, t− t1)

+i�
1
V

∑

k′σ′

∫
dt1G(0)

σ (k, t1 − t′)δσσ′U(k′ − k)Gσ(k′,−δ)Gσ(k, t− t1) .

The graphical representations of these equations are shown in Fig. K.7.
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Fig. K.7. Graphical representation of the electron propagation in the Hartree–Fock
approximation: (a) in real space and (b) in momentum space



K.2 Calculating the Green Functions 633

As mentioned already, the decoupling used in the four-operator term in
the equation of motion is analogous to the decoupling of the interaction term
of the Hamiltonian in the Hartree–Fock approximation. We show here that
the quasiparticle energies determined from the pole of the Green function are
indeed the renormalized energies of the Hartree–Fock theory. For this we take
the Fourier transform of (K.2.10) with respect to time. We obtain an algebraic
equation for Gσ(k, ω):

Gσ(k, ω) = G(0)
σ (k, ω) +

1
V

∑

k′σ′
G(0)

σ (k, ω)U(q = 0)〈nk′σ′〉Gσ(k, ω)

− 1
V

∑

k′σ′
G(0)

σ (k, ω)δσσ′U(k′ − k)〈nk′σ〉Gσ(k, ω) . (K.2.11)

Its formal solution is

Gσ(k, ω) =
1

[G(0)
σ (k, ω)]−1 −Σσ(k, ω)

=
1

�ω − ξkσ −Σσ(k)
, (K.2.12)

with

Σσ(k, ω) =
1
V

∑

k′σ′
U(q = 0)〈nk′σ′〉 − 1

V

∑

k′σ′
δσσ′U(k′ − k)〈nk′σ〉 , (K.2.13)

which is precisely the self-energy correction in the Hartree–Fock approxima-
tion. The first correction to the unperturbed Green function on the right-hand
side of Fig. K.7(b), the so-called tadpole diagram, corresponds to the Hartree
approximation. The other diagram represents the Fock term. The contribution
of the tadpole diagram is proportional to U(q = 0); hence, it vanishes for the
homogeneous electron gas, where the uniform positive background precisely
cancels the q = 0 Fourier component of the Coulomb potential, indicating
that there is no forward scattering in a neutral medium.

Expression (K.2.12) gives correctly the real part of the causal Green func-
tion. An imaginary part proportional to

δ
(
�ω − ξkσ −Σσ(k)

)
(K.2.14)

might be added to it. To get its amplitude correctly we calculate first the
retarded and advanced Green functions. They satisfy exactly the same equa-
tions, but differ in their analytic properties: the retarded (advanced) Green
function is analytic in the upper (lower) half-plane. The Green function of
interacting electrons,

GR
σ (k, ω) =

1
�ω − ξkσ −Σσ(k) + iδ

,

GA
σ (k, ω) =

1
�ω − ξkσ −Σσ(k) − iδ

,

(K.2.15)
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has similar structure as that of free particles given in (K.1.21). It has a simple
pole at the quasiparticle energy. Σσ(k) is real in the Hartree–Fock approxi-
mation, hence the spectral function is

Aσ(k, ω) = 2π�δ
(
�ω − ξkσ −Σσ(k)

)
. (K.2.16)

Substituting this into (K.1.47) we have

Gσ(k, ω) =
1 − f0(ξ̃kσ)

�ω − ξ̃kσ + iδ
+

f0(ξ̃kσ)

�ω − ξ̃kσ − iδ
, (K.2.17)

where ξ̃kσ = εkσ + Σσ(k) − μ is the quasiparticle energy measured from the
chemical potential.

If we wish to go beyond the Hartree–Fock approximation, the search for
higher order corrections is greatly facilitated by the diagrammatic representa-
tion of the interaction processes. Figure K.8 shows the first- and second-order
diagrams taken into account in the self-consistent calculation if 〈nk′σ〉 in the
Hartree–Fock self-energy (K.2.13) is calculated from the renormalized Green
function.

Fig. K.8. First- and second-order self-energy corrections in the self-consistent
Hartree–Fock approximation

In the next step we recall that the Coulomb potential is screened in the
electron gas and the effect of the screening can be incorporated into an effective
potential which corresponds to dressing the wavy line of the potential by an
infinite series of electron–hole bubbles. These diagrams are contained already
in the iterative solution of the Hartree term with the full Green function in
the loop, but not in the Fock term. Screening can thus be taken into account
in the Fock term by replacing the bare potential with the screened one. The
thick wavy line in the Fock term in Fig. K.9 denotes the screened potential.

Figure K.10(a) shows the lowest order (second-order) new self-energy cor-
rection that is accounted for by this procedure. However, even with this ex-
tension only a small fraction of all interaction processes are taken into ac-
count. For example, the contribution of the second-order process shown in
Fig. K.10(b) is still missing.
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Fig. K.9. Graphical representation of the equation describing the propagation of
an electron when the bare potential in the Fock term is replaced by the screened one

( )a

( )b

Fig. K.10. (a) Second-order process taken into account when the screened potential
is used in the Fock term. (b) A still missing second-order process in two equivalent
representations

While the equation of motion could be written down equally well for the
retarded, advanced, or causal Green functions, and the equations have similar
form at zero or finite temperature, a consistent perturbative account of higher
order processes can be achieved only for the causal Green functions. In the
latter case the contribution of all self-energy corrections to the Green function
up to a given order in the interaction are visualized by Feynman diagrams and
can be calculated using the Feynman rules. However, as we will see, different
procedures and different rules have to be applied depending on whether the
calculations are done for T = 0 or for finite temperature.

K.2.2 Perturbation Theory at Zero Temperature

The Green functions have been defined in the Heisenberg picture, where all
time dependence is ascribed to the operators and the wavefunction is time
independent. The time dependence of an operator A is given in (K.1.1), that
is the operators satisfy the equation

∂A(t)
∂t

=
i
�

[H,A]− . (K.2.18)

To work out a consistent perturbation theory it is convenient to switch to the
interaction picture, where the time dependence of an operator is defined by

Ã(t) = eiH0t/�Ae−iH0t/� , (K.2.19)

so that the operators satisfy the equation
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∂Ã(t)
∂t

=
i
�

[H0, Ã(t)
]
− , (K.2.20)

where H0 is the unperturbed Hamiltonian of a solvable problem, whereas the
interaction described by the Hamiltonian Hint is treated as a perturbation
and its effects are incorporated into the time dependence of the wavefunction
via the equation

∂|Ψ̃(t)〉
∂t

= − i
�
H̃int(t)|Ψ̃(t)〉 . (K.2.21)

In what follows the tilde above an operator or wavefunction denotes that the
quantity is given in the interaction picture.

Formal integration of the differential equation for the wavefunction from
t0 to t gives

|Ψ̃(t)〉 = |Ψ̃(t0)〉 − i
�

t∫

t0

H̃int(t′)|Ψ̃(t′)〉dt′ . (K.2.22)

The evolution of the wavefunction from t0 to t can be given in terms of the
time-development operator S(t, t0) via

|Ψ̃(t)〉 = S(t, t0)|Ψ̃(t0)〉 , (K.2.23)

where S(t, t0) satisfies the equation

∂

∂t
S(t, t0) = − i

�
H̃int(t)S(t, t0) . (K.2.24)

The solution of this equation,

S(t, t0) = eiH0t/�e−iH(t−t0)/�e−iH0t0/� , (K.2.25)

is Hermitian and unitary,

S(t, t0) = S†(t0, t) , S(t, t0)S†(t, t0) = 1 . (K.2.26)

Moreover it clearly possesses the group property

S(t2, t1)S(t1, t0) = S(t2, t0) . (K.2.27)

A more convenient expression is obtained if the differential equation is
formally integrated with the boundary condition S(t0, t0) = 1. We get

S(t, t0) = 1 − i
�

t∫

t0

H̃int(t1)S(t1, t0) dt1 . (K.2.28)

Iteration of this equation leads to
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S(t, t0) = 1 − i
�

t∫

t0

H̃int(t1) dt1 + · · · (K.2.29)

+
(
− i

�

)n
t∫

t0

H̃int(t1) dt1 . . .

tn−1∫

t0

H̃int(tn) dtn + · · · .

This expression can be written in a symmetric form using the time-ordering
operator T that orders the operators chronologically according to their time
arguments with the latest time farthest to the left and multiplies the time-
ordered sequence by a factor (−1)P , where P is the number of permutations
needed to go from the original to the time-ordered sequence. We have

S(t, t0) = 1 − i
�

t∫

t0

H̃int(t1) dt1 + · · · (K.2.30)

+
(
− i

�

)n 1
n!

t∫

t0

dt1 . . .

t∫

t0

dtnT
{H̃int(t1) . . . H̃int(tn)

}
+ · · ·

=
∞∑

n=0

(
− i

�

)n 1
n!

t∫

t0

dt1 . . .

t∫

t0

dtnT
{H̃int(t1) . . . H̃int(tn)

}
.

This can be reexponentiated to give

S(t, t0) = T

{
exp

(
− i

�

t∫

t0

dt′H̃int(t′)

)}
. (K.2.31)

Note that the relationship between the operators in the Heisenberg and
interaction pictures can be given in terms of the same unitary operator S,

A(t) = eiHt/�Ae−iHt/� = eiHt/�e−iH0t/�Ã(t)eiH0t/�e−iHt/�

= S(0, t)Ã(t)S(t, 0) .
(K.2.32)

The operators given in the Heisenberg and interaction pictures coincide at
t = 0 and the time-independent ground-state wavefunction |Ψ0〉 in the Heisen-
berg picture is identified with the wavefunction in the interaction picture at
t = 0. To find this state we should know the wavefunction at some time t0,
and then we should be able to follow its time evolution until t = 0. For this
we rely on the adiabatic hypothesis and the Gell-Mann and Low theorem.3
We assume that the interaction Hint is switched on infinitely slowly at time
t = −∞ so as to reach full strength at time t = 0, and it is then switched off
3

M. Gell-Mann and F. Low, 1951.
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again very slowly to vanish as t goes to +∞. This is achieved mathematically
by including a factor exp(−δ|t|) into Hint with δ a positive infinitesimal. The
time-development operator can be defined in the same way as before,

|Ψ̃(t)〉 = Sδ(t, t0)|Ψ̃(t0)〉 , (K.2.33)

where

Sδ(t, t0) =
∞∑

n=0

(
− i

�

)n 1
n!

t∫

t0

dt1 . . .

t∫

t0

dtn

× e−δ(|t1|+···+|tn|)T
{H̃int(t1) . . . H̃int(tn)

}
.

(K.2.34)

Since the ground state at t = −∞ is the ground state |Φ0〉 of the unperturbed
system, it is expected to develop into an exact eigenstate

|Ψ0〉 = Sδ(0,−∞)|Φ0〉 (K.2.35)

of the interacting system. This state is indeed a good eigenstate as long as
δ is finite. However, it diverges to become meaningless in the limit δ → 0.
Gell-Mann and Low have shown that this divergence can be eliminated by
an appropriately chosen phase factor. Their theorem states, and can be proven
exactly, that if |Φ0〉 is a nondegenerate ground state of the unperturbed system
and perturbation theory can be applied, that is the limit

lim
δ→0

Sδ(0,−∞)|Φ0〉
〈Φ0|Sδ(∞,−∞)|Φ0〉 (K.2.36)

exists for all orders in the perturbation theory, then the state that develops
from the unperturbed ground state is an eigenstate of the full Hamiltonian.
This theorem does not guarantee that the new state is the ground state of the
interacting system, but we can assume that the eigenstates of the unperturbed
system evolve continuously, without level crossings, in normal systems if no
transition occurs to a new kind of broken-symmetry state as the interaction
is switched on, and thus that the ground state of the noninteracting system
develops into the ground state of the interacting system. This adiabatic hy-
pothesis is not valid in superconductors where the new ground state cannot
be obtained in perturbation theory.

Knowing now how the operators and the ground-state wavefunction can
be written in the interaction representation, simple algebraic manipulations
using (K.2.27) lead to

Gσ(r, t; r′, t′) = − i
�

〈Φ0|T
{
ψ̃σ(r, t)ψ̃†

σ(r′, t′)S(∞,−∞)
}|Φ0〉

〈Φ0|S(∞,−∞)|Φ0〉 . (K.2.37)

When the quantity S(∞,−∞) in the numerator is expanded in powers of the
interaction Hamiltonian we find
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Gσ(r, t; r′, t′) =
∞∑

n=0

1
n!

(
− i

�

)n+1
∞∫

−∞
dt1 . . .

∞∫

−∞
dtn (K.2.38)

×〈Φ0|T
{
ψ̃σ(r, t)ψ̃†

σ(r′, t′)H̃int(t1) . . . H̃int(tn)
}|Φ0〉

〈Φ0|S(∞,−∞)|Φ0〉 .

The various terms in the perturbation series contain the ground-state ex-
pectation value of the time-ordered product of a large number of field opera-
tors. These expectation values can be evaluated using the Wick theorem.4

Before presenting this theorem we introduce the concepts of normal or-
dering and contraction (pairing). In a normal product, all creation operators
are placed to the left of all annihilation operators, and a factor −1 is in-
cluded for every interchange of fermion operators. In a Fermi system, where
the one-particle states are filled up to the Fermi energy in the ground state,
the states above and below the Fermi energy should be treated differently.
States above the Fermi energy should be treated as electron states whereas
states below the Fermi energy as hole states and the creation and annihila-
tion operators of holes should be used in the normal ordering. This ensures
that the ground-state expectation value of a normal-ordered product vanishes
identically.

The contraction of two operators is defined as the difference between their
time-ordered and normal products,

AcBc = T{AB} −N(AB) . (K.2.39)

The contraction of two creation operators or two annihilation operators van-
ishes, while that of a creation and an annihilation operator is a c-number, not
an operator. It is just the ground-state expectation value of the time-ordered
product. For fermion fields, for example,

ψ̂c
σ(r, t)ψ̂†c

σ′(r′, t′) = δσσ′
〈
T{ψ̂σ(r, t)ψ̂†

σ(r′, t′)}〉 , (K.2.40)

which is the Green function of noninteracting particles apart from a factor
−i/�:

ψ̂c
σ(r, t)ψ̂†c

σ′(r′, t′) = i�G(r, t; r′, t′)δσσ′ . (K.2.41)

Similar relationships hold for bosons as well. To prove these relations the
field operators have to be written in terms of the creation and annihilation
operators and

cckσ(t)c†ck′σ′(t′) = δkk′δσσ′e−iεk(t−t′)/�

{
1 − nk t− t′ > 0

−nk t− t′ < 0
(K.2.42)

has to be used, where nk is unity inside the Fermi sphere and vanishes outside.
This gives
4

G. C. Wick, 1950.
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cckσ(t)c†ck′σ′(t′) = i�G(k, t− t′)δkk′δσσ′ . (K.2.43)

We are now in the position to state the Wick theorem: if A, B, C, etc., de-
note field operators or creation and annihilation operators, their time-ordered
product can be decomposed into a sum over normal products with zero, one,
two, etc., contractions by pairing the operators in all possible ways:

T{ABCD . . . UVW} = N(ABCD . . . UVW ) +N(AcBcCD . . . UVW )
+N(AcBCcD . . . UVW ) + · · · (K.2.44)
+N(AcBCD . . . UVW c) + · · ·
+N(AcBccCcccD . . . U cccV ccW c) .

We know that the ground-state expectation value of a normal product van-
ishes. Therefore, when the ground-state expectation value of a time-ordered
product is taken, only those terms survive in which all operators are paired
with another operator. Thus we find

〈
T{ABCD . . . UVW}〉 =

〈
T{AB}〉〈T{CD}〉 · · · 〈T{VW}〉 (K.2.45)

±〈T{AC}〉〈T{BD}〉 · · · 〈T{VW}〉± · · ·
All possible contractions have to be taken on the right-hand side. The sign is
determined by the parity of the number of interchanges of fermion operators.

Returning now to (K.2.38) which gives the Green function in the inter-
action picture and applying the Wick theorem to the numerator, it can be
decomposed into a sum of terms each of which contains the product of in-
teraction potentials and one-particle propagators of noninteracting particles.
The Wick theorem thus leads to an expansion of the full Green function in
terms of the free propagators. The individual terms in the expansion can be
visualized graphically by Feynman diagrams. The rules will be given below. A
similar decomposition is possible for the expression given in the denominator.
It can be shown that the role of the denominator is to cancel the disconnected
parts of the diagrams. We then have

Gσ(r, t; r′, t′) = − i
�

〈
Φ0

∣∣T
{
ψ̃σ(r, t)ψ̃†

σ(r′, t′)S(∞,−∞)
}∣∣Φ0

〉
con , (K.2.46)

where the subscript con indicates that only the connected diagrams have to
be considered.

The Feynman rules for finding the analytic expression corresponding to
a diagram for a system with two-particle interactions can be summarized as
follows:

1. In nth order of perturbation theory, draw all topologically distinct con-
nected diagrams having two external points (an initial point r′, t′ and a
terminal point r, t), n wavy interaction lines, and 2n + 1 oriented solid
lines. One solid line starts at the point r′, t′ and one ends at the point
r, t. One line is entering and one is leaving the vertices of the interaction
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lines. A solid line runs continuously from the point r′, t′ to r, t. The other
solid fermion lines close on themselves, forming closed fermion loops.

2. Label each internal vertex point with the space–time variables ri, ti.
3. Assign a spin label σi to each oriented line.
4. Associate the propagator G(0)

σ (rj , tj ; ri, ti) with the oriented solid line
running from ri, ti to rj , tj with spin σ.

5. Associate the factor U(ri−rj)δ(ti−tj) with the interaction line connecting
ri, ti with rj , tj . When the interaction is spin dependent, the spin variables
of the lines entering and leaving the vertices are assigned to the spin
variables of the interaction.

6. Integrate over the 2n independent position variables and the n indepen-
dent time variables and sum over the independent spin variables of the
internal lines.

7. A Green function with equal-time arguments should be interpreted as
G

(0)
σ (rj , tj ; ri, tj + δ) with an infinitesimal δ.

8. Multiply the contribution by (i�)n(−1)F , where F is the number of closed
fermion loops.

Similar rules apply in momentum space:

1. Draw all topologically distinct connected diagrams consisting of two
external points, n directed wavy interaction lines, and 2n + 1 oriented
solid lines; one of them is an incoming line, another is an outgoing line. A
solid line runs continuously from the incoming line to the outgoing line.
The other solid lines form closed fermion loops.

2. Assign the momentum and frequency variable k, ω and the spin label σ
to the incoming and outgoing lines.

3. Associate a momentum and frequency variable ki, ωi and a spin label
σi with each oriented internal solid line and a momentum variable qi

with each interaction line by requiring the conservation of momentum
and frequency at each internal vertex.

4. Associate the propagator

G(0)
σi

(ki, ωi) =
1

�ωi − ξki
+ iδ sgnξki

(K.2.47)

of free particles with the oriented solid line. This form is obtained from
(K.1.20) by taking the zero-temperature limit.

5. Associate the factor U(qj) with each interaction line. When the interaction
is spin dependent, the spin variables of the lines entering and leaving the
vertices are assigned to the spin variables of the interaction.

6. Integrate over the n independent momentum and frequency variables with
the weight ∫

dki

(2π)3

∫
dωi

2π
(K.2.48)

and sum over the independent spin variables of the internal lines.
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7. A solid line that is linked to the same interaction line is interpreted as
eiωiδGσ(ki, ωi).

8. Multiply the contribution by (i�)n(−1)F , where F is the number of closed
fermion loops.

The rules are somewhat different for an interacting electron–phonon sys-
tem, where the elementary vertex has one entering and one leaving fermion
line and one phonon line.

The diagrams for the Green function can be divided into parts by cutting
a single fermion line. A part of the diagram that is connected to the rest of
the diagram only by two fermion lines and cannot be separated into two parts
by cutting a single line is called an irreducible or proper self-energy part.
The proper self-energy Σσ (self-energy in short) is the sum of all possible
irreducible self-energy parts. Any diagram for the Green function consists of
a chain of self-energy diagrams joined by a solid line. The Green function can
then be shown to satisfy the Dyson equation,5 which in Fourier representation
has the form

Gσ(k, ω) = G(0)
σ (k, ω) +G(0)

σ (k, ω)Σσ(k, ω)G(0)
σ (k, ω)

+G(0)
σ (k, ω)Σσ(k, ω)G(0)

σ (k, ω)Σσ(k, ω)G(0)
σ (k, ω) + · · ·

= G(0)
σ (k, ω) +G(0)

σ (k, ω)Σσ(k, ω)Gσ(k, ω) (K.2.49)

=
1

[
G

(0)
σ (k, ω)

]−1 −Σσ(k, ω)
.

K.2.3 Finite-Temperature Diagram Technique

The “time” dependence of the operators in the temperature Green function
was defined in (K.1.88) with the full Hamiltonian. In analogy to the zero-
temperature technique, one can introduce an “interaction representation” in
which the τ dependence is given by the unperturbed Hamiltonian,

Ã(τ) = eH0τ/�Ae−H0τ/� . (K.2.50)

The “time” dependence of the operators in the two pictures can be related by
an operator S,

A(τ) = S−1(τ)Ã(τ)S(τ), (K.2.51)

where S is defined by

S(τ) = eH0τ/�e−Hτ/� = Tτ

{
exp
(
− 1

�

τ∫

0

dτ ′H̃int(τ ′)
)}

. (K.2.52)

The Boltzmann factor giving the thermodynamic weight of the states can
also be expressed in terms of the same S at τ = �β,
5 F. J. Dyson, 1949.
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e−βH = e−βH0S(�β) , (K.2.53)

and the partition function is

Z = Tr
[
e−βH0S(�β)

]
=
〈S(�β)

〉
0
. (K.2.54)

The Green function can then be written as

Gσ(r, τ ; r′, τ ′) = −1
�

〈
Tτ

{
ψ̃σ(r, τ)ψ̃†

σ(r′, τ ′)S(�β)
}〉

0

〈S(�β)〉0 , (K.2.55)

where 〈· · · 〉0 denotes the thermodynamic average calculated for the unper-
turbed system using the noninteracting Hamiltonian.

Expansion of the exponential in the operator S yields

S(�β) =
∞∑

n=0

(−1
�

)n 1
n!

�β∫

0

. . .

�β∫

0

dτ1 . . . dτnTτ

{H̃int(τ1) . . . H̃int(τn)
}
.

(K.2.56)
Substitution of this expansion into (K.2.55) leads to an expression for the
Green function which contains the expectation value of the “time”-ordered
product of a large number of field operators. The Wick theorem can be gen-
eralized to this situation. It can be shown that this expectation value is equal
to the sum of terms obtained by pairing the operators in all possible ways,
provided the pairing (contraction) of two operators is defined by

AcBc =
〈
Tτ{AB}〉

0
. (K.2.57)

The pairing of field operators is thus equal to the temperature Green function
in a noninteracting system apart from a trivial factor.

The terms in the decomposition can be visualized by diagrams. The only
role of the denominator in (K.2.55) is to cancel the disconnected parts, and
thus

Gσ(r, τ, r′, τ ′) = −1
�

〈
Tτ

{
ψ̃σ(r, τ)ψ̃†

σ(r′, τ ′)S(�β)
}〉

con
. (K.2.58)

The rules for finding the contribution of the diagrams in momentum repre-
sentation are as follows:

1. Draw all topologically distinct connected diagrams consisting of two ex-
ternal points, n wavy interaction lines and 2n+1 oriented solid lines, one
of which is an incoming line and another is an outgoing line.

2. Assign the momentum and discrete frequency variables k, ωn and the spin
label σ to the incoming and outgoing lines.

3. Associate a momentum and frequency variable ki, ωn,i and a spin label
σi with each oriented internal solid line; assign a direction to each inter-
action line and a momentum variable qi by requiring the conservation of
momentum and frequency at each internal vertex.
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4. Associate the propagator

G(0)
σ (k, ωn) =

1
i�ωn − ξkσ

(K.2.59)

of free particles with the oriented solid line.
5. Assign the factor U(qj) to each interaction line. When the interaction is

spin dependent, the spin variables of the lines entering and leaving the
vertices are assigned to the spin variables of the interaction.

6. Integrate over the n independent wave vectors with weight
∫

dki

(2π)3
(K.2.60)

and sum over the n independent frequencies and spin variables of the
internal lines.

7. Multiply the contribution by (−�kBT )n(−1)F , where F is the number of
closed fermion loops.

The sums over the discrete frequencies can be converted into integrals in
the complex plane using the analytic properties of the functions tanh z and
coth z. The function tanh z has simple poles at z = i(n+ 1

2 )π,

tanh z =
∞∑

n=−∞

1
z − i(n+ 1/2)π

, (K.2.61)

and hence

f0(�z) =
1

e�z/kBT + 1
=

1
2

(
1 − tanh

�z

2kBT

)
=

1
2

+ kBT

∞∑

n=−∞

1
i�ωn − �z

(K.2.62)
with ωn = (2n + 1)πkBT/�. If a function F has to be summed over the odd
frequencies ωn, the sum can be converted into an integral. Application of the
residue theorem gives

∑

n

F (iωn) = − 1
2πi

�

kBT

∫

C

F (z)
e�z/kBT + 1

dz

=
1

4πi
�

kBT

∫

C

F (z) tanh
�z

2kBT
dz ,

(K.2.63)

where the contour C encircles the imaginary axis counterclockwise as shown
in Fig. K.11(a).

For bosons, where the summation goes over even frequencies, similar con-
siderations give

∑

n

F (iωn) =
1

2πi
�

kBT

∫

C

F (z)
e�z/kBT − 1

dz

=
1

4πi
�

kBT

∫

C

F (z) coth
�z

2kBT
dz .

(K.2.64)
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z0

Complex
plane

Complex
plane

( )a ( )b

Fig. K.11. The contour used to calculate the frequency sum as an integral in the
complex plane. (a) Contour around the imaginary axis. (b) Deformed contour by
leaving out the poles of F

If the function F (z) decays fast enough at infinity, the integration path
can be deformed to an infinite circle, leaving out the eventual poles of F (z).
This deformed contour is shown in Fig. K.11(b). If, for example,

F (iωn) =
g(iωn)

iωn − z0
, (K.2.65)

where g does not have poles in the complex plane, but decays fast enough,
that is F (z) has a simple pole at z = z0, then we readily get

∑

n

g(iωn)
iωn − z0

=
β�

e�z0/kBT + 1
g(z0) (K.2.66)

for fermions, whereas for bosons

∑

n

g(iωn)
iωn − z0

=
−β�

e�z0/kBT − 1
g(z0) . (K.2.67)

K.3 Green Functions in Superconductivity

We have seen in Chapter 34 that the most general description of supercon-
ductors relies on using the Green functions of the many-body problem. We
presented the Gorkov equations, but their solution was not given. Here we
solve them in the most simple case, for homogeneous superconductors. We
point out the difficulties arising from the nonanalyticity of the causal Green
functions and how that problem can be avoided by using the temperature
Green functions.
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K.3.1 Gorkov Equations

The equations of motion for the real-time normal and anomalous Green func-
tions have been given in (34.4.36) and (34.4.37). They have the form

(
−�

i
∂

∂t
−He

)
G(r, t; r′, t′) −Δ(r)F ∗(r, t; r′, t′) = δ(r − r′)δ(t− t′) ,

−Δ∗(r)G(r, t; r′, t′) +
(
−�

i
∂

∂t
+ H∗

e

)
F ∗(r, t; r′, t′) = 0 . (K.3.1)

This system of equations has to be solved with the self-consistency conditions

Δ(r) = −i�V0F (r, t+ δ; r, t) , Δ∗(r) = i�V0F
∗(r, t+ δ; r, t) , (K.3.2)

where the positive infinitesimal δ ensures the correct order of the operators.
These equations can easily be solved in Fourier representation for a ho-

mogeneous system in the absence of external electromagnetic field. Assuming
that the eigenvalues ξk of the one-particle Hamiltonian He are known, we find
the algebraic equations

(
�ω − ξk

)
G(k, ω) −ΔF ∗(k, ω) = 1,

−Δ∗G(k, ω) +
(
�ω + ξk

)
F ∗(k, ω) = 0.

(K.3.3)

After eliminating the anomalous Green function we get
[
(�ω)2 − ξ2k − |Δ|2]G(k, ω) = �ω + ξk , (K.3.4)

and the formal solution is

G(k, ω) =
�ω + ξk

(�ω)2 − ξ2k − |Δ|2 ,

F ∗(k, ω) =
Δ∗

(�ω)2 − ξ2k − |Δ|2 .
(K.3.5)

Recognizing in the denominator the energy Ek =
√
ξ2k + |Δ|2 of the quasi-

particles of the superconducting state, the Green functions can be written in
terms of the coherence factors that relate the quasiparticles to the electrons
and holes via the Bogoliubov transformation (34.2.68). Using the expressions
given in (34.2.29) and (34.2.30),

|uk|2 =
Ek + ξk

2Ek
, |vk|2 =

Ek − ξk
2Ek

, u∗kvk =
Δ

2Ek
, (K.3.6)

we find

G(k, ω) =
�ω + ξk

(�ω)2 − E2
k

=
|uk|2

�ω − Ek
+

|vk|2
�ω + Ek

,

F ∗(k, ω) =
Δ∗

(�ω)2 − E2
k

=
ukv

∗
k

�ω − Ek
− ukv

∗
k

�ω + Ek
,

(K.3.7)



K.3 Green Functions in Superconductivity 647

showing that the Green functions have poles at the quasiparticle energies for
superconductors as well.

The equations can be satisfied even if terms like δ(�ω±Ek) are added to the
solution found above. These terms fix the analytic properties by positioning
the poles in the complex ω plane. The correct form can be easily found with
the aid of the retarded and advanced Green functions. Once these functions
are known, the spectral function is obtained using (K.1.54), and then the real
and imaginary parts of the causal Green function are given by (K.1.40) and
(K.1.41), respectively.

The retarded Green functions defined by

GR(r, t; r′, t′) = − i
�
θ(t− t′)

〈[
ψ̂↑(r, t), ψ̂

†
↑(r

′, t′)
]
+

〉
,

FR∗
(r, t; r′, t′) =

i
�
θ(t− t′)

〈[
ψ̂†
↓(r, t), ψ̂

†
↑(r

′, t′)
]
+

〉 (K.3.8)

satisfy the same equations of motion as the causal functions, but their analytic
properties are simpler in that they have to be analytic in the upper half-plane,
hence

GR(k, ω) =
�ω + ξk

(�ω − Ek + iδ)(�ω + Ek + iδ)

=
|uk|2

�ω − Ek + iδ
+

|vk|2
�ω + Ek + iδ

(K.3.9)

and

FR∗
(k, ω) =

Δ∗

(�ωn − Ek + iδ)(�ω + Ek + iδ)

=
ukv

∗
k

�ω − Ek + iδ
− ukv

∗
k

�ω + Ek + iδ
.

(K.3.10)

The advanced Green function is analytic in the lower half-plane. It is obtained
from the retarded one by reversing the sign of the infinitesimal imaginary term
in the denominator. The spectral function is

A(k, ω) = 2π�
[|uk|2δ(�ω − Ek) + |vk|2δ(�ω + Ek)

]
(K.3.11)

and the imaginary part of the Green function is

ImG(k, ω) = −π [|uk|2δ(�ω − Ek) + |vk|2δ(�ω + Ek)
]
tanh

�ω

2kBT
.

(K.3.12)
The full normal Green function can then be written in the form

G(k, ω) =
|uk|2

�ω − Ek + iδ
+

|vk|2
�ω + Ek − iδ

+ 2πif0(Ek)
[|uk|2δ(�ω − Ek) − |vk|2δ(�ω + Ek)

]
.

(K.3.13)
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Knowing the imaginary part of the normal Green function the imaginary
part of the anomalous Green function can be calculated from the equation of
motion:

ImF ∗(k, ω) = −π Δ
∗

2Ek

[
δ(�ω − Ek) − δ(�ω + Ek)

]
tanh

�ω

2kBT
, (K.3.14)

and the full expression is

F ∗(k, ω) =
Δ∗

(�ωn − Ek + iδ)(�ω + Ek − iδ)

+ iπ
Δ∗

Ek
f0(Ek)

[
δ(�ω − Ek) + δ(�ω + Ek)

]
.

(K.3.15)

The self-consistency condition (34.4.33) for the energy gap leads to the
equation

Δ∗ = i�
V0

V

∑

k

∫
dω
2π

e−iδωF ∗(k, ω) . (K.3.16)

Substituting the expression derived above for F ∗(k, ω) into this equation the
integral of the first term over the frequency can be performed by closing the
integration path in the lower half-plane. We get

Δ∗ =
V0

V

∑

k

Δ∗

2Ek

[
1 − 2f0(Ek)

]
, (K.3.17)

which is equivalent to (34.2.97) from which the temperature dependence of
the energy gap has been calculated.

K.3.2 Temperature Green Functions for Superconductors

The same result can be derived much more simply by using the temperature
Green functions. Considering only conventional s-wave superconductors, the
normal Green function defined in the usual way,

Gσ(r, τ ; r′, τ ′) = −1
�

〈
Tτ

{
ψ̂σ(r, τ)ψ̂†

σ(r′, τ ′)
}〉

, (K.3.18)

is independent of the spin orientation and the spin index will be dropped. The
anomalous Green functions

F(r, τ ; r′, τ ′) = −1
�

〈
Tτ

{
ψ̂↑(r, τ)ψ̂↓(r′, τ ′)

}〉
,

F(r, τ ; r′, τ ′) = −1
�

〈
Tτ

{
ψ̂†
↓(r, τ)ψ̂

†
↑(r

′, τ ′)
}〉 (K.3.19)

appear in the equation of motion. Note that F is not the Hermitian adjoint
of F . The pairing potential Δ(r) can be given in terms of these functions in
the form
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Δ(r) = V0F(r, τ + δ; r, τ) , Δ∗(r) = V0F(r, τ + δ; r, τ) . (K.3.20)

Using the BCS Hamiltonian in real space representation as given in
(34.4.3), the τ -dependent operators satisfy the equations

�
d
dτ
ψ̂↑(r, τ) = −Heψ̂↑(r, τ) +Δ(r)ψ̂†

↓(r, τ) ,

�
d
dτ
ψ̂†
↓(r, τ) = H∗

e ψ̂
†
↓(r, τ) +Δ∗(r)ψ̂↑(r, τ) ,

(K.3.21)

and the equations of motion of the Green functions are
(
−�

d
dτ

−He

)
G(r, τ ; r′, τ ′) + Δ(r)F(r, τ ; r′, τ ′) = δ(r − r′)δ(τ − τ ′) ,

(
�

d
dτ

−H∗
e

)
F(r, τ ; r′, τ ′) − Δ∗(r)G(r, τ ; r′, τ ′) = 0 . (K.3.22)

It is more convenient to work in momentum and frequency representation for
a homogeneous system. The Fourier transforms defined via

G(r, τ ; r′, τ ′) =
kBT

�

∫
dk

(2π)3
∑

n

eik·(r−r′)e−iωn(τ−τ ′)G(k, ωn) ,

F(r, τ ; r′, τ ′) =
kBT

�

∫
dk

(2π)3
∑

n

eik·(r−r′)e−iωn(τ−τ ′)F(k, ωn)
(K.3.23)

satisfy the algebraic equations
(
i�ωn − ξk

)G(k, ωn) +ΔF(k, ωn) = 1 ,
(− i�ωn − ξk

)F(k, ωn) −Δ∗G(k, ωn) = 0 .
(K.3.24)

These equations are readily solved to give

G(k, ωn) = − i�ωn + ξk
(�ωn)2 + ξ2k + |Δ|2 =

u2
k

i�ωn − Ek
+

v2
k

i�ωn + Ek
(K.3.25)

and

F(k, ωn) =
Δ∗

(�ωn)2 + ξ2k + |Δ|2 = − ukvk

i�ωn − Ek
+

ukvk

i�ωn + Ek
. (K.3.26)

Note that the normal Green function satisfies the relation

G(k, ωn) = GR(k, iωn) , (K.3.27)

which was derived in (K.1.109), while for the anomalous Green function

F(k, ωn) = −FR∗
(k, iωn) . (K.3.28)
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The self-consistency condition for the gap leads to

Δ∗ = V0F(r, τ + δ; r, τ) =
V0

V
kBT

∑

k

∑

n

F(k, ωn)

=
V0

V
kBT

∑

k

∑

n

Δ∗

(�ωn)2 + ξ2k + |Δ|2 .
(K.3.29)

The sum over the discrete frequencies can be converted into a contour integral
with the aid of (K.2.63) or we could use the relation

tanh
z

2kBT
= 2kBT

∞∑

n=−∞

z

z2 + (�ωn)2
(K.3.30)

given in (34.2.109). In either way we arrive at (34.2.97).

K.3.3 Derivation of the Ginzburg–Landau Equations

The Gorkov equations can be generalized to inhomogeneous superconductors.
Assuming that we are dealing with a stationary system, the Green functions
depend on τ − τ ′ only. If the Green functions are written in Fourier series, in
analogy with (K.1.94), the Fourier coefficients defined by

G(r, τ ; r′, τ ′) =
kBT

�

∑

n

e−iωn(τ−τ ′)G(r, r′, ωn) ,

F(r, τ ; r′, τ ′) =
kBT

�

∑

n

e−iωn(τ−τ ′)F(r, r′, ωn)
(K.3.31)

satisfy the system of equations

(i�ωn −He)G(r, r′, ωn) +Δ(r)F(r, r′, ωn) = δ(r − r′) ,

(−i�ωn −H∗
e)F(r, r′, ωn) −Δ∗(r)G(r, r′, ωn) = 0 .

(K.3.32)

The vector potential appears in these equations through He. In weak fields,
the equations can be solved to first order in the vector potential. A nonlocal
relationship is obtained between the current density and the vector potential
and a microscopic expression can be derived for the Pippard coherence length.
In the remaining part we will show how the Ginzburg–Landau equations can
be obtained from an expansion in powers of Δ(r) in the neighborhood of the
transition temperature.

We introduce the Green function G(0) of the normal system. It satisfies the
equation

(i�ωn −He)G(0)(r, r′, ωn) = δ(r − r′) . (K.3.33)

It is easily verified by differentiation that the Gorkov equations can be written
in an integral form with the aid of this function
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G(r, r′, ωn) = G(0)(r, r′, ωn)

−
∫

dr1G(0)(r, r1, ωn)Δ(r1)F(r1, r
′, ωn)

(K.3.34)

and

F(r, r′, ωn) =
∫

dr1G(0)(r1, r,−ωn)Δ∗(r1)G(r1, r
′, ωn) . (K.3.35)

Iteration of the equations leads to

F(r, r′, ωn) =
∫

dr1G(0)(r1, r,−ωn)Δ∗(r1)G(0)(r1, r
′, ωn) (K.3.36)

−
∫∫∫

dr1dr2dr3G(0)(r1, r,−ωn)Δ∗(r1)G(0)(r1, r2, ωn)

×Δ(r2)G(0)(r3, r2,−ωn)Δ∗(r3)G(0)(r3, r
′, ωn) + · · · .

When the two leading terms in this expansion are substituted into the self-
consistency condition for the gap we find

Δ∗(r) = kBTV0

∑

n

[ ∫
dr1G(0)(r1, r,−ωn)Δ∗(r1)G(0)(r1, r, ωn)

−
∫∫∫

dr1dr2dr3G(0)(r1, r,−ωn)Δ∗(r1)G(0)(r1, r2, ωn)

×Δ(r2)G(0)(r3, r2,−ωn)Δ∗(r3)G(0)(r3, r, ωn)
]
. (K.3.37)

The Green function of normal systems is well known in the absence of external
magnetic field. We have

G(0)(r, r′, ωn) =
∑

k

ψk(r)ψ∗
k(r′)

i�ωn − ξk
, (K.3.38)

where ψk(r) is the wavefunction of the state with energy ξk. For pure metals,
where plane waves can be used for the wavefunction, the integrals in (K.3.37)
can be evaluated. After some tedious algebra we arrive at the first Ginzburg–
Landau equation for the order parameter Δ. The calculations can be done for
impure superconductors as well. In the “dirty” limit the equations are very
similar to the pure case, only the parameters are somewhat different.

To get the second Ginzburg–Landau equation, we start from the quantum
mechanical expression for the current density. This quantity can be readily
expressed in terms of the normal Green function. Substitution of the two
leading terms of the iterative solution of the Gorkov equations for the normal
Green function,

G(r, r′, ωn) = G(0)(r, r′, ωn) −
∫∫

dr1dr2G(0)(r, r1, ωn)Δ(r1)(K.3.39)

×G(0)(r2, r1,−ωn)Δ∗(r2)G(0)(r2, r
′, ωn) ,
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into the expression for the current leads precisely to the second Ginzburg–
Landau equation.

Further Reading

1. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quan-
tum Field Theory in Statistical Mechanics, Dover Publications, Inc., New
York (1975).

2. S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physi-
cists, W. A. Benjamin, New York (1974).

3. A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Sys-
tems, McGraw-Hill, New York (1971).

4. G. D. Mahan, Many-Particle Physics, Third Edition, Plenum Press, New
York (2000).

5. N. Nagaosa, Quantum Field Theory in Condensed Matter Physics, Texts
and Monographs in Physics, Springer-Verlag, Berlin (1999).

6. J. W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-
Wesley, Redwood City (1988).



L

Field Theory of Luttinger Liquids

As has been shown in Chapter 32, there are no fermionic quasiparticles in Lut-
tinger liquids even though the archetype, the Tomonaga–Luttinger model, is
a seemingly innocent model of interacting fermions. The excitation spectrum
consists only of bosonic branches. The properties of the model can be described
equivalently working with either the fermionic or the bosonic degrees of free-
dom, although the difficulties in one or the other formalism may be different.
The same is true when the effects of interactions beyond the Tomonaga–
Luttinger model (backward and umklapp scattering) are considered. Their
treatment is often simpler when bosonic degrees of freedom are used, espe-
cially when they are described by continuous boson fields. We present the
elements of this theory in this appendix. First, we show how the discrete har-
monic chain can be represented by a boson field. Then the Hamiltonians of
one-dimensional interacting fermions with and without spin are reduced to
similar form and the correlation functions are determined.

L.1 Field Theory of the Harmonic Chain

Consider a harmonic chain of atoms with mass M . The spring constant of the
elastic coupling between nearest-neighbor atoms at equilibrium distance a is
denoted by K. The system is described by the well-known Lagrangian

L =
N∑

n=1

[
1
2Mu̇2

n − 1
2K (un+1 − un)2

]
, (L.1.1)

where un is the displacement of the nth atom from its equilibrium position.
The corresponding Hamiltonian is

H =
N∑

n=1

[
p2

n

2M
+ 1

2K (un+1 − un)2
]
, (L.1.2)



654 L Field Theory of Luttinger Liquids

where pn is the canonical momentum. The displacement and the canonical
momentum satisfy the canonical commutation relation

[
un, pn′

]
− = i�δnn′ . (L.1.3)

The macroscopic properties are mainly determined by the long-wavelength,
low-frequency (low-energy) excitations, for which the variations of un are slow
compared to the lattice constant. If we are not concerned with the behavior
on the atomic scale, it is allowed to neglect the discreteness of the lattice and
to describe the system in terms of a continuous displacement field u(x) which
takes the value un at x = na. This function can be obtained by smearing out
the function

u(x) = a
∑

n

unδ(x− na) (L.1.4)

or taking the limit a→ 0. Using the relations

N∑

n=1

≈ 1
a

L∫

0

dx (L.1.5)

and
un+1 − un ≈ ∂u(x)

∂x
a , (L.1.6)

which are valid when a is small compared to L = Na, the Lagrangian takes
the form

L =

L∫

0

dx
[
M

2a
u̇2(x) − Ka

2
(
∂xu(x)

)2
]
, (L.1.7)

where ∂x is a short-hand notation for ∂/∂x. The Lagrangian equation of mo-
tion

∂L(x)
∂u(x)

− ∂

∂t

∂L(x)
∂u̇(x)

− ∂

∂x

∂L(x)
∂(∂xu(x))

= 0 (L.1.8)

for the density

L(x) =
M

2a
u̇2(x) − Ka

2
(
∂xu(x)

)2 (L.1.9)

leads to

− M

a

∂2u(x)
∂t2

+Ka
∂2u(x)
∂x2

= 0 . (L.1.10)

This equation describes the propagation of a wave with velocity

c =

√
Ka2

M
(L.1.11)

in agreement with (11.2.11) which gives the velocity of acoustic vibrations for
a linear chain.
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The continuum version of pn is naturally defined as p(x) = Mu̇(x). How-
ever, it follows from the commutation relation (L.1.3) that the commutator
of u(x) and p(x′) contains an extra factor a,

[
u(x), p(x′)

]
− = i�aδ(x− x′) . (L.1.12)

We therefore introduce a new, dimensionless field, φ(x) = u(x)/a, and the
dimensionless conjugate momentum Π(x) = p(x)/�, which satisfy the com-
mutation relation [

φ(x),Π(x′)
]
− = iδ(x− x′) . (L.1.13)

When the kinetic energy and the harmonic potential energy are given in terms
of them we have

H =
∫

dx
[

�
2

2Ma
Π2(x) + 1

2Ka
3

(
∂φ(x)
∂x

)2 ]

= 1
2�c

∫
dx
[
μΠ2(x) +

1
μ

(
∂φ(x)
∂x

)2 ]
,

(L.1.14)

where μ = �/cMa is a dimensionless parameter which governs the power-law
decay of all correlation functions. Based on this analogy, we can speak of a
harmonic model when the Hamiltonian of the Luttinger model is transformed
into a similar form.

L.2 Fermion–Boson Equivalence

For the sake of simplicity, we first consider spinless fermions and express the
field operators of fermions propagating in one dimension in terms of boson
fields. The expressions will then be generalized to physical fermions with spin
without going into the mathematical details.

L.2.1 Phase Field for Spinless Fermions

The field operator of spinless fermions propagating along a chain of length L
can be decomposed into right- and left-moving components:

ψ̂(x) = ψ̂+(x) + ψ̂−(x) (L.2.1)

with

ψ̂+(x) =
1√
L

∑

k

ei(kF+k)xckF+k ,

ψ̂−(x) =
1√
L

∑

k

ei(−kF+k)xd−kF+k ,

(L.2.2)
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where ckF+k and d−kF+k are the annihilation operators of electron states near
the Fermi points kF and −kF, respectively, and k = (2π/L)nk with integer
nk if periodic boundary condition is used. The operators defined by factoring
out the fast oscillating factor exp(±kFx),

R(x) =
1√
L

∑

k

eikxckF+k = e−ikFxψ̂+(x) ,

L(x) =
1√
L

∑

k

eikxd−kF+k = eikFxψ̂−(x) ,
(L.2.3)

contain only the long-wavelength components and are slowly varying on the
scale of the lattice spacing. Although the physics is governed by the states
near the Fermi points, a mathematically rigorous treatment is only possible if
nk in k = (2π/L)nk can take any integer values from −∞ to ∞ for both the
right- and the left-moving branches. It follows from the anticommutation rules
of the fermion operators that the field operators of the right- and left-moving
fermions satisfy the anticommutation relations characteristic of fermion fields,

[
ψ̂λ(x), ψ̂†

λ′(x′)
]
+

= δλλ′δ(x− x′) λ, λ′ = ±, (L.2.4)

where the variables x and x′ take values in the range [0, L]. In deriving these
relations we have used

1
L

∞∑

nk=−∞
e2πinkx/L =

∞∑

h=−∞
δ(x− hL) (L.2.5)

that follows from (C.1.46).
The divergent contributions arising from the infinitely deep Fermi sea can

be eliminated by normal ordering the operators. The creation operators are
ordered to the left of the annihilation operators in a product with the proviso
that states below the Fermi energy are treated in the hole representation,
i.e., the creation operators of holes are ordered to the left of the annihilation
operators of holes. The chiral density of right- and left-moving fermions is

nλ(x) = : ψ̂†
λ(x)ψ̂λ(x) : . (L.2.6)

Thus

n+(x) = :R†(x)R(x) : and n−(x) = :L†(x)L(x) : . (L.2.7)

Writing the chiral density of right-moving fermions in terms of the cre-
ation and annihilation operators and separating out the terms where the two
operators have identical momenta,

n+(x) =
1
L

∑

kk′
e−i(k−k′)x :c†kF+kckF+k′ :

=
1
L

∑

k

:c†kF+kckF+k : +
1
L

∑

q �=0

eiqxn+(q) ,
(L.2.8)
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where
n+(q) =

∑

k

c†kF+kckF+k+q (L.2.9)

is the known expression for the Fourier transform of the density. The normal
ordering sign was omitted in the second term as being redundant when the
two fermion operators have different momenta. The first term which contains
the number operators of right-moving particles is independent of the position.
The integral of n+(x) over the chain gives

δN+ =
∑

k

:c†kF+kckF+k : =
∑

k>0

c†kF+kckF+k −
∑

k<0

ckF+kc
†
kF+k . (L.2.10)

In the ground state of the noninteracting system

δN+|ΨFS〉 = 0 , (L.2.11)

thus δN+ gives in fact the number of right-moving particles added to or re-
moved from the system in the excited states. The quantities n+(q) correspond
to long-wavelength density fluctuations. The spatial variations in n+(x) are
slow compared to the lattice constant, i.e., compared to the inverse of kF, and
a local Fermi wave number can be defined via

kF+(x) = kF + 2πn+(x) . (L.2.12)

These slow fluctuations can be interpreted as arising from the slowly varying
phase of a plane wave and we find

∂xφ+(x) = 2πn+(x) . (L.2.13)

An analogous relation will be found between the operator of the chiral density
and the bosonic phase field.

Similar expressions are valid for the left movers:

n−(x) =
1
L

∑

kk′
e−i(k−k′)x :d†−kF+kd−kF+k′ :

=
1
L

δN− +
1
L

∑

q �=0

eiqxn−(q),
(L.2.14)

with
n−(q) =

∑

k

d†−kF+kd−kF+k+q (L.2.15)

and

δN− =
∑

k

:d†−kF+kd−kF+k :

=
∑

k<0

d†−kF+kd−kF+k −
∑

k>0

d−kF+kd
†
−kF+k .

(L.2.16)
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In the ground state of the noninteracting system

δN−|ΨFS〉 = 0 . (L.2.17)

Thus δN− gives the number of left-moving particles added to or removed from
the system in the excited states.

Sums going to infinity have to be regularized by an exponential factor with
a positive infinitesimal α (this will be used repeatedly) and we write

nλ(x) =
1
L

∑

q �=0

eiqx−α|q|/2nλ(q) +
1
L

δNλ . (L.2.18)

As has been proved in Chapter 32, the long-wavelength Fourier components
of the chiral densities satisfy the Kac–Moody commutation relations,

[
n+(q), n+(−q′)]− = δqq′

qL

2π
,
[
n−(q), n−(−q′)]− = −δqq′

qL

2π
, (L.2.19)

in the Tomonaga–Luttinger model [see (32.3.16) and (32.3.17)]. We show here
that these relations are exact in the Luttinger model.

Using the anticommutators of the fermion operators
[
n+(q), n+(q′)

]
− =

∑

k

(
c†kF+kckF+k+q+q′ − c†kF+k−q′ckF+k+q

)
. (L.2.20)

When q �= q′, the summation variable can be changed in the first term from k
to k− q′. The two terms cancel each other and the commutator vanishes. The
calculation is more subtle for q = q′ because we would subtract two infinite
quantities in

[n+(q), n+(−q)]− =
∑

k

c†kF+kckF+k −
∑

k

c†kF+k+qckF+k+q . (L.2.21)

We may avoid this by rewriting the particle-number operators in normal-
ordered form:
[
n+(q), n+(−q)]− =

∑

k

(
:c†kF+kckF+k − c†kF+k+qckF+k+q :

)

+
∑

k

(〈
c†kF+kckF+k

〉
0
− 〈c†kF+k+qckF+k+q

〉
0

)
.

(L.2.22)

The shift of the variables k + q → k in the second term of the first line
can be safely done and the two terms cancel each other, while the difference
between the two terms in the second line is equal to the number of particles
in the ground state in an interval of width q. This reproduces exactly the
commutation relation given above.

It then follows, using (L.2.5), that in the limit L → ∞ the real-space
densities satisfy the relations
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[
n+(x), n+(x′)

]
− =

1
L2

∑

qq′
eiqxe−iq′x′[

n+(q), n+(−q′)]−

=
1
L2

∑

q

eiq(x−x′)Lq

2π
=

= − i
2π

∂

∂x

1
L

∑

q

eiq(x−x′) = − i
2π
∂xδ(x− x′)

(L.2.23)

and [
n−(x), n−(x′)

]
− =

i
2π
∂xδ(x− x′) . (L.2.24)

The densities can be expressed in terms of bosonic creation and annihila-
tion operators introduced in analogy with (32.3.23) by the relations

bq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2π
Lq

)1/2

n+(q) =
∑

k

(
2π
Lq

)1/2

c†kF+kckF+k+q q > 0 ,

(
2π
L|q|

)1/2

n−(q) =
∑

k

(
2π
L|q|

)1/2

d†−kF+kd−kF+k+q q < 0 ,

(L.2.25)

b†q =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2π
Lq

)1/2

n+(−q) =
∑

k

(
2π
Lq

)1/2

c†kF+k+qckF+k q > 0 ,

(
2π
L|q|

)1/2

n−(−q) =
∑

k

(
2π
L|q|

)1/2

d†−kF+k+qd−kF+k q < 0 .

The chiral densities can be expressed as

n+(x) =
1
L

∑

q>0

(
Lq

2π

)1/2 (
eiqxbq + e−iqxb†q

)
e−αq/2 +

1
L

δN+ (L.2.26)

and

n−(x) =
1
L

∑

q<0

(
L|q|
2π

)1/2 (
eiqxbq + e−iqxb†q

)
e−α|q|/2 +

1
L

δN−

=
1
L

∑

q>0

(
Lq

2π

)1/2 (
eiqxb†−q + e−iqxb−q

)
e−αq/2 +

1
L

δN− .

(L.2.27)

The boson operators defined for q �= 0 commute with the particle-number
operators defined for q = 0,

[
bq, δN±

]
− =

[
b†q, δN±

]
− = 0 . (L.2.28)

The bosonic parts describe the density fluctuations, while the quantum num-
bers δN± are related to topological excitations.



660 L Field Theory of Luttinger Liquids

The key element in bosonization is the introduction of bosonic phase fields
ϕλ(x):

ϕλ(x) = −i
2π
L

∑

q>0

1
q
eiqx−αq/2nλ(q) +

πx

L
δNλ ,

ϕ†
λ(x) = i

2π
L

∑

q>0

1
q
e−iqx−αq/2nλ(−q) +

πx

L
δNλ ,

(L.2.29)

and their Hermitian linear combination,

φλ(x) = ϕλ(x) + ϕ†
λ(x) = −i

2π
L

∑

q �=0

1
q
eiqx−α|q|/2nλ(q) +

2πx
L

δNλ . (L.2.30)

In terms of the bosonic creation and annihilation operators we have

ϕ+(x) = −i
∑

q>0

(
2π
Lq

)1/2

eiqx−αq/2bq +
πx

L
δN+ ,

ϕ†
+(x) = i

∑

q>0

(
2π
Lq

)1/2

e−iqx−αq/2b†q +
πx

L
δN+ ,

(L.2.31)

and

φ+(x) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiqxbq − e−iqxb†q

)
e−αq/2 +

2πx
L

δN+ . (L.2.32)

Similarly

ϕ−(x) = i
∑

q>0

(
2π
Lq

)1/2

eiqx−αq/2b−q +
πx

L
δN− ,

ϕ†
−(x) = −i

∑

q>0

(
2π
Lq

)1/2

e−iqx−αq/2b†−q +
πx

L
δN− ,

(L.2.33)

and

φ−(x) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiqxb†−q − e−iqxb−q

)
e−αq/2 +

2πx
L

δN− . (L.2.34)

Comparison of (L.2.18) and (L.2.30) leads to the relation

nλ(x) =
1
2π
∂xφλ(x) , (L.2.35)
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which was announced in (L.2.13). The name phase field is justified by the
property that it changes by 2π every time we pass a fermion of chirality λ.1

The commutator of the chiral density with the phase field is easily
obtained:

[
n+(x), φ+(x′)

]
− =

i
L

∑

q,q′>0

{
ei(qx−q′x′)−α(q+q′)/2

[
bq, b

†
q′
]
−

− e−i(qx−q′x′)−α(q+q′)/2
[
b†q, bq′

]
−
}

=
i
L

[
∑

q>0

eiq(x−x′)−αq +
∑

q>0

e−iq(x−x′)−αq

]
. (L.2.36)

Converting the sums to integrals

[
n+(x), φ+(x′)

]
− =

i
2π

∞∫

0

dq
[
eiq(x−x′)−αq + e−iq(x−x′)−αq

]

= − 1
2π

[
1

x− x′ + iα
− 1
x− x′ − iα

]

= iδ(x− x′) .

(L.2.37)

Similarly [
n−(x), φ−(x′)

]
− = −iδ(x− x′) . (L.2.38)

The evaluation of the commutator of the phase fields is somewhat more
delicate.

[
φ+(x), φ+(x′)

]
− =

∑

q>0

2π
Lq

[
eiq(x−x′)−αq − e−iq(x−x′)−αq

]
. (L.2.39)

Since q can take the values nq2π/L with integer nq,

[
φ+(x), φ+(x′)

]
− =

∞∑

nq=1

1
nq

[
e2πinq(x−x′)/L − e−2πinq(x−x′)/L

]
e−α2πnq/L

= − ln
(
1 − e2πi(x−x′)/L−α2π/L

)
(L.2.40)

+ ln
(
1 − e−2πi(x−x′)/L−α2π/L

)
.

In the last step we used the series expansion of the function ln(1−x). Keeping
only the leading term in the limit L→ ∞, we find

1 The conventions in which the phase field is defined by a factor 1/π, 1/
√

π, or
1/

√
2π in this formula and in which the topological terms are not included are

also common.
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[
φ+(x), φ+(x′)

]
− = − ln

(
2π [−i(x− x′) + α] /L

)

+ ln
(
2π [i(x− x′) + α] /L

)

= ln
α+ i(x− x′)
α− i(x− x′)

.

(L.2.41)

Taking now the limit α→ 0 and making use of the relation

arctanx =
1
2i

ln
1 + ix
1 − ix

(L.2.42)

we find [
φ+(x), φ+(x′)

]
− = iπ sgn(x− x′) (L.2.43)

and similarly [
φ−(x), φ−(x′)

]
− = −iπ sgn(x− x′) . (L.2.44)

This result can be derived more simply by rewriting (L.2.39) as

[
φ+(x), φ+(x′)

]
− = 2i

∑

q>0

2π
Lq

sin[q(x− x′)]e−αq (L.2.45)

and converting the sum to an integral

[
φ+(x), φ+(x′)

]
− = 2i

∞∫

0

dq
sin[q(x− x′)]

q
e−αq . (L.2.46)

The integral is now convergent without the factor e−αq,

∞∫

0

dq
sin[q(x− x′)]

q
=
π

2
sgn(x− x′) , (L.2.47)

and we recover the previous result.
It is convenient to introduce dual fields by the linear combinations

φ(x) =
1√
4π

[
φ+(x) + φ−(x)

]

= − i√
4π

2π
L

∑

q �=0

1
q
eiqx−α|q|/2

[
n+(q) + n−(q)

]
+

√
πx

L
δN

(L.2.48)

and

θ(x) =
1√
4π

[
φ+(x) − φ−(x)

]

= − i√
4π

2π
L

∑

q �=0

1
q
eiqx−α|q|/2

[
n+(q) − n−(q)

]
+

√
πx

L
J ,

(L.2.49)
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where

δN = δN+ + δN− and J = δN+ − δN− . (L.2.50)

Note that the total particle density and the current density are related to φ
and θ via

n(x) = n+(x) + n−(x) =
1√
π
∂xφ(x) ,

j(x) = vF
[
n+(x) − n−(x)

]
=

vF√
π
∂xθ(x) .

(L.2.51)

The commutation relation of these fields is
[
φ(x), θ(x′)

]
− = 1

2 i sgn(x− x′) . (L.2.52)

The field Π(x) defined by

Π(x) = −∂xθ(x) (L.2.53)

is conjugate to the phase field since they satisfy the canonical commutation
relation [

φ(x),Π(x′)
]
− = iδ(x− x′) . (L.2.54)

The conjugate field can also be expressed in terms of the density fluctuations
in the form

Π(x) = −√
π
[
n+(x) − n−(x)

]

= −
√
π

L

∑

q �=0

eiqx−α|q|/2 [n+(q) − n−(q)] − J

√
π

L
.

(L.2.55)

Note that the momentum conjugate to the dual field θ(x) is −∂xφ(x), since

[θ(x),−∂xφ(x)]− = iδ(x− x′) . (L.2.56)

L.2.2 Klein Factors

The Hilbert space generated by the boson operators b†q is identical to the
Hilbert space of all excited states of the Luttinger model for fixed particle
number. The boson operators conserve the number of particle in each branch;
therefore, the matrix elements of operators that are written exclusively in
terms of the bosonic densities vanish between Hilbert spaces with different
numbers of particles. That is why the bosonic description in Chapter 32 had
to be completed by adding the q = 0 fermion-number operators δNλ that
have integer eigenvalues. The communication between sectors with different
numbers of particles is achieved in the field-theoretical description by intro-
ducing Klein factors F †

λ and Fλ which connect the ground states of different
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charge sectors of the Hilbert space. Let |δNλ〉0 denote the lowest energy state
with δNλ extra particles on branch λ relative to the ground-state |ΨFS〉. It
has no particle–hole excitations and is the vacuum for bosonic excitations in
the δNλ-particle sector,

bq|δNλ〉0 = 0 . (L.2.57)

The Klein factors take this state into the lowest energy state with δNλ ± 1
particles by putting a particle into the lowest energy empty state or removing
the particle from the highest energy filled state:

F †
λ|δNλ〉0 = |δNλ + 1〉0 , Fλ|δNλ〉0 = |δNλ − 1〉0 . (L.2.58)

Accordingly,
F †

λFλ = FλF
†
λ = 1 , (L.2.59)

that is they are unitary operators satisfying the relation F †
λ = F−1

λ , and
[
Nλ, F

†
λ′
]
− = δλλ′F †

λ ,
[
Nλ, Fλ′

]
− = −δλλ′Fλ . (L.2.60)

The Klein factors commute with the boson operators:
[
F †

λ, bq
]
− =

[
F †

λ, b
†
q

]
− =

[
Fλ, bq

]
− =

[
Fλ, b

†
q

]
− = 0 . (L.2.61)

Thus if F †
λ or Fλ acts on an excited state of the δNλ-particle sector with

several electron–hole pairs, the new state contains the same set of particle–
hole excitations but created on the ground state with δNλ + 1 or δNλ − 1
particles,

F †
λ|δNλ〉 = F †

λf [{b†}]|δNλ〉0 = f [{b†}]|δNλ + 1〉0 (L.2.62)

and
Fλ|δNλ〉 = Fλf [{b†}]|δNλ〉0 = f [{b†}]|δNλ − 1〉0. (L.2.63)

If the number of particles is nonzero for both the right- and left-moving
branch, we have to specify the ordering of the operators associated with the
branches and the application of the Klein factor gives an extra phase factor.
Assuming that the creation operators of right movers are ordered to the left
of left movers,

F †
+|δN+, δN−〉0 = |δN+ + 1, δN−〉0 ,
F †
−|δN+, δN−〉0 = (−1)δN+ |δN+, δN− + 1〉0 ,
F+|δN+, δN−〉0 = |δN+ − 1, δN−〉0 ,
F−|δN+, δN−〉0 = (−1)δN+ |δN+, δN− − 1〉0 .

(L.2.64)

The Klein factors obey the Clifford algebra
[
F †

λ, Fλ′
]
+

= 2δλλ′ (L.2.65)

and [
F †

λ, F
†
λ′
]
+

=
[
Fλ, Fλ′

]
+

= 0 for λ �= λ′ . (L.2.66)
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L.2.3 Bosonized Form of the Fermion Field Operators

We are now in the position to write the fermion creation and annihilation
operators in terms of the boson fields. Without going in the mathematical
details we only give plausibility arguments. For this consider the commutator

[
nλ(x), ψ̂λ(x′)

]
− = −δ(x− x′)ψ̂λ(x′) . (L.2.67)

They can easily be checked in the fermion representation. Similar expressions
are obtained in the boson representation between nλ(x) and exp(±iφλ(x′)):

[
n+(x), eiφ+(x′)]

− = −δ(x− x′)eiφ+(x′) ,
[
n−(x), e−iφ−(x′)]

− = −δ(x− x′)e−iφ−(x′) .
(L.2.68)

They can be verified using (L.2.37). It is therefore expected that the fermion
field operator is proportional to this exponential and, of course, a Klein factor
has to appear to ensure that the fermion operators anticommute. With the
correct prefactor we have

ψ̂+(x) = lim
α→0

1√
2πα

F+eikFxeiφ+(x)

= lim
α→0

1√
2πα

F+eikFxei
√

π[φ(x)+θ(x)]
(L.2.69)

and

ψ̂−(x) = lim
α→0

1√
2πα

F−e−ikFxe−iφ−(x)

= lim
α→0

1√
2πα

F−e−ikFxe−i
√

π[φ(x)−θ(x)] .

(L.2.70)

The boson representation of the adjoint operators is

ψ̂†
+(x) = lim

α→0

1√
2πα

F †
+e−ikFxe−iφ+(x)

= lim
α→0

1√
2πα

F †
+e−ikFxe−i

√
π[φ(x)+θ(x)]

(L.2.71)

and

ψ̂†
−(x) = lim

α→0

1√
2πα

F †
−eikFxeiφ−(x)

= lim
α→0

1√
2πα

F †
−eikFxei

√
π[φ(x)−θ(x)] .

(L.2.72)

The correctness of the factor (2πα)−1/2 can be checked by calculating the
ground-state expectation value of ψ̂†

+(x)ψ̂+(x′) both in the fermion and in the
boson representation. In the fermion language we have
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〈ΨFS|ψ̂†
+(x)ψ̂+(x′)|ΨFS〉 =

1
L

∑

k<0

e−ik(x−x′) . (L.2.73)

The sum can be made convergent by a factor eαk and we find

〈ΨFS|ψ̂†
+(x)ψ̂+(x′)|ΨFS〉 =

0∫

−∞

dk
2π

e[α−i(x−x′)]k =
1
2π

1
α− i(x− x′)

. (L.2.74)

On the other hand, in the boson representation we have to evaluate the
ground-state average

〈
0
∣∣ψ̂†

+(x)ψ̂+(x′)
∣∣0
〉

=
1

2πα
〈
0
∣∣e−iφ+(x)eiφ+(x′)

∣∣0
〉
. (L.2.75)

This can be done by using the Baker–Hausdorff formula

eA eB = eA+B e
1
2 [A,B]− (L.2.76)

given in (13.3.9), which is valid if the commutator of A and B commutes with
both A and B. We thus have
〈
0
∣∣ψ̂†

+(x)ψ̂+(x′)
∣∣0
〉

=
1

2πα
〈
0
∣∣e−i[φ+(x)−φ+(x′)]e

1
2 [φ+(x),φ+(x′)]−

∣∣0
〉
. (L.2.77)

The commutator has been calculated in (L.2.41) and we find

e
1
2 [φ+(x),φ+(x′)]− =

(
α+ i(x− x′)
α− i(x− x′)

)1/2

. (L.2.78)

The expectation value of the remaining exponential factor can be calculated
using 〈

eiC
〉

= e−
1
2 〈C2〉 (L.2.79)

given in (13.3.11), which is valid if C is a linear combination of bosonic cre-
ation and annihilation operators. With the choice C = −[φ+(x)−φ+(x′)] and
substituting the bosonic expansion of the phase field we get

− 1
2

〈
0
∣∣[φ+(x) − φ+(x′)

]2∣∣0
〉

= −1
2

∑

q>0

2π
Lq

[
2 − eiq(x−x′) − e−iq(x−x′)

]
e−αq.

(L.2.80)
The sums can be evaluated with the trick used in (L.2.40). For example

〈
φ+(x)φ+(x′)

〉
=
∑

q>0

2π
Lq

eiq(x−x′)−αq

=
∞∑

nq=1

1
nq

e2πinq(x−x′)/L−α2πnq/L

= − ln
(
1 − ei2π(x−x′+iα)/L

)

= − ln
(
2π[α− i(x− x′)]/L

)
.

(L.2.81)
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Collecting together all the terms we get

− 1
2

〈
0
∣∣[φ+(x) − φ+(x′)]2

∣∣0
〉

= ln(2πα/L) − 1
2 ln
(
2π[α− i(x− x′)]/L

)

− 1
2 ln
(
2π[α+ i(x− x′)]/L

)
. (L.2.82)

Exponentiation of this expression and multiplication with (L.2.78) yields
〈
0
∣∣e−iφ+(x)eiφ+(x′)

∣∣0
〉

=
〈
0
∣∣eiφ+(x)e−iφ+(x′)

∣∣0
〉

=
α

α− i(x− x′)
. (L.2.83)

Together with the factor 1/2πα we recover the expression which was obtained
in (L.2.74) in the fermion language.

Note that the field operator can be written in a simpler form in terms of
the bosonic fields ϕλ(x) and ϕ†

λ(x). It follows from the commutation relation

[
ϕ+(x), ϕ†

+(x′)
]
− =

∑

q>0

2π
Lq

eiq(x−x′)−αq

=
∞∑

nq=1

1
nq

e2πinq(x−x′)/Le−α2πnq/L

= − ln
(
1 − e2πi(x−x′)/L−α2π/L

)

= − ln
(
2π [α− i(x− x′)] /L

)
,

(L.2.84)

which was calculated analogous to (L.2.40), that

eiϕ†
+(x)eiϕ+(x) = ei(ϕ†

+(x)+ϕ+(x))

(
L

2πα

)1/2

, (L.2.85)

and hence
ψ̂+(x) =

1√
L
F+eikFxeiϕ†

+(x)eiϕ+(x) . (L.2.86)

Analogous calculation yields

ψ̂−(x) =
1√
L
F−e−ikFxe−iϕ†

−(x)e−iϕ−(x) . (L.2.87)

Since the boson operators are normal ordered in these expressions, the diver-
gent factors 1/

√
α that regularize the field operators in (L.2.69) and (L.2.70)

disappear.
It can be checked, using the commutators of the bosonic fields, that the

fermionic field operators written in this bosonized form anticommute. Equa-
tion (L.2.4) is satisfied, and the correct relationship

nλ(x) = : ψ̂†
λ(x)ψ̂λ(x) := lim

x′→x

(
: ψ̂†

λ(x′)ψ̂λ(x) :
)

=
1
2π
∂xφλ(x) (L.2.88)

holds between the chiral density and the phase field.
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L.2.4 Boson Representation of the Spin Operators

The spin-1/2 operators can be represented by the creation and annihilation
operators of spinless fermions using the Jordan–Wigner transformation

S+
j = c†j exp

(
iπ

j−1∑

l=1

c†l cl

)
,

S−
j = exp

(
−iπ

j−1∑

l=1

c†l cl

)
cj ,

Sz
j = c†jcj − 1

2 .

(L.2.89)

The term −1/2 in Sz
j can be eliminated by normal ordering the fermion oper-

ators. The continuum version of the z-component of the spin operator, Sz(x),
is defined by requiring the same Fourier spectrum as for the discrete Sz

j op-
erators. This implies that the continuum version should take the value

Sz(x = ja) =
1
a
Sz

j (L.2.90)

at the discrete lattice points x = ja. It is given by the particle density

Sz(x) = :ψ†(x)ψ(x) :

= :ψ†
+(x)ψ+(x) : + :ψ†

−(x)ψ−(x) :

+ :ψ†
+(x)ψ−(x) : + :ψ†

−(x)ψ+(x) : .

(L.2.91)

The boson representation of the spinless fermion field gives

Sz(x) =
1
2π
[
∂xφ+(x) + ∂xφ−(x)

]

+
1

2πα

[
F †

+F−e−i2kFxe−iφ+(x)e−iφ−(x) + h.c.
]

=
1√
π
∂xφ(x) +

1
2πα

[
F †

+F−e−i2kFxe−i
√

4πφ(x) + h.c.
]
.

(L.2.92)

This expression has a slowly varying part and an oscillating component. Since
kF = π/2a in the unpolarized ground state,

e∓i2kFx = (−1)x/a , (L.2.93)

that is the oscillating term alternates with the lattice site.
Considering now the S+

j operator, the string operator in the exponent
gives
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iπ
j−1∑

l=1

c†l cl = iπ
j−1∑

l=1

(
:c†l cl : + 1

2

)

→ iπ

x∫

−L/2

dy : ψ̂†(y)ψ̂(y) : +iπ
x

2a

= iπ

x∫

−L/2

dy
[
n+(y) + n−(y)

]
+ ikFx

= 1
2 i

x∫

−L/2

dy
[
∂yφ+(y) + ∂yφ−(y)

]
+ ikFx

= 1
2 i
[
φ+(x) + φ−(x)

]
+ ikFx.

(L.2.94)

The continuum version of c†j is

ψ†(x) =
1√
2πα

(
F †

+e−ikFxe−iφ+(x) + F †
−eikFxeiφ−(x)

)
. (L.2.95)

Collecting together these factors we find

S+(x) ∝ eikFxe
1
2 i
[
φ+(x)+φ−(x)

] (
F †

+e−ikFxe−iφ+(x) + F †
−eikFxeiφ−(x)

)

= F †
+e−i

√
πθ(x) + ei2kFxF †

−ei
√

π(2φ(x)−θ(x)) . (L.2.96)

A similar calculation gives

S−(x) ∝ F+ei
√

πθ(x) + e−i2kFxF−e−i
√

π(2φ(x)−θ(x)) . (L.2.97)

L.2.5 Fermions with Spin

The generalization of the bosonization procedure to fermions with spin is
straightforward. The spin index σ should appear everywhere in addition to
the chirality index λ. When the field operators are decomposed into right- and
left-moving parts we have

ψ̂+,σ(x) =
1√
L

∑

k

ei(kF+k)xckF+k,σ ,

ψ̂−,σ(x) =
1√
L

∑

k

ei(−kF+k)xd−kF+k,σ .

(L.2.98)

The slowly varying chiral fields are defined via

Rσ(x) =
1√
L

∑

k

eikxckF+k,σ ,

Lσ(x) =
1√
L

∑

k

eikxd−kF+k,σ .

(L.2.99)
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When the densities are expressed in terms of the bosonic creation and
annihilation operators defined for the two spin orientations we find

n+,σ(x) =
1
L

∑

q>0

(
Lq

2π

)1/2 (
eiqxbqσ + e−iqxb†qσ

)
e−αq/2 +

1
L

δN+,σ (L.2.100)

and

n−,σ(x) =
1
L

∑

q>0

(
Lq

2π

)1/2 (
eiqxb†−qσ + e−iqxb−qσ

)
e−αq/2 +

1
L

δN−,σ .

(L.2.101)
The phase fields defined via

∂xφλ,σ(x) = 2πnλ,σ(x) (L.2.102)

are then given by

φ+,σ(x) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiqxbqσ −e−iqxb†qσ

)
e−αq/2 +δN+,σ

2πx
L

(L.2.103)

and

φ−,σ(x) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiqxb†−qσ − e−iqxb−qσ

)
e−αq/2 + δN−,σ

2πx
L

,

(L.2.104)
and they satisfy the commutation relations

[φ±,σ(x), φ±,σ′(x′)]− = ±iπδσσ′ sgn(x− x′) (L.2.105)

and
[n±,σ(x), φ±,σ′(x′)]− = ±iδσσ′ δ(x− x′) . (L.2.106)

We introduce the linear combinations

φc(x) =
1√
8π

[
φ+,↑(x) + φ+,↓(x) + φ−,↑(x) + φ−,↓(x)

]
,

φs(x) =
1√
8π

[
φ+,↑(x) − φ+,↓(x) + φ−,↑(x) − φ−,↓(x)

]
,

θc(x) =
1√
8π

[
φ+,↑(x) + φ+,↓(x) − φ−,↑(x) − φ−,↓(x)

]
,

θs(x) =
1√
8π

[
φ+,↑(x) − φ+,↓(x) − φ−,↑(x) + φ−,↓(x)

]
.

(L.2.107)

It follows from the commutation relations of the phase fields φλ,σ that
[
φc(x), θc(x′)

]
− = 1

2 i sgn(x− x′) ,
[
φs(x), θs(x′)

]
− = 1

2 i sgn(x− x′) .
(L.2.108)
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It is convenient to use the fields Πc(x) and Πs(x) defined via

∂xθc(x) = −Πc(x) and ∂xθs(x) = −Πs(x) (L.2.109)

instead of the dual fields θc(x) and θs(x), since they are canonically conjugate
to the fields φc(x) and φs(x) satisfying the canonical commutation relations

[
φc(x),Πc(x′)

]
− = iδ(x− x′) ,

[
φs(x),Πs(x′)

]
− = iδ(x− x′) .

(L.2.110)

When they are expressed in terms of the density fluctuations we have

Πc(x) = −
√
π

2
[
n+,↑(x) + n+,↓(x) − n−,↑(x) − n−,↓(x)

]
,

Πs(x) = −
√
π

2
[
n+,↑(x) − n+,↓(x) − n−,↑(x) + n−,↓(x)

]
.

(L.2.111)

The fermionic field operators can be written in terms of the boson fields
if four Klein factors, Fλ,σ for λ = ± and σ =↑, ↓, are introduced. They are
natural generalizations of the factors in the spinless case. We have

ψ̂+,σ(x) = lim
α→0

1√
2πα

F+,σeikFxeiφ+,σ(x) ,

ψ̂−,σ(x) = lim
α→0

1√
2πα

F−,σe−ikFxe−iφ−,σ(x) .

(L.2.112)

L.3 Boson Representation of the Hamiltonian

We now show that the Hamiltonian of the Luttinger model can be written
in a form analogous to the Hamiltonian of the harmonic chain in spite of the
interactions. We also give the boson representation of backward and umklapp
scattering.

L.3.1 Free Spinless Fermions

The kinetic energy of spinless fermions can be written as

H0 =
∑

k

�vFk c
†
kF+kckF+k −

∑

k

�vFk d
†
−kF+kd−kF+k , (L.3.1)

if the energy is measured from the chemical potential. The infinite sea of
negative energy states that makes the energy unbounded from below can be
removed by taking the normal-ordered products:

H0 =
∑

k

�vFk :c†kF+kckF+k : −
∑

k

�vFk :d†−kF+kd−kF+k : . (L.3.2)
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Owing to the linear dispersion relation this expression can be written in terms
of the fermion field operators defined in (L.2.2) as

H0 = �vF
∑

λ=±

∫
dx : ψ̂†

λ(x)
[
λ

1
i
∂x − kF

]
ψ̂λ(x) :

= −i�vF
∫

dx :
[
R†(x)∂xR(x) − L†(x)∂xL(x)

]
: .

(L.3.3)

When we attempt to bosonize this expression directly by writing the
fermion field operators in terms of the phase fields using (L.2.69) and (L.2.70),
we have to be careful in avoiding the divergences occurring for identical argu-
ments of the operators. This can be achieved by applying the point-splitting
technique. The normal-ordered product of the right-moving part can be de-
termined from

:R†(x)∂xR(x) := lim
ε→0

[
R†(x+ ε)∂xR(x) − 〈R†(x+ ε)∂xR(x)

〉]
, (L.3.4)

where the derivative is calculated from

∂xR(x) = lim
ε→0

1
ε

[
R(x) −R(x− ε)

]
. (L.3.5)

Straightforward but lengthy calculation gives

:R†(x)∂xR(x) :=
i

4π
[
∂xφ+(x)

]2
, :L†(x)∂xL(x) := − i

4π
[
∂xφ−(x)

]2
,

(L.3.6)
and we find

H0 = �vF
1
4π

∫
dx
[(
∂xφ+(x)

)2 +
(
∂xφ−(x)

)2]
. (L.3.7)

Alternatively we could start from the expression of the noninteracting Hamil-
tonian in terms of the boson creation and annihilation operators. In the spin-
less case (32.3.30) gives

H0 =
∑

q>0

�vFq b
†
qbq +

∑

q>0

�vFq b
†
−qb−q +

�πvF
L

(
δN2

+ + δN2
−
)
. (L.3.8)

It is readily seen using relations (L.2.26) and (L.2.27) that this expression is
equivalent to

H0 = �vFπ

∫
dx
[
n2

+(x) + n2
−(x)

]
, (L.3.9)

which is identical to (L.3.7) if it is written in terms of the phase fields φ+(x)
and φ−(x). Using the field φ(x) and its dual, θ(x), or the conjugate momentum
we find

H0 = 1
2�vF

∫
dx
[
(∂xθ(x))

2 + (∂xφ(x))2
]

= 1
2�vF

∫
dx
[
Π2(x) + (∂xφ(x))2

]
.

(L.3.10)

This has exactly the same form as the Hamiltonian of the harmonic chain.



L.3 Boson Representation of the Hamiltonian 673

L.3.2 Boson Form of the Full Hamiltonian

The interactions were defined in the g-ology model in (32.3.63). Since the
coupling constants are independent of the momentum transfer, the interac-
tion is local in real space. In the spinless Tomonaga–Luttinger model, where
backscattering and umklapp processes are excluded, the Hamiltonian of the
forward-scattering processes can be written in real space as

Hint = g2

∫
dx ψ̂†

+(x)ψ̂+(x)ψ̂†
−(x)ψ̂−(x) (L.3.11)

+ 1
2g4

∫
dx
[
ψ̂†

+(x)ψ̂+(x)ψ̂†
+(x)ψ̂+(x) + ψ̂†

−(x)ψ̂−(x)ψ̂†
−(x)ψ̂−(x)

]
.

Written in terms of the chiral densities

Hint = g2

∫
dxn+(x)n−(x)+ 1

2g4

∫
dx
[
n+(x)n+(x)+n−(x)n−(x)

]
. (L.3.12)

The chiral densities can be expressed in terms of Π and ∂xφ via

n+(x) =
1√
4π

[
∂xφ(x) −Π(x)

]
,

n−(x) =
1√
4π

[
∂xφ(x) +Π(x)

]
,

(L.3.13)

hence
n+(x)n−(x) =

1
4π
[(
∂xφ(x)

)2 −Π2(x)
]

(L.3.14)

and
n2

+(x) + n2
−(x) =

1
2π
[(
∂xφ(x)

)2 +Π2(x)
]
. (L.3.15)

Combining these expressions with the noninteracting part of the Hamiltonian,
the boson form of the spinless Tomonaga–Luttinger model is

H = 1
2�u

∫
dx
[
KΠ2(x) +

1
K

(
∂xφ(x)

)2
]
, (L.3.16)

where
�u =

(
�vF − g2

2π
+
g4
2π

)1/2(
�vF +

g2
2π

+
g4
2π

)1/2

(L.3.17)

and
K =

(
�vF − g2

2π
+
g4
2π

)1/2(
�vF +

g2
2π

+
g4
2π

)−1/2

. (L.3.18)

With the dimensionless coupling constants g̃ = g/(2π�vF) we have

u = vF
(
1 − g̃2 + g̃4

)1/2(1 + g̃2 + g̃4
)1/2 = vF

[(
1 + g̃4

)2 − g̃2
2

]1/2

(L.3.19)

and
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K =
(

1 + g̃4 − g̃2
1 + g̃4 + g̃2

)1/2

. (L.3.20)

Thus the Tomonaga–Luttinger interactions only lead to a renormalization of
the velocity of the bosonic excitations from vF to u and to the appearance of
a factor K in the current term and a factor 1/K in the density term of the
Hamiltonian.

L.3.3 Boson Form of the Umklapp Scattering

Only small-momentum transfer, forward-scattering processes are allowed in
the Luttinger model. Large-momentum-transfer, umklapp processes are also
possible between spinless fermions, and they may become relevant at half
filling. When written in terms of the fermion field operators the umklapp
term of the Hamiltonian is

Hu = g3

∫
dx
[
eiGxψ̂†

+(x)ψ̂†
+(x)ψ̂−(x)ψ̂−(x)

+ e−iGxψ̂†
−(x)ψ̂†

−(x)ψ̂+(x)ψ̂+(x)
]
,

(L.3.21)

where G is a vector of the reciprocal lattice. In boson representation we find

Hu =
2g3

(2πα)2

∫
dx cos

[√
16πφ(x) + (4kF −G)x

]
. (L.3.22)

For a half-filled band, where kF = π/2a,

Hu =
2g3

(2πα)2

∫
dx cos

[√
16πφ(x)

]
. (L.3.23)

The relevance or irrelevance of this term will be discussed in the last section
of this appendix.

L.3.4 Fermions with Spin

The kinetic energy of fermions with spin is analogous to (L.3.3), except that
we have to sum over the spin quantum numbers. The same applies to the
boson forms (L.3.9) and (L.3.7):

H0 = �vFπ
∑

σ

∫
dx
[
n2

+,σ(x) + n2
−,σ(x)

]

= �vF
1
4π

∑

σ

∫
dx
[
(∂xφ+,σ(x))2 + (∂xφ−,σ(x))2

]
.

(L.3.24)

Taking the charge and spin phase fields and their duals we have
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H0 = 1
2�vF

∫
dx
[
(∂xθc(x))

2 + (∂xφc(x))
2
]

+ 1
2�vF

∫
dx
[
(∂xθs(x))

2 + (∂xφs(x))
2
]
,

(L.3.25)

or if the conjugate fields are used,

H0 = 1
2�vF

∫
dx
[
Π2

c (x) + (∂xφc(x))
2
]

+ 1
2�vF

∫
dx
[
Π2

s (x) + (∂xφs(x))
2
]
.

(L.3.26)

The momentum operator given in (32.3.59) can also be expressed in terms of
these fields. We find

P = −�

∫
dx
[
kF +

√
π/2∂xφc(x)

]Πc(x)√
π/2

− �

∫
dx
(
∂xφs(x)

)
Πs(x). (L.3.27)

The forward-scattering terms of (32.3.63) can be written in terms of the
chiral densities for fermions with spin, too:

Hint =
∑

σ

∫
dx
[
(g2‖ − g1‖)n+,σ(x)n−,σ(x) + g2⊥n+,σ(x)n−,−σ(x)

+ 1
2g4‖

(
n+,σ(x)n+,σ(x) + n−,σ(x)n−,σ(x)

)
(L.3.28)

+ 1
2g4⊥

(
n+,σ(x)n+,−σ(x) + n−,σ(x)n−,−σ(x)

)]
.

When written in terms of the phase fields and their conjugates, the terms
containing the charge and spin fields are decoupled. The Hamiltonian is the
sum of two similar terms:

H = Hc + Hs , (L.3.29)

where – similar to (L.3.16) – the interaction gives rise to a renormalization of
the velocity of the boson modes and to the appearance of a correlation factor
K. We find

Hc = 1
2�uc

∫
dx
[
KcΠ

2
c (x) +

1
Kc

(
∂xφc(x)

)2
]

(L.3.30)

for the charge part, where, when written in terms of the dimensionless cou-
plings

g̃i = gi/(2πvF) , (L.3.31)

we have

uc = vF

[(
1 + g̃4‖ + g̃4⊥

)2 − (g̃1‖ − g̃2‖ − g̃2⊥
)2]1/2

(L.3.32)

and

Kc =

[
1 + g̃4‖ + g̃4⊥ +

(
g̃1‖ − g̃2‖ − g̃2⊥

)

1 + g̃4‖ + g̃4⊥ − (g̃1‖ − g̃2‖ − g̃2⊥
)
]1/2

. (L.3.33)
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The expressions for the spin modes are similar:

Hs = 1
2�us

∫
dx
[
KsΠ

2
s (x) +

1
Ks

(
∂xφs(x)

)2
]
, (L.3.34)

where

us = vF

[(
1 + g̃4‖ − g̃4⊥

)2 − (g̃1‖ − g̃2‖ + g̃2⊥
)2]1/2

(L.3.35)

and

Ks =

[
1 + g̃4‖ − g̃4⊥ +

(
g̃1‖ − g̃2‖ + g̃2⊥

)

1 + g̃4‖ − g̃4⊥ − (g̃1‖ − g̃2‖ + g̃2⊥
)
]1/2

. (L.3.36)

The large-momentum-transfer processes of the backward and umklapp
scattering, which in fermion representation have the form

Hint =
∑

σ

∫
dx g1⊥ψ̂

†
+,σ(x)ψ̂†

−,−σ(x)ψ̂+,−σ(x)ψ̂−,σ(x) (L.3.37)

+
1
2

∑

σ

∫
dx g3⊥

[
eiGxψ̂†

+,σ(x)ψ̂†
+,−σ(x)ψ̂−,−σ(x)ψ̂−,σ(x) + h.c.

]
,

cannot be written in simple form in terms of the chiral densities. When given
in terms of the phase fields, we find

Hback =
2g1⊥

(2πα)2

∫
dx cos

(√
8πφs(x)

)
(L.3.38)

for the backward scattering, while

Hu =
2g3⊥

(2πα)2

∫
dx cos

(√
8πφc(x)

)
(L.3.39)

for the umklapp processes in the half-filled case, when 4kF = G. The spin–
charge separation still holds. Only the spin modes are involved in backward
scattering and only the charge modes in the umklapp processes.

L.4 Correlation Functions

The real advantage of the boson representation is that it allows us to calcu-
late correlation functions in real space much more easily than in the fermion
representation. This makes it easier to study the relevance or irrelevance of
perturbations.
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L.4.1 Noninteracting Spinless Fermions

The retarded correlation function of spinless noninteracting fermions,

K(x, t) = − i
�
θ(t)
〈
ψ̂(x, t)ψ̂†(0, 0)

〉

= − i
�
θ(t)
〈
ψ̂+(x, t)ψ̂†

+(0, 0) + ψ̂−(x, t)ψ̂†
−(0, 0)

〉
,

(L.4.1)

can be simply evaluated in the space–time representation. Taking the right-
moving part at T = 0 we have

K+(x, t) = − i
�

1
L
θ(t)

∑

k>0

eikFxeik(x−vFt) . (L.4.2)

In the limit L → ∞ the summation over k = (2π/L)nk can be replaced with
an integral,

K+(x, t) = − i
�
θ(t)eikFx

∞∫

0

dk
2π

eik(x−vFt) . (L.4.3)

Using (J.1.53) we find

K+(x, t) =
eikFx

2π�

θ(t)
x− vFt+ iδ

. (L.4.4)

Similar calculation for left-moving fermions yields

K−(x, t) = −e−ikFx

2π�

θ(t)
x+ vFt− iδ

. (L.4.5)

The advanced correlation functions can be calculated analogously. For the
causal Green function we get

G+(x, t) = − i
�

〈
T
{
ψ̂+(x, t)ψ̂†

+(0, 0)
}〉

=
1

2π�

eikFx

x− vFt+ iδsgnt
,

G−(x, t) = − i
�

〈
T
{
ψ̂−(x, t)ψ̂†

−(0, 0)
}〉

= − 1
2π�

e−ikFx

x+ vFt− iδsgnt
.

(L.4.6)

The same result can be derived in a somewhat more tedious calculation in
the boson representation, where (L.2.69) and (L.2.70) are used for the fermion
fields:

K+(x, t) = − i
2πα�

θ(t)eikFx
〈
eiφ+(x,t)e−iφ+(0,0)

〉
. (L.4.7)

Owing to the linear dispersion of the boson spectrum,

bq(t) = e−ivF|q|tbq , b†q(t) = eivF|q|tb†q , (L.4.8)
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and the time dependence of the boson field, apart from the time-independent
topological term, is given by

φ+(x, t) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiq(x−vFt)bq − e−iq(x−vFt)b†q

)
e−αq/2 ,

(L.4.9)

φ−(x, t) = −i
∑

q>0

(
2π
Lq

)1/2 (
eiq(x+vFt)b†−q − e−iq(x+vFt)b−q

)
e−αq/2 .

That is
φ+(x, t) = φ+(x− vFt) (L.4.10)

for the right-moving field and

φ−(x, t) = φ−(x+ vFt) (L.4.11)

for the left-moving field.
The exponential factors in (L.4.7) can be reduced to a single exponential

by using the Baker–Hausdorff formula (L.2.76) and the averaging can be done
in the exponent using (L.2.79). The resulting expression is identical to (L.2.83)
with the variable x− vFt:

〈
0
∣∣eiφ+(x,t)e−iφ+(0,0)

∣∣0
〉

=
α

α− i(x− vFt)
. (L.4.12)

Equation (L.4.4) is indeed recovered if α = δ. Analogous calculation for the
left-moving fermions gives

〈
0
∣∣eiφ−(x,t)e−iφ−(0,0)

∣∣0
〉

=
α

α+ i(x+ vFt)
. (L.4.13)

The correlation function

Kβ+,β−(x, t) =
〈Oβ+,β−(x, t)O†

β+,β−(0, 0)
〉

(L.4.14)

of a more general operator

Oβ+,β−(x, t) = ei[β+φ+(x,t)+β−φ−(x,t)] (L.4.15)

can easily be calculated using the results given above. Since φ+(x, t) and
φ−(x, t) commute,

Kβ+,β−(x, t) =
〈
eiβ+φ+(x,t)e−iβ+φ+(0,0)

〉〈
eiβ−φ−(x,t)e−iβ−φ−(0,0)

〉
, (L.4.16)

and hence

Kβ+,β−(x, t) =
(

α

α− i(x− vFt)

)β2
+
(

α

α+ i(x+ vFt)

)β2
−
. (L.4.17)
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When the fields φ and θ introduced in (L.2.48) and (L.2.49) are used, the
correlation function

Km,n(x, t) =
〈Om,n(x, t)O†

m,n(0, 0)
〉

(L.4.18)

of the operator
Om,n(x, t) = ei

√
π[mφ(x,t)+nθ(x,t)] (L.4.19)

takes the form

Km,n(x, t) =
(

α

α− i(x− vFt)

)2Δ+
(

α

α+ i(x+ vFt)

)2Δ−

∝
(

1
x− vFt+ iα

)2Δ+
(

1
x+ vFt− iα

)2Δ−

,

(L.4.20)

where
Δ+ = (m+ n)2/8 , Δ− = (m− n)2/8 . (L.4.21)

L.4.2 Interacting Spinless Fermions

While the evaluation of the correlation function is much simpler in the fermion
representation in the absence of interactions, it is much more difficult when
interactions are taken into account. The calculation of the correlation func-
tions can be carried out exactly in the fermion space–time representation using
Ward identities, but it is a rather lengthy and cumbersome procedure. This
is where the power of the boson representation makes itself felt. Introducing
the scaled phase fields

φ̃ = φ/
√
K =

1√
4πK

(
φ+ + φ−

)
,

θ̃ =
√
Kθ =

√
K

4π
(
φ+ − φ−

)
,

(L.4.22)

and the scaled conjugate momentum

Π̃ =
√
KΠ , (L.4.23)

the Hamiltonian of the interacting system takes the same form as that of a
noninteracting one, except that the velocity vF is replaced by u. The correla-
tion functions of the scaled fields of the interacting system are readily obtained
from (L.4.20):

Km,n(x, t) =
〈
ei
√

π[mφ̃(x,t)+nθ̃(x,t)]e−i
√

π[mφ̃(0,0)+nθ̃(0,0)]
〉

∝
(

1
x− ut+ iα

)2Δ+
(

1
x+ ut− iα

)2Δ−

,
(L.4.24)
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with Δ± given in (L.4.21).
Consider now an arbitrary operator

OδN+,δN−(x, t) = e−i[δN+φ+(x,t)−δN−φ−(x,t)] (L.4.25)

that adds δN+ particles to the right-moving branch and δN− particles to the
left-moving branch. The fields φ+ and φ− are related to the scaled fields via

φ± =
√
π

[√
Kφ̃± 1√

K
θ̃

]
; (L.4.26)

hence, the operator takes the form

OδN+,δN−(x, t) = e−i
√

π[Jφ(x,t)+δNθ(x,t)]

= e−i
√

π[J
√

Kφ̃(x,t)+δNθ̃(x,t)/
√

K] .

(L.4.27)

The correlation function of these operators is
〈
OδN+,δN−(x, t)O†

δN+,δN−(0, 0)
〉

∝ 1
(x− ut+ iα)2Δ+(x+ ut− iα)2Δ−

(L.4.28)

with

Δ± =
1
8

(√
KJ ± 1√

K
δN

)2

= (KJ ± δN)2 /8K , (L.4.29)

as given in (32.5.33).
This result can be applied to calculate the correlation functions of the

anisotropic S = 1/2 Heisenberg chain. Using the boson representation of
the spin operators given in (L.2.92) and (L.2.96), the explicit expressions for
the longitudinal and transverse correlation functions given in (32.5.36) and
(32.5.37) can be recovered. We consider here the role of umklapp scattering
in the spinless-fermion representation.

If the operator OδN+,δN− appears in the Hamiltonian as a perturbation,
the strength of its coupling constant, λδN+,δN− , increases or decreases under
renormalization depending on the value of the scaling dimension dδN+,δN− of
the operator. It can be calculated from the asymptotic, large x behavior of
the correlation function. From our earlier results we find

〈
OδN+,δN−(x, t)O†

δN+,δN−(0, 0)
〉
∝ |x|−2dδN+,δN− (L.4.30)

with
dδN+,δN− = Δ+ + Δ− =

1
4

[
1
K

(
δN
)2 +KJ2

]
. (L.4.31)

An operator is relevant if its scaling dimension is less than 2. When dδN+,δN− =
2, the operator is marginal, while it is irrelevant if the scaling dimension is
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larger than 2. The umklapp scattering between spinless fermions (δN+ = 2,
δN− = −2 or vice versa, that is δN = 0, J = ±4) is irrelevant for K > 1/2.
This is the case for the spin-1/2 anisotropic Heisenberg chain discussed in
Chapter 15 in the region −1 < Δ < 1. The umklapp processes are still
marginal in the isotropic antiferromagnetic point Δ = −1. That is why the
planar and isotropic antiferromagnetic spin chains behave as Luttinger liq-
uids. Umklapp processes become relevant for Δ < −1, where K < 1/2. They
generate a gap in the excitation spectrum.

L.4.3 Fermions with Spin

The procedure can be easily generalized to fermions with spin. We consider
the operator

OδNλ,σ
(x, t) = e−i

[
δN+,↑φ+,↑(x,t)+δN+,↑φ+,↑(x,t)−δN−,↑φ−,↑(x,t)−δN−,↑φ−,↑(x,t)

]

(L.4.32)
that adds δNλ,σ particles to the branch with indices λ, σ. Written in terms of
the charge and spin phase fields and their duals,

OδNλ,σ
(x, t) = e−i

√
π/2
[
Jcφc(x,t)+Jsφs(x,t)+δNcθc(x,t)+Nsθs(x,t)

]
, (L.4.33)

with
δNc = δN+,↑ + δN+,↓ + δN−,↑ + δN−,↓ ,
Ns = δN+,↑ − δN+,↓ + δN−,↑ − δN−,↓ ,
Jc = δN+,↑ + δN+,↓ − δN−,↑ − δN−,↓ ,
Js = δN+,↑ − δN+,↓ − δN−,↑ + δN−,↓

(L.4.34)

introduced in (32.3.50). Since the spin and charge degrees of freedom are
separated, the correlation functions are the product of the contributions of
the charge and spin modes:

〈
OδNλ,σ

(x, t)O†
δNλ,σ

(0, 0)
〉

(L.4.35)

=
〈
e−i

√
π/2[Jcφc(x,t)+δNcθc(x,t)]ei

√
π/2[Jcφc(0,0)+δNcθc(0,0)]

〉

×
〈
e−i

√
π/2[Jsφs(x,t)+Nsθs(x,t)]ei

√
π/2[Jsφs(0,0)+Nsθs(0,0)]

〉
.

The results derived for the spinless case can be taken over:
〈
e−i

√
π/2(Jcφc(x,t)+δNcθc(x,t)]ei

√
π/2[Jcφc(0,0)+δNcθc(0,0)]

〉

∝ 1
(x− uct+ iα)2Δc,+(x+ uct− iα)2Δc,−

,

〈
e−i

√
π/2(Jsφs(x,t)+Nsθs(x,t)]ei

√
π/2[Jsφs(0,0)+Nsθs(0,0)]

〉

∝ 1
(x− ust+ iα)2Δs,+(x+ ust− iα)2Δs,−

(L.4.36)
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with

Δc,± =
1
16

(
1√
Kc

δNc ±
√
KcJc

)2

,

Δs,± =
1
16

(
1√
Ks

Ns ±
√
KsJs

)2

.

(L.4.37)

The factor 1/16 instead of 1/8 is due to the extra factor 1/
√

2 in the exponent
of the operators. This form reproduces the expression given in (32.3.125).
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M

Renormalization and Scaling in Solid-State
Physics

The renormalization procedure and the renormalization group widely used for
field theory models have gained widespread applications in statistical physics
and solid-state physics, particularly since the works by K. G. Wilson. While
the aim of renormalization in field theory is the elimination of unphysical di-
vergences occurring in perturbation theory, the challenge in statistical physics
is the proper treatment of the long-wavelength fluctuations near the critical
point of a second-order phase transition. The solid-state physics problems for
which the renormalization group method can provide a better understanding
are different again. Infrared divergences resulting from the continuum of low-
energy excitations are encountered quite commonly. Logarithmically singular
corrections to, e.g., the scattering amplitudes, correlation functions, suscep-
tibilities, or thermodynamic quantities are obtained in any order of pertur-
bation theory in the Kondo problem, near the X-ray absorption edge, and in
one-dimensional electron systems, to mention just a few. The renormalization-
group procedure allows the summation of the leading and subleading logarith-
mic terms to all orders of the coupling constants. Other formulations of the
renormalization transformation afford a nonperturbative treatment of the in-
frared divergences. The perhaps most spectacular result was the solution of
the Kondo problem. In this appendix we outline some basic ideas of the ap-
plication of renormalization and scaling to solid-state physics problems.

M.1 Poor Man’s Scaling

The actual renormalization and scaling procedures applied to solid-state
physics problems can be quite different from one another. A common element
in a large class of them is the gradual elimination of degrees of freedom. This
can be the decimation of the lattice points in a lattice model or a reduction
of the bandwidth in an electronic problem. The physics of the transformed
model would normally be different from the original one unless the coupling
constants characterizing the interactions are renormalized. Eventually new
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types of interactions have to be included, e.g., a next-nearest-neighbor inter-
action in a lattice model with only nearest-neighbor interaction. This type
of renormalization is usually called scaling, since the physical properties are
studied under variation of the energy or length scale. The simplest proce-
dure applicable to electronic problems is the “poor man’s scaling” proposed
by P. W. Anderson (1970).

M.1.1 General Considerations

Assume that the electrons lying in a band of width 2D about the Fermi energy
interact with each other or – as in the case of the Kondo problem – with
an impurity. The interaction is characterized by a set of coupling constants
g1, g2, . . . , or J . When the bandwidth is reduced from 2D to 2(D − δD), as
depicted in Fig. M.1, while keeping the density of states constant, the number
of degrees of freedom is reduced.

Fig. M.1. Elimination of a part of the degrees of freedom by reducing the bandwidth

Even though the eliminated states are far from the Fermi energy, the phys-
ical properties of the original system are not correctly reproduced by the new
model. Those high-order scattering processes are missing in which at least
one electron or one hole is found in the vicinity of the upper or lower band
edge, respectively, in an intermediate state. The physical properties may be
made invariant under this reduction of the bandwidth (scaling of the cutoff)
by choosing a renormalized Hamiltonian H′ instead of H. The contribution of
the missing states can be compensated in the simplest case by simultaneously
changing (scaling, renormalizing) the values of the coupling constants. This
may not be sufficient in some cases. New types of couplings, such as many-
particle interactions or retarded, frequency-dependent interactions, may be
needed. The renormalization procedure is relatively simple if the new cou-
plings are not relevant, in the sense that they do not affect the physical be-
havior.

As the bandwidth is successively reduced, a sequence of renormalized
Hamiltonians, H′, H′′, H′′′, etc., and a sequence of couplings, g′i, g′′i , g′′′i ,
etc., are obtained. If the series converges to a fixed-point Hamiltonian H∗, the
fixed-point values of the coupling constants and the way the model approaches
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the fixed point can be used to describe the behavior of the system. If the cou-
pling constant of an interaction weakens in the course of the cutoff scaling
and the fixed-point value vanishes, this interaction can be scaled out of the
problem; it is irrelevant. An interaction is marginal if its coupling constant
remains invariant, while relevant couplings grow during the scaling procedure
to reach a strong-coupling fixed point.

We have not yet specified what we mean by requiring the invariance of the
physical properties under cutoff scaling. Normally the invariance of the free
energy is required in the study of critical phenomena. Anderson proposed
the use of the scattering T -matrix for electronic problems. Its invariance for
scattering of the physically most relevant electrons, those that lie near the
Fermi energy, should be required.

Consider a system described by the Hamiltonian

H = H0 + Hint , (M.1.1)

where H0 is the noninteracting part and Hint is the interaction. The scattering
matrix is defined by

T (z) = Hint + HintG0(z)T (z) , (M.1.2)

where
G0(z) =

1
z −H0

(M.1.3)

is the Green function of the noninteracting system. A projection operator P
is introduced which projects onto states containing at least one electron in
the range (D − δD,D) near the upper band edge or at least one hole in the
range (−D,−D + δD) near the lower band edge. It is used to separate the
contributions of the processes which are not affected by the cutoff scaling from
those which are eliminated in the course of renormalization, in other words
those processes for which all electrons are in the reduced band even in the
intermediate state from those in which at least one electron or one hole lies
near the band edge in one of the intermediate states. Dividing formally the
second term of (M.1.2) into two parts we write

T = Hint + Hint(1 − P )G0T + HintPG0T . (M.1.4)

Iteration of the equation gives

T = Hint + Hint(1 − P )G0T

+HintPG0

[Hint + Hint(1 − P )G0T + HintPG0T
]

=
[Hint + HintPG0Hint

]
+
[Hint + HintPG0Hint

]
(1 − P )G0T

+HintPG0HintPG0T (M.1.5)

=
[Hint + HintPG0Hint + HintPG0HintPG0Hint + · · · ]

+
[Hint + HintPG0Hint + HintPG0HintPG0Hint + · · · ](1 − P )G0T

+HintPG0HintPG0Hint . . . PG0T .
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We treat scattering processes where the electrons and holes of both the
initial and the final states are in the reduced band by considering the reduced
T -matrix

T ′ = (1 − P )T (1 − P ) . (M.1.6)

Multiplying (M.1.5) by 1−P from the left and from the right and neglecting
the last term, which contains an arbitrarily high power of the interaction, the
reduced T -matrix can be written as

T ′ = H′
int + H′

intG0T
′ , (M.1.7)

where

H′
int = (1 − P )

[Hint + HintPG0Hint + HintPG0HintPG0Hint + · · · ](1 − P ) .
(M.1.8)

This shows that the T -matrix remains invariant in the reduced Hilbert space
if the interaction part of the Hamiltonian is renormalized to H′

int.
This derivation does not take into account that the norm of the initial and

final states may be changed in the presence of the interaction. This can be
corrected if the matrix elements of the scattering matrix between the properly
normalized initial and final states,

Tif =
〈f |Hint + HintG0T |i〉

〈f |1 +G0T |f〉1/2〈i|1 +G0T |i〉1/2
, (M.1.9)

are required to remain invariant. The changes in the normalization of the
initial and final states are caused by processes in which the electrons of the
Fermi sea are excited in the intermediate states. Similarly, when calculating
the numerator, we have to take into account processes corresponding to virtual
excitations of the initial and final states. Denoting the physical values of the
coupling constants by g1, g2, g3, etc., and the renormalized values by gj +δgj ,
we require

Tif (D, g1, g2, g3, . . . ) = Tif (D−δD, g1 +δg1, g2 +δg2, g3 +δg3, . . . ) (M.1.10)

for all relevant processes. Written in differential form

∂Tif

∂g1
δg1 +

∂Tif

∂g2
δg2 +

∂Tif

∂g3
δg3 + · · · =

∂Tif

∂D
δD . (M.1.11)

This renormalization procedure was applied in Chapters 32 and 35 to
the one-dimensional electron gas and to the Kondo problem. Some technical
details are given below.

M.1.2 Scaling Theory of the One-Dimensional Electron Gas

The g-ology model of the interacting one-dimensional electron gas was defined
in (32.3.63). We will consider here, for the sake of simplicity, a non-half-filled
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band so that the umklapp processes can be neglected. We will omit the chiral
forward-scattering processes too, since their contribution is not logarithmi-
cally singular. They only give rise to a renormalization of the Fermi velocity.
Three types of scattering process are permitted when a right-moving and
a left-moving electron collide. The coupling constant is denoted by g1‖ − g2‖
when the two particles have identical spins. Backward- and forward-scattering
processes can be distinguished when the electrons participating in the scat-
tering process have opposite spins. The coupling constants are g1⊥ and g2⊥,
respectively.

The perturbative corrections to the renormalized Hamiltonian can be cal-
culated straightforwardly using (M.1.8). The analysis of the term

HintP
1

z −H0
Hint (M.1.12)

requires the enumeration of all processes in which there is an electron in
an intermediate state near the upper band edge in a range of width δD or
a hole near the lower band edge. A simpler procedure is offered if the full
matrix elements are calculated for two-particle scattering processes and the
invariance of the matrix elements is required under a simultaneous scaling of
the bandwidth and the couplings.

To describe two-particle scattering processes, both the initial and the final
states are chosen to contain two extra electrons in addition to the Fermi sea:

|i〉 = c†kF+k,αd
†
−kF+k′,β |ΨFS〉, |f〉 = d†−kF+k+q,γc

†
kF+k′−q,δ|ΨFS〉 .

(M.1.13)
In lowest order in the interaction we find

T
(0)
if = 〈f |Hint|i〉 =

1
L

[
(g1‖−g2‖)δαγδβδδαβ+g1⊥δαγδβδδα,−β−g2⊥δαδδβγδα,−β

]
.

(M.1.14)
The diagrams representing the second-order scattering processes of the

extra electrons are depicted in Fig. M.2.

Fig. M.2. Second-order scattering processes
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A simpler diagrammatic representation is obtained if the interaction is
denoted by a dot. The four diagrams in the upper row and the four diagrams
in the lower row are then represented by the skeleton diagrams shown in
Fig. M.3. This representation has the advantage that the structure of the
diagram, whether it has a particle–particle pair or a particle–hole pair in the
intermediate state, is better seen.

Fig. M.3. Skeleton diagrams representing the second-order processes

The contribution of all these diagrams can easily be determined for the
case when the extra electrons are on the Fermi surface and the only remaining
variable is z. If the matrix elements of the T -matrix are decomposed according
to their spin dependence in the form

Tif =
1
L

[
T‖δαγδβδδαβ + T1⊥δαγδβδδα,−β − T2⊥δαδδβγδα,−β

]
, (M.1.15)

up to second order we find

T‖(z) = g1‖ − g2‖ +
1

2π�vF
g2
1⊥ ln

z

2D
,

T1⊥(z) = g1⊥ +
1

π�vF
g1⊥(g1‖ − g2‖ + g2⊥) ln

z

2D
,

T2⊥(z) = g2⊥ +
1

2π�vF
g2
1⊥ ln

z

2D
.

(M.1.16)

The invariance of these matrix elements under a simultaneous change of the
cutoff and the couplings leads to

δg1‖ − δg2‖ = − 1
2π�vF

g2
1⊥

δD

D
− 1
π�vF

g1⊥δg1⊥ ln
z

2D
,

δg1⊥ = − 1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥)
δD

D

− 1
π�vF

δg1⊥(g1‖ − g2‖ + g2⊥) ln
z

2D

− 1
π�vF

g1⊥(δg1‖ − δg2‖ + δg2⊥) ln
z

2D
,

δg2⊥ = − 1
2π�vF

g2
1⊥

δD

D
− 1
π�vF

g1⊥δg1⊥ ln
z

2D
.

(M.1.17)
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The leading corrections to the change of the couplings are of second order:

δg1‖ − δg2‖ = − 1
2π�vF

g2
1⊥

δD

D
,

δg1⊥ = − 1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥)
δD

D
,

δg2⊥ = − 1
2π�vF

g2
1⊥

δD

D
.

(M.1.18)

These equations were listed in (32.5.46).

Fig. M.4. Skeleton diagrams of the third-order scattering processes

The skeleton diagrams of the next-order scattering processes are depicted
in Fig. M.4. Note that the third-order processes, except for the last two, can
be obtained from the second-order processes of Fig. M.3 by replacing the
elementary interaction with a second-order vertex. These are the so-called
parquet diagrams. Their contributions are proportional to ln2 z/2D. The con-
tributions of the two other diagrams are only proportional to ln z/2D. The
analytic results with the correct combinations of the coupling constants are

T
(3)
‖ (z) =

1
2π2�2v2

F
g2
1⊥(g1‖ − g2‖ + g2⊥) ln2 z

2D

+
1

4π2�2v2
F

[− (g1‖ − g2‖)3 + g2
1⊥g2⊥ − (g1‖ − g2‖)g2

2⊥
]
ln

z

2D
,
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T
(3)
1⊥ (z) =

1
2π2�2v2

F
g1⊥
[
(g1‖ − g2‖ + g2⊥)2 + g2

1⊥
]
ln2 z

2D

+
1

2π2�2v2
F

(g1‖ − g2‖)g1⊥g2⊥ ln
z

2D
, (M.1.19)

T
(3)
2⊥ (z) =

1
2π2�2v2

F
(g1‖ − g2‖ + g2⊥)g2

1⊥ ln2 z

2D

+
1

4π2�2v2
F

[
(g1‖ − g2‖)g2

1⊥ − (g1‖ − g2‖)2g2⊥ − g3
2⊥
]
ln

z

2D
.

In this order we have to take into account the self-energy corrections to
the incoming and outgoing particles represented by the diagrams in Fig. M.5.

Fig. M.5. Third-order processes contributing to the renormalization of the wave-
function of the incoming and outgoing particles

The contributions of the self-energy processes to Tif are easily obtained.
The lowest order expression for Tif given in (M.1.14) has to be multiplied by
the factor

〈ΨFS|ckF+k,α(1 +G0T )c†kF+k,α|ΨFS〉 (M.1.20)
to account for the self-energy correction due to the incoming right-moving
electron. Similar factors,

〈ΨFS|d−kF+k′,β(1 +G0T )d†−kF+k′,β |ΨFS〉 ,
〈ΨFS|d−kF+k+q,γ(1 +G0T )d†−kF+k+q,γ |ΨFS〉 ,
〈ΨFS|ckF+k′−q,δ(1 +G0T )c†kF+k′−q,δ|ΨFS〉 ,

(M.1.21)

account for the self-energy corrections due to the incoming left-moving as
well as the outgoing left- and right-moving fermions, respectively. When all
incoming and outgoing particles are on the Fermi surface, these factors take
the same value:

1 +
1

8π2�2v2
F

[
(g1‖ − g2‖)2 + g2

1⊥ + g2
2⊥
]
ln

z

2D
. (M.1.22)

Similar factors appear due to the proper normalization of the wavefunction of
the incoming and outgoing electrons. Taking all these corrections into account
we find

T
(3)
‖ (z) =

1
2π2�2v2

F
g2
1⊥(g1‖ − g2‖ + g2⊥) ln2 z

2D

+
1

4π2�2v2
F

(g1‖ − g2‖ + g2⊥)g2
1⊥ ln

z

2D
,
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T
(3)
1⊥ (z) =

1
2π2�2v2

F
g1⊥
[
(g1‖ − g2‖ + g2⊥)2 + g2

1⊥
]
ln2 z

2D

+
1

4π2�2v2
F

[
(g1‖ − g2‖ + g2⊥)2g1⊥ + g3

1⊥
]
ln

z

2D
, (M.1.23)

T
(3)
2⊥ (z) =

1
2π2�2v2

F
(g1‖ − g2‖ + g2⊥)g2

1⊥ ln2 z

2D

+
1

4π2�2v2
F

(g1‖ − g2‖ + g2⊥)g2
1⊥ ln

z

2D
.

The renormalized couplings are obtained from the invariance of the sum
of (M.1.16) and (M.1.23). It turns out that the corrections coming from the
ln2 z/2D contributions of the third-order parquet diagrams cancel out and so
do not contribute to the scaling equations. This is a consequence of the self-
consistency of the scaling theory. As the parquet diagrams are generated by
successively replacing a bare vertex with a logarithmic bubble, their lnn z/2D
contributions are generated by solving the scaling equations with the elemen-
tary bubbles as inputs. Only the nonparquet diagrams contribute new terms
to the scaling equations.

The third-order corrections to the renormalized couplings are given by

δg
(3)
1‖ − δg

(3)
2‖ = − 1

4π2�2v2
F

(g1‖ − g2‖ + g2⊥)g2
1⊥

δD

D
,

δg
(3)
1⊥ = − 1

4π2�2v2
F

[
(g1‖ − g2‖ + g2⊥)2g1⊥ + g3

1⊥
]δD
D

,

δg
(3)
2⊥ = − 1

4π2�2v2
F

(g1‖ − g2‖ + g2⊥)g2
1⊥

δD

D
.

(M.1.24)

It is readily seen that the combination g(3)
1‖ − g

(3)
2‖ − g

(3)
2⊥ remains invariant in

this order, too,
δ
(
g
(3)
1‖ − g

(3)
2‖ − g

(3)
2⊥
)

= 0 , (M.1.25)

while

δ
(
g
(3)
1‖ − g

(3)
2‖ + g

(3)
2⊥
)

= − 1
2π2�2v2

F
(g1‖ − g2‖ + g2⊥)g2

1⊥
δD

D
. (M.1.26)

Combining these expressions with the result derived in second order we have

δ(g1‖ − g2‖ + g2⊥) = − 1
π�vF

g2
1⊥
[
1 +

1
2π�vF

(g1‖ − g2‖ + g2⊥)
]δD
D

,

δg1⊥ = − 1
π�vF

g1⊥(g1‖ − g2‖ + g2⊥)
δD

D
(M.1.27)

− 1
4π2�2v2

F

[
(g1‖ − g2‖ + g2⊥)2g1⊥ + g3

1⊥
]δD
D

,
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or in differential form

d(g1‖ − g2‖ + g2⊥)
dD

=
1

π�vF

1
D
g2
1⊥
[
1 +

1
2π�vF

(g1‖ − g2‖ + g2⊥)
]
,

dg1⊥
dD

=
1

π�vF

1
D
g1⊥(g1‖ − g2‖ + g2⊥) (M.1.28)

+
1

4π2�2v2
F

1
D

[
(g1‖ − g2‖ + g2⊥)2g1⊥ + g3

1⊥
]
.

The line g1⊥ = 0 is a fixed line of the model. It describes the Tomonaga–
Luttinger behavior. Otherwise the one-dimensional Fermi gas scales to a
strong-coupling fixed point. Its location, however, cannot be obtained from
this perturbative treatment.

M.1.3 Scaling Theory of the Kondo Problem

Consider an anisotropic Kondo problem where the interaction of the conduc-
tion electrons with the impurity spin S located at the origin is described by
the Hamiltonian

Hint =
1
V

∑

kk′αβ

[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]
c†k′αckβ . (M.1.29)

The first correction to the renormalized interaction defined by (M.1.8) is

δH′
int =

(
1
V

)2 ∑

k1k2αβ

[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]
c†k1αck2β

(M.1.30)

×P 1
z −H0

∑

k3k4γδ

[
J±
(
S+σ−

γδ + S−σ+
γδ

)
+ JzS

zσz
γδ

]
c†k3γck4δ .

We show that this expression, given already in (35.2.43), can be written as

δH′
int =

1
V

∑

kk′αβ

[
δJ±
(
S+σ−

αβ + S−σ+
αβ

)
+ δJzS

zσz
αβ

]
c†k′αckβ (M.1.31)

with appropriately chosen δJ± and δJz.
The expression in (M.1.30) describes a two-step scattering process of an

electron by the impurity if the electron created by c†k3γ in the first step is
destroyed in the second scattering process by the operator ck2β or if the hole
created by ck4δ in the first step is filled by c†k1α in the second step. These
processes were depicted in Fig. 35.14. We therefore have
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δH′
int =

(
1
V

)2 ∑

k1k2k4αβδ

c†k1αck2βP
1

z − ξk2 + ξk4

c†k2βck4δ

×
[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]

×
[
J±
(
S+σ−

βδ + S−σ+
βδ

)
+ JzS

zσz
βδ

]

+
(

1
V

)2 ∑

k1k2k3αβγ

c†k1αck2βP
1

z − ξk3 + ξk1

c†k3γck1α

×
[
J±
(
S+σ−

αβ + S−σ+
αβ

)
+ JzS

zσz
αβ

]

×
[
J±
(
S+σ−

γα + S−σ+
γα

)
+ JzS

zσz
γα

]
.

(M.1.32)

The projection operator selects those processes in which there is at least one
electron near the upper band edge or one hole near the lower band edge.
Otherwise the projection gives zero. Hence the first term gives nonvanishing
contribution if the energy of the state with wave vector k2 is in the range
betweenD−δD andD. The energy will be approximated byD and ck2βc

†
k2β =

1, since the states near the upper band edge are empty. Similarly, the energy of
the state with wave vector k1 has to be in the range between −D and −D+δD
in the second term. It can be approximated by −D, and c†k1βck1β = 1, since
the states near the lower band edge are filled in the Fermi sea. Taking a
constant density of states ρ in the band, using the multiplication rules of
the Pauli matrices [see (F.3.11)] and the commutation relations of the spin
operators, the summation over the repeated momenta and spin indices can be
performed. We get

δH′
int =

1
2V

∑

k1k4αδ

δDρ

z −D + ξk4

c†k1αck4δ

[
J2
±

1
2

(
S+S− + S−S+

)
δαδ

+J2
z (Sz)2δαδ − J±Jz

(
S+σ−

αδ + S−σ+
αδ

)− J2
±S

zσz
αδ

]
(M.1.33)

+
1

2V

∑

k2k3βγ

δDρ

z − ξk3 −D
ck2βc

†
k3γ

[
J2
±

1
2

(
S+S− + S−S+

)
δβγ

+J2
z (Sz)2δβγ + J±Jz

(
S+σ−

βγ + S−σ+
βγ

)
+ J2

±S
zσz

βγ

]
.

Both terms give a spin-independent contribution. They cancel each other
for a symmetric band. The remaining terms have the same spin structure
as the original anisotropic Kondo Hamiltonian. They can indeed be written
after a change of the summation variables in the form given by (M.1.31).
Assuming that the scattered electrons are near the Fermi surface and their
energy, measured from the chemical potential, can be neglected compared to
the bandwidth we find

δJ± = − ρ δD

z −D
J±Jz , δJz = − ρ δD

z −D
J2
± . (M.1.34)
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No new couplings are generated apart from the uninteresting potential scat-
tering. The renormalized couplings depend, however, on the energy variable
z. Neglecting this energy compared to the cutoff we have

δJ± =
ρ δD

D
J±Jz , δJz =

ρ δD

D
J2
± . (M.1.35)

When they are written in differential form, we have to take into account
that the change in the coupling was determined under a change −δD of the
bandwidth, that is

δJi = −dJi

dD
δD . (M.1.36)

Therefore the differential form of the scaling equations is

dJ±
dD

= − ρ

D
J±Jz ,

dJz

dD
= − ρ

D
J2
± . (M.1.37)

It follows from these equations that the isotropic antiferromagnetic Kondo
coupling (J > 0 in our notation) is relevant. J scales toward a strong-
coupling fixed point as the bandwidth is reduced. This necessitates consid-
eration of higher order corrections to the scaling equations. One can readily
draw the third-order diagrams representing one-particle scattering processes,
where there is one electron or one hole in the intermediate states. They are
displayed in Fig. M.6.

Fig. M.6. Scattering processes contributing to the renormalized Hamiltonian in
third order. Heavy lines indicate electrons or holes lying in the range between D−δD
and D or between −D and −D + δD

It is no longer true that H′
int only describes one-particle scattering pro-

cesses. Two possible two-particle scattering processes are displayed in Fig. M.7.

Fig. M.7. Third-order two-particle scattering processes
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Moreover, as mentioned earlier, the renormalization of the initial and final
states also have to be taken into account as we go to higher orders. We will
therefore define the renormalized couplings in agreement with (M.1.10) and
(M.1.11) by requiring the invariance of the matrix elements of the T -matrix
between the initial and final states,

|i〉 = c†kα|ΨFS〉|M〉 , |f〉 = c†k′β |ΨFS〉|M ′〉 , (M.1.38)

containing one extra electron added to the Fermi sea right at the Fermi surface.
|M〉 and |M ′〉 denote the state of the impurity spin as the eigenvalue of Sz.
The extra electrons and holes can be anywhere in the entire band in the
intermediate states. Up to second order in the interaction we have

Tif =
[
J±
(
S+

M ′Mσ
−
βα + S−

M ′Mσ
+
βα

)
+ JzS

z
M ′Mσ

z
βα

]

−
[
J±Jz

(
S+

M ′Mσ
−
βα + S−

M ′Mσ
+
βα

)
+ J2

±S
z
M ′Mσ

z
βα

]
ρ ln

z

D
,

(M.1.39)

where

S±
M ′M = δM ′,M±1

√
S(S + 1) −M(M ± 1) ,

Sz
M ′M = δM,M ′M ,

(M.1.40)

and a volume factor has been dropped. The invariance of these matrix elements
under a scaling transformation leads to (M.1.37).

When the matrix element is determined in third order, one has to take
into account the change in the norm of the initial and final states associated
with the polarization of the impurity spin owing to the interaction with the
Fermi sea. Figure M.8 shows all processes contributing to the matrix element
in third order.

Fig. M.8. Third-order scattering processes

Their contributions give
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ΔT (3)
if =

[
1
4

(
J±J2

z + J3
±
)(
S+

M ′Mσ
−
βα + S−

M ′Mσ
+
βα

)

+ 1
2J

2
±JzS

z
M ′Mσ

z
βα

]
ρ2 ln

z

D

+
[

1
2

(
J±J2

z + J3
±
)(
S+

M ′Mσ
−
βα + S−

M ′Mσ
+
βα

)

+ J2
±JzS

z
M ′Mσ

z
βα

]
ρ2 ln2 z

D
.

(M.1.41)

Substituting this expression into (M.1.11) the terms arising from the ln2(z/D)
corrections to the matrix element (the contributions of the parquet diagrams
depicted in the first and second lines in Fig. M.8) drop out indicating the
self-consistency of the scaling procedure, and the scaling equations take the
form

dJ±
dD

= − ρ

D

[
J±Jz − 1

4

(
J±J2

z + J3
±
)
ρ+ · · · ] ,

dJz

dD
= − ρ

D

[
J2
± − 1

2J
2
±Jzρ+ · · · ] .

(M.1.42)

The calculation of further corrections becomes increasingly difficult. That is
why a nonperturbative approach is necessary to get the true low-temperature
behavior.

M.2 Numerical Renormalization Group

The numerical renormalization group (NRG) proposed by K. G. Wilson

is ideally suited to solve quantum impurity problems with local interaction
between the band electrons and the internal degrees of freedom of the impurity.
In contrast to the usual renormalization-group transformations, where the flow
of the coupling constants is considered as the bandwidth (more generally the
number of degrees of freedom) is gradually reduced, the flow of the low-lying
energy levels is studied in the numerical renormalization group as the size of
the system increases and more and more degrees of freedom are incorporated
in the iterative diagonalization of the Hamiltonian.

The key element in the calculation is the transformation of the Hamiltonian
into a hopping model on a semi-infinite chain. The impurity sits at one end
of the chain and the most relevant degrees of freedom of the electron system
interact with it locally. The hopping amplitude decreases exponentially far
from the impurity. The energy spectrum can then be calculated numerically
with good precision by adding successively one extra site in each step of the
iterative procedure.

The first step is the transformation of the Hamiltonian, which is usually
given in three-dimensional k-space representation, into a one-dimensional en-
ergy representation. This is particularly simple for a spherical Fermi surface
when the Kondo coupling Jkk′ is independent of k and k′. We first rewrite
the interaction part of the Hamiltonian of the Kondo problem,
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H =
∑

kσ

εkc
†
kσckσ +

1
V

∑

kk′
αβ

JS · σαβc
†
k′αckβ (M.2.1)

in terms of the field operator at the position of the impurity as

HK = J
∑

αβ

S · σαβψ̂
†
α(0)ψ̂β(0) , (M.2.2)

where
ψ̂α(r) =

1√
V

∑

k

eik·rckα . (M.2.3)

In the continuum limit, where the discreteness of the k vectors can be ne-
glected,

ψ̂α(r) =
1√
V

V

(2π)3

∫
eik·rckα dk . (M.2.4)

On the other hand, if the field operator is given as a Fourier integral,

ψ̂α(r) =
1

(2π)3/2

∫
ψ̂kαeik·r dk . (M.2.5)

Comparison of the two expressions shows that the continuum limit of the
creation and annihilation operators is defined by

√
V

(2π)3
ckα → ψ̂kα ,

√
V

(2π)3
c†kα → ψ̂†

kα . (M.2.6)

In the continuum limit

V

(2π)3
δkk′ → δ(k − k′) ; (M.2.7)

hence, the operators ψ̂kα and ψ̂†
k′β satisfy the anticommutation relations

[
ψ̂kα, ψ̂

†
k′β

]
+

= δα,βδ(k − k′) . (M.2.8)

Since only s-waves are scattered by a contact potential, it is convenient to
use orbital-momentum eigenstates and to expand the creation and annihila-
tion operators in terms of spherical waves in the form

ψ̂kα =
1
k

∞∑

l=0

l∑

m=−l

Y m
l

∗(θk, ϕk)cklmα ,

ψ̂†
kα =

1
k

∞∑

l=0

l∑

m=−l

Y m
l (θk, ϕk)c†klmα .

(M.2.9)

Inverting this transformation yields
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cklmα = k

2π∫

0

π∫

0

sin θkdθkdϕkY
m
l (θk, ϕk)ψ̂kα ,

c†klmα = k

2π∫

0

π∫

0

sin θkdθkdϕkY
m
l

∗(θk, ϕk)ψ̂†
kα ,

(M.2.10)

which implies that these operators satisfy the usual fermionic anticommuta-
tion relations

[
cklmα, c

†
k′l′m′β

]
+

= δl,l′δm,m′δα,βδ(k − k′) . (M.2.11)

The orbital wavefunction of the state created by c†klmα,

φklm(r) = ilk
(

2
π

)1/2

Y m
l (θr, ϕr)jl(kr) , (M.2.12)

is readily obtained from the relation
∫

1
(2π)3/2

e−ik·rilk′
(

2
π

)1/2

jl(k′r)Y m
l (θr, ϕr)dr =

1
k
Y m

l (θk, ϕk)δ(k − k′) ,

(M.2.13)
which can be derived by expanding the plane wave in spherical harmonics
according to (C.4.38) and making use of the orthogonality of the spherical
harmonics as well as the relation

∞∫

0

jl(kr)jl(k′r)r2dr = 1
2

π

k2
δ(k − k′) (M.2.14)

between the spherical Bessel functions. The functions φklm(r) form a complete
orthonormal set.

It is crucial for the further calculations to realize that the local interaction
with the impurity involves only the l = 0, m = 0 s-waves, since

ψ̂α(0) =
1

(2π)3/2

∫
ψ̂kα dk =

√
4π

(2π)3

∫
kdk ck00α . (M.2.15)

Since the natural variable is the energy measured from the Fermi energy and
not the wave number, we express the operators in energy variables by intro-
ducing

cα(ε) =
[
dεk

dk

]−1/2

ck00α (M.2.16)

with ε = εk. These operators satisfy the anticommutation relation

[
cα(ε), c†β(ε′)

]
+

= δα,β

[
dεk

dk

]−1

δ(k − k′) = δα,βδ(ε− ε′) . (M.2.17)
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Using these operators,

ψ̂α(0) =

√
1

2π2

∫
kdk

[
dεk

dk

]1/2

cα(ε) =
∫

dε
[
ρσ(ε)

]1/2
cα(ε) , (M.2.18)

where

ρσ(ε) =
1
V

∑

k

δ(ε− εk) =
1

2π2
k2

(
dεk

dk

)−1

(M.2.19)

is the density of states per spin. Assuming a finite band of width 2D situated
symmetrically around the Fermi energy and taking a constant density of states
ρσ(0),

ψ̂α(0) =
[
ρσ(0)

]1/2

D∫

−D

dε cα(ε) . (M.2.20)

It is convenient to use D as the energy unit and to work in terms of the
dimensionless variable ε̃ = ε/D. If the operators are rescaled as cσ(ε̃) =√
Dcσ(ε) to satisfy the anticommutator

[
cσ(ε̃), c†σ′(ε̃′)

]
+

= δσ,σ′δ(ε̃− ε̃′) , (M.2.21)

we have

ψ̂α(0) =
[
Dρσ(0)

]1/2

1∫

−1

dε̃ cα(ε̃) ≡ [2Dρσ(0)
]1/2

f0,α , (M.2.22)

where the fermionic operator f0,α and its adjoint are defined by

f0,α =
1√
2

1∫

−1

dε̃ cα(ε̃) , f†0,α =
1√
2

1∫

−1

dε̃ c†α(ε̃) . (M.2.23)

The interaction Hamiltonian then takes the form

HK = DJρ
∑

αβ

S · σαβf
†
0,αf0,β , (M.2.24)

where ρ is the full density of states.
The kinetic energy of the band electrons can be transformed similarly. For

an isotropic dispersion relation, when εk depends only on k = |k|, the kinetic
energy is

H0 =
∑

kσ

εkc
†
kσckσ =

V

(2π)3
∑

σ

∫
dk εkc

†
kσckσ

=
∑

σ

∫
dk εkψ̂

†
kσψ̂kσ =

∑

lmσ

∫
dk εkc

†
klmσcklmσ .

(M.2.25)
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Keeping again only the l = 0 partial waves and working in the energy repre-
sentation, for a band of width 2D we find

H0 =
∑

σ

∫
dk εkc

†
k00σck00σ =

∑

σ

D∫

−D

dε εc†σ(ε)cσ(ε) , (M.2.26)

while in terms of the scaled energy variables we have

H0 = D
∑

σ

1∫

−1

dε̃ ε̃c†σ(ε̃)cσ(ε̃) . (M.2.27)

In what follows, the notation ε will be used instead of ε̃.
The next step is the reduction of the continuous energy spectrum to a

discrete set of states in a special way to properly account for the logarithmic
nature of the perturbative corrections. The energy range [−1, 1] is divided into
an infinite set of intervals at the points ±Λ−n, n = 0, 1, 2, . . . , as shown in
Fig. M.9, with a discretization parameter Λ > 1.

Fig. M.9. Logarithmic discretization of the conduction band. The Fermi energy is
in the middle of the band

Each interval still has an infinite number of states in the continuum limit.
A complete set of states can be introduced in each interval by the definition

ψ±
np(ε) =

⎧
⎪⎨

⎪⎩

Λn/2

(1 − Λ−1)1/2
e±iωnpε for Λ−(n+1) < ±ε < Λ−n,

0 outside this interval,
(M.2.28)

with ωn = 2π/(Λ−n − Λ−(n+1)) and p takes all integer values between −∞
and +∞. The electron operators can be expanded in the basis

cσ(ε) =
∑

np

[
anpσψ

+
np(ε) + bnpσψ

−
np(ε)

]
, (M.2.29)

where the operators anpσ and bnpσ obey the standard fermionic anticommu-
tation relations. The operator f†0σ introduced in (M.2.23), which couples to
the impurity, is

1√
2

1∫

−1

dε cσ(ε) =
1√
2
(1 − Λ−1)1/2

∑

n

Λ−n/2
(
an0σ + bn0σ

)
. (M.2.30)
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Since it contains only the p = 0 components, we will only keep these terms in
expansion (M.2.29). This is equivalent to taking a single state, an average, in
each interval. The kinetic energy then has the form

H0 = D 1
2

(
1 + Λ−1

)∑

nσ

Λ−n
(
a†n0σan0σ − b†n0σbn0σ

)
. (M.2.31)

The third step is the conversion of the full Hamiltonian to a hopping form
on a semi-infinite chain. This is achieved by a Lanczos tridiagonalization.1
Since the state created by the operator f†0,σ from the vacuum,

|0, σ〉 = f†0,σ|0〉 , (M.2.32)

is not an eigenstate of the kinetic energy H0, we define a state |1, σ〉 using the
Gram–Schmidt orthogonalization procedure via

|1, σ〉 =
1
γ0

[
H0|0, σ〉 − |0, σ〉〈0, σ|H0|0, σ〉

]
, (M.2.33)

where γ0 is a normalization factor. It is also the matrix element of the Hamil-
tonian between |0, σ〉 and |1, σ〉. A new component,

|2, σ〉 =
1
γ1

[
H0|1, σ〉 − |1, σ〉〈1, σ|H0|1, σ〉 − |0, σ〉〈0, σ|H0|1, σ〉

]
, (M.2.34)

which is orthogonal to both |0, σ〉 and |1, σ〉, appears when the Hamiltonian
acts on |1, σ〉. Repetition of this procedure leads us in the nth step to a state

|n, σ〉 =
1

γn−1

[
H0|n− 1, σ〉 − |n− 1, σ〉〈n− 1, σ|H0|n− 1, σ〉

− |n− 2, σ〉〈n− 2, σ|H0|n− 1, σ〉
]
.

(M.2.35)

It follows from this construction that H0 has nonvanishing nondiagonal matrix
elements only between neighboring sites. The kinetic energy can be written
in second quantization in the form

H0 =
∑

nσ

εnf
†
n,σfn,σ +

∑

nσ

(
γnf

†
n,σfn+1,σ + γ∗nf

†
n+1,σfn,σ

)
, (M.2.36)

where f†n,σ creates the state |n, σ〉 from the vacuum. This is indeed the Hamil-
tonian of electrons hopping between nearest neighbors along a semi-infinite
chain, the index n being the site index. The parameters, the site energy εn

and the hopping amplitude γn, can be calculated from the dispersion relation
of the conduction electrons. Taking a constant density of states one finds

εn = 0 , γn ≈ 1 + Λ−1

2Λn/2
. (M.2.37)

1
C. Lanczos, 1950.
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The diagonal elements vanish because |n, σ〉 is an equal mixture of positive-
and negative energy states with energy zero. Taking into account the interac-
tion with the impurity, the Kondo model is finally mapped onto a tight-binding
model on a semi-infinite chain with the impurity sitting at site n = 0,

H/D = C
∑

n,σ

Λ−n/2
[
f†n,σfn+1,σ + f†n+1,σfn,σ

]

+ Jρ
∑

αβ

S · σαβf
†
0,αf0,β ,

(M.2.38)

with C = (1 + Λ−1)/2. The electrons hop between nearest-neighbor sites. If,
eventually, they hop to the impurity site, they interact with the spin of the
impurity. The impurity spin and the electron spin can be flipped simultane-
ously.

In the fourth step the physically interesting low-energy part of the spec-
trum is calculated by an iterative diagonalization. Assume that we know the
spectrum for a chain of N sites (N  1) described by the Hamiltonian

HN/D = C

N−1∑

n=0

∑

σ

Λ−n/2
[
f†n,σfn+1,σ + f†n+1,σfn,σ

]

+ Jρ
∑

αβ

S · σαβf
†
0,αf0,β .

(M.2.39)

The renormalization-group transformation consists of (a) adding one extra site
of the chain in each step of the iterative scheme, (b) diagonalizing the new
Hamiltonian with N + 1 sites, and (c) studying the flow of the energy levels.
Since the hopping amplitude decreases as Λ−n/2 the splitting of the energy
levels diminishes gradually as we proceed. Therefore a scale factor Λ(N−1)/2

is introduced and the renormalization-group transformation is performed on

HN = Λ(N−1)/2

{N−1∑

n=0

∑

σ

Λ−n/2
[
f†n,σfn+1,σ + f†n+1,σfn,σ

]

+ J̃
∑

αβ

S · σαβf
†
0,αf0,β

} (M.2.40)

with J̃ = 2Jρ/(1 + Λ−1), where the smallest term is of order unity and the
recursion relation is

HN+1 = Λ1/2HN +
∑

σ

[
f†N,σfN+1,σ + f†N+1,σfN,σ

]
. (M.2.41)

The original Hamiltonian is obtained via

H/D = lim
N→∞

CΛ−(N−1)/2HN . (M.2.42)
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The number of states increases exponentially as new sites are added. This
is avoided by a truncation procedure. A fixed number of low-lying levels (typ-
ically of the order 103) are kept in each step of the iterative diagonalization.
The higher lying levels are discarded before a new site is added to the chain.
The splitting of the levels is evaluated numerically and the flow of the low-
lying part of the energy spectrum is studied as the chain length increases.
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experimental study, 261–268
theory of, 242–260

Diffusion, 537
Diffusion coefficient, 358, 538

for electrons, 537
in selected semiconductors, 539

Diffusion length, 539
Diffusion potential, 529, 538
Diffusion region, 548
Digamma function, 619
Dihedral group, 130
Dimerized chain, 337, 345–348
Dingle factor, 326
Dingle temperature, 326
Dipole approximation, 435, 436
Dipole–dipole interaction, 70, 80, 463,

661
Dirac delta function, 615
Direct exchange, 463–464
Direct gap, 211

Direct-gap semiconductors, 211
Direct lattice, 122
Director, 25
Dirichlet’s construction, 117, 85

in reciprocal lattice, 123
Disclinations, 290

screw, 291
wedge, 291

Discommensuration, 374
Discotic columnar phase, 28
Discotic nematic phase, 25, 26
Dislocation line, 284
Dislocations, 283–292

edge, 284, 285
mixed, 285, 286
partial

Frank, 297
Shockley, 295

screw, 285
Disorder

annealed, 566
diagonal, 538
off-diagonal, 538
quenched, 566
topological, 303

Disordered Alloy, 532
Disordered systems, 531–575
Dispersion

in ionic crystal, 430
Dispersion relation

in 1D XY model, 573
of antiferromagnetic magnons, 520,

543
of antiholons, 286
of ferromagnetic magnons, 518, 524
of holons, 284
of phonons, 395
of spinons

in 1D Hubbard model, 281
in isotropic antiferromagnet, 571

Distribution function
Bose–Einstein, see Bose–Einstein

statistics
Fermi–Dirac, see Fermi–Dirac

statistics
in relaxation-time approximation, 373
Maxwell–Boltzmann, see

Maxwell–Boltzmann distribution
nonequilibrium, 362
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n-particle, 15
of quasiparticles, 221
pair, 44
radial, see Radial distribution

function
stationary, 49
two-particle, 17

Divacancy, 280
Divalent metals, 182
DMTCNQ, 382
Domains, 508–513
Domain wall, 504

width of, 511
Donor, 219
Donor–acceptor salt, 76, 382
Donor level, 222

thermal population of, 227
Donor molecule, 76, 382
Doped semiconductors, 219
Double exchange, 468–469
Double group, 179, 641–642
Double hexagonal close-packed

structure, see Hexagonal crystal
structures, double close-packed

Dresselhaus splitting, 84, 209
Drift velocity, 5
Drude–Lorentz model, 2, 1, 23
Drude model, 1–23

failures of, 22
Drude peak, 15, 120
Drude weight, 16
Drude–Zener model, 424
Dulong–Petit law, 384
d-wave superconductor, 449, 451, 492
Dynamical correlations, 53
Dynamical interactions, 534
Dynamical matrix, 356
Dynamical structure factor, 440, 659,

54, 67
and scattering cross section, 58

Dynamical susceptibility, 127
transverse, 133

Dyson equation, 534, 642
Dyson–Maleev transformation, 531, 534

E2 structure, 204
E21 structure, 209
Easy axis of magnetization, 472
Easy plane of magnetization, 472

Edge dislocation, 284, 285
Edge states, 294, 409
Edwards–Anderson model, 569
Edwards–Anderson order parameter,

569
Effective Hamiltonian, 603
Effective interaction, 344
Effective magnetic moment, 58
Effective magneton number, 58
Effective mass, 41

in compound semiconductors, 210
in Hartree–Fock approximation, 37
in selected heavy-fermion compounds,

453
of Bloch electrons, 93
of electrons in germanium, 208
of electrons in silicon, 205
of holes, 96
of holes in germanium, 208
of holes in silicon, 206
of quasiparticles, 182, 229
tensor, see Effective-mass tensor

Effective-mass tensor, 95, 246
inverse, see Inverse effective-mass

tensor
Efros–Shklovskii law, 553
Einstein–de Haas experiment, 45
Einstein model, 387–389
Einstein relation, 538
Elastic constants, 363

Lamé, see Lamé constants
of crystals, 367–371
Voigt, see Voigt elastic constants

Elastic waves, 363–367
Electrical conductivity, 5
Electric breakdown, 274
Electric current, 7, 47, 49, 53, 358, 362
Electrochemical potential, 53, 360
Electrodynamics

of charge-density waves, 375
of superconductors, 474

Electron
conduction, 2
core, 2, 157
valence, 2

Electron affinity, 173
Electron–electron interaction, 1–14

approximate treatments, 17
effective, 344, 355



Subject Index 723

Electron gas
at finite temperatures, 34
classical, 2
compressibility of, 43
density of states for, 32
entropy of, 43
equation of state for, 42
ground state of, 28
homogeneous, 6
magnetic properties of, 20
specific heat of, 40
susceptibility of, 44

Electron–hole excitations, 35, 446, 175,
186

bound, see Exciton
continuum of, 56, 175, 187, 199,

246
in 1D electron gas, 246
in semiconductors, 534, 199

Electron–hole liquid, 205
Electron–ion interaction, 334
Electron paramagnetic resonance, 61
Electron–phonon interaction, 193,

333–342
consequences of, 343
Hamiltonian of, 333

Electron–photon interaction, 440
Electron spectroscopy for chemical

analysis, 191
Electron spin resonance, 61
Electron states

finite lifetime of, 344
localized, 73

Elementary excitations
fermionic, 213
in magnetic systems, 515
magnons, 524
one-particle, 176
phonons, see Phonons
plasmon, 194
spinons, 570, 586, 280
zero sound, 194

Eliashberg equations, 452, 441, 450
Empty-lattice approximation, 109
Energy current, 248
Energy gap, see Gap
Energy of quasiparticles, 184
Energy spectrum

in strong magnetic field, 277

in tight-binding approximation, 139
in magnetic field, 302

of Bloch electrons, 80
in strong magnetic field, 297

Entropy
configurational, 276
of electron gas, 43
of superconductors, 460, 427, 429
of vortices in XY model, 554

EPR, see Electron paramagnetic
resonance

Equation of motion
semiclassical, 243

Equation-of-motion method
for Green functions, 177, 628
for response function, 598
for susceptibility, 129

Equation of state
for crystal, 418–420
for electron gas, 42

Equipartition theorem, 384, 4
Equivalent wave vectors, 190, 82
Esaki diode, 556
ESCA, see Electron spectroscopy for

chemical analysis
ESR, see Electron spin resonance
Ettingshausen effect, 63
Euler equation, 510
Euler–Lagrange equation, 359
Euler–Maclaurin formula, 295
Euler–Mascheroni constant, 620
Euler’s constant, see Euler–Mascheroni

constant
Euler’s gamma function, 619
Evjen’s method, 84
Ewald construction, 264–265

for Laue method, 266
for powder method, 268
for rotating-crystal method, 267

Ewald’s method, 84
Madelung energy of NaCl crystal, 86

Ewald sphere, 264
EXAFS, see Extended X-ray absorption

fine structure
Exchange

direct, see Direct exchange
double, see Double exchange
Heisenberg, see Direct exchange
indirect, see Indirect exchange
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super-, see Superexchange
Exchange–correlation energy, 164
Exchange–correlation potential, 165
Exchange coupling, 464
Exchange energy, 464, 525
Exchange Hamiltonian, 464
Exchange hole, 50
Exchange integral, 92, 463
Exchange interaction, 42, 463
Exchange potential, 26, 142
Exchange splitting, 325
Excitation function, 580
Excitations

collective, see Collective excitations
electron–hole pair, 186
elementary, see Elementary

excitations
in interacting electron gas, 175
in SDW state, 348
magnetic, 205
one-particle, 176
Stoner, 327
topological, see Topological excita-

tions
transverse, 197

Excited states, 31
in normal Fermi systems, 212
in superconductors, 414

Exciton, 440, 199
Frenkel, 203
Wannier, 200

Excitonic insulator, 204
Exclusion principle, see Pauli exclusion

principle
Extended X-ray absorption fine

structure, 269, 309
Extended-zone scheme, 85
Extinction coefficient, 416
Extinction length, 263
Extrinsic range, 230
Extrinsic semiconductors, 219

Fabre salts, 385
Face-centered Bravais lattice

cubic, 154
orthorhombic, 152

Face-centered cubic structures, 214–221
Factorial function, 619

Faithful representation of point groups,
130

Faraday effect, 513
F -center, 282
Fermi contact term, 71, 72, 661
Fermi–Dirac distribution function, 34,

49, 93, 222
Fermi–Dirac statistics, 2, 34, 47, 92, 98
Fermi edge, 16

absence of ∼ in TL model, 269
Fermi energy, 28

for Bloch states, 88
Fermi hole, 50, 165
Fermi integral, 612, 36
Fermi liquid

charged, 239
Landau’s theory of, 216–242
local ∼ theory, 514
normal, 211
stability condition of, 233
susceptibility of, 226
thermodynamic properties of, 222

Fermi-liquid parameters, 219
Fermi momentum, 28
Fermion–boson equivalence, 655
Fermi pseudopotential, 247, 439, 659
Fermi sea, 28
Fermi sphere, 28
Fermi surface, 89

for nearly free electrons, 136
in empty lattice, 115
large, 525
of aluminum, 184
of copper, 181
of divalent metals, 182
of lead, 185
of molybdenum, 186
of monovalent metals, 178
of noble metals, 180
of sodium, 179
of trivalent metals, 183
of tungsten, 186
small, 525

Fermi system
normal, 14

Fermi temperature, 37
Fermi velocity, 29
Fermi wave number, 28
Ferrimagnetic materials, 461–462
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Ferrimagnetism, 461–462
Ferromagnetic instability, 323
Ferromagnetic materials, 450–453
Ferromagnetism, 450–453, 470

in homogeneous electron gas, 323
Stoner model, 324

FET, see Field-effect transistor
Feynman diagrams, 629
Feynman rules, 640
Fibonacci chain, 317–323
Fick’s law, 537, 548
Field-effect transistor, 545, 560

junction, 560
MOSFET, see MOSFET
spin, 576

Field operator, 596
Final-state interaction, 442
Fine structure

of energy levels, 40
of paramagnetic resonance, 68

Fine-structure constant, 36
First theorem of condensed-matter

physics, 199
Fixed point, 502, 507, 685

in localization theory, 556, 560
of the 1D Hubbard model, 305, 309
of the g-ology model, 692
of the Kondo model, 506, 512, 694

Flip-over process, see Umklapp process
Floquet’s theorem, 186
Fluctuation–dissipation theorem, 52,

591
Fluorite structure, 204, 219
Fluxoid, 481, 490
Flux quantization, 481, 489
Flux quantum, 587, 282, 454
Fock–Landau spectrum, 291
Fock space, 590
Fock term, 26, 633
Forbidden band, see Gap
Force constants, 337
Form factor

atomic, 249
magnetic, 249

Forward bias, 542
Forward scattering, 258

boson representation, 295
Fourier’s law, 9
Fourier transform, 601–609

FQHE, see Fractional quantum Hall
effect

Fractional quantum Hall effect, 410,
313–319

Frank partial dislocation, 297
Free-electron model, 1–76
Free electrons, see also Electron gas

density of states, 32
Drude model, 2
equation of state, 42
in a magnetic field, 277
Sommerfeld model, 24

Free energy
in Ginzburg–Landau theory, 483
of superconductors, 428
of vortices in XY model, 555

Free energy (Gibbs), see Gibbs free
energy

Free energy (Helmholtz), see Helmholtz
free energy

Free enthalpy, see Gibbs free energy
Freeze-out range, 230
Frenkel defect, 283
Frenkel exciton, 203
Fresnel equations, 259, 418
Friedel oscillations, 69, 92
Friedel sum rule, 72
Fröhlich Hamiltonian, 357, 360
Fröhlich model, 355, 357
Fröhlich superconductivity, 376
Frustration, 576, 584, 567
f -sum rule, 437, 598

longitudinal, 595
Fullerene, 30, 76
Fullerides

alkali, 465
Fullerite, 30, 221, 465

infrared absorption in, 432
Raman scattering in, 435

Galvanomagnetic effects, 61
Gamma function, 619
γ-selenium structure, 204
Gantmakher effect, 270
Gap, 89, 199

in alkali halides, 200
in CDW state, 362
in compound semiconductors, 199
in elemental semiconductors, 198
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in magnon spectrum of anisotropic
antiferromagnets, 546

in SDW state, 352
in semiconductors, 200
in superconductors, 458, 416, 422

Gapless superconductivity, 432
Gauge invariance, 483, 506
Gauge-invariant phase difference, 506
Gauge symmetry

broken, 485
Gauge transformation, 486, 489
Gaussian function

Fourier transform of, 609
Gaussian system of units, 590
Gauss’s law, 63
Gell-Mann and Low theorem, 637
Gell-Mann matrices, 646
Generalized gradient approximation,

172
Generalized susceptibility, 580
Generation current, 554
Generation of carriers, 534
Germanium, 76, 91, 197

band structure of, 206
cyclotron resonance in, 262
dielectric constant of, 221
effective mass of electrons in, 208
effective mass of holes in, 208

g-factor
electron, 45, 588
Landé, 54
neutron, 68, 588
proton, 68, 588

GGA, see Generalized gradient
approximation

Giant magnetoresistance, 573
Giant quantum oscillation, 268
Gibbs free energy, 277, 470

of superconductors, 471, 492
Gibbs potential, see Gibbs free energy
Ginzburg criterion, 425
Ginzburg–Landau coherence length, 487
Ginzburg–Landau equations, 483

derivation of, 438, 650
Ginzburg–Landau parameter, 491
Ginzburg–Landau theory, 482–501
Glass, 21

metallic, see Metallic glass
spin, see Spin glass

Glide line, 158
Glide plane, 158
Glide reflection, 158
GMR, see Giant magnetoresistance
Goldstone bosons, 200, 397, 212
Goldstone’s theorem, 200, 397, 546,

547, 486, 322
g-ology model, 257, 686
Gorkov equations, 438, 646
Gorter–Casimir model, 474
Graded junction, 526
Grain boundaries, 293, 298

tilt, 298
twist, 298

Grand canonical ensemble, 318, 407,
613

Grand canonical potential, 42, 318
Graphite structure, 204, 229, 231
Graph technique

at finite temperatures, 642
at T = 0, 635

Gray groups, 168
Green function, 177, 611–645

advanced, 612
and density of states, 622
anomalous, 438, 443, 646, 648
causal, 612
equation of motion, 177, 628
for Tomonaga–Luttinger model, 269
in superconductivity, 645–652
Matsubara, 624
of Bloch electrons, 105, 179
of free electrons, 65, 178
of phonons, 442, 616
one-particle, 612
retarded, 612
temperature, 624

Green function method, 168
Green–Kubo formula, 108
Griffiths inequality, 497
Ground state

in BCS theory, 404
of antiferromagnet, 543–544

and the Néel state, 543, 568
of antiferromagnetic chain, 566
of crystal lattice, 410–413
of electron gas, 28
of ferromagnet, 522
of Hubbard chain, 276
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of normal Fermi systems, 214
of spin-density-wave state, 346
of superconductors, 404

Group
Abelian, 187
black-and-white, 167
Bravais, 140
continuous, 642
cyclic, 130
definition, 633
dihedral, 130
double, 179, 641
icosahedral, 131
Lie, 643
magnetic, 167
octahedral, 130
of translations, 110
Oh, 134
orthogonal, 127, 642
point, see Point groups
rotation, 127, 642
Shubnikov, 167
space, see Space groups
special orthogonal, 127
tetrahedral, 130
uniaxial, 130
unitary, 643

Group theory, 633–651
Grüneisen parameter, 419
Grüneisen relation, 425
Gutzwiller approximation, 484
Gyromagnetic ratio, 45

H1 structure, 204
H11 structure, 223
Hagen–Rubens relation, 425
Haldane gap, 579
Half-Heusler structure, 223
Hall angle, 14
Hall coefficient, 12, 382

of selected metals, 13
Hall effect

classical, 11, 381–383
quantum, see Quantum Hall effect
spin, 576

Hall liquid, 313
Hall resistance, 11
Hall voltage, 11
Halogens, 91

Hamiltonian
effective, 603
of electron–phonon interaction,

333, 616
of free electron gas, 31
of Fröhlich model, 357, 360
of Heisenberg model, 470
of interacting magnons, 534
of Ising model, 472
of XY model, 472
second-quantized form, 597
tunneling, 457

Hankel functions, 620
Harmonic approximation, 331–337
Harmonic oscillator, 392–393, 279, 427
Harper equation, 303
Harrison construction, 115
Hartree approximation, 18
Hartree energy, 588
Hartree equations, 20
Hartree–Fock approximation, 96, 24–30
Hartree–Fock decoupling, 602
Hartree–Fock equations, 25
Hartree–Fock–Slater equations, 143
Hc1, see Lower critical field
Hc2, see Upper critical field
hcp structure, see Hexagonal crystal

structures, close-packed
3He

as a normal Fermi liquid, 235
superfluid phase, 395, 404, 449, 453

Heat capacity, see Specific heat
Heat conduction, 9

law of, see Fourier’s law
Heat conductivity, see Thermal

conductivity
Heat current, 9, 53, 358, 362

carried by phonons, 400
in electron gas, 47

Heaviside step function, 608, 616
Heavy-fermion materials, 41, 42, 519
Heavy-fermion superconductors, 452
Heavy holes, 206
HEED, see High-energy electron

diffraction
Heisenberg chain

anisotropic ferromagnetic
spin-1/2, 560–566

antiferromagnetic
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spin-1/2, 566–569
spin-1, 578–580

Heisenberg exchange, see Direct
exchange

Heisenberg model, 469
Hamiltonian, 470, 522

eigenstates of, 521–522, 526–527,
538, 540

quadratic and quartic parts,
534–535

Heitler–London approximation, 90
Hellmann–Feynman theorem, 148
Helmholtz free energy, 278, 470

in Ginzburg–Landau theory, 483
of phonon gas, 414

Hermann–Mauguin symbols, 125
Hermite polynomials, 623
Heterojunction, 532
Heteropolar bond, 83
Heusler alloy, 220
Heusler phase, 204
Hexagonal crystal structures, 224–229

close-packed, 204, 224, 226
double close-packed, 224, 226
simple, 224

Hexagonal crystal system, 141, 147
Hexa-n-alkoxy triphenylene, 24
Hexatic phase, 28
Hierarchy of crystal systems, 154

in three dimensions, 156
in two dimensions, 155

Higgs bosons, 201
High-energy electron diffraction, 262
High-Tc superconductors, 459, 461, 466,

449–452
critical temperature, 467, 470
phase diagram, 498

High-temperature expansion, 503–504
High-temperature superconductors, see

High-Tc superconductors
HMTSF, 382
HMTTF-TCNQ, 232
Hofstadter butterfly, 304
Hofstadter spectrum, 304
Hohenberg–Kohn theorems, 159
Holes, 95

creation operator of, 31
in Fermi sphere, 31

in semiconductors, 212
motion of, 247

Hole states, 31
Holon, 282
Holstein model, 349
Holstein–Primakoff transformation,

530, 534, 546
Homeopolar bond, 89
Homogeneous electron gas, 6
Homopolar bond, 89
Honeycomb lattice, 113, 114
Hooke’s law, 365, 368
Hopping conductivity, 552
HTSC, see High-Tc superconductors
Hubbard approximation, 85, 604
Hubbard model, 5, 10

extended, 12
in one dimension, 272–292
mean-field approximation, 38, 338
phase diagram

mean-field, 491
numerical, 492

simple treatment, 480
Hund’s rules, 42
Hybrid states, 103, 233
Hydrogen bond, 76, 106
Hyperfine structure, 69

Icosahedral group, 131
Ideal crystal, 14, 109
Improper rotation, 126
Impurity

acceptor, 220
bound states around, 73, 107
donor, 219
electron states around, 104
in semiconductors, 219
magnetic, 394, 492–517
scattering by, 64, 387
substitutional, 274
vibrations around, 377

Incoherent scattering, 660
Incommensurate density wave, 342,

347, 362
Incommensurate structures, 312

magnetic, see Spiral structures
Index of refraction, see Refractive index
Indirect exchange, 464–466
Indirect gap, 211
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Indirect-gap semiconductors, 211
Inelastic neutron scattering, see

Neutron scattering, inelastic
Infrared absorption, 431–433, 443
Infrared active mode, 432, 447
Infrared divergence, 502
Inhomogeneous superconductors, 434
Insulator, 89, 90

Anderson, 92
band, 92, 475
Bloch–Wilson, 92, 475
excitonic, 204
Kondo, 525
Mott, 92, 309, 479
Mott–Heisenberg, 480
Mott–Hubbard, 479, 480
Peierls, 92
Slater, 339, 476

Integer quantum Hall effect, 407
Integrated density of states, 399
Interaction

between Bloch electrons, 8
configuration, 100
dipole–dipole, 70, 80, 463, 661
dynamical, 534
electron–electron, 1
electron–ion, 334
electron–phonon, 193, 333
electron–photon, 440
exchange, 463
Fermi contact, 71, 72, 661
final state, 442
kinematical, 536
of quasiparticles, 217
phonon–phonon, 423–424
phonon–photon, 443
RKKY, 466, 605, 138, 527, 565
s–d, see s–d interaction
spin–orbit, see Spin–orbit interaction
van der Waals, 78
with electromagnetic field, 104
with radiation field, 412

Interface, 517
metal–semiconductor, 518–525

Interfacial defects, 274
International notation, see

Hermann–Mauguin symbols
Interstitials, 278–280

split, 279

Intrinsic carrier density, 217
Intrinsic range, 232
Intrinsic semiconductors, 212
Inverse AC Josephson effect, 507
Inverse effective-mass tensor, 94, 246
Inverse photoemission spectroscopy, 192
Inverse spinel structure, 224
Inversion, 126
Inversion layer, 406, 524
Ioffe–Regel criterion, 540
Ionic bond, 76, 83–89
Ionic–covalent bond, 94
Ionic crystals, 76, 83–89

absorption in, 430
cohesive energy, 84
dispersion in, 430
Madelung energy, 84
optical vibrations in, 373–377

Ionic radius, 236
Ionization potential, 173
IPES, see Inverse photoemission

spectroscopy
IQHE, see Integer quantum Hall effect
Irreducible representations, 637

of rotation group, 667
Ising model, 472

and Mermin–Wagner theorem, 551
two-dimensional, 551

Isomer shift, 73
Isotope effect, 452
Itinerant antiferromagnetism, 335

Jahn–Teller distortion, 353
Jahn–Teller theorem, 354
Jastrow factor, 316
Jellium model, 6
JFET, see Field-effect transistor,

junction
jj coupling, 40
Jones symbol, 130
Jordan–Wigner transformation,

533, 668
application of, 572

Josephson constant, 587, 506
Josephson effect, 501–514, 451

AC, 506
DC, 504, 469
in magnetic field, 509
inverse AC, 507
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Josephson inequality, 497, 499
Joule heat, 15, 60, 61, 359
Junction

abrupt, 526
biased, 541
graded, 526
hetero-, 532
MIM, 460
NIN, 460
p–n, see p–n junction
SIN, 460, 460
SIS, 460, 463
step, 526

Junction transistor, 4, 560

Kadowaki–Woods relation, 520
Kagome lattice, 113, 114
Källén–Lehmann representation, 618
Kelvin relations, see Thomson relations
Kerr effect, 513
Kimball relation, 49
Kinematical interaction, 536
Kinetic coefficient, 380
Kinetic theory of gases, 1, 23, 43,

361, 401
KKR method, see Korringa–Kohn–

Rostoker method
Klein factor, 663
Knight shift, 72
Kohn anomaly, 350, 301, 357, 381
Kohn–Sham equations, 163
Kondo effect, see Kondo problem
Kondo insulator, 525
Kondo lattice, 526
Kondo peak, 500
Kondo problem, 5, 394, 501–517

low-temperature behavior, 513
perturbative treatment, 502
scaling theory, 504, 692
Wilson’s solution, 510

Kondo spin liquid, 528
Kondo temperature, 504, 509, 510
Koopmans’ theorem, 32, 213
Korringa–Kohn–Rostoker method, 168
Korringa law, 71
Korringa relation, 514
Korringa relaxation, 71

Kosterlitz–Thouless transition, see
Berezinskii–Kosterlitz–Thouless
transition

Kramers–Kronig relations, 64, 16, 19,
416, 434, 82, 588

Kramers’ theorem, 182
Krogmann salt, 364, 381
Kronig–Penney model, 538
Kubo formula, 108, 582
Kubo–Greenwood formula, 124

L10 structure, 204
L12 structure, 204, 207, 208
L2 structure, 204
L′3 structure, 204
La2−xBaxCuO4, 466
La2−xSrxCuO4, 231, 466
Ladder operator, 393, 589
Lagrange’s equation, 34, 359
Laguerre polynomials, 624
Lambert–Beer law, 416
Lamé constants, 365
Landau damping, 194
Landau diamagnetism, 295–297
Landauer formula, 568
Landau gauge, 278
Landau kinetic equation, 238
Landau levels, 277

degree of degeneracy of, 281
Landau parameters, 219

for homogeneous electron gas, 240
of 3He, 236

Landau–Peierls instability, 28, 201
Landau–Silin equation, 241
Landau theory

of Fermi liquids, 216–242
of phase transitions, 199, 489–492

Landé g-factor, 54
Langevin diamagnetism, see Larmor

diamagnetism
Langevin function, 57
Langevin susceptibility, 53
Langmuir frequency, 20
Langmuir oscillation, 20
Lanthanides, see Lanthanoids
Lanthanoid ions, 473, 518, 525
Lanthanoids, 179, 218, 473, 517
Larmor diamagnetism, 49
Larmor frequency, 50
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Larmor’s theorem, 21
Laser, 562

double heterojunction, 563
quantum-well, 567
semiconductor, 562

Lattice parameters, 229
Lattices that are not Bravais lattices,

113
Lattice vibrations

classical description of, 331–385
Einstein model, 387–389
in long-wavelength limit, 363
localized, 377
quantum description of, 387–427

Laue condition, 194, 244, 245
Laue method, 265
Laughlin state, 315
Laves phase, 204, 223
Law of mass action, 218
Layered structures, 229–233
LCAO method, 97, 154
LDA, see Local-density approximation
Lead

band structure of, 185
Fermi surface of, 185

LED, see Light-emitting diode
LEED, see Low-energy electron

diffraction
Legendre polynomials, 625
Lehmann representation, 618
Lennard-Jones potential, 81
Levanyuk–Ginzburg criterion, 425
Level splitting in crystals, 173–182
Lieb–Schultz–Mattis theorem, 578, 582
Lieb–Wu equations, 275
Lie groups, 643
Lifetime

carrier, 536
of electrons, 69
of electron states, 344, 184
of magnons, 536, 548
of phonons, 424
of quasiparticles, 615
recombination, 536

Lifshitz–Kosevich formula, 323
Light

absorption, 413
interaction with bound electrons, 427
reflection of, 417

refraction of, 417
scattering by free electrons, 421

Light-emitting diode, 534
Light holes, 206
Lindemann criterion, 413, 155
Lindhard dielectric function, 75

explicit form, 80
Lindhard function, 77
Lindhard–Mermin dielectric function,

88
Linear chain

diatomic, 341–345
dimerized, 345–348
monatomic, 337–341

Linear response theory, 577–593
Line defects, 274, 283–292
Linked-cluster expansion, 144
Liquid crystals, 24–29
Liquid phase, 22–23
Little group, 126
LMTO method, 175
Local-density approximation, 166
Local density of states, 624
Local-Fermi-liquid theory, 514
Local-field factor, 85
Localization

Anderson, 538
scaling theory, 554
strong, 552
weak, 547

Localized moment
formation of, 494

Localized state, 73, 107
of electron, 104

Localized vibrations, 377–383
Local-spin-density approximation, 170
London equations, 475
London penetration depth, 477
Longitudinal f -sum rule, 595
Longitudinal magnetoresistance, 61, 384
Longitudinal mass, 208
Longitudinal susceptibility, 128
Longitudinal vibrations, 341
Long-range order, see Order, long-range
Lorentz formula, 374
Lorentzian function

Fourier transform of, 609
Lorentz–Lorenz equation, 375
Lorentz model, 427
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Lorenz number, 10, 56
Low-angle grain boundary, 298
Low-dimensional magnetic systems,

548–583
Low-energy electron diffraction, 262
Lower critical field (Hc1), 455, 497
LS coupling, 40
LSDA, see Local-spin-density

approximation
Luther–Emery liquid, 312
Luttinger liquid, 243, 292–309

field theory of, 653–682
Luttinger theorem, 139, 16, 214
Lyddane–Sachs–Teller relation, 377, 431

Madelung constant, 87
for cubic Wigner crystal, 153
for selected ionic crystals, 88

Madelung energy, 84
of cesium chloride, 87
of sodium chloride, 86
of Wigner crystal, 153

Magnesium
c/a ratio, 227
band structure of, 183

Magnetic breakdown, 274
Magnetic correlations, 59
Magnetic excitations, 205
Magnetic-field dependence of resistivity,

see Magnetoresistance
Magnetic force microscope, 513
Magnetic form factor, 249
Magnetic group, see Color group,

black-and-white
Magnetic impurities

in metals, 492–517
scattering by, see Kondo problem

Magnetic lattice, see Black-and-white
lattice

Magnetic length, 250
Magnetic scattering of neutrons, 547,

660, 206
Magnetic space groups, see Space

groups, black and white
Magnetic structures, 453–462

antiferromagnetic, 453
determination of, 492
in bcc lattices, 456

in fcc lattices, 457
spiral, 459

Magnetism
antiferro-, see Antiferromagnetism
atomic, 51
ferri-, see Ferrimagnetism
ferro-, see Ferromagnetism

Magnetite, 462, 469, 477
Magnetization

correction due to kinematical
interaction, 536

definition of, 48
easy axis of, 472
saturation, 451, 452
sublattice, see Sublattice

magnetization
temperature dependence of, see Bloch

T 3/2 law
Magnetoacoustic oscillations, 265
Magnetomechanical ratio, see

Gyromagnetic ratio
Magnetoresistance, 12, 61, 384

colossal, 573
giant, 573
longitudinal, 61, 384
of silicon(111) MOSFET, 551
transverse, 61, 384

Magnon energy
temperature-dependent corrections

to, 535
Magnons

antiferromagnetic, 540–547
approximate bosonic character

of, 521, 525
as elementary excitations, 524
as magnetic counterparts of phonons,

521
bound states of, 536–540, 565–566
cutoff for, 527, 545
experimental study, 547
ferrimagnetic, 546–547
ferromagnetic, 521
interaction of, 533–536

Hamiltonian for, 534
thermodynamics of, 527–530

Majority carriers, 231
Majumdar–Ghosh point, 577
Mass

cyclotron, 255
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density-of-states, 99
dynamical effective, 246
effective, see Effective mass
longitudinal, 208
of quasiparticles, 182, 229
optical, 379
thermal, 99
transverse, 208

Mass susceptibility, see Susceptibility,
mass

Matrix methods, 152
LCAO method, 154
OPW method, 157
plane-wave method, 156

Matsubara Green function, 624
Matthiessen’s rule, 387
Maxwell–Boltzmann distribution, 4,

22, 215
Maxwell equations, 16, 413
Maxwellian velocity distribution, 4
MBBA, 24
M -center, 282
McMillan formula, 444
MDT-TTF, 386
Mean-field approximation, see

Mean-field theory
Mean-field theory

Hartree approximation, 20
Hartree–Fock approximation, 26
of antiferromagnetism, 478–484
of ferrimagnetism, 487–488
of ferromagnetism, 474–478
of Hubbard model, 38, 338
of superconductivity, 420

Mean free path
of electrons, 5, 8, 540
of phonons, 427

Mean free time, see Collision time
Meissner–Ochsenfeld effect, 452, 432

and the second London equation, 476
Meissner phase, 456, 500
Melting of crystals, 410
Melting point of elements, 596
Mermin–Wagner theorem, 411, 550
Mesogen, 24
Mesomorphic phases, 13, 23–24
Mesoscopic physics, 564
Mesoscopic systems, 7, 564
Metal, 76, 89

Metal–insulator transition, 90
Anderson transition, 537–561
Mott transition, 474–490

Metallic bond, 76, 106
Metallic glass, 21, 303, 532
Method of partial waves, 66
MFA, see Mean-field approximation
MFM, see Magnetic force microscope
MFT, see Mean-field theory
Mg structure, see Hexagonal crystal

structures, close-packed
Migdal theorem, 443
Miller–Bravais indices, 119
Miller indices, 119
MIM junction, 460
Minibands, 305
Minimum metallic conductivity, 76,

541, 557
Minority carriers, 231
Mirror line, 124
Mirror plane, 124
Misorientation angle, 298
MIS structures, 525
MIT, see Metal–insulator transition
Mixed dislocation, 285, 286
Mixed-valence compounds, 518
MoAl12 structure, 214
Mobility, 6, 539
Mobility edge, 539
Modulus of elasticity, see Young’s

modulus
Modulus of rigidity, see Shear modulus
Molar susceptibility, see Susceptibility,

molar
Molecular crystals, 76, 78–83
Molecular-orbital method, 96
Molybdenum

Fermi surface of, 186
Monatomic chain, see Linear chain,

monatomic
Monoclinic crystal system, 141, 147
Monovalent metals, 178
Mosaic structure, 298
MOSFET, 561

current–voltage characteristics, 562
MOS structures, 525

biased, 545
Motif, 114
Mott–Heisenberg insulator, 480
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Mott–Hubbard insulator, 479, 480
Mott insulator, 92, 309, 479
Mott transition, 474–490
Mott T−1/4 law, 552
Mössbauer effect, 72
MTCNQ, 382
Muffin-tin potential, 164
Multivalley semiconductors, 207

NaCl structure, see Sodium chloride,
structure

Nanophysics, 564
Nanostructures, 7, 565
Nanotubes, 308
Narrow-band noise, 389
NbSe3, 388
Nearly ferromagnetic metals, 127, 205
Nearly-free-electron approximation,

109–139
Néel state, 540
Néel temperature, 453, 481

for selected antiferromagnets, 454
for selected heavy-fermion com-

pounds, 453, 521
Néel wall, 509
Nematic phase, 25, 26

biaxial, 26
calamitic, 25
chiral, 26
cholesteric, 26
discotic, 25, 26

Nernst effect, 63
Nernst–Ettingshausen effect, 63
Nested Fermi surface, 353, 102, 336
Neumann functions, 620
Neumann’s principle, 171
Neutron scattering

cross section of, see Van Hove formula
elastic, 241, 547
inelastic, 242, 438–447, 547
magnetic, 547, 660–664, 206

NiAs structure, 227, 228
NIN junction, 460
NMR, see Nuclear magnetic resonance
Noble gases, 77, 218, 91
Noble metals, 2, 22, 91

crystal structure, 218, 178
electronic structure, 178
Fermi surface of, 180

Sommerfeld coefficient, 41
Noether’s theorem, 191
Noise

broad-band, 388
narrow-band, 389

Noncrystalline solids, 21–22
Nonlinear phenomena

in density-wave state, 388
Nonresonant size effect, 270
Non-s-wave superconductors, 445
Nonsymmorphic plane groups, 163
Nonsymmorphic space groups, 166
Normal coordinates, 357
Normal Fermi system, 14, 214
Normal modes, 359
Normal process, 193
N-process, see Normal process
n-type semiconductors, 223
Nuclear magnetic resonance, 71
Number-density operator, 600
Numerical renormalization group, 511,

696–703
Nyquist relation, 593

Occupation-number representation, 589
Octahedral group, 130
Octahedral sites, 213, 218
Ohmic contact, 545
Ohm’s law, 7
One-dimensional electron gas

scaling theory, 686
One-dimensional models

g-ology model, 257
Hubbard model, 272
spin-1/2 Heisenberg chain, 560
spin-1 Heisenberg chain, 578
Tomonaga–Luttinger model, 242
XXZ chain, 293
XY model, 572

Onsager reciprocal relations, 54, 360
Open orbits, 251
Optical branch, 343
Optical conductivity, 378, 117

of CDW systems, 377
of electron gas, 119
of Luttinger liquids, 306

Optical constants, 411, 416
Optical mass, 379
Optical phonon, 395
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dispersion relation, 396
Optical properties, 411–447
Optical vibrations, 343, 361–363

in ionic crystals, 373–377
OPW method, see Orthogonalized-

plane-wave method
Orbit

closed, 251
open, 251

Orbital angular momentum, 669, 672
Order

center-of-mass, 19
long-range, 14

absence of in finite temperature XY
model, 555

absence of in low-dimensional finite
temperature Heisenberg model,
550

magnetic, 450–462
orientational, 19
short-range, 14, 305–309

Order–disorder transition, 489
Order parameter

Edwards–Anderson, 569
in antiferromagnets, 482
in ferromagnets, 482
in Landau’s theory of second-order

phase transitions, 489
in superconductors, 483

Organic superconductors, 455
Orientational order, 19
Orthogonal group, 127, 642
Orthogonalized-plane-wave method, 157
Orthogonal polynomials, 623–631
Orthorhombic crystal system, 141, 147
Oscillations

Aharonov–Bohm, 545
Coulomb blockade, 572
for general Fermi surfaces, 324
Friedel, 69
giant quantum, 268
in strong magnetic field, 306
in the magnetization, 318
in two-dimensional electron gas, 307
Langmuir, 20
magnetoacoustic, 265
plasma, 20
quantum, 306
resistivity, 547

Ruderman–Kittel, 465, 135
Shubnikov–de Haas, 327

Oscillator, 392–393
Oscillator strength, 437
Overlap integral, 92

PAA, 24
Packing fraction

definition of, 208
for ccp crystal, 217
for diamond structure, 222
for hcp crystal, 226
for sc crystal, 208

Pair correlation function, 17, 28, 45
and structure factor, 51

Pair distribution function, 44
spin-resolved, 46

PAM, see Periodic Anderson model
Para-azoxy anisole, 24
Parallel susceptibility, 484
Paramagnetic current, 106, 433
Paramagnetic resonance, 61

fine structure, 68
Paramagnetic space groups, see Space

groups, gray
Paramagnetism

atomic, 51
Pauli, 44
Van Vleck, 60

Paramagnon, 205, 334
Parquet diagrams, 689
Partial dislocation, 294–298

Frank, 297
Shockley, 295

Partial structure factor, 307
Partial waves, 69, 173

method of, 66
Particle–hole excitations

in 1D electron gas, 247
in 1D Hubbard model, 287
in ideal electron gas, 35
in the 1D XY model, 574–575

Pauli exclusion principle, 36, 464, 24,
213

Pauli matrices, 646, 674
Pauling ionic radius, 236
Pauli susceptibility, 45

of Bloch electrons, 99
Pearson symbol, 205



736 Subject Index

Peierls instability, 350
Peierls insulator, 92
Peierls substitution, 297
Peierls transition, 357
Peltier coefficient, 59

in superconductors, 458
Peltier effect, 59
Penetration depth

for selected superconductors, 478
in Ginzburg–Landau theory, 486
London, 477
temperature dependence of, 489

Penrose tiling, 323–326
Perdew–Wang interpolation, 158
Perdew–Zunger interpolation, 157
Perfect diamagnetism, 453
Periodic Anderson model, 521–526
Periodic boundary condition, see

Boundary conditions, periodic
Periodic potential, 77
Periodic table, 593
Permittivity, 17, 415

relative, see Dielectric constant
Perovskite structure, 204, 209
Perpendicular susceptibility, 484
Persistent current, 451
Perturbation theory, 579

Brillouin–Wigner, 582
degenerate, 583
graph technique at finite temperature,

642
graph technique at T = 0, 635
linked-cluster expansion, 144
nondegenerate, 579
Rayleigh–Schrödinger, 581
time-dependent, 584
time-independent, 579

PES, see Photoelectron spectroscopy
Phase-breaking length, 543
Phase-breaking time, 543
Phase-coherence length, 543
Phase-coherence time, 543
Phase diagram

of anisotropic antiferromagnet, 484
of doped V2O3, 476
of heavy-fermion superconductors,

453
of high-Tc superconductors, 498, 450
of Hubbard model

mean-field, 491
numerical, 492

of Kondo lattice, 528
of Sherrington–Kirkpatrick model,

573
of spin glasses, 564
of symmetric Anderson model, 499
of (TMTSF)2PF6, 455
of type I superconductors, 456
of type II superconductors, 457
of vector spin glass, 573

Phase field, 660
Phase separation, 313
Phase shift, 67, 173
Phase transition

Landau theory, 489
Phason, 355, 364
Phonon drag, 58
Phonon–phonon interaction, 423–424
Phonon–photon interaction, 443
Phonons, 395

acoustic, 395, 397
annihilation operator, 395
as elementary excitations, 395
as Goldstone bosons, 397
creation operator, 395
density of states of, 398–409
experimental study of, 429–447
interaction between, see

Phonon–phonon interaction
lifetime of, 446
optical, 395
specific heat of, 413–418

Phonon softening, 352, 358
Photoelectric effect, 190
Photoelectron spectroscopy, 190
Photoemission spectroscopy, 190
Physical constants, 587–588
Pippard coherence length, 479
Planar defects, 274, 293–301
Planar model, see XY model
Planar regime, 566
Plane groups, 162
Plane-wave method, 156
Plasma frequency, 20
Plasma oscillations, 20
Plasmon, 191

dispersion curve, 192
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energy for selected metals, 193
surface, 422

Plastic crystals, 29–30
p–n junction, 526

biased, 545
breakdown in, 554
current–voltage characteristics, 553
rectification, 553

Point-contact transistor, 4, 517
Point defects, 274–283
Point group of the crystal, 161
Point groups, 127–135

crystallographic, 137
magnetic, 167
of first kind, 129
of second kind, 131
three-dimensional, 128
two-dimensional, 127

Poisson equation, 520
Poisson’s ratio, 369
Poisson summation formula, 319
Polar covalent bond, 94
Polariton, 432
Polarization factor, 339
Polarization vector, 357
Polaron, 346
Polycrystals, 21, 293
Polymers, 30
Pomeranchuk instability, 235
Poor man’s scaling, 683
Positron annihilation, 187
Powder method, 267
p-polarization, 417
Primitive cell, 115
Primitive vectors, 110

choice of, 111–113
Principle of detailed balance, 369
Propagator, see Green function
Proximity effect, 485
Pseudopotential, 162

Fermi, see Fermi pseudopotential
Pseudopotential method, 160
Pseudo-wavefunction, 162
p-type semiconductors, 224
Purple bronze, 307
Pyrite structure, 204

Quantum critical point, 500, 527
Quantum dot, 564, 567

Quantum Hall effect, 6, 195, 295
fractional, 410, 313–319
integer, 405–410

Quantum Hall liquid, 313
Quantum oscillations, 306

giant, 268
Quantum phase transitions, 500
Quantum point contact, 568
Quantum well, 564, 565
Quantum-well laser, 567
Quantum wire, 564, 567
Quasicrystals, 3, 21, 315–330
Quasimomentum, 191
Quasi-one-dimensional materials, 381
Quasiparticles, 92, 615

distribution function of, 221
effective mass of, 182, 229
in Hartree–Fock approximation, 30
in normal Fermi systems, 214
in quantum Hall liquid, 318
in SDW state, 351
in superconductors, 416
interaction of, 217
velocity of, 217

Quasiparticle weight, 215, 615, 621
Quasiperiodic functions, 311
Quasiperiodic structures, 309–330
Quasiperiodic tiling, see Penrose tiling
Quenched disorder, 566
QW laser, see Quantum-well laser

Radial distribution function, 17, 305
in amorphous silicon, 306
in Hartree–Fock approximation, 49
in quasicrystals, 316
of homogeneous electron gas, 50

Radiofrequency size effect, 270
Raman active mode, 435, 447
Raman scattering, 433–436, 443, 445

two-phonon, 446
Random phase approximation, see RPA
Rapidity

in 1D Heisenberg model, 563
in 1D Hubbard model, 274

Rare-earth, 473
Rare-earth compounds, 518, 527
Rare-earth garnet, 547
Rare-earth ions, 58, 473, 517, 519

valence of, 518
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Rare-earth metals, 452, 23, 42
band structure of, 186

Rashba term, 38, 576
Rayleigh–Schrödinger perturbation

theory, 581
R-center, 282
Reciprocal lattice, 120–124

definition, 120
of bcc lattice, 212
of fcc lattice, 216
of hexagonal lattice, 225
primitive vectors of, 122

Recombination current, 554
Recombination lifetime, 536
Recombination of carriers, 534
Rectification

by p–n junction, 553
by Schottky diode, 544

Rectifying contact, 544
Reduced-zone scheme, 85
Reduction, 638
Reflectance, 419
Reflection, 125
Reflection coefficient, 417, 419
Reflectivity, 419

of semiconductors, 426
Refractive index, 416
Relative permittivity, see Dielectric

constant
Relativistic effects, 36–38, 83
Relaxation function, 63, 580
Relaxation region, 425
Relaxation time, 4, 370

of selected metals, 8
spin–lattice, 64
spin–spin, 65
transport, 69

Relaxation-time approximation, 370
Renormalization, 501
Renormalization group, 683

numerical, 511, 696–703
Renormalization-group transformation,

500–502
Repeated-zone scheme, 85
Replica trick, 567
Residual resistivity, 69, 389
Resistivity, 7

contribution of electron–phonon
interaction, 389

of selected metals, 8
residual, see Residual resistivity

Resonance absorption, 72
Resonance fluorescence, 72
Resonance integral, 98
Resonant absorption, 61
Resonating-valence-bond spin liquid,

585
Response

longitudinal, 110
time-dependent, 578
to electromagnetic field, 104
to external perturbations, 61, 577
to magnetic perturbations, 125
transverse, 110

Response function, 65, 579
and correlation function, 589
current–current, 107
current–density, 111
density–current, 114
density–density, 65–71, 593–610
magnetization–magnetization, 128,

129
spectral representation of, 66
spin-resolved, 66

Retarded Green function, 612
Reuter–Sondheimer theory, 479
Reverse bias, 542
Rhombohedral Bravais lattice, 153
Rhombohedral crystal system, 141, 147
Richardson–Dushman equation, 543
Riemann zeta function, 617
Righi–Leduc effect, 63
Rigid-ion approximation, 337
RKKY interaction, 466, 574, 605, 138,

527, 565
Rock-salt structure, see Sodium

chloride, structure
Rodrigues’ formula

for generalized Laguerre polynomials,
625

for Hermite polynomials, 623
for Laguerre polynomials, 624

Rotating-crystal method, 265
Rotational symmetry, 125
Rotation axis, 125
Rotation group, 642, 665
Rotation–inversion, see Symmetry

operations, rotation–inversion
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Rotation–reflection, see Symmetry
operations, rotation–reflection

Rotoinversion, see Symmetry opera-
tions, rotation–inversion

Rotoreflection, see Symmetry opera-
tions, rotation–reflection

RPA, 73, 132, 603
corrections to, 83
correlation energy in, 150
renormalized, 83

Ruderman–Kittel oscillations, 465, 135
Rushbrook inequality, 497
Russell–Saunders coupling, 40
Rutgers formula, 473
Rutile structure, 204
RVB, see Resonating valence bond
Rydberg energy, 588

Satellite peaks, 314, 459
Saturated bond, 99
Saturation current, 554
Saturation range, 230
Scaling dimension, 312, 680
Scaling law, 496–500

Wegner, 560
Scaling theory

for 1D electron gas, 302, 686
of Kondo problem, 504, 692
of localization, 554
poor man’s, 683

Scanning tunneling microscope, 270
Scattering

by impurities, 64, 387
by lattice defects, 365
by magnetic impurities, 394
electron–phonon, 341
of light

by bound electrons, 427
by free electrons, 421

Scattering amplitude, 65
Scattering cross section, 653

and dynamical structure factor, 58
of impurity scattering, 68
Van Hove formula for, 656

Scattering length, 247, 440
Scattering matrix, 685
Scattering operator, 534
Scattering theory

methods based on, 164

Scattering vector, 548
Schoenflies symbols, 125
Schottky barrier, 523
Schottky defect, 280–282
Schottky diode, 541

biased, 541
current–voltage characteristics of, 544

Schrieffer–Wolff transformation, 612,
501

Schwinger boson, 532
Screening, 89–93

Thomas–Fermi, 90
Screening length, 521
Screw axis, 158
Screw dislocation, 285
Screw rotation, 158
s–d exchange, see s–d interaction
s–d interaction, 465, 394, 606, 611,

136, 501
SDW, see Spin-density waves
Second quantization, 589–602
Seebeck coefficient, 56
Seebeck effect, 58
Seitz symbol, 157
Selection rules, 184, 650
Self-energy, 32, 642

improper, 630
in Hartree–Fock approximation, 33,

633
Semiclassical dynamics, 239

limitations of, 271
Semiclassical equation of motion, 243
Semiclassical quantization, 300
Semiconductor laser, 562
Semiconductor quantum devices, 564
Semiconductors, 76, 89

II–VI semiconductors, 198
III–V semiconductors, 198
amorphous, 200
band structure of, 201
compound, 198
conduction band in, 196
degenerate, 215
dielectric constant, 95
doped, 219
electronic structure of, 195
elemental, 196
extrinsic, 219
gap in, 198, 199



740 Subject Index

intrinsic, 212
multivalley, 207
n-type, 223
p-type, 224
valence band in, 196

Semimetals, 91
Separation energy, 77
SET, see Single-electron transistor
Shapiro steps, 508, 391
Shear modulus, 365, 369
Sheet resistance, 541
Sherrington–Kirkpatrick model, 571
Shift operator, see Ladder operator
Shockley partial dislocation, 295
Shockley’s law, 553
Short-range order, 14, 305–309
Shubnikov–de Haas effect, 314, 327
Shubnikov groups, 167
Shubnikov phase, 456
Silicon, 91, 197

band structure of, 204
dielectric constant of, 221
effective mass of electrons in, 205
effective mass of holes in, 206

Simple Bravais lattice
cubic, 153
hexagonal, 153
monoclinic, 150
orthorhombic, 152
tetragonal, 152

Simple cubic crystals, 205–210
Sine-Gordon equation, 369
Sine-Gordon model, 311
Single crystal, 20
Single-electron transistor, 569, 571
Single-face-centered orthorhombic

Bravais lattice, 152
SIN junction, 460, 460

current–voltage characteristics, 461
SIS junction, 460, 463

current–voltage characteristics, 460,
464

Size effect, 268
nonresonant, 270
radiofrequency, 270

Skin depth, 262
Skutterudite structure, 204
Slater determinant, 101, 24, 78, 25
Slater insulator, 339, 476

Slater transition, 339
Small polaron, 349
Smectic phases, 27–28
Snell’s law, 418
Sodium

band structure of, 178
Fermi surface of, 179

Sodium chloride
Madelung energy of, 86
structure, 204, 219, 238, 199

Softening of phonons, 352, 358
Solar cell, 562, 564
Solid solutions, 21
Soliton, 369

amplitude, 371
polarization, 371
spin, 371

Soliton lattice, 373
Sommerfeld coefficient, 41

for selected heavy-fermion
compounds, 453, 521

of selected metals, 41
Sommerfeld expansion, 37
Sommerfeld model, 24–47

inadequacies of, 74
Sommerfeld–Wilson ratio, see Wilson

ratio
Space-charge layer, see Depletion layer;

Space-charge region
Space-charge region, 522, 531
Space groups, 162

black-and-white, 168
gray, 168
in two dimensions, see Plane groups
magnetic, 166

Specific heat
of Bloch electrons, 98
of classical crystals, 383–385
of electron gas, 40
of magnon gas, 529
of phonon gas, 413–418
of superconductors, 458, 429

Specific susceptibility, see Susceptibility,
specific

Spectral function, 617
Spectral representation

of Green function, 616
of response function, 66, 586

Spectrum, see also Energy spectrum



Subject Index 741

Hofstadter, 304
in chain of S = 1/2 spins, 539
in the XY model, 575

Sphalerite structure, 204, 221–224, 199
Spherical Bessel functions, 621
Spherical Hankel functions, 622
Spherical harmonics, 627
Spherical Neumann functions, 622
Spin

classical
precession of, 516

classical equation of motion
in magnetic field, 516

quantum mechanical equation
of motion, 516

Spin algebra, 674
Spin chain

physical realization, 583
spin-1/2, 560
spin-1, 578

Spin–charge relation
reversed, 370

Spin–charge separation, 254, 260, 301,
676

Spin-density operator, 600
Spin-density waves, 322, 342–356

in quasi-1D materials, 380
Spinel structure, 204, 223

inverse, 224
Spin-FET, see Spin-field-effect

transistor
Spin-field-effect transistor, 576
Spin-flop phase, 484
Spin-flop transition, 484, 546
Spin glass, 449, 561–575

Edwards–Anderson model, 569
Sherrington–Kirkpatrick model, 571

Spin Hall effect, 576
Spin ladders, 581–583
Spin–lattice relaxation, 64
Spin liquid, 551, 574, 584–586

algebraic, 584
resonating-valence-bond, 585

Spinons
dispersion relation of

in 1D Heisenberg model, 571
in 1D Hubbard model, 281

in 1D Heisenberg model, 570
in 1D Hubbard model, 278

in spin liquids, 586
Spin operators, 665, 673

bosonization, 668
representation in terms of boson

operators, 530–533, 541
representation in terms of fermion

operators, 533
Spin–orbit interaction, 38, 83, 204, 206,

208, 576
Spin-rotation symmetry

of Heisenberg Hamiltonian, 550, 322
Spin transistor, 576
Spintronics, 573
Spin valve, 574
Spin waves

antiferromagnetic, 540–547
classical, 516–520

antiferromagnetic, 518–520
ferromagnetic, 516–518
illustration of, 518, 520

definition of, 517
ferromagnetic, 521
in electron system, 207, 330–335
in SDW, 355, 356
quantum-mechanical description

of, 521–540
Spiral structures, 459–461
Split interstitial, 279
Split-off band, 206
Splitting

of atomic levels in crystals, 173
s-polarization, 417
Spring constants, 337
SQUID, 514
Stability condition

of Fermi liquids, 233
Stacking faults, 293–294
Staggered susceptibility, 482
Step function, see Heaviside step

function
Step junction, 526
Stiffness constant

of spin waves, 524
Stirling formula, 619
STM, see Scanning tunneling

microscope
Stokes component, 434, 446
Stoner continuum, 328
Stoner enhancement, 125
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Stoner enhancement factor, 127, 205,
229

Stoner excitations, 327
Stoner model, 324–330
Strain tensor, 364
Stress tensor, 365
Strong localization, 552
Strongly correlated systems, 473–529
Structure amplitude, 248
Structure constant, 171

canonical, 177
Structure factor, 18, 248

dynamical, see Dynamical structure
factor

in amorphous silicon, 306
of the electron gas, 51
partial, 307

Strukturbericht designation, 205
Sublattice magnetization, 481, 545

temperature dependence of, 545
Substitutional impurity, 274
Sum rule, 594

Bethe, 597
conductivity, 120, 595
f -, 437, 598
Friedel, 72
longitudinal f -, 595
thermodynamic, 589
Thomas–Reiche–Kuhn, 598

Superconducting compounds, 464
Superconducting elements, 461
Superconducting ground state, 404
Superconducting materials, 461–469
Superconductivity, 2, 449

BCS theory of, 404–426
gapless, 432
Ginzburg–Landau theory, 482
microscopic theory of, 393
phenomenological description, 469

Superconductors
A15, 464
Chevrel-phase, 465
compound, 464
conventional, 466
electrodynamics of, 474, 432
elemental, 461
heavy-fermion, 452
high-Tc, see High-Tc superconductors
infinite conductivity, 431

inhomogeneous, 434
London, 480
non-s-wave, 445
organic, 455
Pippard, 480
specific heat of, 458
thermal conductivity, 457
thermodynamics, 470, 427
thermoelectric properties, 457
triplet, 449, 456, 457
type I, 455
type II, 456
unconventional, 445

Superexchange, 466–468
Surface plasmon, 422
Susceptibility

bulk, 49
Curie, 53
definition of, 48
dynamical, 127
Langevin, 53
longitudinal, 128
mass, 49
molar, 49
nonlinear, 562
of antiferromagnets, 482, 483
of Bloch electrons, 98
of classical electron gas, 22
of electron gas, 44
of Fermi liquid, 226
of ferromagnets, see Curie–Weiss law

divergent spin-wave contribution to,
530

parallel, 484
Pauli, 45, 99
perpendicular, 484
specific, 49
staggered, 482
transverse, 133
Van Vleck, 60
volume, 49

Symmetric gauge, 46, 278, 290
Symmetry

of crystals, 109
spin-rotation, 550, 322
time reversal, 183, 196
translational, 110

Symmetry breaking, 199, 485, 321, 574
Symmetry elements
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glide line, 158
glide plane, 158
inversion center, 126
mirror line, 124
mirror plane, 124, 125
rotation axis, 125
rotation–inversion axis, 126
rotation–reflection axis, 126
screw axis, 158

Symmetry operations
glide reflection, 158
inversion, 126
reflection, 125
rotation, 125
rotation–inversion, 126
rotation–reflection, 126
screw rotation, 158
time reversal, 182
translation, 110

Symmorphic plane groups, 163
Symmorphic space groups, 164
Synchrotron radiation, 241
Syngony, see Crystal systems

Taylor–Orowan dislocation, see Edge
dislocation

TBBA, 24
TCNDQ, 382
TCNQ, 383
Temperature Green function, 624

for superconductors, 648
Tensile modulus, see Young’s modulus
TE polarization, 417
Terephtal-bis-butyl-aniline, 24
Tetragonal crystal system, 141, 147
Tetrahedral group, 130
Tetrahedral sites, 213, 218
Thermal conductivity, 10, 55, 358

by phonons, 427, 400
electronic contribution, 399
for superconductors, 457
in Drude model, 9, 10
in Sommerfeld model, 56

Thermal expansion, 425–427
Thermal mass, 99
Thermodynamic critical field, 462,

473, 492
Thermodynamic properties

of Fermi liquids, 222
of Tomonaga–Luttinger model, 264

Thermodynamics
of magnons, 527
of superconductors, 470, 427
of vibrating lattices, 409

Thermodynamic sum rule, 589
Thermoelectric phenomena, 56
Thermoelectric power, 56

of selected metals, 57
Thermoelectric properties

of superconductors, 457
Thermomagnetic effects, 61
Thermopower, see Thermoelectric

power
Thomas–Fermi approximation, 71
Thomas–Fermi screening, 90
Thomas–Fermi wave number, 73
Thomas–Reiche–Kuhn sum rule, 598
Thomson effect, 60
Thomson heat, 60
Thomson relations

first, 59
second, 61

Thouless length, 543
Tight-binding approximation, 139–149

in magnetic field, 302
p-band, 145
s-band, 143

Tilt grain boundary, 298
Time reversal, 182, 196
t-J model, 490
TL model, see Tomonaga–Luttinger

model
T -matrix, 399, 534, 685
TM polarization, 417
TMTSF, 382
(TMTSF)2AsF6, 386
(TMTSF)2ClO4, 455
(TMTSF)2PF6, 385, 455
TMTTF, 382
TNAP, 382
Tomonaga–Luttinger liquid, see

Luttinger liquid
Tomonaga–Luttinger model, 242
Top-hat function

Fourier transform of, 608
Topological excitations

in CDW, 368
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in TL model, 262, 659
solitons, 369
vortices in 2D XY model, 554

Topological quantum number, 554
Torsional waves, 366
Trajectory of electrons in real space,

250
Transistor

bipolar, 517, 558
field-effect, 560
junction, 4, 560
point-contact, 4, 517
single-electron, 569, 571
spin-field-effect, 576

Transition metals, 23, 42, 393
band structure of, 185
crystal structure, 213, 218
inner, 473

Translational symmetry, 110
Transmission coefficient, 419
Transmittance, 419
Transport

in magnetic field, 383
in semiconductor devices, 517

Transport coefficients, 54, 379
in semiconductors, 402

Transport phenomena, 357
Transport relaxation time, 69
Transverse excitations, 197
Transverse magnetoresistance, 61, 384
Transverse mass, 208
Transverse susceptibility, 133
Transverse vibrations, 341
Triclinic Bravais lattice, 150
Triclinic crystal system, 141, 147
Trigonal crystal system, 141, 147
Triple-axis spectrometer, 439, 445
Triplet superconductors, 449, 456, 457
Trivalent metals, 183
TSF, 382
TTF, 383
TTF–TCNQ, 76, 307, 364, 382
Tungsten

Fermi surface of, 186
Tunnel diode, 556
Tunneling, 542, 555, 556, 457

general description, 457
Green-function theory, 470
in SIN junction, 460, 460

in SIS junction, 460, 463
microscopic theory, 465
of normal electrons, 501
single-particle, 505

Twin crystals, 299, 301
Twisted boundary conditions, see

Boundary conditions, twisted
Twist grain boundary, 298
Two-fluid model, 474
Two-phonon absorption, 445
Two-phonon Raman scattering, 436,

446
Type I superconductors, 455
Type II superconductors, 456, 473

Ultraviolet photoelectron spectroscopy,
190

Ultraviolet photoemission spectroscopy,
190

Umklapp process, 193, 424, 427, 337,
392, 400

boson representation, 674, 676
in 1D electron gas, 258, 292, 297,

304, 311
in 1D Hubbard model, 309
in anisotropic Heisenberg chain, 300,

681
Uniaxial anisotropy, 472
Unitary group, 643
Unsaturated bond, 99
Upper critical field (Hc2), 455, 497
U-process, see Umklapp process
UPS, see Ultraviolet photoelectron

spectroscopy

Vacancies, 275–278
formation energies of, 276

Vacancy pair, 280
Valence band, 158, 191, 3

in semiconductors, 196
Valence bond, 89, 580
Valence-bond method, 90
Valence bond solid, 580
Valence electron, 2
Van der Waals bond, 76, 79–81
Van der Waals interaction, 78
Van Hove formula, 440, 656, 58
Van Hove singularities, 405–409, 97
Van Vleck paramagnetism, 60
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Van Vleck susceptibility, 60
Variable-range hopping, 552
Variational methods, 164
Varma–Yafet model, 521
VBS, see Valence bond solid
Vector operator

definition of, 53
Velocity

drift, 5
Fermi, 29
of Bloch electrons, 240
of holons, 284
of quasiparticles, 217
of spinons, 282

Verwey transition, 477
Vibrations, see also Lattice vibrations

acoustic, 360, 363
in simple cubic lattice, 349
localized, 377
normal modes, 357
of diatomic chain, 341
of dimerized chain, 345
of linear chain, 337
optical, 361

in ionic crystals, 373
Virtual bound state, 68, 106
Virtual-crystal approximation, 534
Voigt elastic constants, 368
Volterra construction, 284
Volume defects, 274, 302
Volume susceptibility, see Susceptibility,

volume
Von Klitzing constant, 587, 407
Voronoi polyhedron, 117
Vortex lattice, 497
Vortices

in 2D XY model, 553–559
in type II superconductors, 457, 493

Vosko–Wilk–Nusair interpolation, 157
v-representability, 163
VRH, see Variable-range hopping

Wallpaper groups, see Plane groups
Wannier exciton, 200
Wannier functions, 100
Wannier theorem, 297, 200
Ward identities, 268
Wave number

angular, 25

Debye–Hückel, 91
Fermi, 28
Thomas–Fermi, 73

Wave vector, 189
equivalent, 189

Weak localization, 547
Wegner scaling law, 560
Weiss field, 474
Weiss indices, 119
Wick theorem, 639
Wiedemann–Franz law, 10, 23, 56, 74,

399, 457
Wigner crystal, 152–156, 324
Wigner–Eckart theorem, 53
Wigner–Seitz cell, 117
Wigner–Seitz radius, 3
Wigner–Seitz sphere, 116, 3
Wigner’s theorem, 173
Wilson number, 513
Wilson ratio, 46, 100

for heavy-fermion compounds, 520
in Kondo model, 513, 517
in Tomonaga–Luttinger model, 265

Wilson transition, 475
Work function, 518
W structure, 213
Wurtzite structure, 204, 228

Xα method, 143
XPS, see X-ray photoelectron

spectroscopy
X-ray diffraction

experimental methods of, 261–268
theory of, 242–260

X-ray photoelectron spectroscopy, 191
X-ray photoemission spectroscopy, 191
XXZ chain

low-energy spectrum, 293
XY model, 472, 572

entropy of vortices in, see Entropy,
of vortices in XY model

free energy of vortices in, see Free
energy, of vortices in XY model

Hamiltonian of, 551
in one dimension, 572
in two dimension, 551
phase transition in, see Berezinskii–

Kosterlitz–Thouless transition
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YBa2Cu3O7−δ, 450, 466
YBCO, 450, 466
YIG, see Yttrium–iron garnet
Young’s modulus, 369
Yttrium–iron garnet, 547
Yukawa function, 404, 90

Fourier transform of, 609

Zeeman splitting, 44
Zener breakdown, 554
Zener diode, 556
Zener effect, see Zener breakdown
Zener tunneling, 275
Zero-point energy

of antiferromagnets, 543
of oscillator, 392

Zero-point spin contraction
in 2D antiferromagnets, 551
in antiferromagnetic ground state,

544
Zero-point vibrations, 89, 392
Zero sound, 194
Zeta function, 617
Zincblende structure, see Sphalerite

structure
Zinc group, 182
Zone folding, 113



Fundamental physical constants

Name Symbol Value

Bohr magneton μB = e�/2me 9.274 009 × 10−24 JT−1

Bohr radius a0 = 4πε0�
2/mee

2 0.529 177 × 10−10 m
Boltzmann constant kB 1.380 650 × 10−23 JK−1

Conductance quantum G0 = 2e2/h 7.748 092 × 10−5 S
Electron g-factor ge = 2μe/μB −2.002 319
Electron gyromagnetic ratio γe = 2|μe|/� 1.760 860 × 1011 s−1 T−1

γe/2π 28 024.9540 MHz T−1

Electron magnetic moment μe −9.284 764 × 10−24 J T−1

−1.001 160 μB

Electron mass me 9.109 382 × 10−31 kg
Electric constant ε0 = 1/μ0c

2 8.854 188 × 10−12 F m−1

Elementary charge e 1.602 176 × 10−19 C
Hartree energy Eh = e2/4πε0a0 4.359 744 × 10−18 J

in eV 27.211 383 eV
Josephson constant KJ = 2e/h 483 597.9 × 109 Hz V−1

Magnetic constant μ0 4π × 10−7 N A−2

Magnetic flux quantum Φ0 = h/2e 2.067 834 × 10−15 Wb
Nuclear magneton μN = e�/2mp 5.050 783 × 10−27 JT−1

Neutron mass mn 1.674 927 × 10−27 kg
Neutron magnetic moment μn −0.966 236 × 10−26 J T−1

−1.913 043 μN

Neutron g-factor gn = 2μn/μN −3.826 085
Planck constant h 6.626 069 × 10−34 J s

in eV h/{e} 4.135 667 × 10−15 eV s
Proton g-factor gp = 2μp/μN 5.585 695
Proton gyromagnetic ratio γp = 2μp/� 2.675 222 × 108 s−1 T−1

γp/2π 42.577 482 MHz T−1

Proton magnetic moment μp 1.410 607 × 10−26 JT−1

2.792 847 μN

Proton mass mp 1.672 622 × 10−27 kg
Reduced Planck constant � = h/2π 1.054 572 × 10−34 J s

in eV �/{e} 6.582 119 × 10−16 eV s
Rydberg constant R∞ = α2mec/2h 10 973 731.569 m−1

Rydberg energy Ry = R∞hc 2.179 872 × 10−18 J
in eV 13.605 692 eV

Speed of light c 299 792 458 m s−1

Von Klitzing constant RK = h/e2 25 812.807 572 Ω
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