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Preface

The reader is holding the first volume of a three-volume textbook on solid-
state physics. This book is the outgrowth of the courses I have taught for
many years at Eötvös University, Budapest, for undergraduate and graduate
students under the titles Solid-State Physics and Modern Solid-State Physics.

The main motivation for the publication of my lecture notes as a book
was that none of the truly numerous textbooks covered all those areas that
I felt should be included in a multi-semester course. Especially, if the course
strives to present solid-state physics in a unified structure, and aims at dis-
cussing not only classic chapters of the subject matter but also (in more or
less detail) problems that are of great interest for today’s researcher as well.
Besides, the book presents a much larger material than what can be covered
in a two- or three-semester course. In the first part of the first volume the
analysis of crystal symmetries and structure goes into details that certainly
cannot be included in a usual course on solid-state physics. The same applies,
among others, to the discussion of the methods used in the determination of
band structure, the properties of Fermi liquids and non-Fermi liquids, and the
theory of unconventional superconductors in the second and third volumes.
These parts can be assigned as supplementary reading for interested students,
or can be discussed in advanced courses.

The line of development and the order of the chapters are based on the
prerequisites for understanding each part. Therefore a gradual shift can be
observed in the style of the book. While the intermediate steps of calculations
are presented in considerable detail and explanations are also more lengthy in
the first and second volumes, they are much sparser and more concise in the
third one, thus this volume relies more on the individual work of the students.
On account of the prerequisites, certain topics have to be revisited. This is why
magnetic properties are treated in three, and superconductivity in two parts.
The magnetism of individual atoms is presented in an introductory chapter.
The structure and dynamics of magnetically ordered systems built up of local-
ized moments are best discussed after lattice vibrations, along the same lines.
Magnetism is revisited in the third volume, where the role of electron–electron
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interactions is discussed in more detail. Similarly, the phenomenological de-
scription of superconductivity is presented after the analysis of the transport
properties of normal metals, in contrast to them, while the microscopic theory
is outlined later, when the effects of interactions are discussed.

Separating the material into three similar-sized volumes is a necessity in
view of the size of the material – but it also reflects the internal logical struc-
ture of the subject matter. At those universities where the basic course in
solid-state physics runs for three semesters working through one volume per
semester is a natural schedule. In this case the discussion of the electron gas –
which is traditionally part of the introduction – is left for the second semester.
This choice is particularly suited to curricula in which the course on solid-state
physics is held parallel with quantum mechanics or statistical physics. If the
lecturer feels more comfortable with the traditional approach, the discussion
of the Drude model presented in the second volume can be moved to the be-
ginning of the whole course. Nevertheless the discussion of the Sommerfeld
model should be postponed until students have familiarized themselves with
the fundamentals of statistical physics. For the same reason the lecturer may
prefer to change the order of other chapters as well. Apart from the presen-
tation of the consequences of translational symmetry, the topics discussed in
Chapters 3, 4, and 6 can be deferred to a later time, when students have
acquired a sound knowledge of quantum mechanics, atomic, and molecular
physics. The consequences of translational symmetry can also be analyzed af-
ter the discussion of phonons. All this is, to a large extent, up to the personal
preferences of the lecturer.

In presenting the field of solid-state physics, special emphasis has been
laid on discussing the physical phenomena that can be observed in solids.
Nevertheless I have tried to give – or at least outline – the theoretical inter-
pretation for each phenomenon, too. As is common practice for textbooks, I
have omitted precise references that would give the publication data of the
discussed results. I have made exceptions only for figures taken directly from
published articles. At the end of the first, introductory chapter I have given
a list of textbooks and series on solid-state physics, while at the end of each
subsequent chapter I have listed textbooks and review articles that present
further details and references pertaining to the subject matter of the chapter
in question.

Bulky as it might be, this three-volume treatise presents only the funda-
mentals of solid-state physics. Today, when articles about condensed matter
physics fill tens of thousands of pages every year in Physical Review alone, it
would be obviously overambitious to aim at more. Therefore, building on the
foundations presented in this book students will have to acquire a substantial
amount of extra knowledge before they can understand the subtleties of the
topics in the forefront of today’s research. Nevertheless at the end of the third
volume students will also appreciate the number of open questions and the
necessity of further research.



Preface IX

A certain knowledge of quantum mechanics is a prerequisite for studying
solid-state physics. Various techniques of quantum mechanics – above all field-
theoretical methods and methods employed in solving many-body problems
– play an important role in present-day solid-state physics. Some essential
details are listed in one of the appendices of the third volume, however, I have
omitted more complicated calculations that would have required the applica-
tion of the modern apparatus of many-body problems. This is especially true
for the third volume, where central research topics of present-day solid-state
physics are discussed, in which the theoretical interpretation of experimen-
tal results is often impossible without some extremely complex mathematical
formulation.

The selection of topics obviously bears the stamp of the author’s own re-
search interest, too. This explains why the discussion of certain important
fields – such as the mechanical properties of solids, surface phenomena, amor-
phous systems or mesoscopic systems, to name but a few – have been omitted.

I have used the International System of Units (SI), and have given the
equations of electromagnetism in rationalized form. Nonrationalized equations
as well as gaussian CGS (and other) units are nevertheless still very much in
use in the solid-state physics literature. This has been indicated at the appro-
priate places. On a few occasions I have also given the formulas obtained from
nonrationalized equations. In addition to the fundamental physical constants
used in solid-state physics, the commonest conversion factors are also listed
in Appendix A. Only once have I deviated from standard practice, denoting
Boltzmann’s constant by kB instead of k – reserving the latter for the wave
number, which plays a central role in solid-state physics.

To give an impression of the usual values of the quantities occurring in
solid-state physics, typical calculated values or measured data are often tabu-
lated. To provide the most precise data available, I have relied on the Landolt–
Börnstein series, the CRC Handbook of Chemistry and Physics, and other
renowned sources. Since these data are for information only, I have not indi-
cated either their error or in many cases the measurement temperature, and
I have not mentioned when different measurement methods lead to slightly
disparate results. As a rule of thumb, the error is usually smaller than or on
the order of the last digit.

I would like to thank all my colleagues who read certain chapters and
improved the text through their suggestions and criticism. Particular thanks
go to professors György Mihály and Attila Virosztek for reading the whole
manuscript. In spite of all efforts, some mistakes have certainly remained in
the book. Obviously, the author alone bears the responsibility for them.

Special thanks are due to Károly Härtlein for his careful work in draw-
ing the majority of the figures. The figures presenting experimental results
are reproduced with the permission of the authors or the publishers. M. C.
Escher’s drawings in Chapter 5 are reproduced with the permission of the
copyright holder © 2006 The M. C. Escher Company-Holland. The challenge
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of translating the book from the Hungarian original was taken up by Attila
Piróth. I acknowledge his work.

Finally, I am indebted to my family, to my wife and children, for their
patience during all those years when I spent evenings and weekends with
writing this book.

Budapest, May 2007 Jenő Sólyom
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1

Introduction

It is our everyday experience that materials in the solid, liquid, and gas phases
are equally present in the world around us.1 Nevertheless it is the physics
of solids that has acquired a privileged status in the vast field of research
into the physical properties of macroscopic bodies. The reason for this is
that while investigating liquids and real gases, let alone materials in so-called
mesomorphic phases can yield a lot of new and interesting results, it is the
processes taking place in solids that have, in the first place, led to a great
many fundamentally new concepts. Moreover, solids have a much larger scope
of application.

Certain physical properties of solids, most notably the external regularity
of crystals have long been known. By the end of the nineteenth century a
considerable body of classical knowledge had been amassed about the elastic,
thermal, electric, optic, and magnetic properties as well as the symmetries
of crystals – without an explanation based on the structure of matter. The
birth of solid-state physics can be dated to 1900, when – three years after the
discovery of the electron2 – P. Drude put forward a simple model (based on
the late nineteenth century results of statistical mechanics) for the microscopic
description of the properties of metals. Using the results of the classical kinetic

1 This would not be the case in a colder world, as at sufficiently low temperatures
and at the same atmospheric pressure all matter would be in the solid phase – with
the sole exception of helium. The behavior of the latter is governed by quantum
fluctuations, since owing to the small mass of helium atoms these become more
important than the weak forces between noble-gas atoms. That is why helium will
stay in the liquid phase under atmospheric pressure. To solidify it, the pressure has
to reach 25 atm (2.5 MPa) even at low temperatures. The quantum fluid nature
of helium manifests itself in yet another way: at very low temperatures liquid 3He
and 4He show strikingly different behavior as one is made up of fermionic and
the other of bosonic atoms.

2 The discoverer of the electron, Joseph John Thomson (1856–1940) was awarded
the Nobel Prize in 1906 “in recognition of the great merits of his theoretical and
experimental investigations on the conduction of electricity by gases.”
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theory of gases he showed that certain properties of metals can be understood,
at least qualitatively, by assuming that electrons move like quasi-free classical
particles: billiard balls that collide with obstacles from time to time but oth-
erwise move freely. This picture was developed further by H. A. Lorentz,3
who gave a somewhat more precise description of the conduction properties
of metals in 1905.

The initial successes were soon followed by the first experimental results
clearly indicating that certain conduction phenomena could not be properly
interpreted within the framework of the Drude–Lorentz model. The most spec-
tacular of these was the discovery of superconductivity by H. Kamerlingh

Onnes
4 in 1911.

At the same time the understanding of the structure of solids was advanced
by several important discoveries. In 1912 M. von Laue,5 W. Friedrich, and
P. Knipping showed that X-rays (also known as Röntgen rays)6 diffracted by
crystals produce the same interference pattern as light diffracted by an optical
grating. The following year W. H. Bragg and W. L. Bragg (father and
son)7 demonstrated that not only the regularity in the atomic positions – i.e.,
the crystal structure – but also the crystal lattice parameters can be inferred
from the interference pattern. They embarked upon the systematic investiga-
tion of crystal structures using X-ray diffraction, laying the foundations of the
study of crystal structures: crystallography.

Structural studies continue to be an important element of solid-state phys-
ical investigations to date; as we shall see later, physical (mechanical, electric,
or magnetic) properties are in many respects determined by the structure.
However, a large number of phenomena observed in solids – most notably
those determined by the behavior of electrons – are less sensitive to structure.
The very difference between classical materials science and solid-state physics
(in its customary sense) is that the former focuses on applications and there-
fore does not deal with the properties of materials with an idealized structure;
instead it is concerned with the study of how physical properties depend on

3
Hendrik Antoon Lorentz (1853–1928) and Pieter Zeeman (1865–1943) were
awarded the Nobel Prize in 1902, “in recognition of the extraordinary service
they rendered by their researches into the influence of magnetism upon radiation
phenomena”.

4
Heike Kamerlingh Onnes (1853–1926) was awarded the Nobel Prize in 1913
“for his investigations on the properties of matter at low temperatures which led,
inter alia, to the production of liquid helium”.

5
Max von Laue (1879–1960) was awarded the Nobel Prize in 1914 “for his dis-
covery of the diffraction of X-rays by crystals”.

6
Wilhelm Conrad Röntgen (1845–1923) was the first Nobel Prize Winner in
physics, in 1901, “in recognition of the extraordinary services he has rendered by
the discovery of the remarkable rays subsequently named after him”.

7
Sir William Henry Bragg (1862–1942) and William Lawrence Bragg

(1890–1971) were awarded the Nobel Prize in 1915 “for their services in the anal-
ysis of crystal structure by means of X-rays”.



1 Introduction 3

the real structure. Solid-state physics, on the other hand, is primarily con-
cerned with the interpretation of phenomena, above all those determined by
the electrons in solids. The connection between these disciplines is nonethe-
less strong. One cannot ignore the structures formed by atoms in solid-state
physics either since it determines the state of the electrons. We shall see that
some of the recently observed most interesting phenomena can manifest them-
selves only in materials featuring special structures. As it was shown by the
example of quasicrystals,8 the interpretation of the latest discoveries in solid
structures present serious challenges for solid-state physicists, too.

The advent of quantum mechanics brought about dramatic changes in
the evolution of solid-state physics. It was probably in this field that the
new theory had its most spectacular successes, topping the correct qualitative
explanations with quantitative ones for a wide range of phenomena. By the
second half of the 1920s it had become clear that the state of electrons within
solids had to be described using Fermi–Dirac statistics. It then took just about
ten years to lay the theoretical foundations that solid-state physics continues
to be built upon even today. The most important contributions were due to
H. Bethe, F. Bloch, L. Brillouin, W. Heisenberg, L. D. Landau,
W. Pauli, J. C. Slater, A. Sommerfeld, A. H. Wilson, and E. P.

Wigner.9
The forces holding solids together were finally understood in this classi-

cal era of solid-state physics through the description provided by quantum
mechanics. This allowed a more precise formulation of the vibrations of crys-
tal lattices, and thus the explanation of thermal properties in crystals, the
interpretation of conduction and optical properties through the quantum me-
chanical treatment of electronic states, and, after the identification of the
exchange interaction, the elaboration of the theory of magnetic phenomena.

A new generation, including J. Bardeen,10 R. E. Peierls, and F. Seitz,
to name but a few outstanding figures, started to work in the 1930s. During
this period, the main lines of research were the experimental and theoretical
studies of the properties of metals and insulators. At that time, following the
development of quantum mechanics, the theory of metals meant the applica-
tion of the one-electron approximation – that is, ignoring interactions among
electrons or incorporating them into an average potential. While this proved
sufficient in many cases, the self-consistent treatment of the average potential
necessitated the development of more and more complicated approximation
methods, most of which could be treated only numerically.

8
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, 1984.

9 Among them the following received the Nobel Prize: Hans Albrecht Bethe

(1906–2005) in 1967, Felix Bloch (1905–1983) in 1952, Werner Karl Heisen-

berg (1901–1976) in 1932, Lev Davidovich Landau (1908–1968) in 1962,
Wolfgang Pauli (1900–1958) in 1945, and Eugene Paul Wigner (1902–1995)
in 1963, although some of the prizes were awarded for achievements in other fields
of physics.

10
John Bardeen was awarded two Nobel Prizes, in 1956 and in 1972, see later.
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It is in fact surprising that the one-particle approximation can ever be used,
as the system of electrons is a typical many-particle system with a by no means
weak interaction, the Coulomb repulsion. That is why field theoretical meth-
ods developed in quantum electrodynamics (QED) and quantum field theory
(QFT) found new applications in statistical and solid-state physics after the
Second World War. This marked the start of the epoch of modern solid-state
physics. The application of the methods used in many-body problems to solid-
state physics – as pioneered by the Landau school and in particular A. A.

Abrikosov,11 L. P. Gorkov, and I. E. Dzyaloshinsky – had a deep im-
pact on the theory of metals, as it provided a consistent approximation scheme
for taking the interactions among electrons into consideration.

After the early experimental observation of superconductivity, the exciting
problem of working out its microscopic theory remained unsolved for several
years. Finally, not only the interaction responsible for superconductivity was
identified, but also the theoretical description of the superconducting state
was established in 1957 by J. Bardeen, L. N. Cooper, and J. R. Schri-

effer.12 This gave a tremendous boost to both experimental and theoretical
investigations into superconductivity. For almost a decade this was the hottest
research topic for the solid-state physics community, being the first success-
fully explained phenomenon for which the usual one-particle approximation
failed to provide an adequate interpretation.

Simultaneously, giant steps were made in the understanding of other phe-
nomena of solid-state physics, and devices stemming from these quickly made
their way into our everyday life. In 1947 J. Bardeen and W. H. Brattain in-
vented the point-contact transistor, and shortly afterwards W. B. Shockley

developed the junction transistor.13 Yet another branch of solid-state physics
burst into blooms: the physics of semiconductors. As a result of its breathtak-
ing development, it has become one of the most important fields of solid-state
physics in terms of applications. It is probably in this field that solid-state
physics and materials science get closest to each other, since through the
step-by-step discovery of new phenomena newer and newer applications may
be developed.

In the 1960s research into magnetism gained new momentum as well. Us-
ing field theoretical methods, a more precise solution was obtained for the
model of magnetism based on localized magnetic moments. At the same
time important progress was made in the quantum mechanical treatment of

11
Alexei Alexeevich Abrikosov (1928–) shared the Nobel Prize with Vitaly

Lazarevich Ginzburg (1916–) and Anthony James Leggett (1938–) in 2003
“for pioneering contributions to the theory of superconductors and superfluids”.

12
John Bardeen (1908–1991), Leo Neil Cooper (1930–), and John Robert

Schrieffer (1931–) shared the Nobel Prize in 1972 “for their jointly developed
theory of superconductivity, usually called the BCS-theory”.

13
William Bradford Shockley (1910–1989), John Bardeen (1908–1991), and
Walter Houser Brattain (1902–1987) shared the Nobel Prize in 1956 “for
their researches on semiconductors and their discovery of the transistor effect”.
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magnetism in metals. In 1963, independently of one another, J. Hubbard and
M. C. Gutzwiller proposed a seemingly simple model that was expected
to give a theoretical description of ferromagnetic behavior caused by non-
localized electrons. Although nature is too complex for such an apparently
simple theory to yield a valid explanation of magnetism in metals, the Hub-
bard model and its generalizations nonetheless continue to be the subject of
intense research to date.

A breakthrough in the investigations into magnetism came in 1964, when
J. Kondo showed in a classic article that the anomalous temperature de-
pendence of resistivity observed in dilute alloys can be explained in terms
of the scattering of electrons by magnetic impurities if one goes beyond the
customary approximations. This discovery triggered off a veritable avalanche
in the experimental and theoretical studies of electronic states around mag-
netic atoms. It was recognized that some related manifestations of the strong
correlations among electrons are difficult to fit into the previous picture of
the behavior of fermionic systems, and so new theoretical approaches were
called for. The analysis of the problem of magnetic impurities, the so-called
Kondo effect then quite naturally led to the correct interpretation of one of the
most interesting discoveries of the past decades, the behavior of heavy-fermion
systems.

Starting from the 1970s, the experimental methods of solid-state physics
have been applied to materials that are not solid in the customary sense of
the word, for example polymers and liquid crystals. The discipline encompass-
ing the study of both the customary “hard” materials and such “soft” ones is
called condensed matter physics. The behavior of crystalline solids on the one
hand and polymers and liquid crystals on the other hand share many common
points, especially when it comes to phase transitions. To understand critical
phenomena the same concepts can be used and the same statistical physical
methods may be employed in their quantitative description. As the properties
of liquid crystals are not determined by the behavior of electrons but mostly
by the geometrical shape of and interactions between large molecules consti-
tuting it, they cannot be interpreted along the same lines as those used in
the description of the behavior of electrons within solids. Lack of space will
prevent us from presenting a discussion of condensed matter physics covering
these new aspects as well.

Even in the study of crystalline materials it was a turning point when, dur-
ing the past decades, the production of newer and newer families of materials,
often featuring surprising properties, became possible. A prime example for
this was the appearance of organic superconductors in the early 1970s, causing
a scientific sensation. In these materials large organic molecules form a highly
anisotropic structure in which electrons can propagate more or less freely in
one or two directions only. Then in addition to superconductivity, a new type
of order, a charge-density-wave state or a spin-density-wave state can also be
established. Despite initial hopes, the study of these low-dimensional systems
has not provided important new insights into superconductivity, nonetheless
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a rich variety of new phenomena has been discovered that cannot be inter-
preted within the one-particle framework. The reason for this is that correla-
tion among electrons is enhanced because of the spatially restricted character
of their motion, so they can give rise to states whose properties are completely
different from those observed in ordinary electron systems.

In 1980 K. von Klitzing, G. Dorda, and M. Pepper discovered
the quantized Hall effect in a suitably prepared semiconducting structure.14
Shortly afterwards, the fractional quantum Hall effect was also observed.15

The interpretation of these discoveries changed the perspective on the role
of impurities and disorder-induced localization, each an interesting field of
research in itself. The fractional quantum Hall effect also shed light on a new
kind of state in two-dimensional interacting electron gases, enriching the lore
of solid-state physics with several new concepts.

In 1986 an experimental observation made by K. A. Müller and J. G.

Bednorz
16 sparked off a hitherto unprecedented hunt after superconduc-

tors with higher and higher transition temperatures. Although these new
superconducting materials have not yet brought a real breakthrough in ap-
plications, the fact that their properties are different from those of conven-
tional superconductors has opened new perspectives for considerations about
possible novel mechanisms of superconductivity. In this respect, the work of
P. W. Anderson

17 is particularly noteworthy. There is still no agreement
on what can give rise to superconductivity at such high temperatures but
there are more and more signs indicating that the nature of the correlations
among electrons is different from that observed in so-called conventional su-
perconductors, and so a theoretical description genuinely different from the
Bardeen–Cooper–Schrieffer theory is sought. Research along these lines has
taught us a lot about the behavior of strongly correlated electron systems,
both in theoretical and experimental aspects.

Solid-state physics experiments are usually conducted on samples that,
small as they might be, are macroscopic on atomic scales. Measurements are
usually aimed at bulk properties that are independent of the shape and finite

14
Klaus von Klitzing (1943–) was awarded the Nobel Prize in 1985 “for the
discovery of the quantized Hall effect”.

15
D. C. Tsui, H. L. Störmer, and A. C. Gossard, 1982. “For their discovery
of a new form of quantum fluid with fractionally charged excitations”, Horst

Ludwig Störmer (1949–) and Daniel Chee Tsui (1939–) were awarded the
Nobel Prize in 1998 together with Robert Betts Laughlin (1950–), who gave
the theoretical description of the phenomenon.

16
Johannes Georg Bednorz (1950–) and Karl Alexander Müller (1927–)
shared the Nobel Prize in 1987 “for their important break-through in the discovery
of superconductivity in ceramic materials”.

17
Philip Warren Anderson (1923–) shared the Nobel Prize with Sir Nevill

Francis Mott (1905–1996) and John Hasbrouck Van Vleck (1899–1980) in
1977 “for their fundamental theoretical investigations of the electronic structure
of magnetic and disordered systems”.
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extent of the sample. The theoretical description is also much simpler when
surface phenomena and finite-size effects are ignored. In many cases, however,
one’s attention turns precisely toward the properties determined by the surface
or the finite size of the sample. This is how new fields, such as surface physics,
the physics of thin films, and more recently the physics of mesoscopic systems
and the physics of nanostructures were born. The extremely fine technologies
developed by the semiconducting industry permit the high-precision prepara-
tion of samples whose linear dimensions are on the order of 10–100 nm, that is,
100–1000 times larger than atomic distances. In these samples one may study
phenomena that occur on scales not much larger than atomic dimensions.

The study of disordered, amorphous systems, glass-like materials, and in
particular amorphous semiconductors and metallic glasses has recently re-
ceived an increasing attention in solid-state physics, too. Materials science
had been interested in such materials for some time because of their practical
applicability, however, understanding their behavior is equally important in
solid-state physics and in statistical physics. This is especially true for spin
glasses, whose theoretical description has required the introduction of new
concepts and the development of novel theoretical methods. These concepts
and method have been found to be applicable to phenomena and systems
beyond the traditional scope of physics, such as stock markets or behavior
research. The term physics of complex systems is used for the discipline where
the methods of statistical and solid-state physics are applied to such new
fields.

In this three-volume treatise the presentation of solid-state physics fol-
lows the historical development outlined above only in the sense that we shall
encounter newer and newer phenomena and will be led to more and more
complex considerations. Our primary aim is to show how one can determine
the properties of solids using the methods of quantum mechanics – basing the
discussion, as much as possible, on first principles –, and how one can interpret
the observed behavior of solids. However, solid-state physics is a science that
is both experimental and theoretical, with the characteristic features of both
approaches. Therefore besides theoretical explanations, one should always be
aware of the experimental methods for investigating the discussed phenom-
ena. Some of these techniques are extremely simple, accessible in practically all
solid-state physics laboratories, while others require state-of-the-art technol-
ogy or large-scale equipment. In this book we shall indicate at the appropriate
places how one may study certain phenomena, and on some occasions we shall
present experimental methods in some detail.

The first volume begins with a brief introduction into the structure of con-
densed matter; then some simple properties – known from classical physics,
atomic physics, or statistical physics – of the building blocks of solids (ion
cores) are recalled. The discussion of forces that hold solids together in the
condensed phase is followed by the presentation of the structure determined
by atomic positions within the solid, its defects, and the dynamical properties
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of the structure. Formal analogy justifies treating magnetically ordered struc-
tures and some simple questions of their dynamics in the same volume.

In the second volume we turn to our main task, the study of the states
and behavior of the system of electrons. Its importance is clearly shown by
the fact that among the mechanical, thermal, electric, optical, and magnetic
properties of solids all except for the first and to some extent the second group
are primarily determined by the behavior of electrons. We shall start out with
the discussion of a gas of free electrons and then gradually take into account
their interactions with atoms. First we shall be concerned only with the effects
of the periodic potential of atoms sitting statically in a crystal lattice, and
only later shall we examine how the behavior of the electrons is affected by the
oscillatory motion of the atoms. After the presentation of both theoretical and
experimental methods for determining the electronic state and the semiclas-
sical treatment of the dynamics of electrons we shall devote separate chapters
to the properties of metals, semiconductors, insulators, and superconductors.
Throughout this volume, we shall use the one-particle approximation.

A more profound study of the interaction among electrons is presented
in the third volume. The analysis of the correlations among electrons will
lead us to the instabilities occurring in the electron gas that are responsible
for the appearance of magnetic, superconducting, charge-density-wave and
spin-density-wave states. The microscopic theory of superconductivity is also
discussed there. Finally, the effects of strong electron correlations are explored,
and some questions of the physics of disordered systems are addressed.

A series of appendices conclude each volume. The first appendix of the
present volume contains the numerical values of fundamental physical con-
stants. The next covers some properties of the elements in the periodic table
that play important roles in solid-state physics. The one on mathematical rela-
tions provides a summary of the conventions used in Fourier transformations,
some useful integrals, as well as the essentials about the special functions
used in the text. This is followed by a summary of group theory, the scatter-
ing of particles by solids, and the quantum theory of spin and orbital angular
momentum. The fundamentals of many-body problems are presented in the
appendices of the second and third volumes. None of the appendices purport
to be complete, they just evoke the basic concepts that the reader should be
familiar with to be able to follow the arguments of the text.

Further Reading

To complement the material in the present book, the interested reader can
consult a wide range of solid-state physics textbooks. An exhaustive listing
would be impossible, therefore a rather subjective selection is given below
that contains a few classics and some newer texts.18 Some treat the subject
18 For some classic texts that have been republished in unaltered form the original

year of publishing is given. Otherwise the year of the last edition is usually given.
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at an introductory level, while others are more advanced and can serve as
useful references for undergraduate or graduate students preparing for their
final exams.

Introductory textbooks

1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart
and Winston, New York (1976).

2. G. Burns, Solid State Physics, Academic Press, Inc., Orlando, Florida
(1990).

3. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter
Physics, Cambridge University Press, Cambridge (1995).

4. J. R. Christman, Fundamentals of Solid State Physics, John Wiley & Sons,
New York (1988).

5. J. R. Hook and H. E. Hall, Solid State Physics, Second Edition, John
Wiley & Sons, Chichester (1991).

6. H. Ibach and H. Lüth, Solid-State Physics, An Introduction to Principles
of Materials Science, Third edition, Springer-Verlag, Berlin (2003).

7. C. Kittel, Introduction to Solid State Physics, Eighth edition, John Wiley
& Sons, New York (2004).

8. R. Kubo and T. Nagamiya, Solid State Physics, McGraw-Hill Book Co.,
Inc., New York (1969).

9. M. P. Marder, Condensed Matter Physics, 5th corrected printing, John
Wiley & Sons, Inc., New York (2004).

10. U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge
University Press, Cambridge (2001).

11. E. Mooser, Introduction à la physique des solides, Presses polytechniques
et universitaires romandes, Lausanne (1993).

12. H. P. Myers, Introductory Solid State Physics, Second Edition, Taylor &
Francis, London (1997).

13. Oxford Master Series in Condensed Matter Physics, Oxford University
Press, Oxford.
– J. Singleton, Band Theory and Electronic Properties of Solids (2001).
– A. M. Fox, Optical Properties of Solids (2001).
– S. Blundell, Magnetism in Condensed Matter (2001).
– R. A. L. Jones, Soft Condensed Matter (2002).
– M. T. Dove, Structure and Dynamics, An Atomic View of Materials
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The Structure of Condensed Matter

One of the most characteristic features of solids is their relatively high me-
chanical rigidity, that is, resistance to external forces that would force them to
change their shape. At first sight this is what distinguishes them from matter
in the liquid and gas phases. The word “solid” refers to this very property.
However, this rigidity is not perfect. Weaker forces will produce elastic strain,
while stronger ones may cause plastic deformation or rupture.

Mechanical rigidity is due to stronger or weaker bonds that hold atoms
or molecules together in a solid. A solid can be classically pictured as a col-
lection of atoms held together by springs. These springs tend to hinder the
free displacement of atoms relative to each other. Because of thermal motion,
however, the atoms will not be strictly at rest but will oscillate about their
equilibrium position within the cavity among its neighbors. At sufficiently high
temperatures the oscillation amplitude – and thus the mean square displace-
ment from equilibrium – can become so large that the atoms are no longer
localized. This corresponds to the melting of the solid.1 When temperature is
increased even further, thermal motion completely overcomes binding forces,
and the liquid vaporizes.

In substances built up of large nonspherical molecules transition from solid
to liquid phase may not occur in a single step but through intermediate, so-
called mesomorphic phases. In such phases substances are less rigid than in
their solid phase; in many respects they are closer to liquids. A clear distinction
from gases is offered by the collective term condensed phases for the solid,
mesomorphic, and liquid phases.

In this chapter we shall present the general characteristics of condensed
matter, paying special attention to those nonsolid phases that we shall not
discuss in detail elsewhere.

1 The melting point of the elements is listed in Appendix B.
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2.1 Characterization of the Structure

The arrangement of atoms is usually not completely random in condensed
phases. Interatomic forces create some order in the atomic structure. This
order may apply to the entire sample or it may manifest itself only locally; it
may comprise the internal atomic degrees of freedom but it may just as well
be restricted to atomic positions.

2.1.1 Short- and Long-Range Order

The largest and by far most thoroughly analyzed class of solids is that of
crystalline solids. In ideal crystals atoms are arranged in strictly periodic
arrays, i.e., spaced at regular distances in each direction. This perfect order of
the crystalline structure is assumed to be maintained indefinitely. The system
is homogeneous in the sense that the neighborhoods of any two equivalent
atoms are identical no matter how far they are separated. The crystal is
then said to possess long-range order. In such cases atomic densities show
strong correlations even for large spatial and temporal separations. At finite
(nonzero) temperatures positions are always slightly smeared out by thermal
motion, thus correlations are reduced but they are not destroyed. Long-range
order is preserved in the crystal up to the melting point.

A large proportion of the substances do not exhibit long-range order in
the condensed phase. Atoms separated by macroscopic distances are uncor-
related in such samples. In other cases long-range order is present in certain
spatial directions but absent in others. Nonetheless atomic positions may still
be related (correlated) over microscopic distances comparable to atomic di-
mensions. The appearance of such correlations is most readily understood in
substances where covalent bonds play an essential role. Because of the direc-
tionality of these bonds, in all parts of the sample the relative orientation of
the first few neighbors, located at more or less regular distances from each
other, is fairly definite. Locally, over distances among the first few neighbors
(in other words, on scales comparable to atomic dimensions) some kind of
order is observed that is similar to the one in crystalline solids. Over larger
distances, deviations from the regular bond directions and distances may be-
come so important that correlations among atomic positions are lost. In such
cases one speaks of short-range order.

Short- and long-range order can be observed not only in the spatial ar-
rangement of atoms but also in their internal degrees of freedom, for example
the orientation of their magnetic moments. In Chapter 14 we shall study mag-
netic systems in which atomic magnetic moments exhibit long-range order.
Below we shall consider systems built up of identical atoms and we shall be
concerned with their spatial arrangement only. These considerations will be
generalized in Chapter 10 to multicomponent substances and in Chapter 28
to systems of electrons, where will shall also analyze the short-range order in
the spatial arrangement of spins.
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Owing to the long-range order in the atomic arrangement, structure can be
completely characterized by a handful of parameters in crystalline materials.
In other cases even if the position and the expectation values of internal
degrees of freedom were known for the very large number of atoms, specifying
them would give an inextricable and unmanageable set of data. Instead of
this the structure can be fully characterized in terms of atomic distribution
functions.2

The n-particle probability density function ρn(r1, r2, . . . , rn) is defined by
stipulating that the probability that the volumes dr1 around r1, dr2 around
r2, etc. contain precisely one atom each be given by

dPn(r1, r2, . . . , rn) = ρn(r1, r2, . . . , rn) dr1 dr2 . . . drn . (2.1.1)

In disordered systems where a large number of random atomic configurations
are possible, the n-particle probability density function is determined by aver-
aging over all possible configurations. At finite (nonzero) temperatures, where
particles are in thermal motion, a so-called thermal average is taken in which
each possible state is multiplied by an energy-dependent statistical weight, the
Boltzmann factor. The n-particle probability distribution function is obtained
by dividing the n-particle density function by the one-particle densities:

gn(r1, r2, . . . , rn) =
ρn(r1, r2, . . . , rn)

ρ1(r1)ρ1(r2) . . . ρ1(rn)
. (2.1.2)

For a complete description of a disordered physical system, the infinite
hierarchy of such expressions would be required in principle. However, we shall
see later that it is sufficient to know the one- and two-particle distribution
functions – which can be determined from experiments. In what follows we
shall study only these.

Consider a system with N atoms in a volume V , and denote the position
vector of the ith atom by Ri. The one-particle probability density function,
ρ1, which we shall call ρ, is

ρ(r) =

〈
N∑
i=1

δ(r − Ri)

〉
, (2.1.3)

where 〈. . . 〉 denotes the configurational or thermal average. The above ex-
pression is the actual density. The two-particle probability density function
ρ2, which we shall henceforth call P , is given by

P (r1, r2) =

〈
N∑
i=1

N∑
j=1
j �=i

δ(r1 − Ri)δ(r2 − Rj)

〉
. (2.1.4)

2 Later we shall introduce further functions that indicate whether the positions of
atoms at different times are correlated. Here we shall consider the static case only.
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The definition of probability densities implies∫
V

ρ(r) dr = N, (2.1.5)

∫
V

P (r1, r2) dr2 = (N − 1)ρ(r1) , (2.1.6)

and, of course, ∫∫
V

P (r1, r2) dr1 dr2 = N(N − 1) . (2.1.7)

If long-range order is present, the positions of the two atoms are correlated
even if the separation between r1 and r2 is very large. If, however, there is no
long-range order then the correlation between atomic positions is washed out
at large separations, and so

P (r1, r2) → ρ(r1)ρ(r2) , if |r1 − r2| → ∞ . (2.1.8)

One separates out this expression to define the correlation function C(r1, r2):

C(r1, r2) = P (r1, r2) − ρ(r1)ρ(r2) . (2.1.9)

This correlation function indeed indicates whether the presence of an atom
at r1 affects the probability of finding another atom at r2. For perfectly
random atomic arrangements the correlation function is identically zero. For
amorphous systems with short-range order the function takes finite values at
small separations and drops off exponentially at large distances. On the other
hand, for crystalline samples the function shows the same periodicity as the
underlying structure even at large separations.

We shall focus on the distribution function rather than the probability
density function and suppress the index in the highly important two-particle
expression:

g(r1, r2) =
P (r1, r2)
ρ(r1)ρ(r2)

. (2.1.10)

In what follows, we shall almost exclusively study homogeneous systems, in
which the one-particle density is uniform, and we shall denote the ratio N/V
by n. The two-particle probability density will depend only on the difference
of r1 and r2; this is clearly seen when P is written as

P (r1, r2) =
1
V

〈∫
V

N∑
i=1

N∑
j=1
j �=i

δ(r1 − r′ − Ri)δ(r2 − r′ − Rj) dr′
〉

=
1
V

〈
N∑
i=1

N∑
j=1
j �=i

δ(r1 − r2 − Ri + Rj)

〉
. (2.1.11)
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In terms of the new variable r = r1 − r2 we have

P (r) =
1
V

〈
N∑
i=1

N∑
j=1
j �=i

δ(r − Ri + Rj)

〉
, (2.1.12)

and the two-particle distribution function becomes

g(r) =
V

N2

〈
N∑
i=1

N∑
j=1
j �=i

δ(r − Ri + Rj)

〉
. (2.1.13)

In isotropic systems the distribution function g(r) depends only on r = |r|.
The quantity g(r) is then called the radial distribution function. If an atom is
now selected, the average number of particles within a spherical shell of radius
r and thickness dr around it is

n(r) dr = 4πn g(r) r2 dr , (2.1.14)

which explains why sometimes 4πr2g(r) rather than g(r) is called the radial
distribution function.

If there is only short-range order then g(r) → 1 for |r| → ∞. When this
term is separated out, one is left with the pair-correlation function

c(r) = g(r) − 1 . (2.1.15)

We shall often encounter this correlation function, sometimes in another form
that contains i = j terms as well. We therefore introduce the expression

Γ (r) =
1
N

〈
N∑
i=1

N∑
j=1

δ(r − Ri + Rj)

〉
. (2.1.16)

When the term i = j is separated, it is readily seen that

Γ (r) = δ(r) + n g(r) . (2.1.17)

By taking the Fourier transform of both sides,

Γ (K) = 1 + n

∫
V

g(r)e−iK·r dr . (2.1.18)

Separating from Γ (K) the Fourier component K = 0, which is equal to the
number of particles regardless of the structure, we have

Γ (K) = NδK,0 + S(K). (2.1.19)
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This expression defines the structure factor S(K).3 Using the relation

n

∫
V

e−iK·r dr = NδK,0 , (2.1.20)

and comparing (2.1.18) and (2.1.19),

S(K) = 1 + n

∫
V

[g(r) − 1] e−iK·r dr . (2.1.21)

An inverse Fourier transform now gives

c(r) = g(r) − 1 =
1

(2π)3n

∫
[S(K) − 1] eiK·r dK . (2.1.22)

In the isotropic case angular integration in (2.1.21) leads to

S(K) = 1 + n

∞∫
0

4πr2 [g(r) − 1]
sinKr

Kr
dr , (2.1.23)

that is, S(K) depends only on K = |K|. Now the inverse transformation gives

c(r) = g(r) − 1 =
1

8π3n

∞∫
0

4πK2 [S(K) − 1]
sinKr

Kr
dK . (2.1.24)

The definition (2.1.19) of S(K) implies that S(K) vanishes for K = 0.
It can also be seen from the equations that the normalization conditions on
the pair-correlation function implies that S(K) vanishes in the K → 0 limit
as well. The limiting process must be treated with care when the spatial
distribution of the atoms is totally uncorrelated, and thus g(r) = 1 follows
from c(r) = 0. In this case everywhere except for the point K = 0 the structure
factor is constant, S(K) = 1.

As we shall see later, not only does the pair-correlation function lend it-
self to simple theoretical interpretation, but – with certain restrictions – it
can also be determined from measurements. The cross section in elastic scat-
tering experiments, e.g. in X-ray diffraction is proportional to the structure
factor S(K). From the measured K-dependence of the structure factor the
spatial correlations among atoms can be inferred. Some examples of the radial
distribution function will be presented later.

3 In the literature the term structure factor is sometimes used for related but not
identical expressions as well. See the footnote on page 248.
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2.1.2 Order in the Center-of-Mass Positions, Orientation, and
Chemical Composition

Up to now atoms have been assumed to be point-like, but our considera-
tions are equally valid for condensed matter built up of spherical atoms or
molecules. The centers of mass of the building blocks (atoms or molecules)
may exhibit short- or long-range order. If a long-range order is present then
– as we shall examine it in detail in Chapter 5 – the full translational sym-
metry of the sample observed macroscopically is broken on atomic scales. On
the other hand, if a snapshot is taken of the liquid, the centers of mass are
found to be distributed randomly, and so invariance under arbitrary transla-
tions is preserved. The generalization of this conclusion is also justified: the
appearance of order is always accompanied by the breaking of some symmetry.

Besides order in the positions of the centers of mass, other types of order
may also appear in the condensed phase if the building blocks of the sample are
not spherical. In substances made up of large molecules, building blocks are
often long, rod-shaped, or flat, disk-like molecules. In the condensed phase –
almost independently of the ordered or disordered arrangement of the centers
of mass – the rod axes or the disk planes may also be ordered. Denoting the
angle between a certain reference direction and the rod axis or the normal to
the disk plane by θ, one can determine the quantity

〈
cos2 θ − 1

3

〉
, where 〈. . . 〉

denotes the average over all molecules. If this quantity is different from zero
then the sample is said to exhibit orientational order.

Orientational order may also be present when the direction is not deter-
mined by the form of the molecules but by an internal degree of freedom, e.g.
atomic magnetic moment. To characterize magnetic materials the specification
of the orientation of magnetic moments is just as necessary as the specifica-
tion of atomic positions. In ordered magnetic structures where the directions
of magnetic moments are also ordered, this orientational order may show an
even greater diversity than the crystalline arrangements of atomic positions.
We shall return to this problem in Chapter 14 on magnetic materials.

Disorder may also be rooted in chemical composition. In nonstoichiometric
alloys even when atoms occupy the sites of a regular lattice, the order is im-
perfect, as the distribution of the components over the lattice sites is identical
only in an average sense in different parts of the sample. The same chemical
disorder may also appear in stoichiometric alloys at sufficiently high tempera-
tures, since due to its entropy, a disordered state has lower free energy than an
ordered one. Chemical ordering occurs through a disorder–order phase transi-
tion, and long-range order appears only below the critical point. Short-range
order may nonetheless exist in the high-temperature phase. As an example,
consider a material composed of two types of atoms, A and B, and assume
that the configuration in which atoms of either type are surrounded by atoms
of the opposite type is energetically more favorable than the configuration in
which atoms of the same kind are next to each other. Then the majority of
the nearest neighbors will be atoms of the opposite type. At small scales the
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material seems to be chemically ordered. When temperature is increased, the
free energy is more and more dominated by the term −TS, and short-range
order is gradually destroyed.

2.2 Classification of Condensed Matter According to
Structure

One possible classification of condensed matter is according to the degree
center-of-mass or orientational order is present. Before turning to the vast
subject of the study of crystalline materials, we shall give a highly simplified
and very concise overview of the characteristics of the structure of condensed
matter.

2.2.1 Solid Phase

When classifying materials that are, from a mechanical point of view, in the
solid phase, if small oscillations of the atoms are neglected, the atomic ar-
rangement is found to be regular in some substances and irregular in others.
Thus solids are divided into two broad categories according to their structure:
crystalline and noncrystalline. It should be noted that certain mesomorphic
phases can also be considered solid from a mechanical viewpoint. However,
due to their special structure, they will be considered separately.

Crystalline Solids

Although it is impossible to prove it with mathematical rigor, it is a generally
accepted assumption that at low temperatures crystalline structure is the
energetically most stable. This statement is based on the experience that it is
indeed possible to produce genuinely regular structures using crystal-growth
processes – provided they are slow enough and so the system has sufficient
time to find the most stable, lowest-energy state among local minima.

In a crystal each atom sits at a well-defined site that is easily determined.
This also means that in crystals built up of molecules both the molecular
centers of mass and the orientation of the molecular axes with respect to the
crystallographic axes show long-range order. In such cases the pair-correlation
function is the sum of a periodic sequence of Dirac deltas, and thus in K-space
S(K) will also be the sum of a periodic sequence of Dirac deltas. We shall see
this in more detail in Chapter 8.

If the orientation of the crystallographic axes is the same throughout the
sample then the sample is called a single crystal. In real crystals, however, the
order is never perfect. First, there may be defects in the atomic arrangement
due to imperfect crystal growth, and these defects can destroy the correlation
between the positions of distant atoms. For example, if the crystal starts to
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grow at several points then the sample will consist of crystal grains of different
(usually macroscopic) sizes and irregular shapes, so-called crystallites. The
crystallographic axes of individual grains are oriented independently of each
other. Such samples are said to be polycrystalline.

Second, at finite temperatures the ubiquitous thermal fluctuations may
also create defects, which will disrupt strict periodicity over large distances.
Nonetheless, the physical properties of such materials – and also of polycrys-
talline samples, provided the crystallites are not too small – are in many
respects similar to those of ideal crystals, so our results are usually valid for
them as well.

Noncrystalline Solids

With the sole exception of helium, all samples in thermodynamic equilibrium
are expected to be in an ordered crystalline phase at low temperatures. How-
ever, using quenching (rapid cooling) or other methods, it is equally possible
to produce samples that are solid from a mechanical point of view but in which
atoms are frozen in random (disordered) positions – unlike in crystals, where
they arrange themselves into a regular periodic array. The prime example for
this is glass. Therefore solid materials with a perfectly disordered structure
are often called glasses. For example, in metallic glasses two or more metallic
components are arranged randomly – but in such a way that atoms are packed
closely to fill space as tightly as possible. The structure of such amorphous
materials is disordered, and so – in contrast to crystals – long-range order is
absent. No correlation is found between the positions of two distant atoms; the
correlation function defined in (2.1.9) vanishes at large distances. Short-range
order may, however, exist, as we shall see it in Chapter 10. An important
difference with liquids is that in amorphous solids the disordered atomic posi-
tions do not vary with time, that is why these materials are sometimes called
solid solutions as well.

As it was mentioned in the introductory chapter, 1984 brought the dis-
covery of a new type of solid material, which, in a sense, is halfway between
crystalline and disordered systems. There is some sort of long-range order in
the spatial orientation of relative atomic positions, however no regular peri-
odic structure is formed. We shall see in Chapter 10 that the pair-correlation
function is then similar to that of amorphous materials, while the diffraction
pattern and the structure factor S(K) – determined using methods of struc-
tural analysis – are similar to those of crystalline materials. For this reason,
they are called quasicrystals.

In the largest part of our solid-state physics studies we shall be concerned
with the properties of crystalline solids, since classical solid-state physics is
the physics of crystalline materials. The behavior of noncrystalline materials
has nevertheless attracted more and more attention recently. Therefore our
investigation into crystalline structures will be followed by the presentation
of the most important structural characteristics of such systems (Chapter 10)
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and some of their physical properties (Chapter 36). As we shall not discuss
the properties of liquid crystals and plastic crystals elsewhere, below we shall
give a brief overview of some of the characteristic features of their structure.

2.2.2 Liquid Phase

In liquids no long-range order is present either in atomic (molecular) positions
or the relative orientation of atomic (molecular) axes. If a snapshot is taken
of the atoms of the liquid at any instant of time, the static two-particle distri-
bution function g(r1, r2) is found to be homogeneous and isotropic – in other
words, g(r1, r2) depends only on r = |r| = |r1 − r2| and for large separa-
tions it tends to a constant value that is independent of the direction and the
separation. This is readily seen in Fig. 2.1, which shows the experimentally
determined structure factor S(K) for liquid argon and the two-particle radial
distribution function obtained from its Fourier transform.
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Fig. 2.1. The structure factor S(K) of liquid argon, measured at 85 kelvins in
neutron scattering experiments, and the radial distribution function obtained from
its Fourier transform [J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973)]

Similar things would be observed in other liquids. The radial distribution
function approaches unity for large distances showing that in liquids there is no
long-range correlation among the atoms. On the other hand, the sharp peak in
the structure factor S(K) and the oscillation following it – or, in terms of the
derived radial distribution function, the small number of relatively sharp peaks
at short distances – indicate short-range order among atoms. An explanation
for this short-range order is provided by the simplest model for the structure
of liquids, the Bernal model.4

This model, shown in Fig. 2.2, is obtained by arranging the atoms – con-
sidered to be rigid spheres – randomly next to each other so that they should
be quite closely packed. As it is seen in the magnified part, whichever atomic
sphere is selected, due to close packing, the distance to the centers of its near-
est neighbors is equal to or just slightly larger than twice the atomic radius.
4

J. D. Bernal, 1959.
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Fig. 2.2. The Bernal model of liquids, with a relatively close-packed random ar-
rangement of atomic spheres on two different length scales

Therefore g(r) is sharply peaked at twice the atomic radius. The system is
thus not homogeneous on such small scales. In subsequent layers the distri-
bution of the centers is smoother, and correlation between the positions of
atomic centers gets weaker with increasing separation.

Although space is not so tightly filled in real liquids, the radial distribution
function indicates strong correlations. From the position of the first maximum
Kmax in S(K), the distance r0 to the nearest neighbors is directly calculated
from Kmax ≈ 2π/r0, in agreement with the nearest-neighbor distance read
off from the graph of g(r). The distribution is less sharply peaked in the
second and third layers but the peak is nonetheless clearly visible. For atoms
separated by even larger distances there is practically no correlation.

Qualitatively one may say that the sharper and more numerous the peaks,
the longer the range of the correlation among atomic positions. The limiting
case is that of an ideal crystal where – as mentioned above – the structure
factor S(K) is a sequence of infinitely sharp discrete peaks (Dirac deltas).

2.2.3 Mesomorphic Phases

It is always possible to draw a sharp line between the order in the centers of
mass and in the orientation of molecules/atoms observed in crystals on the
one hand, and the disordered atomic arrangement in the molten phase at high
temperatures or in the glass-like phase obtained from the melt by quenching
on the other hand, in the sense that one can always determine whether or not
long-range order is present. In other words, the state with broken translational
and rotational symmetry can be clearly distinguished from the state with full
translational and rotational symmetry. However, transition between ordered
and disordered states does not always happen in a single step. Order in the
spatial arrangement of molecular centers of mass and in molecular orientations
do not necessarily appear or disappear at the same time, i.e., the breaking of
translational and rotational symmetry may occur at different temperatures.
This is how mesomorphic phases are formed. When starting from the low-
temperature solid phase, if center-of-mass order is disrupted but orientational
order is maintained in the phase transition, the new phase is called the liquid
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crystal phase. In some cases the destruction of the center-of-mass order does
not occur simultaneously along the three directions. It might happen along
one or two directions only, leading to different types of liquid crystals. On the
other hand, if center-of-mass order is maintained in the phase transition and
only orientational order is lost in the new phase then one speaks of plastic
crystals.

Liquid Crystals

The liquid-crystalline phase usually manifests itself as one of the condensed
phases of mesogenic compounds (mesogens) made up of long (rod- or lath-
like), or flat (disk- or sheet-shaped) molecules – or molecules containing a
rigid molecular moiety (mesogenic unit) of one of the above shapes that plays
an important role in the formation of the mesomorphic phase.5 Figure 2.3
shows some classic examples of long organic molecules that exhibit a liquid-
crystalline phase. PAA stands for para-azoxy anisole, MBBA for 4-methoxy-
benzilidene-4-butyl-aniline, and TBBA for terephtal-bis-butyl-aniline. Figure
2.4 shows two disk-shaped molecules that have attracted much attention re-
cently, benzene-hexa-n-alkanoate and hexa-n-alkoxy triphenylene.

Fig. 2.3. Typical organic molecules exhibiting a liquid-crystalline phase

Phases can be classified according to the extent center-of-mass or orienta-
tional order is present in them. This classification goes back to G. Friedel

(1922), although some liquid crystals have been known since the 19th century.6

5 While liquid crystals made up of rod-like molecules were known for a long time,
the first liquid crystal made up of disk-shaped molecules and exhibiting a new
type of molecular arrangement was discovered by S. Chandrasekhar in 1977.

6 The discovery of liquid crystals dates to 1888, when the Austrian botanist
F. Reinitzer observed that cholesteryl benzoate had two distinct melting points:
first a fuzzy liquid appeared, which suddenly became transparent at a higher tem-
perature. One year later a German physicist, O. Lehmann demonstrated that
this was a new phase of matter, possessing the characteristic properties of crystals
and liquids alike, and he coined the term liquid crystal.
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Fig. 2.4. Flat, disk-shaped molecules exhibiting a discotic liquid-crystalline phase.
R = CnH2n+1 is an alkyl group

In nematic7 (N) liquid crystals the positions of the centers of mass of
rod-like molecules is disordered, while the orientation of their longitudinal
axes is more or less ordered, as shown schematically in Fig. 2.5(a). Because
of the disordered arrangement of the centers of mass, the system – just like
any liquid – is invariant under arbitrary translations. Isotropy, i.e. invariance
under rotations is broken: only rotations about the director – that is, the
direction n of the long axis of the mesogenic groups –, and rotations through
180◦ about the directions perpendicular to it will take the system into itself.
This is true even if the two tips of the molecules are inequivalent but half of
the molecules point in one direction and the other half in the other. Thus,
the director is not a true vector, since directions n and −n are equivalent.
Therefore order cannot be characterized by the expectation value of the angle
between the rod axes and a reference direction, rather the quantity

S = 1
2

〈(
3 cos2 θ − 1

)〉
(2.2.1)

plays the role of an order parameter. In the nematic phase the sample pos-
sesses cylindrical symmetry around the direction of the director. Because of
the cylindrical symmetry – or the underlying preferential orientation of the
molecules – the macroscopic properties of nematic liquid crystals show uniax-
ial anisotropy.

The nematic phase may appear in materials made up of flat, disk-shaped
molecules as well. If the normal vectors to the disk planes are aligned but
the arrangement of the centers of mass exhibits no order, as illustrated in
Fig. 2.5(b), the system is said to be in a discotic nematic phase.8

7 From the Greek words νημα (nema) and νηματικoς (nematikos), meaning thread,
and woven, respectively.

8 The nematic phase of rod-shaped molecules is sometimes called the calamitic
nematic phase to emphasize the difference, although the calamitic and discotic
nematic phases have the same symmetries, and the same notation N is recom-
mended for both.
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( )b ( )c

( )a

Fig. 2.5. Molecular arrangement in various liquid-crystalline phases: (a) nematic;
(b) discotic nematic; (c) cholesteric phase

More recently nematic liquid crystals made up of rectangular, rather than
rod- or disk-shaped molecules have been found. The arrangement of the cen-
ters of the rectangles is disordered but the molecules are packed together in
such a way that their axes are more or less aligned. Cylindrical symmetry
around the director is thus broken. This is called the biaxial nematic (Nb)
phase.

The nematic phase is usually formed by molecules possessing left-right
(up-down) symmetry. Chiral9 – that is, not mirror symmetric – molecules
can also form a nematic phase as long as left- and right-handed molecules
are present in equal numbers – however, symmetries of the nematic phase
are easily broken because of chirality, in which case another liquid-crystalline
phase, the cholesteric10 phase appears. In this phase the centers of mass are
not ordered, and the director is not constant in space – as in the nematic phase
– but rotates uniformly in a plane as one moves in the direction perpendicular
to this plane. Choosing the z-axis along this direction,

n(z) = [x̂ cos(qz + φ), ŷ sin(qz + φ), 0] . (2.2.2)

The molecular arrangement is shown schematically in Fig. 2.5(c). In fact the
molecules are not organized in planes; the change is continuous along the
preferred axis. That is why the cholesteric phase is also called the chiral ne-
matic phase, hence the notation N∗. As directions n and −n are equivalent,
9 From the Greek word for hand, χειρ (cheir), referring to the fact that hands are

not mirror symmetric.
10 The name refers to cholesterol esters, the first substances that were identified as

liquid crystals.



2.2 Classification of Condensed Matter According to Structure 27

the wavelength (chiral pitch) of the cholesteric phase is given by λ = π/q. This
may depend sensitively on temperature but it is usually around 300–500 nm,
that is, the pitch is on the same order as the wavelength of visible light. For
this reason cholesteric liquid crystals exhibit unique optical properties. This
is exploited in a number of applications, for example in liquid crystal displays
(LCDs).

Smectic11 liquid crystals come in several varieties. Figure 2.6 shows the
structure of two of these, A and C (SmA and SmC, or SA and SC). Besides the
alignment of the molecules, some kind of order is observed in the coordinates
of the centers of mass, too, but only in one spatial direction. This means that
molecules form layers. Within the layers, the arrangement of the molecular
centers of mass is disordered, much in the same manner as in liquids, but
their axes are along a preferred direction. The separation of adjacent layers is
determined by the length of the molecules. The difference between smectic A
and C phases is that the molecular axes are perpendicular to the plane of the
layer in the former but not in the latter. In this case the average tilt angle in
subsequent layers may be identical, reversed (giving a fishbone-like pattern of
two neighboring layers), or it may even change periodically.

( )b ( )c( )a

Fig. 2.6. Side view of the molecular arrangement in different smectic liquid crystals.
(a): the smectic A phase; (b) and (c): two variants of the smectic C phase

Alternatively, one can say that smectic A and C liquid crystals are like
solids in one direction but behave like liquids in the two perpendicular direc-
tions. Because of the incomplete order, the viscosity of liquid crystals is close
to that of liquids. In materials possessing both smectic and nematic phases
the former appears at a lower temperature, indicating that the smectic phase
is more ordered than the nematic. When temperature is increased, a phase
transition occurs: the layers disappear, and the symmetries of the nematic
phase appear. Full translational symmetry is restored.

If individual layers are considered as rigid structural units, the smectic
phase can be pictured as one in which these units are arranged regularly

11 From the Greek words for soap, σμηγμα (smegma) and smeared, layered, σμηκτoς
(smektos).
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along one direction. R. E. Peierls (1935) and L. D. Landau
12 (1937)

showed that in one-dimensional systems short-range forces cannot give rise to
such a long-range order: thermal fluctuations are so strong that they will al-
ways destroy the order. This is the so-called Landau–Peierls instability. Thus,
strictly speaking, the sequence of smectic layers cannot show long-range order.
A quasi-long-range order can, nevertheless exist. Experiments have revealed
that along the direction of the layers the periodicity in the variations of the
pair-correlation function is not perfect: the periodic function is multiplied by
a function that decreases with a temperature-dependent power of distance.
Moreover, the boundaries of smectic layers are smeared out – however, only
to an extent that is much smaller than the width of individual layers.

There are further known variants of the smectic phase. However, their
presentation would lead us too far afield – especially since some of them
exhibit ordered crystalline structures in all three directions. We shall just
mention one, the smectic B (SmB or SB) or hexatic phase. In this phase, shown
in Fig. 2.7(a), the arrangement of the molecules in a smectic layer is such
that each molecule is surrounded by six neighbors. No hexagonal crystalline
structure is formed, however, since the centers of mass exhibit only short- and
not long-range order within the layers. On the other hand, the axes of the
hexagons are aligned over long distances, so long-range orientational order is
observed.

( )b( )a

Fig. 2.7. Molecular arrangement in two liquid-crystalline phases: (a) smectic B
phase; (b) discotic columnar phase

Hexagonal-type structures can also be formed by disk-shaped molecules. In
the discotic columnar phase (or simply columnar phase) such flat molecules are
stacked, forming a column. As shown in Fig. 2.7(b), these columns are packed
locally hexagonally to ensure efficient space filling. In this hexagonal columnar
phase (Colh) the columns make up a regular hexagonal crystal. In two direc-
tions the substance behaves as a crystal, however, within the columns the
order is only short-ranged, and thus typical liquid behavior is observed along
this third direction. These columns do not always form hexagonal lattices:

12
Lev Davidovich Landau was awarded the Nobel Prize in 1962, “for his pioneer-
ing theories for condensed matter, especially liquid helium”.
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other two-dimensional crystal structures are equally possible. For example,
the Colr phase features a rectangular lattice. Disk normals are not necessarily
aligned with the column axis, either. This leads to an even greater wealth of
possible structures.

A hierarchical order can be established among different liquid crystal types
according to their symmetries. Starting out with the invariance under all
rotations and translations in the liquid phase, symmetries are broken one by
one, and so, through the symmetries characteristic of the nematic, smectic
A, smectic C, and smectic B phases, one finally arrives at the symmetries of
crystals. At this point all that is left is invariance under discrete translations
and discrete rotations. This hierarchy exists not only in theory: it is also
realized in some liquid crystals via subsequent phase transitions.

Orientationally Disordered Plastic Crystals

We have seen that in liquid crystals the arrangement of molecular centers of
mass is more or less disordered, while molecular axes are aligned, and the
system exhibits orientational order. Another kind of partially ordered state is
possible in materials built up of large, almost spherical molecules that – due
to their internal structure – are invariant only under discrete rotations. Here
molecular centers of mass are arranged in a regular crystalline array while the
orientation of molecular axes is disordered; center-of-mass order is thus not
accompanied by orientational order. Because of their plastic properties such
solids are called plastic crystals.

Fig. 2.8. The arrangement of carbon atoms in a C60 molecule

The C60 molecule shown in Fig. 2.8 has sixty carbon atoms arranged on
the surface of a sphere in rings of five and six, much like a soccer ball or
the geodesic domes of the architect R. Buckminster Fuller. From the latter’s
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name, the C60 molecule is also called a fullerene or a buckyball.13 In the solid
crystalline phase called fullerite C60 molecules are arranged in the vertices
and face centers of the primitive cells of a cubic lattice. At room temperature
molecular axes are not aligned along any particular direction relative to the
axes of the lattice, moreover, they can rotate freely. Around 263 K a phase
transition occurs and molecular axes become aligned. Instead of free rotation,
the axis is allowed to rotate only around certain directions determined by
symmetry. Only below this temperature is there a genuine crystalline order,
including long-range orientational order.

Polymers constitute another interesting class of large organic molecules.
Interactions between molecules will often get their chains intertwined, which
is why arrangement into regular crystalline structures from the ordinary con-
densed phase requires special techniques. In general, only partial order is
achieved. The interested reader is urged to consult the specialized literature.
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13
Robert F. Curl Jr. (1933–), Sir Harold W. Kroto (1939–), and Richard

E. Smalley (1943–2005) were awarded the 1996 Nobel Prize in Chemistry “for
their discovery of fullerenes”.
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The Building Blocks of Solids

In what follows, of all condensed phases we shall study only the solid phase in
the strictest sense of the word. Depending on what properties are examined,
different theoretical methods and experimental techniques must be employed.
The phenomenological approach is often sufficient for a theoretical descrip-
tion. This is especially true for mechanical properties, when the material is
considered as an elastic continuum and the equations of elasticity can be used.
Similarly, the conceptual framework and methods of thermodynamics or the
electrodynamics of continuous media often provide a sufficiently good descrip-
tion of thermal, electric, or magnetic properties. Nevertheless to gain a deeper
insight into the phenomena one has to study them more profoundly, starting
off with the atomic structure of matter. In this theoretical approach solids
have to be considered as highly complicated quantum mechanical systems
comprised of many interacting particles.

Before tackling the many-particle problem, we shall separately summarize
the behavior of ion cores and electrons that are not bound to atoms. In the
present volume we shall deal almost exclusively with the role of ion cores.
In this introductory chapter we shall first write down the Hamiltonian of
the system of electrons and ions, and then recall, for future reference, some
important results of quantum mechanics and atomic physics concerning the
states of bound electrons in free atoms and ions.

3.1 Solids as Many-Particle Systems

The subject of theoretical investigations in solid-state physics is, in principle,
very simple to present. Consider a quantum mechanical system that consists
of N nuclei and Ne electrons. The Hamiltonian associated with the system is
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denoted by H. First, one has to determine the energy spectrum of the system,
that is, the eigenvalues and eigenfunctions of the Schrödinger equation 1

HΨ = EΨ . (3.1.1)

From these not only the ground-state characteristics can be read off: using
the methods of statistical physics one can, in principle, determine all static
and dynamic properties of the system in thermodynamic equilibrium at some
finite temperature.

3.1.1 The Hamiltonian of Many-Particle Systems

The Hamiltonian can be split into three parts: nuclear and electronic contri-
butions, and Coulomb interactions between the nuclei and the electrons:

H = Hnucl + Hel + Hel–nucl . (3.1.2)

In the previous expression Hnucl contains the kinetic energies of the nuclei
i = 1, 2, . . . , N of charge Qie and mass Mi located at Ri plus their mutual
Coulomb repulsion:

Hnucl = Hkin
nucl +Hnucl–nucl = −

N∑
i=1

�
2

2Mi

∂2

∂R2
i

+
1

8πε0

N∑
i,j=1
i�=j

QiQje
2

|Ri − Rj | . (3.1.3)

The kinetic energies of and Coulomb interactions between electrons of
charge −e appear in a similar expression:

Hel = Hkin
el + Hel–el = − �

2

2me

Ne∑
i=1

∂2

∂r2
i

+
1

8πε0

Ne∑
i,j=1
i�=j

e2

|ri − rj | , (3.1.4)

while Coulomb interactions between the nuclei and the electrons are given by

Hel–nucl = − 1
4πε0

N∑
i=1

Ne∑
j=1

Qie
2

|Ri − rj | . (3.1.5)

We shall often encounter these expressions below. For simplicity, we introduce
the notation

ẽ2 =
e2

4πε0
. (3.1.6)

It will make many expressions appear as if they were written in Gaussian
rather than rationalized units. For example, using this notation the electronic
part of the Hamiltonian takes the form
1

E. Schrödinger, 1926. Erwin Schrödinger (1887–1961) shared the Nobel
Prize with Paul Adrien Maurice Dirac (1902–1984) in 1933 “for the discovery
of new productive forms of atomic theory”.
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Hel = − �
2

2me

Ne∑
i=1

∂2

∂r2
i

+
1
2

Ne∑
i,j=1
i�=j

ẽ2

|ri − rj | , (3.1.7)

which is commonly used in the literature even today.
Up to this point, the above Hamiltonian can equally well describe a gas,

a plasma, a liquid, or a solid. In gases and liquids our task is much simpler
as electrons do not move around freely but are bound to nuclei. Now interac-
tions are relatively weak between neutral atoms or molecules, which can be
considered as the new elementary units. Interactions continue to be weak even
when the elementary units are multiply charged positive or negative ions, since
the long-range mutual Coulomb forces between them are rapidly screened by
other ions.

The situation is somewhat more complicated in plasmas. While a part
of the electrons are again bound to nuclei, giving rise to relatively rigid ion
cores, there are other electrons that are not bound and form an electron liquid.
The description of the electronic states in solids is further complicated by the
arbitrariness in choosing whether the electron belongs to the ion core or not.
In general those electrons are considered to belong to the ion cores, which do
not participate in chemical bonding.

In ab initio (first-principles) calculations the state of each electron has to
be treated in the same manner. Less sophisticated calculations are consid-
erably simplified by separating the contributions of ion cores and unbound
electrons in the Hamiltonian. The Hamiltonian is then written as

H = Hion + Hel + Hel–ion , (3.1.8)

where

Hion = Hkin
ion + Hion–ion = −

N∑
i=1

�
2

2Mi

∂2

∂R2
i

+
1
2

N∑
i,j=1
i�=j

ZiZj ẽ
2

|Ri − Rj | (3.1.9)

is the sum of the kinetic energies of ions of charge Zie and mass Mi and
their mutual Coulomb energies. The Hamiltonian of the system of electrons,
Hel, can again be written in the form given in (3.1.4) and (3.1.7). However,
summation is now not over all electrons but only over the Ne electrons that are
not bound to ion cores. Finally, the Hamiltonian of the Coulomb interactions
between ions and electrons is

Hel–ion = −
N∑
i=1

Ne∑
j=1

Ziẽ
2

|Ri − rj | . (3.1.10)

Finding the solution to the eigenvalue problem of the total Hamiltonian is
impossible for two reasons. First, the number of nuclei and electrons is exces-
sively large. Second, the interaction is strong and long-ranged. This implies
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that one must always employ some approximation method in the calcula-
tions; the (in)applicability of a particular method is often revealed only by
the (dis)agreement with experiments.

The study of solids is considerably simplified if it is possible to assume
that ions are essentially localized, even when their arrangement is not regular.
Suppose the ionic positions are known; then the potential generated by them
at point r is given by

Uion(r) = −
N∑
i=1

Ziẽ
2

|Ri − r| . (3.1.11)

Electrons move in this field. The great difficulty is that the mutual Coulomb
interactions of the electrons cannot be written as a one-particle potential.
Therefore approximation methods are necessary to study these interactions.
As we proceed, we shall encounter more and more sophisticated methods.

3.1.2 Effects of Applied Fields

Solid-state physics is concerned not only with the properties of solids in ther-
mal equilibrium: much more effort goes into the investigation of their behavior
under external perturbations. In most cases this external perturbation is a
temperature gradient or an applied electromagnetic field but it may also be
an external pressure or a combination of them. The electromagnetic field can
be a simple potential difference between two points of the sample, a uniform
magnetic field, visible light, or a high-frequency electromagnetic radiation.
Thus the Hamiltonian must very often be complemented by a term Hext rep-
resenting the applied field. As we shall see, an analysis of the response of
the system to such external perturbations provides a deeper insight into its
thermal equilibrium properties.

In the simplest case, when the sample is placed in an electromagnetic field
and only the electrons’ behavior is considered, an external potential appears
in the Hamiltonian of the system of electrons. Besides, the kinetic energy term
is modified: instead of the canonical momentum p = (�/i)∇ it now contains
the kinetic momentum p + eA.

To prove this consider the Newtonian equation of motion of a particle of
mass m and charge q in external electric and magnetic fields,

m
d2r

dt2
= q

(
E + v × B

)
= q

(
E + ṙ × B

)
. (3.1.12)

When the fields are expressed in terms of a scalar and a vector potential as

E = − gradϕ(r) − ∂A

∂t
, B = curlA , (3.1.13)

it is readily seen that the above equation of motion can be derived in the
Lagrangian formulation of mechanics from Lagrange’s equation
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d
dt

∂L
∂ṙ

− ∂L
∂r

= 0 (3.1.14)

if the Lagrangian is chosen in the form

L = 1
2mṙ2 − qϕ(r) + qv · A , (3.1.15)

where v = ṙ is the velocity, and the relation

dA

dt
=

∂A

∂t
+

∂A

∂r
· ṙ (3.1.16)

is taken into account. Canonically conjugate momenta are customarily defined
by the relation

p =
∂L
∂ṙ

(3.1.17)

in the Hamiltonian formulation. Thus, in the presence of an external electro-
magnetic field,

p = mṙ + qA . (3.1.18)

When r and the conjugate momentum p are used as canonical variables, the
Hamiltonian is obtained from

H = p · ṙ − L . (3.1.19)

In our case this leads to the expression

H =
1

2m
(p − qA)2 + qϕ . (3.1.20)

The quantum mechanical Hamiltonian has the same form, only the canon-
ical commutation relations have to be required for r and p. The quantity
p− qA is called the kinetic momentum, since according to (3.1.18) it is equal
to mṙ, which appears in the kinetic energy formula. In contrast to the canon-
ical momentum the kinetic momentum is gauge invariant, since the gauge
transformation

ϕ → ϕ′ = ϕ− ∂f

∂t
, A → A′ = A + grad f (3.1.21)

takes the wavefunction and an operator O into

ψ → ψ′ = Uψ , O → O′ = UOU † , (3.1.22)

where
U = eiqf/� . (3.1.23)

When the potential due to the ions is combined with the external potential,
and the notation U(r) is introduced for the total potential, we obtain for
electrons (q = −e)
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Hel =
1

2me

Ne∑
i=1

(pi + eA(ri))
2 +

Ne∑
i=1

U(ri) +
1
2

Ne∑
i,j=1
i�=j

ẽ2

|ri − rj | . (3.1.24)

There is another term that has been ignored so far. Electrons possess an
intrinsic angular momentum, a spin of one-half, and along with it a mag-
netic moment – thus they interact with the applied magnetic field. When the
electron spin is treated as a dimensionless quantity (i.e., � is separated off),2
the interaction with the magnetic field gives the following contribution to the
Hamiltonian:

−geμB

Ne∑
i=1

B · si , (3.1.25)

where ge ≈ −2 is the electron g factor, and B is the magnetic induction (also
called the magnetic-flux density). The latter is related to the vector potential
A by B = curlA.

Electron spin plays an important role even in the absence of a magnetic
field. To determine the wavefunction of a many-electron system, one has to
take the Pauli exclusion principle3 into account. This states that the wavefunc-
tion changes sign when the coordinates of any two electrons are interchanged.
In addition to spatial coordinates, spin variables are also included among these
coordinates. Thus even when the Hamiltonian is apparently spin-independent,
the solution can depend on spin.

The magnetic field was considered as an external perturbation here. How-
ever, the field felt by the electrons may be partly due to the magnetic moment
μI of the nuclei. At the end of the chapter we shall present a derivation of
the corresponding term in the Hamiltonian.

3.1.3 Relativistic Effects

When writing down the previous form of the Hamiltonian it was tacitly as-
sumed that relativistic effects can be ignored. More precisely, it was taken
into account that electrons have a spin – but apart from that the Schrödinger
equation of nonrelativistic quantum mechanics was used. In solid-state physics
this is often justified as the energy correction due to relativistic effects is four
orders of magnitude smaller than the kinetic energy or the Coulomb energy.4
However, these effects can be observed for electrons moving in the field of

2 Throughout the book, we follow the convention that s and l are dimensionless
quantities for the electron’s intrinsic angular momentum (spin) and orbital an-
gular momentum. Dimensionful quantities are obtained by multiplication with
�.

3
W. Pauli, 1925. Wolfgang Pauli (1900–1958) was awarded the Nobel Prize in
1945 “for the discovery of the Exclusion Principle, also called the Pauli Principle”.

4 The energy correction is on the order of α2, where α = ẽ2/�c ≈ 1/137 is the
fine-structure constant.
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heavy ions. To demonstrate this, we shall consider a single electron, and start
off with the Dirac equation.5 When it is expanded in powers of 1/c, the large
component describing electrons can be separated from the small components
describing positrons, thus an effective Hamiltonian can be obtained for elec-
trons.

Keeping only first-order terms in 1/c we have

H = mec
2 +

1
2me

(σ · (p + eA))2 + U(r) , (3.1.26)

where σ denotes the Pauli matrices given in (F.3.10). Making use of the
identity

(σ · A)(σ · B) = (A · B) + iσ · (A × B) (3.1.27)

among Pauli matrices, and neglecting the term mec
2, we are left with

H(1) =
1

2me

(
p + eA(r)

)2 + U(r) − geμB B · s , (3.1.28)

the Pauli Hamiltonian of a single electron, since for spin-1/2 electrons s = 1
2σ,

μB = e�/2me, and for ge the Dirac equation gives precisely −2.
Keeping terms of the next order in the power series of 1/c and taking into

account the proper normalization of large and small components, two new
terms appear,

H(2) = − 1
8m3

ec
2

(
σ · (p + eA)

)4
− 1

8m2
ec

2

[(
σ · (p + eA)

)
,
[(

σ · (p + eA)
)
, U(r)

]]
,

(3.1.29)

where [ , ] denotes the commutator. After some algebra, the following form is
obtained:

H(2) = − 1
8m3

ec
2

(
σ · (p + eA)

)4 +
�

2

8m2
ec

2
∇2U(r)

+
�

4m2
ec

2
σ · (∇U(r) × (p + eA)

)
.

(3.1.30)

The first term, which can also be written as

− 1
2mec2

(
(p + eA)2

2me
+ μBσ · B

)2

, (3.1.31)

contains the relativistic correction to the kinetic and magnetic energy. In solid-
state physics this can be neglected. The second term is called the Darwin
term;6 in atomic Coulomb fields this is important only for s-electrons, since
5

P. A. M. Dirac, 1928. See footnote on page 32.
6

C. G. Darwin, 1928.
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∇2(1/r) ∝ δ(r). The most important is the third, spin-dependent term, which
gives a correction that depends on the spin as well as the orbital motion of
the electron. This is the spin–orbit interaction term.

The spin–orbit interaction term takes a particularly simple form when the
potential U(r) is central, i.e. depends only on r = |r|, and so

∇U(r) =
dU(r)

dr
r

r
. (3.1.32)

If the vector potential is then neglected,

Hs–o =
�

4m2
ec

2

1
r

dU(r)
dr

(r × p) · σ (3.1.33)

is obtained. The term in parentheses is recognized as the orbital angular mo-
mentum operator of the electron, �l = r × p. Now if σ is replaced by the
electron spin operator, the expression takes the usual form

Hs–o =
�

2

2m2
ec

2

1
r

dU(r)
dr

l · s . (3.1.34)

It can be shown that for an atom of atomic number Z the contribution of this
term to the energy is proportional to Z2, therefore it becomes important for
the heavy elements at the high end of the periodic table. For lighter elements
it can be considered as a weak perturbation to the interaction due to other
electrons.

If U(r) is the scalar potential of a uniform electric field E, the state of the
electron is determined by the Hamiltonian

H =
1

2me

[
p + eA(r)

]2 + U(r) − geμBB · s

+
�e

4m2
ec

2
σ · [E × (p + eA)

]
.

(3.1.35)

When the electric field is directed along the z-axis and the magnetic field is
absent, the spin–orbit interaction term is customarily written as

Hs–o = α
(
σxpy − σypx

)
, (3.1.36)

where the applied electric field is contained in the coefficient α. This term may
play a major role in two-dimensional electron gases produced in semiconductor
devices. In this context the term is called the Rashba term.7

3.2 The State of Ion Cores

The configuration of the electron shells in various (free) chemical elements is
given in Appendix B. Data on the chemical reactivity of the elements have
7

E. I. Rashba, 1960.
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revealed that electrons in completely filled electron shells – whose state thus
corresponds to that of the electrons in a noble-gas atom – belong to the ion
core as they do not take part in chemical bonding. Things are different beyond
the closed shells. Inside a solid, electrons in the not completely filled s- and
p-shells can be easily stripped off the atom, leaving behind a charged ionized
core. The situation is not so clear-cut for electrons in partially filled d- and f -
shells. Sometimes they are thought to belong to the core, while in other cases
they are considered to have broken free of the core, their state extending over
the entire crystal. In the rest of this chapter we analyze the state of the ion
core only, taking the number of core electrons from experiments.

It is well known that the energy spectrum can be exactly determined for a
hydrogen atom with a single electron – whereas only an approximate calcula-
tion of the energy spectrum is possible for an ion core with Z electrons around
the nucleus. In a zeroth-order approximation the many-electron atom can be
viewed as if each electron were on a hydrogen-like orbit. (Restrictions of the
Pauli exclusion principle apply.) The electron states obtained in this way are
highly degenerate since their energy depends only on the principal quantum
number n. When the Coulomb interaction between electrons is taken into
account through an average central potential, the same energies will depend
also on the azimuthal quantum number. Degenerate levels may split up, and
then degeneracy will be partially lifted. In the next step fluctuations about
the average potential and spin-orbit interaction are taken into account, which
may give rise to further splitting, as energy will now depend on magnetic and
spin quantum numbers as well. In many cases it is sufficient to determine
this splitting in the first nonvanishing order in perturbation theory. However,
some care must be taken, as it is not immaterial whether spin–orbit interac-
tions are larger or smaller than the fluctuations about the average potential
of the mutual Coulomb interactions among the electrons.

Apart from the heaviest elements, throughout the periodic table spin–orbit
coupling is less important than fluctuations of the interelectronic Coulomb
interaction. Thus in a first approximation spin–orbit interaction can be ne-
glected, whereupon the orbital momenta li and spins si of individual electrons
add up independently. The resultant angular momentum and spin8 of the atom
are then

L =
∑
i

li , S =
∑
i

si . (3.2.1)

Since both L and S commute with the unperturbed Hamiltonian (i.e., the
Hamiltonian without the spin–orbit interaction term), the electronic state is
characterized by the quantum numbers L, S, mL, and mS derived from the
eigenvalues of the operators L2, S2, Lz, and Sz. The states obtained this way
are (2L+1)(2S+1)-fold degenerate. Next, spin–orbit interaction is taken into
account. It is readily seen from the form

L · S = 1
2

(
L+S− + L−S+

)
+ LzSz , (3.2.2)

8 The rules for the addition of angular momenta are summarized in Appendix F.
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where L± = Lx±iLy and S± = Sx±iSy that this interaction mixes states with
different mL and mS , and splits multiply degenerate states into several levels.
This gives the fine structure of electronic states. The energy shift of states
with different values of the total angular momentum J = L+S is determined
by the strength of the spin–orbit interaction. Then the state of the ion core is
characterized by four quantum numbers: the magnitudes L, S, and J of the
dimensionless vectors L, S, and J – more precisely, the eigenvalues of

L2 = L(L + 1) , S2 = S(S + 1) , J2 = J(J + 1) , (3.2.3)

plus the projection mJ of the component Jz along the quantization direction.
Energy depends only on the quantum numbers L, S, and J , but not on mJ .
These atomic terms – which are now only 2J +1-fold degenerate for any given
J – are customarily denoted by 2S+1LJ ; however, for historical reasons, a
letter rather than a number is used for L, according to the following code:

L 0 1 2 3 4 5 6

Letter S P D F G H I

This coupling of the angular momenta of individual electrons is called the LS
coupling or the Russell–Saunders coupling.9

Because of the strong spin–orbit coupling, this perturbative approach can-
not be used for the characterization of the electronic state in elements at the
high end of the periodic table. While it is possible to define a total orbital
angular momentum L and a total spin S, these are not meaningful quantum
numbers as they do not commute with the Hamiltonian. In such cases one first
has to add up the orbital angular momentum li and the spin si individually
for each electron. These total angular momenta ji = li + si commute with
the li · si term of the Hamiltonian, and their sum gives the resultant angular
momentum J of the system of electrons:

J =
∑
i

ji . (3.2.4)

This is the so-called jj coupling. For simplicity, in the rest of this chapter we
shall assume that LS coupling can be used.

In what follows, we shall first discuss how to determine the quantum num-
bers L and S of the total orbital angular momentum and spin of the ground-
state configuration, and how L and S are added to obtain the ground-state
quantum number J . Then we shall examine how core electrons are affected by
an external magnetic field. Owing to their orbital motion and spin, electrons
possess a magnetic moment as well, consequently ion cores show diamagnetic

9
H. N. Russell and F. A. Saunders, 1925.
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or paramagnetic behavior in an applied magnetic field. This phenomenon
opens the way to the experimental determination of the electronic state of
ion cores.

3.2.1 Hund’s Rules

Consider an atom with some electrons on its outermost, partially filled shell.
According to the rules of angular momentum addition, the sum of the orbital
and spin angular momenta of individual electrons can lead to many different
resultant Ls and Ses. Consider, for example, the configuration p2 in which
two p-electrons (l = 1) have the same principal quantum number. Denoting
the states with magnetic quantum number ml = 1, 0,−1 and spin quantum
number ms = ± 1

2 by |ml,ms〉, the two-electron state can be written as a linear
combination of the states |ml1 ,ms1〉|ml2 ,ms2〉 – where, again, due attention
must be paid to the antisymmetrization required by the Pauli exclusion princi-
ple. The six one-particle states will then give fifteen two-particle states, which
are best grouped according to their total quantum numbers L and S. The
total angular orbital momentum of two l = 1 particles is L = 0, 1, or 2. Simi-
larly, the total spin quantum number of two spin-1/2 particles is either S = 0
or S = 1. The singlet state S = 0 is antisymmetric with respect to the inter-
change of the spin of the two particles. This can appear only in wavefunctions
that are symmetric in their spatial variables, that is, the total orbital angular
momentum must be L = 0 or L = 2. The triplet configuration S = 1 is sym-
metric in its spin variables, and thus the corresponding wavefunction must be
antisymmetric in its spatial variables. This corresponds to an orbital angular
momentum of L = 1. The allowed configurations and their multiplicities –
(2L + 1)(2S + 1) – are listed in Table 3.1.

Table 3.1. Allowed values of L and S and multiplicity in states with two p-electrons

L S Multiplicity Notation

0 0 1 1S
1 1 9 3P
2 0 5 1D

In the singlet state S = 0 the spatial parts of the wavefunctions of the
two electrons can be identical, while in the S = 1 state they are necessarily
different. The Coulomb repulsion between the electrons is expected to be
weaker in this state, leading to a lower energy than in the singlet state.

Spin–orbit interaction causes further splitting of the ninefold degenerate
energy level L = 1, S = 1. In the vector sum J = L + S the allowed values
of J range from |L − S| to L + S. Hence for a 3P level the possible values of
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J are 0, 1, and 2. The corresponding multiplicities – given by J(J + 1) – are
1, 3, and 5. Spin–orbit interaction thus splits the ninefold degenerate energy
level into three levels, a nondegenerate, a threefold degenerate, and a fivefold
degenerate level. Table 3.2 lists the possible configurations for two p-electrons
when spin–orbit interaction is taken into account.

Table 3.2. Allowed values of L, S, and J , and multiplicity in states with two
p-electrons

L S J Multiplicity Notation

0 0 0 1 1S0

1 1 0 1 3P0

1 1 1 3 3P1

1 1 2 5 3P2

2 0 2 5 1D2

Experience shows that of the five allowed states listed above, 3P0 (with
quantum numbers (L = 1, S = 1, J = 0) is the ground state. Such experi-
mental findings are generalized by Hund’s rules,10 established in the golden
age of spectroscopy, which provide a set of rules to determine the quantum
numbers of the lowest-energy configuration.

1.) To minimize the Coulomb repulsion due to the overlap of their wave-
functions, electrons tend to occupy states with different magnetic quantum
numbers ml (as long as this is possible). As we shall see in Chapter 4, even
though the Coulomb interaction is spin independent, the indistinguishability
of quantum mechanical particles nevertheless gives rise to a spin-dependent
interaction, the exchange interaction. As the exchange integral of two orthog-
onal states is positive, in less than half filled shells it is energetically more
favorable to have the spins of all the electrons aligned, which of course re-
quires that their magnetic quantum numbers ml be different. When a shell is
more than half filled, there will certainly be electrons with identical ml but op-
posite ms quantum numbers. Nevertheless even in this case the lowest-energy
state is found to be the one in which the total spin has the largest possible
value. If n of the 2(2l+1) possible states of the shell with azimuthal quantum
number l are filled, the quantum number S of the ground state is

S = 1
2

[
2l + 1 − |2l + 1 − n|] =

⎧⎨
⎩

1
2n n ≤ 2l + 1 ,

2l + 1 − 1
2n n ≥ 2l + 1 .

(3.2.5)

2.) Once the total S is determined, the total orbital angular momentum
L has to be chosen as large as possible. If there are n electrons on the shell
10

F. Hund, 1925.
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with azimuthal quantum number l, the total orbital angular momentum L is
given by

L = S|2l + 1 − n| =

⎧⎨
⎩

1
2n(2l + 1 − n) n ≤ 2l + 1 ,(
2l + 1 − 1

2n
)
(n− 2l− 1) n ≥ 2l + 1 .

(3.2.6)

This arrangement is also dictated by the Coulomb energy – although it cannot
be illustrated with an intuitive picture.

3.) Owing to the spin–orbit interaction, L and S are no longer conserved,
only their sum, the total angular momentum J = L + S is. For fixed values
of S and L the allowed values of the quantum number J (i.e., the length of
J) range from |L − S| to L + S. The multiplicities of the split levels indeed
add up to (2L + 1)(2S + 1), the multiplicity prior to splitting:

L+S∑
J=|L−S|

J(J + 1) = (2L + 1)(2S + 1) . (3.2.7)

The sign of the coupling constant of the spin–orbit interaction determines
which of these has a lower energy. It is possible to provide theoretical justi-
fication to the empirical rule asserting that if a shell of azimuthal quantum
number l is less than half filled (that is, when the number of electrons is
smaller than 2l + 1) then the lowest-energy state has J = |L− S|, while if it
is more then half filled then it has J = L + S. In case of n electrons

J = S|2l− n| =

⎧⎨
⎩

1
2n(2l− n) n ≤ 2l ,(
2l + 1 − 1

2n
)
(n− 2l) n > 2l .

(3.2.8)

The quantum numbers S, L, and J of the lowest-energy state satisfying
Hund’s rules are given in Table 3.3 for the case when the 10 states of the
d-shell (l = 2) are gradually filled in.

It should be kept in mind that the table shows only schematically how
the quantum numbers S and L could be determined for a given filling of the
level. The wavefunction itself cannot be inferred directly from it. For this one
has to use the angular momentum addition rules given in Appendix F. E.g.,
if there is a single electron on the 3d level, the wavefunctions of the fourfold
degenerate 2D3/2 multiplet are linear combinations of the ten |ml,ms〉 states
with orbital and spin quantum numbers l = 2 and s = 1/2. The state with
maximal mJ = 3/2 is

|J = 3/2,mJ = 3/2〉 =
2√
5
|2,−1/2〉 − 1√

5
|1, 1/2〉 . (3.2.9)

The three other states that correspond to mJ = 1/2,−1/2, and −3/2 can be
obtained from this state by successive applications of the lowering operator
J− = L− + S−.
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Table 3.3. The n-electron ground states of the d-shell, as required by Hund’s rules

n 2 1 0 −1 −2 S L J 2S+1LJ

1 ↑ 1/2 2 3/2 2D3/2

2 ↑ ↑ 1 3 2 3F2

3 ↑ ↑ ↑ 3/2 3 3/2 4F3/2

4 ↑ ↑ ↑ ↑ 2 2 0 5D0

5 ↑ ↑ ↑ ↑ ↑ 5/2 0 5/2 6S5/2

6 ↑↓ ↑ ↑ ↑ ↑ 2 2 4 5D4

7 ↑↓ ↑↓ ↑ ↑ ↑ 3/2 3 9/2 4F9/2

8 ↑↓ ↑↓ ↑↓ ↑ ↑ 1 3 4 3F4

9 ↑↓ ↑↓ ↑↓ ↑↓ ↑ 1/2 2 5/2 2D5/2

10 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 1S0

The energy splitting between levels with different quantum numbers L and
S is typically on the order of an electronvolt, since it is due to the Coulomb
interaction and its consequence, the exchange interaction. However, the split-
ting between states with different Js is at most 0.1 eV, since this is the result
of the spin–orbit interaction. In spectroscopy, energy differences are custom-
arily given by the wave number (in cm−1 units) of the photon associated
with the transition. According to the conversion formulas presented in Ap-
pendix A, 1 eV ≈ 8 × 103 cm−1. Thus, the typical energy difference between
multiplets with different L and S quantum numbers is 103–104 cm−1, while
between states with different Js it is usually 102–103 cm−1.

As thermal energy reaches 0.1 eV at temperatures around 103 K, higher
multiplets are usually not excited thermally because of the large energy dif-
ference. Therefore in the overwhelming majority of cases it is sufficient to
consider only levels whose quantum numbers S and L are determined by
Hund’s first and second rules. Moreover, it is often enough to consider only the
ground-state multiplet whose quantum number J is determined from Hund’s
third rule.

3.2.2 Angular Momentum and Magnetic Moment

It is known from the Zeeman11 splitting of energy levels that the angular
momentum �L of an ion is always accompanied by a magnetic moment

μ = −μBL , (3.2.10)

where μB = e�/(2me) is the Bohr magneton. We shall shortly see how this
is derived from the Schrödinger equation of an electron in a magnetic field.
Using the physical angular momentum �L instead of the dimensionless L, the
previous formula is alternatively written as
11 See footnote on page 2.
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μ = −γe�L , (3.2.11)

where γe is the gyromagnetic (magnetomechanical) ratio of the electron. Its
value is

γe =
e

2me
= 1.760 860× 1011 s−1 T−1 . (3.2.12)

Owing to its orbital motion, an electron in a state characterized by the quan-
tum numbers n, l, and ml has a magnetic moment of magnitude

μl = μB
√

l(l + 1) , (3.2.13)

while the z component of this magnetic moment is

μzl = −μBml . (3.2.14)

The electron’s intrinsic angular momentum, its spin s is accompanied by
an intrinsic magnetic moment μs. Just like orbital angular momentum and
magnetic moment, spin and intrinsic magnetic moment are also oppositely
directed. However, as the Einstein–de Haas experiment12 revealed, the gy-
romagnetic ratio is now different from that obtained for the orbital angular
momentum. The same conclusion is drawn from the Dirac equation. As men-
tioned earlier, the following relation holds between the dimensionless spin and
the intrinsic magnetic moment in the nonrelativistic limit:

μs = −2μBs . (3.2.15)

This relation is slightly modified by the radiation corrections of quantum
electrodynamics:

μs = geμBs , (3.2.16)

where calculations and measurements give the same value for ge, the electron
g-factor:

ge = −2
[
1 +

α

2π
+ O(α2)

]
= −2.002 319 . (3.2.17)

As before, α is the fine-structure constant. To a very good approximation, ge
is equal to −2.13

Thus the z component of the magnetic moment in a state with spin quan-
tum number ms = ± 1

2 takes the value

μzs = ± 1
2geμB ≈ ∓μB . (3.2.18)

12
A. Einstein and J. W. de Haas, 1915. Albert Einstein (1879–1955) was
awarded the Nobel Prize in 1921, “for his services to Theoretical Physics, and
especially for his discovery of the law of the photoelectric effect”.

13 Note that while in its rigorous definition ge is negative, most solid-state physics
references nevertheless use its absolute value. For easy comparison, we shall often
use the notation |ge| below.
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3.2.3 The Magnetic Hamiltonian of Atomic Electrons

To determine the magnetic properties of atomic electrons, consider an electron
moving in a potential U(r) and an applied magnetic field B(r). If the latter is
represented by a vector potential A(r), the canonical momentum p is replaced
by the kinetic momentum p + eA in the electron’s Hamiltonian. When the
interaction between the magnetic field and the magnetic moment due to the
electron spin is taken into account, the behavior of a single electron is governed
by the Hamiltonian (3.1.28),

H =
1

2me

(
p + eA(r)

)2 + U(r) + |ge|μBB · s . (3.2.19)

When expanding the quadratic expression of the kinetic energy, it should
be remembered that the order of the operators p and A is not immaterial. It
can be seen from the form of the momentum operator,

p =
�

i
∇ =

�

i

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(3.2.20)

that p and A do not commute in general:

[p,A] =
�

i
div A . (3.2.21)

To simplify calculations it is useful to choose the Coulomb gauge (also known
as radiation gauge or transverse gauge) div A = 0. When the magnetic field
is uniform, one possible choice for the vector potential is

A = 1
2 [B × r] . (3.2.22)

This is the so-called symmetric gauge. It is easily seen that both B = curlA
and the condition div A = 0 are satisfied.

Substituting this form of the vector potential into the first term of the
Hamiltonian (3.2.19), the following form is obtained:

1
2me

(
p − e

2
[r × B]

)2

=
p2

2me
− e

2me
p · [r × B] +

e2

8me
[r × B]2

(3.2.23)

=
p2

2me
+

e

2me
[r × p] · B +

e2

8me
[r × B]2 .

The angular momentum r × p = �l is immediately recognized in the middle
term, and the Bohr magneton in its coefficient. The total Hamiltonian can
therefore be written as

H =
p2

2me
+ μBl · B +

e2

8me
[r × B]2 + U(r) + |ge|μBB · s

=
p2

2me
+ U(r) + μB(l + |ge|s) · B +

e2

8me
[r × B]2 .

(3.2.24)
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Using r⊥, the component of the electron’s position vector perpendicular
to the magnetic field, the vector product in the last term can be rewritten as
|r × B| = |B| · |r⊥|, leading to

H =
p2

2me
+ U(r) + μB(l + |ge|s) · B +

e2

8me
B2r2

⊥ . (3.2.25)

This expression is readily generalized for the case when the atom has Z
electrons. Labeling the electrons by i, one starts off with the counterpart of
the Hamilton (3.2.19),

H =
Z∑
i=1

[
1

2me
(pi + eA(ri))

2 + U(ri) + |ge|μBB · si
]
. (3.2.26)

Following the same steps as above, the final result is now

H =
Z∑
i=1

p2
i

2me
+ μB (L + |ge|S) · B +

e2

8me
B2

Z∑
i=1

r2
i⊥ , (3.2.27)

where

�L =
Z∑
i=1

�li =
Z∑
i=1

(ri × pi) (3.2.28)

is the total orbital angular momentum due to the orbital motion of the elec-
trons, and

S =
Z∑
i=1

si (3.2.29)

is the total spin of the system of electrons.

3.2.4 Magnetization and Susceptibility

The Hamiltonian of the electrons contains terms that are linear and quadratic
in the magnetic field. The linear term is present when the total magnetic
moment −μB(L+ |ge|S) is finite (nonzero). In this case this moment tends to
be aligned with the field. This paramagnetic contribution is dominant unless
the total moment vanishes for some reason. Before analyzing the conditions
for this, we have to say a few words about the determination of magnetization
and susceptibility.

If the energies Ei of the states of the system are shifted under the influence
of a magnetic field B, the free energy also depends on the field. Using the
partition function

Z =
∑
i

e−Ei(B)/kBT , (3.2.30)

the Helmholtz free energy can be written as
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F = −kBT lnZ = −kBT ln

{∑
i

e−Ei(B)/kBT

}
. (3.2.31)

Magnetization is the negative partial derivative of the free energy density
f = F/V with respect to magnetic induction:

M (B, T ) = − ∂f

∂B
= − 1

V

∂F

∂B
. (3.2.32)

This can equally be written as

M(B, T ) =
∑

iM i(B)e−Ei(B)/kBT∑
i e−Ei(B)/kBT

, (3.2.33)

where
M i(B) = − 1

V

∂Ei(B)
∂B

(3.2.34)

is the contribution of the ith state to magnetization.
The customary definition of magnetic susceptibility – the response of the

system to a magnetic field – is not based on the straightforward choice

χ′ =
∂M

∂B

∣∣∣∣
B=0

(3.2.35)

but rather on
χ =

∂M

∂H

∣∣∣∣
H=0

. (3.2.36)

The derivative can also be taken at finite values of the field, leading to a
field-dependent susceptibility. Susceptibility, with its ordinary definition, is
the weak-field limit of the latter. In certain systems nonlinear contributions
to the magnetization are also used to characterize magnetic properties.

Susceptibility defined in this manner is usually a tensor quantity,

χαβ =
∂Mα

∂Hβ

∣∣∣∣
H=0

. (3.2.37)

However, in the isotropic case off-diagonal elements vanish and diagonal ones
are identical – so susceptibility can be considered a scalar. The dimensionless
scalar susceptibility is related to magnetic permeability via

μ = μrμ0 = (1 + χ)μ0 . (3.2.38)

Apart from some magnetically ordered materials (to be discussed in Chap-
ter 14), the magnetization of solids is usually rather small (χ � 1). As χ′ of
(3.2.26) is much more easy to determine theoretically, the relation B ≈ μ0H
permits one to obtain the dimensionless susceptibility χ from

χ = μ0χ
′ . (3.2.39)
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When this approximation is justified, susceptibility can be calculated from
the free-energy expression as

χ = −μ0

V

∂2F (B)
∂B2

. (3.2.40)

As we started off with the free-energy density, χ above is frequently referred
to as the volume susceptibility or bulk susceptibility.

Note that instead of the dimensionless susceptibility often χmass, the
mass or specific susceptibility, or χmol, the molar susceptibility is given as
experimental data. The former can be obtained by dividing χ by the den-
sity, χmass = χ/ρ, while the latter by multiplying χ by the molar volume,
χmol = χVmol.

3.2.5 Langevin or Larmor Diamagnetism

If the outermost electron shell of an atom or ion is completely filled, as in noble
gases (He, Ne, Ar, etc.) or ionic crystals (Na+, Cl−, etc.), the ground-state
quantum numbers are

L = S = J = 0 . (3.2.41)

When the energy correction due to the magnetic field is calculated to
the lowest order in perturbation theory, the second term in (3.2.27) does not
contribute. The only surviving term is proportional to B2. For a single atom
with Z electrons, the change in energy is

ΔE =
e2

8me
B2

〈
0
∣∣∣ Z∑
i=1

r2
i⊥
∣∣∣0〉 . (3.2.42)

For completely filled electron shells the electron distribution is spherically
symmetric. It is an elementary exercise to show that in such cases the mean
square of the position vector component perpendicular to the magnetic field
is equal to two-thirds of the mean square of the magnitude of the position
vector. Thus,

ΔE =
e2

12me
B2

〈
0
∣∣∣ Z∑
i=1

r2
i

∣∣∣0〉 . (3.2.43)

In systems containing N atoms in volume V , this shift of the ground-state
energy gives rise to a susceptibility on the order of

χ = −μ0
N

V

∂2ΔE

∂B2
= −e2μ0

6me

N

V

〈
0
∣∣∣ Z∑
i=1

r2
i

∣∣∣0〉 , (3.2.44)

as at T = 0 susceptibility should be calculated from the energy instead of the
free energy. As the negative sign shows, ions with closed shells behave dia-
magnetically. This is the Langevin or Larmor diamagnetism. The latter name
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reflects that the phenomenon lends itself to classical interpretation based on
Larmor’s theorem on the motion of electrons in a magnetic field14 – however,
the interpretation is due to P. Langevin (1905). This asserts that when an
electron moving in a closed orbit around a nucleus is placed in a magnetic field,
the angular frequency of the orbiting electron will be shifted by the Larmor
frequency ωL = eB/2me, inducing a magnetic moment that is proportional
to the applied magnetic field. According to Lenz’s law, the induced moment
will oppose the applied field. This is the root of diamagnetism.

To obtain an order-of-magnitude estimate for the diamagnetic energy cor-
rection, we shall approximate the radius of atomic orbits by the Bohr radius
a0 = 4πε0�

2/mee
2 = �

2/meẽ
2. The energy shift per electron is then

ΔEdia ≈ e2

12me
B2a2

0 . (3.2.45)

In terms of the Larmor frequency,

ΔEdia ≈ e2

12me
B2a0

�
2

meẽ2
=

1
3

�
2

(
eB

2me

)2
a0

ẽ2
=

1
3

(�ωL)2
(

ẽ2

a0

)−1

.

(3.2.46)
While ẽ2/a0 is on the order of atomic energies, the magnetic energy �ωL is
much smaller. Even for fields as strong as B ∼ 1 tesla the difference is five
orders of magnitude. In SI units, the dimensionless susceptibility χ is on the
order of 10−9 for noble gases. This corresponds to a molar susceptibility of
10−10–10−11 m3/mol, and a specific susceptibility on the order of 10−9 m3/kg.
Molar and specific susceptibilities for noble gases are listed in Table 3.4. When
working with CGS units, the numerical value of the susceptibility differs by a
factor of 4π: χCGS = χSI/4π.

Table 3.4. Molar and specific susceptibilies of noble gases at room temperature

χmol [SI] χmol [CGS] χmass [SI](
10−12 m3/mol

) (
10−6 cm3/mol

) (
10−9 m3/kg

)
He −25.4 −2.02 −5.9
Ne −87.5 −6.96 −4.2
Ar −243 −19.3 −6.16
Kr −364 −29.0 −4.32
Xe −572 −45.5 −4.20

In ionic crystals, the dimensionless susceptibility is on the order of 10−4

to 10−6 – e.g., for NaCl χ = −13.9 × 10−6, which corresponds to a molar
susceptibility of χmol = −3.75×10−10 m3/mol. Diamagnetic susceptibilities of

14
J. Larmor, 1897.
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the same order are found for a great number of elements as well. Experimental
data obtained at room temperature for some of them are listed in Table 3.5.

Table 3.5. Molar and specific magnetic susceptibility values (in SI units) for dia-
magnetic elements at room temperatures. For carbon, diamond data are given

χmol [SI] χmass [SI](
10−12 m3/mol

) (
10−9 m3/kg

)
Cu −68.6 −1.08
Ag −245 −2.27
Ga −271 −3.9
C −74.1 −6.17
Si −39.2 −1.8
Ge −146 −1.33
Sn −470 −3.3
Sb −1244 −10
Bi −3520 −16.8
Se −314 −4.0
Te −478 −3.9

Alert readers have no doubt noticed that among diamagnetic materials
there are not only covalently bonded semiconductors and insulators with
closed electron shells but also semimetals, like bismuth, and a few metals,
such as noble metals. In the latter electrons outside the closed d-shell can
be considered practically free: they are responsible for electric conduction.
While they give a positive, paramagnetic contribution to susceptibility,15 the
total susceptibility receives a more important diamagnetic contribution from
d-electrons.

3.2.6 Atomic Paramagnetism

When outer shells are not completely filled and thus J �= 0, the atom has
a permanent magnetic moment. If an external magnetic field is applied, this
magnetic moment will be more likely to line up with the field than against
it. Consequently a magnetization proportional to the magnetic field appears.
This is called paramagnetic behavior. The value of paramagnetic susceptibility
can be easily determined classically. In a magnetic field of induction B the
energy of a classical permanent magnetic moment μ is −μ ·B. Using classical
Boltzmann statistics, the probability that the magnetic moment points in the
elementary solid angle dΩ around the direction given by the polar angles θ
and ϕ is
15 The susceptibility due to the electrons not bound to the ion core (free electrons)

will be determined in Volume 2.
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P (θ, ϕ) dΩ =
1
Z

eμ·B/kBT dΩ , (3.2.47)

where μ ·B = μB cos θ, and Z is some normalization factor. With this weight
factor, the thermal average of the magnetic moment is found to be

〈μ〉 =
1
Z

∫
μ eμ·B/kBT dΩ . (3.2.48)

If there are N magnetic moments in volume V , then magnetization is given by
the density of the total magnetic moment, M = 〈μ〉N/V , and susceptibility
by its derivative with respect to magnetic field H – for which the approxima-
tion H = B/μ0 can be used. The components of the susceptibility tensor are
thus

χαβ =
N

V

μ0

kBT

{
1
Z

∫
μαμβeμ·B/kBT dΩ

− 1
Z2

∫
μαeμ·B/kBT dΩ

∫
μβeμ·B/kBT dΩ

}

=
N

V

μ0

kBT

{〈μαμβ〉 − 〈μα〉〈μβ〉
}
. (3.2.49)

Thermal fluctuations of the magnetic moment are recognized on the right-
hand side. This is an example of the fluctuation–dissipation theorem which
states that the linear response of the system to an external perturbation can be
expressed in terms of the fluctuations of some quantity in thermal equilibrium.

The initial susceptibility is obtained by determining the thermal averages
in (3.2.49) in thermal equilibrium, in the absence of any applied field. As free
moments can point in any direction, 〈μα〉 = 0, and the various components
are uncorrelated – that is, off-diagonal elements vanish in 〈μαμβ〉. Equivalence
of the three spatial directions implies that the diagonal elements are equal to
one-third of the squared magnitude of the momentum,

〈μαμβ〉 = 1
3μ

2δαβ . (3.2.50)

Thus the magnetic susceptibility of a system made up of atoms with classical
magnetic moments of magnitude μ is

χ =
N

V

μ0μ
2

3kBT
. (3.2.51)

It was first observed by P. Curie
16 (1895) that the susceptibility of para-

magnetic materials varies inversely with temperature. This temperature de-
pendence is called Curie’s law, and susceptibilities proportional to 1/T are
16

Pierre Curie (1859–1906) shared the Nobel Prize with his wife, Marie Curie

née Sklodowska (1867–1934), and Henri Becquerel (1852–1908); the Curies
received the accolade “in recognition of the extraordinary services they have ren-
dered by their joint researches on the radiation phenomena discovered by Profes-
sor Henri Becquerel”.
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in general known as Curie susceptibilities. The above formula was, however,
first derived by P. Langevin (1905), hence the name Langevin susceptibility
is also used.

To obtain a more precise, quantum mechanical description of paramagnetic
behavior, one has to focus on the second term in the Hamiltonian (3.2.27),

μB (L + |ge|S) · B . (3.2.52)

Assuming that the applied magnetic field is weak, the contribution of this
term is calculated in the first nonvanishing order of perturbation theory. For
this one needs to know the matrix elements of L and S in the atomic state.

Because of spin–orbit interaction, L and S are not conserved separately:
the state is determined by the magnitude of the resultant J = L + S and
its component along the magnetic field. When the z-axis is chosen along the
magnetic field direction, states are characterized by the quantum numbers
L, S, J , and mJ – the last being the eigenvalue of Jz. The matrix elements
necessary for determining the energy are obtained using the Wigner–Eckart
theorem.17 Before formulating this theorem, the concept of vector operators
has to be introduced first.

An operator V is called a vector operator if it is transformed as a vec-
tor under rotations – or, equivalently, if its commutation relations with the
components of the total angular momentum are

[Jx, Vx] = 0 ,

[Jx, Vy] = i�Vz , (3.2.53)
[Jx, Vz] = −i�Vy ,

and other similar expressions obtained by cyclic permutation of the indices.
Making use of the equality J = L + S, it is easy to show that both L and S
satisfy the above conditions, i.e., they are vector operators.

The Wigner–Eckart theorem asserts that for fixed L and S, in the
(2L + 1)(2S + 1)-dimensional subspace of the eigenfunctions of the total an-
gular momentum operator, the matrix elements of any vector operator are
proportional to the matrix elements of the total angular momentum operator,
and the constant of proportionality is independent of the value of mJ :

〈L, S, J,mJ |V |L, S, J,m′
J〉 = α(L, S, J)〈L, S, J,mJ |J |L, S, J,m′

J〉 . (3.2.54)

In other words: within this subspace the vector operator V is equivalent to
the quantity αJ :

V ≡ α(L, S, J)J . (3.2.55)

17
C. Eckart (1930), E. P. Wigner (1931). Eugene Paul Wigner (1902–1995)
was awarded the Nobel Prize in 1963 “for his contributions to the theory of the
atomic nucleus and the elementary particles, particularly through the discovery
and application of fundamental symmetry principles”.
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Let us now introduce the operator

P (L, S, J) =
∑
mJ

|L, S, J,mJ〉〈L, S, J,mJ | . (3.2.56)

Exploiting the mutual orthogonality of angular momentum eigenfunctions it
is readily seen that P 2(L, S, J) = P (L, S, J), and also that the completeness
relation ∑

J

P (L, S, J) =
∑
J

∑
mJ

|L, S, J,mJ〉〈L, S, J,mJ | = 1 (3.2.57)

holds, thus for given L and S the operator P (L, S, J) projects onto the sub-
space of quantum number J . Moreover, this projection operator commutes
will all three components of J . When (3.2.54) is multiplied by |L, S, J,mJ〉
from the left and by 〈L, S, J,m′

J | from the right, summation yields

P (L, S, J)V P (L, S, J) = α(L, S, J)P (L, S, J)JP (L, S, J) . (3.2.58)

To determine the coefficient α(L, S, J), consider the following matrix element
of the scalar V · J :

〈L, S, J,mJ |V · J |L, S, J ′,mJ′〉. (3.2.59)

Making use of the completeness relation, the fact that only those matrix ele-
ments of J are nonzero that belong to the same quantum number J , and the
Wigner–Eckart theorem we have

〈L, S, J,mJ |V · J |L, S, J ′,mJ′〉 = α(L, S, J)〈L, S, J,mJ |J2|L, S, J ′,mJ′〉.
(3.2.60)

When α(L, S, J) is expressed, we arrive at

V =
〈V · J〉
〈J2〉 J . (3.2.61)

in the space of the angular momentum eigenfunctions. Thus one can draw
the intuitive conclusion that within this subspace only the J -projection of the
vector operator is important.

For the vector operator L + |ge|S this implies

L + |ge|S = gJ J (3.2.62)

in the relevant subspace. The value of gJ , called the Landé g-factor18 can be
determined from

gJ =
〈(L + |ge|S) · J〉

〈J2〉 . (3.2.63)

18
A. Landé, 1923.
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One only has to make use of

L · S = 1
2 [J2 − L2 − S2] , (3.2.64)

and thus
L · J = L · (L + S) = L2 + 1

2 [J2 − L2 − S2] , (3.2.65)

as well as
S · J = S · (L + S) = S2 + 1

2 [J2 − L2 − S2] . (3.2.66)

In the subspace of the eigenvectors of J = L + S

〈L · J〉 = L(L + 1) + 1
2 [J(J + 1) − L(L + 1) − S(S + 1)] ,

〈S · J〉 = S(S + 1) + 1
2 [J(J + 1) − L(L + 1) − S(S + 1)] .

(3.2.67)

This finally yields

gJ = 1
2 (|ge| + 1) + 1

2 (|ge| − 1)
S(S + 1) − L(L + 1)

J(J + 1)

= 1 + (|ge| − 1)
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
.

(3.2.68)

The importance of this result lies in the fact that gJ determines the total
magnetic moment

μ = −μB(L + |ge|S) = −gJμBJ (3.2.69)

of an ion core, and therefore the energy level splitting in an applied magnetic
field.

The interaction of the magnetic moment with an applied magnetic field is
included in the Hamiltonian as the perturbation term

Hext = −μ · B = gJμB J · B . (3.2.70)

This completely lifts the 2J +1-fold degeneracy of the original state, splitting
it into 2J + 1 nondegenerate Zeeman levels. When the quantization axis is
chosen along the applied field direction, the energy shift of the individual
levels is given by

ΔE = gJμBmJB , (3.2.71)

where mJ = −J,−J + 1, . . . , J .
A simple physical interpretation can be given to the foregoing by pic-

turing the moments L and S as classical vectors of length
√

L(L + 1) and√
S(S + 1). Because of the spin–orbit interaction, these will precess about a

third classical vector, J , of length
√

J(J + 1), as shown in Fig. 3.1.
Owing to the precession, all components perpendicular to the direction of

J are averaged out, and only the projection of L and S on the direction of
J survive. As the gyromagnetic ratio is different for spin and orbital angular
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Fig. 3.1. Precession of the orbital angular momentum and the spin about the total
angular momentum

momentum, the total magnetic moment – that is, the resultant of the intrin-
sic magnetic moment and the magnetic moment associated with the orbital
angular momentum – does not point in the same direction as J but rather
precesses about it, and only its component parallel to J is conserved. This
component is given in terms of the lengths of the vectors μL and μS ,

|μL| = μB
√

L(L + 1) , |μS | = |ge|μB
√

S(S + 1) (3.2.72)

and the angles θL and θS that J makes with L and S as

|μJ | = |μL| cos θL + |μS | cos θS . (3.2.73)

By reading off the angles from the figure and making use of the relation

|μJ | = gJ
√

J(J + 1)μB (3.2.74)

the previous result for the Landé g-factor is recovered. When a magnetic field
is turned on, this average magnetic moment (of magnitude |μJ | and direction
J) starts to precess about the field direction, and only its component along
the field contributes to energy. The classical picture cannot account for the
fact that the component along the field direction is quantized, i.e., it can take
only discrete values.

To specify the Curie or Langevin susceptibility, we shall assume that the
energy difference between the ground state (as determined by Hund’s rules)
and higher-lying states is larger than the thermal energy kBT at experimen-
tally relevant temperatures, and consequently the thermal occupation of the
latter states can be neglected. If this assumption is justified, only a single
level with quantum number J has to be considered for each atom – which,
however, splits into 2J + 1 levels in a magnetic field. A well-known theorem
in statistical mechanics states that the partition function of a system made
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up of independent subsystems is the product of the partition functions of
the subsystems. In a first approximation, the state of individual atoms will
be considered independent of each another. The partition function Za of all
possible states of a single atom is given by

Za =
∑
n

e−βEn =
J∑

mJ=−J
exp(−βE0) exp(−βgJμBmJB) . (3.2.75)

Summation yields

Za = exp(−βE0) exp(−βgJμBJB)
exp[βgJμB(2J + 1)B] − 1

exp(βgJμBB) − 1

=e−βE0
exp[βgJμB(J + 1/2)B] − exp[−βgJμB(J + 1/2)B]

exp(βgJμBB/2) − exp(−βgJμBB/2)

= e−βE0
sinh[βgJμB(J + 1/2)B]

sinh[βgJμBB/2]
.

(3.2.76)

Because of the independence of individual atoms, the partition function
of the entire system with N atoms is just the Nth power of the partition
function of a single atom,

Z = ZNa . (3.2.77)

As free energy is the logarithm of the partition function, the component
of magnetization along the magnetic field is

M = − 1
V

∂F

∂B
=

N

V
gJμB JBJ(βgJμBJB) , (3.2.78)

where BJ(x), the Brillouin function can be written as

BJ(x) =
2J + 1

2J
coth

2J + 1
2J

x− 1
2J

coth
1
2J

x . (3.2.79)

For J = 1/2, the Brillouin function takes the particularly simple form

B1/2(x) = tanhx . (3.2.80)

In the J � 1 limit the component of the magnetic moment along the magnetic
field is found to be

〈μz〉 = μL(μB/kBT ) , (3.2.81)

in perfect agreement with the result that would be obtained from the classical
equation (3.2.48). Here

L(x) = cothx− 1/x (3.2.82)

is the Langevin function.
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In strong fields, where the energy due to the coupling to the magnetic field
is much larger than the thermal energy (gJμBJB � kBT ), the projection of
the spins will be maximal along the field direction, and so magnetization
reaches saturation. Apart from extremely low temperatures, μBB � kBT in
fields customarily applied in susceptibility measurements, therefore the argu-
ment of the Brillouin function is small. Using the small-x expansion of the
coth function,

cothx =
1
x

+
1
3
x− 1

45
x3 + . . . , (3.2.83)

we have

BJ(x) =
J + 1
J

x

3
− (2J + 1)4 − 1

(2J)4
x3

45
+ . . . . (3.2.84)

Substitution into (3.2.78) gives the leading-order term of the susceptibility:

χ =
N

V

μ0(gJμB)2J(J + 1)
3kBT

. (3.2.85)

To compare this formula with the expression in (3.2.51) valid for classical mag-
netic moments, the effective magnetic moment μeff and the effective magneton
number p are customarily introduced via

χ =
N

V

μ0μ
2
eff

3kBT
=

N

V

μ0μ
2
Bp

2

3kBT
. (3.2.86)

Their theoretical values are μth
eff = gJ

√
J(J + 1)μB and pth = gJ

√
J(J + 1).

Table 3.6 lists the values of p calculated from Hund’s rules for trivalent rare-
earth metals (pth) as well as determined from experimental data on the sus-
ceptibility of paramagnetic salts containing such ions (pexp).

As the data in the table show, the agreement between calculated and
measured values is excellent – except for samarium and europium. The reason
for the discrepancy in the latter is that our earlier assumption – that it is
sufficient to consider only the lowest 2J + 1 energy levels associated with the
value of J given by Hund’s rules – is not justified now. In this case somewhat
higher-lying states must also be included in calculations of the susceptibility,
as their occupation can no longer be neglected. We shall see a remarkable
example in the following subsection.

A far worse agreement is found for 3d transition metals when the calculated
magnetic moment of the configuration given by Hund’s rules is compared to
the effective moment determined from measured data of the paramagnetic
susceptibility in solids containing transition-metal ions. This is illustrated in
Table 3.7.

The table clearly shows that an agreement can be found only when the
effective magneton number due to the electrons’ intrinsic magnetic moment
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Table 3.6. Ground-state electron configuration, Landé g-factor, as well as calculated
and measured effective magneton numbers for trivalent rare-earth ions

Ion 4fn L L J
Ground
state gJ pth pexp

La3+ 0 0 0 0 1S0 0 0 0
Ce3+ 1 1/2 3 5/2 2F5/2 6/7 2.535 2.4–2.7
Pr3+ 2 1 5 4 3H4 4/5 3.578 3.4–3.6
Nd3+ 3 3/2 6 9/2 4I9/2 8/11 3.618 3.4–3.7
Pm3+ 4 2 6 4 5I4 3/5 2.683 –
Sm3+ 5 5/2 5 5/2 6H5/2 2/7 0.845 1.3–1.6
Eu3+ 6 3 3 0 7F0 0 0 3.2–3.4
Gd3+ 7 7/2 0 7/2 8S7/2 2 7.937 7.9–8.0
Tb3+ 8 3 3 6 7F6 3/2 9.721 9.4–9.8
Dy3+ 9 5/2 5 15/2 6H15/2 4/3 10.646 10.5–10.7
Ho3+ 10 2 6 8 5I8 5/4 10.607 10.3–10.6
Er3+ 11 3/2 6 15/2 4I15/2 6/5 9.581 9.4–9.6
Tm3+ 12 1 5 6 3H6 7/6 7.561 7.3–7.6
Yb3+ 13 1/2 3 7/2 2F7/2 8/7 4.536 4.4–4.6
Lu3+ 14 0 0 0 1S0 0 0 0

Table 3.7. Electron configuration, quantum numbers of the ground state (as spec-
ified by Hund’s rules), calculated and measured values of the effective magneton
number p, and spin the theoretically determined contribution to the effective mag-
neton number ps for some transition-metal ions

Ion 3dn S L J
Ground
state gJ pth pexp pth

s

Ti3+ 1 1/2 2 3/2 2D3/2 4/5 1.549 1.6–1.8 1.732
V4+ 1 1/2 2 3/2 2D3/2 4/5 1.549 1.6–1.8 1.732
V3+ 2 1 3 2 3F2 2/3 1.633 2.5–2.8 2.828
V2+ 3 3/2 3 3/2 4F3/2 2/5 0.775 3.7–4.0 3.873
Cr3+ 3 3/2 3 3/2 4F3/2 2/5 0.775 3.7–4.0 3.873
Mn4+ 3 3/2 3 3/2 4F3/2 2/5 0.775 3.7–4.0 3.873
Cr2+ 4 2 2 0 5D0 – 0 4.8–5.0 4.900
Mn3+ 4 2 2 0 5D0 – 0 4.8–5.0 4.900
Mn2+ 5 5/2 0 5/2 6S5/2 2 5.916 5.9 5.916
Fe3+ 5 5/2 0 5/2 6S5/2 2 5.916 5.9 5.916
Fe2+ 6 2 2 4 5D4 3/2 6.708 5.2–5.4 4.900
Co3+ 6 2 2 4 5D4 3/2 6.708 5.2–5.4 4.900
Co2+ 7 3/2 3 9/2 4F9/2 4/3 6.633 4.8–4.9 3.873
Ni2+ 8 1 3 4 3F4 5/4 5.590 3.1–3.2 2.828
Cu2+ 9 1/2 2 5/2 2D5/2 6/5 3.550 1.9 1.732
Zn2+ 10 0 0 0 1S0 0 0 0 0
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ps = |ge|
√

S(S + 1) is considered, i.e., the contribution of the orbital angular
momentum is neglected. It seems as if the electrons’ orbit were rigidly fixed
– quenched – and unaffected by the magnetic field. As we shall see in Chap-
ter 6, this happens because inside the solid the transition-metal ions feel the
relatively strong electrostatic field of the neighboring ions. Therefore ions can
no longer be considered to be independent of each other, and so Hund’s rules
may become invalid. For iron, cobalt, and nickel ions the agreement is not very
good even for ps when the effective moment is taken from room-temperature
measurements. The reason for this is that for such ions thermal energies are on
the order of the energy difference between the ground state and higher-lying
energy levels, and thus the contribution of the latter to susceptibility cannot
be neglected.

3.2.7 Van Vleck Paramagnetism

In this subsection we shall return to the problem of europium, in which the
outermost electron shell is not closed although according to Hund’s rules
J = 0 in the ground state. The same situation occurs when two electrons
are present in the p-shell or four in the d-shell (or, in general, n = 2l electrons
in the shell with azimuthal quantum number l). In such cases the first nonva-
nishing contribution to paramagnetic susceptibility is obtained in the second
order of perturbation theory, and so higher-lying energy levels must also be
taken into account as intermediate states. The second-order correction to the
ground-state energy is given by

ΔE0 =
∑
n�=0

|〈0|μBB(Lz + |ge|Sz)|n〉|2
E0 − En

. (3.2.87)

This energy shift is always negative as the energy denominator is negative
in each term. The resulting magnetization is always along the magnetic field
direction, and the susceptibility is positive:

χ = 2
N

V
μ0μ

2
B

∑
n

|〈0|(Lz + |ge|Sz)|n〉|2
En − E0

. (3.2.88)

This phenomenon is called Van Vleck paramagnetism, and χ the Van Vleck
susceptibility.19 If the excitation energy of the state |n〉 is not too large, the
small energy denominator may make this correction more important than the
diamagnetic contribution. When this Van Vleck contribution is taken into
account, the calculated paramagnetic susceptibility of substances containing
trivalent europium ions is in good agreement with measured data.

In the ground state of the samarium ion J takes a nonzero value, therefore
Sm3+ has a nonvanishing paramagnetic moment. Nevertheless the lowest-lying
excited states are close enough for that the Van Vleck second-order correction
19

J. H. Van Vleck, 1932. See footnote on page 6.
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be comparable to the paramagnetic contribution. This explains why the effec-
tive magneton number determined from the ground-state configuration does
not agree with the measured value.

3.2.8 Electron Spin Resonance

As we have seen, when a paramagnetic ion of angular momentum J is placed
in a uniform magnetic field, the initial 2J + 1-fold degeneracy of the ground
state – that is due to the 2J + 1 possible values of the quantum number
mJ – is split. In the presence of an electromagnetic radiation, transitions
between neighboring levels become possible in accordance with the selection
rule ΔmJ = ±1. As the energy difference between two adjacent Zeeman levels
is

ΔE = gJμBB , (3.2.89)

atoms can absorb photons of this energy, and thus the electromagnetic field
of the corresponding frequency is absorbed in a resonant manner. This phe-
nomenon is called electron spin resonance (ESR) or electron paramagnetic
resonance (EPR). In fields on the order of several teslas, this resonant ab-
sorption occurs at a frequency of a few GHz (or, in terms of the wavelength,
in the centimeter (microwave) range). In experimental studies samples are
placed in a microwave field whose frequency is determined by the dimensions
of the cavity, and absorption is measured as the strength of the applied field is
varied. Then the Landé gJ -factor is determined from the transition frequency.
The method is therefore suited to identifying paramagnetic ions within the
sample.

To understand resonant absorption, consider the magnetic moment μJ as
a classical vector that has an angular momentum �J = −μJ/γJ , where

γJ = gJ
μB

�
= gJ

e

2me
(3.2.90)

is the gyromagnetic ratio. For notational simplicity, we shall omit the label J .
A magnetic moment μ whose axis makes an angle θ with the direction of the
uniform magnetic field B experiences a torque

M = μ × B , (3.2.91)

therefore the equation of motion of the magnetic moment is given by

1
γ

dμ

dt
= B × μ . (3.2.92)

Thus the moment precesses about the magnetic field direction at a con-
stant angular frequency ωL = γB – the Larmor frequency. When a weak
perpendicular field of angular frequency ω is superimposed on the uniform
field, the precessing moment will resonantly absorb energy from the magnetic
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field, provided ω is equal to the precession frequency ωL. For all other fre-
quencies the relative phases shift continuously with time, and so no energy
will be absorbed.

For a quantum mechanical derivation of this equation we start with

dμ(t)
dt

=
i
�
[H(t),μ(t)] , (3.2.93)

where the contribution of the magnetic field to the total Hamiltonian is

Hext = −μ · B(t) . (3.2.94)

According to (3.2.69), the magnetic moment is proportional to the total an-
gular momentum, thus the known commutation relations of the latter lead
to

dμ

dt
= γB × μ . (3.2.95)

When quantum mechanical averages of the operators are taken, classical equa-
tions of motions are recovered. In what follows, this average will be meant by
μ.

We shall now consider the previously outlined case. Two fields are applied:
a constant field, of magnitude B0, along the z-axis, and a linearly polarized
time-dependent one, of amplitude 2B1 and angular frequency ω, along the
x-axis:

Bx = 2B1 cosωt , By = 0 , Bz = B0 . (3.2.96)

The equation of motion in component form is

dμx
dt

= −γμyB0 ,

dμy
dt

= γμxB0 − 2γμzB1 cosωt ,

dμz
dt

= 2γμyB1 cosωt .

(3.2.97)

If the time-dependent field is assumed to be weak compared to the constant
field, then the time dependence of the z component of the magnetic moment
can be ignored, as it is on the order of B2

1 . The solution of the system of
equations is then

μx =
2γB1 ωL〈μz〉

ω2
L − ω2

cosωt , μy =
2γB1 ω〈μz〉
ω2

L − ω2
sinωt , (3.2.98)

where ωL = γB0. Besides μx (which is in phase with the perturbing field) a
y component (which lags π/2 behind the applied field) is also present. As a
generalization of this result the time dependence of the magnetic moment can
be written as
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μ = 〈μ〉 + χ′ 2B1

μ0
cosωt + χ′′ 2B1

μ0
sinωt , (3.2.99)

where the quantities χ′ and χ′′ are tensors. The term proportional to χ′

gives the response that is in phase with the applied field, so χ′ is the usual
susceptibility. The term proportional to χ′′, which is π/2 out of phase with
the applied field, can be related to energy absorption, as the energy absorbed
per unit time is

Q =
ω

2μ0
B1 χ′′ B1 . (3.2.100)

It is customary to consider χ′ and χ′′ as the real and imaginary parts of a
complex susceptibility, χ = χ′ + iχ′′. Then

μ = 〈μ〉 + χ
B1

μ0
e−iωt + χ∗ B1

μ0
eiωt . (3.2.101)

The linearly polarized field can be made up of two counterrotating circularly
polarized radiations; in this case χ and its complex conjugate correspond
to the response to positive and negative polarization, respectively. From the
expressions in (3.2.98) it is readily seen that

χ′
xx = χ′′

yx =
γμ0ωL〈μz〉
ω2

L − ω2
=

ω2
L

ω2
L − ω2

χ0 , (3.2.102)

where χ0 = μ0〈μz〉/B0 is the paramagnetic susceptibility.
The above expressions are singular at ω = ωL. The imaginary part of χxx

cannot be precisely determined from these equations. One can only say that
it vanishes for all frequencies ω �= ωL, i.e., energy absorption is possible only
at the resonance frequency. The amplitude can nevertheless be determined
when one takes into account the interrelatedness of the real and complex
parts. To see this, consider the so-called relaxation function, φ(t − t0). This
describes how a system in thermal equilibrium in a magnetic field of unit
strength will relax toward its new equilibrium state when the magnetic field
is suddenly turned off at time t0. Similarly, −φ′(t− t0) = −dφ(t− t0)/dt gives
the magnetization caused at time t by the application of a delta function pulse
at an earlier time t0. For time-dependent magnetic fields integration of the
contributions from times prior to t leads to

μ(t) = 〈μ〉 −
t∫

−∞
φ′(t− t0)B(t0) dt0 . (3.2.103)

When a harmonic magnetic field B(t) = μ0He−iωt of frequency ω is applied,
the time-dependent part of the magnetic moment will vary with the same
frequency,

μ(t) = 〈μ〉 + μ(ω)e−iωt , (3.2.104)

and thus the frequency-dependent magnetic susceptibility is given by
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χ(ω) = −μ0

t∫
−∞

φ′(t− t0)eiω(t−t0)dt0 = −μ0

∞∫
0

φ′(t)eiωtdt . (3.2.105)

Integration by parts now leads to

χ(ω) = χ0 + iω μ0

∞∫
0

φ(t)eiωtdt . (3.2.106)

One may, in principle, obtain the relaxation function – and thus the real and
imaginary parts of the susceptibility as well – by solving the earlier equations
for the temporal variation of the magnetic moment in the special case when
the magnetic field is suddenly turned off. Instead of proceeding along this line
we shall make use of only one point of the above considerations: that magneti-
zation is the causal response to an applied field. As it will be demonstrated in
the Appendix of Volume 3, causality implies that when the frequency variable
is extended to the complex plane, the frequency-dependent susceptibility is
analytic on the upper half plane – moreover, its real and imaginary parts are
related by the Kramers–Kronig relations20

χ′(ω) = χ′(∞) +
2
π

∞∫
0

ω′χ′′(ω′)
ω′2 − ω2

dω′ , (3.2.107-a)

χ′′(ω) = − 2
π

∞∫
0

ωχ′(ω′)
ω′2 − ω2

dω′ . (3.2.107-b)

Using the previously derived form for χ′
xx, we have

χ′′
xx =

π

2
δ(ω − ωL)ωL χ0 . (3.2.108)

A sharp resonance appears only because we have ignored all mechanisms
that can cause the magnetic moment to relax. For an isolated atom the z com-
ponent of the angular momentum is conserved. However, in condensed matter
angular momentum can be transferred to other atoms or the lattice, and this
leads to the relaxation of the magnetic moment toward its equilibrium value.
This phenomenon is called the spin–lattice relaxation. We shall not discuss
these interactions in detail here – nonetheless assume that the relaxation of
a magnetic moment can be characterized by a longitudinal or spin–lattice re-
laxation time T1. Then the equation of motion for the z component of the
magnetization is

dμz
dt

= 2γμyB1 cosωt− μz − 〈μz〉
T1

. (3.2.109)

20
H. A. Kramers, 1927, R. Kronig, 1926.
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The new term corresponds to the assumption that without the driving pre-
cessing field the system would approach its equilibrium state exponentially,
with a characteristic time T1. As the variation of the spin component along
the field B0 is accompanied by the variation of the magnetic energy of the
ion, during the spin–lattice relaxation process energy has to be transferred to
another part of the system: the lattice.

Other ions also influence the temporal variations of the x and y components
of the magnetic moment, as the moment is moving in the nonuniform field
created by its neighbors. This can be characterized phenomenologically by
a transverse or spin–spin relaxation time T2. As no energy transfer occurs
during transverse relaxation, spin–spin relaxation is usually several orders of
magnitude faster than spin–lattice relaxation: T2 � T1. Typical values are
T1 ∼ 10−6 s and T2 ∼ 10−10 s.

When relaxation is taken into account, the equation of motion reads

dμx
dt

= −γμyB0 − μx
T2

,

dμy
dt

= γμxB0 − 2γμzB1 cosωt− μy
T2

.

(3.2.110)

These equations and (3.2.109) are jointly called the Bloch equations.21 When
only the constant field is present, the previous equations simplify to

dμx
dt

= −γμyB0 − μx
T2

,

dμy
dt

= γμxB0 − μy
T2

,

dμz
dt

= −μz − 〈μz〉
T1

.

(3.2.111)

Their solution is

μx = A cosωLt · e−t/T2 ,

μy = A sinωLt · e−t/T2 ,

μz = 〈μz〉
[
1 −Be−t/T1

]
.

(3.2.112)

The oscillation of angular frequency ωL is indeed damped exponentially, and
also the z component approaches its saturation value exponentially – however,
the two relaxation times are different.

When precession is maintained via the application of a field of angular
frequency ω, a forced oscillation is obtained. To simplify the solution of the
21

F. Bloch, 1946. Felix Bloch (1905–1983) shared the Nobel Prize with Ed-

ward Mills Purcell (1912–1997) in 1952 “for their development of new meth-
ods for nuclear magnetic precision measurements and discoveries in connection
therewith”.
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equations of motion, the linearly polarized field of frequency ω is replaced by
two fields of amplitude B1 that are circularly polarized and counterrotating
in the (x, y) plane. Only the component corotating with the precession direc-
tion will have important effects, the other can be neglected. In the circularly
polarized field obtained this way the equations of motion are

dμx
dt

= −γμyB0 + γμzB1 sinωt− μx
T2

,

dμy
dt

= γμxB0 − γμzB1 cosωt− μy
T2

,

dμz
dt

= γμyB1 cosωt− γμxB1 sinωt− μz − 〈μz〉
T1

.

(3.2.113)

As the magnetic moment corotates with the perturbing field, it is convenient
to switch to a coordinate system rotating with angular frequency ω. The
components in the two frames are related by

μx′ = μx cosωt + μy sinωt , μy′ = μy cosωt− μx sinωt (3.2.114)

and

μx = μx′ cosωt− μy′ sinωt , μy = μy′ cosωt + μx′ sinωt . (3.2.115)

Thus, in the rotating reference frame

d′μ
dt

=
dμ

dt
− ω × μ , (3.2.116)

where ω is a vector of magnitude ω along the constant magnetic field. In this
reference frame the equations of motion are

d′μx′

dt
= −γμy′B0 + ωμy′ − μx′

T2
,

d′μy′
dt

= γμx′B0 − γμzB1 − ωμx′ − μy′

T2
,

d′μz
dt

= γμy′B1 − μz − 〈μz〉
T1

.

(3.2.117)

It is immediately seen that in the rotating coordinate system the moment
precesses as if acted upon by an effective field Beff = B − ω/γ.

Assuming again that the temporal variations of the z component can be
neglected, a stationary solution is found in the rotating reference frame:

μx′ =
γB1(ω − ωL)T 2

2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2
〈μz〉 ,

μy′ = − γB1T2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2
〈μz〉 ,

μz =
1 + (ω − ωL)2T 2

2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2
〈μz〉 .

(3.2.118)
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Going back to the original coordinate system, we have

μx =
T 2

2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2

[
(ω − ωL) cosωt +

1
T2

sinωt

]
γB1〈μz〉 ,

(3.2.119)

μy =
T 2

2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2

[
(ω − ωL) sinωt− 1

T2
cosωt

]
γB1〈μz〉 .

These yield

χ′
xx =

χ0

2
ωLT2

(ωL − ω)T2

1 + (ω − ωL)2T 2
2 + γ2B2

1T1T2
,

χ′′
xx =

χ0

2
ωLT2

1
1 + (ω − ωL)2T 2

2 + γ2B2
1T1T2

.

(3.2.120)

Introducing the notation

Γ =
2
T2

√
1 + γ2B2

1T1T2 ≈ 2
T2

, (3.2.121)

the real and imaginary parts of susceptibility are found to be

χ′
xx =

χ0

2
ωL

(ωL − ω)
(ω − ωL)2 + (Γ/2)2

,

χ′′
xx =

χ0

2
ωL

1
T2

1
(ω − ωL)2 + (Γ/2)2

.

(3.2.122)

Figure 3.2 shows the frequency dependence of the real and imaginary parts of
susceptibility for typical values of the magnetic field and the relaxation time.

�L

�

�

�'

�"

Fig. 3.2. Frequency dependence of the real and imaginary parts of susceptibility

Thus, instead of the infinitely sharp resonance obtained with the neglect of
relaxation processes, a Lorentzian form is obtained for the imaginary part. In
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weak perturbing fields the full width at half maximum (FWHM) is given by
1/T2. The line width is therefore a measure of the spin–spin relaxation time.
In the relaxation-free limit T2 → ∞ (Γ → 0) (3.2.108) is recovered for the
imaginary part – however, the real part is now not precisely (3.2.102), as the
field counterrotating with the magnetic moment has been neglected. The two
expressions are, nonetheless, identical in the vicinity of the resonance (i.e., for
frequencies ω ≈ ωL) indicating that the approximation is justified.

The foregoing analysis showed that for a given external field there is a sin-
gle resonant frequency. The selection rule ΔmJ = ±1 implies that transition is
possible only between adjacent levels. As the energy difference ΔE = gJμBB
is independent of mJ , the spectrum would consist of a single line for any value
of J . In solids, however, this may change. The electrostatic potential due to
neighboring atoms modifies the ground state of paramagnetic ions, and in par-
ticular, may partially lift the 2J + 1-fold degeneracy. If the resulting energy
shift is smaller than that caused by the magnetic field, absorption may occur
at several nearby frequencies. This gives the fine structure of paramagnetic
resonance. Atomic levels are further split by the hyperfine interaction with
the nucleus of magnetic moment μI . This gives rise to the hyperfine structure
of the absorption spectrum. The location of the resonance thus indicates the
species of the paramagnetic ion as well as the properties of its surroundings,
while its line width yields information about the interactions responsible for
relaxation.

3.3 The Role of Nuclei

So far we have only discussed the states of core electrons. The nucleus has been
assumed to be a pointlike and structureless object whose charge – together
with that of the electrons – determines the total charge of the ion. However,
the nucleus also possesses a magnetic moment through which it can interact
with the electrons’ spin. The role of the nucleus will also be important in the
study of the structure and dynamics of solids by neutron scattering. Below
we shall only consider the consequences of magnetic interactions.

3.3.1 Interaction with Nuclear Magnetic Moments

Both nucleon types, protons and neutrons, possess a magnetic moment. When
expressed in terms of the nuclear magneton μN = e�/2mp, the magnetic
moment of the proton is μp = 2.793μN, while that of the neutron is μn =
−1.913μN. Consequently most of the nuclei also possess a magnetic moment.
The magnetic moment of a nucleus of angular momentum (nuclear spin) �I
is customarily written as

μI = gIμNI , (3.3.1)

where gI is the g-factor of the nucleus. Protons and neutrons are spin-1/2
particles, thus their g-factors are gp = 5.586 and gn = −3.826. For most
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nuclei, the g-factor is of order unity, and the quantum number I can take
integer or half-integer values.

Owing to the great disparity between the proton and electron mass, the
nuclear magneton is three orders of magnitude smaller than the Bohr magne-
ton, μN ≈ μB/1836. For this reason one can usually ignore nuclear magnetic
moments when studying magnetic properties. However, there are some situ-
ations where the magnetic field due to nuclear magnetic moments becomes
important. As we have already mentioned, such fields give rise to the hyperfine
structure of energy levels.22 Using the Hamiltonian (3.2.19) of an electron in
a magnetic field and the Coulomb gauge div A = 0,

Hhf =
e

me
p · A(r) − B(r) · μs , (3.3.2)

gives the nonrelativistic contribution to the hyperfine interaction that is pro-
portional to the nuclear magnetic moment. The field B(r) due to a nucleus
of magnetic moment μI is derived from the vector potential

A(r) =
μ0

4π
μI × r

r3
= −μ0

4π
μI × ∇1

r
. (3.3.3)

Here r is the position vector relative to the nucleus. The first term in (3.3.2)
represents the spin–orbit interaction between the nuclear spin and the orbiting
electron, while the second term is the spin–spin (or dipole–dipole) coupling.

Substitution of the above expression for the vector potential into the
Hamiltonian of the hyperfine interaction and rearrangement of the scalar triple
product gives the following form for the first term:

H(1)
hf =

eμ0

4πmer3
p · [μI × r] =

eμ0�

4πmer3
l · μI . (3.3.4)

This expression can also be viewed as the energy of the nuclear magnetic
moment μI in the magnetic field

B(r) =
μ0

4π
−e�l

mer3
(3.3.5)

created by orbiting electron charges.
In the second term of (3.3.2) B(r) is derived from the previous expression

for the vector potential as B = ∇ × A. Making use of the vector identity

a × (b × c) = (a · c)b − (a · b)c (3.3.6)

that also holds when some of the vectors are the operator ∇, we have

22 The electric quadrupole moment of nonspherically symmetric nuclei also con-
tributes to the hyperfine structure – but here we are concerned with magnetic
interactions alone.
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H(2)
hf = −μ0

4π
{
(μI · ∇)(μs · ∇) − (μI · μs)∇2

} 1
r
. (3.3.7)

According to (C.3.8), ∇2(1/r) vanishes everywhere except at r = 0, thus
with the exception of this point

H(2)
hf = −μ0

4π

(
3(μI · r)(μs · r)

r5
− (μI · μs)

r3

)
, (3.3.8)

which is indeed a dipole–dipole interaction between the nuclear magnetic mo-
ment and the electron spin.

At r = 0 the Laplacian is ∇2(1/r) = −4πδ(r), thus the second term in
H(2)

hf gives a singular contribution on the order of

−μ0

4π
4πμI · μs δ(r) . (3.3.9)

Another singular contribution comes from the first term of (3.3.7). It can be
evaluated using the Fourier representation of 1/r, as given in (C.1.65):

lim
r→0

(μI · ∇)(μs · ∇)
1
r

= − lim
r→0

1
2π2

∫
eiq·r

q2
(μI · q)(μs · q) dq . (3.3.10)

When the parentheses are expanded,

(μI · q)(μs · q) =
∑
αβ

μI,αμs,βqαqβ , (3.3.11)

and the limit r → 0 is taken, only the terms α = β contribute to the integral
on the right-hand side of (3.3.10):

lim
r→0

∫
eiq·r qαqβ

q2
μI,αμs,β dq = δαβ

1
3

lim
r→0

∫
eiq·rμI,αμs,α dq

= δαβ
(2π)3

3
μI,αμs,αδ(r) ,

(3.3.12)

hence
lim
r→0

{(μI · ∇)(μs · ∇)} 1
r

= −4π
3

δ(r)(μI · μs) . (3.3.13)

When all these contributions are collected, the interaction between the
nuclear magnetic moment μI and the electrons is written as

Hhf = −μ0

4π

{ −e�

mer3
l · μI +

[
3(μs · r)(μI · r)

r5
− (μs · μI)

r3

]

+
8π
3

μs · μI δ(r)
}

.

(3.3.14)
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The last term is the Fermi contact term.23 It is nonzero only when the elec-
tron’s wavefunction overlaps with that of the nucleus, therefore it is important
only for s electrons.

3.3.2 Nuclear Magnetic Resonance

In perfect analogy to the behavior of the paramagnetic moment of the electron
shell in a magnetic field, the nuclear magnetic moment also precesses around
the direction of the applied magnetic field. If the nucleus is simultaneously
subjected to an electromagnetic radiation of finite frequency, it can absorb
energy as long as the frequency of the radiation is equal to the precession
frequency. This phenomenon is called nuclear magnetic resonance (NMR).24
The principle is the same as for electron spin resonance. The only apparent
difference is that the resonance frequency is determined from the expression

�ω = gJμBB (3.3.15)

for ESR and from
�ω = gIμNB (3.3.16)

for NMR. In a magnetic field of 1 tesla, the resonant frequency for a free
electron spin is νL = 28 GHz. Because of the huge disparity between the
Bohr magneton and the nuclear magneton, the resonance for protons occurs
at a much lower frequency, 42.6 MHz. This means that for field strengths
commonly used in experiments – B is typically a few (at most 10 to 15)
teslas – measurements can be made in the radiofrequency (rather than the
microwave) region.

The same Bloch equations are used in both cases, however, the physical
processes that determine the relaxation times T1 and T2 are, naturally, com-
pletely different for the relaxation of the nuclear spin and for the relaxation
of the paramagnetic moment of an electron shell. Instead of the spin–lattice
interaction, the relaxation time T1 is basically determined by the hyperfine
interaction in metals. As it was shown by J. Korringa (1950), T1 is then
inversely proportional to temperature. This relation is called the Korringa
law, and the phenomenon itself the Korringa relaxation.

Just as the electron spin feels the presence of the nuclear spin, the field felt
by the nuclear spin also depends on the polarization of the electron states. This
will be of particular interest in metals where s-electrons have a nonvanishing
density at the nucleus, therefore their polarization induced by the uniform

23
E. Fermi, 1930. Enrico Fermi (1901–1954) was awarded the Nobel Prize in 1938
“for his demonstrations of the existence of new radioactive elements produced by
neutron irradiation, and for his related discovery of nuclear reactions brought
about by slow neutrons”.

24 See footnote on page 65.
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field gives rise to an additional energy shift through the Fermi contact term.
This leads to the Knight shift25 of the NMR line in metals.

NMR does not have the same scope of applications as ESR since in solid-
state physics (and in many applications) one is not interested in the magnetic
moment of the nucleus but rather in the internal, local magnetic field within
the sample, which can be inferred from the location of the resonance. Com-
pared to a free atom, this frequency is shifted as neighboring para- or diamag-
netic atoms/ions cause tiny variations in the effective magnetic field felt by
the nucleus. This chemical shift being characteristic of the local environment
of the nucleus, its measurement can yield information about it. Nuclear mag-
netic resonance methods are therefore extensively used in chemical, biological,
and medical applications.

Further information can be gained about the local environment if the nu-
cleus also possesses an electric quadrupole moment, since the latter interacts
with the gradient of the crystalline electric field at the nucleus. This inter-
action modifies the location and width of the absorption peak measured by
NMR.

3.3.3 The Mössbauer effect

As we have already mentioned, the most important field of application of NMR
is the mapping of the vicinity of a nucleus within a bulk matter (in many
cases a living tissue). Another method for studying the local environment
is provided by the Mössbauer effect26 (1957) through its influence on the
transitions between the energy levels of the nucleus. In contrast to NMR,
here one is concerned with transitions between states with different quantum
numbers I – and not between the sublevels of different magnetic quantum
numbers mI into which the nuclear level I is split in a magnetic field. The
most commonly used isotope is iron-57 (57Fe) – however the phenomenon can
be studied on a handful of other isotopes as well.

Upon the capture of an electron, the radioactive 57Co nucleus decays into
a spin-5/2 excited state of the 57Fe isotope, which, in turn, quickly decays into
a spin-3/2 excited state through the emission of a high-energy γ photon. The
I = 3/2 level is somewhat longer lived (τ = 10−7 s), and will eventually make
a transition to the I = 1/2 ground state through the emission of a 14.4 keV γ

photon.
The process in which a photon absorbed by an atom is re-emitted at the

same frequency is called resonance fluorescence. The inverse process, in which
a photon emitted by an atom is absorbed by an identical atom, is called
resonance absorption. Such processes occur with high probability when the

25 W. D. Knight, 1949.
26

Rudolf Ludwig Mössbauer (1929–) was awarded the Nobel Prize in 1961 “for
his researches concerning the resonance absorption of gamma radiation and his
discovery in this connection of the effect which bears his name”.
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photon is emitted and absorbed in a transition in the electron shell. Although
momentum is conserved in emission and absorption processes alike, and thus
the atoms will be recoiled, the recoil energy is nonetheless smaller than the
natural line width. The situation is different for γ rays emitted by individual
nuclei. Here the recoil energy can be several orders of magnitude larger than
the natural line width – for the above mentioned transition of 57Fe, Γ =
10−8 eV, while the recoil energy is 2 meV –, and so the photon emitted by
a free nucleus could not be absorbed by another free identical nucleus in its
ground state. As Mössbauer pointed out, the situation is radically different
when the emitting and absorbing isotopes are embedded in crystal lattices. In
this case the momentum is taken up by the entire lattice, making the recoil
energy negligible. Thus at low temperatures, where the lattice vibrations are
small, resonance absorption may occur with high probability. This is why the
phenomenon is also referred to as the recoilless emission and nuclear resonance
absorption of gamma radiation.

To be more precise, there can be a small difference between the frequen-
cies of the emitted and absorbable photons. Since the size of the nucleus is
slightly but distinctly different in the I = 3/2 and I = 1/2 states, the en-
ergy corrections due to the Coulomb interaction between the nucleus and the
electron cloud are different in the excited state and in the ground state. The
energy difference between the two states is proportional to the difference of
the nuclear radii, and also depends on the electron density at the nucleus. If
the electron densities at the emitter and absorber nuclei are different, isomer
shift – the frequency difference of the emitted and absorbable rays – can pre-
vent absorption. This can be remedied by moving the radiation source relative
to the sample: the Doppler shift caused by the relative velocity of the emitter
and the absorber can compensate for the isomer shift.

If a local magnetic field is present at the nucleus, it will split the energy
levels of both the ground and excited states by an amount called the Zeeman
energy. Moreover, if the electric field has a finite gradient at the nucleus be-
cause of the crystalline surroundings, then – due to the quadrupole moment
of the I = 3/2 state – the excited levels mI = ±3/2 and mI = ±1/2 will suffer
additional shifts in opposite directions. The arising level structure is shown
schematically in Fig. 3.3(a). Due attention has been paid to the sign of the
magnetic moment: positive in the ground state (μ = 0.09μN) and negative
in the excited state (μ = −0.15μN). The selection rules ΔmI = 0,±1 allow
six transitions among these levels. The transition energies are shifted by dif-
ferent amounts with respect to the transition energy in a free atom but the
Doppler effect can compensate for these shifts as well. From measurements
of the extent of the splitting and of the relative intensities of these lines one
can determine the internal local fields, their direction and temperature depen-
dence, and from these specify the local environment. As an example, consider
Fig. 3.3(b) showing the Mössbauer spectrum of an iron sample containing
57Fe, measured at various temperatures using a 57Co source. Above the Curie
temperature, where no internal magnetic field is present, a single line appears.
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Fig. 3.3. (a) Splitting of the levels of 57Fe in the presence of a local magnetic field
and a finite-gradient electric field. (b) Typical Mössbauer spectra for metallic 57Fe
between room temperature and the Curie temperature [R. S. Preston, S. S. Hanna,
and J. Heberle, Phys. Rev. 128, 2207 (1962)]

At lower temperatures the sample becomes spontaneously magnetized. The
internal magnetic field splits the nuclear levels, and six distinct lines appear;
they correspond to the six allowed transitions.

Further Reading

1. C. P. Slichter, Principles of Magnetic Resonance, Third Enlarged and
Updated Edition, Corrected 3rd printing, Springer Series in Solid-State
Sciences, Vol. 1, Springer-Verlag, Berlin (1996).

2. K. Yosida, Theory of Magnetism, corrected 2nd printing, Springer Series
in Solid-State Sciences, Springer-Verlag, Berlin (1998).

3. J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities,
Clarendon Press, Oxford (1932).
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Bonding in Solids

The foregoing discussion of the electron shells of individual atoms and ions
belongs essentially to the realm of atomic or molecular physics. Condensed
matter physics is principally concerned with what happens or changes when
atoms are placed in the vicinity of each other, at distances characteristic of
solids. Experience shows that for such densities direct interactions between
the ion cores and effective ones mediated by unbound electrons create stable,
rigid structures. In this chapter we shall give a brief overview of the types
of bonds electrons can create between atoms, ions, or molecules, and then
discuss the methods used for calculating the cohesive energy – the measure of
stability in solids. We shall return to the relation between the dominant type
of bonding in the solid and its structure after the presentation of crystalline
structures, in Chapter 7.

4.1 Types of Bonds and Cohesive Energy

One can imagine building up solids from a free gas of atoms or molecules
by letting them approach each other until they are at the positions they
would occupy within the solid. During this procedure the state of electrons
on closed inner shells does not change considerably. On the other hand, the
state of electrons on incompletely filled outer shells may change essentially.
Such electrons may be stripped off from the atomic core leaving behind a
positive ion, and become more or less free, delocalized. They may equally
become localized around another atom, thereby changing its charge. In other
cases they may create bonds between two atoms that are similar to covalent
chemical bonds in molecules – then the density of the electrons involved in the
bond (the bonding electrons) has its maximum in the region between the two
atoms. In each case, the bonding of atomic cores is ensured by electrons. One
may say that electrons are the glue that holds ion cores together via Coulomb
interactions.
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Depending on the character of the electron states within the solid that
are primarily responsible for bonding, the following types of bonds are dis-
tinguished: (i) van der Waals bond, (ii) ionic bond, (iii) covalent bond, (iv)
metallic bond.

For completeness, at the end of the chapter we shall briefly discuss a
particular possibility for chemical bonding, the so-called hydrogen bond. This
plays an important role in biological substances but hardly any in solid-state
physics. Bonding between atomic cores is then ensured by hydrogen bonds
created by H+ ions (bare protons), and not by electrons.

4.1.1 Classification of Solids According to the Type of the Bond

The properties of solids are determined to a large extent by the bonds that
hold their constituents together. Thus the classification of bonds gives a pos-
sible classification of solids as well. However, it should be borne in mind that
in many cases bonds do not appear in a clear-cut manner. Ionic and covalent
bonds can be regarded as two extremes between which a continuity exists. It
is not uncommon either that different types of bonding occur along different
directions in the same sample. For example, in graphite covalent bonds are
found within the planes but only van der Waals forces between layers. Accord-
ing to the dominant type of bonding, the following classes are distinguished:
(i) molecular crystals, (ii) ionic crystals, (iii) covalent crystals, (iv) metals.

In molecular crystals closed-shell atoms or molecules are held together by
van der Waals forces. Noble gases form such molecular crystals in their solid
state – and so do certain large molecules, e.g. soccer-ball-shaped fullerene
molecules (C60) (see page 30).

The other names are self-explanatory. In ionic crystals the dominant bond-
ing is ionic. The most prominent representatives of this class are alkali halides.
Donor–acceptor salts are also held together by ionic bonds; in this case the
regular crystalline structure is formed by donor molecules that easily give away
electrons and acceptor molecules that easily take them up. Special mention
should be made of TTF-TCNQ and its derivatives: their particular properties
– to be discussed in detail in Chapter 33 – opened up the door through which
organic materials found their way into solid-state physics.

A crystal is called covalent if the ion cores are bound together by covalent
chemical bonds formed by valence electrons localized along the bond. Owing
to the saturated character of covalent bonds such materials are insulators.
When bonds are unsaturated the material is a conductor. However, such a
simple explanation cannot account for the forces that hold metals together.
That is why metallic bond forms a separate category, in which delocalized
electrons play the primary role.

4.1.2 Cohesive Energy

Solids are usually thermally stable up to a certain temperature. The attractive
interaction among atoms gives rise to a lower energy in a solid than in a



4.1 Types of Bonds and Cohesive Energy 77

liquid, which is less bonded, or in a gas, which is made up of practically
freely moving atoms or molecules. The extent by which the energy of the solid
state is lower than the energy of the set of independent constituent atoms is
called the cohesive energy, since it accounts for the cohesion of the solid. In
the literature it is customarily given as the energy (usually in units of eV)
required to remove one atom or molecule – or, alternatively, as the cohesive
energy for one mole of substance (in units of kJ/mol). For convenience, we
shall use both definitions below. The conversion factor is1

1
eV

atom
= 96.4853

kJ
mol

. (4.1.1)

A precise calculation of the cohesive energy is rather difficult. Besides the en-
ergies of the bonds formed by electrons between the atoms, due account must
be taken of the oscillatory motion of the atoms within the crystal, which also
contributes to the total energy of the solid. Its measurement is not straightfor-
ward either, therefore data cited by different sources may significantly differ.

Table 4.1. Cohesive energy of some chemical elements (in units of eV/atom)

Li Be C O F Ne
1.66 3.33 7.35 2.60 0.84 0.020
Na Mg Si S Cl Ar
1.13 1.53 4.66 2.86 1.40 0.080
K Ca Fe Co Ni Cu Ge Se Br Kr

0.94 1.83 4.31 4.41 4.44 3.50 3.85 2.13 1.22 0.116
Rb Sr Ru Rh Pd Ag Sn Te I Xe
0.88 1.70 6.68 5.77 3.90 2.96 3.12 2.02 1.11 0.17
Cs Ba Os Ir Pt Au Pb Po At Rn

0.83 1.86 8.12 6.89 5.85 3.80 2.04 1.50 N/A 0.202

Table 4.1 clearly shows that cohesive energies are substantially different
for “noble gases” – that form molecular crystals in the solid state –, for simple
or transition metals, and covalently bonded elemental semiconductors. The
cohesive energy of noble gases is the smallest of all, on the order of 0.1 eV
per atom. For simple metals it is around 1 eV per atom, and even larger for
transition metals and covalently bonded crystals.

Similar or even larger cohesive energies are found in covalently bonded
crystals with a partially ionic character, and also in crystals with purely ionic
bonds. For the latter, it is often not the cohesive energy that is listed in tables
but the separation energy, which is the energy difference between the total
crystal energy per molecule and the energy of a free molecule. Table 4.2 con-
tains the cohesive and separation energies for some purely ionic alkali halide
crystals and some compounds with partially ionic bonds.
1 Units of kcal/mol are often used in older tables. This can be converted to units

of kJ/mol using the conversion factor 1 kcal = 4.184 kJ.
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Table 4.2. Low-temperature cohesive and separation energies for some purely ionic
alkali halide crystals and some compounds with partially ionic bonds (in units of
kJ/mol and eV/molecule)

Substance
Cohesive energy

Substance
Cohesive energy

kJ/mol eV/molecule kJ/mol eV/molecule

LiF 1036 10.74 LiCl 853 8.84
NaF 923 9.57 NaCl 786 8.15
KF 821 8.51 KCl 715 7.41
RbF 785 8.14 RbCl 689 7.14
CsF 740 7.67 CsCl 659 6.83

Substance
Separation energy

Substance
Separation energy

kJ/mol eV/molecule kJ/mol eV/molecule

CaF2 625 6.48 MgO 950 9.85
PbCl2 521 5.40 Cu2O 788 8.17
ZnS 852 8.83 Al2O3 2790 28.92

In the following sections we shall briefly discuss the various types of bond-
ing, the fundamentals of the underlying quantum mechanics – without getting
involved in the subtleties of quantum chemistry –, the theoretical methods for
calculating the cohesive energy, and its expected order of magnitude.

4.2 Molecular crystals

As it has been already mentioned, stable and inert closed-shell molecules are
held together by rather weak forces in molecular crystals. This weak interac-
tion is a consequence of quantum fluctuations. A fluctuating dipole moment
on one atom will polarize the closed electron shell of another, giving rise to an
induced dipole moment. As the electric field of a dipole drops off as the inverse
cube of the distance, the energy of attraction between a randomly appearing
electric dipole and the dipole it induces is inversely proportional to the sixth
power of their separation R:

ε = − C

R6
. (4.2.1)

This interaction is called the van der Waals interaction2 although its quantum
mechanical interpretation is due to F. London (1930).

2
J. D. van der Waals, 1873. Johannes Diderik van der Waals (1837–1923)
was awarded the Nobel Prize in 1910 “for his work on the equation of state for
gases and liquids”.
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4.2.1 Van der Waals Bonds in Quantum Mechanics

For a more precise description of the van der Waals interaction consider two
noble-gas atoms, at points RA and RB, separated by a distance R = |R| =
|RB−RA|. As we are concerned with the state of electrons only, the positions
of atoms are assumed to be rigidly fixed and thus their kinetic energy is ignored
throughout this chapter. As long as the size of the electron clouds are smaller
than the separation R of the atoms, each electron can be unambiguously
associated with one atom. The position vectors of the Z electrons that belong
to the atom at RA (RB) will be denoted by r

(A)
i (r(B)

i ). Thus the Hamiltonian
of the system is composed of three parts:

H = HA + HB + Hint , (4.2.2)

where HA contains the kinetic energy operator of the electrons that belong to
the atom at RA plus the Coulomb interactions of these electrons with each
other and with the nucleus:

HA = −
Z∑
i=1

�
2

2me
∇2
i +

1
2

Z∑
i,j=1
i�=j

ẽ2∣∣r(A)
i − r

(A)
j

∣∣ −
Z∑
i=1

Zẽ2∣∣r(A)
i − RA

∣∣ . (4.2.3)

The Hamiltonian of the other atom, HB takes the same form, while Hint con-
tains the pairwise Coulomb interactions between the two nuclei, between the
nuclei and the electrons bound to the other atom, and between the electrons
bound to different atoms:

Hint =
Z2ẽ2

|R| −
Z∑
i=1

(
Zẽ2∣∣r(A)

i − RB
∣∣ +

Zẽ2∣∣r(B)
i − RA

∣∣
)

+
Z∑

i,j=1

ẽ2∣∣r(A)
i − r

(B)
j

∣∣ .
(4.2.4)

When the notations r̃
(A)
i = r

(A)
i −RA and r̃

(B)
i = r

(B)
i −RB are introduced,

i.e., when the position vectors of the electrons are referred to the equilibrium
position of their respective atoms, we have

Hint =
Z2ẽ2

|R| −
Z∑
i=1

(
Zẽ2∣∣r̃(A)

i − R
∣∣ +

Zẽ2∣∣r̃(B)
i + R

∣∣
)

+
Z∑

i,j=1

ẽ2∣∣r̃(A)
i − r̃

(B)
j − R

∣∣ .
(4.2.5)

As R is assumed to be much larger than |r̃(A)
i | and |r̃(B)

i |, we shall expand
the previous expression into a power series in the electron position vectors.
Using the expansions

1∣∣R − r̃
(A)
i

∣∣ =
1
R

−
∑
α

r̃
(A)
iα

∂

∂Rα

1
R

+
1
2

∑
αβ

r̃
(A)
iα r̃

(A)
iβ

∂2

∂Rα∂Rβ

1
R

+ . . . (4.2.6)

and
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1∣∣R − (
r̃

(A)
i − r̃

(B)
j

)∣∣ =
1
R

−
∑
α

(
r̃
(A)
iα − r̃

(B)
jα

) ∂

∂Rα

1
R

(4.2.7)

+
1
2

∑
αβ

(
r̃
(A)
iα − r̃

(B)
jα

)(
r̃
(A)
iβ − r̃

(B)
jβ

) ∂2

∂Rα∂Rβ

1
R

+ . . . ,

as well as the relations

∂

∂Rα

1
R

= −nα
R2

,
∂2

∂Rα∂Rβ

1
R

=
1
R3

[3nαnβ − δαβ ] , (4.2.8)

where nα = Rα/R is the α component of the unit vector n along the direction
R, it is easily seen that the zeroth- as well as the first-order terms cancel out,
and the surviving second-order term contains the coordinates of the electrons
of both atoms:

Hint = − ẽ2

R3

∑
ij

[
3(r̃(A)

i · n)(r̃(B)
j · n) − r̃

(A)
i · r̃(B)

j

]
. (4.2.9)

Introducing the dipole moments of the atoms by

d(A) = −e

Z∑
i=1

r̃
(A)
i , d(B) = −e

Z∑
i=1

r̃
(B)
i , (4.2.10)

the Hamiltonian of the interaction takes the usual form of dipole–dipole in-
teractions,

Hint = − 1
R3

[
3(d(A) · n)(d(B) · n) − d(A) · d(B)

]
. (4.2.11)

This shows that the leading term in the interaction of two distant neutral
atoms is the dipole–dipole interaction. For closed-shell atoms the dipole mo-
ment vanishes as their charge distribution is spherically symmetric. The first
nonvanishing contribution to the energy appears in the second order of per-
turbation theory. This correction can be viewed as the interaction between
the induced dipole moments of the electron clouds. A well-known theorem of
quantum mechanical perturbation theory asserts that the second-order energy
correction is always negative for ground-state atoms – which means that in
this particular approximation the two atoms attract one another. The energy
correction depends on separation as 1/R6, and its strength is determined by
the induced dipole moments of the atoms.

An estimation of the matrix elements that appear in perturbation theory
gives the interaction energy

E = −6
ẽ2

R

(a0

R

)5

, (4.2.12)

where a0 is the Bohr radius. As a0 is smaller than usual interatomic distances,
this energy is much smaller than usual Coulomb energies of order ẽ2/R. Weak
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and short as it may be, the van der Waals force is the only one that can hold
together neutral atoms or molecules with zero permanent dipole moment in
a solid when interatomic distances are larger than the dimensions of atomic
electron clouds (i.e., when each electron is essentially localized around one
particular nucleus). Van der Waals forces act under other circumstances as
well. However, their effects can be safely ignored when other interactions are
also present.

4.2.2 Cohesive Energy of Molecular Crystals

If attractive 1/r6 interactions were present in molecular crystals all the way
down to arbitrarily small scales, these crystals would collapse. This is obvi-
ously not the case. The derivation of the van der Waals interaction was based
on the assumption that the electron clouds of the two molecules do not over-
lap. At small distances, when the electron shells would overlap, the molecules
repel each other much like rigid spheres. In molecular crystals this short-range
repulsion is customarily taken into account as an empirical term that drops
off as a high power of distance. For computational ease – although not implied
by any rigorous derivation – the most common choice is the Lennard-Jones
(6–12) potential3 that contains the van der Waals interaction and the short-
distance repulsion in the form

U(r) = 4ε
[(σ

r

)12

−
(σ

r

)6
]
. (4.2.13)

The spatial variation of the potential is shown in Fig. 4.1. Although there is
no compelling reason for the choice of 12 as the power in the repulsive term,
it provides a remarkably good description for the solid state of noble gases.

van der Waals potential

Lennard-Jones potential

U r( )

r/�

1 2

Fig. 4.1. The Lennard-Jones potential as a function of distance

The parameters ε and σ in the potential can be related to the virial coef-
ficients of statistical physics, thus they can be determined from the behavior
3

J. E. Lennard-Jones, 1924.
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of the gas phase. The values thus obtained for these parameters are given in
Table 4.3. When these are known, the properties of the solid phase can be
determined without further fitting parameters.

Table 4.3. Values of the Lennard-Jones parameters ε and σ determined from the
behavior of the gas state in noble gases. r0 (rexp

0 ) and ε0 (εexp
0 ) are the calculated

(measured) values of the smallest interatomic distance and the cohesive energy per
atom, respectively

Ne Ar Kr Xe

ε (eV) 0.003 0.010 0.014 0.020

σ (Å) 2.78 3.40 3.60 4.10

r0 (Å) 3.03 3.71 3.93 4.47

rexp
0 (Å) 3.155 3.756 3.992 4.336
ε0 (eV) −0.026 −0.086 −0.121 −0.172

εexp
0 (eV) −0.020 −0.080 −0.116 −0.17

To calculate the total energy of a molecular crystal, the potential energies
felt by individual molecules have to be summed. Using the notation r0 for the
nearest-neighbor distance, the separation rij between more distant molecules
is customarily written as rij = pijr0. The total energy is then

E0 =
∑
i�=j

4ε

[(
σ

pijr0

)12

−
(

σ

pijr0

)6
]

= 1
2N4ε

[
A12

(
σ

r0

)12

−A6

(
σ

r0

)6
]
,

(4.2.14)

where the structure-dependent coefficients

An =
∑
j

(
1
pij

)n
(4.2.15)

are easily calculated, as the series converge rapidly because of the large ex-
ponents. For face-centered cubic crystals, where each atom has 12 nearest
neighbors, A6 = 14.4539 and A12 = 12.1319. For body-centered cubic struc-
tures, where the coordination number is 8, A6 = 12.2533 and A12 = 9.1142.

The equilibrium distance between nearest neighbors obtained by minimiz-
ing the energy is

r0 =
(

2A12

A6

)1/6

σ . (4.2.16)

With this value for the equilibrium lattice constant the energy per atom is
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ε0 = − A2
6

2A12
ε . (4.2.17)

The above values for the coefficients A6 and A12 give r0 = 1.09 σ for face-
centered cubic crystals. Using the σ obtained from the virial coefficients (which
are, in turn, determined from the properties of the gas phase), (4.2.16) gives
a good estimate for the lattice constants of noble-gas crystals. Experimental
values for the energy per atom – listed in Table 4.3 – are also in good agreement
with calculated ones, which are obtained from the parameter ε through ε0 =
−8.61 ε. Given the energy, elastic properties such as the bulk modulus can be
determined, once again in good agreement with experimental data.

Owing to the weakness of van der Waals forces the cohesive energy per
molecule is typically 0.1 eV in other molecular crystals, too. Therefore the
melting point of molecular crystals is low.

4.3 Ionic Bond

Another type of bond is formed between two initially neutral atoms if their
electronegativities are very different. (We shall refer to atoms but our consid-
erations are equally valid for a pair of molecules, when one attracts electrons
much more strongly than the other.) When the difference in electronegativity
is larger than 1.7 on the Pauling scale,4 the atom with higher electronegativity
can attract to itself the relatively weakly bound electrons on the outermost
partially filled electron shell of the second atom. This charge transfer process
may continue up to the point when no partially filled shells are found on either
ion. The crystal is held together by the Coulomb interaction between positive
cations or negative anions. This is called ionic bonding.5

The most typical examples are alkali halide compounds formed by elements
of group 1 (IA, alkali metals) and group 17 (VIIA, halogens) of the periodic
table. The difference in electronegativity is smaller between the elements of
groups 12 (IIB) and 16 (VIA), nonetheless it is still large enough for the
complete transfer of two electrons. In other cases the outermost shells of the
ions are not necessarily complete but the electrons are relatively well localized
around the ions produced by the charge transfer. Such systems also belong
to the same type of bonding provided the dominant force is the Coulomb
interaction between oppositely charged ions.

In ionically bonded crystals ions form a lattice in which each cation (an-
ion) is surrounded by as many anions (cations) as possible, in a symmetric ar-
rangement. It is thus not possible to distinguish electrically neutral molecules
4

L. C. Pauling, 1932. Linus Carl Pauling (1901–1994) was awarded the Nobel
Prize in Chemistry in 1954 “for his research into the nature of the chemical bond
and its application to the elucidation of the structure of complex substances”.
Eight years later he also received the Nobel Peace Prize.

5 The alternative term, heteropolar bonding refers to the opposite charge of the
ions.
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within the lattice. The most important contribution to the cohesive energy
of crystals is due to the Coulomb interactions between ions. Because of their
long range, one must take into account the attraction and repulsion between
arbitrarily distant ions when calculating the energy of the system. When site
Ri is occupied by an ion of charge Zi, the Coulomb interaction energy

E =
1

8πε0

∑
i�=j

ZiZje
2

|Ri − Rj | =
1
2

∑
i�=j

ZiZj ẽ
2

|Ri − Rj | (4.3.19)

is called the Madelung energy of the ionic crystal.6 For most types of ionic
crystals this is an asymptotic series in which slowly decreasing positive and
negative terms alternate, due to the signs of Zi and Zj and the 1/r decay
of the Coulomb potential. Although strictly speaking asymptotic series do
not converge, fairly rapidly converging methods have been worked out for
calculating of the sum of the series – i.e., the energy – by P. P. Ewald

(1921) and H. M. Evjen (1932).
By way of example, consider two typical ionic crystals, NaCl and CsCl. In

the sodium chloride (or rock-salt) crystal the sites of a regular cubic lattice
are occupied by Na+ and Cl− ions alternately, in a 3D checkerboard pattern.
In the CsCl crystal, Cs+ ions make up a regular cubic lattice, and Cl− ions
occupy the center of each elementary cube. Figure 4.2 shows small portions
of the two lattice types, as well as the distances between first- (nearest-),
second-, third-, fourth-, and fifth-neighbor ions.

d
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d
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1

(a) (b)

d
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d
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d
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d
4

d
5

d
5

Fig. 4.2. The structure of two typical ionic crystals, (a) NaCl, and (b) CsCl, with
first-, second-, third-, fourth-, and fifth-neighbor distances

The lattice constant a of the rock-salt crystal is customarily defined as the
shortest distance between two similar ions along one of the lattice axes. The
nearest neighbors of each Na+ ion are then six Cl− ions at a distance d1 = a/2.
6

E. Madelung, 1918.
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The 12 second-neighbor Na+ ions are located at a distance d2 =
√

2a/2, the
8 third-neighbor Cl− ions at d3 =

√
3a/2, and the 6 fourth-neighbor Na+

ions at d4 = a. The number of fifth neighbors is 24; these are at a distance
d5 =

√
5a/2. Selecting one Na+ ion and calculating its contribution to the

energy (4.3.19) by performing the summation for its neighbors, we have

εNa+ = − ẽ2

a

[
6 − 12√

2
+

8√
3
− 6√

4
+

24√
5

+ . . .

]
, (4.3.20)

where due account has been taken of the fact that the energy of each ion pair
should be shared between the two ions in question.

In its present form the series does not converge at all, as the partial sums
oscillate wildly. Evjen proposed a suitable rearrangement of the terms that
corresponds to decomposing the crystal into neutral shells. An ion of the rock-
salt crystal is singled out; the first layer is then composed of the ions that are
on or within the boundaries of a cube of edge a, centered on the selected ion.
However, for each ion only the part of its charge that falls within the cube is
counted for the layer in question – that is, ions at the face centers, edge centers,
and vertices are counted with weights of 1/2, 1/4, and 1/8, respectively. This
is shown in Fig. 4.3.

1

1/2

1/4

1/8

Fig. 4.3. The first neutralizing shell around the central atom, and the weights of
the ions within. This shell provides the first approximation in Evjen’s method for
the calculation of the Madelung energy in a sodium chloride crystal

Using these weights, the contribution of the first shell to the energy is

ε
(1)

Na+ = − ẽ2

a

[
1
2
6 − 1

4
12√
2

+
1
8

8√
3

]
= −1.456

ẽ2

a
. (4.3.21)

In the next approximation a cube of edge 2a is considered around the
selected ion. Figure 4.4 shows the ions within an octant of this cube, along
with their distances from the central ion. (Once again, the unit is chosen as
the distance between nearest neighbors, d1 = a/2.) Ions that lie inside this
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Fig. 4.4. Charges in one octant of the shell around the selected ion (bottom left)
that have to be taken into account in the second approximation of Evjen’s method.
The numbers above and to the left give the distance of these ions from the central
one of the shell, while those below and to the right give their weights within this
shell

cube are counted with their full charge, while those at the face centers, edge
centers, and vertices are counted with weights of 1/2, 1/4, and 1/8, as above.

In this approximation the Madelung energy per sodium ion is given by

ε
(2)

Na+ = − ẽ2

a

[(
6 − 12√

2
+

8√
3

)
− 1

2

(
6√
4
− 24√

5
+

24√
6

)

+
1
4

(
− 12√

8
+

24√
9

)
− 1

8
8√
12

]

= −1.752
ẽ2

a
. (4.3.22)

The same applies for each Cl− ion, too. When expressed in terms of the
nearest-neighbor distance d1 rather than the lattice constant a, the Madelung
energy per NaCl molecule is

εNaCl = −1.752
ẽ2

d1
. (4.3.23)

Taking the next shell into account would give a correction smaller than one
percent. This is the same as the difference with the result obtained from the
Ewald summation method, and considered as precise:

εNaCl = −1.74756
ẽ2

d1
. (4.3.24)
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This value comes from a clever evaluation of the explicit formula

εNa+ =
ẽ2

a

∑
mnp

′ (−1)m+n+p√
m2 + n2 + p2

, (4.3.25)

where m, n, and p run through all integers from −∞ to ∞, only the origin
m = n = p = 0 is excluded.

In the cesium chloride structure Cs+ and Cl− ions form interpenetrating
cubic lattices, in such a way that the center of each elementary cube formed by
Cs+ is occupied by a Cl− ion – and vice versa. Thus each Cs+ ion (cation) is
surrounded by 8 Cl− ions (anions), at a distance d1 =

√
3a/2. The 6 second-

neighbor and 12 third-neighbor cations are found at distances d2 = a and
d3 =

√
2a. The 16 fourth-neighbor sites, at d4 =

√
11a/2, are occupied by

anions, and the 8 fifth-neighbor sites by cations again, at d5 =
√

3a. The
Madelung energy per Cs+ ion is now

εCs+ = − ẽ2

2a

[
2√
3
8 − 6 − 12√

2
+

2√
11

16 − 8√
3

+ . . .

]
. (4.3.26)

Decomposing this series, too, into suitably chosen partial sums,

εCs+ = −2.0354
ẽ2

2a
. (4.3.27)

Expressed in terms of the nearest-neighbor distance d1 rather than the
edge a of the cubic lattice, the Madelung energy per CsCl molecule is

εCsCl = −1.7627
ẽ2

d1
. (4.3.28)

When the contribution of the Coulomb interactions to the total energy E
of a crystal made up of N molecules is expressed with the nearest-neighbor
distance as

ε =
E

N
= −α

ẽ2

d1
, (4.3.29)

the coefficient α is called the Madelung constant. This constant is just the
ratio of the Coulomb energy per molecule in the crystalline state and the
Coulomb energy of a single molecule in which the ions are separated by the
nearest-neighbor distance d1 characteristic of the lattice.

Similarly, the Madelung constant of an ionic crystal MZ+XZ− made up
of charge-Ze ions is defined in terms of the electrostatic energy of a single
MZ+XZ− molecule as

E

N
= −α

Z2ẽ2

d1
. (4.3.30)

This cannot be unambiguously generalized to the case of ionic crystals made
up of cations of charge Z1e and anions of charge −Z2e, i.e., of ionic compo-
sition MZ1+

n1
XZ2−
n2

– where electric neutrality implies n1Z1 = n2Z2. Thus in
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standard tables one finds different values for the Madelung constant, corre-
sponding to different definitions. In one commonly used definition the energy
per chemical unit is given by

E

N
= −α

Z1Z2ẽ
2

d1
, (4.3.31)

where d1 is the smallest distance between anions and cations, as before. The
corresponding Madelung constants of some typical ionic crystals are listed in
Table 4.4. The underlying structures will be presented in Chapter 7.

Table 4.4. The Madelung constant for some typical ionic crystals

Structure Ionic Madelung

Name Notation composition constant

Sodium chloride (NaCl) B1 cF8 M+X− 1.74756
Cesium chloride (CsCl) B2 cP2 M+X− 1.76267
Sphalerite (ZnS) B3 cF8 M2+X2− 1.63806
Wurtzite (ZnS) B4 hP4 M2+X2− 1.64132
Fluorite (CaF2) C1 cF12 M2+X−

2 2.51939
Cuprite (Cu2O) C3 cP6 M+

2 X2− 2.22124
Corundum (Al2O3) D51 hR10 M3+

2 X2−
3 4.1719

The stability of ionic crystals cannot be understood in terms of the
Madelung energy alone. Once again, one has to take into account the repul-
sion between ion cores that has been discussed for molecular crystals. Instead
of the 1/r12 term in the Lennard-Jones potential, following M. Born and
J. E. Mayer (1932), the repulsion is customarily taken into account by an
exponentially decreasing term in this case. This is the Born–Mayer approxi-
mation. Denoting the shortest distance between an anion and a cation by r,
the energy per chemical unit can be written as

E

N
= −α

Z1Z2ẽ
2

r
+ B exp(−r/l) . (4.3.32)

This expression is required to attain its minimum at d1, the equilibrium dis-
tance between neighbors, which can be determined from the equation

α
Z1Z2ẽ

2

d2
1

− B

l
exp(−d1/l) = 0 . (4.3.33)

Using this equation to eliminate B, we have

E

N
= −α

Z1Z2ẽ
2

d1

[
1 − l

d1

]
(4.3.34)

for the equilibrium configuration.
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The quantity l/d1 is related to compressibility. Its value is on the order
of 0.1. When this correction is also taken into account, good agreement is
found between the theoretical values obtained for the cohesive energies of
ionic crystals and the experimental data listed in Table 4.2. To calculate the
total energy, the electrostatic contribution is not the only one to be taken
into account. According to the laws of quantum mechanics, ions are not fixed
rigidly to lattice sites but oscillate even at the absolute zero of temperature.
However, the energy corrections due to such zero-point vibrations do not ex-
ceed a few percent.

4.4 Covalent Bond

In solids built up of identical atoms or different atoms with not too disparate
electronegativities, the characteristic electron transfer of ionic bonding does
not occur. Instead, new electronic states appear, in which electrons are located
between two neighboring atoms – and thus belong to both of them. The bond
brought about by such electron states is called a covalent bond.7 The electron
density reaches its maximum in the region between the two atoms. This is
clearly seen in Fig. 4.5, which shows the plane section of electron density
contours around two neighboring atoms of a typical covalently bonded solid,
a germanium crystal.

Fig. 4.5. Calculated density contours in the (110) plane of the electrons forming
the covalent bond in germanium. [J. R. Chelikowsky and M. L. Cohen, Phys. Rev.
B 14, 556 (1976)]

As a matter of fact, the covalent bond is the generalization of the chem-
ical concept of intramolecular valence bonds to solids. For a mathematical

7 The terms homopolar and homeopolar bond are also used in the literature; they
refer to situations where the electronegativities of the two atoms are identical and
similar, respectively.
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description, consider first a diatomic molecule that has two electrons (H2).
The position of atoms A and B will be denoted by RA and RB, and we shall
assume that each atom contains one of the two electrons. This assumption is
justified when the atoms are sufficiently separated, and so the electron clouds
do not overlap. We shall now ask: What happens when the two atoms ap-
proach one another so much that the other’s presence is no longer a weak
perturbation?

Using the notations r1 and r2 for the position vectors of the two electrons,
the Hamiltonian of the system reads

H = − �
2

2me
∇2

1 −
�

2

2me
∇2

2 −
2∑
i=1

ẽ2

|ri − RA| −
2∑
i=1

ẽ2

|ri − RB|

+
ẽ2

|r1 − r2| +
ẽ2

|RA − RB| .
(4.4.1)

This Hamiltonian does not usually admit an analytical solution to the
Schrödinger equation. The customary way of tackling this problem consists
of choosing a trial wavefunction (ansatz) with a few variational parameters
which are determined from the condition that energy should take a minimum
value. The individual methods differ in the assumptions made about the form
of the multi-electron wavefunction.

4.4.1 The Valence-Bond Method

Even simpler than the variational method is the Heitler–London approxima-
tion,8 also known as the valence-bond method. This approximation is based
on atomic functions. The underlying assumption is that one of the electrons
forming the covalent bond is mostly found in the vicinity of one nucleus, while
the other electron around the other nucleus. Then, following the same steps
as for the van der Waals interaction, the Hamiltonian is split into three parts.
As the whole system is comprised of only two atoms, we have

H(r1, r2) = HA(r1) + HB(r2) + Hint(r1, r2) , (4.4.2)

where

HA(r1) = − �
2

2me
∇2

1 −
ẽ2

|r1 − RA| ,

HB(r2) = − �
2

2me
∇2

2 −
ẽ2

|r2 − RB| ,
(4.4.3)

and

Hint(r1, r2) = − ẽ2

|r1 − RB| −
ẽ2

|r2 − RA| +
ẽ2

|r1 − r2| +
ẽ2

|RA − RB| . (4.4.4)

8
W. Heitler and F. London (1927).
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Assuming that the solutions to the one-center Schrödinger equation

HA(r1)ψA(r1) = εAψA(r1) (4.4.5)

and to its counterpart for the wavefunction ψB(r2) of the other electron
around atom B are known – e.g., for a 1s state it is

ψA(r) =
(

1
πa3

0

)1/2

e−|r−RA|/a0 , (4.4.6)

the wavefunction of the two-electron system can be written as the product of
one-particle wavefunctions,

ψ(r1, r2) = ψA(r1)ψB(r2) . (4.4.7)

This automatically satisfies the two-center Schrödinger equation[
HA(r1) + HB(r2)

]
ψ(r1, r2) =

(
εA + εB

)
ψ(r1, r2) . (4.4.8)

When the expectation value of the interaction Hamiltonian is calculated with
this wavefunction, an estimate is obtained for the binding energy.

Before doing so, it should be noted that the wavefunction (4.4.7) does not
satisfy the general condition of antisymmetry required for fermionic systems.
This lack of antisymmetry is the consequence of the fact that the two electrons
were considered as distinguishable, thus HA(r1)+HB(r2) is not invariant un-
der the interchange of their coordinates – even though the total Hamiltonian
is. Therefore another wavefunction has to be chosen, one that is consistent
with the Pauli exclusion principle. To see antisymmetry clearly, electron spins
have to be taken into account, too, even though the interaction is spin inde-
pendent. Using the notations s = ±, or ↑ and ↓ (rather than ms = ± 1

2 ) for the
two possible values of the spin variable s of the electron, the corresponding
wavefunctions are

χ(↑) = |↑〉 =
(

1
0

)
and χ(↓) = |↓〉 =

(
0
1

)
. (4.4.9)

In the nonrelativistic case when the spin–orbit interaction is neglected, the
spin independence of the Hamiltonian permits the separation of spatial and
spin variables in the wavefunction:

Ψ(r1, s1, r2, s2) = ψ(r1, r2)χ(s1, s2) . (4.4.10)

Either the wavefunction is symmetric in its spatial variables:

ψs(r1, r2) = N+

[
ψA(r1)ψB(r2) + ψA(r2)ψB(r1)

]
, (4.4.11)

and then it has to be antisymmetric – singlet – in its spin variables:
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χs(s1, s2) = 1√
2

[|↑〉1 |↓〉2 − |↓〉1 |↑〉2
]
, (4.4.12)

or it is antisymmetric in its spatial variables:

ψt(r1, r2) = N−
[
ψA(r1)ψB(r2) − ψA(r2)ψB(r1)

]
, (4.4.13)

and then it has to be symmetric – triplet – in its spin variables:

χt(s1, s2) =

⎧⎪⎪⎨
⎪⎪⎩

|↑〉1 |↑〉2
1√
2

[|↑〉1 |↓〉2 + |↓〉1 |↑〉2
]

|↓〉1 |↓〉2 .

(4.4.14)

In what follows, we shall suppress the spin-dependent parts, as the Hamil-
tonian does not act on the spins. We shall nevertheless bear in mind that
the spin state of ψs is a singlet, while that of ψt is a triplet. We now have
to determine the constant N± that takes care of the proper normalization of
the wavefunctions. Since the wavefunctions around different ion cores are not
mutually orthogonal, the overlap integral

SAB =
∫

ψ∗
A(r)ψB(r) dr (4.4.15)

must be taken into account. The normalization factor is then

N± =
1√

2(1 ± |SAB|2)
. (4.4.16)

In the Heitler–London approximation these completely antisymmetrized
wavefunctions are chosen, and the energy is then calculated as the expectation
value of the total Hamiltonian,

εs = 〈ψs|H|ψs〉 = εA + εB + 2N2
+(C + I) ,

εt = 〈ψt|H|ψt〉 = εA + εB + 2N2
−(C − I) ,

(4.4.17)

where

C =
∫

ψ∗
A(r1)ψ∗

B(r2)HintψA(r1)ψB(r2) dr1 dr2 ,

I =
∫

ψ∗
A(r1)ψ∗

B(r2)HintψB(r1)ψA(r2) dr1 dr2 .

(4.4.18)

C is the direct contribution of the interaction (Coulomb integral), while I, the
exchange integral comes from quantum mechanical exchange, the existence of
which was pointed out independently by Heisenberg

9 and Dirac
10 in 1926.

9
Werner Karl Heisenberg (1901–1976) was awarded the Nobel Prize in 1932
“for the creation of quantum mechanics, the application of which has, inter alia,
led to the discovery of the allotropic forms of hydrogen”.

10 See footnote on page 32.
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If there were no overlap between the wavefunctions of electrons on neighboring
ion cores then the two electrons could not be exchanged and I would vanish.
When the overlap is finite and the wavefunctions are orthogonal (this would
be the case for the two electrons on different orbitals around the same atom)
then I can be shown to be positive. This implies Hund’s first rule: within
an atom the orthogonal orbitals of the same azimuthal quantum number are
occupied by the electrons in such a way that the total spin should be maximal.
For electrons on neighboring atoms the lack of orthogonality means that the
exchange integral I can be negative. The sequence of the levels is determined
by the relation of I and CS2

AB, as

εs > εt , if
C + I

1 + S2
AB

>
C − I

1 − S2
AB

, (4.4.19)

whence
I > CS2

AB . (4.4.20)

Usually SAB � 1, in which case the sign of I will determine whether the
triplet or the singlet state is of lower energy.
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Fig. 4.6. Binding energies of singlet and triplet states in the Heitler–London ap-
proximation as functions of the separation R of the nuclei

Heitler and London’s calculations have shown that I is strongly negative
for the hydrogen molecule. Figure 4.6 shows the energies of the singlet and
triplet states as functions of the separation R = |RA −RB| of the nuclei. For
large values of R the energy of free atoms is recovered. The short-distance
behavior is, on the other hand, dominated by repulsion that is rooted in
the exclusion principle. In the singlet state the energy has its minimum at an
intermediate value of the separation R, giving rise to bonding. In this approach
a binding energy of 3.14 eV and a bonding distance of 0.87 Å are found. Despite
the roughness of the approximation, these values are surprisingly close to
the experimental data, 4.75 eV and 0.74 Å. For our purposes, however, the
most important point in this result is not this fair agreement (as it is not
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difficult to find better approximations for the binding energy) but that it
highlights the energy difference between singlet and triplet states in a case
when the Hamiltonian is spin independent. The energy difference is entirely
due to the symmetric and antisymmetric characters of the spatial parts of
the wavefunctions, and the exchange integral I may lead to the appearance of
magnetic states. We shall return to this point in Chapter 14 where we shall
study magnetically ordered systems.

4.4.2 Polar Covalent Bond

The Heitler–London approximation deals only with so-called valence-bond
configurations – in which one electron is around core A and the other is around
core B. The spatial part of the corresponding singlet covalent wavefunction is

ψcov(r1, r2) = ψA(r1)ψB(r2) + ψB(r1)ψA(r2) . (4.4.21)

During the motion of the electrons it may happen that both electrons are
on orbitals around the same atomic core. Such configurations are called ionic
configurations. When the two nuclei are identical, and therefore electrons are
equally likely to be around either atom, the spatial part of the corresponding
wavefunction reads

ψion(r1, r2) = ψA(r1)ψA(r2) ± ψB(r1)ψB(r2) . (4.4.22)

The symmetric character of the spatial part implies that the spin variables
are, again, in a singlet configuration. To obtain a more precise description
than that provided by the Heitler–London approximation for the problem of
two electrons moving in the field of two nuclei, one has to take into account
not only the covalent terms but also the above ionic one – with a weight that
will be determined later. This is known as the polar covalent bond or the
ionic–covalent bond. Then the spatial part of the singlet wavefunction of the
two-electron system is chosen as

ψ(r1, r2) = N
[
ψA(r1)ψB(r2) + ψB(r1)ψA(r2)

+ λψA(r1)ψA(r2) + λψB(r1)ψB(r2)
]
,

(4.4.23)

where λ is a variational parameter. Its value is determined by the minimum
energy condition. Calculations have shown that in a hydrogen molecule the
energy minimum at equilibrium distance occurs for λ = 0.25 – that is, the
bond is ionic only to the extent of a few percent: it is predominantly covalent.
The binding energy is found to be 3.23 eV.

Note that for even more precise results one has to include variational
parameters in the atomic wavefunction as well. For example, in the case of
atomic s states, the expression

ψ(r) =
(

γ3

πa3
0

)1/2

e−γr/a0 (4.4.24)
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can be used instead of (4.4.6), and energy is minimized with respect to γ.
Calculations show that the minimum occurs for γ > 1 – that is, because of
bonding, electrons approach the nucleus more than in a free atom.

For identical atoms this bonding gives rise to apolar molecules. In solids
made up of atoms with different electronegativity values the bond can by no
means be purely covalent. Electrons are more attracted to one kind of atom.
This is illustrated in Fig. 4.7, where the plane section of the electron density
contours are shown in two crystals, GaP and ZnSe. These compounds are
made up of elements in groups 13 (IIIA, boron group) and 15 (VA, nitrogen
group), and groups 12 (IIB) and 16 (VIA) of the periodic table, respectively.
A comparison with Fig. 4.5 clearly shows a more and more pronounced asym-
metry of the electron density.

Fig. 4.7. Calculated density contours between two neighboring ions in a plane
section of GaP and ZnSe crystals. [J. R. Chelikowsky and M. L. Cohen, Phys. Rev.
B 14, 556 (1976)]

When the two atoms are not identical – and thus the symmetry with
respect to the exchange of atoms A and B is broken –, the configurations
in which both electrons are found around core A and core B appear in the
wavefunction with different weight factors. The wavefunction that corresponds
to the singlet state reads

ψ(r1, r2) = N
[
ψA(r1)ψB(r2) + ψB(r1)ψA(r2)

+ λAψA(r1)ψA(r2) + λBψB(r1)ψB(r2)
]
.

(4.4.25)

Treating the quantities λA and λB as variational parameters, the obtained en-
ergy will be lower than that calculated from the Heitler–London wavefunction
ψcov in (4.4.21) – which corresponds to a purely covalent bond. The binding
energy is written as

E = Ecov −Δ, (4.4.26)
where Ecov would be the energy of a purely covalent bond, and Δ is called
the contribution of ionic resonance. The energy of the covalent bonds A–B
between atoms A and B can be estimated by the arithmetic (or in some refer-
ences, geometric) mean of the bond energies A–A and B–B. The contribution
of ionic resonance is a function of the difference of the electronegativities.
Thus a simple estimate can be given for the bond energy.
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4.4.3 The Molecular-Orbital Method

In the previously presented methods the Schrödinger equation is first solved
in the field of one nucleus, and then the obtained one-center electron states
are used to construct the wavefunction of the electrons in the multi-atom sys-
tem. A different approach was proposed by F. Hund and R. S. Mulliken

11 in
1928. First the one-electron states of the multi-atom molecule are determined,
and then these are populated with electrons step by step. For this reason the
Hund–Mulliken approach is called the molecular-orbital method (MO method)
nowadays. When calculating the one-electron states some care must be exer-
cised as the potential felt by the electrons is changed by the addition of a new
electron – i.e., the potential itself needs to be determined in a self-consistent
manner. The simplest method for this is the Hartree–Fock approximation,
which will be discussed in Chapter 28. As in the present chapter we just want
to develop a qualitative picture about the nature of different types of bonds,
we shall not analyze the condition of self-consistency. Instead, we shall as-
sume that for any selected electron the effect of the other electron(s) can be
accounted for by using an average potential.

Coulomb repulsion between two immobile cores of a two-atom molecule
must be taken into account when calculating the total energy but it can be
ignored when the energy of the system of electrons is considered. In this
approximation the Hamiltonian is split into two independent parts,

H = H1 + H2 , (4.4.27)

where

Hl = − �
2

2me
∇2
l −

ẽ2

|rl − RA| −
ẽ2

|rl − RB| + Ueff(rl) , l = 1, 2 . (4.4.28)

The average potential due to the other electron(s) is included in the term
Ueff(rl).

The state associated with the eigenfunction ψi(r) of the two-center, one-
electron Schrödinger equation[

− �
2

2me
∇2 − ẽ2

|r − RA| −
ẽ2

|r − RB| + Ueff(r)
]
ψi(r) = εiψi(r) (4.4.29)

is called the ith molecular orbital. Solving this two-center Schrödinger equa-
tion usually requires further approximations. We shall present one possibility
in the next subsection.

Before doing so it should be mentioned that, provided the molecular or-
bitals are known, the separation of the Hamiltonian permits us to write the

11
Robert Sanderson Mulliken (1896–1986) was awarded the Nobel Prize in
Chemistry in 1966 “for his fundamental work concerning chemical bonds and the
electronic structure of molecules by the molecular orbital method”.
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total wavefunction of the two-electron system as the product of the wavefunc-
tions of single electrons on the molecular orbitals,

ψ(r1, r2) = ψi(r1)ψj(r2) . (4.4.30)

This wavefunction must be complemented by a spin-dependent part, and
consistency with the Pauli exclusion principle must be ensured. If the same
molecular orbital ψi is selected for both electrons, the spin part must be
chosen antisymmetric. When different molecular orbitals, and thus different
spatial functions are selected, there are two options. Either the symmetric
combination of the variables r1 and r2,

ψ(r1, r2) =
1√
2

[
ψi(r1)ψj(r2) + ψi(r2)ψj(r1)

]
(4.4.31)

is chosen, and then the spin part is given by an antisymmetric (singlet) wave-
function, or the antisymmetric combination

ψ(r1, r2) =
1√
2

[
ψi(r1)ψj(r2) − ψi(r2)ψj(r1)

]
, (4.4.32)

which is then complemented by a symmetric spin part.

4.4.4 The LCAO Method

An approximate form of the molecular orbitals can be obtained using atomic
wavefunctions. Assuming that the solutions ψ(r) to the atomic Schrödinger
equation (4.4.5) are known, following the proposal of J. E. Lennard-Jones

(1929), the molecular orbital is constructed as the linear combination of the
solutions ψA(r) and ψB(r) obtained for individual atoms,

ψi(r) = cAψA(r) + cBψB(r) . (4.4.33)

This is the linear combination of atomic orbitals (LCAO) method.
If the atoms are identical, the two atomic wavefunctions are expected to

appear with the same probability, i.e., cA = ±cB. This is indeed the case: the
combination is either symmetric or antisymmetric. When the overlap integral
defined in (4.4.15) is taken into consideration, the normalized wavefunction is

ψ±(r) =
1√

2 ± (SAB + S∗
AB)

[ψA(r) ± ψB(r)] , (4.4.34)

and the corresponding energy value is

ε± =
εA + εB ± (εAB + ε∗AB)

2 ± (SAB + S∗
AB)

, (4.4.35)

where
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εA =
∫

ψ∗
A(r)H1ψA(r) dr ,

εB =
∫

ψ∗
B(r)H1ψB(r) dr , (4.4.36)

εAB =
∫

ψ∗
A(r)H1ψB(r) dr .

The molecular energy levels are shifted with respect to the atomic levels εA
and εB.

If the overlap is ignored, the amount of splitting is determined by the res-
onance integral εAB. This is generally negative since it contains the matrix
element of the Coulomb attraction between the nucleus and the electron. Then
the spatially symmetric combination has the lowest energy. This configuration
is called a bonding state, while the spatially antisymmetric combination gives
rise to an antibonding state. The wavefunctions of the bonding and antibond-
ing molecular orbitals and the corresponding electron densities are shown in
Fig. 4.8 when a hydrogenic 1s wavefunction is chosen as the atomic function.

A
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Fig. 4.8. (a) The wavefunction of the electrons for bonding (left) and antibond-
ing (right) molecular orbitals in a two-atom system. (b) The corresponding charge
distributions

In bonding states electron density is large between the two atoms: bonding
localizes the electrons to this region. (Figure 4.5 shows this for germanium.)
In antibonding orbitals the opposite happens: electron density is smaller in
this region than it would be for free atoms at A and B. Therefore one can say
that covalent bonding is caused by electron pairs that are located between the
atoms with a high probability.

The bonding state formed by the s states is cylindrically symmetric around
the axis joining the two atoms, and also symmetric with respect to inversion
in the midpoint. It is also called the σg state. The antibonding state is anti-
symmetric with respect to space inversion, hence it is also known as the σu
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state. Atomic p orbitals give rise to π molecular orbitals. These can also be
classified according to their symmetry properties.

Since the wavefunctions ψA(r) and ψB(r) that correspond to electron
states around ion cores A and B contain in their arguments the variables
r − RA and r − RB, the quantities εAB and SAB as well as the energies of
the bonding and antibonding states depend on the distance between the two
atoms. This is shown in Fig. 4.9. The equilibrium distance between the two
atoms is determined by the location of the energy minimum of the bonding
state.

�±

r

A bondingnti

Bonding

Fig. 4.9. Variation of the energy of bonding and antibonding electron states with
the separation of the two atoms

In the ground state of a hydrogen molecule the two electrons occupy the
bonding state with opposite spins, making a spin singlet; antibonding states
remain empty. This way a saturated covalent bond is formed. When the num-
ber of electrons in bonding states is less than the maximum permitted by the
Pauli exclusion principle, the bond is unsaturated. On the other hand, when
the number of electrons exceeds the number of bonding states, some antibond-
ing states need to be occupied. Then the energy of the resulting state may be
so high that no bond is formed. That is why the He2 molecule is not stable.

When the molecular-orbital method is used in conjunction with the LCAO
approximation for a hydrogen molecule, the obtained results are worse than
those of the Heitler–London approximation. Although the calculated equi-
librium distance of the nuclei, 0.85 Å, is closer to the observed value, the
computed binding energy, 2.68 eV is far too low. The reason for this is easy
to understand. When both electrons are accommodated on the symmetric
binding orbital with opposite spins, the spatial part of the two-particle wave-
function may also be written as

ψ(r1, r2) =
1

2 + SAB + S∗
AB

[ψA(r1)ψB(r2) + ψB(r1)ψA(r2)

+ ψA(r1)ψA(r2) + ψB(r1)ψB(r2)] .
(4.4.37)

It is readily seen that covalent and ionic configurations have the same
weight in this approximation. The exceedingly large weight of the ionic
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contribution leads to a worse result than that obtained in the Heitler–London
approximation, where only covalent configurations are taken into account. As
we have seen, better results can be obtained when the relative weight of the
two types of configuration is also a free parameter.

4.4.5 Molecular Orbitals Between Different Atoms

While the bond in a hydrogen molecule (H2) is dominantly covalent, this is
not at all the case for a hydrogen fluoride molecule (HF). Here the highly elec-
tronegative fluorine atom pulls the electron from the hydrogen – nonetheless
the bond will not be perfectly ionic, only to about 50%. Using the molecular-
orbital method in the LCAO approximation, the wavefunction of the molecular
orbital is again chosen as

ψ(r) = cAψA(r) + cBψB(r) (4.4.38)

but cA and cB will be different. The Schrödinger equation Hψ = εψ can be
written in the equivalent form∑

ν

cν (Hμν − Sμνε) = 0 μ, ν = A, B , (4.4.39)

where

Hμν =
∫

ψ∗
μ(r)Hψν(r) dr ,

Sμν =
∫

ψ∗
μ(r)ψν(r) dr .

(4.4.40)

The above equation has nontrivial solutions only when

|Hμν − Sμνε| = 0 . (4.4.41)

The energy of the molecular orbital can be determined from this equation.
The lower (higher) energy solution corresponds to the bonding (antibonding)
state.

Note that when both electrons are in bonding states, the wavefunction

ψ(r1, r2) = [cAψA(r1) + cBψB(r1)][cAψA(r2) + cBψB(r2)] (4.4.42)

is very similar to (4.4.25). However, the two expressions are usually different,
since (4.4.25) has two fitting parameters, λA and λB, while only one is left in
(4.4.42) after normalization. The MO method can yield the same results only
if electrons are allowed to occupy the orthogonal antibonding orbital with a
weight λ. This way of taking the antibonding states into account is called
configuration interaction (CI) in quantum chemistry. Quantitatively correct
results can be obtained only by including this interaction.
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4.4.6 Slater Determinant Form of the Wavefunction

For future generalization it will be useful to write the two-particle states built
up of atomic states as a Slater determinant.12 To start with, one constructs
four functions using the atomic wavefunctions ψA and ψB:

Ψ1 =
1√
2

∣∣∣∣∣
ψA(r1)|↑〉1 ψB(r1)|↑〉1
ψA(r2)|↑〉2 ψB(r2)|↑〉2

∣∣∣∣∣ , (4.4.43-a)

Ψ2 =
1√
2

∣∣∣∣∣
ψA(r1)|↑〉1 ψB(r1)|↓〉1
ψA(r2)|↑〉2 ψB(r2)|↓〉2

∣∣∣∣∣ , (4.4.43-b)

Ψ3 =
1√
2

∣∣∣∣∣
ψA(r1)|↓〉1 ψB(r1)|↑〉1
ψA(r2)|↓〉2 ψB(r2)|↑〉2

∣∣∣∣∣ , (4.4.43-c)

Ψ4 =
1√
2

∣∣∣∣∣
ψA(r1)|↓〉1 ψB(r1)|↓〉1
ψA(r2)|↓〉2 ψB(r2)|↓〉2

∣∣∣∣∣ . (4.4.43-d)

States Ψ1 and Ψ4 are antisymmetric in the spatial variables and symmetric in
the spin variable; they correspond to the components Sz = ±1 of a triplet.
The Sz = 0 component of the triplet and the spin-singlet state – which is
symmetric in the spatial variables – are respectively given by the symmetric
and antisymmetric combinations of the functions Ψ2 and Ψ3:

Ψt =
1√
2
(Ψ2 + Ψ3) , Ψs =

1√
2
(Ψ2 − Ψ3) . (4.4.44)

The four wavefunctions in (4.4.43) contain the combinations that are taken
into account in the Heitler–London approximation. In addition to these va-
lence configurations, one might wish to include ionic configurations as well –
since they appear even in the simplest LCAO approximation. This is possible
through the inclusion of the functions

Ψ5 =
1√
2

∣∣∣∣∣
ψA(r1)|↑〉1 ψA(r1)|↓〉1
ψA(r2)|↑〉2 ψA(r2)|↓〉2

∣∣∣∣∣ , (4.4.45-a)

Ψ6 =
1√
2

∣∣∣∣∣
ψB(r1)|↑〉1 ψB(r1)|↓〉1
ψB(r2)|↑〉2 ψB(r2)|↓〉2

∣∣∣∣∣ . (4.4.45-b)

The total two-particle wavefunction can be written as the linear combination
of the six determinants Ψi,

Ψ =
∑
i

ciΨi . (4.4.46)

12
J. C. Slater, 1929.
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The Slater determinants may also be expressed in terms of the wavefunc-
tions of the molecular orbitals rather than the atomic wavefunctions. The six
functions can then be chosen as

Φ1 =
1√
2

∣∣∣∣∣
ψ+(r1)|↑〉1 ψ−(r1)|↑〉1
ψ+(r2)|↑〉2 ψ−(r2)|↑〉2

∣∣∣∣∣ , (4.4.47-a)

Φ2 =
1√
2

∣∣∣∣∣
ψ+(r1)|↑〉1 ψ+(r1)|↓〉1
ψ+(r2)|↑〉2 ψ+(r2)|↓〉2

∣∣∣∣∣ , (4.4.47-b)

Φ3 =
1√
2

∣∣∣∣∣
ψ+(r1)|↑〉1 ψ−(r1)|↓〉1
ψ+(r2)|↑〉2 ψ−(r2)|↓〉2

∣∣∣∣∣ , (4.4.47-c)

Φ4 =
1√
2

∣∣∣∣∣
ψ+(r1)|↓〉1 ψ−(r1)|↑〉1
ψ+(r2)|↓〉2 ψ−(r2)|↑〉2

∣∣∣∣∣ , (4.4.47-d)

Φ5 =
1√
2

∣∣∣∣∣
ψ−(r1)|↑〉1 ψ−(r1)|↓〉1
ψ−(r2)|↑〉2 ψ−(r2)|↓〉2

∣∣∣∣∣ , (4.4.47-e)

Φ6 =
1√
2

∣∣∣∣∣
ψ+(r1)|↓〉1 ψ−(r1)|↓〉1
ψ+(r2)|↓〉2 ψ−(r2)|↓〉2

∣∣∣∣∣ . (4.4.47-f)

It can be easily shown that in the LCAO approximation – where the wave-
functions of the molecular orbitals are constructed from the atomic functions
in the form (4.4.34) – the functions Φi in (4.4.47) are linear combinations of
the Ψi given in (4.4.43) and (4.4.45):

Φ1 = −Ψ1 , Φ6 = −Ψ4 (4.4.48)

and

Φ2 =
1√
2
(Ψ2 − Ψ3 + Ψ5 + Ψ6) ,

Φ3 =
1√
2
(−Ψ2 − Ψ3 + Ψ5 − Ψ6) ,

Φ4 =
1√
2
(−Ψ2 − Ψ3 − Ψ5 + Ψ6) ,

Φ5 =
1√
2
(−Ψ2 + Ψ3 + Ψ5 + Ψ6) .

(4.4.49)

In this sense the two choices are equivalent.
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4.4.7 Hybridized Orbitals

Up to now we have focused on how the covalent bond is formed between two
atoms. In solids each atom has to make bonds with several neighbors. As a
generalization of the previous findings, each atom is expected to participate
in as many covalent bonds as they have singly occupied electron states. The
electron configuration of a ground-state carbon atom is 1s22s22p2 (see Ap-
pendix B), which means that only the two 2p electrons are on open shells.
This would then imply that each carbon atom could take part in two covalent
bonds. However, this is known not to be the case: carbon is tetravalent. The
reason for this is that one of the 2s electrons is excited to an empty 2p state,
transforming the configuration into 1s22s12p3, and thus making further bonds
possible. Although in a free atom this configuration has higher energy than
the ground state, the difference is compensated for by the decrease in energy
caused by the appearance of new bonds.

Wavefunctions are customarily expressed in terms of spherical harmonics:

ψnlm(r) = Rnl(r)Y m
l (θ, ϕ) . (4.4.50)

However, for p (l = 1) states the real linear combinations ψpx , ψpy , and ψpz

offer a more practical choice:

ψnpα(r) = Rn1(r)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1√
2

(
Y 1

1 (θ, ϕ) − Y −1
1 (θ, ϕ)

)
i√
2

(
Y 1

1 (θ, ϕ) + Y −1
1 (θ, ϕ)

)
Y 0

1 (θ, ϕ)

=
(

3
4π

)1/2

Rn1(r)

⎧⎪⎪⎨
⎪⎪⎩

x/r ,

y/r ,

z/r .

(4.4.51)

These formulas give high electron densities along the coordinate axes, as shown
in Fig. 4.10.

Fig. 4.10. Sketch of the wavefunctions of states s, px, py, and pz



104 4 Bonding in Solids

To get a better insight into the states 2s, 2px, 2py, and 2pz, consider the
four orthogonal combinations

ψ1 = 1
2 [ψ2s + ψ2px + ψ2py + ψ2pz ] ,

ψ2 = 1
2 [ψ2s + ψ2px − ψ2py − ψ2pz ] ,

ψ3 = 1
2 [ψ2s − ψ2px + ψ2py − ψ2pz ] ,

ψ4 = 1
2 [ψ2s − ψ2px − ψ2py + ψ2pz ] .

(4.4.52)

From the formulas for the wavefunctions of the s- and p-states it is straight-
forward to show that these sp3 hybrid functions give high electron densities in
the directions of the four vertices of a regular tetrahedron. This is illustrated
in Fig. 4.11.

+

+
+

-

-
-

-

+

Fig. 4.11. Spatial distribution of the electron density in the states that correspond
to the four sp3 hybrid wavefunctions

Now consider two carbon atoms, in RA and RB. Denoting the correspond-
ing hybrid one-particle wavefunctions by ψ

(A)
i and ψ

(B)
j , one can construct

two-particle wavefunctions along the same lines as in (4.4.23):

ψij(r1, r2) = N
[
ψ

(A)
i (r1)ψ

(B)
j (r2) + ψ

(B)
j (r1)ψ

(A)
i (r2)

+ λψ
(A)
i (r1)ψ

(A)
i (r2) + λψ

(B)
j (r1)ψ

(B)
j (r2)

]
.

(4.4.53)

Among the numerous such possibilities there are only a few with low-energy
covalent bonds: those for which the hybrid wavefunctions of two neighboring
atoms display high electron density along the line joining the two atoms. The
covalent bond is therefore highly directional. This approach is well suited
for the description of bonds in diamond (built up of carbon atoms) and in
semiconducting materials with a similar structure.

Besides the hybrid sp3 wavefunctions presented above, other hybrid states
are possible as well. For example, one s- and one p-state can give rise to an sp
state; one s- and two p-states to an sp2 state. p- and d-states can also lead to
hybrid orbitals. Needless to say, the bonds are now oriented in other directions
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than the vertices of a tetrahedron. We shall revisit this question at the end of
Section 7.6 on the relationship between crystal structure and bonding.

4.4.8 Covalent Bonds in Solids

Covalent solids are held together by networks of directional covalent bonds
between neighboring atoms, where the wavefunctions of covalent bonds are
constructed from pairs of atomic states. If each bonding state is occupied
by two electrons of opposite spins – i.e., each bond is saturated – then the
electrons that participate in bonding are localized in space and cannot con-
tribute to electrical conductivity. That is why covalent materials are usually
insulators or semiconductors. This is the case for diamond and for two further
elements of the carbon group: germanium and silicon, which have a diamond
structure. Here each atom has four sp3 hybrid states, and the bonds formed
by them make up a tetrahedral network, as shown in Fig. 7.16(a). The same
structure is seen in semiconducting compounds formed by elements in groups
13 (IIIA) and 15 (VA) of the periodic table.

As it was mentioned in the previous subsection, besides sp3 wavefunctions,
other hybrid states may also give rise to covalent bonding – however, their
spatial directionality depends on which states are hybridized. The orientation
of the bonds plays a crucial role in determining the crystal structure. The
development of short-range order in the amorphous state of covalently bonded
solids is also related to the directionality of the bonds.

The cohesive energy of covalent crystals is given by the sum of the binding
energies of individual bonds. The binding energies of some typical covalent
bonds are listed in Table 4.5. Much larger than their counterparts for molec-
ular crystals, these values are comparable to the energies of ionic crystals.

Table 4.5. Binding energy of some typical covalent bonds (in units of eV and
kJ/mol)

Bond eV kJ/mol Bond eV kJ/mol

H–H 4.48 432 C–H 4.28 413
N–N 1.65 159 C–N 3.16 305
P–P 2.08 201 N–H 4.03 389
C–C 3.58 346 Al–P 2.13 205
Si–Si 2.30 222 Si–C 3.17 306

Ge–Ge 1.95 188 Ga–As 1.63 157
O–O 1.47 142 Ga–P 1.78 172
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4.5 Metallic Bond

A great part of the chemical elements have fewer electrons on the incomplete
shells than what is necessary for having saturated covalent bonds between
each pair of neighboring atoms in the solid state. Electrons participating in
unsaturated bonds are not localized. One may also say that the atoms lose
these outermost (in general, s or p) electrons. While the positively charged ions
left behind are arranged in a more or less regular pattern, the freed electrons
fill the region among the ions almost evenly. This moving cloud of electrons
gives rise to metallic bonding. In transition metals, where incomplete d-shells
are also found under the outermost shell, further electrons may participate in
metallic bonding. The same kind of bonding may appear in materials built up
of molecules with incomplete shells.

The wavefunction of such an electron system cannot be written as the
product of the wavefunctions of pairs of electrons forming bonds. It has to be
chosen in such a way that it should show explicitly the antisymmetry with
respect to the interchange of the coordinates of any two electrons. This can
be done through the generalization of the formulas in (4.4.43) or (4.4.47),
using functions of the Slater determinant form. The analysis of such systems,
the determination of electronic energies and states, and the study of those
properties of solids that are due to electrons will be among our most important
tasks. Volumes 2 and 3 are devoted almost exclusively to these issues. To a
large extent, the present volume serves as preparation for this.

The determination of the total energy of metals is a difficult problem of
solid-state physics. We shall take a closer look at it in Chapter 30, after the
study of electron states. Here we only mention that the cohesive energy per
atom is usually 1–5 eV.

4.6 The Hydrogen Bond

The hydrogen atom has a single electron on the 1s shell – lacking another one
to have the shell closed. That is why covalent bonding would permit hydrogen
to be linked to a single other ion. Due to its small size, even with ionic bonding
only two ions can be tightly packed around the proton. However, because of
its high ionization energy (13.6 eV) hydrogen is not easily ionized. Instead
of participating in such bonds, hydrogen can create a special bond between
highly electronegative atoms like fluorine, oxygen, or nitrogen. This is the
hydrogen bond (or, as it is called in several languages, the “hydrogen bridge”).

In this type of bonding the hydrogen atom is not located at the midpoint
between the F, O, N atoms, but has two symmetrical equilibrium positions
between which it oscillates.

Crystalline ice is held together by such bonds, as shown in Fig. 4.12(a) –
but hydrogen bonds play an important role in water, too. The distance be-
tween oxygen atoms is about 2.75 Å in the ground state of ice and about 2.9 Å
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(a) (b)

Fig. 4.12. Hydrogen bonds in (a) ice; and (b) the alpha helix structure of a polypep-
tide

in water. The two equilibrium positions of the hydrogen atom are located at
a distance of about 1 Å from either of them. The bond between the hydrogen
and the nearby oxygen can be considered as covalent, although the huge differ-
ence in electronegativity makes it highly polar. That is why the hydrogen can
be linked to another oxygen atom on the other side, at a distance of 1.8–2 Å.
The hydrogen bond is stronger on one side and weaker on the other; this is
reflected in the notation O–H · · ·O. The bond is relatively weak; breaking it
requires some 0.2 eV of energy. Between two fluorine atoms the binding energy
is 0.29 eV.

In crystalline ice each oxygen atom is connected to four others through
hydrogen bonds. If a snapshot were made of the structure, in two of these
bonds the hydrogen would be in its equilibrium position closer to the oxygen,
and in the farther one in the other two. It can be shown that there are expo-
nentially many states that satisfy this condition. This high degeneracy exists
in the ground state, too – giving rise to a finite entropy at zero temperature.
That is why ice is a model of choice in statistical physics.

Even more important is the fact that the structure of proteins is deter-
mined by hydrogen bonds (with binding energies of 8 to 40 kJ/mol) between
the CO and NH groups of the polypeptide chains. The blueprint of life, the
double helix of DNA is also held together by hydrogen bonds between base
pairs. The schematic structure of an alpha helix is shown in Fig. 4.12(b).
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Hydrogen bonding is therefore essential for biological materials – however,
substances held together by hydrogen bonds do not play an important role in
solid-state physics. That is why we shall not pursue the study of this type of
bond any further.
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Symmetries of Crystals

It has already been mentioned that crystalline materials constitute a highly
important group of solids. In what follows, we shall be mostly concerned with
the study of the properties of such materials. The reasons for this are not
purely historical. On the one hand, crystalline materials are used in many
applications. On the other hand, quite a few electronic properties do not
depend on structure, and the theoretical study of the behavior of electrons
within solids is much simpler in crystalline materials than in noncrystalline
ones.

One of the most striking features of natural crystals is that they are usually
bounded by regular plane faces. The regularity of the form – and thus the
rotations and reflections that take the crystal into itself – are even better seen
on artificially grown crystals.1 As R.-J. Haüy pointed out already in 1784,
the regular form of carefully grown crystals implies that crystals are built up of
regularly arranged small blocks. The regularity of the overall form is therefore
the consequence of an internal regularity. It was well after Haüy’s time that
atoms and ions were identified as the elementary building blocks, and it was
shown that in the crystalline state atoms (or ions) with identical surroundings
are arranged in a regular periodic array – implying that the crystal exhibits
long-range order.

In the present chapter we shall discuss the geometrical characteristics of
crystalline solids. Although atoms are not arranged in perfect order in real
crystals – which may have important consequences on the properties of the
solid –, here we shall assume that the crystal is ideal, i.e., perfectly regular and
without defects. The various types of defects will be presented in Chapter 9.
Noncrystalline solid structures will be discussed in Chapter 10.

1 Being highly malleable, the crystalline symmetry of metals is almost always dis-
guised in finished products.
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5.1 Translational Symmetry in Crystals

The characteristic regularity of crystalline structures is usually formulated in
terms of the invariance of the crystal under certain discrete translations. As
we saw in Chapter 2, there exist mesomorphic phases in which the material
possesses discrete translational symmetries along one or two directions only
and continuous ones along the others. Below we shall consider solids which
are taken into themselves only by discrete translations in all three spatial
directions. To put it more rigorously: A solid is said to be crystalline if there
exist three non-coplanar vectors a1, a2, and a3 such that for any three integers
n1, n2, and n3 translation through the vector

tn = n1a1 + n2a2 + n3a3 (5.1.1)

takes the sample into itself – while this is not the case for linear combinations
in which the coefficients are not all integers. The vectors ai appearing in the
definition are called primitive translation vectors or primitive vectors, and are
said to span or generate the lattice. This formulation of discrete translational
symmetry is the mathematical definition of ideal crystals.

Mathematically speaking, these translations form a group, T3. For conve-
nience, we shall frequently refer to two-dimensional crystals. These are planar
arrangements that are translationally invariant in the two planar dimensions
(under the elements of the group T2).

Invariance under discrete translations does not apply solely to the regular
array of spatially localized atoms. It also implies that the charge density ρe(r)
of delocalized electrons, as well as the internal degrees of freedom (e.g., spin
density) must be left unaltered by a translation through tn. Consequently, for
any local observable quantity F (r)

F (r) = F (r + tn) (5.1.2)

must hold. For nonobservable quantities – such as electron wavefunctions –
this invariance does not apply. As we shall later, when considered separately,
localized atoms and the charge density of delocalized electrons may exhibit
different translational symmetries. Then the true translational symmetries of
the whole system are translations through those vectors tn that transform
both the localized atoms and the charge density into themselves.

5.1.1 Translational Symmetry in Finite Crystals

Strictly speaking, the previous formulation is valid only for infinite crystals.
Finite crystals obviously cannot be taken perfectly into themselves by transla-
tions. However, where the original and translated samples overlap, the atomic
arrangements must be identical – with the possible exception of a few atomic
layers near the surface. The previous statement can be reformulated to be
valid for finite samples: A sample of finite extent is said to be crystalline if
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it is built up of identical elementary blocks (atoms, molecules, or groups of
atoms/molecules) whose positions are given by the vectors in (5.1.1), and the
triplets of integers n1, n2, n3 form a compact region. Figure 5.1 shows such a
finite crystalline structure built up of groups of five atoms.

Fig. 5.1. A finite crystalline structure: a finite regular three-dimensional array of
identical groups of atoms

A similar situation is encountered in crystal-growth processes. First, a
nucleus is formed at random, and then other atoms/molecules condense onto
it in a regular pattern. This construction of the crystal implies that whichever
atom (of position vector r) of the starting group of atoms is chosen, identical
atoms (in equivalent surroundings) are found at all points

r′ = r + tn = r + n1a1 + n2a2 + n3a3 , (5.1.3)

where the coefficients ni are integers, just as in (5.1.1). In general, when r and
r′ are related through (5.1.3), F (r′) = F (r) holds for the spatial distribution
of electron density and any local observable physical quantity F (r) – with the
possible exception of the vicinity of the surface. Thus for finite crystals the
relation (5.1.2) is valid only for positions r and r + tn that are both inside
the sample.

5.1.2 The Choice of Primitive Vectors

One usually faces the opposite problem as in the previous theoretical construc-
tion of crystals. Given some regular arrangement of the atoms, one needs to
determine the primitive vectors a1, a2, and a3. The choice of these vectors
is ambiguous: if a vector triplet a1, a2, a3 is found such that the crystal is
invariant under the translations tn given in (5.1.1), then the same invariance
holds for any other vector triplet a′

1, a′
2, a′

3 that is a linearly independent set
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of linear combinations of the previous one with integer coefficients. However,
the new vector triplet is not necessarily primitive (even when the old one is):
it does not necessarily satisfy the condition that all translation vectors should
be given by integer coefficients.

A possible choice for the primitive vectors a1 and a2 and a new set a′
1,

a′
2 are shown in Fig. 5.2 for a two-dimensional crystal. With either choice,

translations through tn = n1a1 + n2a2 or t′n = n′
1a

′
1 + n′

2a
′
2 take the lattice

into itself: each point is moved to an equivalent one. It is immediately seen
that the two choices are nevertheless inequivalent: when translations through
integer n′

is only are allowed, the choice on the right does not cover all the
points that are equivalent to r: a′

1 and a′
2 are thus not primitive vectors.

a
2’

a
1’a

1

a
2

Fig. 5.2. A possible choice for the primitive vectors and a pair of new vectors
obtained through their linear combination in a two-dimensional crystal

Therefore the requirement that the vectors a1, a2, a3 be primitive – in
other words: that the translations tn obtained with triplets of integers n1, n2,
n3 yield all points r′ = r + tn in the crystal that are equivalent to r – is
tantamount to stipulating that the volume of the parallelepiped spanned by
the non-coplanar vectors a1, a2, a3 be minimum.

The minimum volume requirement is not perfectly restrictive either: it
allows for many possible choices of the primitive vector, as shown in Fig. 5.3.
For clarity, instead of the entire crystal only points that are equivalent to a
selected one are marked.

Therefore it is useful to impose the restriction that the length of the vec-
tors should be the smallest possible. Among the possible choices shown in
Fig. 5.3 the leftmost meets this requirement. In many cases it is possible to
go even further. Later, when the rotational symmetry of crystals will have
been presented, it will be appreciated that primitive vectors should possibly
be chosen in such a way that they are related through some symmetry oper-
ation. Moreover, in certain cases even the requirements of minimum volume
and minimum length are abandoned so that rotational symmetry should be
manifest. The lattice is then characterized by vectors a, b, and c that are
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Fig. 5.3. Several possible choices for the pair of primitive vectors in a two-
dimensional crystal. In each case every equivalent point can be reached by a integer
linear combination of the primitive vectors

more symmetric than the previously used primitive vectors a1, a2 and a3.
Since a, b, and c are not primitive vectors, a part of the equivalent sites in
the original lattice can be reached only via triplets of coefficients that contain
nonintegers.

5.1.3 Bravais Lattice and Basis

Once the primitive vectors have been chosen and an origin selected, the end-
points of the vectors (5.1.1) marked for all possible integer values of n1, n2,
and n3 make up a regular albeit empty lattice. This is called the point lat-
tice or Bravais lattice of the crystal – named after the French crystallographer
A. Bravais who was the first to determine correctly the possible lattice types
in 1850. The points of a Bravais lattice are thus given by

Rn = n1a1 + n2a2 + n3a3 . (5.1.4)

This will be important when we shall try to exploit the consequences of rota-
tional symmetry.

Note that the lattice concept introduced above is different from that used
in statistical physics. Statistical physical models are often solved on honey-
comb and kagome (basketweave)2 lattices (shown in Fig. 5.4). However, their
vertices (sites) do not make up a lattice in the above sense. There are no
primitive vectors whose linear combinations with integer coefficients give all
the vertices and only the vertices. This is why when we present all possible
types of planar lattices below these structures will not appear.

The knowledge of the primitive vectors, i.e., the point lattice is not suf-
ficient for characterizing the crystal structure – even when only the spatial

2 The name comes from the Japanese word kagome, meaning the pattern of holes
(“me” = holes, literally “eyes”) in a woven (bamboo) basket (“kago”).
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( )a ( )b

Fig. 5.4. “Lattices” that are not Bravais lattices, and their primitive vectors: (a)
honeycomb lattice; (b) kagome lattice

arrangement of atoms, i.e., the geometry of the crystal is considered. One must
also identify the group of atoms whose regularly repeated pattern makes up
the lattice. This group of atoms is called the basis or motif of the crystal. The
honeycomb net and the kagome lattice are thus Bravais lattices with a two-
and a three-point basis, respectively.

When the same Bravais lattice is decorated with different bases, different
crystal structures are obtained. Conversely, crystals with strikingly different
structure may share the same underlying Bravais lattice. It is easily seen
that the two-dimensional crystals shown in parts (a) and (b) of Fig. 5.5 have
different bases but a common Bravais lattice, which is shown in part (c). The
crystal structure is therefore determined by its Bravais lattice and its basis.

( )a ( )b ( )c

Fig. 5.5. (a) and (b): Two-dimensional crystals that are built up of different groups
of atoms but exhibit the same translational symmetries. (c): Their common Bravais
lattice

When the basis consists of a single atom, then the origin of the coordinate
system can always be chosen so that each atom should occupy a lattice site
Rn. On the other hand, in crystals with a p-point basis the arrangement of the
atoms in the basis should appear exactly the same around each lattice site;
therefore atomic positions are given by the sum of a lattice vector Rn and a
vector rμ (μ = 1, 2, . . . , p), which is referred to the corresponding lattice site,
thus lies in the unit cell.

5.1.4 Primitive Cells, Wigner–Seitz Cells, and Bravais Cells

The basis is not always pictured as a group of several point-like atoms. It
can also be thought of as an extended charge distribution. It is then not
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just a collection of atoms but an elementary region with atoms (ions) and a
smeared-out electron cloud. Such an elementary region called primitive unit
cell or primitive cell contains exactly one lattice point. When it is repeated
according to a regular spatial pattern, i.e., translated through all vectors tn,
the volume of the crystal is covered in its entirety. This condition does not
impose a strong restriction on the shape of the primitive cell. It does not need
to possess high symmetry, nor are its faces required to be plane (or in the
two-dimensional case: its sides to be straight). Complete filling of the space or
complete tiling of the plane requires only that opposite faces (sides) could be
moved into one another by simple translations – leaving considerable freedom
in the choice of the figures. Beautiful examples for periodic tilings of the
plane are found on embroideries, wall decorations, and mosaics. In his artistic
program the Dutch artist M. C. Escher

3 illustrated possible symmetries in
the complete tiling of the plane using human and animal figures. Some of his
works are shown in Fig. 5.6, as well as in Figs. 5.27 and 5.31 in the later parts
of this chapter.

Fig. 5.6. Escher’s drawings show the complete tiling of the plane with human and
animal figures

3
M. C. Escher, 1898–1972.
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It is a straightforward matter to prove that it is often impossible to fill
the space or tile the plane with patterns of high symmetry. The plane cannot
be perfectly tiled with identical circles, and space cannot be entirely filled
with identical spheres. For mathematical simplicity, the electron states are
nevertheless often determined within a sphere centered on a lattice site (the
Wigner–Seitz sphere). This approximation and its problems will be discussed
in Chapter 19 of Volume 2 where the study of electron states is presented.

It should also be mentioned here – without going into the details of the
geometrical problem of finding those solids bounded by plane faces that can
fill up space perfectly – that perfect tilings of the plane are possible with reg-
ular or distorted triangles, quadrilaterals, or hexagons while the tiling will be
imperfect when regular pentagons or octagons are used, as shown in Fig. 5.7.
In the case of pentagons allowing for nonidentical orientation does not help
either. It will be shown in Section 10.2 on quasicrystals that the plane can
be tiled in such a manner that local fivefold symmetry is manifest – provided
that the requirement of complete translational symmetry is relaxed and only
that of quasiperiodicity is imposed.

Fig. 5.7. Incomplete tiling of the plane with regular pentagons and octagons

A common choice for the primitive cell is the parallelepiped spanned by
the primitive vectors a1, a2, and a3. Clearly, a regular array of such paral-
lelepipeds fills the space completely, without overlaps. Figure 5.8(a) shows the
division of the two-dimensional periodic crystal structure of Fig. 5.2 into cells
spanned by the minimum-length primitive vectors a1 and a2.

The freedom in the choice of the origin is customarily abandoned in favor
of choosing a characteristic atom of the crystal as the starting point of the
primitive vectors. In this construction the group of atoms around a particular
lattice site is usually divided among several primitive cells. Another disadvan-
tage of this choice for the primitive cell is that translational symmetry alone
is taken into account: the internal structure and symmetries of the figure the
crystal is built up of are completely ignored. That is why in many cases –
in particular, when the electron states are to be determined – the crystal is
divided into primitive cells in such a manner that in addition to the atoms,
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the core electrons should also belong to the same region. Such a division is
obtained through Dirichlet’s construction.

Consider the points of a crystal lattice. In Dirichlet’s construction one
associates with each lattice point the region of space that is closer to that
point than to any other lattice point. To construct these regions, vectors
are drawn from the point in question to its first, second and perhaps third
neighbors, and then perpendicular planes are drawn through the midpoint of
each vector. The primitive cell obtained this way is called the Wigner–Seitz
cell.4 Part (c) of Fig. 5.8 shows the tessellation of the two-dimensional crystal
of parts (a) and (b) into Wigner–Seitz cells.

( )a

a
1

a
2

a
1

a
1

a
2

a
2

( )b ( )c

Fig. 5.8. Three different choices for the primitive cells (shaded areas) that allow
for perfect tiling of the two-dimensional crystal. (a) and (b) differ only in the choice
of the origin; (c) tessellation by Wigner–Seitz cells

It has been mentioned that the relative orientation of the primitive vectors
does not necessarily reflect the crystal symmetries, which is why sometimes
longer but more symmetric vectors, a, b, and c are used instead. As an ex-
ample, consider the plane lattice shown in Fig. 5.9. The primitive vectors are
of different lengths, and their angle is such that 2a2 − a1 is perpendicular to
a1.

Instead of a1 and a2 one might choose the vectors a = a1 and b =
2a2−a1. This choice gives a rectangular (nonprimitive) unit cell instead of the
rhomboid-shaped primitive cell. Horizontal and vertical reflection symmetry
– which are the consequence of the particular relation between a1 and a2

(2a2 − a1 ⊥ a1) as well as the appropriate choice of b – are manifest in this
case. The parallelepiped spanned by these vectors is called the conventional
unit cell or the Bravais cell of the crystal. The general definition of the Bravais
cell will be given on page 144.

Since it may contain several crystallographically equivalent sites, the Bra-
vais cell may have a larger volume than the primitive cell or the Wigner–Seitz
cell. In the above example lattice points are found inside the rectangles as well

4
E. Wigner and F. Seitz, 1933. When Dirichlet’s construction is applied to sets
of discrete points that do not necessarily form a Bravais lattice, the obtained
irregular units are known as Voronoi polyhedra (G. Voronoi, 1908).
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Fig. 5.9. The rhomboid-shaped primitive cell and the rectangular Bravais cell of a
special oblique lattice

as at their vertices. The Bravais cell is thus not necessarily a primitive cell –
it is nevertheless often a convenient choice because of its higher symmetry.

5.1.5 Crystallographic Positions, Directions, and Planes

As it was mentioned on page 114, the position vectors ri of the atoms of
the basis are referred to the points of the Bravais lattice – and these vectors
do not depend on the choice of the particular cell. The position vectors are
customarily expressed in terms of the primitive vectors (which are generally
not mutually orthogonal):

ri = xi1a1 + xi2a2 + xi3a3 , (5.1.5)

where the coordinates xi1, xi2, and xi3 range between 0 and 1 or − 1
2 and 1

2 .
The position vector is concisely denoted by the three coordinates xi1 xi2 xi3.
Thus 1

2
1
20 refers to the position given by the vector 1

2a1 + 1
2a2. Negative

numbers are denoted by overlines, e.g., the concise notation for the point at
1
2a1 − 1

4a2 is 1
2

1
40.

A specified direction in the crystal is denoted by a triplet of integers in
square brackets: [u v w] stands for the direction of the vector ua1+v a2+w a3.
In a cubic lattice – made up of cubic primitive cells – [100], [110], and [111]
denote the direction of an edge, a face diagonal, and a space diagonal. The
directions of the three cube edges ([100], [010], [001]) and their opposites
([1̄00], [01̄0], [001̄]) are obviously equivalent. They are collectively referred to
as the 〈100〉 directions.

In what follows, coplanar atoms will be of particular importance. Con-
sider any three noncollinear points of a Bravais lattice and their common
plane. Translational symmetry of the lattice implies that there are an infinite
number of lattice points on this plane – moreover the family of equidistant
parallel planes contains all the lattice points. Figure 5.10 shows this for a two-
dimensional section of the lattice with three possible choices for the family of
planes.

Crystal planes are also denoted by triplets of integers. To specify the three
indices, consider the member of the family of planes that is closest to the plane
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Fig. 5.10. Sections of planes through the sites of a Bravais lattice for different
choices of the Miller indices (hkl)

through the origin and intercepts each of the three crystallographic axes (the
lines along the primitive translation vectors) at lattice points. Using the lattice
constants a1, a2, a3 (i.e., the lengths of the primitive vectors) as units, these
intercepts are written as p 0 0, 0 q 0, and 0 0 r, where p, q, and r are integers.
The plane – and the family of planes as well – is then unambiguously specified
by the three numbers (pqr), the Weiss indices.5 It is easily shown that in the
oblique coordinate system spanned by the primitive vectors the equation of
the family of planes is

x1

p a1
+

x2

q a2
+

x3

r a3
= n , (5.1.6)

where n is an integer.
For reasons that will become apparent later, the reciprocal of these num-

bers – or more precisely, the smallest triplet of integers h, k, l for which

h : k : l =
1
p

:
1
q

:
1
r

(5.1.7)

is used to specify the orientation of the plane. These numbers are called the
Miller indices6 of the plane, and are customarily given in parentheses: (hkl).
Figure 5.11 shows some planes of a cubic lattice with their Miller indices.

Similarly to directions, some of the planes are also equivalent for symmetry
reasons – e.g., planes (110), (1̄10), (011̄) etc. in a cubic crystal. Such equivalent
planes are collectively denoted as {110}.
5

Ch. S. Weiss, 1818.
6

W. H. Miller, 1839. In trigonal and hexagonal structures the four Miller–
Bravais indices are also commonly used.
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(112)�(213)(211)

(111)(110)(100)

Fig. 5.11. Planes in a cubic lattice and their Miller indices

Figure 5.10 also shows that the larger the Miller indices h, k, l, the smaller
the separation dhkl of the planes – and the larger the distance between the
nearest coplanar lattice points. Since the separation of the planes plays an
important role in the experimental studies of the crystal structure, methods
for its determination will be discussed later.

5.2 The Reciprocal Lattice

The structure of the crystal and the coordinates of the atoms within a prim-
itive cell are specified in terms of the primitive vectors a1, a2, a3 or the edge
vectors a, b, c of the Bravais cell (conventional unit cell). Experimental de-
termination of the structure and especially specification of the states within
the crystal are highly simplified by using another type of lattice, the reciprocal
lattice.7 For future reference, below we define and present some properties of
the reciprocal lattice.

5.2.1 Definition of the Reciprocal Lattice

As we have seen, the primitive vectors a1, a2, a3 usually constitute an oblique
system. In terms of the mutually perpendicular unit vectors x̂, ŷ, ẑ

ai = aixx̂ + aiy ŷ + aiz ẑ , i = 1, 2, 3 . (5.2.1)

7
P. P. Ewald, 1913.
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When the coordinates of the primitive vectors are written as a column vector

ai =

⎛
⎝aix

aiy
aiz

⎞
⎠ (5.2.2)

and then as a matrix

A =

⎛
⎝a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

⎞
⎠ , (5.2.3)

the volume v of the primitive cell – i.e., the triple scalar product of the vectors
– is given by the determinant

v = a1 · (a2 × a3) = [a1 a2 a3] = detA . (5.2.4)

In terms of the column vectors, the position vector Rn = n1a1 + n2a2 +
n3a3 of an arbitrary lattice point of the Bravais lattice is

Rn = n1

⎛
⎝a1x

a1y

a1z

⎞
⎠+ n2

⎛
⎝a2x

a2y

a2z

⎞
⎠+ n3

⎛
⎝a3x

a3y

a3z

⎞
⎠ . (5.2.5)

Using the matrix A, this can be simply rewritten as

Rn =

⎛
⎝a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

⎞
⎠ ·

⎛
⎝n1

n2

n3

⎞
⎠ = A ·

⎛
⎝n1

n2

n3

⎞
⎠ . (5.2.6)

The matrix B is then defined through the relation

BA = 2πI , (5.2.7)

where I is the unit matrix. Denoting the elements of B by

B =

⎛
⎝ b1x b1y b1z

b2x b2y b2z
b3x b3y b3z

⎞
⎠ , (5.2.8)

the vectors
bi = bixx̂ + biyŷ + bizẑ , i = 1, 2, 3 (5.2.9)

are introduced, which will be written as row vectors

bi = (bix biy biz) , i = 1, 2, 3 . (5.2.10)

Writing the defining equation (5.2.7) in component form, we have

bixajx + biyajy + bizajz = 2πδij . (5.2.11)
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This can be expressed equivalently in terms of the scalar product of vectors
bi and aj :

bi · aj = 2πδij . (5.2.12)

Each of the three new vectors is thus perpendicular to the plane spanned by
the two primitive vectors whose index is different. The vector triplet satisfying
this condition is easily found:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a1 · (a2 × a3)
, b3 = 2π

a1 × a2

a1 · (a2 × a3)
.

(5.2.13)
Considered as primitive vectors, the bi span a lattice whose points are

given by
G = h1b1 + h2b2 + h3b3 , (5.2.14)

where h1, h2, and h3 are arbitrary integers. In analogy to (5.2.6), these can
be written in the form

G = (h1 h2 h3) · B . (5.2.15)

The new lattice is called the reciprocal lattice of the original lattice, and b1,
b2, and b3 are the primitive vectors of the reciprocal lattice. In connection with
its reciprocal the original lattice is often called the direct lattice.

5.2.2 Properties of the Reciprocal Lattice

Transposition of both sides in (5.2.7) gives

ATBT = 2πI . (5.2.16)

This means that when a lattice is generated using as primitive vectors the
bi – i.e., the columns of the matrix BT –, then the primitive vectors of its
reciprocal lattice are given by the rows of the matrix AT, and also

a1 = 2π
b2 × b3

b1 · (b2 × b3)
, a2 = 2π

b3 × b1

b1 · (b2 × b3)
, a3 = 2π

b1 × b2

b1 · (b2 × b3)
.

(5.2.17)
These relations could have also been derived using (5.2.13) for the vectors bi
and making use of the identity (3.3.6). The reciprocal of the reciprocal lattice
is thus the original direct lattice.

The primitive cell of the reciprocal lattice is spanned by the primitive
vectors bi. Its volume vr = b1 · (b2 × b3) is related to the volume v of the
direct-lattice primitive cell – given in (5.2.4) – in a particularly simple manner.
Expressing the primitive vectors of the reciprocal lattice in terms of their
direct-lattice counterparts and using of the vector identity (3.3.6) gives

vr = b1 · (b2 × b3) =
(2π)3

a1 · (a2 × a3)
=

(2π)3

v
. (5.2.18)
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Alternatively, the definition of the vectors bi implies that the volume vr is just
the determinant of the matrix B. Making use of (5.2.7) and (5.2.4),

vr = detB =
(2π)3

detA
=

(2π)3

v
. (5.2.19)

Instead of the parallelepiped spanned by the bi, cells of different shape
but equal volume may be used in the reciprocal lattice, too. In particular, one
might choose Dirichlet’s construction, which gave the Wigner–Seitz cell in the
direct lattice. In the reciprocal lattice it leads to the Brillouin zone,8 which
will be presented in detail in Chapters 7 and 17.

Expression (5.2.12) for the scalar product of ai and bj implies that the
product of any reciprocal-lattice vector Gh = h1b1 + h2b2 + h3b3 with any
direct-lattice vector Rn = n1a1 + n2a2 + n3a3 is

Gh · Rn = 2π(n1h1 + n2h2 + n3h3) . (5.2.20)

Since the ni and the hj are integers, this implies a relation that will be fre-
quently used in the forthcoming:

eiGh·Rn = 1 . (5.2.21)

This relation has an important consequence that will be proved in Appendix C.
When a function F is lattice periodic, i.e., satisfies the condition

F (r) = F (r + Rn) (5.2.22)

for any vector Rn of the lattice then its Fourier series contains only the
reciprocal-lattice vectors: the sum in

F (r) =
∑
G

FG eiG·r (5.2.23)

is over reciprocal-lattice vectors only.
Finally, another relation between reciprocal-lattice vectors and the direct

lattice is worth noting. The definition of the direct-lattice plane with Miller
indices (hkl) on page 119 was fairly complicated because the primitive vec-
tors generally form an oblique coordinate system, and the plane (hkl) is not
necessarily perpendicular to the direction [hkl] of the vector ha1 +k a2 + la3.
On the other hand, the reciprocal-lattice vector

Ghkl = h b1 + k b2 + l b3 (5.2.24)

is readily shown to be directed along the normal to the planes with Miller
indices (hkl). It should be recalled that these planes intercept the three crys-
tallographic axes in ma1/h, ma2/k, and ma3/l, where h, k, and l are relatively
8

L. Brillouin, 1930.
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prime, and m is also an integer. This means that the vector ma1/h−ma2/k
lies in the plane (hkl). The relation between direct- and reciprocal-lattice
vectors immediately implies that

(h b1 + k b2 + l b3) ·
(m

h
a1 − m

k
a2

)
= 0 , (5.2.25)

that is, the two vectors are perpendicular. By the same token, the vector h b1+
k b2 + l b3 is perpendicular to other vectors of the plane, e.g., ma1/h−ma3/l,
confirming that Ghkl is indeed the normal of the plane.

Making use of this property, the separation dhkl of the neighboring mem-
bers of the family of planes with Miller indices (hkl) is easily expressed in
terms of the magnitude of the reciprocal-lattice vector Ghkl. Two adjacent
planes of the family intercept the a1-axis of the direct lattice in ma1/h and
(m + 1)a1/h. The separation of these planes is given by the projection of the
vector joining the two intercepts on the normal of the planes:

dhkl =
1
h

a1 · Ghkl

|Ghkl| =
2π

|Ghkl| . (5.2.26)

5.3 Rotations and Reflections

Besides translational symmetry, crystals have further characteristic symme-
tries. Such symmetry operations are geometrical transformations that leave
distances and angles unaffected. Therefore, before turning to the symmetries
of Bravais lattices and crystals, we shall present the groups of possible rota-
tions and reflections.

5.3.1 Symmetry Operations and Symmetry Elements

The congruence transformations (isometries) of interest to us are rotations
through a finite angle α around an axis along the direction of the unit vector n,
reflections in a mirror plane of normal n, and inversion. Reflection across a line
(mirror line) leads to the same result as rotation around the same line through
180◦, which is why we shall not discuss it any further. Inversion (i.e., reflection
through a point) is, however, treated separately, even though rotation through
180◦ around an axis n followed or preceded by reflection across a plane of
normal n leads to the same result as inversion in the intersection point of the
rotation axis and the mirror plane.

The symmetry elements of an object are rotation axes, mirror planes,
and/or an inversion center such that the figure is taken into itself by rotations
through suitably chosen angles around them or by reflections in them.9 When
9 In the spirit of the foregoing, the mirror line is omitted from the previous listing.

However, to keep the wording simple, we shall sometimes refer to mirror lines –
by which we shall invariably mean rotation axes with 180◦ operations.
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the object is brought into coincidence with itself by a rotation through 2π/n
around an axis, the axis is called an n-fold symmetry axis.10 Two notational
conventions are used in the literature for rotations as symmetry operations
and rotation axes as symmetry elements. Crystallographic texts dealing with
the structural study of crystals almost invariably use the international or
Hermann–Mauguin symbols,11 while in solid-state physics texts the traditional
Schoenflies symbols12 are more common.

In this book we shall use either or both of them. In the present chapter on
structure preference will be given to the international notation: this will ap-
pear first, followed by the Schoenflies symbol in parentheses. In later chapters
dealing with physical properties we shall mostly use the Schoenflies notation.

In the international notation the integer n stands for an n-fold rotation
axis, as well as the clockwise rotation through 2π/n around this axis. For
the same concepts Schoenflies proposed the symbol Cn, making reference to
the word “cyclic”. In other cases, too, even when not marked explicitly, the
same notation is used for the symmetry element and the symmetry operation.
We shall see later that for crystals n can take on the values 1, 2, 3, 4, and
6 only – however, for the time being we do not impose this restriction. The
special case n = 1 corresponds to the unit transformation E.13 For rotational
elements the direction of the rotation axis is customarily given by a letter or
number label. For example, the notation 2x (C2x) means that x is a twofold
rotation axis, but at the same time it also refers to a 180◦ rotation around the
x-axis. 2p (C2p), with p = a, b, c, d, e, f stands for 180◦ rotations around the
face diagonals in a cube, while 3j (C3j), with j = 1, 2, 3, 4 stands for 120◦

rotations around the space diagonals.
The restriction that only rotations through 2π/n (where n is an integer)

and their repetitions should be considered is a consequence of the group prop-
erty of symmetries. Suppose that the angle of the smallest rotation that takes
the system into itself is written as 2π/n. Then k subsequent rotations cor-
respond to a single rotation through 2πk/n (denoted by nk or Ck

n). Since
rotation through 2π (which is equivalent to the identity transformation) has
to be reached in a finite number of steps, n obviously has to be an integer,
and only the values k = 1, 2, . . . , (n− 1) correspond to different rotations.

The international notation for reflections as symmetry operations and mir-
ror planes as symmetry elements is m, while their Schoenflies symbol is Cs or
σ. The normal to the mirror plane may appear in the subscript, e.g., mx (σx)
refers to reflection in the plane perpendicular to the x-axis. When a mirror
plane and a rotation axis are present simultaneously then the orientation of
the plane with respect to the axis is also indicated. The notation for a mirror
plane perpendicular to an n-fold rotation axis is n/m (σh). For mirror planes

10 n = 2, 3, 4, 6-fold axes are also called diad, triad, tetrad, and hexad axes.
11

C. Hermann, 1928; C.-V. Mauguin, 1931.
12

A. M. Schoenflies, 1891.
13 From the German word for unity, Einheit.
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through the rotation axis Schoenflies used the symbols σv and σd, where v
refers to vertical and d to diagonal. The latter is used for mirror planes that
contain a principal rotation axis and bisect the angle between the twofold axes
perpendicular to the principal axis.

Inversion as a symmetry operation (which takes point r into −r) and the
inversion center as a symmetry element are both denoted by 1̄ (Ci or I).
Note that Bravais lattices are always symmetric under inversion since their
definition implies that if Rn is a lattice point then so is −Rn. We shall make
use of this fact when investigating the possible symmetry groups of Bravais
lattices.

It has been mentioned that inversion can be considered as a combined
symmetry operation. Denoting rotation through angle α around the axis n by
Cn(α) and reflection in the plane of normal n by σn,

I = σnCn(π) = Cn(π)σn . (5.3.1)

It is possible that a system is invariant neither under 180◦ rotation nor
under reflection – only under the combination of the two. A similar situa-
tion may arise with other operations as well. Some objects will be taken into
themselves only when rotation through 2π/n is followed by an inversion in a
point on the rotation axis or by a reflection in a mirror plane perpendicular
to the axis. These improper rotations are symmetry operations of the second
kind; the first one is called rotation–inversion or rotoinversion, and the sec-
ond – rotation–reflection or rotoreflection. The order of the two operations
is immaterial. Thus rotoreflection of an object is the rotation of its mirror
image. The corresponding symmetry elements are the rotation–inversion axis
and the rotation–reflection axis.14

When listing the symmetry operations of a given system, either rotation–
inversion or rotation–reflection has to be included – but not both, as they
are related to each other in a particularly simple way. Rotation–inversion and
rotation–reflection lead to the same result when the two angles of rotation
differ by π.

Rotation–inversion – that is, rotation through 2π/n around a rotation axis,
followed by an inversion in a point of the rotation axis – is considered as the
fundamental operation in the international crystallographic system. Both the
operation and the corresponding symmetry element, the rotation–inversion
axis are denoted by n̄ (Cni). Since the order of rotation and inversion can be
interchanged, n̄ = n 1̄ = 1̄n (Cni = Cn I = I Cn). This symmetry may appear
even when neither rotation n (Cn) nor inversion is a symmetry of the system
alone. However, this is not the case for n = 1 and n = 3. n = 1 corresponds
to a pure inversion, while for n = 3 3̄2 = 3−1 (C2

3i = C−1
3 ), 3̄3 = 1̄ (C3

3i = I),
and 3̄4 = 3 (C4

3i = C3). The twofold operation 2̄ (C2i) is not a new one, either,

14 2-, 3-, 4-, and 6-fold rotation–inversion axes are also called inversion diad, triad,
tetrad, and hexad axes, respectively.
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since it corresponds to a reflection in the plane perpendicular to the rotation
axis: 2̄ ≡ m (C2i ≡ Cs).

Following Schoenflies’ proposition, rotation–reflection – that is, rotation
through 2π/n followed by a reflection in a plane perpendicular to the axis of
rotation – is often considered to be a fundamental operation. This symmetry
operation and the corresponding symmetry element, the rotoreflection axis
are both denoted by Sn,15 or ñ in the international notation. Because of the
interchangeability of the two transformations Sn = σh Cn = Cn σh (ñ =
nm = mn). Specifically, S1 (1̃) is a reflection and S2 (2̃) is an inversion.

As mentioned above, the two symmetry operations of the second kind are
not independent of one another, e.g., (i) 1̃ = 2̄ ≡ m (S1 = C2i ≡ σ); (ii) 2̃ = 1̄
(S2 = Ci ≡ I); (iii) 3̃ = 6̄−1 (S3 = C−1

6i ); (iv) 4̃ = 4̄−1 (S4 = C−1
4i ); (iv)

6̃ = 3̄−1 (S6 = C−1
3i ).

5.3.2 Point Groups

With the sole exception of spheres, all figures are invariant only under a finite
of infinite subgroup of the above symmetry operations. Possible symmetry op-
erations constitute a group in the algebraic sense: when each of two symmetry
operations takes a figure into itself then the succession of the two (which can
be defined as the group multiplication operation) is also a symmetry. These
elements make up the symmetry group of the figure. Before identifying the
group of possible rotation and reflection symmetries of crystal lattices, con-
sider finite geometrical figures that have rotation axes, mirror planes, and/or
inversion centers. Due to finiteness and hence the lack of translational sym-
metry, one point of the figure always remains invariant. Rotation axes and
mirror planes must all go through this point, and if the figure has an inver-
sion center then it must be in the same point as well. The group of symmetry
transformations that leave this point invariant is called the point group of the
figure. For d-dimensional figures these are collectively denoted by Gd

0.
Point groups may also be defined as the discrete subgroups of the full or-

thogonal group O(3)16 (or, in the d-dimensional case, of the group O(d)): they
consist of rotations through 2π/n, reflections, inversions, rotation–inversions,
and their combinations.

Two-Dimensional Point Groups (G2
0)

The set of possible symmetry operations for two-dimensional (plane) figures
consists of rotations around the axis perpendicular to the plane, reflection in

15 S stands for “Spiegel”, the German word for mirror.
16 The full rotation group (or special orthogonal group) SO(3) consists of rotations

that leave a specific point of space – the fixed point – invariant. In addition to
these, the full orthogonal group contains the inversion operation and rotation–
inversions.
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a line within the plane, and inversion in a point of the plane. The last one
can be ignored as it corresponds to a rotation through 180◦. Following the
international notation, we shall denote n-fold rotations by n, and mirror lines
by m.

The simplest point groups consist of rotations through 2π/n and its mul-
tiples. These n-element groups are also denoted by n. For the symmetries of
finite figures all integer values n are allowed.

The two-element point group consisting of a reflection in a line and the
square of this operation (i.e., the identity element) is denoted by m.

Now consider those groups that contain mirror lines and a rotation axis
that is perpendicular to the plane. Then any line obtained from a mirror line
via rotation through 2π/n around the n-fold axis is also a mirror line. For
n odd, the angular separation of the n mirror lines obtained this way is just
π/n. The group thus has 2n elements and is denoted by nm.

For n even, rotations of a mirror line will yield only n/2 different mirror
lines whose angular separation is 2π/n. Nevertheless in this case there must
exist another set of mirror lines – the angle bisectors of the previously obtained
lines. This is so because the composition of a reflection in a mirror line and a
rotation through 2π/n is equivalent to a reflection in a mirror line that makes
an angle π/n with the original mirror line. Thus there are two independent
sets of mirror lines. This is expressed by the notation nmm of such groups.

Three-Dimensional Point Groups (G3
0)

We shall now turn to the much more interesting case of three dimensions
where point groups can be divided into two large classes. Point groups of
the first kind consist only of rotations, while those of the second kind contain
reflections as well.17 This means that point groups of the first kind are discrete
subgroups of the rotation group SO(3).

Again, two equally common notational conventions are used in the litera-
ture. In the international notation numbers – more specifically: numbers giving
the order of the rotation axes – refer to rotational symmetry, and the letter m
to (mirror) reflection. For example, 432 means that the point group contains
four-, three-, and twofold rotation axes, while 4/m means that the plane per-
pendicular to the fourfold rotation axis is a mirror plane. Point groups have
a full and a short notation. For the symmetry group of a cube – where planes
perpendicular to the fourfold axes parallel to the edges and to the twofold
axes parallel to the face diagonals are mirror planes, and space diagonals are
threefold rotation axes as well as threefold rotation–inversion axes –, the point

17 This distinction between point groups of the first and second kinds is justified by
the fact that rotation conserves the “handedness” (chirality) of the object, while
reflection, inversion, rotoreflection and rotoinversion change it. The latter are
called enantiomorphous operations – from the Greek word, εναντιoς (enantios)
for opposite.
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group can be specified as 4/m 3 2/m. However, it is customary to use the short
notation m3m. In what follows, we shall give the short version only.

The Schoenflies notation uses the symbols of symmetry operations (C, S)
or letters that refer to figures with the appropriate symmetry (D = dihedral,
T = tetrahedral, O = octahedral, I or Y = icosahedral), and optionally an
index (h = horizontal, v = vertical, d = diagonal). Below we shall first give the
short international notation and then the Schoenflies symbol in parentheses.

Point Groups of the First Kind

Several intersecting rotation axes are possible in point groups of the first
kind. Symmetries of one axis determine the number as well as relative spatial
orientation of the other axes. Point groups of the first kind exist in five types.
These correspond to the rotational symmetry groups of the simple geometric
figures shown in Fig. 5.12. These figures may possess further symmetries, e.g.
mirror planes which will be ignored here as we are concerned with rotations
only.
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Fig. 5.12. Finite figures showing the symmetries of the five point groups of the first
kind
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1. Cyclic or uniaxial group: n (Cn). The group of rotations through angles
2πk/n around a rotation axis. It has n elements.

2. Dihedral group: n22 for n even and n2 for n odd. (The Schoenflies symbol
is Dn in both cases.) A group with 2n elements that contains rotations
around an n-fold rotation axis as well as rotations about n twofold axes
that are perpendicular to the first axis. The difference between n odd and
n even – which lies at the root of the difference in notation – is whether
the twofold axes are obtained from the same axis or two separate axes
by n-fold rotation. In the n = 2 case the notations D2 and V are both
common.

3. Tetrahedral group: 23 (T ). A group with 12 elements that contains rota-
tions around four threefold and three twofold axes that all pass through
a common point. The relative orientations of the rotation axes are such
that they transform a regular tetrahedron into itself.

4. Octahedral group: 432 (O). A group with 24 elements, which contains all
those two-, three- and fourfold rotations that take a cube or an octahedron
inscribed in a cube into itself. These symmetry operations are the same
as the rotations that take a cube into itself. In what follows, we shall fre-
quently use these symmetries, therefore we shall also list them separately
in Table 5.1.

Besides the Schoenflies symbols, the Jones symbol – also called the faithful
representation – is also given in the table. Using the latter, the symmetry
operation is characterized by the three relations

x′ = f(x, y, z) ,
y′ = g(x, y, z) , (5.3.2)
z′ = h(x, y, z)

that specify the point r′ = x′x̂ + y′ŷ + z′ẑ into which r = xx̂ + yŷ + zẑ
is taken by the symmetry operation. It is customary to have x̄ = −x. It
is particularly simple to find the product of two group elements – which is
obtained via the composition of the two symmetry operations – in the Jones
faithful representation. For example, by making use of C2

34 = (ȳ, z̄, x) and
C2c = (z, ȳ, x) one is lead to

C2cC
2
34(xx̂ + yŷ + zẑ) = C2c(ȳx̂ + z̄ŷ + xẑ) = xx̂ + zŷ + ȳẑ ,

that is, the Jones notation for C2cC
2
34 is x, z, ȳ – according to Table 5.1 this

is the faithful representation of C3
4x –, thus C2cC

2
34 = C3

4x, while

C2
34C2c(xx̂ + yŷ + zẑ) = C2

34(zx̂ + ȳŷ + xẑ) = yx̂ + x̄ŷ + zẑ ,

that is, C2
34C2c is represented by y, x̄, z, which corresponds to C3

4z , and so
C2

34C2c = C3
4z.
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Table 5.1. Rotations around axes through the cube center that take the cube into
itself

Schoenflies Jones Description of the
symbol symbol symmetry operation

E x, y, z identity element
C2x x, ȳ, z̄ rotation through 180◦ around [100]

C2y x̄, y, z̄ rotation through 180◦ around [010]

C2z x̄, ȳ, z rotation through 180◦ around [001]

C31 z, x, y rotation through 120◦ around [111]

C32 z̄, x, ȳ rotation through 120◦ around [1̄1̄1]

C33 z̄, x̄, y rotation through 120◦ around [11̄1̄]

C34 z, x̄, ȳ rotation through 120◦ around [1̄11̄]

C2
31 y, z, x rotation through 240◦ around [111]

C2
32 y, z̄, x̄ rotation through 240◦ around [1̄1̄1]

C2
33 ȳ, z, x̄ rotation through 240◦ around [11̄1̄]

C2
34 ȳ, z̄, x rotation through 240◦ around [1̄11̄]

C4x x, z̄, y rotation through 90◦ around [100]

C4y z, y, x̄ rotation through 90◦ around [010]

C4z ȳ, x, z rotation through 90◦ around [001]

C3
4x x, z, ȳ rotation through 270◦ around [100]

C3
4y z̄, y, x rotation through 270◦ around [010]

C3
4z y, x̄, z rotation through 270◦ around [001]

C2a y, x, z̄ rotation through 180◦ around [110]

C2b ȳ, x̄, z̄ rotation through 180◦ around [11̄0]

C2c z, ȳ, x rotation through 180◦ around [101]

C2d x̄, z, y rotation through 180◦ around [011]

C2e z̄, ȳ, x̄ rotation through 180◦ around [101̄]

C2f x̄, z̄, ȳ rotation through 180◦ around [011̄]

5. Icosahedral group: 235 (I or Y ). A group with 60 elements, which contains
6 fivefold, 10 threefold and 15 twofold axes arranged in such a way that
they take a regular pentagonal dodecahedron (a polyhedron bounded by
12 congruent regular pentagonal faces) or a regular icosahedron (a poly-
hedron bounded by 20 congruent regular triangular faces) into itself.

Point Groups of the Second Kind

Besides rotations, point groups of the second kind also contain inversions, re-
flections, and rotation–inversions or rotation–reflections. Some of these groups
are obtained by adding inversion and its products with rotations to point
groups of the first kind. In other cases rotations are complemented by re-
flections. Comparison of the international (Hermann–Mauguin) and Schoen-
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flies notations is cumbersome because the fundamental operation is chosen as
rotation–inversion in the former and rotation–reflection in the latter. That is
why the point group n̄, which contains rotation–inversions, appears as S2n in
the Schoenflies system when n is odd, as Sn when n is divisible by 4, and
as C2l+1,h when n = 2(2l + 1). For notational simplicity, we shall exception-
ally give the Schoenflies notation first. Some simple relations between the two
notations are given in Table 5.2.

1. S2n (2n if n is even and n̄ if n is odd): a group with 2n elements, which
contains rotation–reflections around an n-fold axis. This group contains
the point group Cn as its subgroup. For n = 1 the group S2 has two
elements, the identity element E and inversion I. The notation Ci is also
used for this group.

2. Cnh (n/m if n is even and 2n if n is odd): a group with 2n elements,
which contains rotations around an n-fold axis and a mirror plane that
is perpendicular to it. For n = 1 the group C1h has two elements, the
identity element E and the reflection σh (m). The notations Cs and S1

(m) are also used for this group.
3. Cnv (nmm if n is even and nm if n is odd): a group with 2n elements,

which contains rotations around an n-fold axis and n mirror planes, each
of which passes through the axis. This is the group of symmetries for a
right pyramid whose base is a regular n-gon.

4. Dnh (n/mmm if n is even and (2n)2m if n is odd): a group with 4n
elements, which contains the symmetry elements of the point group Dn

plus a mirror plane perpendicular to the n-fold axis. This is the group of
symmetries for a right prism whose base is a regular n-gon. Of particular
interest is the group D6h, which contains the 24 symmetries of the regular

Table 5.2. Connections between international and Schoenflies symbols for point
groups

n = 2l + 1 n = 4l + 2 n = 4l

n Cn Cn Cn

n̄ S2n C 1
2 nh Sn

n/m Cnh Cnh

n2 Dn

n22 Dn Dn

nm Cnv

nmm Cnv Cnv

n̄m Dnd

n̄2m D 1
2 nd D 1

2 nd

n/mmm Dnh Dnh
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hexagonal prism. The 24 operations are listed in Table 5.3. In the Jones
notation the components are given in a coordinate system that is particu-
larly well suited to hexagonal symmetry: the x- and y-axes make an angle
of 120◦. In the n = 2 case the notations D2h and Vh are also used.

5. Dnd ((2n)2m if n is even and n̄m if n is odd): a group with 4n elements,
which contains the symmetry elements of the point group Dn plus mirror
planes containing the n-fold axis, which bisect the angles between the
twofold axes. This is the group of symmetries for a figure in which a
regular n-gonal prism is stacked directly above another, and rotated with
respect to it. In the n = 2 case the notations D2d and Vd are also used.

Figure 5.13 shows finite objects whose full symmetry group is one of the
above five point groups.

Table 5.3. Rotation and reflection symmetries of a regular hexagonal prism

Schoenflies Jones Description of the
symbol symbol symmetry operation

E x, y, z identity element
C6 x− y, x, z rotation through 60◦ around [001]

C3 ȳ, x− y, z rotation through 120◦ around [001]

C2 x̄, ȳ, z rotation through 180◦ around [001]

C2
3 −x+ y, x̄, z rotation through 240◦ around [001]

C5
6 y,−x+ y, z rotation through 300◦ around [001]

C2a −x+ y, y, z̄ rotation through 180◦ around [120]

C2b x, x− y, z̄ rotation through 180◦ around [210]

C2c ȳ, x̄, z̄ rotation through 180◦ around [11̄0]

C2d x− y, ȳ, z̄ rotation through 180◦ around [100]

C2e x̄,−x+ y, z̄ rotation through 180◦ around [010]

C2f y, x, z̄ rotation through 180◦ around [110]

I x̄, ȳ, z̄ inversion
S2

3 = I · C6 −x+ y, x̄, z̄ rotoreflection through 240◦ around [001]

S5
6 = I · C3 y,−x+ y, z̄ rotoreflection through 300◦ around [001]

σh = I · C2 x, y, z̄ reflection in the (001) plane
S6 = I · C2

3 x− y, x, z̄ rotoreflection through 60◦ around [001]

S3 = I · C5
6 ȳ, x− y, z̄ rotoreflection through 120◦ around [001]

σa = I · C2a x− y, ȳ, z reflection in the (120) plane
σb = I · C2b x̄,−x+ y, z reflection in the (210) plane
σc = I · C2c y, x, z reflection in the (11̄0) plane
σd = I · C2d −x+ y, y, z reflection in the (100) plane
σe = I · C2e x, x− y, z reflection in the (010) plane
σf = I · C2f ȳ, x̄, z reflection in the (110) plane
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Fig. 5.13. Objects possessing the symmetries of some point groups of the second
kind

6. Th (m3̄): a group with 24 elements, which contains the symmetries of the
point group T plus inversion. Th = T ⊗ Ci (m3̄ = 23 ⊗ 1̄).

7. Td (4̄3m): a group with 24 elements, which contains all the symmetry
operations of a regular tetrahedron. Td = T ⊗ Cs (4̄3m = 23 ⊗m).

8. Oh (m3̄m): a group with 48 elements, which contains all the symmetry
operations of a cube. The 24 rotational symmetries of the cube are com-
plemented by 24 new operations. Some of the latter are reflections, others
are rotation–reflections. These are listed in Table 5.4. Note that these
symmetry operations are obtained from the elements of the point group
O (432) listed in Table 5.1 by multiplication by the inversion operation.
Oh = O ⊗ Ci (m3̄m = 432 ⊗ 1̄).

9. Ih or Yh (m3̄5̄): A group with 120 elements, which contains all the sym-
metry operations of a regular pentagonal dodecahedron or a regular icosa-
hedron. Ih = I ⊗ Ci (m3̄5̄ = 235 ⊗ 1̄).

Figure 5.14 shows finite objects whose full symmetry group is one of the
above point groups of the second kind, Th, Td, Oh, or Ih.

T mh ( 3̄) O m mh ( 3̄ ) I mh ( 3̄5)¯T md (4̄3 )

Fig. 5.14. Objects possessing the symmetries of some point groups of the second
kind
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Table 5.4. Reflection symmetries of a cube

Schoenflies Jones Description of the
symbol symbol symmetry operation

I x̄, ȳ, z̄ inversion
σx = I · C2x x̄, y, z reflection in the (100) plane
σy = I · C2y x, ȳ, z reflection in the (010) plane
σz = I · C2z x, y, z̄ reflection in the (001) plane
S5

61 = I · C31 z̄, x̄, ȳ rotoreflection through 300◦ around [111]

S5
62 = I · C32 z, x̄, y rotoreflection through 300◦ around [1̄1̄1]

S5
63 = I · C33 z, x, ȳ rotoreflection through 300◦ around [11̄1̄]

S5
64 = I · C34 z̄, x, y rotoreflection through 300◦ around [1̄11̄]

S61 = I · C2
31 ȳ, z̄, x̄ rotoreflection through 60◦ around [111]

S62 = I · C2
32 ȳ, z, x rotoreflection through 60◦ around [1̄1̄1]

S63 = I · C2
33 y, z̄, x rotoreflection through 60◦ around [11̄1̄]

S64 = I · C2
34 y, z, x̄ rotoreflection through 60◦ around [1̄11̄]

S3
4x = I · C4x x̄, z, ȳ rotoreflection through 270◦ around [100]

S3
4y = I · C4y z̄, ȳ, x rotoreflection through 270◦ around [010]

S3
4z = I · C4z y, x̄, z̄ rotoreflection through 270◦ around [001]

S4x = I · C3
4x x̄, z̄, y rotoreflection through 90◦ around [100]

S4y = I · C3
4y z, ȳ, x̄ rotoreflection through 90◦ around [010]

S4z = I · C3
4z ȳ, x, z̄ rotoreflection through 90◦ around [001]

σa = I · C2a ȳ, x̄, z reflection in the (110) plane
σb = I · C2b y, x, z reflection in the (1̄10) plane
σc = I · C2c z̄, y, x̄ reflection in the (101) plane
σd = I · C2d x, z̄, ȳ reflection in the (011) plane
σe = I · C2e z, y, x reflection in the (1̄01) plane
σf = I · C2f x, z, y reflection in the (01̄1) plane

5.4 Rotation and Reflection Symmetries in Crystals

After the presentation of point groups we shall now turn back to crystals and
examine the rotations and reflections, or, more precisely, the point groups
they might possess. As a first step, we shall study the rotation and reflection
symmetries of Bravais lattices. When the Bravais lattice is taken into itself
by a rotation or reflection then so is the Wigner–Seitz cell because of its
construction. The group of symmetries of a Bravais lattice is thus the group
of symmetries of a finite geometrical figure – that is, one of the point groups.

5.4.1 Rotation Symmetries of Bravais Lattices

It has been mentioned that Bravais lattices always possess inversion symmetry
(centrosymmetry). Therefore only those point groups need to be considered
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that contain inversion.18 Moreover, the requirement that the lattice should
also have discrete translational symmetries imposes a severe restriction on
the allowed rotation angles. Indeed, translation symmetry does not allow for
invariance under rotations through arbitrary angles 2π/n. We shall demon-
strate that if (in addition to the translational symmetry that is due to its
periodicity) the lattice possesses rotational symmetry – that is, if there exists
an axis such that rotation through an angle ϕ around it moves the lattice into
itself – then the angle of rotation must be ±60◦, ±90◦, ±120◦, or 180◦. We
shall first prove this statement for planar lattices, and then show that only
two-, three-, four-, and sixfold rotation axes can exist in three-dimensional
crystal lattices as well.

Consider a planar (two-dimensional) Bravais lattice. If there exists a rota-
tion axis that is perpendicular to the plane then there exist an infinite number
of such axes – whose parallel displacements relative to each other are given
by lattice vectors tn. These axes cannot be considered as essentially different,
therefore a single one has to be chosen among them. On the other hand, it
is conceivable that there are several independent nonparallel rotation axes.
Their positions are not arbitrary: they must pass through special points of
the primitive cell, e.g., vertices, edge centers, or face centers. More general
positions are excluded since the requirements that the lattice should be in-
variant under translations and rotations could not be fulfilled simultaneously
otherwise.

y

x
�
�

a

Ca

C
-1

a

Fig. 5.15. Transformation of a primitive lattice vector under a rotation

Consider a rotation axis that goes through a vertex of the primitive cell,
and choose the coordinate system in such a way that the shorter primitive
vector, denoted by a, should be directed along the x-axis. In this coordinate
system a = (a, 0, 0). Now perform the rotations C(ϕ) and C(−ϕ) = C−1(ϕ)
– through angles ϕ and −ϕ –, as shown in Figure 5.15. The resulting vectors
are

18 In two dimensions inversion is equivalent to a rotation through 180◦ around an
axis perpendicular to the plane, thus planar Bravais lattices always possess a
twofold rotation axis.
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a′ = C(ϕ)a = a(cosϕ, sinϕ, 0) ,

ā′ = C−1(ϕ)a = a(cosϕ,− sinϕ, 0) .
(5.4.1)

If rotation C through angle ϕ is a symmetry of the lattice, then so is C−1,
and both points are in the lattice. Moreover, the vector

a′ + ā′ = a(2 cosϕ, 0, 0) (5.4.2)

must also point to a lattice site. Since this vector is along the direction of
a, and a was chosen as the shortest lattice vector in the (x, y) plane, the
previously obtained vector has to be an integral multiple of a. So, for a rotation
through angle ϕ to be a symmetry operation, we must have

2 cosϕ = 2, 1, 0, −1, or − 2 . (5.4.3)

The corresponding angles are

ϕ = 0, ±π

3
, ±π

2
, ±2π

3
, π . (5.4.4)

Only those angles appeared that correspond to two-, three-, four-, and sixfold
rotations. Therefore only those point groups can be the symmetry groups of
a Bravais lattice that contain only such rotations. The absence of fivefold ro-
tations can also be explained by the impossibility of tiling the plane perfectly
with regular pentagons, as it was mentioned on page 116. While fivefold sym-
metry cannot be present in periodic structures, it may manifest itself in some
patterns that are regular in a broader sense. Such quasiperiodic structures –
quasicrystals – will be discussed in Chapter 10.

A similar path is followed in the case of three-dimensional crystals. The
origin of the coordinate system is now chosen at a lattice point, and the z-
axis is directed along the axis of rotation. It is a straightforward matter to
show that the existence of a rotation axis implies that some – not necessarily
primitive – lattice vectors lie in the (x, y) plane, which is perpendicular to
the rotation axis. Consider the rotation of the primitive vector ai around the
z-axis through an angle ϕ. Provided this rotation is a symmetry of the lattice,
the endpoint of the rotated vector is also at a lattice site. Thus the vector
a′
i − ai is an element of the group of translations. Owing to its construction,

it is obviously perpendicular to the rotation axis, that is, it lies in the (x, y)
plane. Now consider the shortest lattice vector that starts at the rotation axis
and is perpendicular to it. Denoting this by a, the procedure seen in the two-
dimensional case can be repeated. Finally, a contradiction is found whenever
the rotation axis is not a two-, three-, four-, or sixfold axis.

5.4.2 Crystallographic Point Groups

According to the foregoing, crystals can be invariant only under rotations
through angles π/3, π/2, or an integral multiple of these. This is the reason
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why crystallography is concerned only with those point groups that contain
two-, three-, four-, or sixfold rotation axes. In the two-dimensional case this
implies that only ten point groups need to be studied (1, 2, 3, 4, 6, m, 2mm,
3m, 4mm, and 6mm). Figure 5.16 shows some simple figures whose symmetry
groups are these point groups.

1

m

2

2mm

3

3m

4

4mm

6

6mm

Fig. 5.16. Finite plane figures whose symmetry groups are the ten planar crystal-
lographic point groups

In the three-dimensional case the number of crystallographic point groups
– in which only two-, three-, four-, and sixfold rotations are allowed – is
32. These point groups, along with their symmetry operations, are listed in
Table 5.5. The reason for dividing point groups into seven classes will transpire
later. The relative spatial orientation of the symmetry elements of each group
can be deduced from the information provided in the general description.
Apart from those of the trigonal and hexagonal systems, all point groups
can be obtained by specifying every possible subgroup of the group m3̄m
(Oh), which contains all the rotation and reflection symmetries of a cube.19
Point groups of the trigonal and hexagonal systems can be written down by
identifying the subgroups of the point group 6/mmm (D6h), which contains
the symmetry operations of a regular hexagonal prism.20

5.4.3 Crystal Systems and Bravais Groups

In the foregoing we have listed 10 two-dimensional and 32 three-dimensional
point groups that might be compatible with the conditions imposed by trans-
lational symmetries on the allowed rotational symmetries. However, not each
of them occurs as the point group of a Bravais lattice. This is because two more

19 These rotations and reflections are listed in Tables 5.1 and 5.4.
20 The 12 rotations and 12 (rotation)–reflections are listed in Table 5.3.
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Table 5.5. International and Schoenflies symbols for the 32 crystallographic point
groups and their symmetry operations. Subscripts m, j, and p stand for m = x, y, z,
j = 1, 2, 3, 4, and p = a, b, c, d, e, f

System Notation Symmetry operations

Triclinic 1 C1 E

1̄ Ci ≡ S2 E, I
Monoclinic 2 C2 E, C2z

2̄ ≡ m Cs ≡ C1h E, σz

2/m C2h C2 ⊗Ci

Orthorhombic 222 D2 ≡ V E, C2x, C2y , C2z

mm2 C2v E, C2z, σx, σy

mmm D2h ≡ Vh D2 ⊗ Ci

Tetragonal 4 C4 E, C4z, C2z, C3
4z

4̄ S4 E, S4z, C2z, S3
4z

4/m C4h C4 ⊗Ci

422 D4 E, C4z, C2z, C3
4z C2x, C2y, C2a, C2b

4mm C4v E, C4z, C2z, C3
4z σx, σy , σa, σb

4̄2m D2d ≡ Dd E, S4z, C2z, S3
4z C2x, C2y, σa, σb

4/mmm D4h D4 ⊗ Ci

Rhombohedral 3 C3 E, C3, C2
3

(Trigonal) 3̄ C3i ≡ S6 C3 ⊗Ci

32 D3 E, C3, C2
3 , C2a, C2b, C2c

3m C3v E, C3, C2
3 , σa, σb, σc

3̄m D3d D3 ⊗ Ci

Hexagonal 6 C6 E, C6, C3, C2, C2
3 , C5

6

6̄ C3h E, S3, S2
3 , C3, C2

3 , σh

6/m C6h C6 ⊗Ci

622 D6 C6 ⊗C2(C2a)

6mm C6v C6 ⊗Cs(σa)

6̄m2 D3h C3h ⊗ C2(C2a)

6/mmm D6h D6 ⊗ Ci

Cubic 23 T E, C2m, C3j , C2
3j

m3̄ Th T ⊗Ci

432 O E, C2m, C3j , C2
3j , C2p, C4m, C3

4m

4̄3m Td E, C2m, C3j , C2
3j , σp, S4m, S3

4m

m3̄m Oh O ⊗ Ci

restrictions have to be introduced on the group of rotations and reflections
that transform a Bravais lattice into itself.

Whenever the site at Rn is part of the lattice, so is the site at −Rn. This
implies that only point groups that contain inversion need to be taken into
account. In the two-dimensional case 180◦ rotation (which is equivalent to
inversion) has to be present.
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A further restriction arises from the requirement that if there is an n-
fold symmetry axis (with n > 2) among the symmetry elements then there
must also be n mirror planes each of which contains the axis. In other words,
among all point groups only those can belong to Bravais lattices for which the
following is true: if the point group contains n (Cn) as a subgroup, then in
the n > 2 case it should also contain the elements of the group nmm (for n
even) or nm (Cnv) (for n odd). The point groups satisfying these conditions
are called Bravais groups.

Thus in the two-dimensional case a rotation axis with n > 2 must be
complemented by n mirror lines perpendicular to it. This is readily seen in
Fig. 5.15. When the primitive vector a is rotated through 2π/n and −2π/n,
each of the rotated vectors can be chosen as the second primitive vector pro-
vided n > 2. As the vector endpoints are lattice sites and the two points
reached by the two rotations are each other’s mirror images in the x-axis, this
axis is also a mirror line for the entire lattice.

Four of the previous ten point groups meet these requirements:

2 , 2mm, 4mm, 6mm.

The symmetries of the Bravais lattices of two-dimensional crystals are there-
fore given by one of these point groups.

The proof of the statement proceeds along similar lines in three dimensions.
In this case the point group of the crystal’s Bravais lattice must be one of seven
point groups:

1̄ , 2/m , mmm , 4/mmm , 3̄m, 6/mmm , m3̄m,

or, in Schoenflies notation,

S2 , C2h , D2h , D4h , D3d , D6h , Oh .

Thus there are four two-dimensional and seven three-dimensional Bravais
groups.

Two crystals are said to belong to the same crystal system or syngony
if the point groups of their Bravais lattices are identical. This means that
three-dimensional (two-dimensional) crystals can be grouped into seven (four)
crystal systems.

Whenever possible, the primitive translation vectors of the Bravais lattice
are chosen along a mirror line (in two dimensions) or a rotation axis. This
choice provides the coordinate axes of the crystal system. The nomenclature
of crystal systems is based on the relative orientation and possible equivalence
of these axes under suitable symmetry transformations.

The four crystal systems of the two-dimensional case can be described as:

1. Oblique (m). Its symmetry group is the point group 2. There are no pre-
ferred directions within the plane. The two axes are equivalent but not
perpendicular.
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2. Rectangular (o). Its symmetry group is the point group 2mm. There are
two perpendicular mirror lines within the plane. The two crystallographic
axes are not equivalent but they are perpendicular.

3. Square (t). Its symmetry group is the point group 4mm. The perpendicu-
lar mirror lines possess a fourfold rotational symmetry. The two axes are
equivalent and perpendicular.

4. Hexagonal (h). Its symmetry group is the point group 6mm. Within the
plane, equivalent mirror lines are at 120◦. There are three equivalent crys-
tallographic axes, making angles of 2π/3.

The relations among the axes are shown in Fig. 5.17 for the three-
dimensional crystal systems. They can be described as:

1. Triclinic (a). The point group of the underlying Bravais lattice is 1̄ (S2).
The three crystallographic axes are neither equivalent nor perpendicular.

2. Monoclinic (m). The point group of the underlying Bravais lattice is 2/m
(C2h). The three crystallographic axes are not equivalent but one is per-
pendicular to the plane spanned by the others.

3. Orthorhombic (o). The point group of the underlying Bravais lattice is
mmm (D2h). The three inequivalent crystallographic axes are mutually
perpendicular.

4. Tetragonal (t). The point group of the underlying Bravais lattice is
4/mmm (D4h). It has a fourfold principal axis and two equivalent sec-
ondary axes of equal length in the plane perpendicular to the principal
axis.

5. Rhombohedral (trigonal, h). The point group of the underlying Bravais lat-
tice is 3̄m (D3d). It has a threefold principal axis and three secondary axes
of equal length in the plane perpendicular to the principal axis. However,
neither the principal axis nor the secondary axes are along the primitive
translation vectors. The three primitive vectors of the Bravais lattice are
symmetric about the principal axis.

6. Hexagonal (h). The point group of the underlying Bravais lattice is
6/mmm (D6h). It has a sixfold principal axis and three secondary axes
of equal length that make angles of 120◦ with each other in the plane
perpendicular to the principal axis. The relative orientations of the coor-
dinate axes are therefore the same as in the trigonal system, justifying the
common notation (h).21

7. Cubic (isometric, tesseral, c). The point group of the underlying Bravais
lattice is m3m (Oh). Its has three equivalent axes that are mutually per-
pendicular.

21 Crystallographers consider the rhombohedral and hexagonal crystal systems to
belong to the same crystal family.
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Fig. 5.17. Coordinate axes in the three-dimensional crystal systems

5.4.4 Two-Dimensional Bravais-Lattice Types

We shall now examine, on planar lattices first, the restrictions imposed on
the primitive vectors by the symmetry operations of the point group that
transform the lattice into itself.

A two-dimensional Bravais lattice is unambiguously determined by its two
primitive vectors. In the most general case the primitive vectors are of unequal
length and their angle ϕ is arbitrary. Without further restrictions the primitive
cell is a rhomboid. Even then, the lattice has a twofold rotation axis that is
perpendicular to the plane – thus its Bravais group is the point group 2 (C2).
Such a lattice belongs to the oblique crystal system. Since this classification
is independent of the lengths and angles of the primitive translation vectors,
lattices that belong to the same oblique system but have different lattice
parameters are said to be of the same type. Formulated more generally: Two
Bravais lattices are said to be of the same type if they can be deformed into one
another by continuously changing the lattice parameters (i.e., the lengths and
angle of the primitive vectors) in such a way that the rotational and reflection
symmetries of the lattice are conserved at all times.

The only oblique lattice type is denoted by mp. Here m refers to the
monoclinic lattice system, and p to primitive, as compared to centered lattices,
which will be presented later.
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The point group of lattices that belong to the rectangular crystal system is
2mm. In addition to the twofold axis this point group contains two mutually
perpendicular mirror lines. If the origin of coordinates is chosen at a lattice
point and the axes along mirror lines, the primitive vectors can be written
as ai = ai(cosϕi , sinϕi , 0). The shortest of them is called a1. This is then
reflected in the x-axis; its mirror image, a′

1 = a1(cosϕ1 , − sinϕ1 , 0), as well
as vectors

a1 − a′
1 = (0 , 2a1 sinϕ1 , 0) and a1 + a′

1 = (2a1 cosϕ1 , 0 , 0)

have to point to lattice sites. This requirement is met in three cases:

1. ϕ1 = 0, and thus a′
1 = a1;

2. ϕ1 = 90◦, and thus a′
1 = −a1;

3. ϕ1 is arbitrary, a′
1 is linearly independent of a1, and thus a′

1 is also a
primitive vector. Reflection symmetry then implies that the two lattice
vectors are of equal length.

a
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Fig. 5.18. Possible orientations of primitive vectors in planar lattices featuring the
symmetries of the point group 2mm

Consider the third case first. The orientation of primitive vectors is shown
in Fig. 5.18(a). Since a1 and a′

1 are of equal length, a = a1+a′
1 and b = a1−a′

1

are perpendicular and along the two mirror lines. a1 (as well as its mirror
image) is the shortest among lattice vectors provided that ϕ is between 30◦

and 60◦.
There is an equivalence between the first two cases – in which the shortest

lattice vector is along or perpendicular to the selected mirror line –, since there
are two mutually perpendicular mirror lines among the symmetry elements.
Whichever possibility is chosen, the shortest lattice vector is along a symmetry
line. Now consider the mirror image of the other primitive vector in the x-axis.
As above, there are two possibilities, shown in parts (b) and (c) of Fig. 5.18.
The second primitive vector is either along the other mirror line – in which
case the two primitive vectors are perpendicular – or it is not at right angles
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to the mirror lines – in which case the sum of a2 and its mirror image has to
be a1. This is equivalent to saying that b = 2a2 − a1 is perpendicular to a1.

The three lattices shown in Fig. 5.18 correspond in reality to two lattice
types, as lattice (a) can be transformed into lattice (c) by an expansion in the
y-direction and a compression in the x-direction. Throughout this procedure,
the mirror lines remain unaltered. However, lattice (b) cannot be transformed
into the other lattices without breaking the symmetry. This lattice type (b)
is called primitive rectangular (op), and the others, (a) and (c) – centered
rectangular (oc).

To understand the origin of the name note that the primitive vectors are
along the mirror lines in lattice type (b), whereby the rectangular unit cell
(primitive cell) also possesses the symmetries 2mm of the Bravais lattice. On
the other hand, the primitive cell is a parallelogram for the lattice type shown
in parts (a) and (c), which does not exhibit the symmetries of the point group
2mm. The rectangle spanned by the vectors a = a1 + a2 and b = a1 − a2

(or a = a1 and b = 2a2 − a1) possesses the symmetry of the point group
of the Bravais lattice – but it is not a primitive cell as the center of the
rectangle is also a lattice point. Nevertheless it is more practical to span the
lattice using vectors a and b, as it has already been mentioned in connection
with Fig. 5.9. When this choice is made, a lattice point has to be included at
the center of each rectangle – hence the name centered rectangular lattice. The
rectangular nonprimitive cell spanned by the vectors a and b is a conventional
unit cell also called the Bravais cell. In general, if the primitive cell does not
exhibit the point-group symmetry of the lattice but it is possible to choose a
larger Bravais cell that does, then the lattice type is called centered because
the Bravais cell contains one or more further lattice points at high-symmetry
positions. Otherwise the lattice type is called simple or primitive.

Finally, we have to consider lattices that show the symmetries of the point
groups 4mm and 6mm. Because of the four- and sixfold rotational symmetry,
the primitive lattice vectors are of equal length in both cases. When the rota-
tion axis is fourfold, the two primitive vectors are also perpendicular, so the
primitive cell is a square, hence the name square crystal system. The length
of the side of the square can be arbitrary, thus the Bravais lattice of any crys-
tal in the crystal system is of the same primitive square type, tp. When the
rotation axis is sixfold, the equally long primitive vectors can make angles of
60◦ or 120◦. Here, again, the Bravais lattice of each crystal that belongs to
the hexagonal system is of the same type, hp.

To summarize, two-dimensional crystal structures are divided into four
systems according to the point group of their underlying Bravais lattices:
oblique (m), rectangular (o), square (t), and hexagonal (h) – however, five
Bravais lattice types are distinguished, since primitive and centered lattice
types are equally possible within the rectangular system. These lattice types
are shown in Fig. 5.19. The relations between the parameters of the Bravais
lattices are listed in Table 5.6.
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Fig. 5.19. Types of Bravais lattices and their primitive cells in two-dimensional
crystal structures. The conventional unit cell (Bravais cell) is also indicated for the
centered rectangular lattice

Table 5.6. The point groups for the four two-dimensional crystal systems (five
Bravais lattice types), and relations for the parameters of the Bravais cell

System Type Symbol Point group Lattice parameters

Oblique primitive mp 2 a �= b , γ �= 90◦

Rectangular primitive
centered

op
oc

2mm a �= b , γ = 90◦

Square primitive tp 4mm a = b , γ = 90◦

Hexagonal primitive hp 6mm a = b , γ = 120◦

It has already been mentioned that one possible choice for the primitive
cell is the Wigner–Seitz cell. This is shown for each of the five planar lattice
types in Fig. 5.20.

It is readily seen for the hexagonal Bravais lattice that the Wigner–Seitz
cell has a much higher symmetry than the primitive cell spanned by the prim-
itive translation vectors. In three dimensional Bravais lattices we shall see
further examples in which the Wigner–Seitz cell has a much more compli-
cated form than parallelepiped-shaped primitive cells but it also has a higher
symmetry. This property fully justifies its usage.
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Fig. 5.20. Wigner–Seitz cells for the five planar lattice types

5.4.5 Three-Dimensional Bravais-Lattice Types

It is straightforward to generalize the results of the two-dimensional case to
three dimensions. However, this would be rather lengthy, therefore on many
occasions we shall content ourselves with presenting the most important re-
sults without derivation.

Corresponding to the seven crystal systems (syngonies) there are seven
primitive (P ) Bravais-lattice types. With the exception of the rhombohedral
system, the primitive translation vectors of these lattices are along the direc-
tions that correspond to symmetries of the Bravais group. When and only
when two axes are equivalent, the length of the associated primitive vectors
are equal. The simplest case is that of the Bravais group 1̄ (S2), whose only el-
ement other than the identity is inversion. This symmetry places no restriction
on the lattice parameters: the lengths a1, a2, a3 of the primitive translation
vectors a1, a2, a3, as well as their angles α1, α2, α3 are arbitrary.

In lattices of higher symmetry, symmetry elements provide relations among
the axes – and thereby also among the lengths and/or orientation of the
primitive vectors. As we shall see, just like in the two-dimensional case, there
are some three-dimensional Bravais lattices in which the primitive cell does not
show the symmetry of the underlying lattice but a larger Bravais cell can be
chosen that exhibits the point-group symmetry of the lattice. The Bravais cell
is spanned by the vectors a, b, c, which are appropriate linear combinations of
the primitive translation vectors a1, a2, a3. Note that in what follows we shall
always use a1, a2, and a3 for primitive vectors, a, b, c for the edge vectors of
the Bravais cell, and α, β, γ for the angles of the latter. For primitive lattice
types the two cells are identical, and so the two notations refer to the same
trio of basis vectors.
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Symmetry-implied restrictions on the side lengths and angles of the Bravais
cell are listed in Table 5.7. The name of the crystal system refers to the shape
of the Bravais cell.

Table 5.7. Restrictions on the lattice parameters of the Bravais cell and character-
istic symmetry operations for lattices of the seven crystal systems

System Symbol Lattice parameters Characteristic symmetry

Triclinic a
a �= b �= c
α �= β �= γ

inversion only

Monoclinic m
a �= b �= c

α = γ = 90◦ �= β
rotation through 180◦

around a single axis

Orthorhombic o
a �= b �= c

α = β = γ = 90◦
rotation through 180◦

around three mutually
perpendicular axes

Tetragonal t
a = b �= c

α = β = γ = 90◦
rotation through 90◦

around a single axis

Rhombohedral
(Trigonal) h

a = b = c
120◦ > α = β = γ �= 90◦

rotation through 120◦

around a single axis

Hexagonal h
a = b �= c

α = β = 90◦ , γ = 120◦
rotation through 60◦

around a single axis

Cubic c
a = b = c

α = β = γ = 90◦
rotation through 120◦

around the four
space diagonals

The crystal system specified by a particular Bravais group and the rela-
tionship between the lattice parameters of the Bravais cell may lead to various
Bravais-lattice types in the three-dimensional case, too. We shall now illustrate
this by two examples. Figure 5.21(a) shows the primitive cell of an orthorhom-
bic Bravais lattice spanned by three mutually perpendicular primitive vectors
of different length. The cuboid (rectangular parallelepiped) shaped primitive
cell possesses the characteristic symmetries of the orthorhombic crystal sys-
tem: rotations through 180◦ around three mutually perpendicular axes.

Among the primitive translation vectors of the Bravais lattice shown in
part (b) of Fig. 5.21, a3 is perpendicular to the plane spanned by a1 and
a2. The latter are not perpendicular to one another but satisfy the condi-
tion (2a1 − a2) ⊥ a2. We shall now prove that even in this case the lattice
possesses three mutually perpendicular twofold axes, and therefore belongs to
the orthorhombic crystal system. To this end consider the cell spanned by the
translation vectors a = 2a1 −a2, b = a2, and c = a3. The condition imposed
on the primitive vectors implies that this cell is a cuboid. This unit cell is
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Fig. 5.21. Bravais-lattice types of the orthorhombic crystal system: (a) primitive;
(b) base-centered

not primitive, as it contains two lattice points: one at a vertex and another
at the center of a face that we shall refer to as of the base. (The equivalent
opposite face is also centered but it belongs to the neighboring primitive cell.)
Nevertheless, it is often more convenient to work with it. When the direc-
tions of the vectors a, b, c are chosen as axes, the coordinate axes of the
orthorhombic system are recovered, and so the relations among the param-
eters given in Table 5.7 are satisfied by the Bravais cell spanned by these
vectors. Because of the lattice point at the center of a face (base) this lattice
is called single-face-centered orthorhombic or more commonly base-centered
orthorhombic. This lattice type is denoted by C – or A or B when another
face (that is not perpendicular to c) is centered.22

As a second example, consider lattices of the cubic crystal system that are
invariant under the symmetries of the point group Oh. To obtain such lattices,
the edge vectors of the primitive cell need not be mutually perpendicular and
of equal length. In general, when the three primitive translation vectors are
of equal length and their angles are equal but not right angles, the symmetry
is trigonal. The threefold axis is the resultant of the three primitive vectors.
However, the three vectors may happen to make angles ϕ = arccos(−1/3) or
ϕ = arccos(1/2) with one another. As shown in Fig. 5.22, by choosing

a = a2 + a3 , b = a1 + a3 , c = a1 + a2 (5.4.5)

in the first case and

a = −a1 + a2 + a3 , b = a1 − a2 + a3 , c = a1 + a2 − a3 (5.4.6)

in the second, one is left with three mutually perpendicular vectors a, b, c
of the same length forming a cube. The primitive translation vectors are now
along face or body diagonals of this cube.
22 Although most books follow this convention, the use of letter S derived from

“side-face-centered” has been recommended recently by a committee of the Inter-
national Union of Crystallography.
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Fig. 5.22. Primitive translation vectors and Bravais cells for body-centered and
face-centered cubic lattices

In addition to the vertices, the cubic Bravais cells or conventional unit
cells now contain lattice sites either at the body centers or the face centers.
These lattices are considered to belong to different lattice types because they
cannot be continuously deformed into one another or into a simple cubic
lattice without breaking some symmetries. For example, if the length of the
primitive vectors were left unaltered but the relative angles were changed,
only symmetries typical of the trigonal system could be conserved upon the
smallest deformation. The lattice type that contains a site at the center of
the Bravais cell is called body-centered ; its symbol is I. The lattice type that
contains a site at each face center is called face-centered ; its symbol is F .

From the above examples one may expect that new lattice types of the
same crystal system can be obtained by adding further sites at special po-
sitions of the primitive cell – at the body center, at the centers of a pair of
opposite faces, or at the center of each face provided the point-group symme-
try is unchanged. More general locations are certainly excluded since all the
sites of the original lattice have to be reached by integer linear combinations
of the new, shorter primitive translation vectors.

The seven crystal systems and the three types of centering could thus be
expected to give rise to 21 types of centered lattices. In reality, only seven
centered lattice types appear as centering does not always lead to new lattice
types: in particular, in the triclinic system centering does not lead to a sin-
gle new type. In other cases symmetries of the simple lattice are broken in
the centered lattice. The new lattice types and the primitive ones are listed
Table 5.8 for each crystal system.

The variety of notational conventions used for point groups exists for Bra-
vais lattice types, too. In the Schoenflies notation the subscript of Γ specifies
the crystal system (t = triclinic, m = monoclinic, o = orthorhombic, q =
tetragonal, rh = rhombohedral, h = hexagonal, c = cubic), and the super-
script refers to the centering the Bravais cell (c = base-centered, v = body-
centered, f = face-centered). Another convention uses a code of the form xY ,
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Table 5.8. The seven crystal systems and the fourteen types of Bravais lattices

Crystal system Point group Type

Name Symbol P C I F R

Triclinic a 1̄ Ci Γt

Monoclinic m 2/m C2h Γm Γ c
m

Orthorhombic o mmm D2h Γo Γ c
o Γ v

o Γ f
o

Tetragonal t 4/mmm D4h Γq Γ v
q

Rhombohedral h 3̄m D3d Γrh

Hexagonal h 6/mmm D6h Γh

Cubic c m3̄m Oh Γc Γ v
c Γ f

c

where x is the international symbol for the crystal system (2nd column), and
Y – one of the letters P , C (S), I, or F – specifies the centering type of
the lattice. The rhombohedral (trigonal) lattice is an exception: although it
is a primitive lattice, its centering type is denoted by R. Thus hP stands for
hexagonal, and hR for rhombohedral crystal system. The reader will under-
stand in hindsight why the rhombohedral system appears as a nonprimitive
type of the hexagonal system. A third notation uses a code of the form Y x,
where Y , once again, refers to the centering type (Y = P , C, I, F , R), and
x is the short international symbol for the point group of the Bravais lat-
tice. E.g., for body-centered cubic lattices the notations Γ v

c , cI, and Im3̄m
are used equally. All three notations are given in parentheses at the listing of
Bravais-lattice types.

Below we list the fourteen Bravais-lattice types, together with the relations
among the vectors spanning the primitive cell and the Bravais cell. (Bravais
cells are shown in Fig. 5.23.) The two triplets of vectors are the same for prim-
itive lattices but not for nonprimitive ones. As mentioned at the introduction
of primitive translation vectors on page 111, there is some arbitrariness in
their choice. That is why the choice of vectors presented below is not the only
one used in the literature.

1. Triclinic (aP , P 1̄, Γt). The three basis vectors (a = a1, b = a2, c = a3)
can point to any directions, and their lengths are arbitrary, too: a �= b �= c,
α �= β �= γ.

2. Simple monoclinic (primitive monoclinic) (mP , P2/m, Γm). The lengths
of the three basis vectors are arbitrary, a �= b �= c, however one of them
(customarily chosen as b) is perpendicular to the plane spanned by the
others, α = γ = 90◦ �= β. In rectangular coordinates the primitive vectors
are given by a = a1 = (a sinβ, 0, a cosβ), b = a2 = (0, b, 0), c = a3 =
(0, 0, c).

3. Centered monoclinic (base-centered monoclinic) (mC or mS, C2/m, Γ b
m).

A lattice site is added at the center of either rectangular face (base) of
the simple monoclinic Bravais lattice. When the vectors specified in the
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Fig. 5.23. The fourteen types of three-dimensional Bravais lattices

simple monoclinic case are chosen as the edge vectors of the Bravais cell
of sides a, b, c, i.e., a = (a sinβ, 0, a cosβ), b = (0, b, 0), c = (0, 0, c),
then the primitive translation vectors may be chosen as a1 = a, a2 =
1
2 (a + b), a3 = c. The three primitive vectors are of unequal length, and
neither two are perpendicular. Nevertheless the lattice is not triclinic, as
the orientation of the vectors is such that 2a2 − a1 is perpendicular to
the plane spanned by a1 and a3. This property gives rise to a twofold
symmetry axis along the direction b = 2a2 − a1.
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Note that the base-centered monoclinic Bravais lattice can also be consid-
ered as a body-centered monoclinic Bravais lattice, as it is sometimes done
in the literature. When 2a2 − a1 is perpendicular to the plane spanned
by a1 and a3 then the choice a = a1 − a3, b = 2a2 − a1, c = a3 leads to
a monoclinic Bravais cell that has a lattice site at its body center.

4. Simple orthorhombic (primitive orthorhombic) (oP , Pmmm, Γo). The
lengths of the three basis vectors are arbitrary, a �= b �= c, however they
are mutually perpendicular: a1 = a ⊥ a2 = b ⊥ a3 = c ⊥ a1. In
rectangular coordinates, a1 = (a, 0, 0), a2 = (0, b, 0), a3 = (0, 0, c). The
Bravais cell is the same as the primitive cell. a �= b �= c, α = β = γ = 90◦.

5. Single-face-centered orthorhombic (base-centered orthorhombic) (oC or
oS, Cmmm, Γ b

o ). The Bravais cell has the characteristic properties of
a simple orthorhombic Bravais lattice. Its sides and angles satisfy the
relations a �= b �= c, α = β = γ = 90◦. However, an additional lattice site
is found at the centers of two equivalent opposite faces of the Bravais cell.
This implies that the primitive translation vectors are a1 = 1

2 (a,−b, 0),
a2 = 1

2 (a, b, 0), and a3 = (0, 0, c). Vectors a1 and a2 are not perpendicular
to one another but a3 is perpendicular to them – therefore the three
vectors seemingly form a monoclinic system. If, however, a1+a2 and a2−
a1 are also perpendicular then additional symmetries appear, resulting in
a symmetry group mmm (D2h) instead of 2/m (C2h).

6. Body-centered orthorhombic (oI, Immm, Γ v
o ). The sides and angles of the

Bravais cell once again satisfy the relations a �= b �= c, α = β = γ = 90◦,
however the additional lattice site is now found at the center of the cell. A
customary choice for the primitive translation vectors is a1 = 1

2 (−a, b, c),
a2 = 1

2 (a,−b, c), a3 = 1
2 (a, b,−c). These are related to the edge vectors

of the Bravais cell through a = a2 + a3, b = a1 + a3, c = a1 + a2. Note
that it is equally possible to choose two primitive vectors along the sides
of the Bravais cell, a1 = a = (a, 0, 0), a2 = b = (0, b, 0); in this case the
third has to satisfy c = 2a3 − (a1 + a2) – that is, a3 = 1

2 (a, b, c).
7. All-faces-centered orthorhombic (face-centered orthorhombic) (oF ,

Fmmm, Γ f
o). The Bravais cell is the same as in other orthorhombic

Bravais lattices, a �= b �= c, α = β = γ = 90◦, however additional
lattice sites are now found at each face center. The customary choice
for the primitive translation vectors is a1 = 1

2 (0, b, c), a2 = 1
2 (a, 0, c),

a3 = 1
2 (a, b, 0). These are related to the edge vectors of the Bravais cell

through a = −a1+a2+a3, b = a1−a2+a3, c = a1+a2−a3. If a primitive
vector is chosen to lie along the edge of the Bravais cell, a1 = a = (a, 0, 0),
then the two others have to be chosen in such a manner that b = 2a2−a1

and c = 2a3 − a1 are perpendicular to a1. This implies a2 = 1
2 (a, b, 0),

a3 = 1
2 (a, 0, c).

8. Simple tetragonal (primitive tetragonal) (tP , P4/mmm, Γq). The three
primitive vectors are mutually perpendicular, but only two of them are
of equal length: a1 ⊥ a2 ⊥ a3 ⊥ a1, |a1| = |a2| �= |a3|. The Bravais cell
is the same as the primitive cell. a = a1 = (a, 0, 0), b = a2 = (0, a, 0),
c = a3 = (0, 0, c), a = b �= c, α = β = γ = 90◦.
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9. Body-centered tetragonal (tI, I4/mmm, Γ v
q ). To obtain a new type of

Bravais lattice from the simple tetragonal lattice, one has to add a lattice
site at the body center of each Bravais cell. The relations a = b �= c,
α = β = γ = 90◦ continue to hold for the Bravais cell, however the
primitive vectors can now be chosen as a1 = 1

2 (−a, a, c), a2 = 1
2 (a,−a, c),

a3 = 1
2 (a, a,−c). Similarly to the case of the body-centered orthorhombic

lattice, the primitive vectors are related to the edge vectors of the Bravais
cell by a = a2 + a3, b = a1 + a3, c = a1 + a2. Once again, it is possible
to choose two primitive translation vectors along the sides of the Bravais
cell, e.g., a1 = a = (a, 0, 0), a2 = b = (0, a, 0); in this case the third vector
has to satisfy the condition c = 2a3 − (a1 + a2) – that is, a3 = 1

2 (a, a, c).
10. Rhombohedral (hR, R3̄m, Γrh). The three primitive vectors are of equal

length and make equal (but not right) angles with each other. As the
three vectors cannot be coplanar, their angles can be chosen to be smaller
than 120◦ without any loss of generality. The choice a = a1, b = a2,
c = a3 implies a = b = c and 120◦ > α = β = γ �= 90◦. In rectangular
coordinates a customary choice for the primitive vectors is a1 = (a, 0, c)
a2 = 1

2 (−a,
√

3a, 2c), a3 = 1
2 (−a,−√

3a, 2c).
11. Simple hexagonal (primitive hexagonal) (hP , P6/mmm, Γh). Two of the

primitive vectors (a1 and a2) are of equal length and make an angle of
120◦; the third one (a3) is perpendicular to them. The Bravais cell is the
same as the primitive cell. A possible choice for the primitive vectors is
a = a1 = 1

2 (
√

3a,−a, 0), b = a2 = (0, a, 0), c = a3 = (0, 0, c). a = b �= c,
α = β = 90◦, γ = 120◦.
The rhombohedral Bravais lattice may also be considered as a centered
version of the hexagonal lattice. This is reflected by the notation hR. Two
lattice sites need to be added to the Bravais cell of a hexagonal lattice, at
2
3a + 1

3b + 1
3c and 1

3a + 2
3b + 2

3c. In rectangular coordinates these points
are expressed as

(
1
3

√
3a, 0, 1

3c
)

and
(

1
6

√
3a, 1

2a,
2
3c
)
. The primitive vectors

in this new lattice are thus

a1 =
(

1
3

√
3a, 0, 1

3c
)
, a2 =

(− 1
6

√
3a, 1

2a,
1
3c
)
, a3 =

(− 1
6

√
3a,− 1

2a,
1
3c
)
.

These vectors are oriented the same way as the primitive vectors of a sim-
ple rhombohedral lattice. However, because of centering, this new lattice
has a lower symmetry than the hexagonal one, which justifies considering
it as a different lattice type.

12. Simple cubic (primitive cubic) (cP , Pm3̄m, Γc). The three primitive vec-
tors are of equal length and mutually perpendicular: a1 ⊥ a2 ⊥ a3 ⊥ a1

and |a1| = |a2| = |a3|. Here, too, the Bravais cell is the same as the
primitive cell. a = b = c, α = β = γ = 90◦.

13. Body-centered cubic (bcc) (cI, Im3̄m, Γ v
c ). As above, the Bravais cell is

cubic, i.e., its parameters satisfy the conditions a = b = c, α = β =
γ = 90◦, however an additional lattice point is found at the center of
the cell. Thus the primitive vectors may be chosen as a1 = 1

2 (−a, a, a),
a2 = 1

2 (a,−a, a), a3 = 1
2 (a, a,−a). Just like in body-centered tetragonal
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lattices, they are related to the edge vectors of the Bravais cell by a =
a2 +a3, b = a1 +a3, c = a1 +a2. As an alternative, two primitive vectors
can again be chosen along the sides of the Bravais cell, a1 = a = (a, 0, 0),
a2 = b = (0, a, 0), in which case the third must satisfy the requirement
c = 2a3 − (a1 + a2) – that is, a3 = 1

2 (a, a, a).
14. Face-centered cubic (fcc) (cF , Fm3̄m, Γ f

c). Once again, the lattice pa-
rameters of the Bravais cell satisfy the conditions a = b = c and
α = β = γ = 90◦, however additional lattice sites are found at each
face center. As it has been mentioned, the customary choice for the prim-
itive vectors is a1 = 1

2 (0, a, a), a2 = 1
2 (a, 0, a), a3 = 1

2 (a, a, 0). These are
related to the edge vectors of the Bravais cell by a = −a1 + a2 + a3,
b = a1−a2 +a3, c = a1 +a2−a3. Another common choice is taking two
perpendicular vectors, a1 = 1

2 (a,−a, 0) and a2 = 1
2 (a, a, 0), and choosing

the third one so that 2a3− (a1 +a2) should be perpendicular to the plane
of a1 and a2. This requirement is satisfied by a3 = 1

2 (a, 0, a). The three
edge vectors of the Bravais cell are mutually perpendicular and of equal
length: a = a1 + a2, b = a2 − a1, and c = 2a3 − (a1 + a2).

5.4.6 The Hierarchy of Crystal Systems

The previous enumeration of crystal systems proceeded from the simplest
point groups to those with more symmetry elements. By adopting the opposite
approach, a certain natural hierarchy can be observed among crystal systems.
The most straightforward way to demonstrate this is to take a cubic (in two
dimensions: square) or hexagonal crystal system, and to reduce the symmetry
by appropriate deformations of the crystal.

Of all two-dimensional point lattices square and hexagonal ones possess the
highest symmetries. Small deformations cannot take them into one another. A
small deformation of the square lattice – stretching one of its sides – leads to a
simple rectangular lattice, while stretching a square lattice along its diagonal
leads to a centered rectangular lattice. The same lattice type is obtained
when a hexagonal lattice is stretched or compressed along a mirror line or in
a direction perpendicular to it. Square and hexagonal crystal systems are thus
said to be higher in the hierarchy than the rectangular one. Further (shearing)
deformation of both types of rectangular lattices leads to oblique lattices. The
hierarchy of two-dimensional crystal systems is summarized in Fig. 5.24.

In the three-dimensional case we shall start off with the most regular prim-
itive cell, the cubic one. It can be deformed by pulling or pushing on two op-
posite faces: angles are left intact while a side is stretched or compressed. The
result is a rectangular prism with a square base – an object with tetragonal
symmetry.

By stretching the object in another direction, a general rectangular par-
allelepiped with orthorhombic symmetry is obtained. A further shearing de-
formation along one of the planes changes the inclination of the edge initially
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Square (4mm)
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Hexagonal (6mm)
�����

Rectangular (2mm)

�
Oblique (2)

Fig. 5.24. Hierarchy of two-dimensional crystal systems

perpendicular to the shearing plane. The result is an object that possesses
only monoclinic symmetry. Finally, another shearing in another plane leads
to the most general triclinic parallelepiped. The objects obtained through the
above sequence of deformations of a cube are shown in Fig. 5.25.
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Fig. 5.25. Bodies of lower symmetry obtained through subsequent deformations of
a cube. The direction of deformation forces are shown by the single arrows

Trigonal and hexagonal crystal systems are not yet included in the above
scheme. By stretching the cubic lattice along a space diagonal, a rhombohedral
lattice is obtained. Another small deformation leads to a lattice that possesses
the symmetries of the monoclinic crystal system. Small deformations of a
cubic (regular) lattice cannot lead to a hexagonal lattice. On the other hand,
deformations of a hexagonal lattice may lead to a lattice showing orthorhombic
symmetry – more precisely, to a base-centered orthorhombic Bravais lattice.
Figure 5.26 gives a summary of this hierarchy of three-dimensional crystal
systems.
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Fig. 5.26. Hierarchy of three-dimensional crystal systems

Each time the primitive cell is deformed, a symmetry is broken. There-
fore the symmetries of a crystal system ranked lower in the hierarchy form a
subgroup of the symmetries of the system ranked higher. The same hierarchy
could have been derived by starting with the cubic and hexagonal point groups
(Oh and D6h), and choosing smaller and smaller subgroups. One must, how-
ever, exercise due care: although the symmetry group D3d of the rhombohedral
lattice is a subgroup of D6h, the symmetry group of the hexagonal lattice, the
former should not be considered to lie under the latter in the hierarchy as no
small deformation of the hexagonal lattice can lead to a rhombohedral one.

In the above presentation of the hierarchy of crystal systems we started
off with a simple cubic lattice and arrived at lower-symmetry lattices through
subsequent deformations. Analogously, one can start with a body- or face-
centered cubic lattice and track down deformed lattices with lower symme-
tries. It is a straightforward matter to prove that whichever cubic Bravais
lattice type is taken, a suitably chosen deformation will take it into one of the
tetragonal lattice types. Further deformations will transform any tetragonal
lattice type into one of the orthorhombic lattices. The four orthorhombic lat-
tice types are, in turn, deformed into either of the monoclinic lattice types.
Finally, a small deformation of either monoclinic lattice type results in a tri-
clinic lattice. Similarly to the case of the simple cubic lattice, when a face-
or body-centered cubic lattice is stretched along the body diagonal, a rhom-
bohedral lattice is obtained. As the hexagonal system has no centered type
one can state that the hierarchy among crystal systems does not change when
the various types within each system are taken into account. This hierarchy is
of particular importance when the crystal classes are assigned to the crystal
systems in the next section.
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5.5 Full Symmetry of Crystals

Up to this point translation symmetries (elements of the group T3) have been
treated separately from the rotation and reflection symmetries (elements of
the group G3

0) of the Bravais lattice. Translations, rotations, and reflections
all together make up the full symmetry group of a crystal’s Bravais lattice.
When a rotation or reflection (denoted by α) and a translation (tn) both take
the lattice into itself then so does the succession of the two operations. In the
Seitz notation23 this composite symmetry operation is denoted by

{α|tn} . (5.5.1)

The order of the two operations is important as translations and rotations
cannot usually be interchanged. Rotation (reflection) always comes first, and
translation second. Because of this noncommutativity, the full symmetry
group is the semidirect product of T3 and G3

0: T3 � G3
0. Analogously, for

two-dimensional lattices the full symmetry group is T2 � G2
0.

When the translational symmetry of a crystal is identified and the prim-
itive translation vectors are determined, the full crystal – lattice plus basis
– has to be considered. However, when studying the rotation and reflection
symmetries of Bravais lattices, empty lattices are considered – i.e., the basis
is altogether ignored. When the basis is taken into account, some rotational
symmetries may be broken: the crystal may not be invariant under each rota-
tion that takes the underlying lattice into itself. Invariance is preserved only
when finite but spherical atoms or precisely spherical molecules sit at the
lattice points. Since this is generally not the case, depending on the shape
of the group of atoms or molecules around each lattice point (i.e., the inter-
nal symmetry of the basis), certain rotation and reflection symmetries of the
underlying lattice may be broken in the crystal. On the other hand, the crys-
tal may have additional symmetries that do not exist in the Bravais lattice.
That is why even after the separate discussion of translational and rotational
symmetries new features appear when the full symmetry of the crystal is
considered.

5.5.1 Screw Axes and Glide Planes

Once again, we shall first consider the two-dimensional case, in which pat-
terns are repeated along two spatial directions. Such structures are shown in
Fig. 5.27.

The absence of a mirror line is apparent at first sight: neither drawing is
left-right symmetric. It is readily shown, however, that the pattern is brought
into coincidence with itself when a reflection in the vertical midline is followed
by a vertical translation. In addition to the well-known mirror line, a new

23
F. Seitz, 1936.
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Fig. 5.27. Plane figures with glide lines on Escher’s drawings

type of symmetry element appears in two-dimensional structures: the glide
line, customarily denoted by g.

Glide reflection {m|v} is a composite symmetry operation in which a re-
flection m in a mirror line of the plane is followed by a translation v along the
direction of the mirror line, where v is not an integer multiple of any primitive
vector of the lattice. The succession of the two operations may be a symme-
try transformation even though neither reflection m nor translation through
v is a symmetry. Nevertheless, the length of the translation vector v cannot
be arbitrary. As the resultant of two such operations is a pure translation,
translation along the glide line must cover half the distance that characterizes
periodicity along that direction.

In three-dimensional crystals two new symmetry operations may appear.
The first one is glide reflection in space. This is a reflection in a plane fol-
lowed by a translation parallel to the plane that is not an integral multiple of
primitive translations.24 The plane of the reflection is called the glide plane.
Its Schoenflies symbol is σg and its international symbol is a, b, c, n, or d –
depending on whether translation is along an edge, a face or body diagonal of
the unit cell, through one-half or one-quarter of its length. Figure 5.28 shows
a periodic structure with a glide plane.

In the other new symmetry operation α in {α|v} is a rotation. A crystal
structure is said to possess an n-fold screw axis if it is brought into coincidence
with itself by an n-fold screw rotation (also called a screw operation) – i.e.,
rotation through 2π/n around some axis followed by a translation along the

24 A reflection followed by a translation perpendicular to the mirror plane is not
a new symmetry operation: it is equivalent to a reflection in a parallel plane.
Nevertheless glide reflections are often chosen in such a way that v has both
parallel and perpendicular components.



5.5 Full Symmetry of Crystals 159

c/2c/2

�g

Fig. 5.28. Periodic structure with a glide plane

axis.25 The symmetry element is denoted by Cs
n in the Schoenflies notation and

by nj in the international notation, where j runs over the values 1, 2, . . . , n−1,
and refers to the succeeding translation – which is not arbitrary. The group
property of symmetry operations implies that when the screw axis is twofold
then rotation through 180◦ has to be followed by a translation along the axis
through half the repeat distance (periodicity) in that direction. The symbol for
this operation is 21. For a threefold screw axis translation has to be through
either one-third or two-thirds of the repeat distance. The symbols for these
operations are 31 and 32. In general, when the screw axis is n-fold, rotation
through 2π/n is followed by a translation through j/n times the periodicity of
the crystal. This is denoted by nj . Figure 5.29 shows objects with a fourfold
screw axis.

c/4

��90º

c/4

c/4

c/4

���0º

Fig. 5.29. Periodic structures with a fourfold screw axis. Rotation is clockwise in
one case and counterclockwise in the other; both are followed by a translation of the
crystal through one-quarter of the lattice constant

25 A rotation followed by a translation perpendicular to the rotation axis is not a
new symmetry operation, either: it is equivalent to a rotation around a parallel
axis. Nevertheless screw operations are often chosen in such a way that v has
both parallel and perpendicular components.
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5.5.2 Point Groups of Crystals and Crystal Classes

Let us examine now how symmetries of the Bravais lattice are broken in the
crystal when the basis has a lower symmetry than the Bravais lattice. As
an example, we shall consider crystals whose underlying Bravais lattice is a
simple cubic lattice and atoms at the lattice sites are surrounded by different
atoms. Three different cases are shown in Fig. 5.30.

( )b ( )c( )a

Fig. 5.30. Symmetry is either preserved or broken when a simple cubic Bravais cell
is decorated with bases of various symmetries. (a) Symmetry of the point group Oh

is preserved. (b) Symmetry is broken to Td. (c) Symmetry is broken to D4h

In the first case, among the atoms at the lattice points, atoms of an-
other species (“black atoms”) are placed in each of the eight equivalent points
±ξ,±ξ,±ξ of the space diagonals. Then the atom at the lattice points is sur-
rounded by 8 black atoms in a cubic arrangement – therefore the basis and the
crystal itself possess cubic symmetry (Oh). The same situation arises when 6
neighboring atoms are arranged along the edges, forming an octahedron.

However, when the atom at the lattice point is surrounded by only four
black atoms then the symmetry of the basis can no longer be cubic – and so
the cubic symmetry of the lattice cannot be entirely preserved. When the four
atoms are arranged on the space diagonals in the manner shown in Fig. 5.30(b)
– i.e., when the atom at the lattice point is surrounded by four black atoms
arranged tetrahedrally – then only those rotational symmetries are preserved
that take the tetrahedron into itself – namely, elements of the point group
Td. The atom at the lattice point is surrounded by four black atoms in part
(c), too, however the black atoms are now placed on the diagonals of one
face (the base). Threefold rotational symmetry around the space diagonal is
thus broken – however, fourfold rotational symmetry around one of the edges
reappears. The point group of the five-point basis is D4h, which is also the
point group of the rotational symmetries of the crystal.

These examples show that the crystal itself is not always invariant under
each rotation and reflection of the point group of its Bravais lattice. Some
symmetries may be broken because of the presence of a basis. The remaining
operations form a group, which is necessarily a subgroup of the point group of
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the Bravais lattice. Therefore this group has to be one of the crystallographic
point groups listed in Table 5.5, as the subgroups of the seven Bravais groups
are precisely the 32 point groups given there.

The same group may appear as the subgroup of more than one Bravais
group. In such cases the group is considered to belong to the crystal system
that is lowest in the hierarchy. This classification is based on the empirical
finding that when a lattice is decorated with a basis whose symmetry is lower
than that of the Bravais lattice, the lattice itself will be deformed, and the
relations among the lattice parameters will correspond to the lower-ranked
crystal system. For example, when the lattice points of a cubic crystal are
decorated with molecules of tetragonal symmetry (as above), and thus the
cubic symmetry is locally broken, the lattice itself will undergo a tetragonal
deformation. More generally: if the equality of two quantities (in our case: lat-
tice constants) is not required by symmetry then – apart from few exceptional,
accidental cases – these quantities will be different.

Note that two-dimensional crystallographic point groups may also be clas-
sified into crystal systems based on their hierarchy. When a point group may
appear as the subgroup of several Bravais groups then it is classified under
the lowest one in the hierarchy. Thus point groups 6mm, 3m, 6, and 3 belong
to the hexagonal system, 4mm and 4 to the square system, 2mm and m to
the rectangular system, and 2 and 1 to the oblique system.

The knowledge of the rotation and reflection symmetries of a crystal is
important because internal physical processes should take place in the same
way in all directions that are equivalent due to symmetry – and so crystal
symmetries manifest themselves in macroscopic properties, too. For example,
the elasticity or conductivity tensor has to be invariant under the transfor-
mations that take the crystal into itself. We shall make extensive use of the
severe restrictions imposed by this property on the tensor elements.

The symmetry operations which transform into each other those directions
of the crystal that are equivalent in terms of macroscopic properties form the
point group of the crystal. The elements of this group can be obtained by
replacing screw rotations by simple rotations and glide reflections by mirror
reflections. To see this it has to be born in mind that macroscopic properties
depend only on the relative arrangement of the atoms along some direction.
Thus two directions are equivalent even when they are transformed into one
another by a screw rotation or glide reflection instead of a pure rotation or
reflection.

Obviously, each element of the point group of the crystal must be an
element of the point group (Bravais group) of the crystal’s Bravais lattice.
Hence the point group of the crystal must be a subgroup of the point group of
the lattice. Thus the total number of such groups is the same as the number
of subgroups of the Bravais groups of the seven crystal systems. Thirty-two
subgroups are found – they correspond to the 32 crystallographic point groups
– thus a crystal’s point group is one of the crystallographic point groups, and
the same notation is used for them.
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Crystals with the same point group are said to belong to the same crystal
class. The 32 crystal classes received their names from finite objects whose
symmetry group is the respective point group. For example, the crystal class
with symmetry Oh is called the hexakisoctahedral class.

5.5.3 Space Groups

Besides translations, rotations, and reflections, the full set of symmetries of
a crystal contains screw operations and glide reflections as well. These op-
erations form a group, provided group multiplication – as for the translation
group and the point group – is understood as the succession of two operations.
Simple geometrical considerations lead to

{α′|t′n}{α|tn} = {α′α|α′tn + t′n} . (5.5.2)

The inverse of a transformation is given by

{α|tn}−1 = {α−1| − α−1tn} . (5.5.3)

The group that contains all symmetry operations of a crystal is called its space
group. Two-dimensional space groups are also called plane groups or wallpaper
groups.

Plane Groups

To find all possible “space” groups (plane groups, wallpaper groups) of two-
dimensional crystals, we shall construct planar patterns that are periodic in
both directions. To this end, we shall start with a two-dimensional Bravais
lattice and decorate it with bases of appropriate symmetry. The groups of such
patterns are the G2

2 groups. Some of them can be written as the semidirect
product of the group T2 of translations in the plane with a suitably chosen
two-dimensional point group G2

0. Suitable choice means that the point group
in question must be a subgroup of the Bravais group of the Bravais lattice.
This is possible when glide reflection is not a symmetry element of the plane
group. The two upper drawings in Fig. 5.6 show that when an oblique cell is
decorated with a figure that does not have a twofold axis – in other words,
when the point group of the basis is lower than that of the Bravais lattice –
then the crystal itself does not have a twofold axis, either. The plane group of
such patterns is p1. On the other hand, when the basis has higher symmetry
than the oblique Bravais lattice then the crystal is also invariant under the
symmetry operations of the lattice. The plane group of such crystals (with a
twofold rotation axis and a simple oblique Bravais lattice) is denoted by p2.

Two lattice types are possible for rectangular lattices (whose point group
is 2mm). Primitive and centered lattices can be equally decorated with a basis
that has two perpendicular mirror lines. This leads to the space groups p2mm
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and c2mm (in short notation: pmm and cmm). However, the basis may have
only one mirror line instead of two. In this case the plane groups are pm and
cm. When a rectangular lattice is decorated with a basis that has no mirror
lines then it is deformed spontaneously into an oblique lattice.

In square lattices, which are invariant under the rotations and reflections of
the point group 4mm, the basis itself may be invariant under 4mm operations.
In this case the plane group of the crystal is p4mm (in short notation: p4m).
If the symmetry of the basis is lower, and only fourfold rotations are preserved
then the plane group is p4. In principle, the symmetry of the basis could also be
the subgroup m of the point group 4mm. However, in this case the symmetry
that links the two primitive vectors would be broken, and the square lattice
would be deformed into a rectangular one. The resulting plane group would
be pm.

When a hexagonal lattice is decorated with a basis that is also invariant
under the symmetries of the point group 6mm, then the plane group of the
resulting crystal is p6mm (in short notation: p6m). If the symmetry of the
basis is lower, the lattice remains hexagonal as long as the point group of
the basis is a subgroup of 6mm: either 3m, 6, or 3. The respective plane
groups are p3m, p6, and p3. Motifs of symmetry 3m can be oriented in two
different ways relative to the axes of the lattice, and so two plane groups
can be generated. The threefold rotation axes are common in both of them,
however the three mirror lines are either along or perpendicular to the three
equivalent crystallographic axes. These are denoted by p31m and p3m1.

Using translations, rotations, and reflections of the lattice, 13 two-dimen-
sional space groups have been constructed above. They are called the symmor-
phic groups or symmorphic plane groups. There exist further, nonsymmorphic
groups that contain glide reflections as well. When investigating the symme-
tries of a periodic motif one has to bear in mind that patterns of the symmor-
phic space group may also have glide lines although these do not pass through
the group’s characteristic n-fold axis. This is not the case for nonsymmorphic
groups.

If a primitive rectangular lattice is decorated with such a basis that only
one mirror line of the Bravais lattice is preserved and the other is replaced by a
glide line, then the plane group is p2mg (in short notation: pmg). It is equally
possible that both mirror lines are replaced by glide lines, then the plane
group is p2gg (pgg). A motif with such symmetry is shown in Fig. 5.31(a).
When one mirror line is completely absent and the other is replaced by a glide
line, the pattern possesses the symmetries of the point group pg. Motifs with
such symmetry were shown in Fig. 5.27.

A square lattice can be decorated with a basis in such a way that the
mirror lines along the edges and diagonals of the square – intersecting each
other at points of fourfold rotational symmetry – are no longer symmetries,
but glide lines appear along the diagonals and parallel to the edges, while the
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(a) (b)

Fig. 5.31. Two drawings of Escher with symmetries of two different plane crystallo-
graphic groups. (a) The plane group is p2gg and the Bravais-lattice type is primitive
rectangular for the figure with two glide lines. (b) The plane group is p4gm and the
Bravais-lattice type is square for the figure with one set of glide lines

fourfold rotation axes are preserved.26 The plane group is then p4gm (p4g). A
pattern with such symmetry is presented in Fig. 5.31(b). Four nonsymmorphic
groups are thus obtained, raising the total number of two-dimensional space
groups to 17. Figure 5.32 shows periodic patterns that exhibit symmetries of
two-dimensional space groups.

Three-Dimensional Space Groups

The group of symmetries of three-dimensional patterns that are periodic in
three directions is the space group G3

3. Once again, some of them may be
written as the semidirect product of the group of translations T3 with a three-
dimensional point group G3

0. This is possible when neither glide reflections nor
screw rotations are among the symmetry elements. The group of rotations and
reflections that take such a crystal into itself is either the point group of the
Bravais lattice or one of its subgroups that belong to the same crystal system.
By taking due care of the relative orientation of the rotational axes of the basis
and the axes of the 6/mmm (D6h) group in the hexagonal system, 73 different
symmorphic space groups are constructed. Apart from the hexagonal system,
the space groups are unambiguously specified by the Bravais-lattice type and
the crystal class. This is reflected by their symbol in the international notation.

26 Two perpendicular mirror lines are still present among the symmetry elements,
however they go through the midpoints of adjacent perpendicular edges of the
square, and their intersection points possess only twofold rotational symmetry.
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p4 p4mm p4gm

p6mmp6

p3 p3m1 p31m

c2mmp2mg p2gg

p2mmpg cm

p1 p2 pm

Fig. 5.32. Motifs showing the symmetries of plane groups
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E.g., when a simple cubic lattice is decorated with a basis whose point group
is m3̄m, 432, 4̄3m, m3̄, or 23, the space group of the crystal is Pm3̄m, P432,
P 4̄3m, Pm3̄, or P23, respectively. When the original lattice type is body- or
face-centered cubic, I or F appears in the symbol of the space group.

In addition to the 73 symmorphic space groups there exist 157 nonsym-
morphic space groups, which contain screw operations and/or glide reflections.
The total number of three-dimensional space groups is thus 230. This result
was first worked out by the crystallographer J. S. Fedorov (1890) and inde-
pendently of him by the mathematician A. M. Schoenflies (1891). We shall
mercifully spare the reader a complete listing as it would lead too far afield.
The 230 space groups and their symmetries are most extensively treated in
Volume A of the series International Tables for Crystallography. As an exam-
ple, we shall present the space groups that belong to class m3̄m (Oh) of the
cubic crystal system.

The symmorphic space group Pm3̄m (in Schoenflies notation: O1
h) is the

space group of crystals whose underlying Bravais lattice is simple cubic and
for which all elements of the point group m3̄m (Oh) – presented in Tables 5.1
and 5.4 – are symmetries. A nonsymmorphic space group is obtained if all
rotations listed in Table 5.1 are symmetries but reflections listed in Table 5.4
take the crystal into itself only when followed by a translation along the space
diagonal through one-half of its length. The generator of these rotoreflections
is {I|12 1

2
1
2}. Compared to the space group Pm3̄m, all rotations are pure ro-

tations, however all mirror planes are replaced by glide planes. Consequently,
its symbol is Pn3̄n. In the Schoenflies notation space groups generated from
the same point group are distinguished by a single superscript, its symbol is
therefore O2

h.
Different space groups are obtained when the space diagonals remain three-

fold rotation axes while the three principal axes and the six face diagonals
become four- and twofold screw axes, respectively, with translation along the
space diagonal. This means that the first 12 elements of Table 5.1 remain pure
rotations while the next 12 are replaced by screw operations. If inversion re-
mains a symmetry then along with it half of the reflections are also preserved
and the other half are replaced by glide reflections. The resulting space group
is called Pm3̄n (O3

h). When, on the other hand, the symmetry under inver-
sion is broken unless it is followed by a translation along the space diagonal,
ordinary mirror planes of the space group Pm3̄n are replaced by glide planes
– and vice versa. Consequently, the space group is denoted by Pn3̄m (O4

h).
There is no other way to obtain a cubic space group when starting with a
simple lattice.

5.5.4 Symmetries of Magnetic Crystals

In the foregoing we have analyzed spatial transformations that take a point
(x, y, z) of a crystal into an equivalent point. These form the group of spatial
transformations. When ferroelectric or magnetic materials are studied, the
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transformation of the electric and magnetic dipole moments need to be taken
into account as well. As a simple example, A. V. Shubnikov (1951) studied
the symmetries of a system in which there is a two-valued variable s = ±1 at
each site (x, y, z).

Because of the new variable, a new operation (R) appears, which is called
antisymmetry. This takes the point characterized by the variables (x, y, z, s)
into (x, y, z,−s). Adding this operation to the customary symmetry opera-
tions leads to magnetic point groups and magnetic space groups or Shubnikov
(space) groups. The two values (s = ±1) are often referred to as “black” and
“white” – and then the group is called “black-and-white group”.

Magnetic point groups contain rotations, reflections, and the antisymmetry
operation. In addition to the 32 ordinary point groups of crystals (that do not
contain the antisymmetry operation), another 32 appear which contain the
antisymmetry operator R as a symmetry element. This is possible only when
the values of s are both present in each lattice point. In magnetic terms this
means that upward and downward magnetic moments are equally probable at
each individual lattice point, and thus the average vanishes. This corresponds
to the paramagnetic phase. Using black and white, these are the so-called gray
groups. There are 58 other magnetic point groups that do not contain R itself
only its combination with a rotation. They are the true magnetic groups in the
sense that they may appear as points groups of ordered magnetic structures.

When translations are also taken into account, one may study magnetic (or
black-and-white) lattices instead of ordinary Bravais-lattice types, in which
all lattice points are equivalent. Besides displacements through translation
vectors tn, operations of the form {R|v} are also allowed. Obviously, this may
be a symmetry only when v is half a translation vector. In addition to the
14 ordinary Bravais-lattice types – in which lattice sites are of the same color
–, 22 further Bravais-lattice types are found, which contain both black and
white lattice sites. The new magnetic (or black-and white) lattice types with
tetragonal and cubic structures are shown in Figs. 5.33 and 5.34.

Figure 5.33 shows that black-and-white Bravais lattices are built up of two
interpenetrating Bravais lattices, a black and a white. In the case of a simple
tetragonal lattice the relative displacement vector of the two sublattices is
either one-half of the primitive vector along the fourfold axis, or the vector to

Fig. 5.33. Black-and-white Bravais lattices in the tetragonal crystal system
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Fig. 5.34. Black-and-white Bravais lattices in the cubic crystal system

the center of the base, or the vector to the center of the primitive cell. In a
body-centered tetragonal lattice there is just one possibility: the relative dis-
placement vector of the two sublattices must be in the direction of the fourfold
axis, and its magnitude must be one-half of the height. This is equivalent to
a translation of the second sublattice through half the face diagonal.

In a simple cubic Bravais lattice the two interpenetrating sublattices are
displaced by half the space diagonal. Each black atom is surrounded by eight
white atoms, and vice versa. In a face-centered cubic lattice the relative dis-
placement is the half of either edge vector. In this case each black atom is
surrounded by six white ones.

The combination of magnetic Bravais lattices and magnetic point groups
gives rise to 1651 magnetic (or black-and-white) space groups. Just like for
point groups, 230 of them are ordinary space groups that do not contain the
antisymmetry operation at all. There are the same number of paramagnetic
(or gray) space groups, in which the antisymmetry operation is a symmetry
element in itself. In the remaining 1191 space groups antisymmetry appears
only in combination with rotations, reflections, or translations.

The possible symmetries of real magnetic systems are even more com-
plicated than that. Black-and-white groups may, at most, purport to give
the symmetry groups of magnetic systems that can be described by the Ising
model, in which the magnetic moment is represented by a two-valued variable.
In the general case the magnetic moment vector points in different directions
on different magnetic atoms, giving rise to noncollinear magnetic structures.
Moreover, account must be taken of the fact that magnetic moments are also
transformed by rotations. It should also be borne in mind that the magnetic
moment m is an axial vector, which does not transform as a true vector un-
der reflections. (This last property is easily understood when the magnetic
moment is considered to be produced by a current loop. Upon reflection, the
component perpendicular to the mirror plane does not change sign but the
component in the plane does.) All this leads to a great wealth of possibilities
for symmetries in magnetic systems that cannot be listed here. The issue of
possible magnetic structures will be briefly discussed in Chapter 14 on mag-
netically ordered systems.
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Consequences of Symmetries

In addition to the spatial symmetries discussed in the previous chapter a phys-
ical system may possess further symmetries, for example, it may be invariant
under time reversal or gauge symmetries. While they might seem irrelevant
to the structure of the crystal, they may nevertheless play an essential role
in understanding the physical properties of the system. In general, the exis-
tence or lack of a symmetry may have fundamental influence on the system’s
behavior.

The connection between symmetries and physical properties is summa-
rized by a fundamental postulate of crystal physics formulated back in the
19th century, known as Neumann’s principle: The symmetry elements of any
observable physical property of a crystal must include all the symmetry ele-
ments of the point group of the crystal. To put it otherwise: The tensor rep-
resenting any direction-dependent macroscopic physical property of a crystal
must be invariant under the symmetry operations of the point group of the
crystal.

For physical quantities given in tensor form, such as resistivity, elastic con-
stants, or optical properties, symmetry operations provide relations among
the elements of the tensor. Using symmetry considerations alone it is possible
to determine the number of different parameters that completely specify the
tensor. For example, in the absence of a magnetic field, off-diagonal elements
vanish and diagonal ones are identical in the two-index resistance tensor of a
cubic crystal. Thus resistivity can be characterized by a single scalar quantity.
In crystals with tetragonal symmetry, the resistivity tensor has two indepen-
dent parameters. As we shall see, the four-index elasticity tensor is specified
by three elastic constants in cubic crystals.

Moreover, taking symmetries into account facilitates the determination of
the states of the system and provides selection rules for allowed processes. If
the Hamiltonian of the system possesses some symmetry that is not observed
in the ground state – i.e., if symmetry is spontaneously broken – then further
conclusions can be drawn about the excited states of the system and the
subgroup of preserved symmetries.
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Using simple group theoretical considerations we shall first demonstrate
that when symmetries are known, general statements can be made about the
degeneracy of electronic states of the crystal, or about lifting this degeneracy.
It will be shown that in the presence of an external perturbation, symmetries of
the perturbation and of the system imply strict selection rules on the processes
that may take place in the solid. Then we shall investigate the consequences of
translational symmetry. Finally we shall discuss the implications of symmetry
breaking.

6.1 Quantum Mechanical Eigenvalues and Symmetries

If a crystal possesses some symmetry its quantum mechanical Hamiltonian
must possess the same symmetry. Knowledge of the symmetries often permits
one to make general statements about the quantum mechanical eigenvalue
problem without solving the Schrödinger equation explicitly. To this end one
has to make recourse to group theory. We assume that the reader is famil-
iar with the basics of group theory – nevertheless we shall summarize the
most important theorems and relations for solid-state physics applications in
Appendix D. Several theorems are concerned with the relation between the
energy spectrum of a system and the irreducible representations of the group
of its symmetry operations. Below, after recalling one of Wigner’s theorems,1
we shall show how they can be applied to the study of energy level splitting
in solids and to the determination of selection rules.

6.1.1 Wigner’s Theorem

Suppose that a system and its Hamiltonian H(r) are both invariant under
the elements Gi of a symmetry group G – that is, operators T (Gi) associated
with the symmetry operations take the Hamiltonian into itself:

T (Gi)H(r) = H(G−1
i r) = H(r) . (6.1.1)

This implies that the operators T (Gi) commute with the Hamiltonian,

T (Gi)H(r) = H(r)T (Gi) , (6.1.2)

since by acting on an arbitrary function ψ(r)

T (Gi)H(r)ψ(r) = H(G−1
i r)ψ(G−1

i r)

= H(r)ψ(G−1
i r)

= H(r)T (Gi)ψ(r) .

(6.1.3)

Let ψ(r) be an eigenfunction of the Hamiltonian of the system with eigenvalue
ε, i.e.,
1

E. P. Wigner, 1927.
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H(r)ψ(r) = εψ(r) . (6.1.4)

Operating T (Gi) on both sides and using (6.1.3) gives

T (Gi)H(r)ψ(r) = εT (Gi)ψ(r) (6.1.5)

and
H(r)T (Gi)ψ(r) = εT (Gi)ψ(r) , (6.1.6)

that is, T (Gi)ψ(r) is also an eigenfunction, with the same eigenvalue. This
result is summarized by Wigner’s theorem: If ψ(r) is an eigenfunction of the
Hamiltonian with an energy eigenvalue ε then for any symmetry operation
T (Gi) that leaves the Hamiltonian invariant T (Gi)ψ(r) = ψ(G−1

i r) is also
an eigenfunction, with the same energy.

By operating all elements of the symmetry group G on the wavefunction
ψ(r), a set of eigenfunctions with the same eigenvalue is obtained. One may
then construct a representation of the group on the space of these functions.
If the representation is irreducible then the degeneracy of the energy levels is
not accidental but the consequence of symmetry. When, on the other hand,
the representation is not irreducible, then after its reduction to irreducible
representations symmetry operations will mix only those wavefunctions that
belong to the same representation, and only their eigenvalues will be neces-
sarily equal. Higher degeneracy may appear only accidentally. It is plausible
that by choosing the potential (interaction term) in the Hamiltonian in the
most general form consistent with symmetry accidental degeneracy of the en-
ergy levels is lifted, and only the degeneracy imposed by symmetries survives.
In such cases the representation of the symmetry group is irreducible on the
wavefunctions of the selected energy value.

Consequently, energy levels can be characterized by the irreducible repre-
sentation according to which the wavefunctions transform, and the degree of
degeneracy is equal to the dimension of the irreducible representation associ-
ated with the energy level. This also means that when the symmetries of the
system and the irreducible representations of the symmetry group are known,
one can determine the degree of degeneracy of the energy levels, as well as the
way they are split in the presence of a lower-symmetry external perturbing
field.

6.1.2 Splitting of Atomic Levels in Crystals

The state of atomic electrons in a spherical potential is characterized by the
principal quantum number n = 1, 2, 3, . . . , the azimuthal quantum number
l = 0, 1, 2, . . . (that specifies the orbital angular momentum of the states
s, p, d, . . . ), the magnetic quantum number ml = −l,−l + 1, . . . , l − 1, l,
and the spin quantum number ms = ±1/2. To determine energy levels, in
addition to the nucleus one must also take into account the effects of the
other electrons. Approximating the latter by a spherically symmetric effective
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potential, the potential field is invariant under all rotations around any axis
through the origin, irrespective of the angle. The group of these symmetry
operations is equivalent to the special orthogonal group SO(3). Its irreducible
representations can be characterized by the eigenvalues of the orbital angular
momentum operator L. As the dimension of the irreducible representation
associated with quantum number l is 2l+ 1, the corresponding energy level is
2l + 1-fold degenerate. Owing to the radial part of the wavefunction, energy
obviously depends on the principal quantum number n as well, however, it is
independent of ml.

Instead of a single isolated atom consider one at a lattice site of a regular
crystal, where the effects of its neighbors may no longer be neglected. Even
when electrons are localized on atoms and effects of overlapping between elec-
tronic states can be ignored, the electrostatic field produced by neighboring
atoms, the crystal field may change the electronic states. This potential pos-
sesses the local symmetry of the site in question, that is, the symmetry in
the arrangement of the neighboring atoms. This is usually lower than per-
fect spherical symmetry, therefore, within a crystal, the free ion’s originally
2l + 1-fold degenerate energy level of quantum number l is split into several
sublevels. This phenomenon is called crystal-field splitting.

The amount of splitting depends on the strength of the potential at the
atom, nevertheless the character of splitting – i.e., the number and degeneracy
of the sublevels into which the atomic level is split – are determined solely by
the symmetries of the atomic position. Without knowing the exact form of
the crystal field, these can be specified from the symmetry properties of the
crystal. This is of particular importance as it allows for the determination of
atomic positions.

As an example, consider an atom in a cubic environment for which the
group of local symmetries is Oh. This is the case for an atom at the cen-
ter of the Bravais cell in a face-centered cubic crystal. As we shall see in
the next chapter, this position is called an octahedral site. Then the crystal
field Vcr field(r, θ, ϕ) acting on the electrons orbiting the atom possesses cu-
bic symmetry, i.e., it is invariant under the rotations and reflections listed
in Tables 5.1 and 5.4. The simplest such potential contains the lowest-order
polynomial that shows cubic symmetry but is not invariant under an arbitrary
rotation:

Vcr field = A(r) + D(x4 + y4 + z4 − 3
5
r4) + . . .

= A(r) + Dr4
[
1 − 5

4
sin4 θ sin2 2ϕ− 5

4
sin2 2θ

]
.

(6.1.7)

The solutions to the Schrödinger equation with this potential must trans-
form according to the irreducible representations of the symmetry group of
the cubic crystal. If the 2l+1 states of a free atom with angular momentum l
are used as a set of basis functions, the representation of the symmetry group
of the cubic crystal (which contains a finite number of rotations through 90◦,
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120◦, and 180◦) is usually reducible on it. Thus the splitting of the state with
orbital angular momentum l depends on how this reducible representation
is reduced to the sum of the irreducible representations of the cubic sym-
metry group. The remaining degeneracy is determined by the dimensions of
these irreducible representations. This reduction is readily calculated using
the characters of the representations.

According to the formulas given in Appendix C, the character of a rotation
through angle ϕ is

χl(ϕ) =
l∑

m=−l
eimϕ =

sin(l + 1
2 )ϕ

sin 1
2ϕ

(6.1.8)

in the representation of index l of the rotation group.
Taking this expression for integer values of l at angles ϕ = 0, π, π/2, and

2π/3, which appear among the symmetries of the cubic system,

χl(0) = 2l + 1 , (6.1.9-a)

χl(π) = (−1)l , (6.1.9-b)

χl(π/2) =

{
(−1)l/2 for l even ,

(−1)(l−1)/2 for l odd ,
(6.1.9-c)

χl(2π/3) =

⎧⎪⎨
⎪⎩

1 for l = 3k ,

0 for l = 3k + 1 ,

−1 for l = 3k + 2 .

(6.1.9-d)

The characters for the 48 elements of the cubic symmetry group Oh are
given in Table 6.1. When calculating them one must take into account that the
elements of the cubic group can be divided into ten classes (see Appendix D).
The first class contains the identity element; the second – rotations through
180◦ around the three equivalent directions 〈100〉 (C2

4m, m = x, y, z); the
third – rotations through 90◦ and 270◦ around the directions 〈100〉 (C4m and
C3

4m); the fourth – rotations through 180◦ around the six equivalent directions
〈110〉 (C2p, p = a, b, c, d, e, f); the fifth – rotations through 120◦ and 240◦

around the directions 〈111〉 (C3j and C2
3j , j = a, b, c, d). The characters for

these classes can be read off from the formulas in (6.1.9). Elements of the other
five groups are obtained by multiplying the above by the inversion operation.
A basis function is odd (even) under inversion when the azimuthal quantum
number is odd (even).

To proceed with the reduction process one must also know the characters of
the irreducible representations of the group Oh. These are listed in Table D.1,
in Appendix D. The general rules of reduction are also given there. Some
straightforward algebra leads to the results in Table 6.2.
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Table 6.1. Character table for the representation of the point group Oh using the
spherical harmonics Y m

l (θ, ϕ) as basis functions. Only the first few values of the
quantum number l are listed

l E 3C2
4m 6C4m 6C2p 8C3j I 3σm 6S4m 6σp 8S3j

0 1 1 1 1 1 1 1 1 1 1
1 3 −1 1 −1 0 −3 1 −1 1 0
2 5 1 −1 1 −1 5 1 −1 1 −1
3 7 −1 −1 −1 1 −7 1 1 1 −1
4 9 1 1 1 0 9 1 1 1 0
5 11 −1 1 −1 −1 −11 1 −1 1 1
6 13 1 −1 1 1 13 1 −1 1 1

Table 6.2. Reduction of representation Dl of the rotation group to the irreducible
representations of the group Oh. Only the first few values of the quantum number
l are listed

l Reduction Dimension

0 D0 = Γ1 1
1 D1 = Γ15 3
2 D2 = Γ12 ⊕ Γ ′

25 5 = 2 + 3
3 D3 = Γ ′

2 ⊕ Γ15 ⊕ Γ25 7 = 1 + 3 + 3
4 D4 = Γ1 ⊕ Γ12 ⊕ Γ ′

15 ⊕ Γ ′
25 9 = 1 + 2 + 3 + 3

As an application, consider an atom with a 3d-electron placed in a cubic
environment, and examine the possible states of the electron. According to
Hund’s first and second rules, S = 1/2, L = 2 in ground state – thus the state
is 2D. In a free atom this tenfold degenerate state is split by the spin–orbit
interaction into a fourfold degenerate J = 3/2 state and a sixfold degenerate
J = 5/2 state. According to Hund’s third rule, the state with angular momen-
tum J = 3/2 is the ground state. However, this is not necessarily the case for
atoms in a crystal. The reason for this is that in transition metals – especially
the elements of the iron group – with partially filled 3d, 4d, or 5d shells the
crystal-field splitting for d electron levels (that are considered to belong to the
core) is on the order of ΔEcr field ∼ 103 cm−1 ∼ 0.1 eV, which is larger than the
energy correction due to spin–orbit interaction, ΔEs–o ∼ 102 cm−1 ∼ 0.01 eV.
Thus to determine the state of the electron, the effects of crystal field in the
configuration specified by Hund’s first and second rules have to be taken into
account first, and spin–orbit interactions second.

Writing the spatial part of the wavefunction of the electrons of azimuthal
quantum number l in a free atom as

ψnlml
(r, θ, ϕ) = Rnl(r)Y ml

l (θ, ϕ) = Rnl(r)Pml

l (cos θ)eimlϕ , (6.1.10)
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the associated Legendre polynomials for the d-state (l = 2) are

Pml
2 (cos θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3 sin2 θ ml = ±2,

1
3 sin θ cos θ ml = ±1,

1
2 (3 cos2 θ − 1) ml = 0.

(6.1.11)

These functions transform according to the representation D2 of the rotation
group. In a cubic environment, this fivefold (or, when spin is also taken into
account, tenfold) degenerate level is split into two levels that transform ac-
cording to Γ12 and Γ ′

25. A two- and a threefold (or, with spin, a four- and a
sixfold) degenerate energy level are thus obtained.

It is readily shown that the basis functions of the irreducible represen-
tations are the symmetric and antisymmetric combinations of the functions
with ml = ±2 and ml = ±1, plus the function with ml = 0:

ψxy = Rn2(r)
−i√

2

(
Y 2

2 − Y −2
2

)
=
(

15
16π

)1/2

Rn2(r) sin2 θ sin 2ϕ

=
(

15
4π

)1/2

Rn2(r)xy/r2 ,

ψx2−y2 = Rn2(r)
1√
2

(
Y 2

2 + Y −2
2

)
=
(

15
16π

)1/2

Rn2(r) sin2 θ cos 2ϕ

=
(

15
16π

)1/2

Rn2(r)(x2 − y2)/r2 ,

ψxz = Rn2(r)
−1√

2

(
Y 1

2 − Y −1
2

)
=
(

15
4π

)1/2

Rn2(r) sin θ cos θ cosϕ

=
(

15
4π

)1/2

Rn2(r)xz/r2 , (6.1.12)

ψyz = Rn2(r)
i√
2

(
Y 1

2 + Y −1
2

)
=
(

15
4π

)1/2

Rn2(r) sin θ cos θ sinϕ

=
(

15
4π

)1/2

Rn2(r)yz/r2 ,

ψz2 = Rn2(r)Y 0
2 (θ, ϕ) =

(
5

16π

)1/2

Rn2(r)(3 cos2 θ − 1)

=
(

5
16π

)1/2

Rn2(r)(3z2 − r2)/r2 .

These wavefunctions are real. The corresponding charge distributions are
schematically shown in Fig. 6.1.

Wavefunctions ψxy, ψyz, and ψxz are equivalent in a cubic environment
and transform according to the irreducible representation Γ ′

25 of the cubic
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Fig. 6.1. Schematic representation of d-state wavefunctions

point group. In chemical nomenclature, this representation is also denoted by
T2g – which is why these states are often called t2g-states.

Functions ψx2−y2 and ψz2 transform according to the irreducible repre-
sentation Γ12, and they, too, have the same energy in a cubic environment.
Chemical nomenclature uses the symbol Eg for this representation and the
name eg-state for the corresponding states.

As t2g- and eg-states belong to different irreducible representations, their
energies are usually different. Which of them is lower depends on the spatial
arrangement of the surrounding atoms. When nearest neighbors are located
along crystallographic axes forming an octahedral environment, t2g-states tend
to be of lower energy, as wavefunctions overlap to a smaller extent and the
Coulomb repulsion is weaker. The pattern of energy-level splitting is similar
when a single 3d-electron is missing – however, the order of the levels is then
reversed.

Using the wavefunctions given in (6.1.12), the expectation value for the z
component of the angular momentum contains either the integral

2π∫
0

sin(mlϕ)
�

i
∂

∂ϕ
sin(mlϕ) dϕ (6.1.13)

or
2π∫
0

cos(mlϕ)
�

i
∂

∂ϕ
cos(mlϕ) dϕ . (6.1.14)

Both of them vanish, therefore

〈Lz〉 = 0 . (6.1.15)

The vanishing of the two other components can be shown along similar lines.
The orbital angular momentum is thus said to be quenched. This explains the
curiosity presented in Chapter 3 stating that one should ignore orbital angu-
lar momentum contributions to the effective magneton number of transition-
metal ions. The hitherto neglected spin–orbit interaction may slightly polarize
states in a crystal field, giving rise to a slight change in the effective magneton
number.
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6.1.3 Spin Contributions to Splitting

Rare earth metals with a partially filled 4f shell – lanthanoids (lanthanides)2
– show a markedly different behavior from transition metals. Because of the
screening effect of electrons on the 5s and 5p shells, splitting caused by
the crystal field due to neighboring atoms is typically on the order of just
ΔEcr field ∼ 102 cm−1 ∼ 0.01 eV, whereas splitting caused by the spin–orbit
interaction is an order of magnitude larger, ΔEs–o ∼ 103 cm−1 ∼ 0.1 eV.
For lanthanoids – as well as actinoids – the effect of the crystal field is thus
smaller than that of the spin–orbit interaction; therefore the ground-state
electron configuration has to be specified using Hund’s three rules, and then
the effects of the crystal field have to be treated as a perturbation, with J
fixed.

For example, when there is a single electron on the 4f shell, then, accord-
ing to Hund’s rules the quantum numbers of the ground state are S = 1/2,
L = 3, J = L − S = 5/2 (2F5/2 state), and the state with the same L and
S but J = 7/2 is the first excited state. To determine the crystal-field split-
ting of the sixfold degenerate ground state, the behavior of the wavefunction
under rotations should be known not only for integer values of the angular
momentum but also half-integer values, which will be denoted by j. Relations
(F.1.29) and (6.1.8) are still valid:

χj(ϕ) =
sin(j + 1

2 )ϕ
sin 1

2ϕ
. (6.1.16)

This implies
χj(ϕ + 2π) = −χj(ϕ) , (6.1.17)

that is, because of the spinor character of spin, rotation through 2π is not an
identity transformation, only rotation through 4π is. Thus, in the spirit of the
discussion in Appendix D, the group of symmetries has to be extended to the
double group in which rotation through 2π (denoted by E) and its products
with ordinary rotations also appear.

The characters for rotations compatible with cubic symmetry are

χj(0) = 2j + 1 , (6.1.18-a)

χj(π) = 0 , (6.1.18-b)

2 Instead of the commonly used names lanthanides and actinides, the International
Union of Pure and Applied Chemistry (IUPAC) recommends the usage of lan-
thanoids and actinoids for the groups of atoms from La to Lu and from Ac to Lr.
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χj(π/2) =

⎧⎪⎨
⎪⎩

√
2 for j = 1/2, 9/2, . . . ,
0 for j = 3/2, 7/2, 11/2, . . . ,

−√
2 for j = 5/2, 13/2, . . . ,

(6.1.18-c)

χj(2π/3) =

⎧⎪⎨
⎪⎩

1 for j = 1/2, 7/2, . . . ,
−1 for j = 3/2, 9/2, . . . ,

0 for j = 5/2, 11/2, . . . .
(6.1.18-d)

From these relations, one may determine the characters for the elements
of the double group O′ of the octahedral group for various values of j. These
are listed in Table 6.3.

Table 6.3. Characters for the elements of the double group O′ on the basis of
wavefunctions with half-integer angular momentum, for various values of j

j E E
3C2

4m

+ 3C
2
4m

6C4m 6C4m
6C2p

+ 6C2p
8C3j 8C3j

1/2 2 −2 0
√

2 −√
2 0 1 −1

3/2 4 −4 0 0 0 0 −1 1
5/2 6 −6 0 −√

2
√

2 0 0 0
7/2 8 −8 0 0 0 0 1 −1

9/2 10 −10 0
√

2 −√
2 0 −1 1

Using the character table of the irreducible representations of the double
group O′ – Table D.2 of Appendix D –, the reductions listed in Table 6.4 are
readily established.

Turning back to the case when the f (l = 3) shell contains a single elec-
tron, the total angular momentum may be either j = 5/2 or j = 7/2. The
wavefunctions of the j = 5/2 level that transform according to the represen-
tation D5/2 will, in a cubic crystal field, go over into functions that transform

Table 6.4. Reduction of the representations Dj with half-integer j of the continuous
rotation group to the irreducible representations of the double group O′

j Reduction Dimension

1/2 D1/2 = Γ6 2
3/2 D3/2 = Γ8 4
5/2 D5/2 = Γ7 ⊕ Γ8 6 = 2 + 4
7/2 D7/2 = Γ6 ⊕ Γ7 ⊕ Γ8 8 = 2 + 2 + 4
9/2 D9/2 = Γ6 ⊕ Γ8 ⊕ Γ8 10 = 2 + 4 + 4
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according to the representations Γ7 and Γ8, therefore the energy level is split
into a twofold and a fourfold degenerate level. Similarly, the j = 7/2 level is
split into two twofold (Γ6 and Γ7) and a fourfold degenerate (Γ8) level. The
full spectrum thus contains three twofold and two fourfold degenerate levels.
The resulting level structure is shown in Fig. 6.2.

�7 (2)

�7 (2)

D5/2 (6)

D7/2 (8)

l=3 (14) l=3 (14)

�8 (4)
�25 (6)

�15 (6)

�2 (2)'

�8 (4)

�6 (2)

Fig. 6.2. Splitting of the 14-fold degenerate energy level of a single electron on the
f shell in a cubic crystal field. On the left-hand side, spin–orbit interaction is taken
into account first, and crystal-field splitting second; this order is reversed on the
right-hand side. Numbers in parentheses show the degree of degeneracy

The right part of the diagram shows another approach: the 14-fold degen-
erate state of quantum numbers S = 1/2 and L = 3, which initially transforms
according to the representation D3, is first split by the crystal field, and then
the spin–orbit interaction is also turned on. In a cubic crystal field the rep-
resentation D3 is decomposed into the sum of the representations Γ ′

2, Γ15,
and Γ25 – which correspond to a twofold and two sixfold degenerate levels
(when spins are also counted). To account for further splitting caused by the
spin–orbit interaction, spin is associated with a wavefunction that transforms
according to D1/2. To reduce the product of the spatial and spin wavefunc-
tions, one has to exploit the relations

Γ ′
2 ⊗D1/2 = Γ7 ,

Γ15 ⊗D1/2 = Γ6 ⊕ Γ8 , (6.1.19)
Γ25 ⊗D1/2 = Γ7 ⊕ Γ8 .

This leads to the same results as above, where the effects of the two interac-
tions were taken into account in reversed order. The reason for this is that
group-theoretical considerations say nothing about the order of split levels.
The choice of one approach or the other is dictated by the relative strengths of
the interactions: the stronger is taken into account first, and then the weaker
is treated as a perturbation.

As we have seen, when an ion with a single f -electron is placed into a
lattice with cubic symmetry, crystal-field splitting reduces the sixfold degen-
eracy of the ground state to twofold. Because of this, at low temperatures the
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magnetic properties of the atom are similar to those of a spin-1/2 particle. At
higher temperatures, where thermal energies are comparable with the energy
splitting, each of the six J = 5/2 states are excited thermally. The temper-
ature dependence of susceptibility therefore deviates from the simple Curie
law.

6.1.4 Kramers’ Theorem

The previous calculation of the possible states of a single electron showed
that whatever kind of splitting is studied and however low the symmetry of
the local environment, if spin is also taken into account then even spin–orbit
interaction fails to split atomic energy levels completely – and the degree of
degeneracy will be an even number for each state. This finding is generalized
by Kramers’ theorem:3 In the absence of a magnetic field – which could break
time-reversal symmetry – each energy level is at least doubly degenerate in
any system that contains an odd number of electrons.

To verify this statement it should be recalled that the quantum mechan-
ical operator of time reversal T is antiunitary, that is, it can be written as
the product of a unitary operator U and the operator K0 of complex conju-
gation.4 For spinless particles T effectively transforms the wavefunction into
its complex conjugate:

Tψ(r1, r2, . . . , t) = ψ∗(r1, r2, . . . ,−t) . (6.1.20)

For spin-1/2 particles the components of the wavefunction represented by a
two-component spinor become mixed as time reversal changes the sign of spin:

TsT−1 = −s . (6.1.21)

Following the customary quantization conventions, the eigenvalues of the spin
z component are chosen as spin states:

K0sxK0 = sx, K0syK0 = −sy, K0szK0 = sz . (6.1.22)

Then the unitary part U of the time-reversal operator has to rotate the spin
through π around the y-axis. One possible choice is

T = ie−iπsyK0 = σyK0 , (6.1.23)

where σy is the corresponding Pauli matrix. When time reversal is performed
on the eigenstates of the spin z components, the spin component changes its
sign and the wavefunction receives a further spin-dependent factor. A conve-
nient choice is
3

H. A. Kramers, 1930.
4 For antiunitary operators

(
Tφ,Tψ

)
=
(
ψ, φ

)
, where (, ) denotes the scalar prod-

uct, and T (aφ+ bψ) = a∗Tφ+ b∗Tψ.
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Tψ(r, sz, t) = (−i)2szψ∗(r,−sz,−t) . (6.1.24)

These expressions can be generalized to several particles. Either the form

T = σ1yσ2y . . .K0 (6.1.25)

is used, or, when the particles are in some eigenstates of the spin z component,

Tψ(r1, s1z, r2, s2z , . . . , t) = (−i)2(s1z+s2z+... )ψ∗(r1,−s1z, r2,−s2z, . . . ,−t) .
(6.1.26)

This implies that for the eigenstates of a system with n electrons,

T 2ψ = (−1)nψ . (6.1.27)

As T contains a rotation of the spin by π, T 2 corresponds to a 2π rotation.
However, a spinor is not transformed into itself but into its negative by such
a rotation. This explains the factor (−1)n.

Time reversal transforms a Hamiltonian that contains position, momen-
tum, and spin variables ri, pi, and si into

TH(ri,pi, si)T
−1 = H(ri,−pi,−si) . (6.1.28)

In the absence of a magnetic field, even when the spin–orbit interaction is
taken into account, the Hamiltonian is invariant under time reversal:

H(ri,pi, si) = H(ri,−pi,−si) . (6.1.29)

So, besides ψ, Tψ is also an eigenfunction, with the same energy. However, as
we shall prove it below, when the number of electrons is odd, (6.1.27) implies
the orthogonality of the two eigenfunctions – and so the state is at least doubly
degenerate, as asserted by Kramers’ theorem.

To prove their orthogonality, consider the scalar product of two functions
f and g. The properties of the product imply

(K0f,K0g) = (f, g)∗ = (g, f) (6.1.30)

for the complex conjugate functions. By taking time reversal instead of com-
plex conjugation, the involved spin factors do not spoil the relation, therefore

(Tf, T g) = (g, f) , (6.1.31)

in agreement with the antiunitarity of time reversal. Applying this relation to
the states ψ and Tψ, and using (6.1.27)), we have

(ψ, Tψ) = (T 2ψ, Tψ) = (−1)n(ψ, Tψ) . (6.1.32)

The last equation shows that for n odd, the two states are orthogonal indeed,
and so besides ψ, Tψ is another independent eigenfunction, with the same
energy.
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6.1.5 Selection Rules

In solid-state physics the following questions are often addressed: How does the
initial state of a system change under some external perturbation? What new
states may arise? Quantum mechanics tells us that when the system is initially
in an eigenstate ψi(r) of the unperturbed Hamiltonian and perturbation is
given by the interaction term Hint then the probability for a transition into
a state with wavefunction ψf(r) is proportional to the absolute square of the
matrix element

Mi→f =
∫

ψ∗
f (r)Hintψi(r) dr . (6.1.33)

For the system of electrons and for the atoms (ions), as well as the crys-
talline state built up of them, specification of the set of transitions that are
allowed or forbidden for symmetry reasons is of particular interest. Rules
that determine through symmetry considerations the set of states into which
transition from a particular state is possible under a given perturbation are
called selection rules. (A more rigorous mathematical formulation is given in
Appendix D.) Here we just note that selection rules arise because of the pos-
sibility to classify the eigenstates of the unperturbed system that are involved
in the transition according to the irreducible representations of the symmetry
group of the unperturbed Hamiltonian. Since transition probabilities have to
be invariant under symmetry operations, transitions are allowed only between
states with specific symmetry properties. As an application, below we shall
examine the restrictions imposed by translational symmetry.

6.2 Consequences of Translational Symmetry

When studying crystalline systems one is frequently concerned with the de-
termination of the energy eigenvalues and eigenstates of a lattice-periodic
Hamiltonian H: just like the crystal itself, the Hamiltonian must also be in-
variant under translations through Bravais lattice vectors in an ideal crystal.
In other words

H(r + tn) = H(r) (6.2.1)

is required, where tn is a translation vector of the form (5.1.1). The explicit
form of the Hamiltonian is irrelevant now – therefore the following results
will equally apply to electron states, phonon states of lattice vibrations, or
magnetic excitations.

Rigorously speaking, translation symmetry is violated in finite lattices,
even though invariance under discrete translations highly facilitates the math-
ematical description of the properties of crystalline materials. As surface phe-
nomena can be usually ignored in the calculation of macroscopic properties
of bulk materials, infinitely large samples seem to be the natural choice in
theoretical studies. However, the mathematical discussion is far more compli-
cated when the number of symmetry elements is infinite rather than finite.
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A suitable choice of the boundary condition allows for a reduction to a fi-
nite number of symmetry elements without losing the advantages of strict
translational invariance.

6.2.1 The Born–von Kármán Boundary Condition

Max Born
5 and T. von Kármán (1912) proposed a particular boundary

condition for the description of finite samples that opens the way to exploit-
ing the consequences of translational symmetry. The periodic or Born–von
Kármán boundary condition can be formulated in two ways:

1. Consider a crystal that is built up of identical groups of atoms repeated N1

times along direction a1, N2 times along direction a2, and N3 times along
direction a3. Imposing periodic (Born–von Kármán) boundary condition
amounts to formally identifying points on opposite faces of the crystal with
each other. Thus translation through Njaj (j = 1, 2, 3) takes any point
r of the lattice into itself. Intuitively this can be imagined as folding
one end of the sample back to the other. One-dimensional chains with
two free ends are thus transformed into rings, and two-dimensional finite
sheets into tori. No intuitive picture can be given for three-dimensional
crystals – therefore preference is given to the second formulation in this
case.

2. The periodic boundary condition can be regarded as if the originally finite,
parallelepiped-shaped sample were translated through all integral linear
combinations of the vectors Njaj . The obtained pattern fills the entire
space, and the point at r is rigorously equivalent to all points

r′ = r +
3∑
j=1

pjNjaj , (6.2.2)

where the pj are integers.

The two formulations of the Born–von Kármán boundary condition are
illustrated in Fig. 6.3 for a one-dimensional chain of atoms.

When only nearest neighbors interact, the original chain of N atoms con-
tains N − 1 bonds – one less than the ring. The energy spectra of the two
systems are thus not identical. Deviations are expected to be on the order of
1/N , and are thus negligible for macroscopic samples. When the chain with
free ends is replaced by a ring, other choices for the additional bond are also
possible. For example, when studying a system of spins localized on atoms,
in some cases it might be advantageous to choose the interaction between
the two spins at the two ends to differ in sign or a phase factor from the
5

Max Born (1882–1970) was awarded the Nobel Prize in 1954 “for his fundamen-
tal research in quantum mechanics, especially for his statistical interpretation of
the wavefunction”.
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Fig. 6.3. Two different formulations of the Born–von Kármán boundary condition
on a finite one-dimensional chain of atoms. The chain is either wrapped into a ring
or repeated indefinitely. Consequences of translational symmetry can be exploited
in both cases

interaction within the chain. This boundary condition is called antiperiodic
or twisted. For electrons moving along a one-dimensional chain, the choice of
periodic (antiperiodic) boundary condition is more practical when the number
of fermions is odd (even).6

The restriction imposed by the Born–von Kármán boundary conditions
can be formulated in terms of the quantum mechanical wavefunction as

ψ(r) = ψ(r + Njaj) , j = 1, 2, 3 . (6.2.3)

Its counterpart for antiperiodic boundary conditions is

ψ(r) = −ψ(r + Njaj) . (6.2.4)

6.2.2 Bloch’s Theorem

The lattice-periodic character of the Hamiltonian may not be exhibited by the
wavefunction, which is not observable in itself. However, Bloch’s theorem7 ap-
plies to the solutions of the Schrödinger equation with a lattice-periodic poten-
tial. A general formulation of the theorem reads: Solutions to the Schrödinger
equation for a lattice-periodic Hamiltonian can be characterized by a vector
quantum number k defined in the primitive cell of the reciprocal lattice. This
“wave vector” governs the behavior under translations in the sense that values
of ψk(r) – i.e., the wavefunction associated with the quantum number k –
taken in different primitive cells differ by a simple phase factor:

ψk(r + tn) = eik·tnψk(r) . (6.2.5)

6 This must be so, since if the number of electrons is even, moving an electron from
one end of the chain to the other equivalent end requires exchanging it with an
odd number of electrons.

7
F. Bloch, 1928. The one-dimensional version of this theorem is also known as
Floquet’s theorem in other branches of physics and mathematics.
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Alternatively, as it will be discussed in Chapter 17, Bloch’s theorem states
that the eigenfunctions of a lattice-periodic Hamiltonian may be written in
the form

ψk(r) = eik·ruk(r) , (6.2.6)

where uk(r) is lattice periodic. As we shall see, k can take only well-defined
discrete values determined by the specific boundary condition.

To prove Bloch’s theorem, we shall introduce the linear operator O(tn) of
the translation through tn. By definition, for any function f(r)

O(tn)f(r) = f(r − tn) . (6.2.7)

First, we shall demonstrate that O(tn) commutes with the lattice periodic
Hamiltonian H(r). By operating O(tn) on H(r)f(r) and making use of (6.2.1)
and (6.2.7),

O(tn)H(r)f(r) = H(r − tn)f(r − tn)
= H(r)f(r − tn) = H(r)O(tn)f(r)

(6.2.8)

is obtained, that is, the Hamiltonian commutes with any operator associated
with a translation through a lattice vector:

O(tn)H(r) = H(r)O(tn) . (6.2.9)

As H(r) and O(tn) commute, they can be diagonalized simultaneously.
The obtained wavefunctions are then denoted by ψα(r), and the eigenvalues
by εα and tα(tn),

H(r)ψα(r) = εαψα(r) ,

O(tn)ψα(r) = tα(tn)ψα(r) .
(6.2.10)

Here the label α serves only to distinguish the states. Its possible values will
be determined later.

The succession of two translations through tn and tn′ is the same as a
single translation through tn + tn′ :

O(tn)O(tn′) = O(tn + tn′) . (6.2.11)

This equation defines group multiplication in the group of translations. As the
result is independent of the order of the two translations, group multiplication
is commutative,

O(tn)O(tn′) = O(tn′)O(tn) , (6.2.12)

and so translations form a commutative or Abelian group. Irreducible rep-
resentations of Abelian groups are known to be one-dimensional, thus the
quantum number α also serves to index them.

When the translation operator acts on the basis function of the one-
dimensional representation of index α, (6.2.11) implies
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tα(tn)tα(tn′) = tα(tn + tn′) (6.2.13)

for the eigenvalues. Translation through tn can be built up of translations
through primitive vectors, in the form given by (5.1.1). Thus the translation
operator O(tn) can also be expressed in terms of the operators that correspond
to the elementary translation vectors,

O(tn) = [O(a1)]
n1 [O(a2)]

n2 [O(a3)]
n3 . (6.2.14)

Consequently, the eigenvalues of the translation operator satisfy the equation

tα(tn) = [tα(a1)]
n1 [tα(a2)]

n2 [tα(a3)]
n3 . (6.2.15)

The eigenvalues tα(tn) can be determined from the requirement that the
boundary conditions imposed on the wavefunctions should also be satisfied.
For a general parallelepiped-shaped sample the Born–von Kármán boundary
conditions (6.2.3) may be written as

ψ(r −Njaj) = ψ(r) , j = 1, 2, 3 . (6.2.16)

This implies
O(N1a1) = O(N2a2) = O(N3a3) = 1 , (6.2.17)

leading to
[tα(a1)]

N1 = [tα(a2)]
N2 = [tα(a3)]

N3 = 1 . (6.2.18)

The solutions of these equations are the roots of unity,

tα(aj) = e−2πipj/Nj , (6.2.19)

where pj is an integer. The Nj different roots are most simply obtained by
restricting pj to the range

0 ≤ pj ≤ Nj − 1 . (6.2.20)

Substituting the above form of tα(ai) into (6.2.15) gives

tα(tn) = exp[−2πi(n1p1/N1 + n2p2/N2 + n3p3/N3)] . (6.2.21)

This eigenvalue can thus be expressed in terms of the three quantum numbers
p1, p2, p3. The precise specification of the state may require further quantum
numbers that appear in the wavefunction and the energy eigenvalues – but
not in the eigenvalues of the translation operator. Below, we shall focus on the
triplet p1, p2, p3 and ignore these further quantum numbers; their importance
will transpire only later.

The expression for tα(tn) may be written in a more concise form using the
notation

k =
p1

N1
b1 +

p2

N2
b2 +

p3

N3
b3 , (6.2.22)



6.2 Consequences of Translational Symmetry 189

where b1, b2, and b3 are the primitive vectors of the reciprocal lattice. Because
of the restrictions on pj , the k are within the primitive cell spanned by the
vectors bi. When the pj run over their entire range, the resulting set of vectors
fill this primitive cell evenly.

Using the multiplication rule (5.2.12) for the product of a direct- and a
reciprocal-lattice vector, the expression in (6.2.21) can be written as

tk(tn) = e−ik·tn . (6.2.23)

Returning to (6.2.10), the solutions ψk(r) to the Schrödinger equation are
found to have the following property:

ψk(r + tn) = O(−tn)ψk(r) = tk(−tn)ψk(r) = eik·tnψk(r) . (6.2.24)

This completes the proof of Bloch’s theorem. As a by-product, we have also
derived the allowed values of the quantum number specifying the behavior
under translations, the wave vector (also called wave-number vector) k.

The phase factor contains the scalar product of the discrete translation
vector and the wave vector. For continuous translations a Taylor expansion
and subsequent summation of the wavefunction at the position shifted through
a, ψ(r + a) would lead to

ψ(r + a) = ψ(r) +
∑
α

∂

∂rα
ψ(r)aα + 1

2

∑
αβ

∂2

∂rα∂rβ
ψ(r)aαaβ + . . .

= exp
( ∂

∂r
· a
)
ψ(r) . (6.2.25)

This can be expressed in terms of the canonical momentum p as

ψ(r + a) = eip·a/�ψ(r) . (6.2.26)

This formula suggests that �k plays the same role in discrete translations as
momentum in continuous translations. This analogy justifies calling �k the
crystal momentum. Nevertheless it should be stressed that the state ψk(r) is
not necessarily an eigenstate of the momentum operator, and its momentum
is not necessarily �k.

6.2.3 Equivalent Wave Vectors

The number of different k vectors allowed by the boundary condition is N =
N1 × N2 × N3, i.e., the number of primitive cells in the finite crystal. The
choice of the wave vectors is, however, not unique. In the previous subsection
the quantum numbers pi (that appeared in the definition of k) were chosen
according to the condition (6.2.20). This particular choice implied that the
wave numbers fill a primitive cell of the reciprocal lattice.8 However, this
8 Throughout the present subsection “primitive cell” should be understood as “prim-

itive cell spanned by the primitive vectors of the reciprocal lattice”.
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choice is not unique. As the ks were determined from the requirement that
(6.2.18) should be satisfied, the same eigenvalues are found when pj is replaced
by pj + hjNj in (6.2.19) – where hj is an arbitrary integer. The behavior of
the system under translations is then characterized by the vector

k′ =
p1 + h1N1

N1
b1 +

p2 + h2N2

N2
b2 +

p3 + h3N3

N3
b3

= k + h1b1 + h2b2 + h3b3

(6.2.27)

instead of k. The two differ by a reciprocal-lattice vector,

k′ = k + G . (6.2.28)

It is readily seen that it makes no difference in Bloch’s theorem whether the
phase factor is determined using k or k′. For any translation through a lattice
vector,

tk(tn) = tk′(tn) . (6.2.29)

Thus k and k′ – which differ by a vector of the reciprocal lattice – can be
equivalently used as a quantum number of the states. In this respect, the two
vectors are equivalent.

As it was mentioned in Chapter 5, the object obtained with Dirichlet’s
construction in the reciprocal lattice is called the Brillouin zone. By appro-
priately cutting the primitive cell and translating the parts through suitably
chosen reciprocal-lattice vectors, the Brillouin zone is totally covered with-
out overlap in an unambiguous way. The parallelepiped-shaped primitive cell,
the Brillouin zone, and the parts that have to be translated to make the two
overlap are shown in Fig. 6.4 for a two-dimensional reciprocal lattice.

Fig. 6.4. Equivalence of the primitive cell spanned by the primitive vectors and the
Brillouin zone of a two-dimensional reciprocal lattice. Regions with identical shading
are displaced through some lattice vector

Since each vector k within the primitive cell can be unambiguously asso-
ciated with a wave vector inside the Brillouin zone, the states of the lattice-
periodic system can be specified using vectors k in the Brillouin zone. More
often than not, this path is taken in solid-state physics. The reason for this
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is related to symmetries. As will be demonstrated later, the energy spectrum
of states characterized by the wave vector k displays the same symmetries as
the crystal itself. On the other hand, as it has been mentioned, the primitive
cell spanned by the primitive vectors does not usually exhibit the symmetries
of the crystal, whereas the Brillouin zone does (similarly to the Wigner–Seitz
cell of the direct lattice). Thus the symmetries of the energy spectrum are
more transparent when the latter is represented in the Brillouin zone.

6.2.4 Conservation of Crystal Momentum

Noether’s theorem9 establishes that invariance under symmetry transforma-
tions usually implies conservation laws. Spatial translations are related to
momentum conservation; time translations to energy conservation; rotational
symmetry to angular-momentum conservation; and gauge symmetry to charge
conservation.

Crystalline systems are not invariant under arbitrary translations, there-
fore, strictly speaking, momentum is not conserved. However, as mentioned
above, because of discrete translational symmetry, crystalline states may be
characterized by a wave vector k, and the quantity �k plays a role similar to
momentum. We shall prove that although no strict conservation law is valid
for k, discrete symmetries nevertheless imply a conservation law of rather
limited validity. For this reason the crystal momentum �k is often called the
quasimomentum; the same name is often applied to k itself in the literature.

In quantum mechanics, the time derivative of the translation operator is
given by

dO(tn)
dt

=
i
�

[H, O(tn)] . (6.2.30)

Since the Hamiltonian commutes with the translation operator in crystalline
systems, we have

dO(tn)
dt

= 0 . (6.2.31)

Consequently, the wave vector k that characterizes the transformation of the
wavefunction under translations is independent of time.

Suppose that the wavefunction of the system can be written as the product
of the wavefunctions of r subsystems,

ψk = φk1φk2 . . . φkr
, (6.2.32)

where the behavior of the subsystems under translations is characterized by
a set of wave vectors kl (quasimomenta �kl), that is,

O(tn)φkl
(r) = e−ikl·tnφkl

(r) . (6.2.33)

Then the behavior of the whole system under translations is governed by
9

E. Noether, 1918.
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O(tn)ψk(r) = e−ik·tnψk(r) , (6.2.34)

where the wave vector k of the whole system is the sum of the wave vectors
of its subsystems:

k =
r∑
l=1

kl . (6.2.35)

This is true even if the complete wavefunction of the system has to be con-
structed as the symmetrized or antisymmetrized product of the wavefunctions
of the subsystems.

Microscopic processes that occur in the crystal – e.g., collisions between
electrons – may change the wavefunctions,10 and thus the quasimomenta of
the subsystems. Assume that, as a result of such an internal collision, the
initial state

ψk = φk1φk2 . . . φkr
(6.2.36)

of the system changes into the final state

ψk′ = φk′
1
φk′

2
. . . φk′

r′
, (6.2.37)

where

k =
r∑
l=1

kl , k′ =
r′∑
l=1

k′
l . (6.2.38)

If the system is not subject to any external perturbation, then constancy of
k in time means

k ≡ k′ . (6.2.39)
Instead of equality – which would rigorously hold for continuous translational
symmetry – only the equivalence (≡) of the initial and final wave vectors is
guaranteed by discrete translational symmetry, that is, the two may differ by
a reciprocal-lattice vector:

k′ = k + G . (6.2.40)
This is because only the phase factors that appear in the wavefunctions have
to be equal – that is, for a translation through an arbitrary lattice vector tn
only the equality

e−ik·tn = e−ik′·tn (6.2.41)
is required. This is also met by equivalent wave vectors.

In vacuum, electrons interact via Coulomb repulsion. The situation is more
complicated in solids. As we shall see in Volume 3, the effects of other electrons
can be taken into account using some kind of modified, effective interaction
between electrons. However, just like Coulomb interaction, this effective in-
teraction is a pair interaction: it leads to elementary processes in which the
state of only two electrons change at the same time. To put it otherwise: in an
elementary process two electrons with quasimomenta �k1 and �k2 are scat-
tered into a state with quasimomenta �k′

1 and �k′
2. This scattering process is

illustrated in Fig. 6.5.
10 Note that even in thermal equilibrium the system is not in a pure state.
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k1

k2

k1'

k2'

Fig. 6.5. Diagrammatic representation of the interaction between two electrons,
with the initial and final wave vectors of the particles

Strict momentum conservation applies to all scattering processes among
free electrons. According to the foregoing, this requirement is replaced by

k′
1 + k′

2 = k1 + k2 + G (6.2.42)

for electrons moving in a crystal lattice.
The interaction of electrons with lattice vibrations may be interpreted in

terms of the creation (emission) and annihilation (absorption) of a quantum
of lattice vibration – a phonon. Such processes are shown in Fig. 6.6, where
solid lines represent electrons and wavy lines the quanta of lattice vibrations
emitted or absorbed in the interaction.

k

q

k = k+q' k

q

k = k-q'

Fig. 6.6. Diagrammatic representation of the emission and absorption of quanta
of lattice vibrations by electrons. Solid lines are electrons, wavy lines are lattice
vibrations

In a process where a single electron absorbs a phonon of wave vector q,
the electron is scattered into a state with wave vector

k′ = k + q + G . (6.2.43)

In processes where phonons are emitted

k′ + q = k + G . (6.2.44)

Processes in which G = 0 are called normal processes (N-processes), while
those in which G �= 0 are called umklapp processes (U-processes).11 This dis-
tinction is important because normal and umklapp processes may give essen-
tially different contributions to the macroscopic properties of the crystal. For
11

R. E. Peierls, 1929. The English equivalent of umklapp process is flip-over
process, however this is hardly used in the literature.
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example, thermal conductivity cannot be understood without taking umklapp
processes into account. On the other hand, there are some physical properties
of solids that may be interpreted without recourse to the discreteness of the
lattice. When the lattice model of a crystal is replaced by a continuous one,
the size of the primitive cell goes to zero, and the vectors of the reciprocal
lattice become infinitely large. Umklapp processes are then negligible, and
strict momentum conservation is recovered.

The conservation of quasimomentum may be applied to the scattering of
an incident beam of photons, neutrons, or electrons by crystalline samples.
Assume that the incident beam is described by a plane wave, i.e., the incom-
ing particles have a well-defined momentum (or wave number). Due to the
discrete translational symmetry of the sample, the initial wave vector k of the
incoming particle may change by a reciprocal-lattice vector in elastic scatter-
ing processes – i.e, when the state of the sample does not change. Thus the
outgoing beam is made up of particles with wave vector

k′ = k + G , |k′| = |k| (6.2.45)

or momentum �k′. As we shall see in Chapter 8, this constraint is just the
Laue condition of diffraction.

In inelastic processes a quantum of lattice vibration of wave vector q may
be created or absorbed in the interaction between the incoming particles and
the solid. Then condition

k′ = k + q + G (6.2.46)

needs to be satisfied in processes with phonon emission and

k′ = k − q + G (6.2.47)

in processes with phonon absorption. The conservation of quasimomentum
can be written similarly for other processes, e.g., scattering or absorption of
light (photons) by a system of electrons.

The foregoing discussion applies to perfect crystals that are free of im-
purities and defects. Such imperfections are always present in real crystals,
nevertheless as long as their concentration is low, the probability that scat-
tering occurs on them is negligible, and so the above selection rules can be
used. Because of the periodic boundary condition, the above considerations
are valid for states within the sample, far from its surface. In processes where
scattering occurs on surface states, only the component of the wave vector
parallel to the surface (k‖) is conserved, the perpendicular component (k⊥)
is not.

6.2.5 Symmetry Properties of Energy Eigenstates

As we have seen above, microscopic states within a crystalline material can
be characterized by the wave vector k. However, nothing has been said of the
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energy εk of the states yet. We shall show that whatever the explicit form of
the Hamiltonian, the symmetry properties of the system appear in εk, too.

Suppose that a solution to the Schrödinger equation

Hψk(r) = εkψk(r) (6.2.48)

is known. This may be an electronic state, a vibrational state of the lattice, or
a magnetic excitation. Let us now examine what happens when this state is
acted upon by a symmetry element of the space group of the crystal, {α|tn},
which is composed of a rotation α and a translation tn.

If the system is not subject to any external perturbation, then the symme-
try elements of the space group of the crystal leave the Hamiltonian invariant,
and it commutes with these symmetry operations, that is,

O({α|tn})H = HO({α|tn}) . (6.2.49)

Acting on the Schrödinger equation (6.2.48) with the symmetry operator and
using the previous commutation relation we have

HO({α|tn})ψk(r) = εkO({α|tn})ψk(r) . (6.2.50)

Apparently, in addition to ψk(r), O({α|tn})ψk(r) is also an eigenfunction
of the Schrödinger equation, with the same energy eigenvalue εk. Had we
made recourse to Wigner’s theorem, we could have written down this result
immediately.

Now let us examine the behavior of the wavefunction O({α|tn})ψk(r)
under translations – in particular, the action of the translation operator
O(tm) = O({E|tm}) on this state. Using the relation

O({E|tm})O({α|tn}) = O({α|tn})O({E|α−1tm}) , (6.2.51)

which is a straightforward consequence of the multiplication rule for the ele-
ments of the space group, we have

O(tm)O({α|tn})ψk(r) = O({α|tn})O(α−1tm)ψk(r)

= O({α|tn})e−ik·(α−1tm)ψk(r)

= O({α|tn})e−i(αk)·tmψk(r)

= e−i(αk)·tmO({α|tn})ψk(r) .

(6.2.52)

The wave vector of the transformed wavefunction is thus αk. However, as the
energy of the state remains the same, we have

εαk = εk . (6.2.53)

It can be established in complete generality that εk possesses the full symme-
try of the point group.12

12 Note that in this derivation we did not have to assume that tn in {α|tn} is a
translation vector of the lattice, thus our result is also valid in the case when the
space group contains glide reflections and/or screw rotations.
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In later chapters dealing with electrons, phonons, and magnons, one of
our most important tasks will be the determination of the energy εk for all
possible values of k – as this provides the dispersion relation of the excitation.
By exploiting the symmetries of εk, the energy values do not need to be
determined for each point of the full Brillouin zone separately: calculations or
measurements can be restricted to a small portion of the zone. Energies for
any other k can then be established using symmetry considerations.

Fig. 6.7. Wave vectors with the same energy in the Brillouin zone of a two-
dimensional square lattice

Figure 6.7 clearly shows that in a two-dimensional square crystal calcula-
tions have to be performed in one-eighth of the Brillouin zone, as symmetry
operations relate any general point k = (kx, ky) to seven others. In a three-
dimensional cubic crystal a general point (kx, ky, kz) of the Brillouin zone is
related to 47 others by the 48 symmetry operations of a cube, as it can be
read off from Tables 5.1 and 5.4. Thus in this case the spectrum needs to be
determined on 1/48 of the Brillouin zone.

Next, let us consider crystals with inversion centers. Inversion transforms
the variable r into −r, and a state with wave vector k into another with wave
vector −k. However, because of its axial vector character spin is left invariant,
and so

εk,σ = ε−k,σ (6.2.54)

For spinless excitations – e.g., excitations of lattice vibrations – the relation

εk = ε−k (6.2.55)

is valid more generally, even in crystals without an inversion center. This is
the consequence of invariance under time reversal, as in this particular case
time reversal is equivalent to complex conjugation. By taking the complex
conjugate (cc) of the Schrödinger equation, and using the Hermiticity of the
Hamiltonian,

Hψ∗
k(r) = εkψ

∗
k(r) . (6.2.56)
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The transformation properties of wavefunctions under translations imply that
complex conjugation of the wavefunction takes a state with quasimomentum
k into one with quasimomentum −k. This means that for spinless excitations
the excitation energy is always an even function of the wave number.

The situation is more complicated for electrons. If spin–orbit interactions
are taken into account but no magnetic field is present then the Hamiltonian

H = − �
2

2me
∇2 + U(r) +

�

2m2
ec

2

1
r

dU(r)
dr

(r × p) · s , (6.2.57)

which contains the term given in (3.1.33), is invariant under time reversal.
Therefore the time reversed of each eigenfunction is also an eigenfunction, with
the same energy. However, the presence of spin–orbit interaction no longer
permits us to index the eigenstates with the spin z component: the latter
is not a good quantum number any more. Time reversal changes the sign
of orbital angular momentum and spin alike: p → −p and s → −s. The
eigenstates ψk,α(r) and ψk,β(r) of the Hamiltonian can therefore be written
as linear combinations of the ms = ± 1

2 states |↑〉 and |↓〉:
ψk,α(r) = χk,+(r)|↑〉 + χk,−(r)|↓〉 ,
ψk,β(r) = −χk,−(r)|↑〉 + χk,+(r)|↓〉 . (6.2.58)

These states may be chosen such that ψk,α(r) go over into ψk,↑(r) and ψk,β(r)
into ψk,↓(r) when the strength of the spin–orbit interaction vanishes.

Instead of (6.1.23), the time reversal operator may be written as

T = e−iπsyK0 = −iσyK0 , (6.2.59)

which amounts to a different choice of the phase factor. When applied to the
above states,

Tψk,α(r) = ψ−k,β(r) and Tψk,β(r) = −ψ−k,α(r) , (6.2.60)

which leads to
εk,α = ε−k,β , εk,β = ε−k,α . (6.2.61)

Owing to the spin–orbit interaction, the two spin states associated with the
same wave vector k have different energies, however for each of them there
exists another state with the same energy. This is just Kramers’ theorem for
one-particle electron states.

If the crystal has inversion symmetry in addition to time reversal invariance
then relations (6.2.54) and (6.2.61) imply

εk,α = εk,β (6.2.62)

as well, that is, in the absence of an external magnetic field electron states
show spin degeneracy, despite the explicit spin-dependence of the spin–orbit
interaction. This degeneracy is lifted when inversion symmetry is broken.
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In certain cases states that correspond to ks on the boundary of the Bril-
louin zone have special properties: for certain symmetries the derivative of
the dispersion curve – that is, the velocity of the particle associated with the
excited state – vanishes. In the customary representation this means that dis-
persion curves arrive perpendicularly at the boundaries of the Brillouin zone.
We shall investigate the conditions for this.

Suppose that one of the boundary planes of the Brillouin zone is trans-
formed by a reflection symmetry of the crystal into another plane whose points
are equivalent with those of the original plane – that is, the two plane faces
can be transformed into one another by a translation through a reciprocal-
lattice vector G. This also means that this boundary is itself a mirror plane
of the reciprocal lattice.

Consider a point k1 close to the boundary of the Brillouin zone, as shown
in sectional view in Fig. 6.8. If reflection symmetry takes k1 into k2, the
corresponding energies are equal: εk1 = εk2 . Translation of k2 through a
reciprocal-lattice vector G gives k3. Because of the equivalence of these points
εk3 = εk2 , and so εk1 = εk3 .

ky

�/a	�/a

	�/a

�/a

kx

k2 k1

k3

G

Fig. 6.8. Wave vectors that are transformed into one another by a reflection or a
translation through a reciprocal-lattice vector

Unless the energy level becomes degenerate with another, the relation
εk1 = εk3 implies that as k moves along a line perpendicular to the zone
boundary εk takes an extremum on the boundary. This implies that the dis-
persion curve is perpendicular to the boundary, i.e., its normal derivative –
the velocity of the excitations – vanishes.

This requires that this piece of the zone boundary be a symmetry plane –
and also that degeneracies be lifted on the boundary. If the latter requirement
is not met, the previous relations imply that the derivatives of the dispersion
curve are equal in magnitude but opposite in sign in the two branches. We
shall see an example in the band structure of silicon and germanium.
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6.3 Symmetry Breaking and Its Consequences

In the foregoing we have dealt mostly with the symmetries that appear in
crystalline systems and emphasized their importance in describing physical
properties. We have not investigated how this symmetry is related to the full
symmetry of the system’s Hamiltonian. Later, when the Hamiltonian – of
the system of electrons or the lattice itself – is specified, we shall see that it
possesses more symmetries than the actual physical state. The Hamiltonian
is invariant under an arbitrary translation, while the crystal itself only un-
der discrete ones. In such cases some symmetry of the Hamiltonian is said
to be spontaneously broken in the physical system. Just as the presence of
symmetries helps to understand the behavior of the physical system, their
absence, i.e., the breaking of some symmetries of the Hamiltonian may also
have important implications. Symmetry breaking may also occur when a sys-
tem undergoes a transition from one phase to another. In this case symmetry
considerations may be helpful in describing some features of the transition
and of the new phase.

6.3.1 Symmetry Breaking in Phase Transitions

The crystalline phase, which is invariant under discrete translational symme-
tries, is reached through a phase transition from the liquid phase, which is
invariant under arbitrary translations. Further phase transitions may occur in
the crystalline state; for example, different modifications may become stable,
or a magnetic or superconducting phase may appear below a certain critical
temperature. In each of them, further symmetries are broken. Whether the
transition itself is first- or second-order, symmetry is always broken abruptly.
This is expressed by Landau’s statement, which P. W. Anderson called
the first theorem of condensed-matter physics: Symmetry cannot change con-
tinuously. A system is either invariant or not under a symmetry operation.
However small the symmetry-breaking contribution in a physical quantity, if
it is finite the symmetry is broken.

It should be noted that phase transition is not necessarily accompanied
by a change in symmetry. A typical example for this is the transition between
liquid and gas phases. However, here we are interested in the general conclu-
sions that can be drawn from symmetry considerations provided symmetry is
changed.

The basic assumption underlying the Landau theory of phase transitions13
is that in second-order (continuous) phase transitions the phase that is stable
at lower temperatures is always distinguished from the high-temperature dis-
ordered phase by a suitable order parameter. This order parameter vanishes in
the disordered (usually higher-temperature) phase and appears continuously
in the phase transition, which is why free energy can be expanded in its pow-
ers. We shall present a somewhat more detailed discussion in Chapter 14 in the
13

L. D. Landau, 1937.
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context of phase transitions of magnetic systems. As E. M. Lifshitz pointed
out in 1941, the method provides a means to investigate which symmetries of
a particular crystal might be preserved. For example, in an alloy undergoing
disorder–order phase transition one may predict which sites of the crystal will
be occupied by one atomic species and which sites by the other. Even more
interesting is that when magnetic ordering takes place, knowledge of the sym-
metries of the high-temperature magnetically disordered phase permits one to
predict the symmetries of the magnetically ordered states that might appear
– provided the phase transition is of second order.

6.3.2 Goldstone’s Theorem

The above considerations are concerned with the macroscopic properties that
a state arising from symmetry breaking might have. Conversely, Goldstone’s
theorem14 is concerned with the system’s microscopic behavior. Here we give
the statement without proof: If the Hamiltonian of a system possesses some
continuous symmetry that is broken in the actual physical state then – provided
the interaction is not long-ranged – the energy of the lowest-lying excited states
of the system are on the order of 1/N above that of the ground-state. In the
N → ∞ limit the energies of the excited states form a continuum, which is
not separated by any gap from the ground state. Moreover, this continuum
is similar to the energy spectrum of a system of free particles obeying Bose–
Einstein statistics.

The low-lying excited states arise from the fluctuations of the symmetry-
breaking order parameter. According to the theorem the spectrum of these
fluctuations can be interpreted in terms of bosonic effective particles, elemen-
tary excitations. These soft modes are called Goldstone bosons. The energy of
the excitations is proportional to their wave number, except when the order
parameter is a conserved quantity; in this case the energy is proportional to
the square of the wave number.

We shall see an example for this in lattices held together by short-range
forces, where breaking the continuous translational symmetry gives rise to
low-energy long-wavelength acoustic phonon modes. Similarly, breaking the
continuous rotational symmetry in isotropic ferro- or antiferromagnetic mate-
rials leads to low-energy spin waves. In both cases the spectrum of collective
excitations is gapless. Note that the theorem states nothing about breaking a
discrete symmetry of the Hamiltonian. In this case the ground state is usually
separated from the continuum of excited states by a finite gap.

It is essential that Goldstone bosons do not appear for long-range forces:
the spectrum of collective bosonic excitations has a gap then. When examining
the excitation spectrum of an interacting electron gas we shall see that plas-
mons have a finite energy as Coulomb repulsion has a long range. In Wigner
crystals (to be discussed in Chapter 30) two soft transverse modes appear,

14
J. Goldstone, 1961.
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however the longitudinal mode does not become soft. Goldstone bosons are
absent in superconductors, too. However, in liquid helium-4, where interac-
tions are short-ranged, the excitation spectrum is gapless. The bosonic exci-
tations that acquire a finite energy due to long-range forces are called Higgs
bosons15 in solid-state physics, too.

Goldstone’s theorem is concerned with the spectrum of excitations for
systems in which a continuous symmetry of the Hamiltonian is broken. It
does not tell anything about when this happens. A partial answer to this
question is given by Coleman’s theorem.16 It states that quantum fluctuations
will restore the continuous symmetry in the ground state of one-dimensional
systems; continuous symmetry cannot be broken in the ground state, except
when the order parameter associated with symmetry breaking is conserved.
It was already mentioned in Chapter 2 that thermal fluctuations hinder any
ordering in one-dimensional systems at finite temperatures unless the forces
are long-ranged (Landau–Peierls instability). Coleman’s theorem states that
even the ground state cannot be ordered, since quantum fluctuations play a
similar role there. The instability against breaking a continuous symmetry in
two-dimensional systems at finite temperatures will be discussed in Chapters
12 and 15.
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The Structure of Crystals

As we shall illustrate with several examples below, the knowledge of the space
group (the geometrical symmetries of the crystal) is not sufficient to recon-
struct the structure of the crystal – i.e., the position of the atoms in the
primitive cell – unambiguously. Different ways of decorating the primitive cell
may lead to the same space group. This means that the number of structure
types is expected to be much higher than the number of space groups.

The structure of naturally occurring crystals shows a remarkable diversity
indeed. However, possible structures do not appear equally frequently. The
stable crystal structure of the elements at low temperature (and also at room
temperature, whenever the two are different) and atmospheric pressure are
listed in Appendix B. For several elements, further so-called allotropic modifi-
cations are possible. A quick glance at the table shows that about one-third of
the elements are crystallized in one of four structures: cI2 and cF4 of the cubic
system and hP2 and hP4 of the hexagonal system. (The nomenclature used
above will be presented in the next section.) When the crystal structure of
two-component compounds of composition AB is examined, the dominance of
a small number of structure types is once again noticed. This is explained by
the nature of the forces that hold crystals together; therefore we shall investi-
gate the relation between crystal structure and bonding in the closing section
of this chapter. Before that we shall study some frequent structures observed
in elements and simple compounds – and also take a look at a handful of more
complex but physically interesting structures.

7.1 Types of Crystal Structures

Two crystals are said to belong to the same structure type when their space
groups and the coordinates of the atoms within the Bravais cell are identi-
cal. To be more precise, in addition to the space groups, the stoichiometric
compositions have to be identical as well. However, when atoms are not in
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Table 7.1. The Strukturbericht symbol, name, prototype, and Pearson symbol for a
number of simple crystal structures and the Schoenflies and international notations
for their space groups

Crystal structure Proto- Pearson Symbols for

Symbol Name type symbol the space group

A1 face-centered cubic Cu cF4 O5
h Fm3m

A2 body-centered cubic W cI2 O9
h Im3m

A3 hexagonal Mg hP2 D4
6h P63/mmc

close packed
A3′ double hexagonal La hP4 D4

6h P63/mmc
close packed

A4 diamond C cF8 O7
h Fd3m

A8 γ-selenium Se hP3 D4
3 P3121

A9 graphite C hP4 D4
6h P63/mmc

A15 Cr3Si cP8 O3
h Pm3̄n

Ah simple cubic α-Po cP1 O1
h Pm3m

B1 sodium chloride NaCl cF8 O5
h Fm3m

B2 cesium chloride CsCl cP2 O1
h Pm3m

B3 sphalerite ZnS cF8 T 2
d F 4̄3m

B4 wurtzite ZnS hP4 C4
6v P63mc

B81 NiAs hP4 D4
6h P63/mmc

C1 fluorite CaF2 cF12 O5
h Fm3m

C2 pyrite FeS2 cP12 T 6
h Pa3̄

C3 cuprite Cu2O cP6 O4
h Pn3̄m

C4 rutile TiO2 tP6 D14
4h P42/mnm

C14 Laves phase MgZn2 hP12 D4
6h P63/mmc

C15 Laves phase Cu2Mg cF24 O7
h Fd3m

D02 skutterudite As3Co cI32 T 5
h Im3

D03 BiF3 cF16 O5
h Fm3m

D09 ReO3 cP4 O1
h Pm3m

D2f UB12 cF52 O5
h Fm3m

D81 Fe3Zn10 cI52 O9
h Im3m

E21 perovskite CaTiO3 cP5 O1
h Pm3m

H11 spinel MgAl2O4 cF56 O7
h Fd3m

L10 AuCu tP2 D1
4h P4/mmm

L12 Cu3Au cP4 O1
h Pm3m

L21 Heusler phase AlCu2Mn cF16 O5
h Fm3m

L22 Sb2Tl7 cI54 O9
h Im3m

L′3 Fe2N hP3 D4
6h P63/mmc
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high-symmetry positions, their coordinates may differ slightly – but the local
symmetry around the atoms should be the same everywhere.

Some characteristics of the crystal structure – namely the Bravais-lattice
type and the number of atoms in the Bravais cell – are contained in the
Pearson symbol. The generic code is xY n; x is the symbol of the crystal
system, given in Tables 5.7 and 5.8 (a for triclinic, m for monoclinic, o for
orthorhombic, t for tetragonal, h for trigonal and hexagonal, c for cubic); Y
refers to the type of the Bravais lattice (P for primitive, C for base-centered,
I for body-centered, F for face-centered, R for rhombohedral); and n gives
the number of atoms in the Bravais cell.

However, the Pearson symbol does not specify how the atoms are arranged
within the cell. Although in many cases symmetry requirements impose re-
strictions on the positions of the second, third, fourth, etc. atoms (if they
were placed arbitrarily, some symmetries would be broken), the Pearson sym-
bol does not identify the structure unambiguously.

Various nomenclatures are used for specifying the structure type more
precisely in the physical, chemical, and crystallographic literature. One of
them is the Strukturbericht designation.1 Here letters A, B, C indicate whether
it is a one-component crystal, or a two-component one with a composition
XY, XY2, XmYn, etc. Structures within the same group are distinguished
by numbers. It is also common practice to denote the structure type by the
chemical symbol for a characteristic example, a prototype. Several thousand
structure types exist; a handful of the simplest are selected in Table 7.1, with
their usual symbols and names as well as Pearson symbols and space-group
notations. The majority of the listed structures belong to the cubic system,
and a smaller part to the hexagonal structure; these are the commonest for
chemical elements and compounds alike. In the following sections we shall
examine some of them in detail – bearing, nevertheless, in mind, that only a
very narrow selection of the wealth of structures can be presented here.

7.2 Cubic Crystal Structures

Crystals that belong to the cubic crystal system come in three different
Bravais-lattice types: simple, body-centered, and face-centered.

7.2.1 Simple Cubic Structures

While it is rare among the elements and not too frequent among compounds,
either, our discussion starts with simple cubic crystals. This choice is justified
by common practice: when some physical quantities of a crystalline material
need to be determined theoretically, the lattice is most often assumed to be
simple cubic.
1 From the title of the supplement of a renowned German journal on crystallogra-

phy, Zeitschrift für Kristallographie. Strukturbericht means Structure Report.
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a
1

a
2

a
3

Fig. 7.1. Simple cubic lattice with the primitive vectors. The left cube (drawn with
solid lines) is the primitive cell; the right one is the Wigner–Seitz cell around a
lattice point

The primitive vectors of the simple cubic lattice are mutually perpendic-
ular and of equal length. Figure 7.1 shows such a lattice with its primitive
cell. Choosing a Cartesian coordinate system spanned by the unit vectors x̂,
ŷ, and ẑ along the axes of the cubic lattice, the primitive translation vectors
are

a1 = ax̂ , a2 = aŷ , a3 = aẑ , (7.2.1)

where the edge length a of the primitive cell is the lattice constant. The volume
of the primitive cell is thus v = a3. The Wigner–Seitz cell is also cubic, with
the same dimensions.

To determine the reciprocal lattice of the simple cubic lattice, consider
matrix Asc constructed from the above primitive vectors according to (5.2.3),
and its inverse:

Asc = a

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , Bsc =

2π
a

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . (7.2.2)

Using the definition (5.2.10), the primitive vectors of the reciprocal lattice are

b1 =
2π
a

x̂ , b2 =
2π
a

ŷ , b3 =
2π
a

ẑ . (7.2.3)

These primitive vectors generate a simple cubic lattice with lattice constant
2π/a, thus the reciprocal lattice of a simple cubic lattice is another simple
cubic lattice. Choosing the Brillouin zone as the domain of inequivalent k
vectors instead of the primitive cell spanned by the bi, this is also found to
be cubic, with the same edge length, 2π/a. The volume of the Brillouin zone
is thus (2π)3/a3.

In the previous chapter it was shown that the eigenstates of a crystalline
system may be specified in terms of the wave vectors k (as quantum num-
bers) defined in the Brillouin zone. We shall extensively use the convention of
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denoting special points of high symmetry by specific letters in the description
of lattice vibrations and electronic states. The special points of the Brillouin
zone of a simple cubic lattice and their letter symbols are shown in Fig. 7.2.

kx

�
�

X

� �

2 a��

Z
M

S

R

T

2 a��

ky

kz

Fig. 7.2. The Brillouin zone of a simple cubic lattice with the special points and
their letter symbols

The point group of a simple cubic (cP) Bravais lattice is m3̄m (Oh). We
have seen that, depending on the choice of the basis, a part of the symmetries
may be broken. Below we shall mention some structures in which the intro-
duction of a basis does not break any of the symmetries of the cube – that is,
whose space group is Pm3̄m (O1

h). This imposes severe restrictions on atomic
positions. The structures will be specified by the number and position of the
atoms in the basis.

The simplest crystal has one atom per unit cell; its Pearson symbol is cP1,
and its Strukturbericht symbol is Ah. The unit cell contains one atom, and so
lattice points can be chosen as atomic positions. This is shown in Fig. 7.3(a).
Very few natural crystals have this structure: among the elements α-polonium
is the only one.

( )b ( )c( )a

Fig. 7.3. Primitive cell for simple cubic structures with one-, two-, and four-point
bases. (a) Monatomic cP1 (Ah or Po) structure; (b) diatomic cP2 (B2 or CsCl)
structure; (c) tetratomic cP4 (L12 or Cu3Au) structure
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The reason for this is the bad space filling of this arrangement: each atom
has only six nearest neighbors. The number of nearest neighbors, called the
coordination number, is an important property of the crystal. In a monatomic
simple cubic structure this number is thus 6. Even though atoms are in con-
tact along the axes, large volumes are left empty among them in the interior
of the cells. Space filling can be quantitatively characterized by the packing
fraction (also called the atomic packing factor, APF), the ratio of the volume
of the atoms considered as touching spheres to the volume of the cell. When a
monatomic simple cubic lattice is constructed from spheres of radius r in con-
tact with each other, the edge length is a = 2r. The volume occupied by the
(single) atom is 4r3π/3 = πa3/6. This gives a packing fraction of π/6 = 0.524.

The lattice is more densely filled when the empty region among the atoms
sitting at the vertices of the cubes is occupied by further atoms. When the
basis is made up of two atoms, cubic symmetry is preserved only if one of
them is in a vertex and the other is at the center of the primitive cell. In this
arrangement – shown in Fig. 7.3(b) – the primitive cell contains two atoms,
hence the Pearson symbol is cP2.

A typical example for simple cubic structures with such a basis is cesium
chloride (CsCl), thus this arrangement is frequently called CsCl structure. The
traditional crystallographic designation is B2 structure. Positively charged
Cs+ ions (cations) sit in point 000 of each primitive cell, while negatively
charged Cl− ions (anions) sit at the centers 1

2
1
2

1
2 . It is readily seen in the

figure that each ion is surrounded by eight oppositely charged ions forming
a cubic environment, the coordination number is therefore 8. Among two-
component compounds of composition AB this structure ranks among the
most frequently occurring ones. Among others, brass (CuZn, β-brass) belongs
to this group.

A cubic lattice cannot be decorated with a three-point basis in such a
way that cubic symmetry is preserved. However, when the basis contains four
atoms, several possibilities exist. In one of them, shown in Fig. 7.3(c), atoms
are found at the vertices and face centers, and the chemical composition is
AB3. This structure is denoted by cP4 or (in traditional crystallographic nota-
tion) by L12. A typical example is the ordered phase of the alloy Cu3Au, which
is why it is also called Cu3Au structure. The “A” atoms (in the above exam-
ple, Au) sit at the vertices, while the “B” atoms (Cu) sit at the face centers.
Thus the atomic coordinates in the basis are 000 for the Au atom and 0 1

2
1
2 ,

1
20 1

2 , and 1
2

1
20 for the Cu atoms. Each atom has 12 nearest neighbors in this

array, the coordination number is therefore 12. Au atoms are surrounded by
Cu atoms exclusively, and cubic (Oh) symmetry is locally preserved. Among
the nearest neighbors of Cu atoms there are four Au and eight Cu atoms; the
local symmetry is only tetragonal (D4h).

Some further examples with more complicated bases are shown in Fig. 7.4;
symmetries of the space group Pm3̄m (O1

h) are preserved in each arrangement.
The primitive cell contains four atoms in the ReO3 (or D09) structure, too,
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thus its Pearson symbol is also cP4. Rhenium atoms sit at the vertices and
oxygen atoms at the midpoints of the edges, i.e., at 1

200, 0 1
20, 00 1

2 .

( )a ( )b ( )c

Fig. 7.4. Simple cubic structures with four, five, and seven atoms per primitive cell.
(a) cP4 (D09); (b) cP5 (E21 or perovskite); (c) cP7 (D21) structure

The cubic perovskite structure2 contains five atoms per primitive cell. Its
traditional symbol is E21 and its Pearson symbol is cP5. In its prototype,
CaTiO3, the large cations (Ca2+) sit at the vertices of the cube, the small
cations (Ti4+) at the cell center, and the large anions (O2−) at the face centers
0 1

2
1
2 , 1

20 1
2 , 1

2
1
20. The large cation is thus surrounded by 12 anions, while the

small cation by just 6.
The basis is composed of seven atoms in the CaB6 structure (D21, cP7).

Here Ca ions sit at the vertices of the cube, and the six boron ions inside
the primitive cell are along the lines between the body center and the face
centers. The distance from the body center is such that each boron atom
is surrounded by five others at equal distances – at points that are not of
particularly high symmetry otherwise. The coordinates of the boron ions are
(1
2 ± x)1

2
1
2 ; 1

2 (1
2 ± x)1

2 , and 1
2

1
2 (1

2 ± x), where x = 1 − √
2/2 = 0.293. Their

coordination number is 5 – while that of Ca ions is much higher, 24.
Other choices for the basis may also preserve the full symmetry of the space

group Pm3̄m. For example, when the composition of the compound/alloy is
AB, with one type of atom at the face centers of the cell and the other at the
edge centers. This structure (denoted by the Pearson symbol cP6) is observed
in NbO. Symmetries remain the same when a third kind of atom, C is placed
at the vertices (A3B3C). Much more complicated is the BaHg11 (D2e, cP36)
structure. Here barium atoms sit at the edge centers, one mercury atom is
located at the center of the cell, and the others – 32 further mercury atoms
per primitive cell – around the vertices and edge centers in an array that
preserves symmetry.

Naturally, in many more cases the symmetry of the crystal is reduced be-
cause of the lower symmetry of the basis. We shall briefly mention just two
of them, the A15 and C3 structures. The first one is of particular impor-
tance as materials with this structure held the record for the superconducting
transition temperature for many years, and this was essentially due to some
2 After the mineralogical name of CaTiO3 – although the actual structure of this

mineral is distorted in its ground state: its space group is only Pnma.
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characteristics of the structure. The primitive cell of the A153 (Cr3Si) struc-
ture contains the atoms of two molecules; its Pearson symbol is therefore cP8.
As it is illustrated in Fig. 7.5, silicon atoms are located at the vertices and
body centers of the cells, while chromium atoms are found at points of lower
symmetry, 1

20 1
4 and 1

20 3
4 – as well as 0 1

4
1
2 , 0 3

4
1
2 , 1

4
1
20, and 3

4
1
20, which are

obtained from the former two by rotations around the space diagonal. Each
Si atom is thus surrounded by 12 Cr atoms in an icosahedral arrangement.
Fourfold rotations around the x-, y-, and z-axes are no longer symmetries, un-
less they are followed by a translation along the face diagonal perpendicular
to the axis of rotation. Rotation axes are thus replaced by screw axes. The
space group of A15 compounds is therefore Pm3̄n (O3

h).

( )a ( )b

Fig. 7.5. Atomic arrangement in the primitive cell of compounds (a) of composition
AB3 and structure A15; (b) of composition A2B and structure C3

The prototype of the C3 structure is cuprite, Cu2O. The primitive cell
contains two molecules, whereby its Pearson symbol is cP6. More generally,
the composition of the material is A2B; atoms of type B are now located
at the vertices and body centers of each primitive cell, while atoms of type
A are found at 1

4
1
4

1
4 , 3

4
3
4

1
4 , 3

4
1
4

3
4 , and 1

4
3
4

3
4 . Once again, fourfold rotations

are no longer symmetries unless combined with a translation along the space
diagonal. Moreover, the same applies to inversion in this case. The space group
is therefore Pn3̄m (O4

h).

7.2.2 Body-Centered Cubic Structures

In the structures presented in the previous subsection either the atoms located
at the vertices were different from those at the body- or face-centers of the
cubic cell, or the atoms were of the same species but the basis was such that the
surroundings of the atoms at the vertices and at the centers were different. In
either case, the edge vectors of the cube were the primitive vectors. A different

3 Recall that in the Strukturbericht designation the letter A is reserved for struc-
tures that occur in chemical elements. An elemental example for the A15 structure
is the metastable β phase of tungsten (W).
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situation arises when the atoms or groups of atoms sitting at the vertices and
at the centers of the cubic cells are the same and so are their surroundings.
Then the cubic unit cell is not a primitive cell any more, as the crystal is
taken into itself by a translation through half the space diagonal of the cell.
The Bravais lattice is thus extended to include body centers in addition to
vertices of the cube. The new lattice is called body-centered cubic (bcc).

The body-centered cubic lattice can be conceived to be built up of two in-
terpenetrating simple cubic lattices that are displaced by half the space diago-
nal of the cubic cell with respect to one another. It is then customary to speak
of two sublattices. It should be emphasized that if the two sublattices become
inequivalent – for example, when the two components of a disordered alloy
start to become ordered on separate sublattices in a disorder–order transition
– then the initial structure, a body-centered cubic lattice with a monatomic
basis is transformed into a simple cubic lattice with a diatomic basis.

Primitive vectors of the bcc lattice are usually chosen to join the center of
the cube with three vertices, as illustrated in Fig. 7.6(a). Denoting the edge
length of the cube by a,

a1 =
a

2
(−x̂ + ŷ + ẑ) , a2 =

a

2
(x̂ − ŷ + ẑ) , a3 =

a

2
(x̂ + ŷ − ẑ) . (7.2.4)
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Fig. 7.6. Body-centered cubic crystals: (a) the primitive cell with the primitive
vectors; (b) the Wigner–Seitz cell

The figure clearly shows that the primitive cell of volume a3/2 – spanned
by the primitive translation vectors – is rhombohedral, therefore it does not
possess the symmetries of a cube. For this reason, the cubic Bravais cell (con-
ventional unit cell) is preferred. Its edge vectors are given by

a = a2 + a3 = ax̂ , b = a1 + a3 = aŷ , c = a1 + a2 = aẑ . (7.2.5)

Instead of the primitive cell Fig. 7.6(a) the Wigner–Seitz cell is some-
times used; their volumes are equal but the latter is more symmetric. To
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construct the Wigner–Seitz cell consider the body center of a Bravais cell. It
has eight nearest neighbor lattice sites in space-diagonal directions and six
second neighbor sites, located at the centers of adjacent cubes. The object
bounded by the perpendicular bisector planes of the segments between the
body center and these neighbors is an Archimedean solid, a truncated regular
octahedron. In the directions of the eight nearest neighbors its faces are regular
hexagons, while in the directions of the six second neighbors they are squares.
The Wigner–Seitz cell, shown in Fig. 7.6(b), possesses every symmetry of the
cube.

To specify the reciprocal lattice, first the matrix A is expressed in terms
of the reciprocal vectors – see (5.2.3) –, and then its inverse is taken:

Abcc =
a

2

⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠ , Bbcc =

2π
a

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ . (7.2.6)

Using (5.2.10), the primitive vectors of the reciprocal lattice are

b1 =
2π
a

(ŷ + ẑ) , b2 =
2π
a

(ẑ + x̂) , b3 =
2π
a

(x̂ + ŷ) . (7.2.7)

The reciprocal lattice generated by these vectors is a face-centered cubic lattice
of edge 4π/a, as shown in Fig. 7.7. The Brillouin zone – obtained via Dirichlet’s
construction – is drawn with dashed lines in the left part; special points of
the Brillouin zone and their letter symbols are marked in the right part.
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Fig. 7.7. The reciprocal lattice of a body-centered cubic lattice and its Brillouin
zone with special points

The Pearson symbol for a body-centered cubic structure, with a single
atom per lattice point in the Bravais lattice is cI2, as each Bravais cell contains
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two atoms. As listed in the table of Appendix B, a relatively large number of
elements crystallize in this structure at room temperature, e.g., monovalent
alkali metals (Li, Na, K, Rb, Cs), two heavy alkaline-earth metals (Ba, Ra),
a transition metal (Cr), two forms (α and δ) of iron (Fe), and also Mo, Nb,
Ta, V, and W. The latter one can be considered as the prototype, hence its
traditional name: W structure (in the Strukturbericht notation: A2 structure).

This structure occurs more frequently than the simple cubic structure
among the elements. This is because space filling is more efficient (but still not
ideal) with an extra atom at the center of the cube. Each atom is surrounded
by eight others in a cubic arrangement, the coordination number is thus 8.
When the lattice is filled with one kind of spherical atom of radius r in such
a way that atoms at the vertices touch those at the body centers, the space
diagonal of the Bravais lattice is 4r – that is, the edge length of the cubic
Bravais cell is a = 4r/

√
3, and so its volume is (4r/

√
3)3. Since each Bravais

cell contains two atoms, the packing fraction is

2
4
3
r3π

(
4r√
3

)−3

=
√

3
8

π = 0.680 . (7.2.8)

The W structure, which has a monatomic basis, possesses all rotation and
reflection symmetries of a cube; its space group is Im3̄m (O9

h). When the ba-
sis consists of several atoms, there exist a number of structures for which the
same space group is preserved. In La2O3 lanthanum atoms are located at ver-
tices and body centers, and oxygen atoms at face and edge centers, however,
on the average only half of the possible oxygen positions are occupied. The
Pearson symbol for this arrangement is thus cI5. These positions or sites – face
and edge centers – are of particular importance, as they are highly symmetric,
surrounded in an octahedral arrangement by the atoms at the vertices and
body centers of the Bravais lattice, as illustrated in Fig. 7.8(a). Besides these
octahedral sites the arrangement has other high-symmetry positions: (1

4
1
20)

and all the sites obtained from this through the symmetry transformations
of the cube. These are called tetrahedral sites because of the tetrahedral ar-
rangement of the nearest neighbors (Fig. 7.8(b)). Note that the A15 structure
shown in Fig. 7.5(a) can also be regarded as an arrangement in which not
only the vertices and centers of the Bravais lattice of a body-centered crystal
are occupied but also half of the tetrahedral sites – in such a manner that the
space group is Pm3n.

There exist more complicated structures in which the symmetry of the
space group Im3m is preserved, e.g., D81, D8f, and L22 structures, whose
prototypes are Fe3Zn10, Ir3Ge7, and Sb2Tl7. In the first two cases the primitive
cell contains two molecules and the Bravais cell four, while in the third case
there are three molecules per primitive cell and six per Bravais cell. Their
Pearson symbols are therefore cI52, cI40, and cI54.

In simpler structures some of the symmetries are broken because of the
lower symmetry of the basis. Of particular interest is the MoAl12 structure,
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a �23 a �23
a� 2 a �45

( )a ( )b

Fig. 7.8. Highly symmetric empty sites in a bcc lattice: (a) octahedral sites (�);
(b) tetrahedral sites (
)

illustrated in Fig. 7.9. Molybdenum atoms are located at the vertices and
centers of the cubic Bravais cells. Each of them are surrounded by twelve
aluminum atoms in an icosahedral arrangement. The space group is therefore
reduced to Im3̄ (T 5

h). Each Bravais cell contains two units, hence the Pearson
symbol is cI26. The compounds MnAl12 and Al12W both crystallize in this
structure; the latter is considered as the prototype.

Fig. 7.9. MoAl12 structure. For the sake of clarity, the twelve icosahedrally arranged
Al atoms are drawn only around two sites, a vertex and a body center

7.2.3 Face-Centered Cubic Structures

Face-centered cubic (fcc) crystals are obtained by decorating an fcc Bravais
lattice with identical groups of atoms. Disordered alloys (e.g., Cu3Au), in
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which the two components are found at each lattice point with equal prob-
ability also belong here. Upon heating, the simple cubic structure of Cu3Au
(space group: Pm3m) is transformed into a face-centered one at a critical
temperature.

Primitive vectors point from the vertices of the Bravais cell into the face
centers:

a1 =
a

2
(ŷ + ẑ) , a2 =

a

2
(x̂ + ẑ) , a3 =

a

2
(x̂ + ŷ) . (7.2.9)

The face-centered cubic lattice can therefore be viewed as four interpenetrat-
ing simple cubic lattices, whose origins are displaced by the above vectors. The
lattice is thus decomposed into four equivalent sublattices. The primitive cell
spanned by the primitive vectors is rhombohedral, as shown in Fig. 7.10(a),
so it does not possess the symmetries of a cube. This is why preference is
often given to the conventional unit cell, which is four times bigger but more
symmetric: the cubic Bravais cell with edge vectors

a = −a1 + a2 + a3 = ax̂ ,

b = a1 − a2 + a3 = aŷ , (7.2.10)
c = a1 + a2 − a3 = aẑ .

In what follows, we shall specify atomic positions in this Bravais cell.

( )b( )a

a
1

a
3

a
2

Fig. 7.10. Face-centered cubic crystals: (a) the Bravais cell with the primitive
vectors; (b) the Wigner–Seitz cell

The symmetric Wigner–Seitz cell, obtained via Dirichlet’s construction, is
shown in Fig. 7.10(b). For clarity, it is drawn into a cube that is displaced by
half the space diagonal with respect to the Bravais cell – that is, lattice points
are at the body and edge centers of the cube. Since each lattice point has 12
nearest neighbors, when the cube is cut by the perpendicular planes through
the midpoints, a rhombic dodecahedron is obtained for the Wigner–Seitz cell.
In the direction of the 12 adjacent lattice sites it is bordered by congruent
rhombi. The Wigner–Seitz cell shows every symmetry of the cube. As we have
seen, the Brillouin zone of a body-centered cubic crystal has the same shape.
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The reciprocal lattice of an fcc lattice is determined in the usual way, by
taking the inverse of matrix A constructed from the primitive vectors of the
direct lattice:

Afcc =
a

2

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ , Bfcc =

2π
a

⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠ . (7.2.11)

The reciprocal-lattice vectors are then

b1 =
2π
a

(−1, 1, 1) =
2π
a

(−x̂ + ŷ + ẑ) ,

b2 =
2π
a

(1,−1, 1) =
2π
a

(x̂ − ŷ + ẑ) , (7.2.12)

b3 =
2π
a

(1, 1,−1) =
2π
a

(x̂ + ŷ − ẑ) .

Comparison with (7.2.4) shows that the reciprocal of a face-centered cubic
lattice is a body-centered cubic lattice with a lattice constant of 4π/a. Face-
and body-centered cubic lattices are thus reciprocal to one another in the
sense that the reciprocal lattice of an fcc lattice is a bcc lattice, and vice
versa. This implies that the Brillouin zone of an fcc lattice is of the same
shape as the Wigner–Seitz cell of a bcc lattice: a truncated octahedron. This
is shown in Fig. 7.11, along with the special points of the Brillouin zone.
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Fig. 7.11. The reciprocal lattice of the face-centered cubic lattice and its Brillouin
zone with special points

The simplest crystal structure in a face-centered (F) cubic (c) lattice with
a monatomic basis contains four atoms per Bravais cell, since only 1/8 of each
atom at the vertices and 1/2 of each atom at the face centers belong to the
cell. This arrangement is thus denoted by cF4. Each atom is surrounded by
twelve identical ones as nearest neighbors, so the coordination number is 12.
For spherical atoms with equal radii this is the highest possible number of
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touching neighbors. When the radius of the spheres is r, it is related to the
edge length of the cube by 4r =

√
2a. Since the Bravais cell of volume

(
4√
2
r

)3

=
32√
2
r3 (7.2.13)

contains four atoms, the packing fraction for this crystal structure is

4
4
3
r3π

(
32√
2
r3

)−1

=
√

2
6

π = 0.740 . (7.2.14)

This is higher than the values obtained for simple and body-centered cubic
crystals. Indeed, spherical atoms fill the space optimally in this arrangement.
This is why the face-centered cubic structure is also known as the cubic close-
packed (ccp) structure.

Close packing is best illustrated by the atomic arrangement in the (111)
atomic planes perpendicular to the space diagonal. As it can be seen in
Fig. 7.12, within these planes atoms form a hexagonal lattice, which is the
most efficient way of covering the plane with circles. In the next section we
shall return to the question of how to stack such atomic layers to obtain an
fcc or some other structure.

Fig. 7.12. Close packing of atoms in an fcc crystal, in the planes perpendicular to
the space diagonal

As close packing is favored by the metallic bond, many metals crystallize
in this structure. The prototype, after which this monatomic structure has
been named, is copper. The space group of the Cu structure (also called A1
structure) is Fm3̄m (O5

h). Besides copper, several other elements crystallize
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in this form: other noble metals, Ag and Au; two alkaline-earth metals, Ca,
Sr; trivalent Al; several transition metals such as γ-Fe, α-Co, Ni, Ir, Pt, Rh,
Pd, and Pb; some lanthanoids and actinoids, e.g. Ce, Pr, Th, Yb; and also a
couple of noble gases in their low-temperature solid phase, Ar, Ne, Kr, and
Xe.

In addition to the vertices and face centers of the cube, atoms have to
be placed at other sites as well to obtain face-centered cubic structures with
a polyatomic basis. These additional atoms tend to fill up the empty spaces
among the atoms at the vertices and face centers. In face-centered cubic struc-
tures there are two typical sites that can be occupied.

One of them is the center of the cube, site 1
2

1
2

1
2 , and the equivalent posi-

tions at the midpoints of the edges, which can be reached by translations of
the cube center through primitive vectors. These sites are surrounded by six
lattice points in an octahedral geometry, therefore they are also called octa-
hedral sites. Rotations and reflections that leave such a point invariant and
transform the crystal into itself are just the elements of the point group Oh.

( )a ( )b

Fig. 7.13. Highly symmetric empty sites in an fcc lattice: (a) octahedral sites (�);
(b) tetrahedral sites (
)

Other typical sites are the centers of the octants of the cube: 1
4

1
4

1
4 and

equivalent points. When an atom is placed there, its four nearest neighbors
in the fcc lattice form a regular tetrahedron. For this reason they are called
tetrahedral sites. The local symmetry group at these sites is Td. The two types
of site are shown in Fig. 7.13. At each site of the lattice the potential due
to all other atoms (called the crystal-field potential) shows the symmetries of
the point group of the site in question. As discussed in the previous chapter,
this potential may give rise to crystal-field splitting. Since the main features
of the splitting (apart from its magnitude) depend on the local symmetry,
knowing it is important for understanding atomic energy spectra. Conversely,
the type of splitting can be used to determine the local symmetry – and hence
the position of the atoms.

There are eight tetrahedral and four octahedral sites in a Bravais cell.
In the simplest fcc crystals with multiatomic bases, besides vertices and face
centers these sites are occupied by atoms – either completely or partially. De-
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pending on the occupancy of each site, various structures are possible. Because
of their importance and the partial symmetry breaking occurring in them, di-
amond structure and the closely related sphalerite structure merit separate
discussion. Below we shall present some other types in which symmetries of
the space group Fm3̄m (O5

h) are fully preserved.
A common structure is the sodium chloride or rock-salt structure (in tra-

ditional notation: B1 structure). Sodium cations (Na+) are located at vertices
and face centers – at 000, 0 1

2
1
2 , 1

20 1
2 , and 1

2
1
20, if the edge of the fcc Bravais

cell is chosen as unity –, and chlorine anions (Cl−) at the octahedral sites 1
200,

0 1
20, 00 1

2 , and 1
2

1
2

1
2 . This arrangement is illustrated in Fig. 7.14(a).

( )a ( )b
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Fig. 7.14. Face-centered cubic structures: (a) sodium chloride (NaCl, B1) structure;
(b) fluorite (C1) structure

Sodium and chlorine ions are at alternate points of a simple cubic lat-
tice, forming a three-dimensional checkerboard pattern. Each Na+ ion is sur-
rounded by six Cl− ions and vice versa, the coordination number is thus 6.
Cations and anions form two interpenetrating fcc sublattices that are dis-
placed through half the space diagonal with respect to one another. From
the viewpoint of symmetries, the overall structure is face-centered cubic, too.
Since each Bravais cell contains four sodium chloride molecules, the Pearson
symbol is cF8. The four times smaller primitive cell contains only two ions,
Na+ at 000 and Cl− at 1

2
1
2

1
2 . These two ions make up the basis of the lattice.

The halides of all alkali metals but Cs crystallize in the rock-salt structure
– and so do divalent salts, e.g., MgO, CaO, MgS, CaSe, and BaTe. We shall
give the simple geometrical reason for this at the end of the chapter.

Fluorite structure or C1 structure – the prototype of which is fluorite
(CaF2) – is obtained by placing atoms of the second type at the tetrahedral
(rather than octahedral) sites. This structure is shown in Fig. 7.14(b). Calcium
cations (Ca2+) are located at vertices and face centers, and fluorine anions
(F−) at the centers of the octants. Translation of the basis – made up of a
Ca2+ ion at 000 and two F− ions at 1

4
1
4

1
4 and 3

4
3
4

3
4 – through the primitive
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vectors (7.2.9) generates the full crystal. The Bravais cell contains four CaF2

molecules, so the Pearson symbol is cF12. Each Ca2+ ion is surrounded by
eight F− ions in a cubic arrangement, their coordination number is thus 8; F−

ions, on the other hand, are surrounded by only four Ca2+ ions in a tetrahedral
arrangement, so their coordination number is just 4. The oxides and sulfides
of alkali metals (e.g., Li2O, Na2O, K2O, Na2S, K2S), as well as many other
oxides and halides crystallize in this structure.

When both octahedral and tetrahedral sites are occupied by atoms of the
same (second) type, a BiF3 or D03 structure – also known as AlFe3 structure –
arises. This is shown in Fig. 7.15(a). Bismuth cations (Bi3+) are located at the
vertices and face centers of the cube, and fluorine anions (F−) among them,
at octahedral and tetrahedral sites. The Bravais cell contains four molecules,
and so its Pearson symbol is cF16.

The octahedral and tetrahedral sites are all occupied – although by two
different types of ion – in the L21 structure. The prototype for this structure
is the Heusler alloy AlMnCu2, which is particularly noted for its magnetic
properties.

( )a ( )b

U

B

FBi

Fig. 7.15. Face-centered cubic structures: (a) BiF3 structure (D03 structure), with
16 atoms per Bravais cell; (b) UB12 structure (D2f structure) with 52 atoms per
Bravais cell. Only two of the four cuboctahedra are shown; each contains twelve
boron atoms

Even more complicated is the D2f structure shown in Fig. 7.15(b), whose
prototype is UB12. Among the uranium atoms at the vertices and face centers,
octahedral sites are occupied not by single ions but groups of twelve boron
atoms forming a cuboctahedron.4 Referred to the octahedral site (e.g., the
center of the Bravais cell), the coordinates of the 12 boron atoms around it
are 0(± 1

6 )(± 1
6 ); (± 1

6 )0(± 1
6 ), and (± 1

6 )(± 1
6 )0. With this choice the distance

4 Also called a heptaparallelohedron or triangular gyrobicupola; a cube truncated
at its vertices to its edge centers.
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between atoms that belong to adjacent cuboctahedra is the same as the in-
teratomic distance within a cuboctahedron. The Bravais cell contains four
molecules, hence the Pearson symbol is cF52.

One may find face-centered cubic structures in which the basis contains
a much higher number of atoms. The Bravais lattice of the NaZn13 or D23

structure contains 112 atoms. An even higher number of atoms is found in
the basis of crystalline fullerite, formed by C60 molecules (shown in Fig. 2.8).
In this allotropic form of carbon a C60 molecule is sitting at each point of an
fcc lattice. With carbon atoms arranged in regular pentagonal and deformed
hexagonal rings at the vertices of a truncated icosahedron, the molecule it-
self shows the symmetries of the icosahedral point group Ih (m3̄5̄).5 If the
orientation of the fivefold rotation axes of the C60 molecules is ordered, then
– because of the incompatibility of cubic and icosahedral symmetries – the
entire crystal cannot show each symmetry of the cube. The space group of
fullerite is Pa3̄ (T 6

h) in this low-temperature ordered phase. At higher temper-
atures, in the plastic-crystalline phase, fullerene molecules are free to rotate,
and thus full cubic symmetry is restored. The space group of the crystal is
then Fm3̄m (O5

h).

7.2.4 Diamond and Sphalerite Structures

Among fcc structures with a diatomic basis particularly important are those in
which all vertices and face centers but only half of the tetrahedral sites are oc-
cupied. Depending on whether the atoms at the tetrahedral sites are identical
with those at the vertices and face centers, the arrangement is either a dia-
mond structure or a sphalerite (zincblende) structure. Their Strukturbericht
designations are A4 and B3. In either case, the basis consists of two atoms, at
000 and 1

4
1
4

1
4 . The Bravais cell contains eight atoms, thus the Pearson symbol

is cF8 for both of them. The two structures are shown in Fig. 7.16.

( )a ( )b

Fig. 7.16. Fcc crystal structures with a two-point basis: (a) diamond (A4) structure;
(b) sphalerite (B3) structure

5 Pentagons are bounded by hexagons, while hexagons are bounded by pentagons
and hexagons alternately, corresponding to single and double bonds.
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The figure clearly shows that in the diamond structure each atom is sur-
rounded by four neighbors in a tetrahedral arrangement. The coordination
number is therefore 4. This implies that space filling is much less efficient
than in previously discussed structures. When this structure is built up of
touching spheres of radius r, the relation between the edge of the Bravais cell
and the radius is a

√
3/4 = 2r. Since each Bravais cell contains eight atoms,

the packing fraction is

8
4
3
r3π

(
8r√
3

)−3

=
√

3
16

π = 0.340 . (7.2.15)

This structure is realized in a particular form of carbon, diamond, as well
as silicon, germanium, and gray tin (α-Sn). These elements are all in group
14 (IVA) of the periodic table where – as discussed in Chapter 4 – tetrahedral
coordination is due to the covalent bonds created by the sp3 hybrid orbitals.

This structure can also be considered to consist of two interpenetrating
face-centered cubic Bravais lattices, displaced by 1

4a(x̂+ ŷ+ ẑ) relative to one
another. The obtained diamond lattice is not a Bravais lattice. It should be
emphasized: even though the crystal is made up of a single kind of atom, it is
impossible to choose a primitive cell with a monatomic basis that can serve
to generate the entire crystal.

Concerning translational symmetries, the diamond lattice has the same
primitive vectors as a face-centered cubic lattice, thus its reciprocal lattice
is the same as that of an fcc lattice. The Brillouin zones are also identical:
truncated octahedra.

On the other hand, rotation and reflection symmetries of the cube are not
fully preserved. Inversion symmetry is lost because of the atoms in the octants.
Similarly, reflections σx, σy, σz , fourfold rotations C4x, C4y, C4z and twofold
rotations around the face diagonals are no longer symmetries, either. In each
case, however, the crystal can be brought into coincidence with itself by an
additional translation along the space diagonal through one quarter of its
length (that is, by the vector 1

4
1
4

1
4 ).6 If instead of the origin we were to choose

the point 1
8

1
8

1
8 as the fixed point of the point-group operations, inversion would

remain a symmetry but invariance under other rotations would be broken –
unless followed by a translation through one quarter of the space diagonal.
Thus there are screw axes and glide planes among the symmetry elements of
the diamond structure. The space group is Fd3̄m (O7

h).
When the two sublattices are made up of two different kinds of atom, as

shown in Fig. 7.16(b), a sphalerite (B3) structure is obtained. In sphalerite –
a polymorph of ZnS – the basis contains two ions, Zn2+ at 000 and S2− at

6 This translation is neither along the screw axis nor in the glide plane. However, the
same name may be used for convenience, as the contradiction with the definition
of these symmetry operations is only apparent. See footnote on page 159. E.g., it
is readily seen that the diamond lattice has a “pure” fourfold screw axis parallel
to the z-axis if it is chosen to go through the point 1

4
1
2
0.
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1
4

1
4

1
4 . The coordinates for the eight ions in the Bravais cell are

Zn : 000, 0 1
2

1
2 ,

1
20 1

2 ,
1
2

1
20 , S : 1

4
1
4

1
4 ,

1
4

3
4

3
4 ,

3
4

1
4

3
4 ,

3
4

3
4

1
4 .

Compared to the diamond structure, the symmetry is lower. Inversion is no
longer a symmetry, even when combined with a translation. The space group
is therefore F 4̄3m (T 2

d ). Apart from the prototype, ZnS, several other com-
pounds of composition AB crystallize in this form, many of which are impor-
tant in semiconductor technology. For example, A = Zn, Cd, Hg, and B = Se,
Te, S, or A = Ga, Al, In, and B = P, As, Sb.

Starting with the sphalerite structure, the addition of a third kind of atom
to each empty octahedral site of face-centered Bravais cell leads to C1b struc-
ture (in the Pearson notation: cF12). The prototype is AgAsMg. The space
group is again F43m (T 2

d ). This arrangement is also called a half-Heusler
structure as it can be conceptually derived from a Heusler alloy (AlMnCu2)
by leaving half of the tetrahedral sites empty.

Contrarily, the space group Fd3̄m (O7
h) of the diamond structure can be

preserved by a suitable choice of filling its empty octant sites. This occurs in
the C15 or Cu2Mg structure (Fig. 7.17), the prototype for a class of Laves
phase alloys. Just like in diamond, the eight magnesium atoms are arranged
tetrahedrally in the Bravais cell: at the vertices and face centers plus at the
centers of four of eight octants, while the sixteen Cu atoms are grouped four
by four, in tetrahedra around the centers of the other four octants. The edge
length of these small tetrahedra is such that the four Cu atoms closest to the
center of the Bravais cell form an identical tetrahedron.

Fig. 7.17. Cu2Mg, the prototype of C15 (cF24) structures

The same space group Fd3̄m (O7
h) is present in the spinel (or H11) struc-

ture, named after the mineral MgAl2O4. The general composition of the com-
pounds that crystallize in this structure is X2+Y3+

2 O4, where X stands for
Mg, Fe, Zn, Mn, etc., and Y for Al, Fe, or Cr. Accordingly, one speaks of
aluminate, ferrite, and chromite spinels. This structure type is of particular
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importance because antiferromagnetic and ferrimagnetic ferrites that are ex-
tensively used in electrotechnology crystallize in this geometry. Oxygen atoms
are located at the vertices and face centers of the cubic lattice, X2+ cations
occupy one-eighth of the tetrahedral interstices, and Y3+ cations – one-half
of the octahedral ones. As the cations are not at the same positions in each
cube, the Bravais cell contains eight cubes and eight molecules – 56 atoms in
all (cF56). In the inverse spinel structure divalent cations are at octahedral
sites and half of the trivalent cations are at tetrahedral sites. Such an inverse
spinel structure is observed in magnetite, in which X2+ and Y3+ are di- and
trivalent ions of the same element, iron.

7.3 Hexagonal Crystal Structures

We have already seen (Fig. 7.12) that atoms are arranged in a hexagonal array
in the (111) plane of a face-centered cubic crystal. Within the plane, each atom
is surrounded by six neighbors, which is the closest packing in two dimensions.
When such a hexagonal planar lattice is repeated at regular intervals along
the perpendicular direction, as shown in 7.18(a), a simple hexagonal lattice is
obtained.

( )a ( )b ( )d( )c

Fig. 7.18. Hexagonal structures: (a): simple; (b) and (c): close-packed; (d) double
close-packed

Denoting the lattice constant in the hexagonal plane by a and in the
perpendicular direction by c, a possible choice for the primitive vectors in
Cartesian coordinates is

a1 =
√

3
2

ax̂ − 1
2
aŷ , a2 = aŷ , a3 = cẑ . (7.3.1)
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Matrices A and B are

Ahex =

⎛
⎜⎝

√
3a/2 0 0

−a/2 a 0
0 0 c

⎞
⎟⎠ , Bhex = 2π

⎛
⎜⎝

2/(
√

3a) 0 0

1/(
√

3a) 1/a 0
0 0 1/c

⎞
⎟⎠ . (7.3.2)

The primitive vectors of the reciprocal lattice are then

b1 =
4π√
3a

x̂ , b2 =
2π√
3a

x̂ +
2π
a

ŷ , b3 =
2π
c

ẑ . (7.3.3)

As shown in Fig. 7.19, these vectors also generate a hexagonal lattice with
lattice parameters a∗ = 4π/

√
3a and c∗ = 2π/c, however, the reciprocal-

lattice primitive vectors are rotated around the z-axis with respect to their
direct-lattice counterparts, and their angle is 60◦ instead of 120◦.
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Fig. 7.19. The reciprocal lattice of a hexagonal lattice and its Brillouin zone with
special points

The lattice points of a simple hexagonal lattice are directly above each
other along the z direction. When this lattice is decorated with a single atom
of radius r, the lattice is most densely filled when the atoms are in contact with
each other both in the hexagonal plane and in the perpendicular direction.
This occurs for a = c = 2r, and thus the volume of the hexagonal cell is

√
3

2
a2c = 4

√
3r3 . (7.3.4)

The packing fraction is therefore

4
3
r3π

(
4
√

3r3
)−1

=
π

3
√

3
= 0.605 . (7.3.5)

This is 20% smaller than the atomic packing factor of the fcc structure. This
is why the above simple hexagonal structure may not occur naturally.

Space filling is more efficient if the planes of hexagonally arranged atoms
are not stacked directly on top of each other, but the atomic positions are
slightly shifted in every second layer, and only the next-nearest layers come
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exactly above each other, as shown in Fig. 7.18(b). It is readily established
that in the closest-packed arrangement of two subsequent layers each atom in
the upper layer sits exactly into the dip among three touching spheres of the
lower layer. Then the height difference between the centers of the spheres of
the two layers is

√
8/3r. Since the lattice parameter in the hexagonal plane

is 2r and the periodicity in the perpendicular direction is twice the repeat
distance of the layers, close packing is achieved if c/a =

√
8/3 ≈ 1.633. As

the cell now contains two atoms, the packing fraction is

2

√
3
8

π

3
√

3
=

π

3
√

2
= 0.740 . (7.3.6)

This is the same as the atomic packing factor of the close-packed fcc lattice.
The structure with this particular c/a value is called the hexagonal close-
packed (hcp) structure. It is also called Mg or A3 structure.

This structure can also be viewed as the superposition of two simple hexag-
onal Bravais lattices, with the sublattices displaced by

2
3
a1 +

1
3
a2 +

1
2
a3 =

√
3

3
ax̂ +

1
2
cẑ (7.3.7)

or
1
3
a1 +

2
3
a2 +

1
2
a3 =

√
3

6
ax̂ +

1
2
aŷ +

1
2
cẑ (7.3.8)

with respect to one another. Such a crystal has a diatomic basis and thus
no longer possesses each rotational symmetry of the hexagonal lattice. To
facilitate the visualization of symmetries, atomic positions are shown in a
displaced coordinate system in Fig. 7.18(c). In an oblique coordinate system
particularly well suited to hexagonal symmetry, with the x- and y-axes making
an angle of 120◦ with each other, the coordinates of the two atoms of the
primitive cell are 2

3
1
30 and 1

3
2
3

1
2 . It is readily seen that the z-axis is not a

sixfold rotation axis now but a sixfold screw axis: if a rotation through 60◦

around the z-axis is followed by a translation along the z-axis through c/2,
the crystal is taken into itself. The space group of a close-packed hexagonal
crystal is therefore P63/mmc (D4

6h).
A somewhat more complicated structure with the same symmetry is ob-

tained by another way of stacking hexagonal layers. Four simple hexagonal
sublattices may be superposed in such a way that the first, second, and
third are displaced by 2

3a1 + 1
3a2 + 1

4a3, 1
2a3, and 1

3a1 + 2
3a2 + 3

4a3 rela-
tive to the first. This leads to the double hexagonal close-packed (dhcp) struc-
ture, also called La structure or A3′ structure. Ideal close-packing occurs for
c/a = 2

√
8/3 = 3.266.

Over 30 elements crystallize naturally in hcp or dhcp structure, e.g., Be,
Cd, Co, He, La, Mg, Os, Sc, Ti, Y, Zn, Zr, as well as several lanthanoids
and actinoids. In these materials the ratio of the two lattice constants is not
the ideal value c/a = 1.633 or its double but it is usually very close to one of
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them. At high pressures, helium also crystallizes in a hexagonal structure, and
packing is almost ideal: c/a = 1.631. The lattice constant ratio is very close
to the ideal value also in alkali metals and the prototype Mg (c/a = 1.637 for
Li, 1.634 in Na, and 1.624 in Mg). Lanthanum crystallizes in a dhcp structure
with c/a = 2 × 1.6125. Much larger discrepancies occur in Be (c/a = 1.568),
as well as in Zn and Cd (1.856 and 1.886). Nevertheless even these structures
are called close-packed.

In these structures the close-packed layers are stacked on top of each other
as close as possible. As shown in Fig. 7.20, there are two different ways to
stack a hexagonal close-packed layer on another by exploiting the dips among
the atoms. If the arrangement of the first plane is called A, that of the next
is called B or C, depending on whether it is like part (a) or (b) in Fig. 7.20.

( )a ( )b

Fig. 7.20. Two possible ways of stacking hexagonal close-packed layers. Dashed-line
circles (spheres) centered at asterisks (∗) mark the atoms of the lower layer. Relative
to this layer (A), two arrangements – shown in (a) and (b) – are possible for the
centers (•) of the spheres in the second layer. They are called type B and type C
layers

The close-packed layers in a hcp crystal are stacked in such a way
that two types alternate: ABAB . . . or ACAC . . . . The stacking order in a
double hexagonal close-packed structure is ABACABAC . . . . Looking back
at Fig. 7.12, the stacking order of the close-packed planes is seen to be
ABCABC . . . along the [111] direction of the face-centered cubic crystal.
The nearest neighbors of a selected atom are shown in Fig. 7.21 for both ar-
rangements. In the fcc structure, the twelve neighbors are on the vertices of
a cuboctahedron, while in the hcp structure they are at the vertices of an
anticuboctahedron (also called triangular orthobicupola).

One may choose more complicated bases in the hexagonal structure, too.
Figure 7.22 shows two such examples. Among two-component compounds of
composition AB the NiAs structure or B8 structure is quite common. Atoms
of one kind sit at positions 000 and 00 1

2 , while atoms of the other at 1
3

2
3

1
4 and

2
3

1
3

3
4 . This structure may be regarded as a modification of the double hexag-
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A

C

B

( )b( )a

A

A

B

Fig. 7.21. The arrangement of the 12 nearest neighbors of an atom in a (a) face-
centered cubic; (b) hexagonal close-packed structure

onal close-packed structure, where different kinds of atoms sit in alternate
layers, in such a way that in spite of the unequal radii relatively close packing
is maintained with a stacking order ABAC ABAC . . . .

( )b( )a

Fig. 7.22. Hexagonal crystal structures: (a) NiAs (B8) structure; (b) wurtzite (B4)
structure

In addition to its cubic form, zinc sulfide (ZnS) may also crystallize in
hexagonal geometry; it is then called wurtzite. In the wurtzite or B4 structure
zinc atoms are located at 1

3
2
30 and 2

3
1
3

1
2 , and sulfur atoms at 1

3
2
3z and 2

3
1
3 (1

2 +
z), with z ≈ 3/8. Zinc atoms are coordinated tetrahedrally by sulfur atoms,
similarly to the cubic ZnS structure, sphalerite, shown in Fig. 7.16; however,
the two forms differ in the relative orientation of tetrahedra in subsequent
layers. Figure 7.22(b) shows this structure in a displaced coordinate system
where a zinc atom is at the origin. Here, too, hexagonal layers of zinc and
sulfur atoms alternate, however, the stacking order is now AABB AABB . . . .
Like above, the sixfold rotation axis is replaced by a sixfold screw axis and
inversion is no longer a symmetry unless it is followed by a translation. The
space group is therefore P63mc (C4

6v).
The hexagonal planes may be stacked in various other ways, leading to

even longer periodicities in the structure. Structures with a periodicity of
five (ABCAB ABCAB . . . ) or six (ABCACB ABCACB . . . or ABABAC
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ABABAC . . . ) layers are equally possible. In a particular form of SiC a unit
that extends over almost 600 layers is repeated.

The structure of graphite merits separate discussion (Section 7.5). Here
we just mention that it can be regarded as four interpenetrating hexagonal
Bravais lattices with origins at 000, 1

3
2
30, 00 1

2 , and 2
3

1
3

1
2 . This leads to the

graphite structure shown in Fig. 7.23(a). In each plane carbon atoms form a
honeycomb lattice, however, because of the displacement of subsequent layers
only atoms in every second layer are exactly above each other.

7.4 Typical Sizes of Primitive Cells

We have not yet discussed the sizes of primitive cells, i.e., the characteris-
tic distance of periodicity in the crystal. To fill this gap, we have listed the
Bravais cell dimensions and nearest-neighbor distances for some of the cu-
bic, tetragonal, and hexagonal structures that we had encountered. In line
with common practice, lattice constants are given in angstroms – although
using nm and pm units for atomic dimensions is more and more common.
1 Å = 0.1 nm = 100 pm.

As it can be seen in the table, atomic distances are a few angstroms in these
simple ordered crystalline structures. As we shall see at the end of this chapter,
these distances are often in good agreement with the values determined from
atomic or ionic radii assuming close packing.

In more complicated structures the lattice constant may be much larger.
The lattice constant of the fcc Bravais cell of fullerite is 14.16 Å at room
temperature. The distance between centers of neighboring fullerene (C60)
molecules of diameter 7.10 Å is 10.02 Å; within a molecule the distance be-
tween two adjacent carbon atoms is 1.46 Å for single and 1.40 Å for double
bonds. This is hardly different from the C–C distances in the hexagonal rings
of graphite.

The order of magnitude of these distances is of great importance since
their experimental determination requires methods that work well on such
scales. These methods will be presented in the next chapter.

7.5 Layered and Chain-Like Structures

Most of the examples that we have encountered so far are cubic or hexagonal
crystals. These types occur most frequently in nature, even though over a
hundred other categories are listed in crystallographic tables. Here we shall
consider a few special structures that are of particular interest for physicists
because of their properties directly related to structure.

In cubic structures atoms are spaced at equal distances in the three spatial
directions. In hexagonal and tetragonal structures one direction has a priv-
ileged status over the two others, however, atomic spacing along the sixfold
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Table 7.2. Size of the Bravais cell and nearest-neighbor distance in some common
cubic, tetragonal, and hexagonal crystal structures

Name of
crystal

Structure
type Size of the Bravais cell Nearest-neighbor

distance

Po Ah a = 3.366 Å 3.366 Å
Ag A1 a = 4.086 Å 2.889 Å
Al A1 a = 4.049 Å 2.863 Å
Au A1 a = 4.078 Å 2.884 Å
Ca A1 a = 5.588 Å 3.951 Å
Cu A1 a = 3.615 Å 2.556 Å
Kr A1 a = 5.646 Å 3.992 Å
Ne A1 a = 4.462 Å 3.155 Å
Ni A1 a = 3.523 Å 2.491 Å
Pd A1 a = 3.890 Å 2.751 Å
Pt A1 a = 3.924 Å 2.775 Å
Cr A2 a = 2.884 Å 2.498 Å
Cs A2 a = 6.067 Å 5.254 Å
Fe A2 a = 2.867 Å 2.483 Å
K A2 a = 5.321 Å 4.608 Å
Na A2 a = 4.210 Å 3.646 Å
W A2 a = 3.165 Å 2.741 Å
Mg A3 a = 3.209 Å c = 5.210 Å 3.197 Å
Na A3 a = 3.767 Å c = 6.154 Å 3.768 Å
Zn A3 a = 2.664 Å c = 4.949 Å 2.665 Å
La A3′ a = 3.770 Å c = 12.159 Å 3.739 Å
C A4 a = 3.567 Å 1.545 Å
Si A4 a = 5.431 Å 2.352 Å
Ge A4 a = 5.657 Å 2.450 Å
C A9 a = 2.461 Å c = 6.709 Å 1.426 Å

NaCl B1 a = 5.640 Å 2.820 Å
CsCl B2 a = 4.113 Å 2.908 Å
ZnS B3 a = 5.411 Å 2.343 Å
ZnS B4 a = 3.822 Å c = 6.261 Å 2.343 Å
NiAs B81 a = 3.619 Å c = 5.034 Å 2.439 Å
CaF2 C1 a = 5.462 Å 2.365 Å

Cu2Mg C15 a = 7.048 Å 2.492 Å
AuCu L10 a = 3966 Å c = 3673 Å 2.703 Å
Cu3Au L12 a = 3.748 Å 2.651 Å
Mn3Pt L12 a = 3.833 Å 2.710 Å
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or fourfold rotation axis and in the perpendicular directions are of the same
order. In some materials much larger discrepancies may arise between inequiv-
alent directions. This may be due to the shape of the molecules making up
the crystal – or to the nature of the bonds that determine the structure.

Besides diamond, the lattice constants of another allotrope of carbon,
graphite are also listed in Table 7.2. As it can be seen from the illustration
of the structure, Fig. 7.23(a), in the plane perpendicular to the sixfold axis
carbon atoms form a honeycomb lattice in which each atom is surrounded
by three neighbors at a distance of 1.42 Å. The separation between adjacent
layers is more than its double, 3.35 Å.

1.42Å
1
3
.2

2
Å

3
.
3
5
Å

3.78Å

(La, Sr) O

(La, Sr) O

(La, Sr) O

La Sr CuO
2 4� xx

CuO
2

( )a ( )b

Fig. 7.23. The layered structure of (a) graphite; (b) La2−xSrxCuO4

Solid-state physics is more and more concerned with the study of such
structures, in which the separation of atoms within a plane is much smaller
than the separation between the layers. Figure 7.23(b) shows the primitive cell
of another material with layered structure, La2−xSrxCuO4, the first example
for high-Tc superconductors. Lattice parameters can be read off from the
figure. In this structure, CuO2 units form layers; the other atoms are located
between these layers.

Another fairly common situation is that atoms are close together only
along one direction, not in a plane. Figure 7.24 shows two structures in which
the constituent atoms and molecules of the crystal form chains. The distances
between the chains are quite large compared to those within the chains, and
thus the bonds between the chains are weak. In an allotrope of selenium –
γ-Se, the prototype of A8 structure – the crystal structure is hexagonal with
lattice constants a = 4.36 Å and c = 4.95 Å. In the oblique coordinate system
suited to hexagonal geometry, Se atoms are at x00, x̄x̄1

3 , and 0x2
3 , where
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x ≈ 0.22. The crystal is invariant under the combined operation of a rotation
through 120◦ around the c-axis and a translation through one-third the lattice
constant. The space group of the crystal is thus P3121 (D4

3). As it is shown
in Fig. 7.24(a), the distance between neighboring atoms along the spiral is
smaller than the separation of the spirals. The structure is thus similar to a
set of twisted chains.

x

z

z

y

( )a ( )b

Fig. 7.24. (a) The hexagonal A8 structure of γ-Se and its projection on the (001)
plane. Atoms marked by •, ∗ and ◦ signs are on planes c/3 apart. (b) The projection
of the atoms of HMTTF-TCNQ to the (010) and (100) planes

Chain-like structures arise when large flat molecules are stacked relatively
tightly and the distance between the chains is larger than the separation of the
molecules in them. Figure 7.24(b) shows two projections of the orthorhombic
primitive cell of HMTTF-TCNQ – a material showing metallic characteristics
in spite of being built up of two organic molecules, HMTTF and TCNQ. The
space group is Pmna (D7

2h). The lattice constants of the primitive cell are
a = 12.470 Å, b = 3.906 Å, and c = 21.602 Å. HMTTF cations occupy sites
000 and 1

2
1
2

1
2 , while TCNQ anions are found at 1

2
1
20 and 00 1

2 . As the figure
shows, the molecules are not precisely in the ac-plane but are inclined at 23.8◦

and 34.2◦ with respect to it. Thus in the direction of the b-axis the separation
of TCNQ molecules is 3.23 Å, while that of HMTTF molecules is 3.57 Å. These
distances are much smaller than intermolecular distances in the ac-plane, thus
one is justified to say that HMTTF and TCNQ molecules form chains along
the b-axis, and the interaction between the chains is relatively weak.

One possible consequence of the chain-like structure is the almost vanishing
overlap of the electron clouds between the chain. In layered structures the
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overlap is usually much weaker between layers than within them. This gives
rise to highly anisotropic physical properties. For example, in crystals built up
of HMTTF and TCNQ (or similar pairs of) molecules electric conductivity is
much larger in one direction than in the other two. La2−xSrxCuO4 and other
crystals with CuO2 planes are much better conductors in the plane than in
the perpendicular direction. This property may in itself be crucial for some
applications. It is also of great importance at the phenomenological level: as
we shall see, fundamentally new phenomena may be observed in materials
in which the system of electrons is practically one- or two-dimensional. This
explains why the study of chain-like and layered structures has become one
of the hottest research topics in solid-state physics.

7.6 Relationship Between Structure and Bonding

We saw in Section 4.4 that unlike other types of bonds, covalent bonds are
highly directional. This has a strong influence on the structures occurring for
each particular type of chemical bonding.

7.6.1 The Structure of Covalently Bonded Solids

As mentioned in Subsection 4.4.7 and shown in Fig. 4.11, sp3 hybrid orbitals
can create bonds in the directions of the four vertices of a tetrahedron. This is
the underlying reason for the tetrahedral coordination of atoms in the diamond
structure. Tetrahedral arrangement of nearest neighbors is often observed in
two-component covalent compounds, too. The commonest are the sphalerite
and wurtzite structures. In such tetrahedrally bonded covalent crystals a co-
valent radius can be determined for each atom from the requirement that the
sum of covalent radii should give the bond length (also called bond distance) –
i.e., the distance between the atoms in the covalent bond. The covalent radius
derived from the bond length may also be introduced for covalently bonded
materials with other structures, however, the lengths are different for atoms
linked by single and double covalent bonds. Covalent radii – with the above
uncertainty – are listed in Table 7.3 for some elements.

If besides the s-electron only two p-electrons (px and py) participate in
bonding, then the following sp2 hybrid wavefunctions arise:

ψ1 =
1√
3
φ2s +

√
2
3
φ2px ,

ψ2 =
1√
3
φ2s − 1√

6
φ2px +

1√
2
φ2py ,

ψ3 =
1√
3
φ2s − 1√

6
φ2px − 1√

2
φ2py .

(7.6.1)

As a consequence of the form of s and p wavefunctions shown in Fig. 4.10,
these hybrid states give high electron densities in three directions of the (x, y)



234 7 The Structure of Crystals

Table 7.3. Covalent radii in Å for elements that participate in covalent bonds

B C N O
0.81 0.77 0.70 0.66

Al Si P S
1.25 1.17 1.10 1.04

Zn Ga Ge As Se
1.25 1.25 1.22 1.21 1.17

Cd In Sn Sb Te
1.41 1.50 1.40 1.41 1.37

Hg Tl Pb Bi Po
1.44 1.55 1.54 1.46 1.46

plane, at 120◦ degrees to each other. This is illustrated in Fig. 7.25(a). These
hybrid bonding orbitals give rise to the two-dimensional honeycomb-like net-
work shown in Fig. 7.25(b).

+

+
-

-
-

+

( )a ( )b

Fig. 7.25. (a) Spatial distribution of electrons in states characterized by sp2 hybrid
wavefunctions. (b) Two-dimensional network arising from these bonds

This is the case for an allotrope of carbon, graphite, where only two 2p-
electrons hybridize with one 2s-electron. In addition to the three electrons that
participate in saturated covalent bonds, a fourth electron makes a nonlocalized
and unsaturated π bond with the three neighbors. This electron is responsible
for the finite conductivity of graphite. The spatial structure of graphite –
the prototype of A9 structure – is shown in Fig. 7.23(a): covalently bonded
hexagonal planes are held together by weak van der Waals forces. The same
planar network is found in trivalent As.

Besides s- and p-states, one or more 3d-states may also participate in
the formation of hybrid bonding orbitals. Considering the form of d-states,
illustrated in Fig. 6.1, it can be demonstrated that in a dsp2 hybrid the wave-
functions
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ψ1,2 =
1
2

[
φs ±

√
2φpx + φdx2−y2

]
,

ψ3,4 =
1
2

[
φs ±

√
2φpy − φdx2−y2

] (7.6.2)

can create bonds along the ±x and ±y directions of the (x, y) plane, in a
tetragonal geometry.

In the d2sp3 hybrid φs, φpx , φpy , and φpz states are combined with φdz2

and φdx2−y2 to give

ψ1,2 =
1√
6
φs ± 1√

2
φpz +

1√
3
φdz2 ,

ψ3,4 =
1√
6
φs ± 1√

2
φpx +

1
2
φdx2−y2 − 1√

12
φdz2 ,

ψ5,6 =
1√
6
φs ± 1√

2
φpy − 1

2
φdx2−y2 − 1√

12
φdz2 .

(7.6.3)

In states associated with these functions electrons create bonds of octahedral
configuration.

In covalently bonded solids each atom (molecule) is usually surrounded
by the same number of nearest neighbors as the covalent bonds it can form.
This is why the hexagonal and tetrahedral structures illustrated in Figs. 7.25
and 7.16 occur frequently. When an atom can form only two covalent bonds,
a chain-like structure arises. An example for this, γ-selenium is shown in
Fig. 7.24(a). The two covalent bonds do not lie along a straight line, which is
why atoms are located along a spiral.

The strong directionality of bonds is preserved even when the covalently
bonded elements make up a disordered, amorphous structure instead of a
regular crystal. The bond lengths and angles are close to their values in a
crystalline material, therefore these amorphous systems exhibit short-range
order on atomic scales. On larger scales the order may disappear, as shown in
Fig. 10.1.

7.6.2 Structures with Nondirectional Bonds

Unlike covalently bonded solids, the constituents of molecular crystals, ionic
crystals, and metals with nondirectional van der Waals, ionic, or metallic
bonds tend to arrange themselves as closely packed as possible. In the fore-
going we have seen that the most effective filling of space is offered by face-
centered cubic and hexagonal close-packed lattices; this is why most metals
crystallize in one of these structures. Similar close-packed arrangements are
found in molecular crystals, too.

The situation is similar for ionic crystals, although the different size of
cations and anions plays an important role there. Although electron density
decreases continuously with the distance from the ion core, considering the
ions as rigid spheres of finite ionic radius ri seems to give a fair approximation.
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Because of the tendency to reach the energy minimum, the spheres will try
to fill space in the most closely packed arrangement. One would expect that
the nearest-neighbor distance is the sum of the ionic radii of an anion and
a cation. As we shall see, for geometrical reasons this cannot be the case for
arbitrary ionic radii.

Ionic radii cannot be determined unambiguously. Relying on the assump-
tion that atoms are close-packed, several attempts have been made to estimate
ionic radii from the lattice constant of the ionic crystal and the separation d
between neighboring cations and anions using

d = rc + ra , (7.6.4)

where rc is the radius of the cation and ra is the radius of the anion. V. M.

Goldschmidt (1926) chose the radii of O2− and F− ions as reference, assum-
ing the values: ri(O2−) = 1.32 Å and ri(F−) = 1.33 Å. One year later (1927)
L. C. Pauling worked out a system in which the values ri(O2−) = 1.40 Å
and ri(F−) = 1.36 Å were chosen. To illustrate the variations of ionic radii in
the periods and groups of the periodic table, the Pauling ionic radii of some
singly and doubly charged ions are listed in Table 7.4.

Table 7.4. Pauling ionic radii (in Å) of some singly and doubly charged ions

Li+ Be2+ O2− F−

0.60 0.31 1.40 1.36

Na+ Mg2+ S2− Cl−

0.95 0.65 1.84 1.81

K+ Ca2+ Cu+ Zn2+ Se2− Br−

1.33 0.99 0.96 0.74 1.98 1.95

Rb+ Sr2+ Ag+ Cd2+ Te2− I−

1.48 1.13 1.26 0.97 2.21 2.16

Cs+ Ba2+ Au+ Hg2+

1.69 1.35 1.37 1.10

In reality, ionic radii may depend on the number of nearest neighbors (the
coordination number). Data listed in Table 7.5 clearly show that when the
radius of the same ion is determined from the lattice constants of different
types of crystals, highly disparate values are obtained.

According to Table 4.4, cesium chloride has the largest Madelung constant
among simple structures with a diatomic basis. Therefore when ions are con-
sidered as classical objects with a spherical charge distribution whose energy
can be determined in terms of the energies of point charges, this structure
should be more stable than sodium chloride, sphalerite, or wurtzite struc-
tures. Nevertheless the latter occur naturally quite frequently. To understand
this, finite ionic radii are taken into account through the assumption that in
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Table 7.5. Ionic radius (in Å) in environments with different coordination numbers,
estimated from lattice constants

Coordination
number Al3+ Mn2+ Fe2+ Fe3+ Cu+ Zn2+ O2−

4 0.39 0.66 0.63 0.49 0.60 0.60
6 0.54 0.83 0.61 0.55 0.77 0.74 1.40
8 0.96 0.92 0.78 0.90 1.42

the energetically most favorable situation cations and anions are as close to-
gether as possible, i.e., in contact with each other inside the crystal. This is
illustrated in Fig. 7.26, where the arrangement of touching ions is shown in
the (110) plane of a CsCl structure for various values of the ionic radius ratio.

ra

rc
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√
3 + 1
2

ra

rc
=

√
3 + 1
2

ra

rc
>

√
3 + 1
2

Fig. 7.26. Touching rigid spherical ions in the (110) plane of the cesium chloride
structure, for various values of the anion–cation radius ratio

Taking the radius of the anions fixed and gradually reducing the radius
of cations, anions and cations will be in contact along the space diagonal
provided 2(ra + rc) =

√
3a and 2ra ≤ a both hold, that is, as long as

ra

rc
≤

√
3 + 1
2

= 1.366 . (7.6.5)

Using the Pauling ionic radii, the ratio ra/rc for CsCl is 1.07, the above
condition is thus met.

However, for Na+ and Cl− ions the same ratio is found to be 1.91. In a
CsCl structure these anions and cations could not touch one another. In such
cases, NaCl structure is energetically more favorable: although its Madelung
constant is slightly smaller, it allows the two ions to be in contact. As illus-
trated in Fig. 7.27, cations and anions are in direct contact – and so sodium
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chloride structure is stable – as long as 2(ra + rc) = a and 4ra ≤ √
2a, that is

ra

rc
≤ √

2 + 1 = 2.415 . (7.6.6)

When the radius ratio exceeds this value, tetrahedrally coordinated sphalerite-
type structure may occur. Similar considerations lead to the stability condition

ra

rc
≤ 2 +

√
6 = 4.444 (7.6.7)

in this case.
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Fig. 7.27. Touching rigid spherical ions in the (110) plane of the sodium chloride
structure, for various values of the anion–cation radius ratio

In the stable structure cations are visibly surrounded by eight anions when
1 < ra/rc < 1.366, by six anions when 1.366 < ra/rc < 2.415, and by just four
anions when 2.415 < ra/rc < 4.444. When the ratio of the ionic radii exceeds
this value a trigonally coordinated planar configuration becomes stable. For
even higher values of this ratio, ra/rc > 2

√
3 + 3 = 6.464 linear coordination

becomes stable.
Compared to the 1920s, we now have a much more profound understand-

ing of the spatial distribution of electrons in ionic crystals. High-resolution
diffraction measurements permit us to determine the density distribution of
electrons. This is shown in Fig. 7.28 for rock salt.

The electron density reconstructed from measurements varies continuously,
and it is not really spherically symmetric either – nevertheless it is reasonable
to choose the minimum along the axis joining the two ions as the border
between them. The “physical” ionic radius rph

i determined this way is listed
in Table 7.6 for various ions at sites with coordination number six. “Physical”
and Pauling ionic radii are seen to differ by as much as 0.1–0.2 Å, and should
therefore be considered as just indications of the size of ions.
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Fig. 7.28. Electron density in the (100) plane passing through atomic centers in a
NaCl crystal, determined via the inverse Fourier transform of diffraction patterns
[R. Brill, Solid State Physics 20, 1 (1967)]

Table 7.6. “Physical” ionic radii (in Å) of some singly and doubly charged ions

Li+ Be2+ O2− F−

0.94 0.59 1.26 1.16

Na+ Mg2+ S2− Cl−

1.17 0.86 1.70 1.64

K+ Ca2+ Cu+ Zn2+ Se2− Br−

1.49 1.14 0.91 0.88 1.84 1.80

Rb+ Sr2+ Ag+ Cd2+ Te2− I−

1.63 1.32 1.29 1.09 2.07 2.05

Cs+ Ba2+ Au+ Hg2+

1.86 1.49 1.51 1.16
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Methods of Structure Determination

Symmetries of the regular crystalline arrangement of atoms manifest them-
selves in direction-dependent quantities such as elastic constants or electric
conductivity. The measurement of such quantities therefore provides informa-
tion about the symmetries of the crystal, and so, indirectly, about its structure.
A full determination of the structure – the Bravais lattice as well as the atomic
positions in the basis – nevertheless calls for a method by which the interior
of the sample can be seen. This requires a radiation that penetrates relatively
deeply into the material so that it should feel not only the atoms close to the
surface. Its wavelength has to be comparable to interatomic distances, i.e.,
the dimensions of the primitive cell.

As we have seen, typical interatomic distances are a few angstroms, there-
fore the wavelength of the probing radiation has to be of the same order of
magnitude. This corresponds to the X-ray region of the electromagnetic radi-
ation spectrum. In 1912, using X-rays scattered by a crystal, M. von Laue

1

and two co-workers, W. Friedrich and P. Knipping obtained a diffrac-
tion pattern characteristic of interference. X-ray diffraction has since become
the classic method of crystal-structure determination, due in a large part to
the works of W. H. Bragg and W. L. Bragg.2 The range of applications
of X-ray diffraction has been extended substantially with the appearance of
synchrotrons providing high-intensity radiation of high-energy γ photons.

Besides X-ray diffraction, elastic scattering of electrons or neutrons is also
suitable for structure determination as it is fairly easy to produce sufficiently
intense electron and neutron beams of appropriate wavelengths. By slowing
down neutrons from fission reactors or spallation sources to thermal energies
it is possible to produce neutrons in the wavelength range of a few angstroms.
In the case of electrons, beams of the above wavelength are produced by accel-
erating them to energies on the order of 100 eV. In the section on experimental

1 See footnote on page 2.
2 See footnote on page 2.
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methods we shall discuss the advantages and disadvantages of using each type
of radiation.

Whether photons, electrons, or neutrons are scattered by condensed mat-
ter, besides its structure, other characteristics of the surface or bulk of the
sample may also be revealed. This is because interaction with radiation may
change the state of the sample, inducing a transition from its initial state
into an(other) excited state. In this case the energy of the photons (electrons,
neutrons) in the scattered beam is different from the energy of the particles
in the incident beam. These inelastic processes provide information about the
internal processes taking place inside the sample, and thus their observation
opens the way to studying the excited states of the system. To this end, one
has to measure the spatial and energy distribution of the radiation scattered
by the sample. Structure determination is much simpler: it just requires the
measurement of the spatial distribution of the scattered beam emerging from
a much more intense process, elastic scattering (diffraction). In this chapter
we first present the theory of diffraction, and then discuss the methods used
to observe diffraction.

8.1 The Theory of Diffraction

Owing to the greater availability of X-ray sources, X-ray diffraction is more
widely used for structure determination than neutron or electron diffraction.
For this reason, in what follows we shall speak of X-ray diffraction, incident
and scattered photons, although the condition presented below is valid for
any type of radiation, it is concerned only with the wavelength. On the other
hand, the penetration depth of the incident radiation into the sample and
the relative intensity of the diffracted beam both depend on the character of
the radiation. Thus the diffracted beam carries information either about the
internal structure or the surface.

8.1.1 The Bragg and Laue Conditions of Diffraction

Shortly after the first X-ray diffraction patterns were recorded (1912), two
different interpretations were proposed to account for them. W. L. Bragg

(1913) advocated the view that atoms in crystals are arranged in parallel
planes spaced at equal distances d, and X-rays are reflected specularly from
them in accordance with the laws of reflection. As illustrated in Fig. 5.10,
atoms can indeed be arranged into planes. Figure 8.1 shows a particular set
of planes and the rays reflected from adjacent planes.

The phase difference between rays reflected from subsequent planes de-
pends on the spacing between the planes. Constructive interference occurs
when the phase difference between the rays reflected from adjacent planes is
an integral multiple of 2π; otherwise the rays scattered by the planes interfere
destructively. Thus scattered beams emerge only for some particular values of
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� �

� �
� d

d

Fig. 8.1. Reflection of an X-ray beam of wavelength λ from a particular set of
atomic planes separated by equal distances d. θ is the complement of the angle of
incidence

the angle of incidence. On the other hand, the direction of the crystal planes
can be chosen in infinitely many different ways, as shown in Fig. 5.10. Then
the condition for constructive interference can be satisfied for several of them
for a fixed incoming beam, and thus scattered beams can emerge in several
directions.

To determine the condition for interference, assume that the incident beam
makes an angle θ with the selected crystal plane.3 According to the laws of
reflection, the scattered beam makes the same angle with the plane, so the
angle of deflection of the incident beam is 2θ. The path difference between two
rays reflected from adjacent planes is Δs = 2d sin θ, as it is readily seen in the
figure. The integral multiples of this distance appear for waves reflected from
subsequent layers. In terms of the path difference Δs, constructive interference
occurs when Δs is an integral multiple of the wavelength λ. Thus scattered
beams emerge only when the condition

2d sin θ = mλ (8.1.1)

is met by a family of crystal planes, where m is an integer. This is the Bragg
condition for diffraction. The intensity of the reflected beam has sharp peaks
in the corresponding directions. They are called Bragg peaks.

In Laue’s formulation the appearance of a sharp diffraction pattern is in-
terpreted in terms of the interference of rays scattered by individual atoms
rather than planes. Incident radiation is scattered by each atom, with an in-
tensity that depends on the atomic species. The phase differences between
scattered waves depend on atomic positions and the direction of the incident
and scattered beams. To determine this phase difference assume that a radia-
tion of wavelength λ is incident on the sample along the direction of the unit
vector n. Diffraction does not modify the wavelength of the ray, while its new
direction will be denoted by n′. Now consider two equivalent atoms in the
3 In X-ray crystallography the above-defined θ is conventionally called the angle of

incidence.
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crystal. Obviously, when one is chosen as the origin, the position vector Rn

of the other has to be a lattice vector of the crystal. The geometry of incident
and scattered beams is illustrated in Fig. 8.2.

R
n

�

�
nk�

2�

�
n’k’�

2�

Fig. 8.2. Scattering of X-rays by two atoms of the crystal separated by a vector of
the Bravais lattice

It can be immediately seen in the figure that the path difference between
the waves scattered by the atoms at lattice point Rn and at the origin is

Δs = Rn · n − Rn · n′ . (8.1.2)

In terms of the wave vectors k = (2π/λ)n and k′, the corresponding phase
difference is

Δφ = Rn · k − Rn · k′ . (8.1.3)

The condition for constructive interference is that this phase difference be an
integral multiple of 2π for any lattice vector Rn of the crystal, that is,

Rn · (k − k′) = 2πm . (8.1.4)

Recall (5.2.20): the product of any reciprocal-lattice vector G and any
direct-lattice vector Rn is also an integral multiple of 2π. This means that
the condition (8.1.4) for diffraction is equivalent to the requirement that k−k′

should be a reciprocal-lattice vector,

k − k′ = G . (8.1.5)

This relationship is called the Laue condition for diffraction. For an incident
beam of given direction and wavelength scattered waves emerge only in the
directions that satisfy the above condition. We saw in Chapter 6 that for
diffraction this condition is in fact the consequence of discrete translational
symmetry, and as such independent of any properties of the scattered beam.

Equation (8.1.5) may be written in another useful form by rearranging the
terms and squaring the sides:

|k|2 − 2k · G + |G|2 = |k′|2 . (8.1.6)

As scattering is elastic, |k| = |k′|, the condition for diffraction is
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k · G = 1
2 |G|2 , (8.1.7)

which is equivalent to the requirement that k − 1
2G be perpendicular to G.

Thus the condition for diffraction is satisfied for incident beams whose wave
vector points into a Bragg plane, i.e., the perpendicular bisecting plane of
some vector G of the reciprocal lattice, as shown in Fig. 8.3.

k k k G’� �

G

k G� �1 2 G


Fig. 8.3. Illustration of the Laue condition (8.1.7). The wave vector k of the incident
beam has to point into the perpendicular bisecting plane of some vector G of the
reciprocal lattice

Although derived from the Laue condition, this relation is often called
the Bragg condition for diffraction. As it can be easily proved, the Bragg and
Laue conditions are mathematically equivalent forms of the same requirement.
Consider a situation in which the wave vectors of the incident and scattered
beams satisfy condition (8.1.5) with a vector

Ghkl = m(hb1 + kb2 + lb3) (8.1.8)

of the reciprocal lattice, where h, k, and l are relatively prime. The geometry
of vectors k, k′, and Ghkl is illustrated in Fig. 8.4.

Ghkl

k

k'
�

�

�Ghkl

( )hkl

Fig. 8.4. Geometry of the wave vectors of the incident and scattered beams, the
reciprocal-lattice vector satisfying the Laue condition, and the crystal plane perpen-
dicular to it

As k and k′ are of equal length, their angle bisector is perpendicular to
Ghkl = k−k′. Since the reciprocal-lattice vector Ghkl is perpendicular to the
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lattice plane with Miller indices (hkl), the diffraction can be considered as if
the incoming beam were incident on and then reflected from the (hkl) plane
at an angle θ. From the triangle shown in the figure the Laue condition can
also be written as

|Ghkl| = 2|k| sin θ . (8.1.9)

According to (5.2.26), the length of the reciprocal-lattice vector Ghkl can be
expressed in terms of the spacing dhkl of the planes specified by the Miller
indices (hkl). On account of the choice made in (8.1.8),

|Ghkl| = m
2π
dhkl

. (8.1.10)

By eliminating the wave number |k| in favor of the wavelength, (8.1.9) takes
the form

m
2π
dhkl

= 2
2π
λ

sin θ . (8.1.11)

This form of the Laue condition is obviously equivalent to the Bragg condition
given in (8.1.1).

By measuring the angles where Bragg peaks appear, the spacings dhkl, and
from them the lattice parameters can be determined. For example, in cubic
crystals the lattice constant of the Bravais cell is related to the spacing by

1
d2
hkl

=
h2 + k2 + l2

a2
, (8.1.12)

while in orthorhombic crystals the three lattice constants can be determined
from

1
d2
hkl

=
h2

a2
+

k2

b2
+

l2

c2
. (8.1.13)

The unambiguous identification of the integers h, k, and l, and thereby the un-
ambiguous determination of the lattice parameters calls for the measurement
of the position of several interference peaks.

8.1.2 Structure Amplitude and Atomic Form Factor

In the previous subsection we derived the Bragg and Laue conditions from
the wave nature of radiation using purely geometrical considerations, without
any restrictions on the scattering potential. We only assumed that atoms are
arranged in a periodic array, that the incident and scattered waves can be
considered as plane waves, and that rays scattered by individual atoms or
atomic planes interfere.

A more quantitative picture may be obtained by assuming that the inter-
action between the X-ray and the atom is given by a potential Ua(r). When
the crystal has a monatomic basis, i.e., contains a single atom per primitive
cell, the total potential is
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U(r) =
∑
Rn

Ua(r − Rn) . (8.1.14)

Since photons interact with the electron shell of the atom, the potential is
proportional to the electron density,

Ua(r − Rn) ∝ ρe(r − Rn) . (8.1.15)

In the case of neutron scattering, neutrons interact with the nuclei or the
magnetic moment of the electron cloud. Scattering by nuclei is described in
terms of a local, Dirac delta-like Fermi pseudopotential,

Ua(r − Rn) = −2π�
2

mn
faδ(r − Rn) , (8.1.16)

where fa has the dimension of length and is called the scattering length. The
interaction governing magnetic scattering is proportional to the magnetic mo-
ment density.

To determine the scattered beam, we continue to assume that a plane
wave of wave vector k is incident upon the sample, and the beam reaching
the detector can be considered as a plane wave with wave vector k′. The
transition probability is proportional to the absolute square of the transition
matrix element

〈k|U(r)|k′〉 =
1
V

∫
U(r)e−i(k−k′)·r dr . (8.1.17)

In what follows, |k〉 does not stand for a plane wave normalized with a factor
1/V −1/2 but for eik·r, thus the volume factor 1/V is absent from the matrix
element.

When the potential is written as a sum of atomic potentials, the above
matrix element can also be decomposed into the sum of contributions from
individual atoms:

〈k|U(r)|k′〉 =
∑
Rn

e−i(k−k′)·Rn

∫
Ua(r − Rn)e−i(k−k′)·(r−Rn) d(r − Rn) .

(8.1.18)
The reader may recognize the k − k′ component of the Fourier transform of
the atomic potential. Provided that this is identical for each atom, it can be
taken out of the matrix element:

〈k|U(r)|k′〉 = Uk−k′
∑
Rn

e−i(k−k′)·Rn . (8.1.19)

The second factor on the right-hand side,∑
Rn

e−i(k−k′)·Rn (8.1.20)
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is determined by the spatial distribution of the atoms. It turns out to be the
Fourier transform of the atomic density function:

∑
Rn

e−i(k−k′)·Rn =
∫

ρ(r)e−i(k−k′)·r dr , (8.1.21)

where
ρ(r) =

∑
Rn

δ(r − Rn) . (8.1.22)

Introduction of the scattering vector K = k − k′ leads to

ρK =
∑
Rn

e−iK·Rn ; (8.1.23)

this quantity is called the structure amplitude.4
Note that up to this point we have not made use of the periodicity of the

atomic arrangement, only the fact that the interaction of radiation with an
atom is described by a common potential for each atom. Therefore the above
definition of the structure amplitude – the Fourier transform of atomic density
– can be extended straightforwardly to noncrystalline materials.

Next, consider a crystal with p atoms arranged identically in each primitive
cell. Let r1, r2, . . . , rp denote the atomic positions within a cell. The potential
of the entire lattice is obtained by double summation: over the lattice vectors
Rn specifying the primitive cell and over the position vectors rj of each atom
within the cell,

U(r) =
∑
Rn

∑
rj

Uj(r − Rn − rj) . (8.1.24)

Naturally, one must allow for different potentials for each atom of the basis.
The matrix element is then

〈k|U(r)|k′〉 =
∑
Rn

∑
rj

Uj,Ke−iK·(Rn+rj) , (8.1.25)

where
Uj,K =

∫
Uj(r)e−iK·rdr (8.1.26)

is the Fourier transform of the potential of the jth atom. As mentioned above,
for X-ray diffraction the interaction potential is proportional to the density of
electrons,

Uj,K ∝
∫

ρej(r)e−iK·r dr . (8.1.27)

4 Although many references use the term structure factor for this quantity, this
name is customarily reserved for its square, |ρK |2, which appears in the cross
section. This is in line with the definition of the same concept on page 18.
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This is why the expression on the right-hand side is called the atomic form
factor ; in what follows, it will be denoted by AK . For spherically symmetric
electron distributions

Aj,K =
∫

4πr2ρej(r)
sinKr

Kr
dr . (8.1.28)

For magnetic scattering of neutrons, the density distribution of the electrons
responsible for magnetism appears in the so-called magnetic form factor.

In crystalline materials, where each primitive cell is decorated with the
same basis, the matrix element can be written as the product of two factors,

〈k|U(r)|k′〉 =
∑
Rn

e−iK·Rn

∑
rj

Uj,Ke−iK·rj . (8.1.29)

By exploiting the proportionality of the potential and the electron density
once again, the second factor on the right-hand side may be written as

AK =
∑
rj

Aj,Ke−iK·rj . (8.1.30)

This quantity – or its complex conjugate – accounts for the arrangement of
the atoms within a cell, and is therefore also called the structure amplitude.
Note that the structure amplitude is just the Fourier transform of the total
electron density of the atoms within the same cell,

AK =
∫

ρe,tot(r)e−iK·r dr , (8.1.31)

where
ρe,tot(r) =

∑
j

ρej(r) . (8.1.32)

For nonmagnetic scattering of neutrons Uj,K should be replaced by the
Fermi pseudopotential in (8.1.25). Since in this case neutrons are scattered by
point-like nuclei, the atomic form factor is independent of K and proportional
to the nuclear scattering length. The geometrical information contained in the
phase factor is therefore weighted by the scattering lengths of individual atoms
in the structure amplitude.

8.1.3 Diffraction Cross Section

Having analyzed the matrix element showing up in the transition probability,
we may now turn to the determination of the cross section for diffraction.
The differential cross section for the scattering of an X-ray beam into the
element of solid angle dΩ around the direction of k′ is obtained directly from
the integration of the double differential formulas given in Appendix E with
respect to the energy variable:
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dσ
dΩ

=
(

nk

2π�c

)2 ∣∣〈k′|〈f |U(r)|i〉|k〉∣∣2 , (8.1.33)

where n is the index of refraction of the sample, while |i〉 and |f〉 are the
initial and final states of the scattering system. The same formula for neutron
scattering is

dσ
dΩ

=
( mn

2π�2

)2 ∣∣〈k′|〈f |U(r)|i〉|k〉∣∣2 . (8.1.34)

Scattering length was introduced in the context of neutron scattering on
page 247. By analogy, the scattering amplitude f(r) defined through

Ua(r) = −2π�c

nk
f(r) (8.1.35)

is often used instead of the atomic potential for other types of scattering as
well. As f(r) has dimensions of length, it is often called the scattering length,
too. Thus for X-ray and neutron diffraction alike, the cross section of elastic
scattering by a single atom is the absolute square of the Fourier transform fK

of the scattering amplitude:

dσ
dΩ

= |fK |2. (8.1.36)

If atoms in a bulk material all have the same scattering amplitude and are
immobile at positions Rm, the cross section for diffraction is

dσ
dΩ

= |fK |2
∑

Rm,Rn

e−iK·(Rm−Rn). (8.1.37)

Note that the second structure-dependent factor on the right-hand side is –
apart from a factor of 1/N – the Fourier transform of Γ (r) introduced in
(2.1.16), which is related to the pair-correlation function, i.e., the expectation
value of the product of two densities. Separation of the K = 0 term from
Γ (K) left us with a quantity that we called the structure factor. Thus the
cross section for diffraction is proportional to the structure factor provided
that the scattering amplitude is the same for each atom. It should be stressed
that the validity of this result is not limited to crystalline materials. In crystals,
however, the expression given in (8.1.37) is obtained even when the primitive
cell contains several atoms, although in this case fK is replaced by a weighted
sum of atomic scattering amplitudes,∑

rj

fj,Ke−iK·rj . (8.1.38)

The directional distribution of the scattered beam is determined primarily
by the second factor in (8.1.37), the structure factor. For diffraction in crystals
this leads to the condition that K = k − k′ should be equal to a reciprocal-
lattice vector, as
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Rm,Rn

e−iK·(Rm−Rn) = N2
∑
G

δK,G , (8.1.39)

where we have used the relation (C.1.39). Indeed, diffraction peaks appear
only for scattering processes that satisfy the Laue (Bragg) condition, however
the intensity of such Bragg peaks is determined by |fK |2, which depends on
atomic scattering amplitudes as well as the geometry of the basis.

Next, we shall demonstrate that the result for the cross section of diffrac-
tion obtained by the above calculation,

dσ
dΩ

=
∣∣∣∑

Rn

∑
rj

fj,Ke−iK·(Rn+rj)
∣∣∣2 , (8.1.40)

does not fundamentally rely on the assumption that the scattered beam is a
plane wave: the same result is recovered using the more natural assumption
that scattered waves are spherical.

If the scattering center is at the origin then the wavefunction of the scat-
tered particle and the unscattered part of the beam is given by

ψ(r) = eik·r + f(Ω)
eikr

r
, (8.1.41)

where Ω is the solid angle defined by the direction of r. Theoretical consider-
ations show that the prefactor of the second term, f(Ω) is just the scattering
amplitude in that direction, since the scattering cross section for a beam given
in the form (8.1.41) is just

dσ
dΩ

= |f(Ω)|2 . (8.1.42)

If the scatterer is not at the origin but at Rn+rj and the scattering amplitude
is fj then an extra phase factor appears in the wavefunction. As the beam
travels only a distance |r − Rn − rj | until it reaches the detector,

ψ = eik·(Rn+rj)

[
eik·(r−Rn−rj) + fj(K)

eik|r−Rn−rj |

|r − Rn − rj |
]
. (8.1.43)

Since the size of sample is small compared to the distance of the detector,

k|r − Rn − rj | ≈ kr − k
r · (Rn + rj)

r
= kr − k′ · (Rn + rj) , (8.1.44)

as k′ points in the direction of the detector located at r, and its magnitude is
equal to that of k. Thus the sum of the incoming plane wave and the outgoing
spherical wave takes the form

ψ = eik·r + fj(Ω)
eikr+iK·(Rn+rj)

r
. (8.1.45)
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For several scatterers we have

ψ = eik·r +
∑
Rn

∑
rj

fj(Ω)
eikr+iK·(Rn+rj)

r
, (8.1.46)

so the total scattering amplitude is given by

f(Ω) =
∑
Rn

∑
rj

fj(Ω)eiK·(Rn+rj) . (8.1.47)

When this is substituted into the cross-section formula (8.1.42), expression
(8.1.40) is recovered.

Barring the case of large ideal crystals, when a beam of wave number k is
incident upon a sample, the intensity of the scattered beam of wave number
k′ will be shown to be proportional to |fK |2. To determine the crystal struc-
ture, the distribution of the diffracted beam and the relative intensity of the
Bragg peaks are measured, and then the arrangement of atoms is deduced.
When X-ray or electron diffraction is used, the interaction potential is pro-
portional to the electron density – and then their spatial distribution can also
be determined.

According to (C.1.36), lattice-periodic charge distributions can be ex-
panded into Fourier series using vectors of the reciprocal lattice,

ρtot(r) ∝ 1
v

∑
G

fGeiG·r , (8.1.48)

where v is the volume of the primitive cell. This implies that if the struc-
ture amplitudes were known for each reciprocal-lattice vector, charge density
could, in principle, be obtained by an inverse Fourier transformation. The
evaluation of diffraction measurements is encumbered by the fact that the
structure factor |fK |2 rather than the structure amplitude is amenable to di-
rect measurement, and thus the information contained in the complex phase
of the structure amplitude is lost. To overcome this problem, specific assump-
tions are made about the structure, and iterative methods are used until an
atomic configuration is found that is in agreement with measurements. Even
then the structure cannot be reconstructed without some ambiguity. In recent
years successful attempts have been made to extend holography to the X-ray
region, opening the way to X-ray holograms that contain phase information,
and provide a three-dimensional image of the neighborhood of the atom.5

8.1.4 The Shape and Intensity of Diffraction Peaks

The above considerations are suitable for the determination of the direction
of diffraction peaks for infinitely large samples. For finite samples interference
5 Outstanding contributions to X-ray holography have been made by G. Faigel

and M. Tegze. However, there is still a long way to go before practical applica-
tions are available.
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is expected to remain constructive, and thus the scattered intensity will be
maximal in these directions, however, in other directions cancellation will be
only partial, leading to small but nonzero intensities. In analogy to optics,
one expects that by increasing the size of the sample (that is, the number
of scatterers), the diffraction peak becomes sharper, and practically complete
cancellation is observed in any direction that does not satisfy the Bragg con-
dition. To determine the angular dependence of intensity, we shall return to
the formulation asserting that the transition probability is proportional to the
absolute square of the transition matrix element

〈k|U(r)|k′〉 =
∫

U(r)e−i(k−k′)·r dr , (8.1.49)

where U(r) is the full potential. In terms of the scattering amplitude f(r)
instead of the potential, the amplitude of the scattered beam is proportional
to

fK =
∫

f(r)e−i(k−k′)·r dr . (8.1.50)

In crystalline material atoms are arranged in a periodic array, thus the scat-
tering amplitude is also periodic and satisfies condition (5.1.2). It is therefore
possible to expand it into a Fourier series in terms of the reciprocal-lattice
vectors. Using the form

f(r) =
1
v

∑
G

fGeiG·r , (8.1.51)

where v is the volume of the primitive cell, the amplitude of the scattered
beam is found to be proportional to

fK =
1
v

∑
G

fG

∫
e−i(k−k′−G)·r dr . (8.1.52)

For infinite crystals scattered beams arise only in the directions that satisfy
the condition k′ = k − G; cancellation is perfect in all other directions.

In finite crystals, an arbitrary position r is written as the vector sum of
the lattice point Rn associated with the primitive cell and the position vector
u within the cell:

r = Rn + u = n1a1 + n2a2 + n3a3 + u1a1 + u2a2 + u3a3 . (8.1.53)

The coordinates ui of the position within the primitive cell satisfy the condi-
tion

0 ≤ uj ≤ 1 , j = 1, 2, 3. (8.1.54)

Next, the vector K = k−k′ is expressed in terms of reciprocal-lattice vectors.
From the foregoing it is intuitively obvious that scattering is maximal if K
is precisely equal to a vector of the reciprocal lattice. Since we are interested
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in the shape of the peak, K is now allowed to differ by an amount q from
a reciprocal-lattice vector G. Expressed in terms of the primitive vectors b1,
b2, and b3 of the reciprocal lattice,

K = G + q = hb1 + kb2 + lb3 + q1b1 + q2b2 + q3b3 . (8.1.55)

As the scattered beam is confined to a small cone around the direction of
k′ = k − G, the fractional numbers qi are chosen to fall in the interval

− 1
2 ≤ qj ≤ 1

2 , j = 1, 2, 3. (8.1.56)

To evaluate the integral in (8.1.52) for a fixed q, it is separated into an integral
over the primitive cell and a sum over primitive cells:

fq =
1
v
fG

∑
Rn

∫
v

e−iq·(Rn+u) du . (8.1.57)

Suppose that the shape of the sample is such that there are N1, N2, and N3

primitive cells along the directions of the primitive vectors a1, a2, and a3. As
the scalar product of a direct- and a reciprocal-lattice vector satisfies (5.2.12),

fq = fGM1M2M3 , (8.1.58)

where

Mj =
Nj−1∑
nj=0

1∫
0

e−2πi(nj+uj)qj duj . (8.1.59)

Summation and integration can be separated. Each operation is then ele-
mentary, leading to

Mj = SjM
′
j , (8.1.60)

where

Sj =
Nj−1∑
nj=0

e−2πinjqj =
e−2πiNjqj − 1
e−2πiqj − 1

, (8.1.61)

and

M ′
j =

1∫
0

e−2πiujqj duj =
1 − e−2πiqj

2πiqj
, (8.1.62)

that is

Mj =
1 − e−2πiNjqj

2πiqj
. (8.1.63)

The intensity I of the scattered beam contains the absolute square of the
amplitude. Using ∣∣∣∣1 − e−2πiNjqj

2πiqj

∣∣∣∣
2

=
sin2 πqjNj

π2q2
j

, (8.1.64)
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the intensity distribution is given by

I(q) = |fG|2 1
v2

sin2 πq1N1

π2q2
1

sin2 πq2N2

π2q2
2

sin2 πq3N3

π2q2
3

(8.1.65)

for the diffraction peak associated with the reciprocal-lattice vector G and the
direction characterized by the components qi. This function has a sharp max-
imum at q = 0, where its value is proportional to the square of the number of
scatterers – that is, the square of the sample volume. This result is counter-
intuitive: the intensity of the scattered beam is expected to be proportional
to the volume of the sample (and not its square). If we were to determine not
just the peak height but the total scattered intensity, it would be proportional
to the volume of the sample, as the width of peaks decreases inversely with
the volume of the sample. Nevertheless this result indicates the necessity of
a more rigorous discussion of the rays scattered from the sample interior. We
shall revisit this point later, when the dynamical theory of diffraction has been
outlined.

8.1.5 Cancellation in Structures with a Polyatomic Basis

In structures with a monatomic basis, where each primitive cell contains a
single atom, the intensity of scattering associated with vector G of the re-
ciprocal lattice is simply proportional to |fG|2. The situation is different in
crystals with a basis of several atoms. Here intensity relations depend on the
geometry of the atoms of the basis as well as the magnitude of the individ-
ual scattering amplitudes. The situation is substantially simplified when the
atoms of the basis are all identical. The atomic scattering factor can then
be factored out, leaving behind a structure factor that conveys information
about the structure alone. Consider, for example, a diamond lattice, which is
a face-centered cubic structure with a diatomic basis. In terms of the edge vec-
tors of the face-centered cubic Bravais cell the coordinates are 000 and 1

4
1
4

1
4 .

Using the primitive vectors given in (7.2.9) leads to the same coordinates:
the second carbon atom is at 1

4 (a1 + a2 + a3). The structure amplitude for
reciprocal-lattice vector G = hb1 + kb2 + lb3 – where bi is defined by (7.2.12)
– is

Ahkl = 1 + e−i(hb1+kb2+lb3)·(a1+a2+a3)/4 = 1 + e−iπ(h+k+l)/2 . (8.1.66)

Depending on the indices hkl of the Bragg peak, this quantity takes the values
2, 0, or 1± i. The structure amplitude vanishes when h+ k+ l is even but not
divisible by four (h + k + l = 4j + 2). This means that there are directions
in which Bragg peaks are absent even though the Laue (Bragg) condition is
satisfied by the reciprocal-lattice vector Ghkl. For other values of hkl there are
Bragg peaks, however, when h+k+ l is odd (h+k+ l = 2j+1), their intensity
is just half of those peaks for which h+k+l is divisible by four (h+k+l = 4j).
As Fig. 8.5 shows, those lattice points of the bcc reciprocal lattice for which
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the structure amplitudes – and hence the Bragg peak intensities – are equal
are located in planes perpendicular to the space diagonal.

b3

b2
b1

Fig. 8.5. Reciprocal-lattice vectors of the diamond structure that give rise to diffrac-
tion peaks of different intensities. The structure amplitude for vectors pointing to
full circles, shaded circles, and empty circles are 2, 1 ± i, and 0. The intensity ratio
of the corresponding Bragg peaks is therefore 4 : 2 : 0

The reason for this is that rays scattered by the two carbon atoms of
the basis may interfere constructively or destructively; they may even can-
cel out perfectly. Observation of these cancellations permits experimentalists
to distinguish the diamond structure from face-centered structures with a
monatomic basis.

When the basis contains two different atoms – as in the sphalerite struc-
ture, where Zn and S atoms are at points 000 and 1

4
1
4

1
4 , respectively –, the

scattering amplitude of the primitive cell is calculated from atomic scattering
amplitudes using weights characteristic of the structure:

fhkl = fZn + fSe−iπ(h+k+l)/2 . (8.1.67)

This shows that there are no reciprocal-lattice vectors for which cancellation
is perfect. From the intensity distribution of the Bragg peaks one may infer
the atomic scattering factors and atomic positions within the cell – that is,
the nature of the crystal.

Similarly to the case of the diamond structure, a cancellation (albeit an
apparent one) is observed when the crystal has a centered Bravais lattice –
but this information is not known prior to the evaluation of the diffraction
measurements. As a simple example consider a face-centered cubic lattice
with a lattice constant a. When, based on macroscopic properties, the crystal
structure is assumed to possess cubic symmetry, one may attempt to interpret
the diffraction peaks in terms of the reciprocal lattice of a simple cubic crystal.
Using the edge vectors a, b, and c of the Bravais cell (see Fig. 8.6(a)), the
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coordinates of the four atoms of the cell are 000, 1
2

1
20, 1

20 1
2 , and 0 1

2
1
2 . The

counterparts of the direct-lattice edge vectors a, b, c are the reciprocal-space
vectors a∗, b∗, and c∗ of length 2π/a. In terms of these the structure amplitude
for the vector G = ha∗ + kb∗ + lc∗ is

Ahkl =
∑
j

e−2πi(hxj+kyj+lzj) = 1+e−iπ(h+k)+e−iπ(h+l)+e−iπ(k+l) . (8.1.68)

The value of this quantity is 4 when the Miller indices hkl are all even or all
odd. When odd as well as even indices occur, the structure factor vanishes
– and so no scattered beam emerges in the corresponding direction. Certain
Bragg peaks are absent – while they should be present if the crystal had a
simple cubic structure. Empty circles in Fig. 8.6(b) indicate those vectors G
of the reciprocal lattice for which the structure factor vanishes, and full circles
those for which the Bragg peak is finite.

a
3

a
2

c

b

a

a
1

( )a ( )b

b
3

b
2

a*

b
1

c*

4 /� a

b*

Fig. 8.6. (a) The primitive cell and the Bravais cell for a face-centered cubic crystal.
(b) The body-centered cubic reciprocal lattice of the face-centered cubic direct lattice
is indicated by full circles. The simple cubic lattice with the additional lattice points
(empty circles) is the reciprocal of the lattice spanned by the primitive vectors
a, b, c

Compared to the simple cubic lattice, certain Bragg peaks are thus absent
in the corresponding face-centered cubic crystal. This can be interpreted as the
result of destructive interference between the rays scattered by the atoms at
the vertices and face centers. This is illustrated in Fig. 8.7. The planes drawn
across the atoms at the vertices of the simple cubic lattice are indicated by
solid lines, while the extra planes appearing in an fcc lattice due to centering
by dashed lines.

The figure shows that the spacing between the atomic planes of an fcc
crystal is half of that for the simple cubic crystal from which it is obtained by
centering. Let us consider directions for which the phase difference between
rays reflected from adjacent planes of the simple cubic lattice is an odd multi-
ple of 2π – i.e., the path difference is an odd multiple of λ. Among themselves,
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Fig. 8.7. Projection of the face-centered cubic crystal onto the plane perpendicular
to the [001] direction, with the (100) and (110) planes. Full circles, empty circles
and ⊗ symbols indicate atoms at vertices, base centers, and side centers. Solid lines
show those members of the family of planes that contain atoms at the vertices of
the Bravais cell. Atomic planes drawn with dashed lines are the result of centering

these rays interfere constructively. When, however, the rays scattered from the
extra planes of the fcc lattice are also taken into account, cancellation occurs,
because these rays are precisely in the opposite phase.

However, this cancellation is only apparent: it occurs only when the Bragg
condition is employed for the atomic planes of the simple cubic lattice whose
centering gives the real lattice, the face-centered cubic one. Similarly: when
using the Laue condition, the absence of scattering for certain vectors of the
reciprocal lattice is the consequence of considering a simple rather than a face-
centered cubic lattice. The reciprocal lattice should be defined in terms of the
primitive vectors of the true primitive cell a1, a2, and a3 rather than those of
the Bravais cell (conventional unit cell). Since the (direct-lattice) Bravais cell
is larger than the primitive cell, the reciprocal lattice G∗ = ha∗ + kb∗ + lc∗

– generated by the vectors a∗, b∗, c∗ associated with the edge vectors of
the Bravais cell – is denser than the true reciprocal lattice, spanned by the
primitive vectors (7.2.12). As we have seen, the latter is a body-centered
cubic lattice with edge length 4π/a. This lattice is shown by the full circles in
Fig. 8.6. Scattered beams emerge only in those directions for which the Laue
condition k − k′ = G is satisfied by the vectors of reciprocal lattice of the
face-centered cubic lattice.

8.1.6 The Dynamical Theory of Diffraction

When calculating the intensity of the diffraction peak it was assumed that the
atoms of the sample scatter the coherent incident beam independently of each
other, i.e., a photon scattered by an atom does not undergo another scattering.
Neglecting multiple scattering processes may be justified for small samples
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and powders of polycrystalline materials, where interference is assumed to
be absent for beams scattered by grains of different orientation. However, for
larger single crystals it is no longer true that rays scattered by atoms deep
inside the sample and close to its surface are equally intense. A beam incident
upon the sample is scattered by the topmost atomic layer, giving a reflected
and a transmitted beam. The latter arrives at the second layer of atoms,
which reflects a part of it and transmits another to the third layer. Naturally,
radiation reflected from deeper layers may bounce back from upper ones. This
is illustrated in Fig. 8.8.

Fig. 8.8. Interference of the waves reflected from and transmitted by subsequent
layers of the crystal

Beams undergoing multiple scattering in the sample may interfere with
each other, building up an internal field. To determine this field the phase
shift of the waves occurring in scattering processes must not be ignored. The
theory that takes into account the amplitude and phase relationships of beams
scattered in the sample is called the dynamical theory of diffraction,6 as op-
posed to the kinematical theory discussed above. Without going into details,
we shall briefly present the crucial elements of the theoretical description,
pointing out the differences with the problem discussed in Chapter 25, the
scattering of light by solids (where Fresnel’s equations are used).

The electromagnetic field built up inside the sample obeys Maxwell’s equa-
tions. Since conductivity practically vanishes for X-ray frequencies, these sim-
plify to

curlH =
∂D

∂t
, curlE = −∂B

∂t
. (8.1.69)

For nonmagnetic materials B = μ0H to a good approximation, while the
dielectric constant relating D and E is assumed to be lattice periodic within
the sample,7 and can thus be expanded into a Fourier series in terms of the
reciprocal-lattice vectors:

6
C. G. Darwin (1914) and P. P. Ewald (1916).

7 This assumption is not needed in the optical region where the dielectric constant
is assumed to be uniform both inside and outside the sample.
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εr =
1
v

∑
G

εGeiG·r . (8.1.70)

Let a plane wave of wave vector k be incident on the sample and scattered by
the periodic structure. The scattered wave is a mixture of waves with wave
vectors kG = k + G. The interior electric and magnetic fields are therefore
written as the linear combinations of plane waves with such wave vectors. Sub-
stituting them back into Maxwell’s equations gives relationships among the
Fourier coefficients. The problem is substantially simplified by the assumption
that the Bragg condition is satisfied for a single reciprocal-lattice vector, i.e.,
the amplitude is important for a single component k + G apart from k.

The next important step is to satisfy the matching conditions across the
boundary surface. In contrast to the optical region, where the directions
and amplitudes of the incident, reflected and transmitted beams need to be
matched, the beam reflected from the surface is practically absent in the X-
ray region as the difference of εr from unity is tiny (on the order of 10−4 or
less), and so the amplitude of the incident beam is equal to that of the trans-
mitted beam at the surface. Only wave vectors need to be matched; for this
it should be borne in mind that inside the sample k may be complex because
of absorption.

Calculations show that if the sample is sufficiently thick and the crystal is
ideal – that is, subsequent layers are perfectly parallel – then cancellation is
exact in the transmitted beam, and so the diffracted beam emerges in a very
narrow pencil – that is less than an arc minute across, yet finite in diameter
– around the direction satisfying the Bragg condition. The width of the beam
is determined by the size of the sample and the Fourier transform fG of
the spatial distribution of scatterers. The total intensity of the Bragg peak is
proportional to the volume, just like in the kinematical theory, however, here it
is proportional to |fG| instead of its square. Of course, intensity also depends
on whether the Laue or Bragg case is considered. The former corresponds
to a diffracted beam emerging on the other side of the sample – and thus
attenuated by absorption –, while the latter corresponds to a diffracted beam
emerging from the same surface on which the incoming beam is incident.

To evaluate the intensity of the scattered beam one has to take into account
that atoms of the crystal are not fixed rigidly at their equilibrium positions
but oscillate around it. The amplitude of this vibration becomes larger at
higher temperatures, and its consequences cannot be ignored in a precise
study of diffraction. We shall see in Chapter 12 on lattice vibrations that the
Bragg condition is still valid for elastic scattering: even when atoms oscillate
harmonically, diffraction peaks continue to be sharp, however the intensity of
the scattered beam decreases with increasing temperature.
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8.2 Experimental Study of Diffraction

The previous introduction into the theory of diffraction has shown that struc-
tural information can be extracted from reciprocal-lattice vectors and the
intensity of Bragg peaks by determining the directions in which elastically
scattered beams emerge when a beam of known wavelength is shone on a sam-
ple from a well-defined direction. In an ideal experimental setup the source
provides a well-collimated beam of monoenergetic (monochromatic) particles,
that is, the wave vector k is the same for each particle. When the beam is
not monochromatic, a single-crystal monochromator can be inserted so that
only a particular wavelength λ that satisfies the Bragg condition is reflected.
The wavelength of the monochromatized beam can be changed by rotating
the monochromator.

The number of particles scattered elastically in a certain direction is then
measured by suitable detectors. For a particular value of λ, the Bragg peak
can be found by varying the angle 2θ of the detector. In the case of X-ray
diffraction the intensity of the scattered beam is often detected using a film
instead of a photon counter. The schematic setup of the measurement is shown
in Fig. 8.9.

Source

Collimators

Mono-
chromator Detector

2�

Sample

Fig. 8.9. Schematic setup of diffraction measurements

8.2.1 Characteristic Properties of Different Types of Radiation

Let us now examine what photon, neutron, and electron energies provide the
most effective wavelength region for structural analysis. We shall start off
with the relationship between the photon energy and wavelength, ε = cp =
hc/λ. When photon energies are measured in units of keV and wavelengths in
angstroms, the values listed in Appendix A for physical constants give

λ [Å] =
12.4

ε [keV]
. (8.2.1)

To obtain an X-ray beam with a wavelength of 1 Å, photon energies on the
order of 10 keV are necessary.



262 8 Methods of Structure Determination

Photons emitted in a synchrotron by accelerated electrons provide intense
and collimated beams with a wide energy spectrum. Then a photon beam
propagating in a well-defined direction is selected, in which photon energies are
an order of magnitude larger than in ordinary X-rays, i.e., whose wavelength is
on the order of 10−1 Å. This provides a much better resolution in momentum
space than a traditional X-ray source. Because of the large intensity, diffraction
measurements may be performed even on tiny (μg-sized) crystallites; or, short
measurement times open the way to studying time-varying structures with a
time resolution of about a millisecond.

Neutron energies are given by the relation ε = p2/2mn, where mn =
1.675 × 10−27 kg is the neutron mass. The momentum p is related to the
de Broglie wavelength λ by p = h/λ, thus in terms of the energy measured in
electronvolts, the wavelength in angstroms is given as

λ [Å] =
0.28

(ε [eV])1/2
. (8.2.2)

To obtain a wavelength of about 1 Å, the energy has to be ε ≈ 0.1 eV. This
energy is close to the thermal energy at room temperature.8 Thermal neutrons
– neutrons emerging from a fission reactor and then slowed down to thermal
energies by the moderator – are thus of the desired wavelength.

Because of their smaller mass, the wavelength–energy relationship for elec-
trons derived from the formula ε = p2/2me is

λ [Å] =
12.247

(ε [eV])1/2
. (8.2.3)

To achieve a wavelength of 1 Å, electrons need to be accelerated to energies on
the order of 100 eV. The experimental method using electrons with energies
between 10 and 300 eV (wavelength: 0.7–4 Å) is called low-energy electron
diffraction (LEED). When the beam energy is higher, we speak of high-energy
electron diffraction (HEED).

Since diffraction is an elastic process, the energy of the scattered particle is
irrelevant. From this point of view there should be no difference in the applica-
bility of the three types of beam. Particle energies become important when we
turn to the suitability of each particular type of radiation to the investigation
of the internal dynamics of solids (where typical energies range from 10 to
100 meV). The accuracy of measuring changes in energy caused by low-energy
excitations is limited by the resolution of the measuring apparatus. The en-
ergy 10−1 eV of one-angstrom neutrons is ideally suited to studying internal
excitations. The amount of information that can be gathered with electrons
and photons is much smaller because of the high energy of the particles.

8 According to the equipartition theorem, the mean kinetic energy of particles at
temperature T is 3

2
kBT . At room temperature this corresponds to an energy of

38 meV or a wavelength of 1.4 Å.
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Even though the only relevant quantity for the Bragg or Laue condition
is the wave vector of the incoming radiation (since the energy is irrelevant
in elastic scattering), the three radiations are not equally suited to probing a
given structure via diffraction. As each radiation interacts differently with the
various constituents of the sample, the best choice depends on the particular
problem. Photon and electron beams interact with electrons in the solid, thus
information is gathered directly about the spatial distribution of electrons.
Neutrons are scattered by nuclei, and they interact with the electron cloud,
too, if the latter has a magnetic moment. They can thus probe atomic as well
as magnetic structures. Neutron diffraction measurements may complement
the results obtained via X-ray diffraction even for magnetically disordered
systems. The cross section for X-ray scattering depends on the number of
electrons in the electron cloud: it goes with the square of the atomic num-
ber. The cross section for neutron scattering, on the other hand, is not a
monotonic function of the atomic number, and it also depends on the isotopic
composition. Depending on the composition of the sample, either type of radi-
ation may be better suited to specifying atomic positions within the primitive
cell. For example, unlike X-ray scattering, neutron scattering is particularly
adapted for determining the structure of samples that contain hydrogen.

By using a radiation whose wavelength is much smaller than the atomic
dimensions, the spatial distribution of electron density may also be mapped
out. HEED is the method of choice for this, as the wavelength of 100 keV
electrons is λ ≈ 0.04 Å. Another advantage of HEED over LEED is that
high-energy electrons can penetrate deep inside the sample, thus this method
permits us to study the interior of the sample. Since beams used in LEED
usually penetrate only into the topmost layer of a few angstroms, this method
is adapted for the study of the structure at or close to the surface.

How much of the radiation is absorbed by the sample; how deeply does
it penetrate into the sample, and so to what extent can bulk properties be
studied? These questions arise for all other types of radiation as well. Neutrons
can penetrate most deeply into the sample. Depending on the material, they
may penetrate through a sample several inches thick without absorption. On
the other hand, 1 Å X-ray photons typically penetrate into metals only to a
depth of 30–100 μm – but even this may be enough to measure bulk properties.
Since their penetration depth is much larger in the appropriate wavelength
region, synchrotron radiation obviously probes bulk properties.

There is, nevertheless, another typical length that has to be taken into
account, the extinction length. Its typical value is 10 μm for X-rays, 100 μm
for neutrons, and a mere 10−2 μm for electrons. For thinner samples the kine-
matic theory of diffraction may be used without reservations. For thicker ones
it can only be used if the crystal is not ideal but features a mosaic struc-
ture.9 Otherwise internal cancellations can no longer be ignored, and thus the
dynamical theory of diffraction has to be employed.

9 Mosaic structures will be presented in the next chapter.
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8.2.2 The Ewald Construction

According to conditions (8.1.1) and (8.1.5) for diffraction, when a beam of a
specific wavelength λ is incident on a crystalline sample, scattered radiation
emerges only in some particular directions. The Ewald construction10 is of
great help in visualizing this.

Since the condition for diffraction is most easily expressed in terms of
reciprocal-lattice vectors, we shall consider the reciprocal lattice of the puta-
tive Bravais lattice of the examined crystal. Figure 8.10 shows its sectional
view in the plane of scattering. The incident wave vector k is drawn in such
a way that its tip is at a lattice point of the reciprocal lattice. Centered at
the starting point of the arrow k, a sphere (circle) of radius k = |k| is then
drawn. This is the Ewald sphere.

k
2�

k'
Ghkl

Fig. 8.10. The Ewald construction illustrating the condition for diffraction in the
reciprocal lattice

By its construction, the Ewald sphere passes through a point of the re-
ciprocal lattice (lying at the tip of vector k). If it happens to pass through
other points of the reciprocal lattice then the Laue condition is satisfied by
the vectors k′ drawn from the center of the sphere to each of these points as
|k| = |k′| and k−k′ is a vector Ghkl of the reciprocal lattice. The Bragg peak
with indices hkl is observed in the direction of k′.

In LEED the wavelength is much smaller than the lattice constant, and
so the magnitude of the wave vector – the radius of the Ewald sphere – is
large compared to the lattice constant of the reciprocal lattice. Because of
its small curvature, the Ewald sphere may pass very close to a great number
of reciprocal-lattice points. When the sample is not too large, many reflec-
tions appear close to the incident direction because of the finite width of the
diffraction peaks.
10

P. P. Ewald, 1913.
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This is not the case for X-ray and neutron diffraction. When the orienta-
tion of the crystal with respect to the incident beam is arbitrary, there may
be no scattering at all. To meet the Bragg condition, one has to change either
the wavelength of the incident beam by rotating the axis of the single-crystal
monochromator; or the relative orientation of the beam and the crystallo-
graphic axes by rotating the sample; or the direction of the detected (scat-
tered) beam by moving the particle counter. When the detector is a film or
a set of counters that covers a large proportion of the total solid angle 4π,
there are still two degrees of freedom in choosing the wavelength of the inci-
dent beam and the relative orientation of the beam and the crystal at will.
In the most sophisticated method the wavelength is fixed and the complete
diffraction pattern is measured for several orientations of the sample. Sim-
pler methods can be employed when the task is not the precise determination
of a completely unknown structure but the quick verification of the putative
structure or the determination of the lattice parameters for a known structure
type.

8.2.3 Diffraction Methods

One possibility is to irradiate a sample with a collimated but not monochro-
matic beam that contains all the wavelengths from λmin up to λmax. This is
called the Laue method. The direction of the wave vector is now definite,
however its magnitude ranges between kmin and kmax.11 If the Ewald spheres
were drawn for all possible values of the incoming wavelength, they would fill
the region between two spheres of radii kmin and kmax, as shown in Fig. 8.11.

The Laue condition is satisfied by every vector of the reciprocal lattice
within this region, and so scattering is observed in several directions. Based on
the Ewald construction it can be shown that if the orientation of the sample is
such that the beam is incident along a high-symmetry direction of the crystal
then the Laue pattern also possesses the rotational symmetries of the crystal
around the axis. Figure 8.12 shows Laue patterns with the hexagonal structure
of beryllium and the trigonal structure of quartz.

Another method for meeting the condition for diffraction is to rotate the
crystal around an axis perpendicular to the direction of the incident beam –
or to vibrate it covering a sufficiently large angular range. This is the rotating-
crystal method.

The sample is oriented in such a way that the axis of rotation should be
along a crystallographic axis – for example, in the direction of the primitive
vector a1 of the crystal lattice. Because of the construction of the reciprocal
lattice the plane spanned by two appropriately chosen primitive vectors (b2

and b3 in our case) is perpendicular to the axis of rotation. When the Laue
condition is satisfied by a reciprocal-lattice vector in this plane, the propaga-
tion direction of the scattered beam also lies in the same plane. To determine
11 Synchrotrons provide such beams, at much higher intensities than traditional

X-ray sources. This is why the method is rapidly gaining popularity.
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Fig. 8.11. Reciprocal-lattice vectors satisfying the condition for diffraction in the
Laue method

Fig. 8.12. Diffraction patterns along the direction of a crystallographic axis in
beryllium and quartz obtained with the Laue method

the directions satisfying the condition for diffraction, Fig. 8.13 shows the recip-
rocal lattice and the Ewald sphere for a particular orientation of the crystal.

When the crystal is rotated, the reciprocal lattice co-rotates with it. In the
Ewald construction this corresponds to the rotation of the reciprocal lattice
about the origin. Scattering occurs when a rotated reciprocal-lattice vector
is exactly on the surface of the Ewald sphere. Recorded on a film, the scat-
tered radiation appears as a series of dots. Further series of dots may appear
above and below this scattering plane. These diffraction peaks correspond to
reciprocal-lattice vectors that have a nonvanishing component along the axis
of rotation. Such an experimental record is shown in Fig. 8.14.

In the third widely used method measurements are not performed on a
single crystal with a definite orientation but on a powder sample that contains
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k

k '

Fig. 8.13. The Ewald construction for a crystal rotating around an axis perpendicu-
lar to the direction of the incident beam. The solid circle is the section of the Ewald
sphere, while dashed circles show the loci of the tips of reciprocal-lattice vectors
when the sample is rotated

Fig. 8.14. Diffraction pattern of a quartz crystal obtained with the rotating-crystal
method

grains with all possible orientations. The powder method was first developed
by P. Debye

12 and P. Scherrer in 1916, hence it is also called the Debye–
Scherrer method. To interpret the diffraction pattern assume that the Laue
condition is met for a certain grain along a direction k′ by the reciprocal-
lattice vector G. Since the same vector G points in different directions in
other grains, scattered beams emerge in each direction for which the Laue
condition is satisfied in some grain by the given G. Since the crystallographic
orientation of the grains is assumed to have a continuous distribution in the
powder sample, for a fixed k the tips of possible k′s lie on the surface of
a sphere of radius |G|. On the other hand both the starting point and the

12
Petrus (Peter) Josephus Wilhelmus Debye (1884-1966) was awarded the
Nobel Prize in Chemistry in 1936 “for his contributions to our knowledge of molec-
ular structure through his investigations on dipole moments and on the diffraction
of X-rays and electrons in gases”.
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end point of the vector G have to be on the surface of the Ewald sphere
determined by the vector k. Therefore scattering occurs in directions that lie
on the intersection line of the two spheres. This is shown in Fig. 8.15.

k

k’

G

| |G

��

Fig. 8.15. The Ewald construction for the powder method

It is immediately seen from the figure that scattered beams emerge at
angles 2θ with the incident beam for which |G| = 2k sin θ. For such angles
the scattered beams surround the direct beam conically. When recorded on
a film, these appear as rings. Figure 8.16 shows the distribution of scattered
radiation in a one-dimensional section.
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Fig. 8.16. Diffraction pattern of sodium chloride crystal, obtained with the Debye–
Scherrer method. Adapted from B. E. Warren, X-Ray Diffraction (1969)

By measuring the angle, one can determine the length of the reciprocal-
lattice vectors. This is not enough to identify a completely unknown structure
– however, when the symmetries of the crystal are known, it provides one of
the quickest methods for measuring the lattice constants.
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8.3 Other Methods of Structure Determination

The aim of diffraction techniques based on elastic scattering is to determine
the internal structure of bulk material or the surface structure. In both cases,
periodicity is assumed to extend over macroscopic distances. Besides, there
exist other methods of structural analysis for the determination of the local en-
vironment of an atom. These are particularly important when the system to be
examined is not regular – but they may, of course, be used to study crystalline
samples, too. Probably the most adapted technique is EXAFS spectroscopy.13
As its name reveals, it uses X-rays – however, they are not reflected from the
sample but the fine structure of their absorption spectrum is studied.

When a photon of the incident X-ray beam is absorbed, its energy is
transferred to the system of electrons. The linear absorption coefficient μ is
defined through the relation

I = I0 exp(−μ/L) , (8.3.1)

where L is the thickness of the sample, while I0 and I are the incident and
transmitted intensities. In general, μ is a smooth function of the photon energy
– except for the values that correspond to the ionization energies of bound
states. At these energies sharp thresholds, absorption edges appear, since new
channels become available for absorption. As shown in Fig. 8.17, the energy
dependence of absorption is not really smooth in the vicinity of the absorption
edge, either. EXAFS is concerned with the study of this fine structure.

(a) (b)

Fig. 8.17. (a) Absorption edge on the K shell of copper. (b) Fine structure of the
absorption edge [T. M. Hayes and J. B. Boyce, Solid State Physics, Vol. 37, 173
(1982)]

1–10 Å (1–10 keV) photons are energetic enough to knock out electrons
even from deep levels (e.g., the 1s level). For energies in excess of the thresh-
old value, the excited electron propagates as a spherical wave and is scattered
13 EXAFS stands for extended X-ray absorption fine structure.
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by adjacent atoms. These scattered waves interfere with the original wave. De-
pending on the photon wavelength (energy) and the geometry of the neighbors,
this interference can be constructive or destructive. The energy dependence
of absorption may be written as

σ(E) = σ0(E)[1 + χ(E)] , (8.3.2)

where σ0(E) is a smooth absorption curve, and χ(E) accounts for the interfer-
ence due to neighbors. Expressed in terms of the wave number rather than the
energy, χ(E) is replaced by χ(k), which can be related to the Fourier trans-
form of the radial distribution function. From measured data conclusions can
be drawn about the local environment.

Like X-ray and neutron diffraction, EXAFS spectroscopy probes the inte-
rior of the sample. As it has been mentioned, electron diffraction is well suited
to determining the structure of the surface layers only, since electrons do not
penetrate sufficiently deeply into the sample. Nonetheless the study of solid
surfaces is a fascinating subject in itself, and so several novel methods have
been devised. For example, G. Binnig and H. Rohrer

14 built the scanning
tunneling microscope (STM) in 1981.

The basic idea is to place the tip of a very thin stylus close to a con-
ducting surface, at a distance of order 10 Å. The stylus itself is metallic
and the tip is formed by a single atom. When a voltage is applied be-
tween the tip and the surface, electrons can tunnel through the junction,
giving a measurable tunneling current. The scanning process consists of mov-
ing the tip laterally along the surface; its vertical position is controlled us-
ing piezoelectric materials. In the usual mode of operation current is kept
fixed during scanning and the perpendicular deflection required to keep the
current constant is monitored. The exponential dependence of the tunnel-
ing current on distance allows one to take atomic resolution images of the
surface.

Obviously, the method is appropriate for the study of metallic surfaces
only. For nonmetallic surfaces the atomic force microscope (AFM)15 can be
used – an instrument that measures the force between the tip of the stylus
and the sample. Figure 8.18 shows the image of a surface taken by an AFM.
It clearly shows that surface reconstruction gives rise to a layer with new
symmetry.

14
Gerd Binnig (1947–) and Heinrich Rohrer (1933–) shared the Nobel Prize
in 1986 “for their design of the scanning tunneling microscope”.

15
G. Binnig, C. F. Quate, and Ch. Gerber, 1986.
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Fig. 8.18. Atomic resolution image of the (111) surface in silicon [F. Besenbacher
and K. Mortensen, Europhys. News 21, 68 (1990)]
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9

The Structure of Real Crystals

In the previous chapters, where the symmetries of the crystalline state were
listed and diffraction was studied, crystals were assumed to be ideal, with a
strict periodicity. But real crystals are never ideal. No matter how carefully
they are grown, there are always some departures from perfect order. The
specific types of defects that appear in the sample and their numbers are de-
termined, besides preparation conditions, by the history of the sample. Every
single property of the material is affected by these defects – but not to the
same extent. Mechanical and elastic properties of solids are most sensitive to
structure. These properties cannot even be interpreted without a proper un-
derstanding of structural defects. This is why it is of the utmost importance
in materials science to know the real structure of crystals, whether they occur
naturally or are grown for a specific purpose.

Other properties, for example electric and magnetic properties in general,
are relatively insensitive to structure although they also depend to a small
degree on the presence of defects. Any deviation from the regular structure
modifies the state of electrons, too, so when these are studied defects in im-
perfect crystals cannot be altogether ignored. In fact effects of impurities and
the ensuing disorder on electronic states has become a hot research topic in
the past decades leading to a lot of new discoveries. In this chapter we shall
present the most characteristic types of deviation from the ideal lattice struc-
ture. The effects of defects on electronic states will be discussed in Chapters 17
and 36.

Departure from the perfectly periodic arrangement appears in crystals for
various reasons and in various forms. In materials of stoichiometric compo-
sition – even when each atom is at its proper place in the primitive cell –
natural isotopes are randomly distributed at the available positions, unless
special preparation processes are employed. This hardly influences the prop-
erties of solids. However, when it comes to potential scattering of neutrons
by nuclei, different isotopes may have highly disparate scattering lengths, and
so besides the Bragg peaks an additional, smeared-out incoherent background
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is observed because of isotopic disorder. This has to be taken invariably into
account in the evaluation of measured data.

It is impossible to prepare a sample that is chemically 100% pure. Even
the most effective purification techniques fail to eliminate a small amount of
impurities – perhaps as little as a few parts per million (ppm). When growing
crystals, impurities inevitably find their way into the sample – but they can
also be introduced on purpose, to modify some property of the material that is
sensitive to the presence of defects. In this case they are called dopants rather
than impurities.

An impurity that occupies the place of an atom in the crystal is known
as a substitutional impurity. If the size of the impurity atom is appreciably
different from the original one, the lattice is locally distorted, as illustrated in
Fig. 9.1. This kind of lattice distortion occurs for all other defect types, too,
although this will not always be shown in the figures.

Fig. 9.1. Deformation of the lattice around a substitutional impurity atom that is
larger or smaller than the original one

From a structural point of view, lattice defects that arise from the irregular
arrangement of atoms are more interesting than substitutional impurities.
These defects are customarily classified by the region of the sample over which
they extend.

1. Point defects are not point-like deviations from perfect crystalline struc-
ture in the mathematical sense, however such defects do not extend over
more than a few lattice constants in each direction.

2. For line defects deviation from the ideal structure extends over small
distances along two directions, however in the third direction – along a
straight or curved line – it may extend over the whole crystal.

3. For planar defects deviation from the ideal structure extends over a plane
or a curved surface while it is limited to a few lattice constants in the
third dimension. They are also called interfacial defects because the defect
region forms an interface between two regular regions.

4. For volume or bulk defects the structure in a macroscopic three-dimensional
region is different from the rest of the sample.
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Below we shall discuss these four types of defect in separate sections. We shall
deal with structural questions only.

9.1 Point Defects

Starting with the structure of an ideal crystal, three types of point defect are
possible. One of them, an impurity atom occupying the position of an atom in
the crystal has already been mentioned. Below we shall discuss the two other
cases, the internal defects of pure samples.

Compared to the regular structure atoms may be missing. When a site in
the lattice is vacant, one may say that a vacancy is present in the lattice. This
situation is illustrated in Fig. 9.2(a); deformation of the lattice around the
vacancy is not shown. Several references call this a Schottky defect, however
we shall adhere to commoner usage and reserve this term for the case when
two oppositely charged ions leave their sites in an ionic crystal, creating a
pair of vacancies. Another type of defect is shown in Fig. 9.2(b): here an atom
appears at an interstitial site, that is in the empty region among the atoms
located at the sites of a regular lattice.

( )a ( )b

Fig. 9.2. Point defects in ideal crystal structures: (a) vacancy; (b) interstitial

If the ideal crystal is considered as the ground state of the solid, crys-
tals with vacancies and/or interstitials can be considered as excited states of
crystalline matter, since – as we shall see – in thermal equilibrium at finite
temperatures these defects are present in finite concentrations.

9.1.1 Vacancies

First we shall demonstrate that vacancies are indeed generated thermally
in any crystal. Consider an ideal crystal with N atoms, and assume that
n vacancies are formed via the diffusion of n atoms to the surface. We shall
denote the energy required to remove one atom – the formation energy of a
vacancy – by ε0; when vacancies are sufficiently far apart and thus interactions
among them can be neglected, the formation energy of n vacancies is E = nε0.
The total internal energy of the system is
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E = E0 + nε0 , (9.1.1)

where E0 is the internal energy of the ideal crystal.
Here we are not interested in the determination of the energy ε0. Note

however that since the formation of vacancies gives rise to a change in vol-
ume, the quantity directly accessible to measurements is formation enthalpy.
Vacancy formation energies for some simple metals are listed in Table 9.1. It
should be noted that these are much smaller than binding energies – precisely
because of the deformation of the lattice.

Table 9.1. Vacancy formation energies (in eV) and their thermal equilibrium con-
centrations at the melting point in some simple metals

Element Cu Ag Au Al

ε0 (eV) 1.07 1.09 0.98 0.78
cv 4.5 × 10−5 3.5 × 10−5 17 × 10−5 6 × 10−5

In spite of the increase in energy due to the vacant sites, the concentration
of vacancies remains finite in thermal equilibrium at finite temperatures as
the increase in energy is compensated for by the increase in entropy due to
disorder, and thus free energy will be lower than in the ordered state. The
configurational entropy of the disordered state can be determined by assuming
that the atoms missing from the vacancies have diffused to the surface and
occupy sites that can be considered as the continuation of the crystal. A
sample containing N atoms and n vacancies can therefore be considered to
have N +n lattice sites, of which n are vacant. Assuming that the n vacancies
are distributed randomly over the N + n sites, the entropy associated with
disorder is

Sconfig = kB ln
(
N + n

n

)
= kB ln

(N + n)!
N !n!

. (9.1.2)

When besides the number of lattice sites the number of vacancies is also large,
the Stirling formula (C.3.29)

lnn! =
(
n + 1

2

)
lnn− n + 1

2 ln 2π + O (1) (9.1.3)

can be used. Keeping only leading-order terms,

Sconfig ≈ kBN ln
N + n

N
+ kBn ln

N + n

n
. (9.1.4)

In addition to this, the finite temperature entropy S0 of the perfectly regular
crystal needs to be taken into account.

The formation of vacancies is accompanied by a change in the sample
volume as atoms move to its surface. Thermal equilibrium therefore occurs at
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the minimum of the Gibbs free energy (sometimes also known as free enthalpy
or Gibbs potential)

G = E − TS + pV . (9.1.5)

Provided that the displacement of atomic positions about the vacancies is
a small perturbation that can be ignored, the total volume of the sample
increases from Nv0 to (N + n)v0, where v0 is the specific volume per atom.
Substituting the expressions for internal energy, entropy, and volume into the
Gibbs free energy formula,

G ≈ E0 + nε0 − TS0 − kBTN ln
N + n

N
− kBTn ln

N + n

n
+ p(N + n)v0 .

(9.1.6)

To obtain the equilibrium number of vacancies this expression has to be min-
imized:

∂G

∂n
≈ ε0 − kBT ln

N + n

n
+ pv0 = 0 . (9.1.7)

If the number of vacancies is much smaller than the number of lattice sites
(n � N), we have

n = Ne−(ε0+pv0)/kBT . (9.1.8)

Vacancy formation energies are on the order of an eV, so pv0 can be ne-
glected compared to them:

n = Ne−ε0/kBT . (9.1.9)

The equilibrium number of thermally generated vacancies shows strong tem-
perature dependence. As indicated by the data in the last line of Table 9.1,
close to the melting point the concentration of such defects is on the order of
10−4–10−5. If the sample contained only thermally generated vacancies, their
number would be entirely negligible at room temperatures because of the ex-
ponential temperature dependence. When a sample is cooled quickly from
high temperatures (quenching), high nonequilibrium vacancy concentrations
may freeze into it. A part of them can be removed by annealing.

When thermally excited atoms diffuse from the interior of the crystal to the
surface leaving vacancies behind, the dimensions of the crystal increase more
rapidly than the lattice constant (the microscopic distance between atoms at
regular lattice sites). This is why different thermal expansion coefficients are
obtained from diffraction measurements that are sensitive to atomic distances
and variations of the macroscopic dimensions of the sample.

If the crystal is built up of more than one kind of atom, and vacancies
appear on each sublattice independently, then the thermal vacancy concen-
tration can be determined separately for each kind because formation energies
depend on the atom and its environment. If removing a jth type atom requires
an energy εj – and, as before, the contribution due to the change in volume can
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be neglected – then the Gibbs free energy of a sample containing nj vacancies
of the jth type is

G = E0 +
∑
j

njεj − TS0 −
∑
j

kBTNj ln
Nj + nj

Nj

−
∑
j

kBTnj ln
Nj + nj

nj
,

(9.1.10)

where Nj is the number of jth type atoms in the crystal. (The same expression
gives the Helmholtz free energy as the volume term is absent.) This expression
is minimized by

nj = Nje−εj/kBT . (9.1.11)

Obviously, defects with the lowest formation energy are the most abundant.
In most cases only these need to be taken into account.

9.1.2 Interstitials

So far it has been assumed that when a vacancy is generated the atom moves
to the surface of the crystal. This is often not the case: it may also occupy a
position that is not occupied in a perfect crystal. We have seen that by con-
sidering atoms in a crystalline structure as spheres there may be large enough
regions among them for a new atom to fit in (especially when neighboring
atoms are slightly displaced). The narrow space among the original atoms is
an interstice, so an atom occupying it is called an interstitial atom or simply
an interstitial.

The energy of an interstitial atom depends on its exact position. Local
minima of the potential due to neighboring atoms are to occur at positions
that are surrounded symmetrically by atoms of the regular lattice. For a sim-
ple cubic crystal such are the body center and the face centers of the cube.
In face-centered cubic crystals two such characteristic sites exist, as shown
in Fig. 7.13. One of them is the center of the cube at 1

2
1
2

1
2 ; the second is

the center of an octant, at 1
4

1
4

1
4 (which quadrisects the space diagonal) or any

equivalent position. In relation to Fig. 7.13 we also saw that the local environ-
ments around the interstitial are different at the two sites. In the first case the
interstitial atom is surrounded by six first neighbors in an octahedral geome-
try, thus the site has an octahedral (cubic) symmetry. The local point group
of reflections and rotations that leave this point invariant is the group Oh. In
the second case the defect site has four nearest neighbors that are arranged
tetrahedrally. Local symmetries are elements of the tetrahedral point group
Td. As mentioned in Chapters 6 and 7, the pattern of energy level splitting
may be different for atoms in the two environments. This can be used for their
identification, through optical spectroscopy or nuclear magnetic resonance.

Two interstitial sites are distinguished in a body-centered cubic lattice, too.
As shown in Fig. 7.8, two empty sites of high symmetry are found among the
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atoms at the vertices. Edge centers (at 1
200 and equivalent positions, including

face centers) are called octahedral sites – although the six neighbors do not
form a regular octahedron and the symmetry is only tetragonal. They are also
called “small” sites because they offer relatively little space. The lattice needs
to be deformed to a lesser extent to make room for an interstitial atom when
the atom occupies one of the tetrahedral sites, 1

4
1
20 or an equivalent position.

These sites are called “large”.
The equilibrium concentration of interstitials can be evaluated along the

same lines as that of vacancies, and the result (9.1.9) applies to this case, too.
However, the theoretical determination of the formation energy is now much
more difficult than for vacancies: an interstitial deforms the lattice more than
a vacancy does, as it has to make some room for itself among other atoms, and
so the contribution due to the deformation of the crystal is more important.
Because of the larger deformation the formation energy is also somewhat
higher, on the order of a few eV, consequently interstitials are more difficult
to generate thermally than vacancies.

Further types of atomic configurations are possible when the additional
atom is allowed to displace one or several neighbors substantially. An impor-
tant case is when an atomic position is occupied by two atoms symmetrically
on either side of the site in a regular crystal. This is in fact an interstitial
pair, and the configuration is called a split interstitial. Such situations are
shown in Fig. 9.3. For example, in the primitive cell of a body-centered cubic
crystal the atom originally at the body center and the additional atom may
be arranged symmetrically on both sides of the center, in the 〈110〉 direction.
In a possible split interstitial configuration of a face-centered cubic lattice an
atom at a face center is displaced in the 〈100〉 direction to make enough space
for another atom on the other side of the face.

( )a ( )b

Fig. 9.3. Split interstitials: (a) in the [110] direction in a body-centered cubic lattice;
(b) in the [100] direction in a face-centered cubic lattice

In copper, the prototype of face-centered cubic crystals, this defect – a
split interstitial along the 〈100〉 direction – has a lower energy than the con-
figuration in which a copper atom is simply placed at the interstitial site.

While in these dumbbell defects two atoms share the space of one in a
perfect crystal – making, of course, some extra space for themselves among the
neighbors –, it may also happen that three atoms share two lattice positions, or
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( )a ( )b

[001]

[110]

Fig. 9.4. Crowdion defects in a body-centered cubic crystal along the [111] direction:
(a) three atoms sharing two lattice sites; (b) four atoms sharing three lattice sites

four atoms share three lattice positions, etc. along a line. Such configurations
extending over a few atomic distances in one direction are called crowdions.
Figure 9.4 shows the atomic arrangement in a plane section of a body-centered
cubic crystal cubic crystal containing C3/2 and C4/3 types of crowdion along
the [111] direction.

Crowdions tend to have higher energies than split interstitials, and thus
occur much more rarely naturally.

9.1.3 Pairs of Point Defects

As we have seen, in thermal equilibrium the concentrations of vacancies and
interstitials are both finite and small enough for treating them as if each
defect had been generated independently of the others. Strictly speaking this
is not true. When vacancies are thermally generated, some of the atoms that
leave their lattice sites move to the surface, while others become trapped at
interstitial sites. Which of these possibilities occurs is of particular interest
in ionic crystals. A missing ion breaks local charge neutrality, which has to
be restored by another nearby defect, since charge neutrality must be valid
in any relatively small region of space otherwise the Coulomb energy would
become excessively large and the configuration would be energetically highly
unfavorable. Restoration of charge neutrality can occur via the formation of
Schottky defects or Frenkel defects.

Schottky Defects

It was first pointed out by W. Schottky (1930) that in ionic crystals built up
of positively and negatively charged ions a vacancy appearing on the sublattice
of cations is accompanied by a nearby vacancy on the sublattice of anions.
Although both ions diffuse to the surface, charge neutrality is maintained
locally inside the sample. This defect – a pair of oppositely charged nearby
vacancies – is called a Schottky defect (although several references use this
term for a single vacancy). The alternative terms vacancy pair and divacancy
are also widely used. This type of defect is illustrated in Fig. 9.5.

Equation (9.1.9), or its generalization, (9.1.11) cannot be used to determine
the concentration of Schottky defects as the derivation of these formulas was
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Fig. 9.5. Schottky and Frenkel defects in an ionic crystal

based on the independence of individual defects. When the charge of the jth
type ion is qj , charge neutrality requires∑

j

qjnj = 0 . (9.1.12)

When minimizing the Gibbs free energy (9.1.10), this can be taken into ac-
count by a Lagrange multiplier. The quantity to be minimized is then

G + λ
∑
j

qjnj . (9.1.13)

Along the same lines as above, the calculation yields

nj = Nje−(εj+λqj)/kBT . (9.1.14)

The so-far undetermined multiplier λ has to be determined from the equation
for charge neutrality, ∑

j

qjNje−(εj+λqj)/kBT = 0 . (9.1.15)

For simplicity, consider a crystal built up of an equal number N of oppositely
charged anions (q) and cations (−q). When vacancy formation energies are
denoted by ε+ and ε−, (9.1.14) tells us that the equilibrium numbers n+ and
n− are given by

n+ = Ne−(ε++λq)/kBT , n− = Ne−(ε−−λq)/kBT . (9.1.16)

The condition for neutrality is now n+ = n−, which implies λq = (ε−−ε+)/2,
and so
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n+ = n− = Ne−(ε++ε−)/2kBT . (9.1.17)

The number of Schottky defects is thus determined by the average of the two
formation energies. As listed in Table 9.2, formation energies are typically
around 2 eV for alkali halides, i.e., much smaller than the binding energy of
the ion pair, on the order of 10 eV.

Table 9.2. Formation energies of Schottky and Frenkel defects (in eV) in some
simple ionic crystals

Schottky defects Frenkel defects

Compound ε0 (eV) Compound ε0 (eV)

LiF 2.51 AgCl 1.4
NaCl 2.28 AgBr 1.1
NaBr 1.72 CaF2 2.6
KCl 2.28 SrF2 2.3
KI 1.60 BaF2 1.9

CsCl 1.86 SrCl2 1.9

Since we shall not discuss in detail the properties of ionic crystals else-
where, it should be mentioned here that in those ionic crystals (e.g., al-
kali halides), where Schottky defects are the most important defects, elec-
tric conductivity can be interpreted in terms of the motion of vacancies. As
massive ions move slowly, resistivity is several orders of magnitude larger
than in ordinary metals. Compared to metals, where resistivity is typi-
cally on the order of μΩ cm, values between 102 and 108 Ω cm are observed
in ionic crystals. Because of the thermal generation of vacancies electri-
cal conductivity increases with temperature, showing thermally activated
behavior.

The fact that vacancies and interstitials carry charge plays an important
role in determining the properties of ionic crystals. If a negatively charged ion
is missing, the hole has an effective positive charge, and can therefore bind
an electron, restoring charge neutrality. The defect consisting of an electron
bound to a vacancy is called a color center or F -center.1 Defects in which two
or three electrons are bound by two or three neighboring vacancies are called
M - and R-centers.2

1 The name refers to the property that electrons in the attractive potential of
the vacancy are on hydrogen-like orbitals, so they can absorb light of specific
frequencies, giving a particular color to the crystal. The name F -center comes
from the German word for color, Farbe.

2 M -centers are also called di-F -centers or F2-centers.
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Frenkel Defects

When a vacancy is generated, the atom may not diffuse to the surface but
become trapped at a nearby interstitial site, as shown in Fig. 9.5. In ionic
crystals the complex of a vacancy and a nearby interstitial of the same ion
(which thus carry opposite effective charges) is called a Frenkel defect.3

The equilibrium concentration of Frenkel defects can be determined along
the same lines as the concentration of simple vacancies. Suppose the sample
has N atomic positions, of which n are left vacant. Since the atoms do not
diffuse to the surface but become trapped at interstitial sites, the volume
does not change in a first approximation. We shall denote the number of
possible interstitial sites by Nint. If the n vacancies are formed randomly at
the N atomic positions and the displaced ions occupy the interstitial sites at
random as well, the configurational entropy is given by

Sconfig = kB ln
[

N !
(N − n)!n!

Nint!
(Nint − n)!n!

]
. (9.1.18)

If the formation energy of a Frenkel defect is ε0, minimization of the free
energy leads to

n =
√

NNint exp(−ε0/2kBT ) (9.1.19)

in the N,Nint � n limit.
Unlike alkali halides, silver halides contain such defects. After the forma-

tion of vacancies on the sublattice of silver ions, these positively charged ions
become trapped at interstitial sites. Frenkel defects are also found in alkaline-
earth fluorides. Formation energies are listed in Table 9.2.

In principle, another type of defect pair can exist, in which all ions sit on
lattice sites but a cation and a nearby anion swap positions. In ionic crystals
this is highly prohibited by the unfavorable effective charge that would appear
and the large energy involved. However, such defects are indeed observed
in intermetallic compounds, where swapping between different components
entails a smaller increase in energy. They are called antisite defects. More
generally, an antisite defect AB is an atom of type A that occupies a wrong
site on sublattice B. Such individual antisite defects are of special interest in
doped semiconductor compounds.

9.2 Line Defects, Dislocations

Atoms in a crystal may become misplaced with respect to their regular po-
sition along a whole line because of very large internal mechanical strains
and stresses occurring while working the material. When a crystal is bent or
twisted, atomic layers may slip on each other in such a way that the ma-
jority of the atoms around the slip – except for the vicinity of a line – find
3

J. Frenkel, 1926.
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themselves in another locally aligned environment. Defects of this kind may
develop during crystal growth as well. They are called dislocations.

As a large number of bonds are broken between atoms along the line, the
energy of a dislocation is much higher than that of a vacancy or an interstitial,
consequently dislocations are not generated thermally, only during mechanical
working. The density of dislocations depends strongly on the preparation con-
ditions. In very carefully grown germanium or silicon crystals they may be as
low as 102–103/cm2, while in metals subject to high mechanical strains they
may range up to 1010–1012/cm2. Their presence strongly affects the mechan-
ical properties of materials; they also play an important role in the growth
of crystals. However, we do not discuss these points any further here, as we
focus on the issues of structure only.

9.2.1 Edge and Screw Dislocations

The structure around line defects is most easily illustrated using the Volterra
construction (or Volterra process).4 An imaginary cut is made into a crystal,
terminating in its interior on a line called the dislocation line. Its shape being
irrelevant, the cut is chosen, for simplicity, to be in a flat plane. In the next
step the two parts separated by the cut are displaced relative to one another,
allowing elastic deformations of the lattice near the dislocation line. If the
relative displacement is a translation vector of the lattice, then – except for
the region close to the dislocation line – the two parts are in registry, and
can be joined back together to restore the crystalline order. Naturally, if the
displacement vector is not in the cut plane, matter has to be added to or re-
moved from the crystal. The Volterra construction is illustrated schematically
in Figs. 9.6 and 9.7 showing the crystal before and after the displacement for
two different cases.

Fig. 9.6. Volterra construction of an edge dislocation: a part of the crystal is slipped
along a cut. The arrow shows the direction of slip, which is perpendicular to the
dislocation line

4
V. Volterra, 1907.
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Figure 9.6 shows the case where the displacement is perpendicular to the
dislocation line. It is clearly seen that the defect – the “imperfect” region – is
limited to the vicinity of the dislocation line. This type of line defect is called
an edge dislocation.5

When the crystal is considered as an elastic medium, one side is com-
pressed and the other is stretched, giving rise to elastic stress. The energy of
dislocation can be determined from this elastic energy.

Fig. 9.7. Formation of a screw dislocation: an atomic layer is slipped on another in
a part of the sample

The situation is slightly different when the two parts are slipped relative
to each other parallel to the dislocation line, as shown in Fig. 9.7. The ar-
rangement of atoms in the layers below and above the cut plane is shown in
Fig. 9.8(a). Misalignment is again limited to the vicinity of a line. It is clear
from the figure that by making a full turn around the dislocation line in a
crystal plane perpendicular to it, one arrives at the atomic layer just below
or just above. If traveling around is continued in the same way a spiral, a
screw is traced out. This type of defect is therefore called a screw dislocation
or sometimes a Burgers dislocation.6

More general dislocations may arise when the dislocation line is not
straight. In such cases it will be parallel or perpendicular to the slip vec-
tor only exceptionally. An example is shown in Fig. 9.8(b), with the atomic
arrangement in the layers below and above the cut plane. The atomic arrange-
ment shown at the bottom of the figure is similar to that of a screw dislocation,
however it is transformed into an edge dislocation inside the sample. This type
of dislocation is called a mixed dislocation.

5 Edge dislocations are sometimes called Taylor–Orowan dislocations, although the
concept of dislocation was introduced in 1934 by three researchers independently
of each other, E. Orowan, M. Polányi, and G. I. Taylor.

6
J. M. Burgers 1939.
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Fig. 9.8. Atomic positions above (large empty circles) and below (small full circles)
the cut plane for (a) a screw dislocation; (b) a screw dislocation being transformed
into an edge dislocation (mixed dislocation)

9.2.2 The Burgers Vector

Dislocations are characterized first by the dislocation line – along which reg-
ular order is disrupted –, and second by the vector specifying the relative
displacement of the parts below and above the cut. However, as it has been
mentioned, the cut plane does not have any physical significance. The Volterra
construction of line defects served only as an illustration of dislocations. To
unambiguously specify the displacement of atomic layers we adopt the method
introduced by J. M. Burgers in 1939. First, a direction is associated with
the dislocation line and a lattice point S that is distant from the dislocation
is selected. Then, starting from S and staying all the time in the region where
the local atomic environment is undistorted, a closed path encircling the dis-
location is traversed, in counterclockwise sense when viewed from the chosen
direction. The path may be chosen at will, it should just contain the same
number of steps to the left as to the right, upward as downward, and forward
as backward – more precisely, the number of steps in the direction of each
primitive vector ai (i = 1, 2, 3) should be the same as in the opposite direc-
tion −ai. The traversed path is called the Burgers circuit. In crystals free of
dislocations any such path terminates on the starting point S. However, when
a dislocation is encircled, the path fails to close, as shown in Fig. 9.9 in the
plane perpendicular to the dislocation line. No matter how the Burgers circuit
is chosen for a fixed starting point S, it always terminates on the same lattice
point F , which is now different from S. Displacement through a further – not
necessarily primitive – lattice vector is required to close the circuit around the
dislocation, and thus get back from F to S. The lattice vector pointing from
F into S is called the Burgers vector of the dislocation.
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Fig. 9.9. The Burgers circuit and the Burgers vector (a) in a regular crystal; (b)
around an edge dislocation; (c) around a screw dislocation

As shown in Fig. 9.9(b), the Burgers vector is perpendicular to the direction
of the dislocation line for edge dislocations, while for screw dislocations one or
more extra steps have to be made along the dislocation line to have the Burgers
circuit closed. The Burgers vector is therefore parallel to the dislocation line
in this case.

Burgers

an -
circuit

around edge type
dislocation
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perfect region

Burgers

ve torc
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line

Burgers

a -
circuit

around screw type
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Fig. 9.10. Three Burgers circuits in a crystal with mixed dislocation: in a defect-
free region, around the dislocation line in a region where it is of screw-type, and
where it is of edge-type

We have seen that the dislocation line is not always straight: it may change
its direction in the crystal – and along with it its character, too. Even so,
regardless of the particular choice of the Burgers circuit, as long as it encircles
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the dislocation line, the same Burgers vector is obtained. This is illustrated in
Fig. 9.10. The dislocation shown here looks like a screw dislocation from the
front and an edge dislocation from the right – nevertheless regardless of the
particular choice of the Burgers circuit, the same Burgers vector is obtained
when the dislocation line is encircled in the same sense.

9.2.3 Dislocations as Topological Defects

The independence of the Burgers vector of the circuit encircling the dislocation
indicates that it is a topological property of the atomic arrangement around
the dislocation. For a precise illustration consider a two-dimensional section of
a crystal with a dislocation and a Burgers circuit Γ in it. Atomic positions in
the perfect crystal are marked next to the actual atomic positions in Fig. 9.11.
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Fig. 9.11. Displacement of the atoms on a Burgers circuit in a plane perpendicular
to the dislocation with respect to their positions in a perfect crystal

Along the Burgers circuit, where the lattice shows an almost perfect peri-
odicity, the displacement caused by the dislocation can be defined as the vector
from the closest lattice point of the ideal crystal to the actual atomic posi-
tion. Thus by definition all possible displacements lie inside the Wigner–Seitz
cell. These displacements are shown in Fig. 9.12(a). As the Burgers circuit
is traversed, the displacement of subsequent lattice points increases; it jumps
to an equivalent value (from ux = a/2 to ux = −a/2) when the boundary of
the Wigner–Seitz cell is reached, and then approaches zero. The sequence of
points in the (ux, uy) plane can be viewed as a mapping of the Burgers circuit
(defined in real space) to displacement space.

Far from the dislocation core – i.e., the dislocation line – the displacement
varies only slightly from one lattice point to the next, and so a continuous
displacement field u(r) may be defined. While traversing the Burgers circuit



9.2 Line Defects, Dislocations 289

22
1, 23 27�2
3

4

5

6

7
8 9 15�

16
17

18
19

20

21

9 15�

ux

uy

a/2

�a/2

�a/2 a/2

( )a ( )b

Fig. 9.12. (a) Displacement of the atoms around the Burgers circuit in Fig. 9.11
in the Wigner–Seitz cell of the lattice. (b) Mapping of the Burgers circuit into the
torus in displacement space with periodic boundary conditions

around the dislocation in real space, the displacements u(r) trace out a piece-
wise continuous closed path in displacement space. The discontinuities arise
from jumps between equivalent boundary points of the Wigner–Seitz cell.

When the derivative of the displacement field with respect to the arc length
of the Burgers circuit is integrated along the circuit, the result is nonzero
even though the integration contour is a closed path.7 The reason for this is
that jumps introduced by the imposed periodic boundary conditions are not
included in the integrand. The integral is the Burgers vector of the enclosed
dislocation, ∮

Γ

du

ds
ds = b , (9.2.1)

independently of the particular choice of the circuit Γ . The topological char-
acter of this contour integral is better illustrated when the displacement field
is defined on a torus, where periodic boundary conditions are automatically
taken into account. In the example discussed above the curve obtained by
mapping the Burgers circuit into displacement field goes around the torus
once, as shown in Fig. 9.12(b).

When positions of the atoms lying along the Burgers circuit are contin-
uously modified, or when the Burgers circuit is chosen differently, deforming
it in small steps, the image of the Burgers circuit in displacement space is
also continuously deformed. However, when drawn on a torus, the topological
property of going around it once cannot change. This means that no sequence
of small displacements can make the image curve shrink to a point – which

7 In the continuum limit it does not matter whether the integration path is the
open Burgers circuit or a closed contour obtained by closing the Burgers circuit
with the Burgers vector.
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is the image of a Burgers circuit in a perfect crystal. When the Burgers vec-
tor is twice as long, the path in displacement space goes around the torus
twice. When the Burgers vector is perpendicular to the one in the figure,
the path encircles the hole of the torus; this contour cannot be shrunk to a
point either by small distortions of atomic positions. Determining the Burg-
ers vector is equivalent to specifying how many times the path goes around
the torus in each direction. These winding numbers can be considered to be
the topological quantum numbers of the dislocation. For three-dimensional
crystals displacement is a three-dimensional vector that is defined in the crys-
tal’s Wigner–Seitz cell, or, to visualize the topology better – by exploiting the
lattice-periodic character of displacement space – on a 3D torus. Dislocations
can therefore be characterized by three winding numbers that correspond to
the three components of the Burgers vector.

Since dislocations are characterized by a topologically determined Burgers
vector, open dislocation lines cannot exist inside the sample. They either reach
the surface of the sample or close back on themselves, forming dislocation
loops. As a matter of fact, an even stronger statement can be made. When a
dislocation with a Burgers vector b splits into two dislocations with Burgers
vectors b1 and b2, the following conservation theorem applies to them:

b = b1 + b2 . (9.2.2)

At high dislocation densities interactions between dislocations may become
important, giving rise to dislocation splitting. Nevertheless the previous rela-
tionship of Burgers vectors must be valid at each splitting.

9.2.4 Disclinations

When traversing a closed path that encircles a dislocation, everywhere except
for the immediate vicinity of the dislocation the local environment of each
atom is found to be identical to that in a regular lattice, moreover the edges
of the primitive cells are all parallel. There exist other types of defects for
which this is not true. One such possibility may be visualized by making two
cuts at an angle ϕ in the Volterra construction, removing the part of the
crystal between them, and then joining the two cut surfaces. Another may
be conceived as the result of cutting the crystal in one place, folding the two
cut surfaces an angle ϕ apart, and then filling the empty region with aligned
atomic layers. Crystal structures featuring such defects are shown in parts (a)
and (b) of Fig. 9.13. Though the defect is once again limited to a line, it would
be reflected in the shape of the entire crystal. Because of the orientational
misalignment F. C. Frank (1958) called this defect a disclination.8

As a wedge-shaped region has been cut out of or inserted into a regular
crystal, this type of defect is called a wedge disclination. If the region around

8 From the Greek word κλινω (klino) = lean, bend.
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Fig. 9.13. Theoretically possible disclinations in crystals: (a) and (b) wedge discli-
nations, (c) and (d) screw disclinations

the disclination core were also shown, the reader would see that the coordi-
nation number there is one more or one less than elsewhere. Parts (c) and (d)
show screw disclinations. In this case the finite angular range in which atoms
are removed or inserted is not parallel but perpendicular to the disclination
line.

Such defects are of academic interest in crystalline solids. However, a wide
variety of disclinations may appear in liquid crystals because of their smaller
mechanical rigidity and the presence of crystalline order along one or two
directions only. An exhaustive listing and rigorous mathematical discussion of
all possible types of disclination requires the apparatus of algebraic topology.
Figure 9.14 shows the arrangements of columns around longitudinal wedge
disclinations of angles −π/3 and π/3 in the discotic columnar phase. The

Fig. 9.14. Wedge disclinations in a columnar liquid crystal. Columns are shown in
a top view
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central column is surrounded by five others in the first and seven others in
the second case.

9.2.5 Dislocations in Hexagonal Lattices

A special situation arises in hexagonal structures – as well as in face-centered
cubic ones, where atoms in the (111) plane are arranged hexagonally. Fig-
ure 9.15 shows yet another Volterra construction in a two-dimensional hexag-
onal crystal. The crystal is cut along two lines that are 60◦ apart and have a
common end point (in three dimensions: dislocation line), and then all atoms
inside the wedge-shaped region are displaced in the direction perpendicular
to a1 so that each atom moves exactly one line forward.

Fig. 9.15. Atomic arrangement around the dislocation in a hexagonal structure.
The coordination number is seven and five for atoms marked by large and small
circles, respectively

As it can be seen, the Burgers circuit can be closed by the vector a1, so this
is the Burgers vector of the dislocation. The same atomic arrangement arises
when the crystal is cut halfway along the direction of the primitive vector a2

and a new line of atoms is inserted. Since a1 and a2 are at 120◦ to each other,
the atoms are arranged in such a way as if in addition to the line of atoms
along the a2 direction another one, along a1 + a2 had also been inserted.
When one takes a closer look at the region around the dislocation core, the
atom at the tip of the wedge is seen to have five nearest neighbors, while
the one next to it has seven. This dislocation is thus the same as two nearby
disclinations, one at −60◦ and the other at 60◦. As we shall see in the next
section, dislocations of a face-centered cubic crystal can also be considered as
complex defects.
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9.3 Planar Defects

It happens frequently during crystal growth that instead of being stacked
perfectly, subsequent atomic layers are somewhat misplaced, giving rise to a
defect over an extended two-dimensional surface. The same can easily occur
as a result of mechanical strain. Such defects are called stacking faults. If the
stacking fault does not extend to the surface of the sample new kinds of line
defects may appear where it terminates.

Misalignment does not necessarily occur in a plane. When crystal growth
starts independently in several nuclei, the orientation of the axes around the
nuclei will be random, i.e., independent of other nuclei. This is how poly-
crystalline materials are formed. Long-range order is limited to finite-sized
macroscopic domains called grains or crystallites. Misalignment occurs only
at two-dimensional grain boundaries. Such two-dimensional defects are called
grain boundaries.

9.3.1 Stacking Faults

Structures with hexagonal symmetry were presented in Section 7.3. We saw
that depending on the way layers with sixfold symmetry are stacked, various
structures (simple, close-packed, double close-packed) may arise. In a hexag-
onal close-packed (hcp) structure the stacking order along the sixfold axis is
ABABAB . . . , while in a double close-packed structure it is ABACABAC . . . .
It may happen that a plane does not get into its proper position. For example,
from a certain point onwards C-type layers may appear instead of B-type lay-
ers; in this case the previous stacking order ABABAB . . . of the hcp structure
is replaced by ACACAC . . . . It may equally happen that the stacking order
ABABAB . . . suddenly switches to CBCBCB . . . .

We have seen that the (111) planes in a face-centered cubic lattice also
possess hexagonal symmetry. A part of such a plane with some atomic coor-
dinates is shown in Fig. 9.16.

If the atomic layer shown in the figure is called A-type, its translation
through 1

6 [112̄], 1
6 [2̄11], or 1

6 [12̄1] gives a B-type configuration. When the same
translation is performed on a B-type layer, a C-type layer is obtained. In an fcc
structure the stacking order along the [111] direction is ABCABCABC . . . .
Figure 9.17(a) shows the stacking of close-packed layers in another sectional
view. The crystal is cut perpendicular to the direction [11̄0]; atoms coplanar
with the origin are marked by empty circles, while atoms in the neighboring
planes by full circles.

When a face-centered cubic crystal is deformed by slipping the part of the
crystal above an A-type layer through any of the three vectors given in the
previous paragraph, a stacking fault arises, since a B-type layer is now missing,
and the new sequence is . . . ABCACABC . . . . The atomic arrangement is
shown in Fig. 9.17(b).
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Fig. 9.16. The (111) plane through atoms at points 100, 010, 001 in a face-centered
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Fig. 9.17. Atoms in the (11̄0) plane through the origin and in the neighboring
planes in a face-centered cubic lattice: (a) perfect crystal; (b) crystal with a stacking
fault

In another stacking fault a C-type layer appears between neighboring A-
and B-type layers, resulting in the sequence . . . ABCACBCABC . . . . This
corresponds to the translation of a part of the crystal along the (111) plane
by 1

6 [1̄1̄2], 1
6 [21̄1̄], or 1

6 [1̄21̄].
Slipping layers cannot give rise to a particular stacking fault that may

easily occur during crystals growth: starting with the defect layer the stacking
sequence is reversed, leading to the structure . . . ABCACBACBA . . . .

9.3.2 Partial Dislocations

The question naturally arises: What happens in a face-centered cubic lattice
if the imperfect stacking of (111) planes (an A-type layer is followed by a C-
rather than a B-type layer) does not extend over the entire crystal only half
of it? To obtain such a defect in the Volterra construction, one has to cut the
sample halfway above an A-type layer and then displace the layers above it
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by 1
6 [112̄], 1

6 [2̄11], or 1
6 [12̄1]. The new arrangement of the atoms in the layers

below and above the cut plane is shown in Fig. 9.18.

Fig. 9.18. Atomic arrangement in the (111) plane of an fcc lattice above an A-type
layer, when the neighboring B-type layer is cut and the part to the right of the
cutting edge [011̄] is displaced perpendicularly to it, through b = 1

6
[2̄11]

The same atomic arrangement is shown in Fig. 9.19, projected to the plane
(011̄) spanned by vectors [2̄11] and [111]. This view shows even more clearly
that the slipped and unslipped parts of the layers above the cut plane are
separated by an empty region. This can be filled by inserting two atomic
layers, as shown in the figure. Because of the finite size of atomic spheres
neighboring atoms are slightly displaced to make room for the inserted layers.

Since the displacement vector is not a lattice vector, the irregularity in
the atomic arrangement is not limited to the vicinity of the cut edge (as for
dislocations) but extends over the whole plane. Nevertheless the edge of the
cut plays a privileged role here, too; in this arrangement it bears the name
Shockley partial dislocation9 (or just Shockley partial).

To understand the origin of the name partial dislocation, consider a system
with an A-type layer and above it a C-type layer that is cut in the direction
[011̄] and then the part on the right is displaced through 1

6 [1̄21̄]. As shown in
Fig. 9.20, the right-hand side of the top layer is a B-type layer.

Now consider a system in which a part of the B-type layer is displaced in
the manner shown in Figs. 9.18 and 9.19 – giving rise to a stacking fault that
extends over a half plane and is bordered by a Shockley partial dislocation –,
and then a portion of the obtained C-type layer is again displaced, this time
by 1

6 [1̄21̄], leading to another B-type (half) layer. The atomic arrangement in
the (011̄) plane is shown in Fig. 9.21; deformations are taken into account.

Atomic layers are perfectly in registry on the left and right parts of the
sample; misfit is limited to the finite region between the two cut lines. As

9
W. B. Shockley, 1948.
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Fig. 9.19. Atomic arrangement around a Shockley partial dislocation. Atoms
marked by empty circles lie in a (011̄) plane, while those marked by full circles lie
in the parallel plane in front or behind, separated by a quarter of the face diagonal
[011̄]

b

Fig. 9.20. Atomic arrangement in the (111) plane of an fcc lattice above an A-
type layer, when the neighboring C-type layer is cut and the right part is displaced
through b = 1

6
[2̄11]

1
6 [2̄11] + 1

6 [1̄21̄] = 1
2 [1̄10] , (9.3.1)

and since 1
2 [1̄10] is a primitive vector in a face-centered cubic lattice, when the

chosen Burgers circuit encloses the whole defect region with both cut lines,
the topology is the same as if in its interior there were an ordinary dislocation
characterized by the Burgers vector 1

2 [1̄10].
Even when such a dislocation is formed originally, it is energetically fa-

vorable to have substantial atomic displacements not only in the immediate
vicinity of the dislocation line but over a finite two-dimensional region. This
extended defect can also be considered as if the dislocation had split into two
partial dislocations. The region with imperfect stacking is bounded by these
partial dislocations.

For Shockley partials the displacement vector – the Burgers vector – (in
this particular case 1

6 [2̄11] or 1
6 [1̄21̄]) is parallel to the plane of the stacking
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Fig. 9.21. Projection of a finite stacking fault bordered by partial dislocations in a
face-centered cubic lattice on the (011̄) plane. Atoms marked by empty circles lie in
a (011̄) plane, while those marked by full circles lie in the parallel plane in front or
behind, separated by a quarter of the face diagonal [011̄]

fault. When the displacement vector is perpendicular to the plane of the stack-
ing fault, we speak of Frank partial dislocations or Frank partials.10 They are
shown in Fig. 9.22.

Fig. 9.22. Positive and negative Frank partial dislocations in a face-centered cubic
crystal

To obtain such a defect in the Volterra construction, one has to insert or
remove an atomic layer along the cut plane. Since this will necessarily disturb
the matching of A, B, and C-type layers, it will give rise to an extended planar
defect. As the Burgers vector of the Frank partial dislocation is 1

3 [111], the
relation

1
6 [2̄11] + 1

3 [111] = 1
2 [011] (9.3.2)

implies that the complex defect of a Frank and a relatively close Schokley
partial is topologically equivalent to a dislocation. Thus in face-centered cubic
lattices one may observe stacking faults that are bordered by two different
types of partial dislocation. The converse is also true. Rearrangement of the
terms in the previous equation shows that a dislocation with a Burgers vector

10
F. C. Frank, 1949.
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1
2 [011] and a nearby Shockley partial with Burgers vector 1

6 [21̄1̄] are together
equivalent to a Frank partial dislocation.

9.3.3 Low-Angle Grain Boundaries

In crystal-growth processes individual grains start to grow independently, and
the orientation of their crystallographic axes is also uncorrelated. Due to the
misfit in the atomic arrangement, a finite surface energy is associated with
boundaries between grains in polycrystalline materials. It is energetically fa-
vorable to have low-angle grain boundaries with a misorientation angle of
not more than a few (at most 10) degrees between the crystallographic axes
of adjacent crystallites. When a crystal is made up of slightly misoriented
micron-sized crystallites, we speak of a mosaic structure. Figure 9.23 shows
two manifestations of low-angle grain boundaries.

( )a

( )b

Fig. 9.23. Grain boundaries in mosaic structures: (a) tilt grain boundary; (b) twist
grain boundary

In the first case the boundary is perpendicular to the plane of the figure; in
the second it is parallel to it, which is why the arrangement of atoms is shown
in two layers on top of each other. In either case, crystallographic axes are
slightly misoriented on the two sides of the boundary. The rotation axis associ-
ated with the misorientation is in the boundary plane for tilt grain boundaries
and perpendicular to it for twist grain boundaries. By taking a closer look at
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the grain boundary, nets of edge and screw dislocations are observed in the
two cases. In larger-angle grain boundaries the dislocation cores are so close
together that one can no longer speak of individual dislocations.

9.3.4 Coincident-Site-Lattice and Twin Boundaries

When the crystallographic orientation of two neighboring grains differs ap-
preciably, the energy of the grain boundary is higher. It may nevertheless
happen, especially during recrystallization, that adjacent crystallites become
somewhat reoriented, and give rise to relatively low-energy boundaries, even
though the angle is not small. This requires some special relationship between
the orientations. One type of high-angle grain boundary corresponds to the
situation in which, despite their different orientations, the two grains can be
considered in a loose sense as each other’s continuation. As an illustration
consider the case shown in Fig. 9.24: a special high-angle tilt and twist grain
boundary between two grains of a cubic (square) crystal. It is clearly seen that
when the tilt or twist angle is 36.9◦, every fifth atom would coincide if the two
grains were continued across the boundary. These lattice points constitute a
coincident-site lattice (CSL). Since the density of coincident sites is one-fifth,
it is called a Σ5 CSL.

a 5√¬

a

a
a

a

36.9°

CSL

Fig. 9.24. The Σ5 coincident-site lattice of two grains in a cubic crystal
tilted/twisted by 36.9◦. The left side of the figure shows a tilt boundary, and the
right one a twist boundary

Of special interest is the case where the close-packed planes of two grains
of a face-centered cubic crystal are tilted by 38.2◦ around the [111] direction.
Figure 9.25 shows the atomic arrangement in the vicinity of such a grain
boundary. It is clearly seen that in spite of the grain boundary, a regular
lattice is formed by every seventh atom in the close-packed plane. Such a
grain boundary is called a coincident-site-lattice boundary (CSL boundary) –
in this particular case a Σ7 boundary. In this geometry there is hardly any
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empty space between the two grains, and when atoms in the grain boundary
are slightly displaced each atom may have sixfold coordination in the plane,
thus the energy increment due to the presence of a grain boundary is reduced.

38.2°

Fig. 9.25. Coincident-site lattice in the close-packed plane of a face-centered cubic
crystal formed between two grains with a relative orientation of 38.2◦. The atoms
marked by full circles exhibit regular crystalline order

Another type of low-energy grain boundary may develop during the
crystal-growth process. It corresponds to the particular situation when crys-
tallographic axes in the two grains are taken into each other by a geometrical
transformation (reflection in a plane, rotation through 180◦, or inversion). In
such cases we speak of a twin crystal and a twin boundary. A simple possibility
was mentioned in the discussion of stacking faults in face-centered cubic lat-
tices: starting with a (111) plane, the stacking sequence of close-packed hexag-
onal planes may be reversed, giving rise to an . . . ABC ABC ACBACBA . . . -
type structure. Crystallographic axes on the two sides of the plane are each
other’s mirror images. Another situation is illustrated in Fig. 9.26, where the
atomic arrangement is projected on the plane with Miller indices (11̄0) in a
crystal with a twin boundary at a (112̄) plane. The crystallographic axes of
the two grains are each other’s mirror images in the plane.

9.3.5 Antiphase Boundaries

Finally we mention another possible atomic arrangement for grains grown in
different parts of the sample that gives rise to a special boundary. Consider
a two-component ordered alloy of composition AB, e.g. CuAu with an L10

structure. Atoms of either component occupy the vertices of the tetragonal
primitive cells while atoms of the other component are at the centers of the
cells; obviously either sublattice can be assigned to either component. Fig-
ure 9.27 shows in a double volume unit cell that, corresponding to the two
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Fig. 9.26. (a) Atomic arrangement in a face-centered cubic crystal in the plane
perpendicular to the direction [11̄0]. (b) Atomic arrangement in a twin crystal with
a twin boundary at a (112̄) plane. Atoms in the (11̄0) plane through the origin are
marked by empty circles; atoms in front of and behind this plane are marked by full
circles

possibilities, atoms of the first component are at the vertices and base centers,
while those of the second component are at the side centers – or vice versa.

( )a

( )b

Fig. 9.27. (a) Two possible atomic arrangements in an ordered CuAu alloy. (b)
Antiphase domain

When an alloy is cooled from its high-temperature disordered state, it may
occur during the disorder–order transition that the same sublattice is occupied
by the first component in one part of the sample and the second component
in another. In such cases an antiphase domain is said to have been formed.
The interface between the two regions is called an antiphase boundary.



302 9 The Structure of Real Crystals

9.4 Volume Defects

If the composition – and therefore the atomic arrangement – inside a small
nevertheless macroscopic region of a polycrystalline material is different from
the rest of the sample, we speak of a volume or bulk defect. When the concen-
tration of an impurity exceeds the maximum solubility in the crystal, three-
dimensional regions can be formed where the excess impurities cluster to-
gether. The chemical composition of these three-dimensional defects, called
precipitates, is therefore different from the host lattice. Similar defects may
appear in nonstoichiometric, multicomponent materials as well.

During crystal growth or fabrication processes it may also happen that
small but macroscopic sized empty regions, voids remain in the sample. These
can be considered as if a macroscopic number of vacancies were present in a
block.
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10

The Structure of Noncrystalline Solids

We started our investigation into solid-state physics with the statement that
in thermal equilibrium at low temperatures atoms in a solid are expected to
be arranged in a regular periodic array, and so solids are characterized by a
long-range positional order. However, it has been known for a long time that
there exist certain materials that can be considered as solids from a mechanical
point of view although the atomic arrangement in them is disordered as in
liquids. They only exhibit short-range order, if any. It has also been shown
recently that certain solids may have a state with some kind of long-range
order even though atoms are not arranged periodically. In the present chapter
we shall discuss the structural characteristics of such materials.

10.1 The Structure of Amorphous Materials

In solids prepared from melts by quenching, cooling may be so rapid that
it leaves no time for nucleation and crystal growth, and so the equilibrium
crystalline phase is not reached. Atoms freeze into a disordered, thermody-
namically metastable state that is similar to the liquid phase or to a glassy
(vitreous) state.

Similar structures are formed when atoms are evaporated on a surface, and
randomly arriving atoms are stacked on top of each other in a disordered way.
Solid, mechanically rigid materials in which atoms are arranged randomly are
called amorphous.1 No long-range positional order exists inside them but they
may exhibit short-range order.

10.1.1 Models of Topological Disorder

Two simple models for the structure of disordered materials are worth men-
tioning. In the first one atoms considered as rigid spheres are packed randomly
1 Amorphous metallic materials produced by quenching alloys that are close to

their eutectic points are also called metallic glasses.
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but as tightly as possible. This dense random packing model is in fact the ex-
tension of the Bernal model of liquids to the amorphous, glassy state. This
is illustrated in two dimensions in Fig. 2.2, where the plane is covered with
randomly arranged but touching circles.

This can be used to model the structure of amorphous materials in which
atoms have a repulsive core but otherwise tend to approach each other as
much as possible. This is usually the case for metals – which explains why
hexagonal close-packed and face-centered cubic structures occur so often in
metals. In amorphous metals short-range order is due to this tendency for
close packing. As we have seen, in close-packed fcc and hcp crystals each
atomic sphere touches 12 neighbors, giving a packing fraction of almost 75%.
In randomly packed structures – even when spheres touch as many others
as possible – space filling is less efficient than in regular lattices. Empirical
evidence shows that the packing fraction is at most 64%; on the average each
sphere touches 8 to 9 others. A somewhat better space filling is obtained in
numerical simulations when the randomly placed but touching atomic spheres
are allowed small displacements toward local energy minima in their respective
potential fields due to the other atoms (i.e., along the direction of the gradient
of the full potential felt by the atom).

The other model, which leads to much less efficient space filling, is appli-
cable to covalently bonded systems. In Chapters 4 and 7 we saw that cova-
lent bonds are highly directional, and fix the relative orientation of nearest-
neighbor atoms. A prime example was the diamond structure in which each
atom is surrounded by four neighbors in a unique tetrahedral arrangement.
The crystal structure can be considered as the network of such bonds. Relative
orientation of the tetrahedra plays a key role in forming the structure. The
wurtzite and sphalerite structures of zinc sulfide (ZnS) differ precisely in the
relative orientation of the tetrahedra. Similar tetrahedral geometry is observed
in quartz (SiO2). Around each silicon atom oxygen atoms are placed in the
directions of the four vertices of a tetrahedron. Joined at their vertices, these
tetrahedra make up a three-dimensional network. Since neighboring tetrahe-
dra may easily rotate with respect to one another, quartz often appears in an
amorphous state.

In Fig. 7.16 showing diamond and sphalerite structures tetrahedral bonds
are seen to form hexagonal rings. When the tetrahedra are rotated, there is a
finite probability for a ring to contain seven or five rather than six atoms. A
two-dimensional illustration is shown in Fig. 10.1; here each atom is bonded to
three others in the plane. The regular array would be a honeycomb, however
rings of five and seven also appear in the disordered structure.

As for covalent bonds showing local tetrahedral symmetry in three-
dimensional space, even when the local structure is maintained as much as
possible, the appearance of disorder necessarily changes the topology: firstly,
pentagonal and heptagonal rings appear, and secondly, some atoms form
bonds with three neighbors only. Electron states that do not participate in
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Fig. 10.1. Amorphous structures with a topological disorder may contain pentag-
onal and heptagonal rings as well

bonding can be considered to form dangling bonds. They strongly affect the
properties of covalently bonded amorphous materials.

10.1.2 Analysis of the Short-Range Order

Whichever previous model of disordered systems is adopted, the relative posi-
tion of nearest neighbors around each atom is similar to that observed in crys-
talline structures. However, on larger scales the correlation between atomic
positions is completely washed out. The presence of a short-range order is
indicated by the peaks of the radial distribution function (2.1.13) at first- and
second-neighbor distances. Below we shall demonstrate that the radial dis-
tribution function lends itself to simple experimental determination in terms
of the angular distribution of the intensity of elastically scattered X-ray or
neutron beams.

In Section 8.1 on the theory of diffraction we saw that if the scattering
amplitude of an atom at position Rm is fm then the amplitude of the beam
scattered from incident direction k into the direction of k′ is

AK =
∑
m

fm(K)e−iK·Rm , (10.1.1)

where K = k − k′. The intensity of the scattered beam is proportional to

|AK |2 =
∑
m,n

fm(K)f∗
n(K)e−iK·(Rm−Rn). (10.1.2)

When the incident beam is scattered by a system composed of identical atoms,
the expression for intensity contains the Fourier transform

Γ (K) =
1
N

∑
m,n

e−iK·(Rm−Rn) (10.1.3)

of the correlation function defined in (2.1.16). Using (2.1.19) this can be re-
lated to the structure factor S(K), and then, making use of (2.1.22), the
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pair-correlation function c(r) and the distribution function g(r) can be de-
rived. It should be emphasized once again that these relations connecting the
elastic scattering cross section to the structure factor and thence to the distri-
bution function are not limited to crystalline materials but are valid without
restriction.

In the previous chapter we saw that in crystalline materials sharp diffrac-
tion peaks appear at vectors K = G that satisfy the Bragg condition. This is
not the case in noncrystalline solids. When the atomic positions are randomly
distributed, rays scattered by different atoms interfere destructively because
of the random phase difference, so S(K) = 1 for every K except K = 0.
Consequently g(r) = 1, that is, the pair-correlation function is identically
zero. In amorphous materials, where short-range order is present, S(K) is
not constant. Since amorphous samples are isotropic, spatial variations of the
pair distribution function – i.e., the radial distribution function – can be de-
termined from the variations of the elastically scattered beam using (2.1.24).
Figure 10.2 shows the structure factor measured by neutron diffraction and
the derived radial distribution function for amorphous silicon.

Fig. 10.2. Structure factor of amorphous silicon measured by neutron diffraction,
and the derived radial distribution function. [S. Kugler et al., Phys. Rev. B 48, 7685
(1993)]

Smeared-out peaks in the structure factor may be interpreted as the broad-
ened counterparts of the sharp Bragg peaks observed in crystals. This occurs
because only short-ranged order is present and correlations exist only among
first, second, and perhaps third neighbors. This closely parallels the situation
in liquids, as discussed in Chapter 2.

For multicomponent amorphous materials diffraction measurements reveal
not only the total distribution function but also the so-called partial distri-
bution functions. Consider, for example, a two-component system made up
of NA atoms of type A and NB atoms of type B, both distributed randomly.
The concentrations are

ci =
Ni

NA + NB
i = A, B . (10.1.4)
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If scattering amplitudes are denoted by fA and fB and atomic positions by RA
m

and RB
n then the amplitude of the scattered beam in the direction specified

by the scattering vector K = k−k′ is the weighted sum of the amplitudes of
the rays scattered by individual atoms. The intensity is therefore

I(K) = I0

∣∣∣∣∑
m

fAe−iK·RA
m +

∑
n

fBe−iK·RB
n

∣∣∣∣
2

. (10.1.5)

Now we introduce the quantities

Γij(r) =
1
N

〈 Ni∑
m=1

Nj∑
n=1

δ(r − Ri
m + Rj

n)
〉

, (10.1.6)

where N is the total number of atoms. Their Fourier transforms appear in the
intensity

I(K) = I0NΓ (K) , (10.1.7)

where, if the scattering amplitudes are chosen real,

Γ (K) = f2
AΓAA(K) + f2

BΓBB(K) + 2fAfBΓAB(K) . (10.1.8)

The contribution K = 0 of forward scattering is customarily separated off
from Γij(K); the remaining part defines the partial structure factor Sij(K)

Γij(K) = cicjNδK,0 + cicjSij(K) . (10.1.9)

Substituting this into (10.1.8),

Γ (K) = NδK,0

[
f2
Ac2A + f2

Bc2B + 2fAfBcAcB
]

+ f2
Ac2ASAA(K) + f2

Bc
2
BSBB(K) + 2fAfBcAcBSAB(K) .

(10.1.10)

Direct scattering is seen to be proportional to (fAcA + fBcB)2 – as if the
medium were monatomic, with an averaged scattering amplitude.

Partial structure factors are related to partial pair-correlation functions.
Similarly to (2.1.1), up to a normalization factor gij(r) is defined as the prob-
ability for finding an atom of the jth type in an elementary volume dr around
the point r when an atom of the ith type is located at the origin:

gij(r) =
V

NiNj

〈 Ni∑
m=1

Nj∑
n=1

δ(r − Ri
m + Rj

n)
〉
. (10.1.11)

In the expressions for gAA and gBB the terms m = n are excluded.
Along the same lines as in Chapter 2 it can be shown that

Γij(r) = δij ci δ(r) + ncicjgij(r) , (10.1.12)
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where n = N/V ; in terms of the Fourier transforms

Γij(K) = δij ci + ncicjgij(K) . (10.1.13)

Comparing this form with (10.1.9), making use of (2.1.20), and taking into
account that amorphous materials are isotropic, one obtains

Sij(K) = δij
1
ci

+
N

V

∞∫
0

4πr2 [gij(r) − 1]
sinKr

Kr
dr , (10.1.14)

and

gij(r) = 1 +
V

8π3N

∞∫
0

4πK2

[
Sij(K) − δij

1
ci

]
sinKr

Kr
dK , (10.1.15)

which are the generalizations of (2.1.23) and (2.1.24).
In neutron scattering the scattering amplitudes depend strongly on which

particular isotope is used. Performing diffraction measurements for various
isotopic compositions, the partial structure factors, and from them the partial
radial distribution functions may be determined. Such a set of experimental
results is shown in Fig. 10.3.
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Fig. 10.3. Structure factors measured for various isotopic compositions of a two-
component amorphous material, Ni80P20, and the derived partial structure factors.
For better visibility, curves are shifted vertically. [P. Lamparter and S. Steeb, Proc.
of the Fifth Int. Conf. on Rapidly Quenched Metals, p. 459 (1984)]

Besides the structure factors measured for three different isotopic com-
positions, the figure also shows the partial structure factors derived from
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them. Their Fourier transform yields the pair-correlation functions shown in
Fig. 10.4, more precisely the quantities

Gij(r) = 4πr[gij(r) − 1] . (10.1.16)

As the figure shows, nearest neighbor Ni–Ni and Ni–P distances are practi-
cally equal, while nearest-neighbor P–P distances are larger than these. The
arrangement of the two kinds of atom is therefore not perfectly random. Short-
range order appears because phosphorus atoms are preferentially surrounded
by nickel atoms.
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Fig. 10.4. Partial distribution functions in amorphous Ni80P20. [P. Lamparter and
S. Steeb, Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, p. 459 (1984)]

An efficient method for determining the local environment in disordered
systems is EXAFS spectroscopy as the fine structure of the absorption edge
is due to the interference of rays scattered by nearest neighbors. Figure 10.5
shows that the EXAFS spectrum of amorphous GeO2 has the same fine struc-
ture as GeO2 in its hexagonal crystalline form, and both are strikingly different
from the spectrum observed in samples of tetragonal symmetry. This leads to
the conclusion that locally, on atomic scales the arrangement of atoms in the
amorphous state is very similar to that in the hexagonal crystalline phase.

10.2 Quasiperiodic Structures

In contrast to perfectly periodic order in crystals, amorphous materials may
exhibit short-range order at best. In the past decades it has been revealed
that nature offers a wider variety of solid structures than that presented in the
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Fig. 10.5. Fine structure of the absorption edge in amorphous and crystalline GeO2.
[W. F. Nelson et al., Phys. Rev. 127, 2025 (1962)]

foregoing. There exist materials that do not possess discrete translation sym-
metries but nonetheless exhibit long-range order of some kind. Before turning
to the investigation of such physical systems, some mathematical remarks are
due.

10.2.1 Periodic and Quasiperiodic Functions

In Section 8.1 on the theory of diffraction we saw that in systems composed
of identical atoms the amplitude of the scattered beam is proportional to
the structure factor, which is related to the Fourier transform of the spatial
distribution of scatterers. Below we shall examine the differences from this
viewpoint between periodic, aperiodic (nonperiodic), almost periodic, and
quasiperiodic functions. We shall use single-variable functions, however the
obtained results are straightforward to generalize to the case of three spatial
dimensions.

If a function f(x) is periodic with a period L – that is, f(x + L) = f(x)
for all values of x – then it can be expanded in a Fourier series as

f(x) =
∞∑

n=−∞
fne2πinx/L, (10.2.1)

where n is an integer and

fn =
1
L

L/2∫
−L/2

e−2πinx/Lf(x) dx . (10.2.2)

The Fourier spectrum of a periodic function is therefore discrete. This corre-
sponds to a sequence of equidistant Bragg peaks in the diffraction pattern of
a one-dimensional chain.
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Changing to the variable k = 2πn/L and taking the limit L → ∞ opens
the way to representing any nonperiodic function by a Fourier integral:

f(x) =
1
2π

∞∫
−∞

f̂(k)eikx dk , (10.2.3)

where

f̂(k) =

∞∫
−∞

f(x)e−ikx dx . (10.2.4)

In this case the Fourier spectrum is continuous. This is typical of disordered
systems.

There are, however, nonperiodic functions whose Fourier spectrum is dis-
crete. Suppose that the Fourier transform of f(x) takes finite values on an
infinite sequence λn of real numbers, that is its Fourier representation may be
written as

f(x) =
∑
n

f̂(λn) exp(2πiλnx) . (10.2.5)

Such a function is called almost periodic: although it is not perfectly periodic
in space, for every ε there exists a finite distance t such that

|f(x + t) − f(x)| ≤ ε (10.2.6)

for all values of x.
Quasiperiodic functions constitute a special class of almost periodic func-

tions. A function is called quasiperiodic if the infinitely many λn of its
spectrum can be written as integer linear combinations of a finite number
of irrational numbers αl (l = 1, 2, . . . , N):

λn =
N∑
l=1

nlαl , (10.2.7)

and the coefficients nl can take any integer values. In what follows, the label
n will continue to refer to the set of coefficients n1, n2, . . . , nN . Using this
notation, the Fourier representation reads

f(x) =
∞∑

n1=−∞

∞∑
n2=−∞

. . .
∞∑

nN =−∞
fn exp

[
2πi

( N∑
l=1

αlnl

)
x

]
. (10.2.8)

Next we shall show that this function can be obtained from a function in N
variables that is perfectly periodic in N -dimensional space when the values
x1, x2, . . . , xN lie along a line. Consider the periodic function

F (x1, x2, . . . , xN ) =
∞∑

n1=−∞

∞∑
n2=−∞

. . .

∞∑
nN =−∞

fn exp
[
2πi

( N∑
l=1

nlxl

)]
(10.2.9)
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defined in N -space. The quasiperiodic function f(x) can be obtained by re-
stricting the previous expression to the line

x1 = α1x, x2 = α2x, . . . , xN = αNx , (10.2.10)

that is,
f(x) = F (α1x, α2x, . . . , αNx) . (10.2.11)

Generalization of the above formulation to functions defined in three-
dimensional space is straightforward. It has already been mentioned that if a
function f(r) is periodic in the lattice generated by the primitive translation
vectors a1, a2, a3 then its Fourier series contains only components associated
with vectors

k = G =
3∑
i=1

hibi (10.2.12)

of the reciprocal lattice, where the bi are the primitive vectors of the reciprocal
lattice and the hi are integers. A function defined in three-dimensional space is
called quasiperiodic if the vectors k in its Fourier expansion can be expressed
as the linear combinations of more than three reciprocal-space vectors qi with
integer coefficients hi,

k =
N∑
i=1

hiqi , (10.2.13)

while the vectors qi are irrational linear combinations of the three primitive
vectors bi. Then the allowed k vectors fill the reciprocal space densely. Nev-
ertheless, as we shall see, the amplitude is very small for most of them, and
the diffraction pattern is dominated by a few discrete peaks.

10.2.2 Incommensurate Structures

Up to this point we have always spoken of periodic or nonperiodic arrange-
ments of atoms. However, in solids the system of electrons may exhibit a
periodicity different from that of the atoms, with the new wavelength deter-
mined by the properties of the electron system. We shall see examples for this
in Chapters 14 and 33. It may happen that the wavelength ratio of atomic
and electronic periodicities is not a rational number; in such cases the system
is said to have an incommensurate structure. Strictly speaking periodicity is
lost as the structure never repeats itself precisely because of the incommen-
surability of the two periods, nonetheless there exists a long-range order as it
is possible to predict atomic and electronic densities precisely for any point
in space.

To determine what diffraction pattern would be obtained from a material
with such a structure we consider, for simplicity, a chain of atoms with a
lattice constant a and suppose that the electron system shows static density
variations of wavelength λ that are described by a periodic function g(x):
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g(x + pλ) = g(x) (10.2.14)

for all integers p. Because of the interaction between delocalized electrons and
localized atoms the latter are expected to be displaced from their equilib-
rium positions, and the displacement to depend on the local electron density.
Assuming a linear relationship, the new equilibrium position for the nth atom
is

na + ug(na) , (10.2.15)

where the proportionality factor u that gives the modulation amplitude is
determined by the interactions between electrons and atoms.

The density of atoms is given by

ρ(x) =
∞∑

n=−∞
δ[x− na− ug(na)]. (10.2.16)

When a beam is scattered by the system, the intensity of the diffracted beam
is determined by the absolute square of the structure amplitude

FK =

∞∫
−∞

ρ(x)e−iKx dx =
∞∑

n=−∞
e−iK[na+ug(na)]

=
∞∑

n=−∞
e−iKnae−iKug(na)

(10.2.17)

defined in analogy to (8.1.27). If g(x) is a periodic function with period λ then
so is exp[−iKug(x)], therefore it can be expanded into a Fourier series as

e−iKug(x) =
∞∑

h=−∞
ch(Ku)e2πihx/λ , (10.2.18)

hence

FK =
∞∑

n=−∞

∞∑
h=−∞

ch(Ku)e−ina(K−2πh/λ) . (10.2.19)

Summation over n can be simplified exploiting (C.1.46) – that is, making use
of the property that the sum over n is nonzero only if a(K − 2πh/λ) is an
integral multiple of 2π:

FK =
∞∑

h=−∞

∞∑
k=−∞

ch(Ku)δ[k − a(K/2π − h/λ)] . (10.2.20)

It is immediately seen that the structure factor is finite only for those values
of K that can be written as

K =
2π
a

k +
2π
λ

h . (10.2.21)
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Since h and k can take arbitrary integer values, besides the Bragg peaks
associated with the lattice of periodicity a and the Bragg peaks due to the
density variations of the electron system of periodicity λ, further peaks appear
at all possible linear combinations of the two sets of reciprocal-lattice vectors.
When λ � a, these satellite peaks are close to the Bragg peaks of the original
lattice. Although the examined system is one-dimensional, diffraction peaks
are specified by two integers. Owing to the incommensurability of the two
wavelengths the allowed Ks are dense all along the line. Nevertheless the
diffraction pattern is a set of relatively well separated sharp peaks (sharp
dots on a film) as amplitude is usually large only for reflections with a low
index. This is well illustrated by the choice g(x) = sinx. Using (C.1.50) it can
be shown that the expansion coefficients appearing in (10.2.20) are the Bessel
functions, which are known to decrease fairly rapidly with increasing orders.

Similar conclusions apply to the case when atomic positions in a three-
dimensional lattice are subject to modulation with an incommensurate peri-
odicity. Let the position of the jth atom in the nth primitive cell be denoted
by

r(n, j) = Rn + rj + uj sin[q · (Rn + rj) + ϕj ] . (10.2.22)

If the scattering amplitude of the jth atom of the primitive cell is fj, the
structure amplitude is

FK =
∑
n,j

fje−iK·r(n,j)

=
∑
n,j

fje−iK·(Rn+rj)e−iK·uj sin[q·(Rn+rj)+ϕj] .
(10.2.23)

The second exponential term can again be expanded into a series of Bessel
functions,

FK =
∑
n,j

∞∑
m=−∞

(−1)mfje−i(K−mq)·(Rn+rj)eimϕjJm(K · uj) . (10.2.24)

Summation over the vectors Rn labeling the primitive cells yields finite con-
tributions only when K − mq is a vector of the reciprocal lattice – that is,
diffraction peaks are found in directions for which

K = hb1 + kb2 + lb3 + mq . (10.2.25)

Diffraction peaks are now specified by four integers.

10.2.3 Experimental Observation of Quasicrystals

We saw in Chapter 6 on the symmetries of crystalline structures that trans-
lational symmetry allows only two-, three-, four-, and sixfold rotation axes. It
was also asserted that fivefold symmetry is ruled out because the plane cannot
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be tiled perfectly with regular pentagons. When discussing the Laue method
of structural analysis in Section 8.2.3 it was mentioned that the Laue pattern
had to possesses the same rotational symmetries as the crystal itself around
the direction of the incident beam.

In the light of these not without reason did the discovery of D. Shecht-

man, I. Blech, D. Gratias, and J. W. Cahn made in 1984 cause great sen-
sation. When studying a quenched sample of an aluminum-manganese alloy
(Al86Mn14) using electron diffraction methods it was noticed that, depending
on the direction of observation, the Laue patterns exhibited symmetries char-
acteristic of two-, three- and fivefold rotational axes, as if the crystal possessed
icosahedral symmetry. Such diffraction patterns are shown in Fig. 10.6.

Fig. 10.6. Two-, three-, and fivefold symmetry in the electron diffraction patterns
of quasicrystalline Al86Mn14 [D. Shechtman et al., Phys. Rev. Lett. 53, 1951 (1984)]

Soon a broad class of materials that exhibit similar features was discov-
ered: their diffraction patterns show symmetries that cannot be interpreted
within the framework of traditional crystallography. In addition to the above-
mentioned Al86Mn14, icosahedral symmetry is observed in Al86Fe14, Al85Cr15,
and Al65Cu20M15 (where M stands for Mn, Fe, Cr, V, Ru, or Os). The appear-
ance of icosahedral regions in quenched transition-metal alloys is in fact not
surprising. For spherical atoms in a crystalline environment the closest pack-
ing is known to be offered by fcc and hcp structures of coordination twelve. For
transition metals, where d orbitals play an important role, the energetically
most favorable arrangement in a cluster of 13 atoms does not correspond to
the local environment in fcc or hcp structures (cuboctahedra or anticubocta-
hedra): here the twelve nearest neighbors are arranged icosahedrally around
the thirteenth, as shown in Fig. 7.9. In the new class of materials the building
blocks are such icosahedral units, however their positions show no long-range
order. Nevertheless some kind of long-range order, namely bond-orientational
order is preserved. Although discrete translational symmetry is broken, the
structure is quasiperiodic under translations. Such materials are called qua-
sicrystals, abbreviated from quasiperiodic crystals.
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In addition to icosahedral symmetry, other symmetries ruled out in conven-
tional crystallography may also appear in quasicrystals. Eight-, ten-
and twelvefold symmetries are observed in Mn82Si15Al3, Al65Cu20Mn15, and
V15Ni10Si, respectively. Needless to say, there are many other examples for
each case. Quasicrystals can be classified according to their non-
crystallographic symmetries, thus we speak of octagonal, decagonal, dodecago-
nal, and icosahedral quasicrystals.

The absence of long-range periodic order in atomic positions is clearly
shown by the partial distribution functions in Fig. 10.7. While oscillations
are damped less rapidly than in amorphous materials, the radial distribution
function is nevertheless closer to that of amorphous materials than of crystals.
On the other hand the diffraction pattern indicates the presence of a long-
range quasiperiodic order – just like in incommensurate structures. Contrary
to the latter, where only crystallographically allowed rotations are observed,
quasicrystals show rotational symmetries that are ruled out in 3D crystals. In
fact quasiperiodicity is precisely due to such symmetries; even the shape of
quasicrystals may reflect these symmetries.
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Fig. 10.7. Partial distribution functions for Al–Al, Al–Mn, and Mn–Mn in icosa-
hedral quasicrystalline Al74Si5Mn21, measured by M. de Boissieu et al. (J. Phys.:
Condens. Matter 2, 2499 (1990)) using neutron diffraction techniques. For better
visibility, curves are shifted vertically

Without going into mathematical details, we shall now sketch a simple
model for quasicrystalline order that also explains the appearance of relatively
sharp Bragg peaks.
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10.2.4 The Fibonacci Chain

We shall start the analysis of the diffraction patterns of quasicrystals with
the example of a one-dimensional quasiperiodic arrangement, a chain built up
of short (S) and long (L) segments according to the construction rule of the
Fibonacci sequence.2 The zeroth generation of the Fibonacci sequence consists
of a single element S, and the first generation is composed of a single element
L. Then, starting from the second generation, the nth generation is obtained
by joining the two previous ones. The Fibonacci sequences constructed in this
way using the Fibonacci rule Σn = Σn−1 + Σn−2 are shown in Table 10.1.

Table 10.1. Construction of new generations of Fibonacci sequences by joining the
two previous ones. The number of elements in the sequence is always a Fibonacci
number

Fibonacci number Fibonacci sequence

1 S
1 L
2 LS
3 LSL
5 LSLLS
8 LSLLSLSL
13 LSLLSLSLLSLLS
21 LSLLSLSLLSLLSLSLLSLSL
34 LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS

Note that the nth generation of the sequence can be obtained from the
(n− 1)st generation by replacing each S by an L (S → L), and each L by an
L and S (L → LS). When L and S are identified as long and short segments
placed along a line, and the ratio of the lengths of the two segments is the
golden mean τ = (1 +

√
5)/2 = 1.618 . . . , then the chain generated with

the above method is called the Fibonacci chain. The Fibonacci chain has the
interesting feature that if the lengths of the segments are scaled down by τ in
every iteration step, the overall length of the chain is left unchanged because
of the relation

1
τ

(
1 +

1
τ

)
= 1 . (10.2.26)

Figure 10.8 shows the result of two successive iteration steps.
Now consider identical atoms placed along a line, separated by short and

long distances according to the sequence in the Fibonacci chain. When diffrac-
tion is performed as a thought experiment, the resulting pattern is easily de-
termined numerically, since according to Eq. (8.1.50) the amplitude is given
2

Leonardo Pisano (Leonard of Pisa), commonly known as Fibonacci, 1202.
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Fig. 10.8. Equal-length Fibonacci chains obtained using the rules L → (L+ S)/τ
and S → L/τ

by the Fourier transform of the distribution of atoms. Because of the lack of
periodicity, the Fourier components are densely distributed. Nevertheless, as
shown in Fig. 10.9, sharp peaks are observed in the diffraction pattern; their
positions can be specified by two indices, as expected for a one-dimensional
quasiperiodic system.
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Fig. 10.9. Numerically determined diffraction pattern (Fourier spectrum) of a finite
Fibonacci chain. The scale of K corresponds to 1/S. The peaks are labeled with two
integers, as explained in the text [R. D. Diehl et al., J. Phys.: Condens. Matter 15,
R63 (2003)]

Choosing the position of the (1, 0) peak as unity, the (0, 1) peak is found
at 1/τ , and the peak with indices (h, k) at h + k/τ . Note that there is some
arbitrariness in indexing. Since the ratio of the two elementary lengths – the
positions of the peaks (1, 0) and (0, 1) – is just τ , it follows from (10.2.26)
that another consistent indexing is obtained by choosing the unity τ times
larger or smaller. In the latter case the new indices h′ and k′ are related to
the old ones by h′ = h+ k and k′ = h. This indicates the absence of a natural
length scale in the Fibonacci chain – and quasicrystals in general. Note that
whichever indexing is chosen, the intensity will be large for those peaks in
which the two indices are subsequent Fibonacci numbers.

To demonstrate this, we shall calculate analytically the Fourier compo-
nents that correspond to the quasiperiodic spectrum, and from them the
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diffraction pattern. To this end we shall make use of another construction
of the Fibonacci sequence. Consider the sequence of numbers �m/τ�, where
�x� (“floor x”) denotes the integer part of x, i.e., the largest integer less than
or equal to x. Starting with m = 1, we have

�m/τ� = 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, . . . .

Now taking the difference between adjacent numbers,⌊
m + 1

τ

⌋
−
⌊m
τ

⌋
= 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, . . . . (10.2.27)

When each 1 is replaced by L and each 0 by S, the Fibonacci chain is recovered.
Thus a mathematical formula can be given for the alternation of long and short
segments. The mth place is occupied by a long (L) segment if⌊

m + 1
τ

⌋
=
⌊m
τ

⌋
+ 1 . (10.2.28)

On the other hand, if ⌊
m + 1

τ

⌋
=
⌊m
τ

⌋
, (10.2.29)

then there is a short (S) segment in the mth place. Consequently, expressed
in units of the length of the shorter segment, the distance of the mth point of
the Fibonacci chain from the origin is

xm = S

{
m + (τ − 1)

⌊
m + 1

τ

⌋}
= S

{
m +

1
τ

⌊
m + 1

τ

⌋}
. (10.2.30)

Using the Heaviside step function this can be alternatively written as

xm = S

{
m+

∑
n

(τ − 1)nθ
(
n+ 1− (m+1)/τ

)
θ
(
(m+1)/τ −n

)}
. (10.2.31)

This result is simply illustrated, and the illustration is easily generalized to the
description of quasicrystals in higher dimensions. Consider a two-dimensional
square lattice of lattice constant a, and mark the points (m,n) for which
n = �(m+1)/τ�. Then these points are projected onto the straight line of slope
tanφ = 1/τ . This is shown in Figure 10.10. It is clear from the construction
that the distance of the mth point from the origin is

xm = am cosφ + a �(m + 1)/τ� sinφ . (10.2.32)

When the lattice constant is chosen as a = S/ cosφ, these distances are the
same as in (10.2.30), so this construction generates a Fibonacci chain, too.

When adjacent points (m,n) in the figure are connected, long (short) seg-
ments of the Fibonacci chain are seen to be the projections of diagonal (hor-
izontal) edges of a square cell in the lattice. Note that the selected lattice
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y

xl

Fig. 10.10. Construction of the Fibonacci chain via the projection of selected points
of a two-dimensional square lattice

points are inside a strip of width l = a cosφ around the line of slope 1/τ , and
the above-defined trajectory passes through all lattice points within the strip.
This implies that the quasiperiodic Fibonacci chain can also be constructed
by projecting the points inside a finite strip of the square lattice on a straight
line with an irrational slope of 1/τ .

Yet another, frequently used representation of the Fibonacci chain is ob-
tained by adding to the previously selected set of lattice points the corner
points below the long diagonal sections – i.e., for every m those points (m,n)
are chosen for which n = �m/τ� or n = �(m + 1)/τ�, and then these points,
which form a quasiperiodic staircase, are projected on the line with slope
tanφ = 1/τ , as shown in Fig. 10.11. Compared to the previous staircase
that was obtained by connecting the points (m,n), horizontal sections are
preserved, while each diagonal section is replaced by a horizontal plus a ver-
tical one. It follows from the scaling property of the Fibonacci chain that the
projected points once again form a Fibonacci chain – however, now the pro-
jections of horizontal edges are long segments and those of vertical edges are
short segments. The length of the latter is, of course, 1/τ times the former,
that is, S = a sinφ. This construction corresponds to the following algorithm.
Elements of the Fibonacci chain are chosen in succession; for long elements
(L) a step is made to the right on the square lattice, for short ones (S) a step
is made upward. The staircase traced out in the two-dimensional lattice lies
in a strip whose slope is tanφ = 1/τ and whose width l is the projection of
the unit square on the direction perpendicular to the strip, i.e.,

l = a(cosφ + sinφ) = S(τ + 1) = Sτ2 . (10.2.33)



10.2 Quasiperiodic Structures 321

y

x

Fig. 10.11. Another construction of the Fibonacci chain via the projection of se-
lected points of a two-dimensional square lattice

To evaluate the amplitude of the scattered beam consider the diffraction
by a system that contains the points of a planar square lattice within a strip of
finite width. For simplicity, we shall present the calculation in the model that
represents the Fibonacci chain by the projections of points (m, �(m + 1)/τ�).
Using formula (10.2.31) for the coordinates,∑

m

e−iKxm =
∑
m,n

e−iKS(m+n/τ)θ
(
n + 1 − (m + 1)/τ

)
θ
(
(m + 1)/τ − n

)
.

(10.2.34)
When the two-dimensional vector K ≡ (Kx,Ky) = (K,K/τ) is introduced,
the previous expression can be written as

∑
m

e−iKxm =
∫

dr e−iK·r ∑
m,n

δ(x− Sm)δ(y − Sn) (10.2.35)

×θ[y/S + 1 − (x/S + 1)/τ ]θ[(x/S + 1)/τ − y/S] .

Next, the function to be Fourier transformed is considered as a product of
two terms; the first contains a summation over all points of the square lattice,
and the second is a product of step functions projecting them to the narrow
strip. Their respective Fourier transforms are easily determined,∫

dr e−iK·r ∑
m,n

δ(x− Sm)δ(y − Sn)

=
N

V
(2π)2

∑
h,k

δ(Kx − h2π/S)δ(Ky − k2π/S) ,
(10.2.36)
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and ∫
dr e−iK·rθ[y/S + 1 − (x/S + 1)/τ ]θ[(x/S + 1)/τ − y/S]

=
∫

dx

(x+S)/τ∫
(x−S/τ)/τ

dy e−iK·r

=
∫

dx e−iKxx
i

Ky

[
e−iKy(x+S)/τ − e−iKy(x−S/τ)/τ

]
.

(10.2.37)

Since the Fourier transform of the product is the convolution of the Fourier
transforms of its factors,
∑
m

e−iKxm = (2π)2
N

V

∑
h,k

∫
dx

∫∫
dqxdqy δ(Kx − qx − h2π/S) (10.2.38)

×δ(Ky − qy − k2π/S)e−iqxx
i
qy

[
e−iqy(x+S)/τ − e−iqy(x−S/τ)/τ

]
.

Integration yields a factor

δ[K(1 + 1/τ2) − (2π/S)(h + k/τ)] , (10.2.39)

indicating that diffraction peaks appear for those values of K that satisfy

K = Khk =
2π
S

τ2

1 + τ2
(h + k/τ) =

2π
a

1√
1 + τ2

(hτ + k) , (10.2.40)

where h and k are integers. Writing the structure amplitude as

FK =
∑
hk

Fhkδ(K −Khk) , (10.2.41)

the Fourier coefficient is found to be

Fhk = lim
N→∞

1
N

∑
n

e−iKxn

=
sin

[
πτ

1 + τ2
(τk − h)

]
πτ

1 + τ2
(τk − h)

exp
[
iπ

τ − 2
τ + 2

(τk − h)
]
.

(10.2.42)

Thus diffraction peaks are indeed specified by two integer labels. The intensity
of the diffraction peak of indices hk is found to be proportional to

sin2

[
πτ

1 + τ2
(−h + τk)

]
[

πτ

1 + τ2
(−h + τk)

]2 . (10.2.43)
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The indices h and k run over all (positive and negative) integers, so, due to
the irrationality of τ , the allowed values of K make up a quasicontinuous spec-
trum. However – as already mentioned in relation to Fig. 10.9 – the intensity
is large only at peaks for which the ratio of the indices is close to τ – that is,
for which the two integers are subsequent Fibonacci numbers.

To provide an intuitively clear interpretation of this result, we shall return
to the representation of the Fibonacci chain by the projection of the points in
a strip of a square lattice. The reciprocal lattice of the square lattice is made
up by the points K = 2π

a (h, k). In the coordinate system rotated by an angle
φ these points are given as

Khk‖ =
2π
a

(h cosφ + k sinφ) =
2πτ

a
√

1 + τ2
(h + k/τ) ,

Khk⊥ =
2π
a

(−h sinφ + k cosφ) =
2π

a
√

1 + τ2
(−h + τk) .

(10.2.44)

Then, apart from the phase factors, the expression for the structure amplitude
is written as

FK =
∑
h,k

sin[Khk⊥a(cosφ)/2]
Khk⊥a(cosφ)/2

δ(K −Khk‖) . (10.2.45)

This shows that the scattered intensity receives contributions from each point
K of the reciprocal lattice. The scattering “vector” K, which determines the
position of the diffraction peak associated with the reciprocal-lattice point K
is the projection Khk‖ of K on a line of irrational slope, while the amplitude
of the diffraction peak is determined by its projection along the perpendicular
direction. This amplitude is small when the projection is large, i.e., when K
is not close to the specified line. To understand this result recall that the
Fibonacci chain was constructed using the points in a narrow strip (of width
l = a cosφ) in the direct lattice, therefore diffraction by the Fibonacci chain
can be interpreted as scattering by a specially oriented narrow strip of a square
lattice. In contrast to the usual, rather sharp diffraction peaks that appear
for macroscopic samples, the peaks now have a finite width in the direction
perpendicular to the strip. The diffraction pattern is shown in Fig. 10.12.
Diffraction peaks far from the line K⊥ = 0 hardly contribute. This leads to a
relatively sparse distribution of sharp peaks.

10.2.5 Penrose Tiling of the Plane

The two-dimensional generalization of the quasiperiodic Fibonacci chain is the
quasiperiodic covering (tiling) of the plane with two objects. As demonstrated
by R. Penrose in 1974, this is possible with two rhombi of equal sides. The
angles of the thinner rhombus are 36◦ and 144◦, while those of the thicker
are 72◦ and 108◦. These figures are called Penrose tiles. To rule out periodic
tilings, sides are marked with single or double arrows, and the common sides
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Kx

Ky

K

��

Fig. 10.12. Diffraction pattern of a finite strip of a square lattice and its section
along the line K⊥ = 0

of neighboring tiles are required to have the same number of arrows in the
same direction. Figure 10.13 shows the elementary rhombi and some simple
allowed matches.

Fig. 10.13. The 36◦ and 72◦ rhombi used in Penrose tiling and some simple matches

The rule for matching tiles is often expressed in an alternative way: each
tile has a marked vertex – the one where the two sides with double arrows
join –, and tiles can be matched only if the joining vertices are either all
marked or all unmarked. Figure 10.14 shows a possible tiling of the plane that
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respects matching rules. For clarity, thin tiles are shaded gray. The presence
of local fivefold symmetry in many places is obvious at first sight. In spite
of the lack of strict long-range periodicity, the tile edges (or bonds between
atoms at the vertices) are all along five specific directions, thus the pattern
shows long-range directional order.

Fig. 10.14. Penrose tiling of the plane using 36◦ and 72◦ rhombi

The position vectors of the vertices of the rhombi can all be written as

rn =
5∑
i=1

niei , (10.2.46)

where the ni are integers and the

ei = a

(
cos

2π(i− 1)
5

, sin
2π(i− 1)

5

)
, i = 1, 2, . . . , 5 (10.2.47)

are the vectors drawn from the center of a circle of radius a to the vertices of
an inscribed regular pentagon. Two neighboring vectors ei plus their resultant
and the origin make up a thick rhombus, while second-neighbors give a thin
rhombus. The five vectors are obviously not linearly independent, e.g.,

e1 = τ(e2 + e5) . (10.2.48)

If the ni in (10.2.46) could take any integer values, points rn would fill the
plane densely because of the irrationality of τ . To obtain a Penrose tiling, only
certain integers are allowed, ensuring finite distances between lattice points.

To establish the selection rule for the integers note that if the primitive
vectors of a five-dimensional hypercubic lattice are projected on a particular
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plane that is perpendicular to the space diagonal [11111] and spanned by two
vectors with irrational components,

a = (1, cos 2π/5, cos 4π/5, cos 6π/5, cos8π/5) ,
b = (0, sin 2π/5, sin 4π/5, sin 6π/5, sin 8π/5) ,

(10.2.49)

the vectors (10.2.47) are recovered. Then, similarly to the Fibonacci chain, the
Penrose tiling of the plane with the two rhombi can be obtained by translating
the five-dimensional unit cube along this plane and projecting the lattice
points within the covered finite strip onto the plane. The obtained pattern
does not contain every integral linear combination of the vectors ei – only
those that make up the Penrose tiling.

The projections qi of the reciprocal-lattice vectors3 onto the plane are
used to specify the vectors for which the structure amplitude is finite. Since
the vectors qi have irrational components, the Penrose tiling is quasiperiodic.
The diffraction peaks appear at

K =
5∑
i=1

hiqi ; (10.2.50)

they are indexed by five parameters. Moreover, since the arrangement of the
vectors qi is similar to that of the ei, the diffraction pattern of the Penrose
tiling shown in Fig. 10.15 exhibits five- and tenfold symmetries.

Fig. 10.15. Calculated diffraction pattern of a two-dimensional quasicrystalline ar-
rangement of points that corresponds to a Penrose tiling [M. Senechal, Quasicrystals
and Geometry, Cambridge University Press (1995)]

Note that matching rules that permit only quasiperiodic tilings of the
plane can be established for other choices of tiles as well, e.g., a lozenge and
a square (i.e., of 45◦ and 90◦ rhombi), or three rhombi with acute angles 30◦,
60◦, and 90◦ with equal side length. These choices lead to two-dimensional
quasicrystals that exhibit four- and sixfold symmetries.
3 The reciprocal lattice of a five-dimensional hypercubic lattice is also hypercubic.
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10.2.6 Three-Dimensional Quasicrystals

In three dimensions quasiperiodic filling of space with simple objects is much
more difficult to illustrate, therefore we shall adopt the opposite approach.
First we shall investigate what symmetries may be exhibited by the structures
obtained via the projection of a part of a higher-dimensional lattice onto three
dimensions, and only then shall we turn to the spatial arrangement of atoms
in three-dimensional quasicrystals.

Quasicrystals with icosahedral symmetry make up the most characteristic
class of three dimensional quasicrystals. Their diffraction patterns display
two-, three-, as well as fivefold rotation axes. The icosahedral point groups
I (235) and Ih (m3̄5̄) are known to be incompatible with three-dimensional
spatial periodicity. However in six-dimensional space the six fivefold axes of the
icosahedral point group appear naturally. As a generalization of the foregoing,
icosahedral quasicrystals may therefore be regarded as the three-dimensional
projections of a part of a six-dimensional cubic lattice.

For a precise mathematical formulation, consider the projection of a six-
dimensional hypercubic lattice on a particular three-dimensional subspace
that is perpendicular to the direction [111111] and spanned by the vectors

a =
2√
5
(1, cos 2π/5, cos 4π/5, cos 6π/5, cos 8π/5, 0) ,

b =
2√
5
(0, sin 2π/5, sin 4π/5, sin 6π/5, sin 8π/5, 0) , (10.2.51)

c =
1√
5
(−1,−1,−1,−1,−1,

√
5) .

The projections of the primitive vectors a(100000), a(010000), . . . of the hy-
percubic lattice are the vectors

ei =
2a√

5

(
cos

2π(i− 1)
5

, sin
2π(i− 1)

5
, −1

2

)
, i = 1, 2, . . . , 5 (10.2.52)

and e6 = a(0, 0, 1). It is readily seen that these projected vectors have the
same magnitude, too. For an even clearer manifestation of the symmetries the
vectors are rotated around the y-axis through φ = arctan(1/τ). When this
new set of basis vectors,

e1 =
a√

1 + τ2
(1, 0,−τ) , e2 =

a√
1 + τ2

(0, τ,−1) ,

e3 =
a√

1 + τ2
(−τ, 1, 0) , e4 =

a√
1 + τ2

(−τ,−1, 0) ,

e5 =
a√

1 + τ2
(0,−τ,−1) , e6 =

a√
1 + τ2

(1, 0, τ)

(10.2.53)

and their opposites are all drawn from a common origin, their tips are seen
to point into the vertices of the regular icosahedron inscribed in a sphere of
radius a (see Fig. 5.12).
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The primitive vectors of the reciprocal lattice of a six-dimensional hy-
percubic lattice generate another 6D hypercubic lattice. Projection on three-
dimensional space and then rotation leads to the vectors

q1 =
2π

a
√

1 + τ2
(1, 0,−τ) , q2 =

2π
a
√

1 + τ2
(0, τ,−1) ,

q3 =
2π

a
√

1 + τ2
(−τ, 1, 0) , q4 =

2π
a
√

1 + τ2
(−τ,−1, 0) ,

q5 =
2π

a
√

1 + τ2
(0,−τ,−1) , q6 =

2π
a
√

1 + τ2
(1, 0, τ) .

(10.2.54)

Diffraction peaks therefore appear at those values of K that can be written
as

K =
6∑
i=1

hiqi , (10.2.55)

where the hi are integers. A simple rearrangement of the terms leads to the
form

K =
2π

a
√

1 + τ2
(hτ + h′, kτ + k′, lτ + l′) . (10.2.56)

The distribution of the diffraction peaks of an icosahedral quasicrystal is such
that along each of the three directions the observed diffraction pattern is sim-
ilar to that of a Fibonacci chain. Consequently, diffraction peaks are specified
by six indices. In principle, arbitrarily close-lying Bragg peaks should also
be observed, however only a few of the peaks are sufficiently intense. This is
clearly seen on the powder diffraction pattern shown in Fig. 10.16. In compar-
ison, the diffraction pattern obtained after annealing is shown in the bottom
part of the figure. Diffraction peaks in the annealed sample correspond to
scattering by orthorhombic Al6Mn, while the Bragg peaks of the quenched
sample may only be interpreted in terms of a quasicrystalline structure, and
should be indexed by six parameters.

It is much more difficult to visualize the atomic arrangement in a three-
dimensional quasicrystal than in the one- and two-dimensional cases. The
3D generalization of planar Penrose tiles is a pair of rhombohedra, spanned
by the vectors given in (10.2.52). From the arrangement of the vectors it
is easy to show that one type is defined by three vectors pointing to three
adjacent vertices of the icosahedron, e.g., −e1, −e2, and e6, while the other
by three vectors pointing to three nonadjacent vertices, e.g., e1, e3, and e6.
These rhombohedra are shown in Fig. 10.17. The volume ratio of the two
rhombohedra is precisely τ , so they are often referred to as “thin” and “thick”.
When matching conditions are suitably chosen, only quasiperiodic filling of
the space is possible with them.

Figure 10.18 shows the diffraction patterns calculated from the Fourier
spectra of quasicrystals obtained by filling the space with such rhombohedra.
The three patterns correspond to different orientations.
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Fig. 10.16. High-resolution X-ray diffraction pattern of quenched (quasicrystalline)
and annealed (crystalline) Al-Mn powder. Labels are Al and icosahedral Miller in-
dices [P. A. Bancel et al., Phys. Rev. Lett. 54, 2422 (1985)]

( )a ( )b

Fig. 10.17. (a) Thin and (b) thick rhombohedra used for the Penrose tiling of
three-dimensional space. In quasicrystals atoms are located at marked positions, in
vertices, on edges, or on face diagonals

Fig. 10.18. Calculated Laue diffraction patterns of a quasicrystal constructed with
thin and thick rhombohedra. The three patterns correspond to different orientations
[A. Katz and M. Duneau, J. Physique 47, 181 (1986)]

The similarity with the experimental results shown in Fig. 10.6 is striking.
To achieve perfect agreement, the rhombohedra have to be suitably deco-
rated with atoms, in line with the chemical composition of the quasicrystal.
Figure 10.17 also shows the sites where atoms are expected to be located.
In quasicrystalline Al86Mn14 manganese atoms occupy the vertices and alu-
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minum atoms all other marked sites – nevertheless occupation should always
be understood in an average sense.

Just as real crystals are never perfectly periodic because of the large num-
ber of defects they contain, orientational order always extends only over finite
regions in quasicrystals as well. Defects and disordered regions inevitably ap-
pear in them.
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Dynamics of Crystal Lattices

The discussion of the structure of solids was based on the assumption that
atoms or ions are rigidly fixed at their equilibrium positions. Within the frame-
work of classical physics this may be valid in the ground state of the crystal.
However, at finite temperatures atoms are displaced by thermal motion from
their equilibrium positions. Without taking this into consideration, certain
mechanical, elastic, and thermal properties of solids could not be properly
accounted for. For example, barring the regime of low temperatures, the cal-
culated specific heat is found to be much smaller than the observed value
when the vibration of ions is ignored and only the contribution of electrons is
retained. Similarly, neither thermal expansion nor melting can be explained
in a model that assumes the crystal structure to be rigid – not to mention me-
chanical properties, which do not lend themselves to interpretation in terms
of a rigid lattice. Besides, lattice dynamics modifies the electronic states as
well, as we shall see in the Volume 2.

Making use of the vacancies and interstitials in the lattice, atoms may move
far from their initial position. In this chapter we shall ignore this diffusion and
assume that atoms stay close to their equilibrium positions (which correspond
to a crystalline order), and perform small-amplitude oscillations about it.
Here we shall treat the problem classically; quantum effects will be taken into
account in the next chapter.

11.1 The Harmonic Approximation

In principle, the motion of the atoms in a lattice can be determined unam-
biguously if the potential felt by them is known. In insulators only pairwise
interactions among the atoms (interatomic pair potentials) need to be consid-
ered. In metals the full interaction is the sum of the direct Coulomb potentials
due to other ions and the potential due to highly mobile delocalized electrons
that are not bound to any ion. The interaction Hamiltonian therefore depends
on the coordinates of ions and mobile electrons alike. We shall demonstrate
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in Chapter 23 that, owing to the large mass difference between ions and elec-
trons, electrons follow ions practically without any delay, while ions feel only
an average of the potential due to electrons. In what follows we shall there-
fore assume that the potential U felt by the ions depends only on the ionic
coordinates, just like in insulators.

For completeness we shall consider a lattice with a basis of p atoms at
positions r1, r2, . . . , rp relative to the primitive cell; the lattice vectors of the
primitive cells are denoted by Rm. The equilibrium positions of the atoms are

r0(m,μ) = Rm + rμ , μ = 1, 2, . . . , p. (11.1.1)

When atoms perform thermal motion about these positions, their instanta-
neous coordinates at time t are given by

r(m,μ, t) = Rm + rμ + u(m,μ, t) , (11.1.2)

where u(m,μ, t) is the instantaneous displacement of the μth atom in the
primitive cell at Rm from its equilibrium position. From now on, we shall
usually suppress the time variable.

Obviously, the potential U is a function of the true atomic positions, and
therefore of the displacements u(m,μ). To obtain an easily tractable problem,
further assumptions have to be made about the interactions between ions.

11.1.1 Second-Order Expansion of the Potential

When the diffusion of atoms is ignored, their displacement from equilibrium
can be assumed to be small as long as the temperature is low compared to the
melting point. The potential is then expanded in powers of the displacements
u(m,μ) as

U({r(m,μ)}) = U0 +
∑
m,μ,α

Φμα(m)uα(m,μ)

+ 1
2

∑
m,μ,α
n,ν,β

Φμναβ(m,n)uα(m,μ)uβ(n, ν) + . . . ,
(11.1.3)

where

Φμα(m) =
∂U({r(m,μ)})

∂uα(m,μ)
,

Φμναβ(m,n) =
∂2U({r(m,μ)})

∂uα(m,μ)∂uβ(n, ν)
.

(11.1.4)

The Greek indices α, β label Cartesian coordinates.
The ground-state energy U0 – which corresponds to the configuration in

which every atom is in its equilibrium position – is essential for the calculation
of the total energy of the solid but unimportant for the determination of the
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frequency spectrum of vibrations, which is why it will be ignored below. Since
the potential attains its minimum at the equilibrium positions of the atoms,
the coefficients Φμα(m) of the terms linear in the displacement vanish. The ap-
proximation in which only second-order terms are kept is called the harmonic
approximation. Throughout this chapter we shall use this approximation, as
a relatively good description of the thermal properties of solids can be based
on it. Phenomena that cannot be interpreted in this framework are presented
at the end of the next chapter. In this context the role of higher-order terms
in the expansion is also discussed there.

The ab initio determination of the coefficients Φ in the expansion is very
difficult, and requires highly time-consuming numerical calculations. There-
fore these coefficients are often considered as phenomenological parameters
whose values are obtained from fits to experimental data. We shall also adopt
this approach. Nevertheless there exist completely general relations among the
coefficients through which the number of fitting parameters can be reduced
substantially. One such relation is the consequence of the definition of the
coefficients. As they appear as the second partial derivatives of the energy,

Φμναβ(m,n) = Φνμβα(n,m) . (11.1.5)

Further relations are obtained from the expression of the force on individ-
ual atoms. The force on the atom labeled (m,μ) is derived from the potential
as

F (m,μ) = − ∂U

∂u(m,μ)
. (11.1.6)

In the harmonic approximation

Fα(m,μ) = −
∑
n,ν,β

Φμναβ(m,n)uβ(n, ν) . (11.1.7)

Suppose that each atom is displaced by u0, which corresponds to a homo-
geneous translation of the crystal. Since atoms are not displaced relative to
each another, the crystal remains in equilibrium, and the force on each atom
is zero; hence ∑

n,ν

Φμναβ(m,n) = 0 . (11.1.8)

From (11.1.5) it follows that ∑
m,μ

Φμναβ(m,n) = 0 . (11.1.9)

By making use of the two previous formulas it is straightforward to show that
the second-order term in the expansion of the potential may be written in the
equivalent form

− 1
4

∑
m,μ,α
n,ν,β

Φμναβ(m,n) [uα(m,μ) − uα(n, ν)] [uβ(m,μ) − uβ(n, ν)] . (11.1.10)
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Yet another set of connections may be obtained by exploiting the prop-
erty that a rigid rotation of the entire crystal does not generate any internal
forces either. Even more important is that in specific cases knowledge of the
crystal symmetries may substantially simplify calculations or the evaluation
of measurements, as the same symmetries are shown by the potential U and
so the coefficients Φμναβ as well. This possibility is nonetheless ignored in the
general treatment.

As it will prove to be highly important for the applications below, it should
be noted that in ordered crystals the coefficients Φμναβ(m,n) depend only on
Rm − Rn, the difference of the lattice vectors Rm and Rn of the primitive
cells. Denoting this by m− n,

Φμναβ(m,n) = Φμναβ(m− n) . (11.1.11)

11.1.2 Expansion of the Energy for Pair Potentials

In many – but by no means all – cases it may be assumed that the interaction
among ions can be written as the sum of pair potentials that depend only on
the difference of the position vectors of the two ions:

U = 1
2

∑
m,μ
n,ν

Upair (r(m,μ) − r(n, ν))

= 1
2

∑
m,μ
n,ν

Upair (Rm + rμ + u(m,μ) − Rn − rν − u(n, ν)) .
(11.1.12)

Expansion around the equilibrium position is then performed, and once again
terms are kept only up to second order:

U = 1
2

∑
m,μ
n,ν

Upair(Rm + rμ − Rn − rν)

+ 1
2

∑
m,μ,α
n,ν

Φ̃μνα (m,n) [uα(m,μ) − uα(n, ν)] (11.1.13)

+ 1
4

∑
m,μ,α
n,ν,β

[uα(m,μ) − uα(n, ν)] Φ̃μναβ(m,n) [uβ(m,μ) − uβ(n, ν)] ,

where Φ̃ may now be expressed in terms of the first and second partial deriva-
tives of the pair potential. Using the concise notation u = u(m,μ) − u(n, ν),
we have

Φ̃μνα (m,n) =
∂Upair(m,μ;n, ν; u)

∂uα
,

Φ̃μναβ(m,n) =
∂2Upair(m,μ;n, ν; u)

∂uα∂uβ
.

(11.1.14)
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The term linear in the atomic displacements vanishes again, as the sum of
the pair potentials has its minimum at the equilibrium distance of the ions.
Comparing the second-order term with the expression in (11.1.10),

Φμναβ(m,n) = −Φ̃μναβ(m,n) , (11.1.15)

unless m = n and μ = ν. To determine the contribution of the term m = n,
μ = ν, a consequence of the relation (11.1.8) has to be exploited:

Φμναβ(m,n) = δmnδμν
∑
n′,ν′

Φ̃μν
′

αβ (m,n′) − Φ̃μναβ(m,n) . (11.1.16)

Forces are said to be central when the pair interaction depends only on
the distance between the atoms:

Upair(m,μ;n, ν; u) = Upair(|Rm+rμ+u(m,μ)−Rn−rν−u(n, ν)|) . (11.1.17)

Expansion of the potential about the equilibrium distance r = |r| = |Rm +
rμ − Rn − rν | gives

∂Upair(|r + u|)
∂uα

=
∂Upair(|r + u|)

∂|r + u|
rα + uα

r
, (11.1.18)

which implies

Φ̃μναβ(m−n) = δαβ
1
r

∂Upair(r)
∂r

+
(
∂2Upair(r)

∂r2
− 1

r

∂Upair(r)
∂r

)
rαrβ
r2

. (11.1.19)

The first derivatives of the individual pair potentials do not generally vanish
at the equilibrium position: only the full potential has its minimum there,
which is why the first derivative appears in the expression for Φ̃. The previous
formula clearly shows that apart from an isotropic term the direction of the
displacement relative to the axis joining the atoms is important. Restoring
forces act only when the relative displacement of the atoms has a nonvanishing
projection along this axis. Displacements perpendicular to it give only second-
order corrections to the interatomic distance, and therefore do not contribute
to the energy.

11.1.3 Equations Governing Lattice Vibrations

The classical motion of atoms is most easily described using the Hamiltonian
equations of classical mechanics. The Hamiltonian is specified by expressing
the kinetic and potential energies in terms of the displacements u(m,μ) and
the conjugate momenta. Assuming that each primitive cell contains an atom
of mass Mμ at the μth position, the kinetic energy due to atomic vibrations
is

Tkin =
∑
m,μ

1
2Mμu̇

2(m,μ) . (11.1.20)
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The potential energy shall either be written as

Uharm = 1
2

∑
m,μ,α
n,ν,β

Φμναβ(m,n)uα(m,μ)uβ(n, ν) , (11.1.21)

or in terms of the pair potentials as

Uharm = 1
4

∑
m,μ,α
n,ν,β

[uα(m,μ) − uα(n, ν)] Φ̃μναβ(m,n) [uβ(m,μ) − uβ(n, ν)] .

(11.1.22)
In classical mechanics the canonical momentum P conjugate to the dis-

placement u is derived from the Lagrangian L = Tkin − Uharm as

P (m,μ) =
∂L

∂u̇(m,μ)
. (11.1.23)

The kinetic energy then takes the form

Tkin =
∑
m,μ

P 2(m,μ)
2Mμ

=
∑
m,μ,α

P 2
α(m,μ)
2Mμ

. (11.1.24)

From the classical Hamiltonian, which is the sum of the kinetic and po-
tential energies – both expressed in terms of the canonical variables –,

H = Tkin + Uharm , (11.1.25)

the following equations of motion are derived:

u̇α(m,μ) =
∂H

∂Pα(m,μ)
=

Pα(m,μ)
Mμ

,

Ṗα(m,μ) = − ∂H
∂uα(m,μ)

= −
∑
n,ν,β

Φμναβ(m− n)uβ(n, ν) ,
(11.1.26)

or
Ṗα(m,μ) = −

∑
n,ν,β

Φ̃μναβ(m− n)[uβ(m,μ) − uβ(n, ν)] . (11.1.27)

Differentiation of the equation for u leads to the well-known Newtonian equa-
tion

Mμüα(m,μ) = −
∑
n,ν,β

Φμναβ(m− n)uβ(n, ν) , (11.1.28)

or alternatively

Mμüα(m,μ) = −
∑
n,ν,β

Φ̃μναβ(m− n)[uβ(m,μ) − uβ(n, ν)] . (11.1.29)

Since the potential is assumed to be harmonic, the equations are identical
to those of a mechanical mass–spring system, which is why the quantities
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Φμναβ(m−n) are called spring constants or force constants. The resulting many-
variable system of coupled differential equations is seemingly very complex,
however when plausible assumptions are made about the spring constants, it
turns out to be solvable in some cases. The obtained intuitive picture facilitates
the interpretation of the quantum mechanical results.

11.2 Vibrational Spectra of Simple Lattices

By considering the classical crystal as a system built up of Np mass points, the
vibrations of the lattice are determined from the coupled system of equations
(11.1.28) and (11.1.29) in 3Np variables. We shall first deal with some simple
cases where calculations are straightforward. It will be assumed that atoms
are located along a line, making up a chain, and their displacements are also in
the same direction. In the simplest case the chain is made up of a single kind
of atom, and nearest-neighbor distances are all identical in the equilibrium
configuration. This model is called the monatomic linear chain. In a second,
somewhat more complicated situation the chain is made up of two kinds of
atoms of unequal mass, located at alternate positions. A similar treatment is
applied in the case when the chain contains identical atoms and their equi-
librium separations alternate. This system is called a dimerized chain. After
the determination of the vibrational modes in these models we shall turn to
the study of the vibrational spectra of simple cubic lattices, and then to the
general discussion of classical vibrations in three-dimensional lattices.

11.2.1 Vibrations of a Monatomic Linear Chain

Consider a linear chain of lattice constant a with atoms of mass M at the
lattice points. The origin of coordinates is chosen in such a way that the
equilibrium position of the nth atom is na. The displacement un of each
vibrating atom is supposed to be along the chain. The atoms, their equilibrium
positions and displacements at time t are shown in Fig. 11.1.

nn�1

un�1
un�1

un

n�1

a

( )b

( )a

Fig. 11.1. Atomic positions in a one-dimensional monatomic chain (a) in equilib-
rium; (b) in vibration at an arbitrary time t. Springs represent the elastic forces
between the atoms; un is the instantaneous displacement of the nth atom from its
equilibrium position
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Using the form (11.1.13) for the harmonic potential,

Uharm = 1
4

∑
nn′

Φ̃(n, n′) [un − un′ ]2 (11.2.1)

in this simple case. It is plausible to assume that the strength of the interaction
decreases rapidly with increasing separation of the atoms, and so it is sufficient
to take into account only the effects of the nearest neighbors. Denoting the
spring (force) constant Φ̃(n, n± 1) by K,

Uharm = 1
2K

∑
n

[un − un+1]
2
. (11.2.2)

The force on the atom is its derivative, i.e., the equation of motion for the
nth atom is

Mün = −∂Uharm

∂un
= −K [2un − un−1 − un+1] . (11.2.3)

The solution of the system of coupled differential equations requires the
specification of the boundary condition. A practical choice is the periodic or
Born–von Kármán boundary condition, whereby the N atoms are assumed
to be not along a free chain of length L = Na but on a ring of the same
circumference, and so the N + 1st atom is the same as the first. Then

uN+1 = u1 . (11.2.4)

As traveling waves are expected to propagate in the mass–spring system,
the solution is most easily obtained using a Fourier expansion for the dis-
placements. The discrete position variable is thus replaced by the discrete
wave number q, and the continuous time variable by the continuous frequency
variable ω:

un(t) =
1√
N

∑
q

1
2π

∞∫
−∞

dω u(q, ω)ei(qna−ωt) . (11.2.5)

Since displacements are real, the pairs (q, ω) and (−q,−ω) describe the same
atomic vibration. Therefore we shall permit q but not ω to take negative
values.

The periodic boundary condition allows only those values of q for which
eiqNa = 1, that is

q = j
2π
Na

, j = 0, ±1, ±2, . . . . (11.2.6)

When two integers j differ by an integral multiple of N , the difference of the
corresponding wave numbers is an integral multiple of 2π/a. As illustrated in
Fig. 11.2, such waves describe the same atomic displacement because un is
defined only in discrete lattice points.
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Fig. 11.2. Atomic displacements for the Fourier components with wave numbers
q and q + j 2π/a. For transparency, displacements are shown perpendicular to the
chain. The graphs of the waves drawn with solid and dashed lines have physical
meaning only in discrete lattice points

In the description of lattice vibrations wave numbers that differ by 2π/a are
thus equivalent. Since b = 2π/a is the primitive vector in the reciprocal lattice
of a one-dimensional lattice, the previous assertion establishes the equivalence
of wave vectors that differ by a reciprocal-lattice vector. This is in accordance
with the general consequences of discrete translational symmetry discussed in
Chapter 6. Once again, the N independent qs are customarily chosen in the
Brillouin zone; for a one-dimensional chain this is the region

−π/a < q ≤ π/a . (11.2.7)

The restriction on wave numbers can be interpreted in another way by assert-
ing that it is meaningless to speak about oscillations whose half wavelength
is smaller than the lattice constant. Therefore we shall always represent the
spectrum of lattice vibrations inside the Brillouin zone.

Substituting the Fourier transform into the equation of motion (11.2.3),
the Fourier components of different wave numbers do not mix. In the harmonic
approximation waves of different wavelengths propagate independently. The
equation for the Fourier component u(q, ω) is

−Mω2u(q, ω) = −K
[
2 − e−iqa − eiqa

]
u(q, ω)

= −2K [1 − cos qa]u(q, ω) .
(11.2.8)

The angular frequency of the oscillation of wave number q is then

ω(q) =

√
2K(1 − cos qa)

M
= 2

(
K

M

)1/2 ∣∣ sin ( 1
2qa

)∣∣ . (11.2.9)

The relationship between the vibrational frequency1 and the wave number –
the dispersion relation – is shown in Fig. 11.3.

In the long-wavelength limit (1/q � a) the curve is linear:

ω(q) ≈
(

K

M

)1/2

a |q| . (11.2.10)

1 The notation ω is always used for angular frequencies, however we shall follow
common practice and use the term frequency instead of angular frequency.



340 11 Dynamics of Crystal Lattices

q
�/a- /� a

!( )q

Fig. 11.3. Dispersion curve for the longitudinal vibrations of a monatomic linear
chain

In this limit neighboring atoms oscillate almost perfectly in phase, and the
motion corresponds to the oscillation of an elastic continuum, i.e., the prop-
agation of sound waves. For this reason such vibrations are called acoustic
vibrations.

When lattice vibrations are combined into a wave packet, the group ve-
locity is

c =
∣∣∣∣∂ω(q)

∂q

∣∣∣∣ =
(

K

M

)1/2

a cos
qa

2
. (11.2.11)

Starting from the midpoint of the Brillouin zone the group velocity is mono-
tonically decreasing. As shown in the figure, the dispersion curve has extrema
at the boundaries of the Brillouin zone; it becomes flat there, so its deriva-
tive, the group velocity vanishes. This is the consequence of the reflection
symmetry in monatomic linear chains.

It is straightforward to demonstrate that some characteristic features of
the dispersion curve are preserved when not only first neighbors interact.
Denoting the force constant of the interaction between pth neighbors by Kp,
the potential is

Uharm = 1
2

∑
n,p

Kp [un − un+p]
2 (11.2.12)

in the harmonic approximation, and so the equation of motion is

Mün =
∑
p

Kp [2un − un+p − un−p] . (11.2.13)

Eigenfrequencies are then given by

ω2(q) =
2
M

∑
p

Kp [1 − cos(pqa)] . (11.2.14)

It is readily seen that ω is always an even function of q,

ω(q) = ω(−q) . (11.2.15)

This formula reflects the symmetry that waves can equally propagate to the
left and to the right along the chain. This result is generally valid: as it was
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mentioned in Chapter 6 it is the consequence of invariance under time reversal.
When interactions are not limited to nearest neighbors, the dispersion curve
still starts linearly, and the group velocity still vanishes at the boundary of
the Brillouin zone.

Up to now it has been assumed that atomic displacements are along the
chain. Such vibrations are called longitudinal. For each q there exists one
such solution. When atomic displacements are perpendicular to the chain, we
speak of transverse vibrations. As there are two perpendicular directions, two
transverse vibrations are associated with each value of q. In a lattice made
up of N atoms 3N vibrational states are therefore possible. However, in a
linear chain this is true only in principle. Displacements perpendicular to the
chain modify the energy to a lesser extent than parallel ones. As mentioned
in connection with (11.1.19), transverse displacements are not opposed by
restoring forces in the harmonic approximation, consequently transverse vi-
brations cannot propagate in the linear chain. This is no longer the case in
two- and three-dimensional crystals. Here transverse vibrations are of finite
frequency, too, provided certain atomic bonds are not in the plane spanned
by the propagation direction and the direction of vibration.

11.2.2 Vibrations of a Diatomic Chain

The vibrational spectrum is more complicated when the primitive cell of the
one-dimensional chain contains two atoms. There are two limits of particular
interest. In the first an atom of mass M1 is located at the lattice point and
another of mass M2 at the midpoint of the cell.

We shall denote the displacement from equilibrium of the atom of mass
M1 (M2) in the nth primitive cell by un (vn). Equilibrium positions and
instantaneous positions at a given time are shown in Fig. 11.4.

un�1
vn�1

un�1
vn�1

un vn

M
1

M
2

a

( )b

( )a

Fig. 11.4. Atomic positions in the primitive cell of a linear chain made up of two
kinds of atom. (a) Equilibrium positions; (b) instantaneous displacements

Assuming that each atom feels the potential arising from its two nearest
neighbors, the system can be characterized by a single force constant K. The
potential energy is

Uharm = 1
2K

∑
n

[un − vn]2 + 1
2K

∑
n

[vn − un+1]2. (11.2.16)
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Then the equations of motion for the two kinds of atom are

M1ün = −K [2un − vn − vn−1] ,

M2v̈n = −K [2vn − un+1 − un] .
(11.2.17)

From the results obtained for the vibrations in a monatomic linear chain
the solutions are expected to be linear combinations of independently propa-
gating waves. Choosing a component of wave number q and frequency ω, the
amplitudes are assumed to be different on the two sublattices:

un(t) = u(q)ei(qna−ωt) , vn(t) = v(q)ei(qna−ωt) . (11.2.18)

Using periodic boundary conditions means that the requirement

uN+1 = u1 , vN+1 = v1 (11.2.19)

applies, and the chain is closed into a ring made up of N primitive cells. The
allowed values for q are the same as for the monatomic chain.

Substituting the traveling wave form into the equations of motion, elimi-
nation of the common phase factor yields

−ω2M1u(q) = −2Ku(q) + Kv(q)(1 + e−iqa) ,

−ω2M2v(q) = −2Kv(q) + Ku(q)(eiqa + 1) .
(11.2.20)

For this equation to have a nontrivial solution the determinant of the coeffi-
cient matrix has to vanish:∣∣∣∣∣

−ω2M1 + 2K −2Ke−iqa/2 cos
(

1
2qa

)
−2Keiqa/2 cos

(
1
2qa

) −ω2M2 + 2K

∣∣∣∣∣ = 0 . (11.2.21)

The vibration frequencies are then

ω2
±(q) =

K

M1M2

{
(M1 + M2) ±

√
(M1 + M2)

2 − 4M1M2 sin2
(

1
2qa

)}
.

(11.2.22)
Using the notation

ω2
0 = 2K

(
1

M1
+

1
M2

)
, γ2 = 4

M1M2

(M1 + M2)2
, (11.2.23)

they can be written as

ω2
±(q) = 1

2ω
2
0

{
1 ±

√
1 − γ2 sin2

(
1
2qa

)}
. (11.2.24)

In contrast to the single longitudinal mode in the monatomic chain there
are now two such modes with different frequencies. The corresponding disper-
sion relations are shown in Fig. 11.5.
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Fig. 11.5. Dispersion relations in the acoustic (ω−) and optical (ω+) branches for
the vibrations in a diatomic chain

The dispersion relation of one type of vibration (ω−(q)) is very similar to
that of the acoustic vibrations in a monatomic chain. It vanishes for q = 0,
and grows linearly for small q:

ω−(q) ≈ 1
4ω0γ|q| a . (11.2.25)

The other branch of the dispersion relation starts at a finite frequency:

ω+(q = 0) = ω0 . (11.2.26)

The ratio of the amplitudes u(q) and v(q) is determined from (11.2.20).
For q = 0, i.e., at the center of the Brillouin zone

v(0)
u(0)

=

⎧⎨
⎩

+1 in the branch ω−,

−(M1/M2) in the branch ω+.
(11.2.27)

In the branch with frequency ω− the two atoms of the primitive cell oscillate
with almost equal amplitudes and are in phase in the long-wavelength limit
– just like in a sound wave. For this reason this lower branch of vibrations
is called acoustic branch in this case, too. In the branch with frequency ω+

the two atoms oscillate in opposite directions around their center of mass
in the long-wavelength limit. Oscillation amplitudes on the two sublattices
are inversely proportional to the masses. When the diatomic chain is an ionic
crystal made up of oppositely charged ions, such vibrations may be excited by
high-frequency electromagnetic fields (light); they are therefore called optical
vibrations.

In the acoustic branch, at the boundary of the Brillouin zone

ω−(q) =
√
K

[(
1

M1
+

1
M2

)
−
∣∣∣∣ 1
M1

− 1
M2

∣∣∣∣
]1/2

=

⎧⎨
⎩

(2K/M1)
1/2

, if M1 > M2 ,

(2K/M2)
1/2 , if M2 > M1 .

(11.2.28)
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The situation is just the opposite in the optical branch. Here the frequency
is (2K/M2)1/2 for M1 > M2 and (2K/M1)1/2 for M2 > M1 at the boundary
of the Brillouin zone. Consequently there is always a finite gap between the
two branches: the acoustic branch is always below the optical. Examined as
functions of q, both branches of excitation are flat at the boundary of the
Brillouin zone, so the group velocity vanishes there.

Note that at the boundary of the Brillouin zone the frequency of the acous-
tic (optical) branch depends only on the mass of the heavier (lighter) atom.
This can be easily understood by taking the ratio of the two vibration am-
plitudes. At the boundary of the Brillouin zone it is either zero or infinity
– implying that only one type of atom participates in either vibration. Fig-
ure 11.6 shows the atomic displacements in the acoustic and optical branches
for wave numbers at the center and boundary of the Brillouin zone.

( )a

( )b

( )c

( )d

q"0 acoustic

q a��/ acoustic

q a��/ optical

q�0 optical

Fig. 11.6. Atomic displacements in the acoustic and optical modes of a diatomic
linear chain in the long-wavelength limit (q ≈ 0), and for a wave number at the zone
boundary

Let us examine what happens when the two masses are changed continu-
ously and become equal. Denoting the common mass by M , (11.2.22) implies

ω2
±(q) =

2K
M

[
1 ± cos

(
1
2qa

)]
, (11.2.29)

that is,

ω±(q) =

⎧⎨
⎩

2 (K/M)1/2 | cos
(

1
4qa

)| ,
2 (K/M)1/2 | sin ( 1

4qa
)| . (11.2.30)

The dispersion relation valid for this special case is shown in Fig. 11.7.
Both the figure and the analytical expressions show that the dispersion

curves are now not perpendicular to the zone boundary at π/a. This is not
surprising as we are now dealing with a chain that contains 2N equivalent
atoms spaced uniformly over a length Na, i.e., separated by regular distances
a/2. Therefore the chain is in fact monatomic, and the dimension of its true
primitive cell is a/2. The boundary of the Brillouin zone is then at 2π/a
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!( )q

�/a- /� a -2 /� a 2 /� a

!( )q

Fig. 11.7. Dispersion relation for the vibrations of a diatomic linear chain in the
M1 = M2 limit, shown in the Brillouin zones of chains with lattice constants a and
a/2

instead of π/a. In this “large” Brillouin zone there are 2N allowed values
for q, each associated with one eigenfrequency – while if the Brillouin zone
that corresponds to a periodicity a is used, the number of allowed qs is N ,
and each of them is associated with two frequencies. In the M1 = M2 limit
the optical vibrations obtained in the diatomic chain correspond to those
acoustic vibrations of a monatomic chain for which the wave number is either
π/a < q < −π/a or π/a < q < 2π/a. Shifting the optical branch by ±2π/a
into these intervals, the dispersion curve of the monatomic chain is recovered.

11.2.3 Vibrations of a Dimerized Chain

In the other limit the two atoms in the primitive cell are of equal mass but
are not uniformly spaced along the chain: the separation between nearest
neighbors alternates regularly between a smaller and a larger value. Such a
configuration – illustrated in Fig. 11.8 – is called a dimerized chain.

a

d

( )b

( )a

un�1
vn�1

un�1
vn�1

un vn

K
1

K
2

Fig. 11.8. Equilibrium positions and instantaneous displacements of the atoms in
a dimerized chain

Let the equilibrium atomic positions in the nth cell be denoted by na
and na + d, and the displacements from them by un and vn. Depending on
whether neighboring atoms are separated by d or a−d, the pair potential takes
different values. For this reason even when only nearest-neighbor interactions
are taken into account, two force constants have to be introduced. In the
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harmonic approximation the expression for the potential reads

Uharm =
K1

2

∑
n

[un − vn]
2 +

K2

2

∑
n

[vn − un+1]
2
. (11.2.31)

When d ≤ a/2, it is plausible to assume that K1 ≥ K2.
Determining the force on the atoms from the energy expression, the equa-

tions of motion are

Mün = −∂Uharm

∂un
= −K1 [un − vn] −K2 [un − vn−1] ,

Mv̈n = −∂Uharm

∂vn
= −K1 [vn − un] −K2 [vn − un+1] .

(11.2.32)

Traveling-wave solutions are sought in the form

un(t) = u(q)ei(qna−ωt), vn(t) = v(q)ei(qna−ωt) ; (11.2.33)

substitution into the equations of motion then gives

−ω2Mu(q) = −(K1 + K2)u(q) +
(
K1 + K2e−iqa

)
v(q) ,

−ω2Mv(q) = −(K1 + K2)v(q) +
(
K1 + K2eiqa

)
u(q) .

(11.2.34)

Nontrivial solutions exist if the determinant of the coefficients of u(q) and
v(q) vanishes, i.e.,

[−ω2M + (K1 + K2)
]2

=
(
K1 + K2e−iqa

) (
K1 + K2eiqa

)
= K2

1 + K2
2 + 2K1K2 cos qa .

(11.2.35)

From this equation the allowed frequencies are

ω2
±(q) =

1
M

{
(K1 + K2) ±

√
K2

1 + K2
2 + 2K1K2 cos qa

}
, (11.2.36)

and the amplitude ratio is

v(q)
u(q)

= ∓
√

K1 + K2eiqa

K1 + K2e−iqa
. (11.2.37)

Vibrational frequencies can again be written in the form of (11.2.24) with

ω2
0 = (K1 + K2)

2
M

, γ2 = 4
K1K2

(K1 + K2)2
. (11.2.38)

Similarly to diatomic chains, the spectrum has two branches. The lower
branch starts linearly,

ω−(q) ≈ 1
4ω0γ|q| a , (11.2.39)
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and since for q small u(q) ≈ v(q), atoms oscillate almost in phase in the
long-wavelength limit. This is the acoustic branch.

In contrast, the upper branch starts at a nonzero frequency ω0 at the
center of the Brillouin zone,

ω+(q) = ω0 −O(qa)2 . (11.2.40)

Since for q small v(q) ≈ −u(q) now, the two atoms oscillate in opposite phases.
This branch is called the optical branch here, too.

At the boundary of the Brillouin zone, for q = π/a

ω2
±(π/a) =

1
M

[(K1 + K2) ± |K1 −K2|] . (11.2.41)

For K1 > K2 this gives

ω+(π/a) = (2K1/M)1/2 , ω−(π/a) = (2K2/M)1/2 . (11.2.42)

The ratio of the amplitudes of the displacements is found to be ∓1. This
means that atomic displacements are such that atoms separated by d in one
branch and by a− d in the other branch oscillate in phase – and so only one
of two springs is stretched in either branch.

q a��/ acoustic

q a��/ optical

q�0 optical

( )a

( )b

( )c

( )d

q"0 acoustic

Fig. 11.9. Atomic displacements in the acoustic and optical modes of a dimerized
linear chain in the long-wavelength limit for q = π/a

In the limit K1 � K2,

ω−(q) = (2K2/M)1/2 |sin(qa/2)| [1 + O(K2/K1)] , v(q) ≈ u(q) ,
(11.2.43)

ω+(q) = (2K1/M)1/2[1 + O(K2/K1)] , v(q) ≈ −u(q) .

Comparison with the vibrational frequencies (11.2.9) shows that the acoustic
branch is just like for a monatomic linear chain with atoms of mass 2M
and springs of force constant K2. This can be interpreted as follows: each
strong spring of force constant K1 binds two atoms into an almost perfectly
rigid “molecule” of mass 2M , and the chain made up of such “molecules”
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produces acoustic vibrations. On the other hand, each vibration in the optical
branch has practically the same frequency, regardless of the wavelength. This
vibrational frequency is the frequency of internal oscillations of a “diatomic
molecule”, made up of two atoms of mass M and held together by a spring of
force constant K1.

In the more general case, when the dimerized chain is built up of two atoms
of unequal mass, the equations of motion for the two atoms are

M1ün = −K1 [un − vn] −K2 [un − vn−1] ,

M2v̈n = −K1 [vn − un] −K2 [vn − un+1] .
(11.2.44)

Seeking traveling-wave solutions, the amplitudes need to satisfy the homoge-
neous linear system of equations

(−ω2M1 + K1 + K2)u(q) − (K1 + K2e−iqa)v(q) = 0 ,

−(K1 + K2eiqa)u(q) + (−ω2M2 + K1 + K2)v(q) = 0 .
(11.2.45)

Nontrivial solutions exist when the determinant of coefficients is zero; the
frequencies of the vibrations are then written as

ω2
±(q) = 1

2ω
2
0

{
1 ±

√
1 − γ2 sin2

(
1
2qa

)}
, (11.2.46)

where
ω2

0 = (K1 + K2)
(

1
M1

+
1

M2

)
(11.2.47)

and
γ2 = 16

K1K2

(K1 + K2)2
M1M2

(M1 + M2)2
. (11.2.48)

In the K1 = K2 (M1 = M2) limit the results derived for diatomic (dimerized)
chains are recovered.

In the general case an acoustic branch starting off at zero frequency and an
optical branch starting off at some finite frequency are found. The vibrational
frequencies at the center and boundary of the Brillouin zone are

ω−(q) =

⎧⎪⎨
⎪⎩

1
4ω0γ|q|a at q → 0,

1√
2
ω0

√
1 −

√
1 − γ2 at q = ±π/a,

(11.2.49)

in the acoustic branch and

ω−(q) =

⎧⎪⎨
⎪⎩

ω0 at q = 0,

1√
2
ω0

√
1 +

√
1 − γ2 at q = ±π/a.

(11.2.50)

in the optical branch.
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11.2.4 Vibrations of a Simple Cubic Lattice

Having examined some one-dimensional examples, let us now turn to the vi-
brational spectrum of simple cubic crystals with a monatomic basis, employ-
ing the approximation that the only first- and second-neighbor interactions
contribute to the potential.

Lattice points will be specified by their coordinate indices, and for each
point (i, j, k) the six first neighbors (i ± 1, j, k), (i, j ± 1, k), (i, j, k ± 1) and
the twelve second neighbors (i±1, j±1, k), (i±1, j, k±1), (i, j±1, k±1) will
be taken into account. Calculations are highly simplified by the remark made
in connection with (11.1.19): in the harmonic approximation restoring forces
arise only for displacements along the line joining the atoms. For displace-
ments in the perpendicular direction the change in the length of the spring
is of second order, and can therefore be neglected. This way only two force
constants remain: one characterizes the change in energy due to the relative
displacement of nearest-neighbor atoms along the line joining them, and the
second is related to the change in energy due to the relative displacement of
second-neighbor atoms along the face diagonal:

Uharm = 1
2K1

∑
ijk

{
[ux(i, j, k) − ux(i + 1, j, k)]2

+ [uy(i, j, k) − uy(i, j + 1, k)]2 + [uz(i, j, k) − uz(i, j, k + 1)]2
}

+ 1
4K2

∑
ijk

{
[ux(i, j, k) − ux(i + 1, j + 1, k) (11.2.51)

+ uy(i, j, k) − uy(i + 1, j + 1, k)]2

+ [ux(i, j, k) − ux(i + 1, j − 1, k) − uy(i, j, k) + uy(i + 1, j − 1, k)]2

+ [ux(i, j, k) − ux(i + 1, j, k + 1) + uz(i, j, k) − uz(i + 1, j, k + 1)]2

+ [ux(i, j, k) − ux(i + 1, j, k − 1) − uz(i, j, k) + uz(i + 1, j, k − 1)]2

+ [uy(i, j, k) − uy(i, j + 1, k + 1) + uz(i, j, k) − uz(i, j + 1, k + 1)]2

+ [uy(i, j, k) − uy(i, j + 1, k − 1) − uz(i, j, k) + uz(i, j + 1, k − 1)]2
}
.

The force on the atom sitting at the lattice point labeled (i, j, k) is the deriva-
tive of the potential:
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Fx(i, j, k) = − ∂Uharm

∂ux(i, j, k)
= K1 [2ux(i, j, k) − ux(i + 1, j, k) − ux(i− 1, j, k)]

+ 1
2K2

[
2ux(i, j, k) − ux(i + 1, j + 1, k) − ux(i− 1, j − 1, k)

+ 2ux(i, j, k) − ux(i + 1, j − 1, k) − ux(i− 1, j + 1, k)

+ 2ux(i, j, k) − ux(i + 1, j, k + 1) − ux(i− 1, j, k − 1)

+ 2ux(i, j, k) − ux(i + 1, j, k − 1) − ux(i− 1, j, k + 1)

− uy(i + 1, j + 1, k) − uy(i− 1, j − 1, k)

+ uy(i + 1, j − 1, k) + uy(i− 1, j + 1, k) (11.2.52)
− uz(i + 1, j, k + 1) − uz(i− 1, j, k − 1)

+ uz(i + 1, j, k − 1) + uz(i− 1, j, k + 1)
]
.

The y- and z-components of the force are given by similar expressions. Substi-
tuting them into the equation of motion, and seeking traveling-wave solutions,

uα(R, t) = uα(q) exp{i(qxRx + qyRy + qzRz − ωt)} . (11.2.53)

Using the Born–von Kármán boundary conditions, the allowed values of
q are once again expressed in terms of the primitive vectors of the reciprocal
lattice as

q =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3 , (11.2.54)

where n1, n2, and n3 are integers. Two vectors q that differ by a reciprocal-
lattice vector describe the same atomic displacement, consequently there are
only N = N1 N2 N3 physically different vectors q. Here, too, it is useful to
choose them inside the Brillouin zone.

The coefficients uα(q) are determined by the homogeneous linear system
of equations ∑

β

Dαβ(q)uβ(q) = ω2uα(q) , (11.2.55)

where

Dxx(q) =
2K1

M
(1 − cos qxa) +

2K2

M
(2 − cos qxa cos qya− cos qxa cos qza) ,

Dyy(q) =
2K1

M
(1 − cos qya) +

2K2

M
(2 − cos qya cos qxa− cos qya cos qza) ,

Dzz(q) =
2K1

M
(1 − cos qza) +

2K2

M
(2 − cos qza cos qxa− cos qza cos qya) ,

Dxy(q) = Dyx(q) =
2K2

M
sin qxa sin qya ,

Dxz(q) = Dzx(q) =
2K2

M
sin qxa sin qza , (11.2.56)

Dyz(q) = Dzy(q) =
2K2

M
sin qya sin qza .
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Note that (11.2.55) can also be obtained by Fourier transforming (11.1.29),
provided Dαβ(q) is defined as

Dαβ(q) =
1
M

∑
m �=n

(
1 − e−iq·(Rm−Rn)

)
Φ̃αβ(m− n) (11.2.57)

when the basis consists of a single atom. The comparison of (11.1.13) and
(11.2.51) immediately yields Φ̃αβ(m−n), and then the force constants can be
obtained directly from the previous equation.

To determine the eigenfrequencies, the eigenvalues of the 3 × 3 matrix
D(q) have to be calculated. This requires the solution of a cubic equation for
ω2, which gives three different frequencies. In special cases, in high-symmetry
points of the Brillouin zone the eigenvalues may nevertheless become degen-
erate.

The Brillouin zone of the simple cubic crystal is shown in Fig. 7.2. For
vibrations propagating along the direction [100] and characterized by the wave
vector Δ = (q, 0, 0) (that lies along the line between Γ and X) the matrix
D(q) is diagonal:

D(q, 0, 0) =

⎛
⎝A 0 0

0 B 0
0 0 B

⎞
⎠ , (11.2.58)

where

A =
2K1 + 4K2

M
(1 − cos qa) =

4K1 + 8K2

M
sin2

(
1
2qa

)
,

B =
2K2

M
(1 − cos qa) =

4K2

M
sin2

(
1
2qa

)
.

(11.2.59)

It is immediately recognized that the crystal has a nondegenerate and a doubly
degenerate eigenfrequency:

ω1 =

√
4K1 + 8K2

M

∣∣sin ( 1
2qa

)∣∣ , ω2,3 =

√
4K2

M

∣∣sin ( 1
2qa

)∣∣ . (11.2.60)

In the harmonic approximation the amplitude of the vibrations can be arbi-
trarily large, only their directions are determined by the eigenvectors of the
matrix D(q). The eigenvectors for the above eigenfrequencies are

e(1) =

⎛
⎝1

0
0

⎞
⎠ , e(2) =

⎛
⎝0

1
0

⎞
⎠ , e(3) =

⎛
⎝0

0
1

⎞
⎠ . (11.2.61)

The first solution describes atoms moving in the propagation direction of the
wave; the vibration is longitudinal in this case. For the two other solutions
atomic displacements are perpendicular to the propagation direction; these
vibrations are therefore transverse. Note that the condition for the existence
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of transverse waves is that K2 be finite – that is, in a simple cubic crystal
force constants should be nonzero not only along the direction of propagation
or perpendicular to it but also in the diagonal direction.

The propagation velocities for the two waves are

cL = a

(
K1 + 2K2

M

)1/2

, cT = a

(
K2

M

)1/2

. (11.2.62)

The matrix is diagonal for the points Z = (π/a, q, 0) along the line between
X and M in Fig. 7.2, too:

D(π/a, q, 0) =

⎛
⎝A 0 0

0 B 0
0 0 C

⎞
⎠ , (11.2.63)

where

A =
4K1

M
+

2K2

M
(3 + cos qa) =

4K1 + 8K2

M
− 4K2

M
sin2

(
1
2qa

)
,

B =
2K1

M
(1 − cos qa) +

4K2

M
=

4K2

M
+

4K1

M
sin2

(
1
2qa

)
, (11.2.64)

C =
2K2

M
(3 − cos qa) =

4K2

M
+

4K2

M
sin2

(
1
2qa

)
.

The eigenvectors are the same as those given in (11.2.61), and the eigenfre-
quencies are given by the square root of A, B, and C. The vibration char-
acterized by the eigenvector e(3) is transverse, while in the two other cases
the eigenvector e is neither longitudinal nor transverse. This clearly indicates
that in the general case one cannot speak of purely longitudinal and purely
transverse oscillations.

The matrix is no longer diagonal for the points Σ = (q, q, 0) along the line
between M and X :

D(q, q, 0) =

⎛
⎝A B 0

B A 0
0 0 C

⎞
⎠ , (11.2.65)

where

A =
2K1 + 2K2

M
(1 − cos qa) +

2K2

M
(1 − cos2 qa)

=
4K1 + 4K2

M
sin2

(
1
2qa

)
+

2K2

M
sin2 qa ,

B =
2K2

M
sin2 qa , (11.2.66)

C =
4K2

M
(1 − cos qa) =

8K2

M
sin2

(
1
2qa

)
.

It is an elementary exercise to find the eigenvectors of the matrix:
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e(1) =
1√
2

⎛
⎝1

1
0

⎞
⎠ , e(2) =

1√
2

⎛
⎝ 1
−1
0

⎞
⎠ , e(3) =

⎛
⎝0

0
1

⎞
⎠ . (11.2.67)

The corresponding eigenfrequencies are

ω1 =
√
A + B =

√
4K1 + 4K2

M
sin2

(
1
2qa

)
+

4K2

M
sin2 qa ,

ω2 =
√
A−B =

√
4K1 + 4K2

M

∣∣sin ( 1
2qa

)∣∣ , (11.2.68)

ω3 =
√
C =

√
8K2

M

∣∣sin ( 1
2qa

)∣∣ .
The highest-frequency vibration (given by the first solution) is longitudinal;
the two others are transverse.

Finally, for vibrations propagating along the direction [111] and charac-
terized by the wave vectors Λ = (q, q, q) the matrix D(q) is of the form

D(q, q, q) =

⎛
⎝A B B
B A B
B B A

⎞
⎠ , (11.2.69)

where

A =
2K1

M
(1 − cos qa) +

4K2

M
(1 − cos2 qa) =

4K1

M
sin2

(
1
2qa

)
+

4K2

M
sin2 qa ,

B =
2K2

M
(1 − cos2 qa) =

2K2

M
sin2 qa . (11.2.70)

This matrix is also straightforward to diagonalize. The eigenvectors are

e(1) =
1√
3

⎛
⎝1

1
1

⎞
⎠ , e(2) =

1√
2

⎛
⎝ 1
−1
0

⎞
⎠ , e(3) =

1√
6

⎛
⎝ 1

1
−2

⎞
⎠ , (11.2.71)

and the corresponding eigenfrequencies are

ω1 =
√
A + 2B =

√
4K1

M
sin2

(
1
2qa

)
+

8K2

M
sin2 qa ,

ω2,3 =
√
A−B =

√
4K1

M
sin2

(
1
2qa

)
+

2K2

M
sin2 qa .

(11.2.72)

Once again, a longitudinal and two degenerate transverse vibrations are found.
Figure 11.10 shows the dispersion relations for the lattice vibrations along the
four characteristic directions of the Brillouin zone discussed above.

In this crystal structure three acoustic branches are observed; they start
from zero frequency at q = 0. For wave vectors q that are along directions of
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Fig. 11.10. Dispersion relations for the lattice vibrations along the four charac-
teristic directions of the Brillouin zone in a simple cubic crystal with a monatomic
basis

sufficiently high symmetry, atoms oscillate in the direction of wave propaga-
tion in one branch and in perpendicular directions in the two others. Starting
with these excitation branches and continuing them in directions of lower
symmetry, one can generally speak of longitudinal or transverse vibrations,
although it is not strictly true any more that one eigenvector is parallel and
the two others are perpendicular to the propagation direction. The frequency
tends to be higher for longitudinal vibrations than for transverse ones. The fre-
quencies of the two transverse vibrations are usually unequal, but degeneracy
may occur in directions of high symmetry.

When only first and second neighbors are assumed to interact via cen-
tral forces, the vibrational spectra for face- and body-centered cubic lattices
with a monatomic basis can be calculated along the same lines. The obtained
spectra are very similar to the above: they contain three acoustic branches;
along directions of sufficiently high symmetry one of them corresponds to lon-
gitudinal and two to transverse vibrations. This is in perfect agreement with
experimental observations. Figure 11.11 shows the calculated and measured
vibrational frequencies in some characteristic directions of the Brillouin zone
for a face-centered cubic gold crystal. Measurements were made using neutron
scattering techniques.

11.3 The General Description of Lattice Vibrations

In the foregoing we have seen that only longitudinal acoustic vibrations are
possible in a linear monatomic chain. In cubic lattices with one atom per prim-
itive cell three acoustic vibrations are possible; in directions of high symmetry
one of them is longitudinal (atoms oscillate in the propagation direction) and
two are transverse (atoms oscillate in a perpendicular direction). In addition
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Fig. 11.11. Room-temperature dispersion relation of lattice vibrations for gold in
the principal symmetry directions. The reduced wave vector ζ = aq/2π. The solid
curves were obtained from model calculations with several fitting parameters [J. W.
Lynn et al., Phys. Rev. B 8, 3493 (1973)]

to acoustic vibrations, optical vibrations appear in chains with two atoms per
primitive cell. These are of finite frequency even in the long-wavelength limit.
Below we shall examine the most general case when the three-dimensional
crystal contains p atoms per primitive cell.

11.3.1 The Dynamical Matrix and its Eigenvalues

The classical equations of motions were already given in (11.1.28). Just like
in the simple examples, their solutions are sought in the form of an expansion
in traveling waves – a Fourier series. Since the masses of the p atoms in the
primitive cell are not necessarily identical, the explicit separation of a mass-
dependent factor proves useful:

uα(m,μ, t) =
1√

NMμ

1
2π

∫
dω

∑
q

uμ,α(q)ei(q·Rm−ωt) . (11.3.1)

Substituting this form of the displacement into the equation of motion
(11.1.28),

ω2uμ,α(q) =
∑
ν,β

Dμν
αβ(q)uν,β(q) , (11.3.2)

where

Dμν
αβ(q) =

1√
MμMν

∑
n

Φμναβ(m− n)e−iq·(Rm−Rn) . (11.3.3)
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Owing to the translational symmetry of the crystal, Dμν
αβ(q) does not depend

on the particular choice of the lattice point Rn, so we shall use the equivalent
expression

Dμν
αβ(q) =

1√
MμMν

∑
m

Φμναβ(m)e−iq·Rm . (11.3.4)

This quantity – the Fourier transform of the force constants weighted by the
masses – is called the dynamical matrix. The system of equations (11.3.2) has
nontrivial solutions when

det
(
Dμν
αβ(q) − ω2δαβδμν

)
= 0 . (11.3.5)

It is important to note that the Fourier coefficients associated with dif-
ferent wave numbers do not mix in this general case, either: for each wave
vector q only the 3p components – which correspond to the p atoms per prim-
itive cell and the three spatial directions – are mixed. Because of this drastic
simplification, the determination of vibrational frequencies is now relatively
easy. By arranging the quantities Dμν

αβ(q) into a 3p× 3p matrix in the space
spanned by the pairs (α, μ) and (β, ν), the previous equation turns out to be
the eigenvalue equation of the matrix. We have already encountered a special
case, when discussing simple cubic crystals. Consequently, 3p solutions are
possible for each q. We shall now demonstrate that all of them lead to real
and positive frequencies.

First we shall show that the dynamical matrix is Hermitian. Substituting
the relation (11.1.5) for Φμναβ(m,n) into the defining equation (11.3.4), we have

Dμν
αβ(q) =

1√
MμMν

∑
m

Φνμβα(−m)e−iq·Rm = Dνμ
βα(−q) . (11.3.6)

Since we started with a real potential, the complex phases in the elements of
the dynamical matrix must come from the Fourier transform, so

Dμν
αβ(q) = Dμν

αβ
∗(−q) . (11.3.7)

Comparison of the two last equations gives

Dμν
αβ(q) = Dνμ

βα
∗(q) . (11.3.8)

Strictly speaking, Hermiticity only implies that the 3p eigenvalues of the dy-
namical matrix are all real. In reality, the eigenvalues are not only real but
also nonnegative. The reason for this is that the potential is expanded around
a minimum, therefore the matrix of force constants is positive definite. This
feature is not lost during Fourier transformation, and so the same applies to
the dynamical matrix.

Using the notation ω2
λ(q) (λ = 1, 2, . . . , 3p) for the eigenvalues, the eigen-

value equations for the dynamical matrix can also be written in terms of the
components of the eigenvectors e

(λ)
μ,α of the λth eigenvalue:
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ω2
λ(q)e(λ)

μ,α(q) =
∑
ν,β

Dμν
αβ(q)e(λ)

ν,β(q) , (11.3.9)

or, alternatively,

∑
ν,β

[
Dμν
αβ(q) − ω2

λ(q)δαβδμν
]
e
(λ)
ν,β(q) = 0 . (11.3.10)

This formula is equivalent to (11.3.5).
When eigenvectors are normalized,∑

α,μ

e(λ)
μ,α

∗
(q)e(λ′)

μ,α (q) = δλλ′ (11.3.11)

follows from their orthogonality, and∑
λ

e(λ)
μ,α

∗
(q)e(λ)

ν,β(q) = δαβδμν (11.3.12)

from their completeness.

11.3.2 Normal Coordinates and Normal Modes

Because of the linearity of the equations of motion, the amplitude of the
vibration can be chosen at will, and displacements associated with vibrations
of different wave numbers can be freely superposed. By expanding atomic
displacements into Fourier series in the spatial variables only, the Fourier
component uμ,α(q, t) can now be written as the linear combination of the
appropriate components of the unit vectors specifying polarization – i.e., the
direction of the displacement of the μth atom relative to the propagation
direction determined by q. (Hence the name polarization vector for e

(λ)
μ (q).)

The time dependence is absorbed into the amplitude Qλ(q, t):

uμ,α(q, t) =
∑
λ

e(λ)
μ,α(q)Qλ(q, t) . (11.3.13)

The quantity Qλ(q, t) is the normal coordinate of the vibrational mode. The
instantaneous displacement of the atoms is then written as

uα(m,μ, t) =
1√

NMμ

∑
q,λ

e(λ)
μ,α(q)Qλ(q, t)eiq·Rm . (11.3.14)

Since normal coordinates are complex, the number of possible values for q
being N and that of the label λ being 3p apparently implies that the motion
of atoms is specified by 6pN free parameters. However, as displacements are
real, the normal coordinates associated with the wave vectors q and −q are
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each others’ complex conjugate. Therefore the number of independent normal
coordinates is only 3pN , as it should be.

To prove this, a particularly important consequence of the Hermiticity of
the dynamical matrix and the relation (11.3.7) is exploited, namely that the
same eigenvalues belong to q and −q:

ω2
λ(q) = ω2

λ(−q) . (11.3.15)

As demonstrated in Chapter 6, this can be regarded as the consequence of
the invariance of the equations of motion under time reversal. Since atomic
displacements are real, the relation

u(λ)
μ,α(−q, t) = u(λ)

μ,α

∗
(q, t) (11.3.16)

must be satisfied, that is,

e(λ)
μ,α(−q)Qλ(−q, t) = e(λ)

μ,α

∗
(q)Q∗

λ(q, t) . (11.3.17)

Without loss of generality the relation

e(λ)
μ,α

∗
(q) = e(λ)

μ,α(−q) (11.3.18)

may be imposed, in which case

Q∗
λ(q) = Qλ(−q) (11.3.19)

is indeed satisfied. Note that for crystals with a monatomic basis the vectors
e(λ)(q) can be chosen real.

For future convenience it is useful to represent the decomposition into
independent vibrations in yet another way. The classical form (11.1.21) of the
potential energy in the harmonic approximation,

Uharm = 1
2

∑
m,μ,α
n,ν,β

Φμναβ(m− n)uα(m,μ)uβ(n, ν) (11.3.20)

is first written in terms of the normal coordinates. Substituting uα(m,μ) from
(11.3.14) into this formula gives

Uharm = 1
2

∑
m,μ,α
n,ν,β

Φμναβ(m− n)
1√

NMμ

∑
q′,λ′

e(λ′)
μ,α (q′)Qλ′(q′)eiq′·Rm

× 1√
NMν

∑
q,λ

e
(λ)
ν,β(q)Qλ(q)eiq·Rn .

(11.3.21)

To perform the summation over the lattice points, the expressions obtained in
(11.3.4) for the dynamical matrix have to be exploited. As Φμναβ depends only
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on the difference of the lattice vectors, only the terms q′ = −q contribute,
and so

Uharm = 1
2

∑
q,λ,λ′

∑
μ,α
ν,β

Dμν
αβ(q)e(λ′)

μ,α (−q)Qλ′(−q)e(λ)
ν,β(q)Qλ(q) . (11.3.22)

Making use of the eigenvalue equation (11.3.9),

Uharm = 1
2

∑
q,λ,λ′

∑
μ,α

ω2
λ(q)e(λ′)

μ,α (−q)Qλ′(−q)e(λ)
μ,α(q)Qλ(q) . (11.3.23)

Since displacements are real, and eigenvectors are orthogonal, as expressed in
(11.3.17) and (11.3.11), we have

Uharm = 1
2

∑
q,λ

ω2
λ(q)Qλ(−q)Qλ(q) = 1

2

∑
q,λ

ω2
λ(q)Q∗

λ(q)Qλ(q) . (11.3.24)

The same argument can be used for the expression of the kinetic energy,
whereby the formula

Tkin =
∑
m,μ,α

1
2Mμu̇

2
α(m,μ) (11.3.25)

can be rewritten as

Tkin = 1
2

∑
q,λ

Q̇λ(−q)Q̇λ(q) = 1
2

∑
q,λ

Q̇∗
λ(q)Q̇λ(q) . (11.3.26)

Once the Lagrangian L = Tkin −Uharm is known, the equations of motion for
the normal coordinates are readily established from Lagrange’s equation2

∂

∂t

∂L
∂Q̇λ(−q)

− ∂L
∂Qλ(−q)

= 0 . (11.3.27)

Then
Q̈λ(q) = −ω2

λ(q)Qλ(q) (11.3.28)

for each normal coordinate – that is, using normal coordinates, the vibrations
of the system are automatically separated into those of independent harmonic
oscillators. These are called the normal modes of vibration. Since λ can take
3p different values in (11.3.28), and the number of possible values for q is
N , the three-dimensional coupled vibrations of the crystal (made up of pN
atoms) can be described with 3pN independent oscillators.

To prepare the quantum mechanical discussion of the next chapter, it
is useful to write down the classical Hamiltonian using normal coordinates.
2 More precisely: Lagrange’s equation of the second kind. Since they are of the

same form as Euler’s equation in variational calculus, the name Euler–Lagrange
equation is also used.
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Following the steps of the Hamiltonian formulation in classical mechanics, we
first introduce the canonical conjugate to the normal coordinate Qλ(q), which
is the derivative of the Lagrangian with respect to Q̇λ(q):

Pλ (q) =
∂L

∂Q̇λ(q)
= Q̇∗

λ(q) , (11.3.29)

and then the Hamiltonian

Hharm =
∑
q,λ

Pλ (q)Q̇λ(q) − L

= 1
2

∑
q,λ

{
P ∗
λ (q)Pλ (q) + ω2

λ(q)Q∗
λ(q)Qλ(q)

}
= 1

2

∑
q,λ

{|Pλ(q)|2 + ω2
λ(q)|Qλ(q)|2} .

(11.3.30)

The full Hamiltonian is the sum of the Hamiltonians for individual normal
modes. The equations of motion obtained in the Hamiltonian formulation,

Q̇λ(q) =
∂H

∂Pλ(q)
= P ∗

λ (q) ,

Ṗλ(q) = − ∂H
∂Qλ(q)

= −ω2
λ(q)Q∗

λ(q)
(11.3.31)

are equivalent to (11.3.28).

11.3.3 Acoustic and Optical Vibrations

In the previous subsections we saw that if the basis contains p atoms, there
exist 3p vibrational frequencies for each vector q of the Brillouin zone. In the
one-dimensional case we also saw that some of them correspond to acoustic
vibrations, while others to optical ones. As a generalization we shall demon-
strate that among the branches formed by the 3p vibrational frequencies three
can always be called acoustic, since they start from ω = 0 at q = 0, and the
others optical, as their frequency does not vanish at q = 0.

Acoustic Vibrations

A branch of vibrations is called acoustic if it has a vanishing frequency at
q = 0, the center of the Brillouin zone. We shall now prove that there always
exist three such branches. When the eigenvalue equation (11.3.9) is examined
at q = 0, and the value of the dynamical matrix at q = 0 is taken from
(11.3.4), we have

ω2
λ(0)e(λ)

μ,α(0) =
∑
ν,β

Dμν
αβ(0)e(λ)

ν,β(0) =
∑
m,ν,β

1√
MμMν

Φμναβ(m)e(λ)
ν,β(0) .

(11.3.32)
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If the quantity e
(λ)
ν,β(0)/

√
Mν is constant and independent of ν for the three

Cartesian coordinates β, that is

e
(λ)
ν,β = C

√
Mνe

(λ)
β , (11.3.33)

where the normalization factor

C =

(
p∑

μ=1

Mμ

)−1/2

(11.3.34)

ensures that the orthogonality relation of the polarization vectors is satisfied
by vectors e(λ) of unit length, then (11.1.8) implies the vanishing of the right-
hand side of (11.3.32), so the frequency on the left-hand side must also be
zero.

In vector form this condition reads

e(λ)
ν =

√
Mνe

(λ). (11.3.35)

Since three mutually perpendicular vectors can be chosen for the e(λ), there
are three solutions with vanishing frequency at q = 0. For such vibrations the
atomic displacements

uα(m,μ) =
1√

NMμ

e(λ)
μ,αQλ(0) =

1√
N

e(λ)
α Qλ(0) (11.3.36)

are independent of the label μ; in other words, all the atoms of the primitive
cell oscillate in phase, with equal vibrational amplitudes. Owing to continuity,
there are three similar vibrations for small values of q. Atoms in the primitive
cell vibrate almost in phase with almost equal amplitudes – just as in a sound
wave (long-wavelength elastic wave) propagating in a solid. The dispersion
relation of these vibrations give the three acoustic branches.

Optical Vibrations

In addition to the three acoustic branches, there are 3p−3 further vibrational
branches in which frequencies generally start at some finite value. These are
the branches of optical modes. To understand the character of such vibrations,
consider a crystal with a diatomic basis. It follows from (11.3.35) that for
vibrations of polarization λ in the acoustic branch

e
(λ)
1√
M1

=
e

(λ)
2√
M2

(11.3.37)

at the center of the Brillouin zone. Whichever optical branch with polarization
λ′ is chosen,

e
(λ)
1 · e(λ′)

1 + e
(λ)
2 · e(λ′)

2 = 0 (11.3.38)
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because of the orthogonality of eigenvectors. From this pair of equations

e
(λ)
1 ·

[
e

(λ′)
1 +

√
M2

M1
e

(λ′)
2

]
= 0 . (11.3.39)

This condition must hold for each of the three acoustic branches, consequently√
M1e

(λ′)
1 +

√
M2e

(λ′)
2 = 0 (11.3.40)

for each optical branch. Equation (11.3.14) permits us to set up a relation
between the polarization vector and the atomic displacements due to vibra-
tions of wave number q = 0. The above equation then implies that for the
displacements due to optical vibrations

M1u1(m, 1) + M2u2(m, 2) = 0 , (11.3.41)

that is, in long-wavelength optical vibrations atoms in the primitive cell move
in opposite directions in such a way that the center of mass remains stationary.
Therefore these vibrations may be regarded as internal oscillations of the
system of particles inside a primitive cell.

Among optical vibrations one may distinguish longitudinal and transverse
modes as well – at least in directions of high symmetry. Depending on the sym-
metry in question, frequencies may become degenerate. Figure 11.12 shows the
spectra of lattice vibrations in some characteristic directions of the Brillouin
zone for crystalline silicon, which contains two atoms per primitive cell in a
diamond structure.

Fig. 11.12. Dispersion relations in some characteristic directions of the Brillouin
zone for crystalline silicon, which contains two atoms per primitive cell. The solid line
is a calculated curve fitted to experimental data. [G. Dolling, in Inelastic Scattering
of Neutrons in Solids and Liquids, IAEA, Vienna, 1963, Vol. II., p. 37]
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Besides experimental results, theoretical calculations are also shown in the
figure. Assuming central forces, a relatively large number of force constants
have to be introduced among distant neighbors to ensure a good fit. The rea-
son for this is that approximating highly directional covalent bonds by springs
is difficult to justify. Another drawback of the picture of springs connecting
atoms is that the polarization of electron clouds due to the motion of ions
cannot be appropriately taken into account in calculations of the vibrational
spectrum. The proper treatment of such effects requires much more sophisti-
cated methods that cannot be discussed here.

11.4 Lattice Vibrations in the Long-Wavelength Limit

In the previous section we saw that in long-wavelength acoustic modes the
atoms in a primitive cell oscillate in phase and with equal amplitudes. The
displacement of the atoms in the mth primitive cell – characterized by the
lattice vector Rm – is independent of the label μ in the first approximation,
therefore the internal structure of the primitive cell (the basis) is irrelevant
from the viewpoint of vibrations. Moreover, the common displacement u(Rm)
varies little between adjacent cells. For this reason, a slowly varying continuous
function u(r) may be introduced, whose value in the lattice point Rm is
the displacement of the atoms of the primitive cell. This quantity specifies
the displacement with respect to the equilibrium position in an arbitrary
point r of the solid when atomic details are ignored – i.e., when matter is
considered to be continuous. In this approximation the solid can be regarded
as a continuous elastic medium characterized by a handful of elastic constants,
in which classical elastic waves may propagate. Below we shall examine the
relationship between these waves and atomic oscillations.

This approach cannot be applied to optical vibrations. Instead, a simple
relation will be established between the frequency of optical vibrations and
dielectric polarizability in ionic crystals.

11.4.1 Acoustic Vibrations as Elastic Waves

The starting point for our investigations into the long-wavelength limit of
acoustic vibrations is (11.1.10), a formula of general validity when interatomic
interactions are treated in the harmonic approximation. As atoms in a prim-
itive cell move together – i.e., u(m,μ) is essentially the same for all atoms
in the primitive cell at Rm –, and Φμναβ(m,n) depends only on the difference
of vectors Rm and Rn, the harmonic term can be written in a simple form,
similar to that in crystals with a monatomic basis:

Uharm = − 1
4

∑
m,n
α,β

[uα(m) − uα(n)]Φαβ(m− n) [uβ(m) − uβ(n)] , (11.4.1)
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where Φαβ(m−n) is an effective force constant between the primitive cells at
Rm and Rn.

If atomic displacements vary little over the range of the force constants
then the difference in the displacement of the atoms in the primitive cells at
Rm and Rn is well approximated by the first derivative of the continuous
displacement field u(r):

u(m) = u(n) + ((rm − rn) · ∇r) u(r)|r=Rn
. (11.4.2)

Using this expansion, the harmonic term of the interaction is

Uharm = 1
2

∑
n,α,β
σ,τ

(
∂

∂rσ
uα(r)

)
r=Rn

(
∂

∂rτ
uβ(r)

)
r=Rn

Eστ
αβ(Rn) , (11.4.3)

where

Eστ
αβ(Rn) = − 1

2

∑
m

[Rm − Rn]σΦαβ(m− n)[Rm − Rn]τ . (11.4.4)

In a homogeneous crystal this quantity is independent of the position vector
Rn. Since the function u(r) varies slowly, the above sum is well approximated
by the integral

Uharm =
1
2v

∑
στ
αβ

∫
dr

(
∂

∂rσ
uα(r)

)(
∂

∂rτ
uβ(r)

)
Eστ
αβ , (11.4.5)

where v is the volume of the primitive cell. This expression gives the energy
of the elastically deformed crystal in terms of a four-index tensor Eστ

αβ , whose
elements could be taken as the elastic constants. Due to some symmetry prop-
erties, Eστ

αβ does not have 81 different components even in the most general
case: the number of independent elastic constants is much smaller.

To prove this and to find the appropriate constants, we first make use of
the property that the antisymmetric combination

1
2

(
∂

∂rβ
uα − ∂

∂rα
uβ

)
(11.4.6)

corresponds to a rigid rotation of the solid, and so it gives a vanishing contri-
bution to the energy. Therefore only the symmetric combination

εαβ = 1
2

(
∂

∂rβ
uα +

∂

∂rα
uβ

)
(11.4.7)

may appear in the energy expression. Among the elements εαβ of the strain
tensor, diagonal ones (εxx, εyy, and εzz) are related to the relative change in
length along the coordinate axes, while off-diagonal elements describe shear
strains. Elastic energy is a homogeneous second-order expression of these
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quantities. Which combinations appear is determined by the symmetries of
the system, since the energy expression must be invariant under all symmetry
operations that take the system into itself. This requirement imposes severe
restrictions on the number of independent elastic constants.

As an example, consider a homogeneous and isotropic (therefore noncrys-
talline) material. In this case only those second-order expressions may appear
that are invariant under arbitrary rotations of the coordinate system. By its
definition, the strain tensor is symmetric: εαβ = εβα. Such a tensor has one
linear invariant, the sum of its diagonal elements (its trace):

I1 = εxx + εyy + εzz , (11.4.8)

which is equal to the relative variation of the volume. Besides I2
1 , there is

another (independent) quadratic invariant,

I2 = εxxεyy + εyyεzz + εzzεxx − 1
2

(
ε2
xy + ε2

yx + ε2
yz + ε2

zy + ε2
zx + ε2

xz

)
.

(11.4.9)
Using the combination I2

1 − 2I2 instead, only two parameters are needed to
write down the elastic energy in the isotropic case:

Uharm =
λ

2
[εxx + εyy + εzz]

2 (11.4.10)

+μ
[
ε2
xx + ε2

yy + ε2
zz + ε2

xy + ε2
yx + ε2

yz + ε2
zy + ε2

zx + ε2
xz

]
where λ and μ are the Lamé constants :3 μ is the usual shear modulus G, while
λ is related to the compressibility κ and the bulk modulus K via

1
κ

= K = λ +
2
3
μ . (11.4.11)

In elasticity, stresses generated by elastic strains are characterized by the
symmetric stress tensor σαβ , and the force per unit volume of the deformed
body is given by the derivative

Fα =
∑
β

∂σαβ
∂rβ

. (11.4.12)

The vibrations of an elastic medium of density ρ are therefore governed by
the equation of motion

ρ üα =
∑
β

∂σαβ
∂rβ

. (11.4.13)

To put this to use, another relation is needed: a generalization of Hooke’s
law4 that establishes the connection between the stress tensor and the strain
tensor. This can be written as
3

G. Lamé, 1852.
4

R. Hooke, 1676.
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σαβ = δαβλ [εxx + εyy + εzz ] + 2μ εαβ , (11.4.14)

derived from the relation
σαβ =

∂Uharm

∂εαβ
. (11.4.15)

We are now in the position to determine the propagation velocity of waves
in an isotropic elastic medium. Writing out the equation of motion for the
component ux in full detail,

ρ üx =
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= λ
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ 2μ

∂2ux
∂x2

+ μ

(
∂2ux
∂y2

+
∂2ux
∂z2

+
∂2uy
∂x∂y

+
∂2uz
∂x∂z

)

= (λ + μ)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ μ∇2ux .

(11.4.16)

Similar equations apply to other components. The three components can be
written concisely in the vector form

ρ ü = (λ + μ) graddiv u + μ∇2u . (11.4.17)

Solutions that are periodic in space and time are sought in the form

u(r) = e ei(q·r−ωt) , (11.4.18)

which leads to a relationship between e, q and ω:

ρω2e = (λ + μ) q(q · e) + μ q2e . (11.4.19)

Decomposing the vector e that represents the displacement amplitude into
components parallel to the vector q specifying the direction of propagation
(longitudinal wave) and perpendicular to it (transverse wave),

ρω2eL = (λ + μ) q2eL + μ q2eL ,

ρ ω2eT = μ q2eT .
(11.4.20)

It is readily seen that the dispersion relation is linear for longitudinal (com-
pressional) and transverse (torsional) waves alike:

ωL = cL q , ωT = cT q , (11.4.21)

however, their propagation velocities are different:

cL =

√
λ + 2μ

ρ
, cT =

√
μ

ρ
. (11.4.22)
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Table 11.1. Propagation velocities of long-wavelength longitudinal and transverse
waves in some metals at room temperature

Element cL
(m s−1)

cT
(m s−1)

Element cL
(m s−1)

cT
(m s−1)

Ag 3640 1690 Mg 5700 3170
Al 6360 3130 Ni 5810 3080
Au 3280 1190 Pb 2050 710
Be 12720 8330 Pt 4080 1690
Cr 6850 3980 Sn 3300 1650
Cu 4760 2300 Ti 6260 2920
Fe 5920 3220 V 6000 2780

In crystals, the velocity of longitudinal waves (sound) is usually around sev-
eral thousand m/s. Transverse waves usually propagate more slowly, roughly
at half their speed, mostly in the range 700 to 3500 m/s. Values measured in
some metals are listed in Table 11.1.

A vibration may be considered of “long wavelength” if its wavelength is
at least one order of magnitude larger than the interatomic spacing. On such
length scales solids can be described to a good approximation as elastic con-
tinua. The discrete character of the lattice becomes important only for vi-
brations of shorter wavelengths. In terms of frequencies, the interpretation of
acoustic lattice vibrations as elastic waves is justified for frequencies up to the
order of 1011 Hz.

11.4.2 Elastic Constants of Crystalline Materials

The model of elastic continua may also be applied to the discussion of the
elastic properties of crystals. However, instead of (11.4.14) – Hooke’s law, es-
tablishing a linear relationship between stress and strain for isotropic systems
– an even more general relationship is required between the stress tensor and
the strain tensor:

σαβ =
∑
γδ

Cαβ,γδεγδ . (11.4.23)

Instead of (11.4.5), the elastic energy is now expressed as

Uharm = 1
2

∑
αβγδ

εαβCαβ,γδεγδ . (11.4.24)

Elastic properties are thus characterized by a four-index tensor. However,
since both the stress and strain tensors are symmetric,

Cαβ,γδ = Cβα,γδ = Cαβ,δγ = Cγδ,αβ . (11.4.25)
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Depending on the symmetries of the crystal, further relationships may exist
among the tensor elements.

Instead of the four-index elastic constants, the Voigt elastic constants5 are
used in the literature. These are obtained by using the notation

εxx = ε1 , εyy = ε2 , εzz = ε3 ,

2εyz = ε4 , 2εzx = ε5 , 2εxy = ε6

(11.4.26)

for the elements of the symmetrical strain tensor. Using these quantities, the
homogeneous quadratic expression for the elastic energy density reads

Uharm = 1
2

6∑
i,j=1

cijεiεj , (11.4.27)

where the coefficients cij are the Voigt elastic constants. A similar notation is
introduced for the elements of the stress tensor:

σxx = σ1 , σyy = σ2 , σzz = σ3 ,

σyz = σ4 , σzx = σ5 , σxy = σ6 .
(11.4.28)

The generalized Hooke’s law, which establishes the relation between the stress
tensor and the strain tensor, now takes the form

σi =
∂Uharm

∂εi
=

6∑
j=1

cijεj . (11.4.29)

By its definition, the matrix of elastic constants is also symmetric, therefore
in the most general case the elastic properties of triclinic crystals are charac-
terized by 21 independent constants.

In crystals of higher symmetry the number of independent elastic constants
is lower. For example, when the z-axis is chosen as the twofold rotation axis
in the monoclinic crystal system, elastic energy must be invariant under the
transformation x → −x, y → −y, z → z. In such rotations ε4 and ε5 change
sign but the four other elements of the strain tensor do not. Since the elastic
energy has to remain invariant,

c14 = c24 = c34 = c15 = c25 = c35 = c46 = c56 = 0 . (11.4.30)

Therefore in monoclinic crystals there are 13 independent elastic constants.
In the orthorhombic crystal system elastic energy must be invariant under

180◦ rotations around each of the three axes. This requires

c16 = c26 = c36 = c45 = 0 , (11.4.31)

so elastic behavior is characterized by 9 elastic constants.
5

W. Voigt, 1910.
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In tetragonal crystals rotation through 90◦ around the z-axis appears as
a new symmetry. Invariance of the elastic energy under the transformation
x → y, y → −x, z → z requires that

c11 = c22 , c13 = c23 , c44 = c55 . (11.4.32)

This reduces the number of independent elastic constants to 6. The expression
for the elastic energy is then

Uharm = 1
2 c11

[
ε2
xx + ε2

yy

]
+ 1

2c33ε
2
zz + c12εxxεyy

+ c13 [εxxεzz + εyyεzz] + 2c44
[
ε2
yz + ε2

zx

]
+ 2c66ε2

xy .
(11.4.33)

In cubic crystals rotations around the x- and y-axes through 90◦ (x → x,
y → z, z → −y, and y → y, x → z, z → −x) are also symmetries. These
imply further restrictions:

c33 = c11 , c13 = c12 , c66 = c44 . (11.4.34)

In terms of the three remaining elastic constants,

Uharm = 1
2c11

[
ε2
xx + ε2

yy + ε2
zz

]
+ c12 [εxxεyy + εxxεzz + εyyεzz]

+ 2c44
[
ε2
xy + ε2

yz + ε2
zx

]
.

(11.4.35)

It can be shown in much the same manner that the number of independent
elastic constants is 6 for the rhombohedral and 5 for the hexagonal crystal
system.

Further connections called Cauchy relations exist among the elastic con-
stants when interatomic forces are all central. For materials of cubic crystal
structure

c12 = c44 (11.4.36)

in this case. Elastic constants determined at room temperature are shown in
Table 11.2 for some materials with cubic crystal structure. Values measured
at low temperatures are somewhat higher but their deviation from the listed
ones does not exceed ten to twenty percent.

As the table shows, the Cauchy relation is almost perfectly satisfied in
ionic and covalent crystals, while significant deviations are observed in the
majority of metals. This indicates the importance of taking noncentral forces
into account in the theoretical determination of elastic constants.

It should be noted that instead of the Voigt constants elastic behavior is
often characterized by four elastic moduli – Young’s modulus or the tensile
modulus (also known as the modulus of elasticity) E, the bulk modulus or
compression modulus K (the inverse of the compressibility κ), Poisson’s ratio
ν related to lateral contraction, and the shear modulus or modulus of rigidity
G. The relationships among them and their connections to the Lamé and
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Table 11.2. Voigt elastic constants (in units of GPa) for some materials of cubic
crystal structure

Material c11 c12 c44 Material c11 c12 c44

Na 7.59 6.33 4.30 C 1079 124.5 578
K 3.69 3.18 1.90 Si 165.6 63.9 79.6
Rb 2.96 2.44 1.60 Ge 129 48.3 67.1
Cr 348 67 100.0 Pb 48.8 41.4 14.8
Mo 465 163 109 NaCl 49.47 12.88 12.87
W 523 203 160 KCl 40.69 7.11 6.31
Fe 230 135 117 CsCl 36.44 8.82 8.04
Ir 580 242 256 NaBr 39.7 10.01 9.98
Ni 247 153 122 GaAs 118.8 53.7 59.4
Pt 347 251 76.5 ZnS 104.6 65.3 46.1
Cu 169 122 75.3 Fe3O4 273 106 97.1
Ag 122 92 45.5 TiC 500 113 175
Au 191 162 42.2 MgO 297.1 95.4 156.1
Al 108 62 28.3 MgAl2O4 298 154 158

Voigt constants are presented in most textbooks on elasticity. For example,
in isotropic materials the elastic moduli can be simply expressed in terms of
the Lamé constants:

K = λ + 2
3μ, G = μ, ν =

λ

2(λ + μ)
, E =

μ(3λ + 2μ)
λ + μ

, (11.4.37)

or conversely, the Lamé constants can be given in terms of two independent
moduli, E and ν or K and ν as

λ =
νE

(1 + ν)(1 − 2ν)
= 3K

ν

1 + ν
,

μ =
E

2(1 + ν)
= 3K

1 − 2ν
2(1 + ν)

.

(11.4.38)

For cubic crystals

K = 1
3 (c11 + 2c12) , G = 1

2 (c11 − c12) , ν =
c12

c11 + c12
, (11.4.39)

and, depending on the direction relative to the crystallographic axes, Young’s
modulus is

E[100] =
(c11 − c12)(c11 + 2c12)

c11 + c12
,

E[110] =
4c44(c11 − c12)(c11 + 2c12)

2c11c44 + (c11 − c12)(c11 + 2c12)
, (11.4.40)

E[111] =
3c44(c11 + 2c12)
c11 + 2c12 + c44

.
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As we have already seen, only two independent elastic constants remain
in the isotropic case. In terms of these the tensor Cαβ,γδ is written as

Cαβ,γδ = λδαβδγδ + μ (δαγδβδ + δαδδβγ) . (11.4.41)

Using this expression in the elastic energy formula, and comparing it with
the corresponding expression for cubic crystals written in terms of the three
independent Voigt constants, the following relations are obtained:

λ = c12 , μ = c44 , (11.4.42)

and λ + 2μ = c11. This implies the relationship

s ≡ c11 − c12
2c44

= 1 (11.4.43)

for isotropic materials. Therefore deviations from isotropy may be charac-
terized by the quantity s. As the data in Table 11.2 clearly show, for the
majority of cubic crystals this dimensionless quantity is significantly different
from unity.

11.4.3 Elastic Waves in Cubic Crystals

Once the elastic properties are known, the propagation velocity of elastic
waves in the crystal can be determined. We shall demonstrate this for waves
propagating in directions of high symmetry in cubic crystals.

Starting with the equation

ρ üα =
∑
β

∂

∂rβ

∂Uharm

∂εαβ
, (11.4.44)

which is the consequence of (11.4.13) and (11.4.15), and using (11.4.35), the
expression for elastic energy in cubic crystals, the equation that governs the
propagation of elastic waves is written as

ρ
∂2ux
∂t2

= c11
∂2ux
∂x2

+ c44

(
∂2ux
∂y2

+
∂2ux
∂z2

)

+ (c12 + c44)
(

∂2uy
∂x∂y

+
∂2uz
∂x∂z

)
;

(11.4.45)

similar equations apply to the y- and z-components of the displacement. Ow-
ing to the anisotropy of crystals, the propagation velocity of elastic waves de-
pends on the crystallographic direction. For elastic waves propagating along
the direction [100] strain is a function of the x-coordinate alone, consequently

ρ
∂2ux
∂t2

= c11
∂2ux
∂x2

, ρ
∂2uy
∂t2

= c44
∂2uy
∂x2

, ρ
∂2uz
∂t2

= c44
∂2uz
∂x2

. (11.4.46)
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The propagation velocities for the longitudinal and two transverse waves of
wave vector q = (q, 0, 0) are immediately read off:

cL =
(
c11
ρ

)1/2

, cT =
(
c44
ρ

)1/2

. (11.4.47)

Note that this is the same result as for isotropic samples, provided Lamé
constants are expressed in terms of the Voigt elastic constants cij .

For longitudinal waves of wave vector q = (q, q, q)/
√

3 and propagation
direction [111] the displacement is

uL(r) =
1√
3

⎛
⎝u

u
u

⎞
⎠ ei(q·r−ωt) , (11.4.48)

while for the two transverse vibrations

uT1(r) =
1√
2

⎛
⎝ u
−u
0

⎞
⎠ ei(q·r−ωt),

uT2(r) =
1√
6

⎛
⎝ u

u
−2u

⎞
⎠ ei(q·r−ωt).

(11.4.49)

Substituting these into the equations of motion, the same velocity is found for
the two transverse branches, and a different one for the longitudinal:

cL =
(
c11 + 2c12 + 4c44

3ρ

)1/2

, cT =
(
c11 − c12 + c44

3ρ

)1/2

. (11.4.50)

Along the propagation direction [110] the longitudinal wave of wave vector
q = (q, q, 0)/

√
2 is written as

uL(r) =
1√
2

⎛
⎝u

u
0

⎞
⎠ ei(q·r−ωt), (11.4.51)

while its transverse counterparts as

uT1(r) =
1√
2

⎛
⎝ u
−u
0

⎞
⎠ ei(q·r−ωt), uT2(r) =

⎛
⎝0

0
u

⎞
⎠ ei(q·r−ωt). (11.4.52)

The propagation velocities are

cL =
(
c11 + c12 + 2c44

2ρ

)1/2

, cT1 =
(
c11 − c12

2ρ

)1/2

, cT2 =
(
c44
ρ

)1/2

.

(11.4.53)
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Along this propagation direction the velocity is different for each branch.
The observation made for acoustic vibrations in simple cubic crystals ap-

plies to elastic waves, too: vibrations that are longitudinal and transverse with
respect to the propagation direction exist only in some directions of sufficiently
high symmetry. In the general case u(r) is neither parallel nor perpendicular
to q.

11.4.4 Optical Vibrations in Ionic Crystals

In contrast to acoustic vibrations, where atoms of the primitive cell oscillate
in phase and with equal amplitudes in the long-wavelength limit, in opti-
cal vibrations atoms of the primitive cell oscillate completely out of phase
and their center of mass remains stationary. Both longitudinal and transverse
modes have finite frequencies, and they are different in general. In spite of
this expectation, the longitudinal and transverse optical vibrations in silicon,
shown in Fig. 11.12, are observed to be of the same frequency for q = 0. That
this is not accidental is confirmed by Fig. 11.13(a), where the same is observed
in the measured vibrational spectrum of diamond.
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Fig. 11.13. (a) Dispersion relations for the lattice vibrations of diamond in two
characteristic directions of the Brillouin zone [J. L. Warren et al., Phys. Rev. 158,
805 (1967)]. (b) The same for NaI [based on A. D. B. Woods et al., Phys. Rev. 131,
1025 (1963)]

Exploiting the symmetry properties of force constants it may be shown
that in a cubic crystal longitudinal and transverse optical vibrations must
indeed be of the same frequency at q = 0. However, when the same measure-
ments are performed in ionic crystals – results are shown in Fig. 11.13(b) and
listed in Table 11.3 –, the two kinds of optical vibrations are found to be of
unequal frequencies even in q = 0.
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Table 11.3. The frequency ν of optical vibrations (in units of 1012 Hz) at the center
of the Brillouin zone for some covalently bonded elements and ionically bonded
compounds that have two atoms per primitive cell

Element νLO = νTO Compound νLO νTO

C (diamond) 39.9 NaCl 7.91 4.92
Si 15.6 CsCl 4.95 2.97
Ge 9.0 GaAs 8.75 8.06

This indicates that, unlike in covalently bonded materials, the vibrational
spectrum in ionic crystals cannot be represented by the mass–spring model.
The underlying physical reason for the different behavior of ionic crystals
is that the longitudinal motion of the atoms – in contrast to their transverse
motion – gives rise to a periodically varying charge density, and through it to a
periodically varying polarization. This generates an additional restoring force
for longitudinal motions, and so such vibrations will be of higher frequency
than transverse ones.

Since in the long-wavelength limit the motion of atoms is practically iden-
tical in every primitive cell, it is sufficient to examine the equations of motion
in a single primitive cell. However, due account must be taken of the fact
that inside ionic crystals a screened local electric field Eeff acts on the atoms.
Denoting the displacement of the ion of charge e∗ (−e∗) and mass M+ (M−)
from its equilibrium position by u+ (u−), the equations of motion are

M+
d2u+

dt2
= −K (u+ − u−) + e∗Eeff ,

M−
d2u−
dt2

= −K (u− − u+) − e∗Eeff .

(11.4.54)

Combining these into a single equation for the relative displacement u =
u+ − u−:

M
d2u

dt2
= −Ku + e∗Eeff , (11.4.55)

where M = M+M−/(M+ + M−) is the reduced mass.
In simple cubic crystals the local field and the macroscopic field are related

by the Lorentz formula6

Eeff = E +
1

3ε0
P . (11.4.56)

The polarization P comes from two sources. Denoting the polarizability of
the medium due to the displacement of electrons by α, the local field induces
a polarization

6
H. A. Lorentz, 1880.
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P el =
N

V
αEeff (11.4.57)

in a sample of volume V made up of N primitive cells. In addition to electronic
polarization, an additional contribution arises from the displacement of ions,
and so

P =
N

V
(e∗u + αEeff) . (11.4.58)

Substituting (11.4.56) into this equation, the polarization is

P =
N

V

e∗u + αE

1 − (Nα/3V ε0)
. (11.4.59)

In the high-frequency limit ions are unable to follow the rapid variations of
the field, therefore they remain practically stationary, so

P =
N

V

αE

1 − (Nα/3V ε0)
. (11.4.60)

Comparison with the general relationship

P (ω) = ε(ω)E − ε0E = [εr(ω) − 1]ε0E (11.4.61)

between the polarization and the dielectric constant gives

Nα/V

1 − (Nα/3V ε0)
= [εr(∞) − 1]ε0 , (11.4.62)

which leads to a relation between the polarizability α and εr(∞) that is very
similar to the Clausius–Mossotti relation:7

N

3V
α =

εr(∞) − 1
εr(∞) + 2

ε0 . (11.4.63)

Substituting this into (11.4.59), the expression for polarizability,

P =
N

3V
e∗[εr(∞) + 2]u + [εr(∞) − 1]ε0E . (11.4.64)

Using this term in the Lorentz formula for the local field, and introducing the
notation

ω2
0 =

1
M

[
K − N

9V ε0
e∗2[εr(∞) + 2

]]
, (11.4.65)

the equation of motion (11.4.55) takes the form

M
d2u

dt2
= −Mω2

0u +
1
3
e∗
[
εr(∞) + 2

]
E . (11.4.66)

7
O.-F. Mossotti, 1850, and R. J. E. Clausius, 1879. When written in terms
of the index of refraction, n =

√
ε, it is known as the Lorentz–Lorenz equation

(H. A. Lorentz and L. V. Lorenz, 1880).
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In the static case the left-hand side of the equation vanishes. Substituting
the relation between the static displacement and the electric field into the
polarization formula (11.4.64), and making use of (11.4.61) at ω = 0,

εr(0) − εr(∞) =
N

9V Mω2
0ε0

e∗2[εr(∞) + 2
]2
, (11.4.67)

and therefore

M
d2u

dt2
= −Mω2

0u +
(
V Mω2

0ε0
N

)1/2 [
εr(0) − εr(∞)

]1/2
E . (11.4.68)

Changing the variable u to

s =

√
NM

V
u , (11.4.69)

the only remaining parameters in the equations of motion are the frequency
ω0 and the dielectric constant:

d2s

dt2
= −ω2

0s + ω0

√
ε0(εr(0) − εr(∞))E . (11.4.70)

In terms of the variable s the polarization reads

P = ω0

√
ε0(εr(0) − εr(∞))s + [εr(∞) − 1] ε0E . (11.4.71)

The quantity s is proportional to the displacement of ions. To decompose
it into components parallel (sLO) and perpendicular (sTO) to the wave vector
q – which specifies the propagation direction –, the conditions

q · sTO = 0 , q × sLO = 0 (11.4.72)

are exploited. Assuming wavelike spatial propagation with time-dependent
coefficients for the longitudinal and transverse components alike,

sLO = QLO(t)eLOeiq·Rm , sTO = QTO(t)eTOeiq·Rm . (11.4.73)

To solve the equation of motion, it should be noted that inside ionic crystals
the macroscopic field satisfies the Maxwell equations

curlE = 0 , div D = div(ε0E + P ) = 0 . (11.4.74)

Taking the curl of (11.4.70) gives

d2QTO

dt2
= −ω2

0 QTO (11.4.75)

for transverse vibrations; their frequency ωTO is seen to be equal to ω0.
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To write up the equation for the longitudinal component, an equation
derived from div D = 0 and (11.4.71) is used:

div E +
ω0

εr(∞)

√
εr(0) − εr(∞)

ε0
div s = 0 . (11.4.76)

The normal coordinates of longitudinal optical vibrations must therefore sat-
isfy

d2QLO

dt2
= −ω2

0

εr(0)
εr(∞)

QLO , (11.4.77)

while the frequencies of LO vibrations are given by

ωLO =
(

εr(0)
εr(∞)

)1/2

ωTO . (11.4.78)

This is the Lyddane–Sachs–Teller relation.8 As we have seen, the difference
between longitudinal and transverse optical frequencies is easily observed in
ionic crystals, and ωLO > ωTO is generally valid. The ratios calculated from
relative dielectric constants measured at low and high frequencies are usually
in good agreement with the ratios of the frequencies measured directly.

11.5 Localized Lattice Vibrations

It was mentioned in Chapter 9 in connection with the structure of real crystals
that even in samples of the highest purity there are always foreign atoms,
impurities. These obviously change the lattice dynamics, since both their mass
and interactions with the neighbors are different from those of other atoms.
Lattice vibrations are distorted around the impurity, hence their spectrum is
also modified. To understand how an impurity may influence the spectrum of
lattice vibrations, we shall discuss the simple case when a single atom of an
ideal crystal is replaced by an impurity.

The mathematical description becomes rather complicated as the impurity
breaks the translational symmetry of the crystal. Consequently, the states of
the system cannot be characterized by the wave vector, as it is no longer a
good quantum number. Nevertheless the frequency distribution of vibrational
states remains a meaningful quantity.

11.5.1 Vibrations in a Chain with an Impurity

Once again, we shall use the example of a one-dimensional chain to demon-
strate the method to account for the effects of an impurity. Consider a chain

8
R. H. Lyddane, R. G. Sachs, and E. P. Teller, 1941.
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made up of atoms of mass M , with the atom at site n = 0 replaced by one
of different mass (M0). For simplicity we shall assume that all force constants
remain the same around the impurity. Following the steps of the discussion
of monatomic linear chains, classical equations of motion are derived for the
atomic displacements un. If only nearest neighbors interact, (11.2.3)

Mün = −K [2un − un−1 − un+1] , (11.5.1)

continues to be valid everywhere except for n = 0, where

M0ü0 = −K [2u0 − u1 − u−1] (11.5.2)

because of the different mass of the atom. The two equations can be written
jointly as

Mün + K [2un − un−1 − un+1] = δn,0 (M −M0)ü0 . (11.5.3)

In spite of the impurity, vibrations are expected to propagate in the lattice;
un(t) is therefore Fourier transformed with respect to the time variable. The
obtained Fourier coefficient, un(ω) then satisfies the equation

−ω2Mun + K [2un − un+1 − un−1] = δn,0 ΔMω2u0 , (11.5.4)

where ΔM = M0 −M . Introducing the notation ω2
0 = 4K/M ,

−ω2un + 1
4ω

2
0 [2un − un+1 − un−1] = δn,0 (ΔM/M)ω2u0 . (11.5.5)

Apart from the immediate vicinity of the impurity, atomic displacements of
the form un = Aλn or un = Aλ−n are sought. It is easily shown that λ is
complex when ω < ω0, and so the vibrations of the chain are wavelike. On
the other hand, λ is real when ω > ω0; vibrational amplitudes then decrease
exponentially with the distance from the impurity, therefore only the impurity
and its vicinity participate in the vibration.

Although the Hamiltonian of the system cannot be written as a sum of
independent normal modes, un(ω) may be Fourier transformed with respect
to the spatial variable as well, leading to the new variable

u(q, ω) =
1√
N

∑
n

un(ω)e−iqna . (11.5.6)

By Fourier transforming the quantity Fn = δn,0 (ΔM/M)ω2u0(ω) on the
right-hand side of (11.5.5), the equation of motion becomes

−ω2u(q, ω) + 1
4ω

2
0

[
2 − e−iqa − eiqa

]
u(q, ω) = F (q) , (11.5.7)

which can be simplified to

−ω2u(q, ω) + ω2
0 sin2

(
1
2qa

)
u(q, ω) = F (q) , (11.5.8)
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where
F (q) =

1√
N

∑
n

Fne−iqna =
1√
N

ΔM

M
ω2u0(ω) . (11.5.9)

Neglecting the expression on the right-hand side, the solutions of the equa-
tion are the previously determined eigenfrequencies ω(q) = ω0 |sin(qa/2)| of
the vibrations in a regular lattice. In terms of these the equation governing
the vibrations of the lattice with an impurity reads[

ω2(q) − ω2
]
u(q, ω) = F (q) . (11.5.10)

Assuming that, owing to the impurity, each vibrational frequency is slightly
shifted compared to the pure crystal, the formal solution of the equation for
the vibrational amplitudes is

u(q, ω) =
F (q)

ω2(q) − ω2
. (11.5.11)

Fourier transforming this expression back into real space, and making use of
the formula derived for F (q),

un(ω) =
ΔM

M

1
N

∑
q

ω2u0(ω)eiqna

ω2(q) − ω2
. (11.5.12)

The solution is self-consistent if the left-hand side gives the same u0 for the
displacement of the impurity atom at n = 0 as what appears on the right-hand
side, in which case

ΔM

M

ω2

N

∑
q

1
ω2(q) − ω2

= 1 . (11.5.13)

The solutions to this equation give the eigenfrequencies of the allowed vibra-
tions of the chain with the impurity. To illustrate the equations graphically,
it is first rearranged as

f(ω2) ≡ ω2

N

∑
q

1
ω2(q) − ω2

=
(

ΔM

M

)−1

. (11.5.14)

The function f(ω2) of the left-hand side is plotted against ω2 in Fig. 11.14.
The vibrational frequencies in the chain with an impurity are the horizontal
coordinates (ω) of the intersection points of these curves with the horizontal
line at M/ΔM .

Since the left-hand side is discontinuous at each value ω2(q) that cor-
responds to an eigenfrequency of the ideal chain, between any two adjacent
eigenfrequencies there will be an intersection point, i.e., an allowed vibrational
frequency of the chain with an impurity. If the impurity atom is heavier than
the other atoms in the chain (ΔM > 0) then each vibrational frequency is
shifted slightly downward compared to the frequencies of the ideal chain, but
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Fig. 11.14. Graphical determination of the eigenfrequencies of a chain with an
impurity from the intersection points of f(ω2) with the horizontal line at M/ΔM

they cannot be lower than the next eigenfrequency. Although not visible in this
equation, the original one nevertheless implies that ω = 0 is also a solution,
and it corresponds to a uniform translation for a chain with an impurity, too.
Therefore vibrations fill – practically continuously – the same range as for a
pure crystal. If the impurity atom is lighter than the others (ΔM < 0) then the
frequency of each vibrational mode is shifted slightly upward, but they can-
not exceed that of the next eigenfrequency. The highest-frequency vibration is
an exception, which appears as a separate mode above the continuum. Since
ω > ω0 for this vibration, the vibrational amplitude exponentially decreases
with the distance from the impurity, as mentioned above. The vibration is
localized, only the light impurity atom and its small vicinity participates in
it with significant amplitudes. In diatomic chains such localized excitations
may appear between the acoustic and optical branches or above the optical
branch.

It is worth taking a closer look at the case when M0 > M and ΔM is
comparable to the mass of the atoms. As we have seen, no localized vibration
is possible in this case. Compared to the pure sample, vibrational frequencies
are shifted downward, however, this shift is not uniform. Going back to the
graphical solution of (11.5.14): if the right-hand side is of order unity, the
frequencies determined by the intersection points are shifted only slightly with
respect to the original ones at the low end of the spectrum, while at its high end
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they are shifted significantly, almost to the frequency just below. Therefore
somewhere around the middle of the spectrum frequencies are denser than
elsewhere. Every atom of the crystal participates in these vibrations, however
the displacement amplitude is much larger for the impurity than for distant
atoms. It looks as if the impurity were resonating, therefore such states are
called resonances.

11.5.2 Impurities in a Three-Dimensional Lattice

The previous method can now be generalized to three-dimensional lattices
in which one atom is substituted by another atom of different mass, and
thus force constants around the impurity are different from those in a regular
crystal. The classical equation of motion (11.1.28) is replaced by a system
of equations in which the mass Mm,μ of the μth atom in the mth primitive
cell depends on the cell index m as well, and owing to the breakdown of
translational symmetry force constants do not depend only on the separation
of lattice points any more:

Mm,μüα(m,μ, t) = −
∑
n,ν,β

Φμναβ(m,n)uβ(n, ν, t) . (11.5.15)

Fourier transformation with respect to time gives

ω2Mm,μuα(m,μ, ω) =
∑
n,ν,β

Φμναβ(m,n)uβ(n, ν, ω) . (11.5.16)

Rewriting this in the form∑
n,ν,β

[
ω2Mm,μδmnδμνδαβ − Φμναβ(m,n)

]
uβ(n, ν, ω) = 0 , (11.5.17)

the equation has nontrivial solutions if the matrix

Lm,μ,α;n,ν,β(ω2) = ω2Mm,μδmnδμνδαβ − Φμναβ(m,n) (11.5.18)

made up of the coefficients of uβ(n, ν, ω) has a vanishing determinant. In
lattices without impurities, where translational invariance may be exploited,
after a Fourier transformation with respect to the lattice points only a 3p×3p
matrix needs to be diagonalized, since the equations for the Fourier coefficients
of different qs are not coupled. In contrast, when the crystal has an impurity,
one has to deal with a 3pN×3pN matrix. Nevertheless similar statements can
be made about the main features of the excitations as in the one-dimensional
case.

For notational simplicity, we shall assume that the basis of the crystal is
monatomic and that the impurity atom of mass M0 sits at the lattice point
Rm = 0; moreover, we shall again neglect any modifications in the force
constants. The equation of motion for the impurity atom is then
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M0üα(0) = −
∑
n,β

Φαβ(n)uβ(n) . (11.5.19)

Using the notation ΔM = M0 −M , the equation of motion can be rewritten
as

Müα(0) +
∑
n,β

Φαβ(n)uβ(n) + ΔMüα(0) = 0 . (11.5.20)

Together with the equations of motion for other atoms, this can be written in
the common form

Müα(m) +
∑
n,β

Φαβ(m− n)uβ(n) + δm0ΔMüα(0) = 0 , (11.5.21)

or, using the Fourier transforms with respect to time,∑
n,β

[
ω2Mδmnδαβ − Φαβ(m− n)

]
uβ(n) + δm0ω

2ΔMuα(0) = 0 . (11.5.22)

The expression for matrix L is then

Lm,α;n,β(ω2) = ω2Mδmnδαβ − Φαβ(m− n) + δαβδm0ω
2ΔM . (11.5.23)

The first two terms on the right-hand side are recognized as the matrix L0

that governs the vibrations of pure crystals. Separating this leads to

Lm,α;n,β(ω2) = L0
m,α;n,β(ω

2) + δLm,α;n,β(ω2) , (11.5.24)

where
δLm,α;n,β(ω2) = δm0δαβω

2ΔM . (11.5.25)

Next the inverse of L0 is introduced through the definition∑
m′,α′

Rm,α;m′,α′(ω2)L0
m′,α′;n,β(ω

2) = δmnδαβ . (11.5.26)

Since the eigenvectors of matrix L0 are the polarization vectors and its eigen-
frequencies are the vibrational frequencies of the pure crystal, it is easily seen
that

Rm,α;n,β(ω2) =
1

MN

∑
qλ

e
(λ)
α

∗
(q)e(λ)

β (q)
ω2 − ω2

λ(q)
eiq·(Rm−Rn) . (11.5.27)

The equation of motion (11.5.22) may be written in the concise form (L0+
δL)u = 0. Multiplying it from the left by R,

(1 + R · δL)u = 0 (11.5.28)

is obtained. Using the above forms of R and δL, the equation governing the
displacement of the impurity atom is
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⎣1 +

ΔM

M

ω2

N

∑
qλ

e
(λ)
α

∗
(q)e(λ)

α (q)
ω2 − ω2

λ(q)

⎤
⎦uα(0) = 0 . (11.5.29)

The condition of self-consistency is now

ΔM

M

ω2

N

∑
qλ

e(λ)∗(q)e(λ)(q)
ω2
λ(q) − ω2

= 1 . (11.5.30)

Its structure is very similar to that of the condition obtained for a one-
dimensional chain with an impurity. Using similar graphical methods for de-
termining the solutions, vibrational frequencies are usually found to lie inside
the original quasicontinuum, slightly shifted with respect to the unperturbed
values. For heavy impurities the deformation of the spectrum is such that a
resonance may show up inside it, while for light impurities a frequency that
corresponds to a localized vibration may appear above the continuum. If the
Debye spectrum (to be discussed in the next chapter) is used for characteriz-
ing the unperturbed lattice, such a localized vibration is observed to appear
for any ΔM < 0. Numerical calculations show that when a more realistic
spectrum is chosen, localized vibrations show up only above a certain mass
difference.

11.6 The Specific Heat of Classical Lattices

Having established that the thermal motion of ions about their equilibrium
positions may be described in terms of normal modes, it is a relatively simple
matter to determine the thermal properties of a classical crystal. According to
statistical mechanics, the thermal energy of the crystal may be derived from
the formula

E =
∫

dΓ He−βH∫
dΓ e−βH

, (11.6.1)

where integration is over the phase space spanned by the variables u(m,μ)
and P (m,μ), that is

dΓ =
∏
m,μ

du(m,μ) dP (m,μ) . (11.6.2)

Calculations are performed more easily when displacements and momenta
are expressed in terms of normal coordinates. Using the form (11.3.30) for the
Hamiltonian, the volume element in the phase space (Q,P ) is

dΓ =
∏
q,λ

d|Qλ(q)| d|Pλ(q)| . (11.6.3)

The total energy is the sum over all independent modes,
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E =
∑
q,λ

∫
dΓλ(q)Hλ(q)e−βHλ(q)∫

dΓλ(q) e−βHλ(q)
, (11.6.4)

where, in accordance with (11.3.30),

Hλ(q) = 1
2

{|Pλ(q)|2 + ω2
λ(q)|Qλ(q)|2} . (11.6.5)

Owing to their quadratic form, the contributions of the kinetic and potential
energies of a vibrational mode are both kBT/2, as established by the equipar-
tition theorem in statistical physics. Since each of the 3Np possible modes
contribute kBT ,

E = 3NpkBT . (11.6.6)

The contribution of ionic vibrations to the specific heat is then

CV =
∂E

∂T
= 3NpkB . (11.6.7)

For the molar heat (specific heat per mole) of monatomic solids this gives the
classical result expressed by the Dulong–Petit law :9

CV = 3pR = 24.943 Jmol−1 K−1 = 5.958 calmol−1 K−1. (11.6.8)

Around and above room temperature, the measured value of the specific
heat is close to the Dulong–Petit value in most cases. By the end of the 19th
century it had become clear that at lower temperatures the specific heat drops.
Today it is also known that it vanishes at the absolute zero of temperature,
as shown in Fig. 11.15.

This departure from the theoretical value casts doubts on the applicability
of the used approximations. Two important approximations were made: the
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9
P. L. Dulong and A. T. Petit, 1819.
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harmonic expansion of the potential and the classical treatment of the vibra-
tions. In the next chapter we shall first examine the role of quantum effects,
and then analyze the role of the terms beyond the harmonic approximation.
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The Quantum Theory of Lattice Vibrations

In the previous chapter lattice vibrations were analyzed using the classical
equations of motion. It was established that a much higher specific heat is
predicted by classical statistical physics for the thermal excitation of such
modes than what is observed experimentally at low temperatures. To obtain
a better agreement a quantum mechanical treatment is required. In addition
to providing a more precise description for the thermodynamic behavior of
solids, this will also help to understand the influence of lattice vibrations on
transport and optical properties (which will be discussed in Volume 2).

12.1 Quantization of Lattice Vibrations

Perhaps the most important result of the previous chapter is that the clas-
sical oscillatory motion of atoms in a lattice can be described in terms of
harmonic oscillators. Starting with this, it is a fairly simple matter to de-
rive and illustrate the quantized energy spectrum of a vibrating lattice, as
the determination of the wavefunction and energy eigenvalues of a harmonic
oscillator ranks among the easiest problems in quantum mechanics. Before
turning to the general solution of the quantum mechanical problem, we shall
present some simple models.

12.1.1 The Einstein Model

Shortly after Planck’s proposal of the quantum hypothesis,1 in 1907 Ein-

stein extended the hypothesis to lattice vibrations, postulating that their
energy is also quantized, and for a lattice vibration of frequency ν it can

1
M. Planck, 1900. Max Karl Ernst Ludwig Planck (1858–1947) was
awarded the Nobel Prize in 1918 “in recognition of the services he rendered to the
advancement of Physics by his discovery of energy quanta”.
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take only integral multiples of hν: εn = nhν. The mean thermal energy of a
vibrational mode is then

〈ε〉 =

∞∑
n=0

εne−εn/kBT

∞∑
n=0

e−εn/kBT

=

∞∑
n=0

nhνe−nhν/kBT

∞∑
n=0

e−nhν/kBT
. (12.1.1)

In terms of the partition function

Z =
∞∑
n=0

e−εn/kBT (12.1.2)

the mean thermal energy may be written as

〈ε〉 = − d
dβ

lnZ , (12.1.3)

where β = 1/kBT . For harmonic oscillators the partition function is the sum
of an infinite geometrical series:

Z =
∞∑
n=0

e−nhν/kBT =
1

1 − e−hν/kBT
, (12.1.4)

and so
〈ε〉 =

hν

ehν/kBT − 1
. (12.1.5)

For simplicity Einstein also assumed that independently of each other,
atoms oscillate with the same frequency νE; in other words frequency is in-
dependent of the wave vector of lattice vibrations. The model based on the
assumption that the frequency is the same for each vibrational mode is called
the Einstein model. Instead of the frequency νE we shall use the angular fre-
quency ωE. Assuming that there are Np atoms in the crystal, and each of
them can oscillate in any of the three spatial directions, the internal energy
of these vibrations is

E = 3Np 〈ε〉 = 3Np
�ωE

e�ωE/kBT − 1
. (12.1.6)

From this expression the specific heat due to lattice vibrations is found to be

CV =
∂E

∂T
= 3NpkB

(
�ωE

kBT

)2 e�ωE/kBT

(e�ωE/kBT − 1)2
. (12.1.7)

On the right-hand side

F (x) =
x2ex

(ex − 1)2
(12.1.8)
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Fig. 12.1. The temperature dependence of specific heat in the Einstein model,
fitted to experimental data for diamond [based on A. Einstein, Ann. d. Phys. 22,
180 (1907)]

is the Einstein function with the argument x = �ωE/kBT . Figure 12.1 shows
the temperature dependence of the specific heat, compared to the experimen-
tal data that were known at the beginning of the 20th century.

At sufficiently high temperatures, where kBT � �ωE, the first term of the
expansion of the Einstein function for small values of x,

F (x) =
x2(1 + x + . . . )

(x + x2/2 + . . . )2
= 1 + O(x2) (12.1.9)

leads to the Dulong–Petit value of specific heat. At lower temperatures finite-
energy oscillations are more difficult to excite thermally, therefore the specific
heat decreases. In the T → 0 limit asymptotically

F (x) = x2e−x, if x � 1 , (12.1.10)

that is, the specific heat vanishes exponentially. Measurements performed
since that time in the low-temperature region have shown a slower, power-law
decay. Obviously, the excessively rapid decay of the specific heat in the Ein-
stein model is due to the absence of long-wavelength acoustic vibrations that
correspond to low-frequency – and therefore low-energy – collective modes.
Such modes can be excited thermally more easily than Einstein oscillators.

12.1.2 The Debye Model

To correct the error of the Einstein model mentioned above, in 1912 P. Debye

proposed that instead of individual atomic oscillations, elastic waves propa-
gating in the solid with linear dispersion relation should be considered, and
quantized according to Planck’s hypothesis. Thus Debye assumed that the
energy of compressional (longitudinal) and torsional (transverse) waves of an-
gular frequency ωL(q) (ωT(q)) can only change in steps of �ωL(q) (�ωT(q)).
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If it is possible to excite an arbitrary number of such vibrations, the ther-
mal energy associated with the vibration of polarization λ and wave vector q
can be determined along the same lines as in the Einstein model. Making use
of the result

〈ελ(q)〉 =
�ωλ(q)

e�ωλ(q)/kBT − 1
, (12.1.11)

the total thermal energy of the crystal is

E =
∑
q,λ

�ωλ(q)
e�ωλ(q)/kBT − 1

. (12.1.12)

By extending the classical results for elastic continua Debye assumed that
the strict proportionality between ωλ(q) and the wave number holds not only
in the long-wavelength region but all the way down to wavelengths on the
order of atomic dimensions. For simplicity, he also assumed that longitudinal
and transverse vibrations propagate with the same velocity, and that the
allowed values of the vectors q fill a sphere in reciprocal space rather than
the Brillouin zone determined by the specific crystal structure. As there are
one longitudinal and two transverse modes for any q, the radius qD of this
sphere has to be chosen such that three times the number of allowed q vectors
in its interior should be equal to the number of normal modes, 3pN . Since a
reciprocal-space volume (2π)3/V is associated with each vector q,

4πq3
D

3
V

(2π)3
= pN . (12.1.13)

In crystals with a polyatomic basis excitations in the optical branches are
taken into account by larger a qD than in the monatomic case.

These are the underlying assumptions of the Debye model. Before turning
to the detailed discussion of its properties, we shall present a more precise
formulation of quantization.

12.1.3 Quantization of the Hamiltonian

In the Einstein model the solid was regarded as a collection of atoms that
vibrate at the same frequency and are independent in a sense. In contrast, in
the Debye model elastic waves propagating in a continuous elastic medium are
considered, and the atomic structure of the solid is ignored. Looking back at
the classical description of lattice vibrations presented in the previous chapter,
one may say that the Einstein model describes optical modes, while the elastic
waves in the Debye model correspond to the long-wavelength limit of acoustic
waves.

Depending on the basis, optical and acoustic vibrations may be simulta-
neously present in real crystals; the dispersion relation is then different from
the one used in the previous approximation. Through plausible assumptions
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about the potential and the force constants the entire classical vibrational
spectrum may be determined in principle, it is thus straightforward to sup-
pose that Planck’s quantum hypothesis should be applied to these frequencies
ωλ(q). The quantization condition can be formulated by stipulating that, for
acoustic and optical vibrations alike, regardless of the dispersion relation, the
energy of a vibration of frequency ωλ(q) can change only in quanta of �ωλ(q),
but the number of energy quanta can be arbitrarily large.

This also means that (12.1.11) and (12.1.12) are accepted for any disper-
sion relation. As we shall see, up to a temperature-independent constant term
this yields the correct result for the total energy. Using (12.1.12), the thermal
energy – and from it, the thermodynamic properties of the crystal – may then
be determined, at least in principle, when the classical vibrational spectrum
is known. To determine and physically interpret the additive constant, a more
precise definition of quantization is required.

In the previous chapter we saw that using the canonically conjugate vari-
ables u(m,μ) and P (m,μ), the classical Hamiltonian (11.1.25) can be written
as the sum of the kinetic energy (11.1.24) and the potential energy (11.1.21).
Transition to quantum mechanics is then straightforward through canonical
quantization. To obtain the quantum mechanical Hamiltonian operator from
the classical Hamiltonian, the variables u and P in Tkin and Uharm are con-
sidered as operators, and the canonical commutation relation

[uα(m,μ), Pβ(n, ν)] = i�δαβδmnδμν (12.1.14)

is imposed. This is automatically satisfied when expression

P (m,μ) =
�

i
∂

∂u(m,μ)
(12.1.15)

is used.
Repeating the steps that led – through the solution of the eigenvalue prob-

lem of the dynamical matrix – from the displacements u(m,μ) to the normal
coordinates, Qλ(q) also appears as an operator: with its canonically conjugate
momentum Pλ(q) it satisfies the commutation relations

[Qλ(q), Pλ′(q′)] = i�δλλ′δqq′ ,

[Qλ(q), Qλ′(q′)] = [Pλ(q), Pλ′ (q′)] = 0 .
(12.1.16)

The Hamiltonian then reads

Hharm = 1
2

∑
q,λ

{
P †
λ(q)Pλ(q) + ω2

λ(q)Q†
λ(q)Qλ(q)

}
, (12.1.17)

where Q†
λ(q) and P †

λ(q) are the Hermitian conjugates of Qλ(q) and Pλ(q).
Note that the same result is obtained when one starts with the classical
Hamiltonian (11.3.30) expressed with the normal coordinates, and changes
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to a quantum mechanical description by imposing the canonical commuta-
tion relations between the normal coordinates Qλ(q) and their canonically
conjugate momenta Pλ(q).

The quantum mechanical Hamiltonian is then the sum of the Hamilto-
nians of 3pN independent quantum oscillators. Nevertheless the vibrational
frequencies can still be determined classically, as they are the eigenvalues of
the dynamical matrix, the second derivative of the potential.

12.1.4 The Quantum Mechanics of Harmonic Oscillators

To gain insight into the properties of solids that are due to lattice vibrations,
the quantum mechanics of harmonic oscillators has to be recalled. Before
absorbing the mass into the normal coordinates, the Hamiltonian reads

H =
p2

2m
+ 1

2mω2x2 = − �
2

2m

(
d
dx

)2

+ 1
2mω2x2. (12.1.18)

Imposing the requirement of square integrability – whereby the wavefunction
vanishes sufficiently rapidly at infinity –, the eigenvalues of this differential
operator are expressed in terms of the Hermite polynomials (presented in
Appendix C). The eigenfunctions normalized to unity are

ψn(x) =
(mω

�π

)1/4

(2n n!)−1/2Hn

(√
mω

�
x

)
e−mωx

2/2� , (12.1.19)

and the energy eigenvalue of the state of quantum number n is

εn = �ω
(
n + 1

2

)
. (12.1.20)

The wavefunction of the ground state is a Gaussian of finite width,

ψ0(x) =
(mω

�π

)1/4

e−mωx
2/2� . (12.1.21)

According to the uncertainty principle, the oscillator performs small-amplitude
vibrations, so-called zero-point vibrations even in its ground state. This is in-
dicated by the finite value of the mean square displacement,

〈x2〉 =
(mω

�π

)1/2
∞∫

−∞
x2e−mωx

2/� dx =
�

2mω
. (12.1.22)

This is why the ground-state energy is finite, ε0 = 1
2�ω; half of it comes

from the kinetic energy and the other half from the potential energy of the
oscillator. This finite ground-state energy is called the zero-point energy.

The solutions of the eigenvalue problem were determined in terms of the
Hermitian operators x and p, which satisfy canonical commutation relations.
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An easier alternative is offered by writing the Hamiltonian in terms of the
non-Hermitian operator a and its adjoint defined as

a =
√

mω

2�

(
x +

i
mω

p

)
, a† =

√
mω

2�

(
x− i

mω
p

)
. (12.1.23)

Using the new operators, x and p are expressed as

x =

√
�

2mω

(
a + a†

)
, p = i

√
�mω

2
(
a† − a

)
. (12.1.24)

Making use of the canonical commutation relation [x, p] = i�, it is immediately
established that

[a, a†] =
i
�
(px− xp) = 1 , (12.1.25)

and the Hamiltonian is

H = 1
2�ω

(
a†a + aa†

)
= �ω

(
a†a + 1

2

)
. (12.1.26)

The energy eigenstates and eigenvalues are thus related to the eigenfunctions
and eigenvalues of the operator n̂ = a†a. The commutation relation

[n̂, a] = −a , [n̂, a†] = a† (12.1.27)

implies that if ψn is an eigenfunction of operator n̂ with eigenvalue n, then
the aψn and a†ψn are also eigenfunctions, with eigenvalues n− 1 and n + 1:

n̂
(
aψn

)
= (n− 1)aψn , n̂

(
a†ψn

)
= (n + 1)a†ψn . (12.1.28)

For this reason a and a† are called ladder operators or shift operators. To
obtain, as expected on physical grounds, a spectrum that is bounded from
below, the eigenvalues of n̂ have to be integers, and the lowest of them zero.
The eigenvalues of n̂ are then nonnegative integers,

n̂ψn = nψn n ∈ N0 . (12.1.29)

Energy eigenvalues are indeed given by (12.1.20). The restriction that the
quantum number n can take only nonnegative integers justifies the picture
that in state ψn there are n quanta of energy �ω present, and a† is their
creation operator while a is their annihilation (destruction) operator.

Starting with the ground-state wavefunction ψ0, every eigenstate can be
constructed by means of the creation operator a†. The state of quantum num-
ber n that is normalized to unity is

ψn =
1√
n!

(
a†
)n

ψ0 . (12.1.30)

Adding a further quantum to this state or taking away one from it,

a†ψn =
√
n + 1ψn+1, a ψn =

√
nψn−1 . (12.1.31)
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12.1.5 Creation and Annihilation Operators of Vibrational Modes

By generalizing the results of the quantum mechanical treatment of the har-
monic oscillator, we shall introduce the shift operators for the oscillator that
corresponds to a lattice vibration of polarization λ and wave vector q:

aλ(q) =

√
ωλ(q)

2�

(
Qλ(q) +

i
ωλ(q)

P †
λ(q)

)

=

√
ωλ(q)

2�

(
Qλ(q) +

i
ωλ(q)

Pλ(−q)
)

, (12.1.32-a)

a†λ(q) =

√
ωλ(q)

2�

(
Q†
λ(q) − i

ωλ(q)
Pλ(q)

)

=

√
ωλ(q)

2�

(
Qλ(−q) − i

ωλ(q)
Pλ(q)

)
. (12.1.32-b)

It follows immediately from the commutation relations between normal coor-
dinates and their conjugate momenta that these operators satisfy the bosonic
commutation relations[

aλ(q), a†λ′(q′)
]

= δλ,λ′ δq,q′ ,[
aλ(q), aλ′(q′)

]
=
[
a†λ(q), a†λ′(q′)

]
= 0 .

(12.1.33)

The inverse formulas are then

Qλ(q) =

√
�

2ωλ(q)

[
aλ(q) + a†λ(−q)

]
,

Pλ(q) = −i

√
�ωλ(q)

2

[
aλ(−q) − a†λ(q)

]
.

(12.1.34)

In terms of these operators, the Hamiltonian is

H = 1
2

∑
q,λ

�ωλ(q)
[
a†λ(q)aλ(q) + aλ(−q)a†λ(−q)

]
. (12.1.35)

Alternatively, by exploiting that ωλ(q) is an even function of q,

H =
∑
q,λ

�ωλ(q)
[
a†λ(q)aλ(q) + 1

2

]
. (12.1.36)

As the eigenvalues of operator n̂λ(q) = a†λ(q)aλ(q) are nonnegative integers,
the vibrations of the crystal lattice are quantized in such a way that their
energy can change by integral multiples of �ωλ(q). Operator a†λ(q) takes an
initial state into one whose energy is higher by �ωλ(q) – while operator aλ(q)
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into another whose energy is lower by the same amount. These operators
can be regarded as the creation and annihilation operators of a vibrational
quantum.

Making use of the above form of the Hamiltonian, the time dependence of
the creation and annihilation operators is

aλ(q, t) =eiHt/�aλ(q)e−iHt/� = aλ(q)e−iωλ(q)t ,

a†λ(q, t) =eiHt/�a†λ(q)e−iHt/� = a†λ(q)eiωλ(q)t.
(12.1.37)

Using them in the time derivative of equations (12.1.34) for Qλ(q) and Pλ(q),
it can be directly shown that (11.3.28), (11.3.29), and (11.3.31) are indeed
satisfied.

Substituting (12.1.34) in the formula for atomic displacements, the dis-
placement operator (11.3.14) may also be expressed in terms of these creation
and annihilation operators:

uα(m,μ) =
∑
q,λ

√
�

2NMμωλ(q)
e(λ)
μ,α(q)

[
aλ(q) + a†λ(−q)

]
eiq·Rm (12.1.38)

=
∑
q,λ

√
�

2NMμωλ(q)

[
e(λ)
μ,α(q)aλ(q)eiq·Rme(λ)

μ,α

∗
(q)a†λ(q)e−iq·Rm

]
.

Writing out the time dependence explicitly,

uα(m,μ, t) =
∑
q,λ

√
�

2NMμωλ(q)

[
e(λ)
μ,α(q)aλ(q)ei(q·Rm−ωλ(q)t)

+ e(λ)
μ,α

∗
(q)a†λ(q)e−i(q·Rm−ωλ(q)t)

]
.

(12.1.39)

12.1.6 Phonons as Elementary Excitations

Apart from the term due to zero-point vibrations, the above form of the
Hamiltonian of a thermally vibrating lattice is the same as the Hamiltonian
of a free gas of bosonic particles with energy �ωλ(q). The same formula is
obtained when the Hamiltonian of the radiation field is expressed in terms of
the creation and annihilation operators of photons, the quanta of the electro-
magnetic field. Since acoustic elastic waves are related to sound propagation,
the quanta of lattice vibrations are called phonons by this analogy, regardless
of whether they are obtained through the quantization of acoustic or optical
classical lattice vibrations. Consequently one may distinguish acoustic and
optical phonons, and for both types longitudinal and transverse modes. The
dispersion relation of acoustic phonons always starts linearly at q = 0, while
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that of optical phonons starts at a nonvanishing value, and generally varies
only slightly.

The thermally excited collective vibrational states of a lattice can be re-
garded as states of a gas of fictitious particles – phonons – propagating in the
lattice, independently of each other. States of the system can be characterized
by the number of excited phonons. Since phonon creation and annihilation op-
erators satisfy bosonic commutation relations, the Bose–Einstein statistics2

applies to these fictitious particles. The thermal population of phonon states,
i.e., the expectation value of the particle number operator is given by

〈
nλ(q)

〉 ≡ 〈
a†λ(q)aλ(q)

〉
=

1
e�ωλ(q)/kBT − 1

. (12.1.40)

As the number of phonons is not conserved, the chemical potential is zero.
Starting with the ground state that has only zero-point vibrations, each

subsequent action of the operators a†λ(q) increases the number of phonons by
one and the energy by �ωλ(q). Just like in the classical model, frequencies are
determined by the eigenvalues of the dynamical matrix. Consequently, a†λ(q)
is the creation operator of a phonon of wave vector q and polarization λ.
Similarly, the annihilation operator aλ(q) reduces the number of phonons by
one and the energy of the state by �ωλ(q).

The energy contribution of lattice vibrations is calculated as the expecta-
tion value of the Hamiltonian (12.1.36),

E = 〈H〉 =
∑
q,λ

�ωλ(q)
[〈

a†λ(q)aλ(q)
〉

+ 1
2

]
. (12.1.41)

Using Bose–Einstein statistics,

E =
∑
q,λ

�ωλ(q)
[

1
e�ωλ(q)/kBT − 1

+ 1
2

]
. (12.1.42)

This essentially confirms the result obtained via naive quantization. An
important difference with those formulas is the presence of the term 1/2,
which corresponds to zero-point vibrations. We shall discuss its significance
later.

Due care must be exercised in the calculation of the momentum of a vi-
brating lattice. Starting with expression (12.1.39), and considering the contri-
bution of a phonon of specific wave vector and polarization, the momentum
associated with the vibration is

∑
m,μ

Mμu̇α(m,μ) = −i
∑
m,μ

√
�Mμωλ(q)

2N

[
e(λ)
μ,α(q)aλ(q)ei(q·Rm−ωλ(q)t)

− e(λ)
μ,α

∗
(q)a†λ(q)e−i(q·Rm−ωλ(q)t)

]
. (12.1.43)

2
S. N. Bose, 1924; A. Einstein, 1924.
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Summation over m, the label of primitive cells gives a vanishing result un-
less q = 0. Nevertheless �q – or sometimes q itself – is called the crystal
momentum of the phonon: as discussed in Chapter 6, in processes where the
phonon number changes by one, a conservation law – that is valid only up to
a reciprocal-lattice vector – applies to the wave vector q.

12.1.7 Acoustic Phonons as Goldstone Bosons

The Hamiltonian of a crystalline structure is invariant under arbitrary trans-
lations, while the crystal itself only under discrete ones. The crystalline state
therefore breaks a continuous symmetry – or, more precisely, one along each
spatial direction. According to Goldstone’s theorem (page 200) when a con-
tinuous symmetry is broken, boson-like low-energy excitations, so-called soft
modes or Goldstone bosons appear. The three acoustic branches starting at
the center of the Brillouin zone at zero energy have precisely these properties.
In this sense acoustic phonons can be considered Goldstone bosons.

The appearance of soft Goldstone bosons may be illustrated by a simple
physical picture: in the acoustic branches excitation energies vanish in the
long-wavelength limit, as the uniform translation of the lattice requires no
expense of energy.

It should be noted that Goldstone’s theorem does not apply for long-range
interatomic forces. This can be directly demonstrated in a straightforward
fashion by considering the long-wavelength limit of the frequency formula
(11.2.14) obtained for monatomic chains. For small values of q the expansion
yields

ω =
√

1
M

∑
p

Kp p2 qa . (12.1.44)

When Kp decreases slowly with distance, the above sum diverges, indicating
that the frequency does not vanish in the q → 0 limit: it tends to a finite
value.

12.1.8 Symmetries of the Vibrational Spectrum

It was shown in Chapter 6 that if a crystal is taken into itself by an element
P = {α|tn} of the space group, then the same energy eigenvalue is associated
with q and αq. In our case this means that the energy spectrum of phonons
possesses the symmetry

�ωλ(q) = �ωλ(αq) . (12.1.45)

This does not imply that the dynamical matrix itself should be invariant
under the symmetry operations associated with the elements of the space
group. It can nevertheless be shown that there exists a matrix RP (q) such
that the dynamical matrix satisfies the congruence relation

RP (q)D(q)R−1
P (q) = D(αq) . (12.1.46)
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By constructing a matrix E (q) from the eigenvectors as column vectors, the
eigenvalue problem of the dynamical matrix can be written as

D(q)E (q) = ω2(q)E (q) , (12.1.47)

where ω2(q) is a diagonal matrix, and its diagonal elements are the eigenval-
ues. Applying matrix RP (q) to this equation,

RP (q)D(q)E (q) = ω2(q)RP (q)E (q) . (12.1.48)

On the other hand, from (12.1.46) we have

RP (q)D(q)E (q) = D(αq)RP (q)E (q) . (12.1.49)

By comparing the two equations it is readily seen that the same frequencies
are associated with αq and q; moreover, the relations among eigenvectors can
also be established.

12.2 Density of Phonon States

When determining macroscopic quantities one frequently faces the problem of
summing the contributions of individual phonons over all allowed vectors q in
the Brillouin zone. If the crystal contains N1, N2, and N3 primitive cells in the
directions of the three primitive translation vectors then, according to (6.2.22),
the vectors q allowed by the periodic boundary conditions are separated by
b1/N1, b2/N2, and b3/N3 along the directions of the three primitive vectors of
the reciprocal lattice. In samples that are large compared to atomic dimensions
the vectors q are spaced rather densely, therefore no significant error arises
from replacing summation by integration.

Since the volume associated with each allowed point q of the reciprocal
lattice is

Δq =
b1

N1
·
(

b2

N2
× b3

N3

)
=

1
N

[b1b2b3] =
vr
N

=
1
N

(2π)3

v
=

(2π)3

V
, (12.2.1)

where N = N1 N2 N3, and vr is the volume of the primitive cell of the re-
ciprocal lattice, while v is that of the direct lattice, replacing the sum by an
integral requires the following substitution:

∑
q

→ V

(2π)3

∫
dq. (12.2.2)

If the summand (integrand) is a function of the phonon energy alone, then
it is usually much simpler to calculate the integral using the density of states
(DOS), i.e., the number of phonons of a given energy.
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12.2.1 Definition of the Density of States

The total density of states g(ω) and the partial density of states gλ(ω) of a
given polarization branch λ is defined through the requirement that for any
function f(ω)

1
V

∑
q,λ

f(ωλ(q)) =
∑
λ

∫
dq

(2π)3
f(ωλ(q))

=
∑
λ

∫
dω gλ(ω)f(ω) =

∫
dω g(ω)f(ω) .

(12.2.3)

Then the partial and total densities of states are formally given by

gλ(ω) =
∫

dq

(2π)3
δ(ω − ωλ(q)) ,

g(ω) =
∑
λ

∫
dq

(2π)3
δ(ω − ωλ(q)) .

(12.2.4)

In the general d-dimensional case (2π)3 is replaced by (2π)d.3
In the Einstein model the frequency ωE is the same for each vibration, so

gE(ω) =
∫

dq

(2π)3
δ(ω − ωE) =

N

V
δ(ω − ωE) . (12.2.5)

In the second step we made use of relation (5.2.18) between the volumes of the
Brillouin zone and the primitive cell. This delta-like sharp peak in the density
of states is often a good approximation for optical phonons, since their group
velocity is low.

To evaluate the density of states numerically from the energy spectrum,
it should be remembered that gλ(ω) dω is the number of states with energies
between �ω and �(ω + dω) divided by V . It is sometimes more convenient to
determine the density of states from Nλ(ω), which is the number of vibrational
states with polarization λ and frequency less than ω in the total volume of
the sample. The two quantities are related by

gλ(ω) =
1
V

dNλ(ω)
dω

, (12.2.6)

which is why Nλ(ω) is sometimes called the integrated density of states (IDS).
To determine the density of states, consider the surfaces of constant energy

Sλ(ω) and Sλ(ω + dω) in reciprocal space, shown in Fig. 12.2.

3 As the eigenvalues of the dynamical matrix are given as functions of ω2, the
density of states is often written in terms of D(ω2) = g(ω)/(2ω) rather than g(ω).
D(ω2)dω2 is the number of those vibrational states whose squared frequency is
between ω2 and ω2 + dω2.
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Fig. 12.2. The surfaces of constant energy �ω and �(ω+dω). The density of states
is given by the number of allowed wave vectors between the two surfaces

Apart from a factor 1/V , gλ(ω)dω is, by definition, the number of allowed
vectors q in the region between the two surfaces. This is obtained by dividing
the volume of this region by the volume (2π)3/V associated with the vector
q. Denoting the perpendicular distance of the two surfaces by dq⊥(q) and the
surface element by dS for any vector q that satisfies the condition ωλ(q) = ω,
the volume of the region between the two surfaces is∫

Sλ(ω)

dSdq⊥(q) , (12.2.7)

and so the number of states inside the region is

gλ(ω) dω =
∫

Sλ(ω)

dS
(2π)3

dq⊥(q) . (12.2.8)

Using a linear expansion for the dispersion relation,

ω + dω = ω + |∇qωλ(q)|dq⊥(q) , (12.2.9)

from which
dq⊥(q) =

dω
|∇qωλ(q)| . (12.2.10)

Substituting this into (12.2.8) leads to the following formula for the density
of states:

gλ(ω) =
1

(2π)3

∫
Sλ(ω)

dS
|∇qωλ(q)| . (12.2.11)

If the dispersion relation is approximated by that of elastic waves,

ωλ(q) = cλ|q| (12.2.12)
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as in the Debye model, but with polarization-dependent propagation velocity,
then the size of the constant-energy surface of energy �ω is

Sλ(ω) = 4π
(

ω

cλ

)2

. (12.2.13)

The partial density of states for phonons of polarization λ is then

gλ(ω) =
1

(2π)3
4π

(
ω

cλ

)2 1
cλ

=
1

2π2

ω2

c3λ
. (12.2.14)

Assuming that the propagation velocity is the same for both transverse vibra-
tions, the total density of states is

g(ω) =
1

2π2
ω2

[
1
c3L

+
2
c3T

]
. (12.2.15)

As it has been mentioned, the same velocity cD is associated with each of
the three vibrational branches in the Debye model. Naturally, this value has
to be chosen in such a way that the correct density of states is recovered for
long-wavelength phonons. It follows directly from the above formula that

3
c3D

=
1
c3L

+
2
c3T

. (12.2.16)

However, the ensuing formula for the density of states,

gD(ω) =
3

2π2

ω2

c3D
(12.2.17)

cannot be correct for very large energies: there is a maximum wave number
qD in the Debye model, determined by (12.1.13), and therefore vibrational
frequencies cannot exceed the Debye frequency

ωD = cD qD . (12.2.18)

Expressed in terms of this quantity, the density of states is

gD(ω) =

⎧⎪⎨
⎪⎩

9p
N

V

ω2

ω3
D

, if ω ≤ ωD ,

0 , if ω > ωD .

(12.2.19)

This form of the density of states is the consequence of the linearity of the
dispersion relation and the dimensionality (3) of the direct and reciprocal
space. The quadratic increase of the density of states is true quite generally,
even beyond the Debye model – but only for small values of ω, where the
dispersion relation of acoustic phonons is nearly linear. In the general case of
a d-dimensional crystal and in the same limit (i.e., for small values of ω) the
density of states is proportional to the d− 1st power of frequency,

g(ω) ∝ ωd−1. (12.2.20)
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12.2.2 The Density of States in One- and Two-Dimensional
Systems

Before turning to the discussion of the singularities in the density of states for
three-dimensional crystals it is instructive to study two simpler cases: those
of one-dimensional chains and of two-dimensional lattices.

In the one-dimensional case the allowed values of q are spaced 2π/L apart.
Since the same frequency is associated with q and −q, the number of states
in dω is

L

π

dq
dω

dω . (12.2.21)

The density of states, that is, the number of states with frequency ω per unit
length of the chain is then

g1d(ω) =
1
π

1
dω/dq

. (12.2.22)

When writing the dispersion relation (11.2.9) for monatomic chains in the
form ω(q) = ωmax| sin(qa/2)|, the following relation emerges:

g1d(ω) =

⎧⎪⎨
⎪⎩

2
πa

(
ω2

max − ω2
)−1/2

, if ω ≤ ωmax ,

0 , if ω > ωmax .

(12.2.23)

The density of states is seen to be singular for phonon energies at the Brillouin
zone boundary. This inverse-square-root singularity is characteristic of the
one-dimensional case. Similar singularities are observed in the density of states
of the optical vibrations in diatomic chains. However, in the latter case the
inverse-square-root singularities occur not only for frequency maxima but for
frequency minima as well. In the acoustic branch the density of states does
not show any singularity around ω = 0, as for small values of q the dispersion
relation is not quadratic but linear. This apparently nonanalytic behavior –
ω ∝ |q| – is the consequence of the fact that the eigenvalues of the dynamical
matrix lead to analytical expressions in q for ω2 (rather than ω).

In two-dimensional crystals, too, each phonon branch contains at least
one point q0 where the dispersion relation attains a maximum. In the vicinity
of this point the energy spectrum is described by a quadratic form of the
components of the vector ξ = q−q0. The principal axis transformation of the
quadratic expression gives

ωλ(q) = ω0 − α1ξ
2
1 − α2ξ

2
2 . (12.2.24)

Using the variables xi = α
1/2
i ξi, the density of states can be determined with

the help of the integral

gλ(ω) =
1

(2π)2
1

(α1α2)1/2

∫∫
dx1 dx2 δ(ω − ω0 + x2

1 + x2
2) . (12.2.25)
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By changing to polar coordinates,

gλ(ω) =
1

(2π)2
1

(α1α2)1/2

∫∫
r dr dϕ δ(ω − ω0 + r2)

=

⎧⎪⎨
⎪⎩

1
4π

1
(α1α2)1/2

, if ω ≤ ω0 ,

0 , if ω > ω0 .

(12.2.26)

This means that the density of states drops to zero from a finite value at the
maximum frequency. A similar method can be applied to the case when the
dispersion curve has a minimum around q0; the density of states then jumps
from zero to a finite value at the corresponding energy. In line with the general
considerations presented above, the dispersion relation starts linearly at q = 0
in the acoustic branches, and therefore the density of states starts linearly at
the bottom of the spectrum.

In each phonon branch there is at least one so-called saddle point where
the dispersion relation attains a minimum in one direction and a maximum in
the other. This is easily demonstrated by allowing equivalent wave vectors and
considering the q over the entire reciprocal space. Then, without loss of gener-
ality, the Brillouin zone can be centered at the point q0 where the dispersion
curve attains a minimum. At any equivalent point q0 +G, where G is a prim-
itive vector of the reciprocal lattice, the dispersion relation attains another
minimum. When points q0 and q0 +G are connected through various paths in
q-space, there exists a local maximum along each path. These paths and the
local maxima along them are shown in Fig. 12.3. Next the curve connecting
these maxima is considered: its points at the boundaries of the Brillouin zone
are equivalent, as they differ by a reciprocal-lattice vector. Consequently there
must be a local minimum along this curve – which is a saddle point.

q G0+q0 P

Fig. 12.3. Determination of the locus of the saddle point in the extended reciprocal
space. Crosses (×) mark the maxima of the dispersion curve along the paths con-
necting q0, the center of the Brillouin zone, with an equivalent point q0 + G. The
minimum along the curve connecting these maxima is the saddle point P

In the vicinity of the saddle point the dispersion relation takes the form

ωλ(q) = ω0 + α1ξ
2
1 − α2ξ

2
2 (12.2.27)
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in the system of principal axes, with positive coefficients αi. As shown in
Fig. 12.4, the lines of constant energy are hyperbolas.

Fig. 12.4. Lines of constant energy around the saddle point for ω < ω0 and ω > ω0.
Phonon energies are lower in the shaded regions than on the curves bounding them

Once again, we introduce the variables xi = α
1/2
i ξi; the density of states

is then given by

gλ(ω) =
1

(2π)2
1

(α1α2)1/2

∫∫
dx1 dx2 δ(ω − ω0 − x2

1 + x2
2) . (12.2.28)

To evaluate the integral, we change to coordinates that are adapted to the
hyperbola. A good choice is

x1 = r sinh θ , x2 = ±r cosh θ (12.2.29)

when ω < ω0, and

x1 = ±r cosh θ , x2 = r sinh θ (12.2.30)

when ω > ω0. Using the Jacobian of the new variables,

gλ(ω) =
1

4π2

1
(α1α2)1/2

∫∫
r dr dθ δ(ω − ω0 ± r2) . (12.2.31)

The sign (±) in front of r2 corresponds to the cases ω < ω0 and ω > ω0. In
either case, the contribution vanishes unless r = |ω−ω0|1/2. However, the value
of the integral depends on the choice of the range of integration for the variable
θ. Assuming that the quadratic approximation for the dispersion curve is valid
in a finite neighborhood of the saddle point, integration is performed in the
region where

x2
1 + x2

2 ≤ R2 . (12.2.32)
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Even though the cutoff R is introduced arbitrarily, the physically meaningful
singularity does not depend on its particular choice.

Since the two branches of the hyperbola give equal contributions, and so
do the two arms of each branch, integration needs to be performed only in
one quadrant, e.g., x1 > 0, x2 > 0. To include only points within the circle of
radius R, the following restriction must be imposed on the variable θ:

0 ≤ θ ≤ arsinh
[

1
2

(
R2

r2
− 1

)]1/2

. (12.2.33)

Integration then gives

gλ(ω) =
1

2π2

1
(α1α2)1/2

arsinh
[

1
2

(
R2

|ω0 − ω| − 1
)]1/2

. (12.2.34)

Using the logarithmic expression

arsinhx = ln[x + (x2 + 1)1/2] (12.2.35)

for the inverse hyperbolic function, arsinhx ≈ ln 2x in the vicinity of the
saddle point, where the argument is large. Therefore a logarithmic singularity
appears in the density of states:

gλ(ω) ≈ − 1
4π2

1
(α1α2)1/2

ln
∣∣∣∣1 − ω

ω0

∣∣∣∣ . (12.2.36)

12.2.3 Van Hove Singularities

In the one-dimensional case the density of states has inverse-square-root sin-
gularities at frequencies where the spectrum has maxima or minima. In two
dimensions, in addition to maxima and minima, the spectrum may also have
saddle points; the density of states then features finite jumps and logarith-
mic singularities, respectively. In the Debye model of three-dimensional crys-
tals the spectrum is assumed to be isotropic, therefore the density of states
is smooth everywhere except for an abrupt cutoff at the maximum energy.
This is not the case for real crystals. Energy extrema may occur at several
points of the phonon spectrum, and then for the corresponding q0 value(s)
|∇q ωλ(q)| = 0 along every direction. In other cases the gradient of the dis-
persion relation vanishes in certain directions only. As we saw in Chapter 6, it
always vanishes at the boundaries of the Brillouin zone in the perpendicular
direction if the boundary is related to the opposite one through reflection sym-
metry. At the corners of the Brillouin zone and at the centers of the boundary
faces the gradients in other directions may vanish as well. Those points where
the gradient vanishes in every direction are called analytical critical points.
At such points the integrand is singular in expression (12.2.11) for the density
of states. Nevertheless the integral – and so the density of states – is finite
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for any value of the frequency. The points where its derivative is singular are
called Van Hove singularities.4 Figure 12.5 shows the density of states derived
from the theoretically determined phonon spectrum of aluminum. Singular-
ities come from transverse branches at low energies and from longitudinal
phonons at the top of the spectrum.

Al
T = 80 K

2

0.1

0

0.2

0.3

0.4

0 4 6 8
(THz)
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(

)ν
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H
z

)
–1

ν

Fig. 12.5. Calculated phonon density of states in aluminum, with the characteristic
Van Hove singularities [C. B. Walker, Phys. Rev. 103, 547 (1956)]

When the phonon dispersion relation is expanded in a series of the compo-
nents of ξ = q−q0 around an analytical critical point q0, the linear terms must
be absent. The principal axis transformation of the second-order expression
gives

ωλ(q) = ω0 + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 , (12.2.37)

where ω0 = ωλ(q0). In contrast to the minima, maxima, and saddle points of
the two-dimensional case, four types of critical points are now distinguished.

In P0-type points each coefficient αi is positive, and the spectrum has a
minimum at q0. We shall now show that when ω is close to the corresponding
frequency, the density of states is

gλ(ω) =
1

4π2

(ω − ω0)
1/2

(α1α2α3)
1/2

. (12.2.38)

We shall first determine the number of states on the constant-energy surface
associated with the frequency ω. This surface is an ellipsoid that intersects
the ξi-axis in ±[(ω − ω0)/αi]1/2. The volume of the ellipsoid is

4π
3

(ω − ω0)3/2

(α1α2α3)1/2
. (12.2.39)

The number of states within gives the integrated density of states:
4

L. Van Hove, 1953.



12.2 Density of Phonon States 407

Nλ(ω) =
V

(2π)3
4π
3

(ω − ω0)3/2

(α1α2α3)1/2
=

V

6π2

(ω − ω0)3/2

(α1α2α3)1/2
. (12.2.40)

When the derivative of this quantity with respect to frequency is divided by
the volume, the density of states (12.2.38) is recovered.

In P1-type points one of the αi is negative and the two others are positive,
and so the spectrum has a saddle point at q0. Surfaces of constant energy
are hyperboloids of two sheets for ω < ω0 and hyperboloids of one sheet for
ω > ω0. These are illustrated in Fig. 12.6. In the ω = ω0 case the hyperboloid
degenerates into a cone.

Fig. 12.6. Surfaces of constant energy around a P1-type saddle point for ω < ω0

and ω > ω0

Using the form

ωλ(q) = ω0 + α1ξ
2
1 + α2ξ

2
2 − α3ξ

2
3 (12.2.41)

for describing the frequency spectrum, and changing to the variables xi =
α

1/2
i ξi, the density of states can be expressed as

gλ(ω) =
1

(2π)3
1

(α1α2α3)1/2

∫∫∫
dx1 dx2 dx3 δ(ω − ω0 − x2

1 − x2
2 + x2

3) .

(12.2.42)
To evaluate the integral, we shall introduce new coordinates that are adapted
to the hyperboloid. We choose

x1 = r sinh θ cosϕ, x2 = r sinh θ sinϕ, x3 = ±r cosh θ (12.2.43)

for ω < ω0, and

x1 = r cosh θ cosϕ, x2 = r cosh θ sinϕ, x3 = r sinh θ (12.2.44)
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for ω > ω0. By evaluating the Jacobian for the new sets of variables, we have

gλ(ω) =
1

(2π)3
1

(α1α2α3)1/2

∫∫∫
r2 dr sinh θ dθ dϕ δ(ω − ω0 + r2) (12.2.45)

for ω < ω0, and

gλ(ω) =
1

(2π)3
1

(α1α2α3)1/2

∫∫∫
r2 dr cosh θ dθ dϕ δ(ω − ω0 − r2) (12.2.46)

for ω > ω0. In either case the integrand vanishes unless r = |ω − ω0|1/2. As-
suming once again that the quadratic approximation for the dispersion curve
is valid in a finite neighborhood of the saddle point, integration is performed
in the region where

x2
1 + x2

2 + x2
3 ≤ R2 . (12.2.47)

Positive and negative values of x3 contribute equally, therefore it is suf-
ficient to calculate the integral over positive values. To include only points
within the sphere of radius R, the following restriction must be imposed on
the variable θ:

1 ≤ cosh θ ≤
[

1
2

(
R2

r2
+ 1

)]1/2

, if ω < ω0 ,

0 ≤ sinh θ ≤
[

1
2

(
R2

r2
− 1

)]1/2

, if ω > ω0 .

(12.2.48)

Integration with respect to θ is straightforward. Since the ϕ-integral gives a
factor of 2π, we have

gλ(ω) =
2

(2π)2
1

(α1α2α3)1/2

∫
r2 dr

{[
1
2

(
R2

r2
+ 1

)]1/2

− 1

}
δ(ω − ω0 + r2)

(12.2.49)
for ω < ω0, and

gλ(ω) =
2

(2π)2
1

(α1α2α3)1/2

∫
r2 dr

[
1
2

(
R2

r2
− 1

)]1/2

δ(ω − ω0 − r2)

(12.2.50)
for ω > ω0. Because of the delta functions these integrals are also elementary.
For frequencies close to the saddle point ω0, i.e., for |ω − ω0| � R2, the final
result is

gλ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

C − 1
4π2

(ω0 − ω)1/2

|α1α2α3|1/2
+ O(ω0 − ω) , if ω < ω0 ,

C + O(ω − ω0) , if ω > ω0 .

(12.2.51)

The density of states has a kink at ω0, with a square-root singularity on one
side.
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In P2-type analytical critical points two of the αi are negative and the
third is positive, so once again the spectrum has a saddle point at q0. The
density of states exhibits a kink again, but the singularity is now on the other
side:

gλ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

C + O(ω0 − ω) , if ω < ω0 ,

C − 1
4π2

(ω − ω0)
1/2

|α1α2α3|1/2
+ O(ω − ω0) , if ω > ω0 .

(12.2.52)

Finally, in P3-type points each coefficient αi is negative, and the spectrum
has a minimum at q0. The density of states is

gλ(ω) =
1

4π2

(ω0 − ω)1/2

|α1α2α3|1/2
. (12.2.53)

Figure 12.7 shows the behavior of the density of states around the four
kinds of the analytical critical point. It should be mentioned again that the
velocity of acoustic phonons is finite at q = 0, and so no Van Hove singularity
appears at ω = 0 in the phonon density of states. In three-dimensional systems
the density of states is initially proportional to ω2, in agreement with the
Debye model.

Saddle point P
1

P
3

P
0

Saddle point
2

P

!

g�!)

Fig. 12.7. Van Hove singularities in the phonon density of states

12.3 The Thermodynamics of Vibrating Lattices

From now on we consider the vibrating lattice as a gas of free phonons gov-
erned by the Bose–Einstein statistics, which can be characterized by the dis-
persion relation of the elementary excitations or the density of states. We
shall examine how the thermodynamic properties of the crystal lattice may
be interpreted in this picture.
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12.3.1 The Ground State of the Lattice and Melting

In the ground state of a classical crystal atoms are fixed rigidly at their equi-
librium positions. Such a state is ruled out in quantum mechanics: this is why
the Hamiltonian contains, in addition to the particle number, a term 1/2,
which corresponds to the energy of zero-point vibrations. If it were not for
these zero-point vibrations, the mean square displacement of the atoms would
vanish in the ground state.

The latter can be determined using (12.1.39), the formula for atomic dis-
placements. Only those terms contribute to the average in which phonons of
the same energy are created and annihilated, either in this or in the reverse
order:

〈
u2
α(m,μ)

〉
=

�

2NMμ

∑
q,λ

1
ωλ(q)

e(λ)
μ,α(q)e(λ)

μ,α

∗
(q)

×
[〈

aλ(q)a†λ(q)
〉

+
〈
a†λ(q)aλ(q)

〉]
.

(12.3.1)

For simplicity, we shall consider a crystal with a monatomic basis, so the label
μ will be absent. By summing over the three Cartesian coordinates, and by
assuming that polarization vectors are normalized to unity, interchanging the
order of the creation and annihilation operators yields

〈
u2(m)

〉
=

�

NM

∑
q,λ

1
ωλ(q)

[〈
a†λ(q)aλ(q)

〉
+ 1

2

]
. (12.3.2)

Even though no phonons are present in the ground state, the mean square
displacement of the atoms is nevertheless finite because of the quantum fluc-
tuations: 〈

u2(m)
〉

=
�

2NM

∑
q,λ

1
ωλ(q)

, (12.3.3)

which is the straightforward generalization of expression (12.1.22) for a single
oscillator. Using the density of states, the left-hand side can be expressed as
a frequency integral:

〈
u2(m)

〉
=

�V

2NM

∫
dω

g(ω)
ω

. (12.3.4)

According to (12.2.20), in d-dimensional crystals the density of states g(ω) is
proportional to ωd−1 in the low-frequency limit, therefore in d = 2 and d = 3
dimensions integration up to the finite Debye frequency gives a finite result for
the mean square displacement of the atoms. However, in d = 1 dimension the
integral diverges at the lower limit, indicating that one-dimensional ordered
chains of atoms with discrete translational symmetry cannot exist. Quantum
fluctuations are so strong that they destroy long-range order. This is in line



12.3 The Thermodynamics of Vibrating Lattices 411

with Coleman’s theorem presented in Chapter 6, which states that quantum
fluctuations restore continuous symmetry in one dimension.

Obviously, the divergence has arisen because of the transformation of
the discrete sum into an integral. Strictly speaking, this means that only
in the thermodynamic limit, when the size of the sample approaches infinity,
does the atomic displacement become infinitely large. In finite systems the
wave vectors are finite and discrete, therefore the contribution of low-energy
phonons is finite. This can be sufficiently large to destabilize regular, peri-
odic arrays of atoms, nevertheless atoms may be arranged in one-dimensional
chain-like patterns. This is observed in the compound Hg3−δAsF6, where mer-
cury atoms occupy the tubes formed by AsF6 molecules. As the arrangement
is one-dimensional, the positions of the mercury atoms do not show long-range
order, consequently no sharp Bragg peaks are observed in the diffraction pat-
tern. However, there is a short-range order, since nearest-neighbor distances
are roughly equal.

Expression (12.3.2) for the mean square atomic displacement is valid at
finite temperatures as well, provided the average is taken as a thermal average.
Using the Bose–Einstein statistics for the occupation number of the phonons,

〈
u2(m)

〉
=

�

NM

∑
q,λ

1
ωλ(q)

[
1

e�ωλ(q)/kBT − 1
+ 1

2

]

=
�

2NM

∑
q,λ

1
ωλ(q)

coth
�ωλ(q)
2kBT

.

(12.3.5)

In terms of the density of states this reads
〈
u2(m)

〉
=

�V

2NM

∫
dω

g(ω)
ω

coth
�ω

2kBT
. (12.3.6)

At finite temperatures, for small values of ω, coth(�ω/2kBT ) ≈ 2kBT/�ω, so
when the small-ω asymptotic form (12.2.20) of the density of states is used,
the integrand shows an ωd−3 dependence. Thus the above integral diverges
at the lower limit even in d = 2 dimensions. This indicates that while stable
two-dimensional crystal structures may exist at T = 0, they are destroyed at
arbitrarily low nonzero temperatures.

This result can be considered as a consequence of the generalization of
the Mermin–Wagner theorem,5 originally formulated for magnetic systems.
According to the general theorem, in two dimensions no long-range ordered
state may exist at any finite temperature that breaks a continuous symmetry
of the Hamiltonian. In our case the Hamiltonian is invariant under continuous
translations, therefore in two- (or lower-) dimensional systems crystal struc-
tures that are invariant only under discrete translations cannot be stable at
any finite temperature.6 The melting point of the two-dimensional crystal is
5

N. D. Mermin and H. Wagner, 1966.
6 As mentioned above, in the one-dimensional case the crystalline state, which

breaks the continuous symmetry, cannot be stable even as a ground state.
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therefore Tm = 0. The finite-temperature instability of the symmetry-breaking
state is due to the excessively high number of soft Goldstone modes – acoustic
phonons in our case – that are present even at very low temperatures and that
disrupt the crystalline order.

Let us now calculate the mean square displacement in a three-dimensional
crystal at finite temperature. Using the density of states (12.2.19) determined
for the Debye model (with p = 1 for the monatomic basis),

〈
u2(m)

〉
=

9 �

M

ωD∫
0

ω

ω3
D

[
1

eβ�ω − 1
+ 1

2

]
dω . (12.3.7)

Instead of the Debye frequency ωD the Debye temperature ΘD defined via

kBΘD = �ωD (12.3.8)

is commonly used. Changing to the variable t = β�ω,

〈
u2(m)

〉
=

9 �
2

kBΘDM

(
T

ΘD

)2
ΘD/T∫
0

t

[
1

et − 1
+ 1

2

]
dt

=
9 �

2

kBΘDM

[
1
4

+
(

T

ΘD

)2
ΘD/T∫
0

t

et − 1
dt

]
.

(12.3.9)

When only the first-order temperature correction to the zero-point vibrations
is taken into account at low temperatures (T � ΘD),

〈
u2(m)

〉
=

9 �
2

4kBΘDM

[
1 +

2π2

3

(
T

ΘD

)2

+ . . .

]
. (12.3.10)

Above the Debye temperature the integral can be evaluated using the expan-
sion valid for t < 1,

t

et − 1
= 1 − t

2
+

t2

12
+ . . . . (12.3.11)

This gives

〈
u2(m)

〉
=

9 �
2

kBΘDM

T

ΘD

[
1 +

1
36

(
ΘD

T

)2

+ . . .

]
. (12.3.12)

It seems reasonable to assume that the crystal melts when the root-mean-
square displacement becomes comparable to the lattice constant a – that is,
at the melting point Tm √

9 �2Tm

kBΘ2
DM

≈ αa , (12.3.13)
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where α should be less than, but on the order of unity. Using the volume v of
the primitive cell instead of the lattice constant,

Tm ≈ α2kB

9�2
Θ2

DMv2/3 . (12.3.14)

Experimental data are in good agreement with the above relation if α ≈ 1/4.
This is the Lindemann criterion for melting,7 even though it was formulated
somewhat differently before the advent of the Debye model.

12.3.2 The Specific Heat of the Phonon Gas

We shall now determine the contribution of atomic vibrations to the specific
heat of solids. The previous expression for the thermal energy, (12.1.12), is
expected to be modified by zero-point vibrations as

E =
∑
q,λ

�ωλ(q)
[

1
eβ�ωλ(q) − 1

+ 1
2

]
= 1

2

∑
q,λ

�ωλ(q) coth
(

1
2β�ωλ(q)

)
.

(12.3.15)
To demonstrate this, we shall make use of a statistical mechanical formula for
the internal energy of a system with discrete energy levels Ei:

E =
∑

iEie
−βEi∑

i e−βEi
= − ∂

∂β
ln
∑
i

e−βEi . (12.3.16)

It is a simple matter to evaluate the sum on the right hand side, the partition
function

Z =
∑
i

e−βEi . (12.3.17)

Writing the energy of the phonon system as a sum of individual modes,

Ei =
∑
q,λ

Ei(q, λ) =
∑
q,λ

�ωλ(q)[ni(q, λ) + 1
2 ] , (12.3.18)

where ni(q, λ) can be any nonnegative integer. Then

Z =
∏
q,λ

∑
i

e−βEi(q,λ)

=
∏
q,λ

(
e−β�ωλ(q)/2 + e−3β�ωλ(q)/2 + e−5β�ωλ(q)/2 + . . .

)

=
∏
q,λ

e−β�ωλ(q)/2

1 − e−β�ωλ(q)
. (12.3.19)

7
F. A. Lindemann, 1910.
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From this formula the above expression for the internal energy is indeed re-
covered. Alternatively, the internal energy of the phonon gas can be expressed
in terms of its Helmholtz free energy

F = −kBT lnZ =
∑
q,λ

�ωλ(q)
2

+ kBT
∑
q,λ

ln
(
1 − e−�ωλ(q)/kBT

)

= kBT
∑
q,λ

ln
{

2 sinh
(

�ωλ(q)
2kBT

)}
, (12.3.20)

using the thermodynamic identity

E = F − T
∂F

∂T
= kBT

2 ∂ lnZ

∂T
, (12.3.21)

which is equivalent to (12.3.16). In terms of the density of states, the
Helmholtz free energy and the internal energy read

F = kBTV

∫
ln
{
2 sinh

(
1
2β�ω

)}
g(ω) dω , (12.3.22-a)

E = 1
2V

∫
�ω coth(1

2β�ω) g(ω) dω . (12.3.22-b)

Let us return to form (12.3.15) of the internal energy. At high tempera-
tures the condition β�ωλ(q) = �ωλ(q)/kBT � 1 holds for all frequencies of
the spectrum, and so it is sufficient to keep the first two terms in the series
expansion of cothx given in (3.2.83):

E =
∑
q,λ

kBT

[
1 +

1
12

(
�ωλ(q)
kBT

)2

+ . . .

]
. (12.3.23)

When the specific heat is calculated from this expression, the leading term
gives the classical Dulong–Petit value. Its first correction would be of order
1/T 2, however this is suppressed by other contributions that are neglected in
the harmonic approximation.

The frequency of acoustic phonons usually ranges from zero to order
1012 Hz. As the phonon density of states is proportional to ω2, acoustic
phonons of frequency 1012 Hz can be considered as typical. Even for opti-
cal phonons the frequency is at most 1013 Hz – so typical phonon energies
are between 10 and 100 meV. This also means that the Dulong–Petit law is
expected to be valid only at temperatures well above 100 K. At lower temper-
atures energy and specific heat can be determined only numerically from the
above expressions, and only when the spectrum is known. The energy can be
split into a temperature-independent term

E0 =
∑
q,λ

1
2�ωλ(q) (12.3.24)
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and a temperature-dependent part

ET =
∑
q,λ

�ωλ(q)
eβ�ωλ(q) − 1

. (12.3.25)

Expressing the sum over the phonon quantum numbers by the density of
states,

ET = V

∫
�ω

eβ�ω − 1
g(ω) dω . (12.3.26)

From the previous expressions for the energy, the specific heat is

CV =
∑
q,λ

∂

∂T

�ωλ(q)
eβ�ωλ(q) − 1

= kB
∑
q,λ

(
�ωλ(q)
2kBT

)2

sinh−2

(
�ωλ(q)
2kBT

)
,

(12.3.27)

or alternatively

CV = V

∫
∂

∂T

�ω

eβ�ω − 1
g(ω) dω

= V kB

∫ (
�ω

2kBT

)2

sinh−2

(
�ω

2kBT

)
g(ω) dω .

(12.3.28)

At low temperatures, where practically only low-energy acoustic phonons
(which belong to the linear regime of the dispersion curve) are excited, the
Debye model provides a good approximation. Using the Debye model density
of states in (12.3.26),

ET = 9pN

ωD∫
0

�ω

eβ�ω − 1
ω2

ω3
D

dω . (12.3.29)

With the new variable t = β�ω,

ET = 9pNkBT

(
kBT

�ωD

)3
�ωD/kBT∫

0

t3

et − 1
dt . (12.3.30)

Besides the factor p, which specifies the number of atoms in the basis, all
information about the material characteristics of the crystal is contained in
the parameter ωD. Using the Debye temperature ΘD instead,

ET = 9pNkBT

(
T

ΘD

)3
ΘD/T∫
0

t3

et − 1
dt . (12.3.31)
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Introducing the Debye function through the definition

D3(x) =
3
x3

x∫
0

t3

et − 1
dt , (12.3.32)

we have
ET = 3pNkBTD3

(
ΘD

T

)
. (12.3.33)

The specific heat is then

CV = 3pNkB

[
D3

(
ΘD

T

)
− ΘD

T
D′

3

(
ΘD

T

)]
. (12.3.34)

A simple integration by parts shows that this is equivalent to the expression

CV = 9pNkB

(
T

ΘD

)3
ΘD/T∫
0

t4et

(et − 1)2
dt . (12.3.35)

When the condition T � ΘD is met, the energy and the specific heat con-
tain the asymptotic form of the Debye function valid for large values of x.
According to (C.2.14),

D3(x) ≈ 3
x3

π4

15
(12.3.36)

in this limit, and so

CV = pN
12π4

5
kB

(
T

ΘD

)3

. (12.3.37)

In the low-temperature region the temperature dependence of the specific heat
is usually well approximated by the cubic term. When CV /T is plotted against
T 2, as in Fig. 12.8, a straight line can be fit fairly well to the measured data.

While a pure T 3 temperature dependence is observed in ionic crystals that
are electrical insulators, the finite intercept for metals indicates that their
specific heat contains an additional term which is linear in T . We shall see in
Chapter 16 (Volume 2) that this is due to the electrons that are not bound
to the ion cores and move almost freely.

On the other hand, it follows from (C.2.13), the expansion of the Debye
function valid for small values of x, that at high temperatures the Dulong–
Petit value is recovered from (12.3.35). Since (12.3.34) and (12.3.35) give good
approximations for the specific heat both in the low- and high-temperature
regions, the numerical evaluation of the integral in the Debye function may
give an interpolation formula that is valid in the intermediate region as
well. As indicated in Fig. 12.9, experimental data for the temperature de-
pendence of specific heat show remarkable agreement with this interpolation
formula.
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Fig. 12.9. Experimental data for the temperature dependence of the molar specific
heat of some simple metals and ionic crystals, plotted against the reduced tem-
perature T/ΘD. For better visibility measured data are partially shifted, however
the solid line is always the result of the Debye interpolation formula [M. Born and
K. Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)]

In principle, the Debye temperature ΘD, which appears as a parameter
in the specific heat, can be derived from the sound velocity. However, it is
usually determined from specific heat data measured at low temperatures:
once the electronic contribution is subtracted, (12.3.37) is fitted to the result.
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The experimental values of the Debye temperature are listed for some elements
and compounds in Table 12.1.

Table 12.1. Debye temperature (in kelvins) for some elements and compounds,
determined by fitting (12.3.37) to experimental specific heat data

Element ΘD (K) Element ΘD (K) Compound ΘD (K) Compound ΘD (K)

Na 158 Mn 410 LiF 732 CaF2 510
K 91 Fe 467 NaCl 321 MgO 946
Cu 343 Ni 450 KCl 235 Fe2O3 660
Ag 225 C(d) 2230 RbCl 165 FeS2 637
Au 165 C(g) 420 CsCl 175 SiO2 470
Al 428 Ge 370 ZnS 315 Nb3Sn 228

If the assumptions of the Debye model were valid for real materials, the
interpolation formula could be fitted to the measured data with a single pa-
rameter over the entire temperature range. However, the agreement is not
always as good as in the cases shown in Fig. 12.9. Therefore when the Debye
formula is fitted to the specific heat data over a relatively small temperature
range around T , the obtained ΘD tends to be slightly different from the value
derived from the low-temperature fit. It is in this sense that one may speak
about the temperature dependence of the Debye temperature.

12.3.3 The Equation of State of the Crystal

A more complete analysis of the thermodynamic behavior of the crystal is
based on the equation of state, which relates the pressure p, the volume V ,
and the temperature T . Starting with the free energy, pressure is given by the
partial derivative

p = −
(
∂F

∂V

)
T

. (12.3.38)

The free energy of the vibrating crystal is given by (12.3.20), therefore in the
Debye model we have

F = E0 + 9 pN
kBT

ω3
D

ωD∫
0

ln
(
1 − e−�ω/kBT

)
ω2dω

= E0 + 9 pN kBT

(
T

ΘD

)3
ΘD/T∫
0

ln
(
1 − e−t

)
t2 dt ,

(12.3.39)

where E0 is the ground-state energy due to zero-point vibrations.
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Volume dependence may occur through E0 and ΘD. Therefore the pressure
is

p = −∂E0

∂V
+ 3 pN kBTD3

(
ΘD

T

)
1

ΘD

∂ΘD

∂V
. (12.3.40)

Using (12.3.33) for the thermal energy ET due to lattice vibrations,

p = −∂E0

∂V
+ γ

ET
V

, (12.3.41)

where we have introduced the Grüneisen parameter8

γ = − V

ΘD

∂ΘD

∂V
= −∂ lnΘD

∂ lnV
. (12.3.42)

In harmonic crystals phonon frequencies are independent of the volume,
and therefore so is the Debye temperature. This is most easily demonstrated
by noting that in crystals of orthorhombic or higher symmetry the lattice
constant ai always appears in the combination qiai in the q dependence of the
phonon frequencies, where qi is an integral multiple of 2π/Niai – so phonon
frequencies are independent of the lattice constant. For a formal proof of
general validity we shall assume that the crystal is strictly harmonic, therefore
the relation

U(Rm) = U0 + 1
2

∑
m,n,α,β

uα(Rm)Φαβ(Rm − Rn)uβ(Rn) (12.3.43)

is exact. For simplicity, we have assumed that each primitive cell contains a
single atom. If the lattice constant increases from a to (1+ε)a, the equilibrium
position changes from Rm to Rm = (1 + ε)Rm. If the actual ionic positions
are Rm+u(Rm) in the original system and Rm+u(Rm) with respect to the
new equilibrium positions, we have

u(Rm) = εRm + u(Rm) . (12.3.44)

Substituting this into the expression for the potential, and making use of the
property that if Rm is the equilibrium position then all terms that are linear
in the displacement u relative to it must vanish,

U(Rm) = U0 + 1
2ε

2
∑

m,n,α,β

Rα
mΦαβ(Rm − Rn)Rβ

n

+ 1
2

∑
m,n,α,β

uα(Rm)Φαβ(Rm − Rn)uβ(Rn).
(12.3.45)

Since the force constants are the same as in the old system, so are the vibra-
tional frequencies – that is to say frequencies are independent of the equilib-
rium volume:
8

E. Grüneisen, 1926.
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∂ωλ(q)
∂V

= 0 . (12.3.46)

This implies that in the harmonic approximation the Grüneisen parameter
must vanish, and so the equation of state is reduced to

p = −∂E0

∂V
. (12.3.47)

The pressure is then independent of temperature:(
∂p

∂T

)
V

= 0 , (12.3.48)

and therefore the specific heats at constant volume and constant pressure, and
the adiabatic and isothermal compressibilities, related by the thermodynamic
identities

cp = cV − T (∂p/∂T )2V
V (∂p/∂V )T

,
cp
cV

=
(∂p/∂V )S
(∂p/∂V )T

(12.3.49)

are equal. Even more interesting is that the linear thermal expansion coeffi-
cient of the solid, defined as

α =
1
l

(
∂l

∂T

)
p

=
1

3V

(
∂V

∂T

)
p

, (12.3.50)

where l is a characteristic linear dimension, vanishes in the harmonic approx-
imation. To demonstrate this, consider the thermodynamic identity(

∂p

∂T

)
V

(
∂T

∂V

)
p

(
∂V

∂p

)
T

= −1 (12.3.51)

and the bulk modulus K, the inverse of the isothermal compressibility κ de-
fined as

K =
1
κ

= −V

(
∂p

∂V

)
T

; (12.3.52)

the coefficient of thermal expansion may then be written as

α =
1

3K

(
∂p

∂T

)
V

. (12.3.53)

According to (12.3.48), pressure is independent of temperature in the har-
monic approximation, therefore the coefficient of thermal expansion vanishes.
To account for the observed finite thermal expansion, we have to go beyond
the harmonic approximation.
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12.4 Anharmonicity

The possibility of describing the vibrations of the lattice in terms of inde-
pendent collective excitations (phonons) stems from the applicability of the
harmonic approximation to the crystal potential. Keeping only the second-
order terms in the displacement, an exact diagonalization of the Hamil-
tonian was possible using the phonon creation and annihilation operators.
When higher-order corrections become important, the harmonic approxima-
tion breaks down. Phonons will no longer be well-defined elementary excita-
tions, as they can decay or be scattered by one another. Such processes change
all the physical quantities that depend on the thermally excited states of the
crystal.

12.4.1 Higher-Order Expansion of the Potential

To fourth order, the expansion of the potential is

U({u(m,μ}) = U0 +
1
2

∑
m,μ,α
n,ν,β

∂2U

∂uα(m,μ)∂uβ(n, ν)
uα(m,μ)uβ(n, ν)

+
1
3!

∑
m,μ,α,n,ν,β

p,π,γ

∂3U

∂uα(m,μ)∂uβ(n, ν)∂uγ(p, π)

× uα(m,μ)uβ(n, ν)uγ(p, π) (12.4.1)

+
1
4!

∑
m,μ,α,n,ν,β
p,π,γ,r,ρ,δ

∂4U

∂uα(m,μ)∂uβ(n, ν)∂uγ(p, π)∂uδ(r, ρ)

× uα(m,μ)uβ(n, ν)uγ(p, π)uδ(r, ρ) + . . . .

When going beyond the second order, one has to go to the fourth order
at least, since the third-order potential does not have an absolute minimum,
and so the crystal would become unstable to large displacements otherwise.
The fourth-order term stabilizes the potential. This problem does not arise in
perturbation theory, however third- and fourth-order corrections may be of
the same order because of the restrictions imposed on the third-order terms.

Since the corrections due to anharmonicity are expected to be small, we
shall assume that it is sufficient to take anharmonicity into account only in
a relatively low order of perturbation theory. Therefore we shall pass to the
quantum mechanical discussion by neglecting the anharmonic term in the first
step of the usual procedure. This means that we shall determine the normal
modes from the dynamical matrix made up of the harmonic terms of the
potential energy, the normal coordinates from the normal mode expansion of
the displacement, and the canonical momenta from the Hamiltonian (i.e., the
sum of the harmonic terms of the kinetic and potential energies), and then
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impose canonical commutation relations on these coordinates and momenta.
We then introduce phonon creation and annihilation operators, express the
displacement in terms of them – as in (12.1.39) –, and use the quantized,
operator-like quantity u in the third- and fourth-order terms of the expansion
of the potential.

For notational simplicity, we shall consider a crystal with a monatomic
basis, and write uα(m) as uαm. The Hamiltonian of the anharmonic crystal is
then

H =
∑
qλ

�ωλ(q)
(
a†λ(q)aλ(q) + 1

2

)
+

1
3!

∑
m,n,p
αβγ

∂3U

∂uαm∂uβn∂u
γ
p

uαmuβnu
γ
p

+
1
4!

∑
m,n,p,r
αβγδ

∂4U

∂uαm∂uβn∂u
γ
p∂uδr

uαmuβnu
γ
pu

δ
r + . . . , (12.4.2)

where (12.1.39) should be used for the ionic displacements. The expansion co-
efficients are represented by double or triple Fourier series, exploiting the prop-
erty that the potential depends only on the distance between lattice points.
For example, for the third-order term

Φαβγ3 (m,n, p) =
∂3U

∂uαm∂uβn∂u
γ
p

=
∑
qq′

Dαβγ
3 (q, q′)eiq·(Rm−Rn)eiq′·(Rm−Rp) .

(12.4.3)
Since the displacement is the linear combination of the operators aλ(q) and
a†λ(q), the Hamiltonian will contain eight terms that are cubic and sixteen
that are quartic in them. To get a better idea of their structure, we write out
in full detail a third-order term in which the annihilation operator is chosen
in each u:

1
3!

∑
m,n,p
αβγ

∑
qq′

Dαβγ
3 (q, q′)eiq·(Rm−Rn)eiq′·(Rm−Rp) (12.4.4)

× 1
(2MN)3/2

∑
q1q2q3
λ1λ2λ3

(
�

ωλ1(q1)

)1/2 (
�

ωλ2(q2)

)1/2 (
�

ωλ3(q3)

)1/2

×e(λ1)
α (q1)e

(λ2)
β (q2)e

(λ3)
γ (q3)aλ1(q1)aλ2(q2)aλ3(q3)e

iq1·Rmeiq2·Rneiq3·Rp .

The sum over the lattice points vanishes unless

q1 + q + q′ = G1 , q2 − q = G2 , q3 − q′ = G3 , (12.4.5)

where Gi is a reciprocal-lattice vector, that is

q1 + q2 + q3 = G . (12.4.6)
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This term of the Hamiltonian corresponds to a process in which three phonons
are absorbed simultaneously. The sum of the three wave vectors is then re-
quired to be equal to a reciprocal-lattice vector. Normal processes occur for
G = 0, while G �= 0 is associated with umklapp processes.

Terms that contain one creation and two annihilation operators, or two cre-
ation and one annihilation operator, or three creation operators also appear.

12.4.2 Interaction Among the Phonons

The possible processes that correspond to the various terms of the third-order
expansion are illustrated diagrammatically in Fig. 12.10. Each wavy line repre-
sents a phonon. Moving from left to right, a line leaving a vertex corresponds
to the emission of a phonon, while a line entering a vertex corresponds to
the absorption of a phonon. The wave vectors cannot be chosen arbitrarily.
As the consequence of discrete translational symmetry, the conservation of
crystal momentum must hold in each process.

Fig. 12.10. Anharmonic processes with three phonons

The simultaneous absorption or emission of three phonons is important
when calculating the total energy of the crystal but they are irrelevant to the
physical properties that are of interest here. Such processes may exist because
the intermediate (virtual) states live for a short time only, and, on account of
the uncertainty principle, their energy may be arbitrary; energy conservation
is required only when transition probabilities are calculated between an initial
and a final state. Much more important are those terms in the Hamiltonian
that contain one creation and two annihilation operators, or two creation and
one annihilation operator.

These correspond to real physical processes in which two phonons merge
into one or one phonon is split into two. When the conservation of crystal
momentum and energy are imposed simultaneously, severe restrictions apply
to the phonons that participate in the process. Suppose that in addition to

q1 + q2 = q3 + G (12.4.7)

the condition
�ωλ1(q1) + �ωλ2(q2) = �ωλ3(q3) (12.4.8)

is also fulfilled. Using the Debye model it is immediately seen that only a
triplet of collinear wave vectors can satisfy both conditions simultaneously.
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For more realistic dispersion relations an even stricter restriction is obtained.
As the dispersion curve of acoustic phonons is concave downward, energy and
momentum cannot be simultaneously conserved in a process where the three
phonons belong to the same acoustic branch.

Figure 12.11 shows the dispersion relation of acoustic phonons along a se-
lected direction, assuming that transverse vibrations are degenerate. Plotting
the dispersion curves once again, this time from the point that corresponds to
the wave vector q1, the intersection points of the two families of curves give
the possible values of q2 and q3. As longitudinal phonons are usually more
energetic than transverse ones, a longitudinal phonon can easily decay into
two transverse phonons or into a longitudinal and a transverse phonon, while
the decay of transverse phonons may occur only via umklapp processes.
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Fig. 12.11. Illustration of energy and momentum conservation for three-phonon
processes: (a) normal process; (b) umklapp process

As phonons may decay as well as merge, they can no longer be considered
as infinitely long-lived elementary excitations: their lifetime is necessarily fi-
nite. Because of the same processes, the energy of phonons is modified –
renormalized – as a result of its interactions with other phonons. The con-
tributions of such processes can be determined applying the methods used in
many-body problems.

The role and contributions of fourth-order processes can be analyzed along
the same lines. Simultaneous absorption and emission of four phonons are of
little interest. The physically relevant processes are shown in Fig. 12.12.

Fig. 12.12. Anharmonic processes with four phonons
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12.4.3 Thermal Expansion and Thermal Conductivity in Crystals

In (12.3.53), using some general thermodynamic considerations, the coefficient
of thermal expansion was written as

α =
1

3K

(
∂p

∂T

)
V

. (12.4.9)

It was also demonstrated in the same section that α vanishes in the harmonic
approximation. To examine the role of anharmonicity, we shall start with for-
mula (12.3.41) that establishes the relationship between pressure and internal
energy. This implies (

∂p

∂T

)
V

= γ
CV
V

= γ cV , (12.4.10)

from which the Grüneisen relation9 between the coefficient of thermal expan-
sion and specific heat

α = γ
cV
3K

(12.4.11)

is easily derived. Assuming as a first approximation a temperature-independent
bulk modulus K, the coefficient of thermal expansion is found to be propor-
tional to specific heat, that is, they exhibit the same temperature dependence.

Although the Grüneisen parameter γ vanishes in the harmonic approxima-
tion, in real crystals it does not because of the anharmonic terms. Substituting
the experimental data for the coefficient of thermal expansion and specific heat
into (12.4.11), a nonzero value is obtained for γ, which in general depends on
the temperature. The Grüneisen relation nevertheless makes sense, since at
low temperatures the coefficient of thermal expansion shows the same T 3 de-
pendence as the specific heat, therefore the Grüneisen relation can be satisfied
by a temperature-independent γ over a fairly broad temperature range. The
situation is similar at room temperatures or above (i.e., at temperatures com-
parable to or higher than the Debye temperature), where the specific heat and
the coefficient of thermal expansion are both constant. Table 12.2 shows the
room-temperature Grüneisen parameter for a few elements.

When the thermal expansion coefficient is calculated for metals, the contri-
bution of the electrons should not be ignored. We shall not revisit this question
in Volume 2, where we focus on electrons, therefore it should be mentioned
here that for the gas of free electrons

pel =
2
3
Eel

V
, (12.4.12)

as we shall prove it in Chapter 16. This implies

∂pel

∂T
=

2
3
celV . (12.4.13)

9
E. Grüneisen, 1926.
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Table 12.2. The Grüneisen parameter for a few elements, measured at room
temperature

Element γ Element γ

Ag 2.40 Fe 1.60
Al 2.17 Co 1.87
Au 3.03 Si 0.45
Cu 1.96 Ge 0.73

The total thermal expansion coefficient is then

α =
1

3K

[
γ cionV +

2
3
celV

]
. (12.4.14)

As we shall see, the specific heat of the electron gas is proportional to the
temperature. At low temperatures, where the electronic contribution to the
specific heat exceeds the phonon contribution, the coefficient of thermal ex-
pansion is proportional to T .

The previous considerations were based on the equation of state in the
Debye model. For a more general interpretation of the Grüneisen parameter,
the thermodynamic relations have to be applied to a system with a general
dispersion relation. Starting from the free energy F = E − TS, the temper-
ature dependence of pressure can be determined using (12.3.38). When the
contribution of lattice vibrations is studied, (12.3.20) can be used for the free
energy of independent phonons, with the assumption that phonon frequencies
may be volume dependent:

p = −1
2

∂

∂V

∑
q,λ

�ωλ(q) +
∑
q,λ

(
− ∂

∂V
�ωλ(q)

)
1

eβ�ωλ(q) − 1
. (12.4.15)

The first term gives the contribution of the ground-state energy, and the
second term accounts for the temperature dependence. Substituting this into
(12.3.53) for the coefficient of thermal expansion,

α =
1

3K

∑
qλ

(
− ∂

∂V
�ωλ(q)

)
∂

∂T
nλ(q) . (12.4.16)

To relate this formula to the form

cV =
1
V

∑
q,λ

�ωλ(q)
∂

∂T
nλ(q) =

∑
q,λ

cV λ(q) (12.4.17)

of the specific heat, we introduce a new quantity

γλ(q) = − V

ωλ(q)
∂ωλ(q)
∂V

= −∂ lnωλ(q)
∂ lnV

(12.4.18)
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for each vibrational mode, which specifies the volume dependence of frequency
for the mode in question. The Grüneisen relation (12.4.11) is satisfied if the
parameter γ is defined as the weighted average of the γλ(q):

γ =

∑
qλ γλ(q)cV λ(q)∑

qλ cV λ(q)
. (12.4.19)

Collision (decay and merger) processes among phonons play an important
role in rendering the thermal conductivity of nonmetallic solids finite. If the
sample is not in thermal equilibrium but the temperature is different at the two
ends, then a larger number of phonons are generated thermally at the higher-
temperature end, and their motion toward the lower-temperature side may
give rise to a heat current. This will be discussed in more detail in Chapter 24;
only a simple picture is presented below.

We shall apply the results of the kinetic theory of gases to a gas of phonons.
If the phonon mean free path Λ is finite because of the collisions among
phonons, then the thermal conductivity is given by

λph = 1
3ΛvcV , (12.4.20)

where v is the velocity of phonons, and cV is the specific heat per unit volume.
At high temperatures, where the Dulong–Petit law applies, the temperature
dependence of thermal conductivity is governed by the temperature depen-
dence of the phonon mean free path. Since the frequency of collision increases
with the number of thermally generated phonons, it is plausible to assume
that the mean free path is inversely proportional to the number of phonons.
Above the Debye temperature the number of phonons

〈nλ(q)〉 =
1

e�ωλ(q)/kBT − 1
≈ kBT

�ωλ(q)
(12.4.21)

is proportional to T , so in this temperature range

Λ ∝ 1/T and λph ∝ 1/T . (12.4.22)

At room temperatures the typical value of the mean free path ranges from 10−6

to 10−7 cm. At lower temperatures it can be substantially larger: around 20 K
it is 10−2–10−3 cm. At such low temperatures, where only long-wavelength
(low-energy) phonons are generated thermally in significant numbers, one has
to take into account that collisions do not reduce the heat current (energy
current) of phonons as long as only normal scattering processes exist. This is
because the dispersion relation of long-wavelength acoustic phonons is linear,
and so momentum conservation goes hand in hand with energy conservation
in the decays of such phonons. The dissipation of the heat current requires
umklapp processes.
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13

The Experimental Study of Phonons

As we saw in the previous chapter, the excited states that correspond to the
thermal motion of atoms in a crystalline solid can be interpreted in terms of
independently generated collective elementary excitations (phonons) governed
by the Bose–Einstein statistics. However, only rather indirect, integrated in-
formation on the phonon spectrum can be extracted from measurements of
thermodynamic, macroscopic properties. In the present chapter we examine
some direct methods for studying phonons.

13.1 General Considerations

In addition to giving an account of certain macroscopic properties of crys-
talline materials, the phonon gas model of lattice vibrations also provides a
basis for the interpretation of the behavior of crystals under external influ-
ences. For example, when the solid is irradiated with electromagnetic radiation
or a beam of particles, the interaction can be visualized as an interaction be-
tween the incident particles (quanta) and the gas of phonons. Although the
processes that take place inside the system cannot be followed experimentally
(the state of the system is not known precisely, therefore even the number of
phonons before and after the measurement are unknown to the experimenter),
and in many cases the details of the interactions with the phonons are also
unknown, nevertheless experiments to measure the inelastic scattering or ab-
sorption of the incident radiation by the sample can provide information about
the dynamics of the crystal lattice. The reason for this is simple. Consider ra-
diation quanta or particles that are scattered or absorbed, as a result of their
interaction with the system, and emit or absorb phonons in the process. By
measuring the energy and momentum transferred to the scattered (absorbed)
particle, and making use of the conservation of energy and crystal momentum,
conclusions can be drawn about the phonon energy – that is, the dispersion
relation –, as long as multiple scattering processes can be neglected. This may
provide insight into the nature of the forces that hold the crystal together.
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In principle any particle that interacts with the crystal in one way or
another is suitable for such measurements. Without specifying whether pho-
tons, electrons, or neutrons are used, the equations for energy and momentum
conservation can be written in a general form. We shall denote the particle
energy before scattering by εi and the energy of the initial state of the phonon
system by

Ei =
∑
q,λ

�ωλ(q)
(
nλ(q) + 1

2

)
. (13.1.1)

In the scattering process the energy of the particle may change to εf,
and the number of phonons with polarization λ and wave vector q to n′

λ(q).
Because of energy conservation,

εi +
∑
q,λ

�ωλ(q)nλ(q) = εf +
∑
q,λ

�ωλ(q)n′
λ(q) . (13.1.2)

At the same time, on account of the discrete translational symmetry of the
lattice, momentum conservatio is valid only up to a reciprocal-lattice vector:

pi +
∑
q,λ

�q nλ(q) = pf +
∑
q,λ

�q n′
λ(q) + �G , (13.1.3)

where pi and pf are the momenta of the incoming and scattered particles, and
G is a reciprocal-lattice vector.

To be able to measure sufficiently precisely the energy and momentum
transfer to the scattered particle, the energy and momentum of the scattered
particle must be of the same order as the energy and quasimomentum of the
phonons that are being studied. If one wishes to study the phonons over a
relatively broad region of the Brillouin zone, the wavelength of the radiation
must be of the order of the lattice constant. It was shown in Chapter 8 on
diffraction that this part of the electromagnetic spectrum corresponds to X-
ray photons.

Typical acoustic phonon energies can be identified with the thermal en-
ergy corresponding to the Debye temperature. According to the data listed in
Table 12.1, the values of ΘD are on the order of a few hundred kelvins, which
corresponds to 10–100 meV. Phonon energies of the same order are obtained
for optical phonons if the frequencies in Table 11.3 are converted to energies.
This means that acoustic and optical phonon energies are typically a few tens
of meV. X-ray photon energies are on the order of a keV, so phonons cause
relatively little changes in their energy – therefore very high resolution devices
are needed to extract the phonon dispersion relation from inelastic X-ray scat-
tering. The energy of visible photons is around an electronvolt, therefore the
issue of energy resolution is not so important. However, the wavelength being
much larger than the lattice constant, practically only phonons around q = 0
can be studied. On the other hand, for slow thermal neutrons both energy and
momentum are in the suitable range. Before turning to the determination of
the phonon dispersion relation through neutron scattering experiments, we
examine what information can be extracted from optical measurements.
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13.2 Optical Methods in the Study of Phonons

Although the methods discussed in this section had already been known in the
first half of the 20th century, it was only with the advent of highly monochro-
matic laser sources that the scattering of light became a suitable and widely
used method for studying lattice vibrations. This is because even tiny varia-
tions of the wavelength of the laser beam are easy to detect, and so sufficiently
high resolutions can be achieved. A drawback of the method is that the wave-
length of visible light ranges from λ = 390 to 750 nm, which corresponds to
q ∼ 105 cm−1. This is several orders of magnitude smaller than the typical
dimensions of Brillouin zones – therefore only phonons close to the center of
the Brillouin zone (q ≈ 0) can be studied with this method. The same applies,
to an even greater degree, to using infrared radiation with wavelengths in the
micron region.

In ionic crystals the electromagnetic field is coupled directly to the charged
ions. The explicit form of the Hamiltonian will be given in Chapter 25. Here
we shall only make use of the assertion that photons may create and annihilate
phonons. In metals and semiconductors the indirect coupling of photons to
phonons is more important. The electromagnetic field interacts directly with
the highly polarizable and mobile electrons; then, in a second step, these
electrons interact with the gas of phonons. We shall analyze these processes
in more detail in Volume 2. Throughout the present chapter we shall refer to
them as if they were direct interactions between the electromagnetic field and
the phonons. We shall ignore the details of the interaction, and impose only
the requirements of energy and momentum conservation in all real physical
processes in which a photon is absorbed or scattered and a phonon is created
or annihilated.

13.2.1 Infrared Absorption

In the simplest interaction between an electromagnetic field and a system
described as a phonon gas, one photon of the incident beam is absorbed, and
a phonon is created at the same time. As mentioned above, phonon energies
are rarely in excess of a few tens of meV. As this is much smaller than the
energy of visible photons (a few eV), such photons cannot be absorbed by the
crystal via the emission of a single phonon. Because of energy conservation
vibrating lattices can absorb only photons in the far infrared, where energies
are much lower than in the visible range.

The frequency of the most energetic phonons is of order 1012 Hz. The
wavelength of infrared photons of the same frequency is much larger than the
lattice constant of crystals, i.e., their wave numbers are negligibly small com-
pared to the dimensions of the Brillouin zone. Such photons can be absorbed
only by long-wavelength phonons, with q being practically in the middle of
the Brillouin zone, q ≈ 0. Since long-wavelength acoustic phonons do not gen-
erate any electric dipole moment, only optical phonons participate in direct
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interactions with the radiation field – more precisely, only transverse optical
(TO) phonons, since the electric field E is perpendicular to the propagation
direction, and so there are no interactions with longitudinal optical phonons.
Since optical phonons of wave number q = 0 can be regarded as the internal
vibrations of a polyatomic basis, only certain transverse optical phonons may
be created in infrared absorption processes – those that correspond to vibra-
tions in which the electric dipole moment is changed. Phonons arising from
such processes are called infrared active modes. As mentioned in Chapter 6,
the transition matrix elements are subject to selection rules stipulated by the
symmetries of the initial and final states. In our case the symmetries of the
internal vibrational modes of the basis determine whether or not infrared ab-
sorption can occur in a particular mode. Even though the basis contains sixty
atoms in fullerite (see page 30), there are only four infrared active optical
phonons. There are thus four sharp absorption peaks in the infrared region,
as shown in Fig. 13.1.

Fig. 13.1. Infrared absorption spectrum of an approximately 2 μm thick layer
of solid C60 on a silicon substrate, referenced to a clean silicon substrate
[W. Krätschmer et al., Nature 347, 354 (1990)]

If only direct absorption processes existed, absorption would be observed
only at the frequencies of TO phonons. However, due to phonon–phonon inter-
actions, the TO phonon created in the photon absorption process may decay
into two phonons or may be scattered by another phonon. These possibilities
are shown in Fig. 13.2.

Since the intermediate virtual phonon does not need to obey the law of
energy conservation, and only the initial and final states have to be of the same
energy, absorption is observed in a finite range of energies. This is illustrated
in Fig. 13.3, where the reflectivity of LiGaO2 is plotted in the infrared region.
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Fig. 13.2. Second-order processes, in which the TO phonon created in the photon
absorption process splits into two phonons or is scattered by another phonon. Dashed
lines represent photons, and wavy lines phonons

At wave numbers associated with certain well-defined frequencies reflectivity
drops abruptly, indicating a strong absorption by the sample.
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Fig. 13.3. Variations of the reflectivity of LiGaO2 in the infrared region. The dashed
line represents measured data; the solid line is the result calculated from the fre-
quencies of longitudinal and transverse optical phonons [P. Knoll and H. Kuzmany,
Phys. Rev. B 29, 2221 (1984)]

13.2.2 Raman Scattering

In the lowest order of interaction, which is linear both in the electromagnetic
field and in the ionic displacement, only two processes are possible: the trans-
formation of a photon into a phonon and vice versa. It may occur that the
generated phonon decays into two because of the anharmonic terms, and one
of the new phonons is then transformed back into a photon. The net result
of this process is the transformation of the initial photon into a photon plus
a phonon. This can be interpreted as the inelastic scattering of the photon
by the lattice, where the energy difference is carried away by the emitted
phonon. Alternatively, the phonon that appears in the first step merges with
a thermally excited phonon of the system into a new phonon state, which is
then transformed back into a photon. This process can be interpreted as an
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inelastic photon scattering accompanied by a phonon absorption. A distinc-
tion is made between the scattering processes in which an acoustic or optical
phonon is involved. The first phenomenon is called Brillouin scattering, and
the second Raman scattering.

In Raman scattering1 the emission or absorption of an optical phonon of
wave vector q ≈ 0 gives rise to a change in the energy of the incident photon:

�ω′ = �ω ∓ �ωλ(q ≈ 0) . (13.2.1)

These processes are shown in Fig. 13.4.

Fig. 13.4. Two types of Raman scattering. In Stokes processes a phonon is emitted;
in anti-Stokes processes a phonon is absorbed

The change in the photon energy is a direct measure of the energy of
the optical phonon. It follows from (13.2.1) that the energy of the scattered
phonons may have two values for each phonon branch. The energy of the
photon re-emitted in the process with phonon emission is lower than the
energy of the incident photon; this is the Stokes component. The process with
phonon absorption gives rise to the anti-Stokes component at energies in excess
of the incident photon energy. The intensity is temperature dependent for
both peaks – but not in the same way. The intensity of the anti-Stokes line is
proportional to the number of absorbable phonons. In thermal equilibrium the
number of phonons with energy �ωλ(q) is given by the Bose–Einstein function

g0(ωλ(q)) =
1

e�ωλ(q)/kBT − 1
. (13.2.2)

As there are no absorbable phonons at T = 0, the intensity of the anti-
Stokes line vanishes there. The Stokes line is stronger, its intensity is fi-
nite even at T = 0, as the phonon emission probability is proportional to
g0(ωλ(q)) + 1 on account of stimulated emission processes. This is clearly
shown in Fig. 13.5, where the Raman spectrum of silicon is presented at three
different temperatures.

Just like for infrared absorption, rigorous selection rules – specified by the
symmetries of the crystal – determine whether or not a particular phonon

1
C. V. Raman, 1928, and independently of him G. Landsberg and F. Mandel-

stam, 1928. Sir Chandrasekhara Venkata Raman (1888–1970) was awarded
the Nobel Prize in 1930 “for his work on the scattering of light and for the dis-
covery of the effect named after him”.
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Fig. 13.5. Stokes and anti-Stokes components in the Raman spectrum of silicon at
three different temperatures [T. R. Hart, R. L. Aggarwal and B. Lax, Phys. Rev. B
1, 638 (1970)]

may be created or absorbed via Raman scattering. The general condition for
Raman scattering is that the polarizability of the basis must be changed by
the optical mode. Phonons that meet this condition are called Raman active
modes. Consider, for example, fullerite. Due to the degeneracies that inevitably
occur because of the high symmetry, the number of different vibrational fre-
quencies at q = 0 is 48 – however only 10 of them are Raman active. These
are shown in Fig. 13.6.

Fig. 13.6. Raman spectrum of a thin C60 layer. Two peaks due to the silicon
substrate are observed in addition to the ten Raman active modes [P. Zhou et al.,
Phys. Rev. B 46, 2595 (1992)]
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The condition q ≈ 0 can be met not only via the creation or annihilation
of a phonon with wave vector q ≈ 0 but also through scattering, in which
a higher-order process gives rise to the creation or annihilation of a pair of
phonons with opposite wave vectors (q and −q). Since q is arbitrary, and the
energy difference between the scattered and incident photons is now 2�ωλ(q),
a smeared-out continuum is obtained rather than a few sharp peaks. Nev-
ertheless the largest contribution comes from the region where the density
of states is high – that is, from optical phonons and high-energy acoustic
phonons. This process is called the two-phonon Raman scattering. As it is a
higher-order process, it could be expected to be less intense than one-phonon
scattering, however, this can be compensated for by the high density of states
of phonons at the boundary of the Brillouin zone. Figure 13.7 shows the cal-
culated second-order Raman spectra for two alkali halide crystals.

Fig. 13.7. Calculated second-order Raman spectra for two alkali halide crystals
[J. R. Hardy and A. M. Karo, Proc. of the Int. Conf. on Light Scattering Spectra of
Solids, New York, p. 99 (1968)]

13.2.3 Brillouin Scattering

The interpretation of Brillouin scattering2 in terms of acoustic phonons is
based on the conservation of energy (13.2.1) and crystal momentum; however,
in contrast to Raman scattering, the change in the photon momentum cannot
be neglected. It should be borne in mind that momentum conservation implies
that the wave vector of the incident photon is changed – no matter how small
the wave number of the emitted or absorbed phonon. Upon its penetration
into a sample of refractive index n, the propagation velocity and thereby the
wave number of the incident light is changed, the momentum associated with
the photon is �nk. Momentum conservation then takes the form

2
L. Brillouin, 1922.
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�nk′ = �nk ± �(q + G) . (13.2.3)

As it has been mentioned, the wave number |k| of photons is much smaller
than the dimensions of the Brillouin zone, hence the previous equation can be
satisfied only by the reciprocal-lattice vector G = 0.

As the energies of visible photons and acoustic phonons are very different,
on the order of 1 eV and 1–10 meV, respectively, there is hardly any change in
the energy and the magnitude of the wave vector of the photon – however, the
direction of the latter undergoes an observable change. We shall denote the
angle between the propagation direction of the incident and scattered photons
by θ; the vector triangle that illustrates momentum conservation is shown in
Fig. 13.8.

Fig. 13.8. The wave vector of the incident and scattered photons in Brillouin scat-
tering

To a good approximation, the wave number of the emitted or absorbed
phonon is

q = 2n k sin
θ

2
. (13.2.4)

In terms of the photon frequency,

q =
2nω

c
sin

θ

2
. (13.2.5)

In the long-wavelength region, which can be probed by Brillouin scattering,
phonons of polarization λ propagate with the sound velocity cλ. Since the
phonon energy is the same as the change in the photon energy, we get

Δω = cλq = cλ
2nω

c
sin

θ

2
. (13.2.6)

When the intensity distribution of the scattered beam is measured as a func-
tion of energy in a fixed direction close to the direct beam, weaker peaks
are observed on both sides of the large elastic peak, as shown in Fig. 13.9.
They correspond to the emission and absorption of longitudinal and trans-
verse phonons. The group velocities of the branches can be determined from
the shift of the peaks relative to the direct beam.
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Fig. 13.9. Brillouin spectra of two single crystals of neon of different orientations,
along a direction close to that of the direct beam [B. P. Stoichoff et al., Proc. of the
2nd Int. Conf. on Light Scattering in Solids, Paris, p. 450 (1971)]

13.3 Neutron Scattering on a Thermally Vibrating
Crystal

In optical measurements only phonons at the center of the Brillouin zone
(q ≈ 0) can be studied, since energy and momentum conservation can be sat-
isfied only here on account of the great disparity between phonon and photon
propagation velocities. The situation is different for neutrons. By rearrang-
ing (8.2.2), the formula relating the wave number and energy of the neutron
we get

ε = 2.1
(
k[Å−1

]
)2

× 10−3 eV . (13.3.1)

The energy of neutrons with a de Broglie wavelength of λ ≈ 1 Å is about 0.1
eV. Expressed as a thermal energy in kelvins,

ε/kB = 24
(
k[Å−1]

)2

K . (13.3.2)

Since the dimensions of a typical primitive cell are on the order of a few Å,
the magnitude of the wave vector of the excitations (phonons) is typically on
the order of a few Å−1. The wave number of neutrons is in the same range
if their thermal energy corresponds to about 100 K. Such so-called thermal
neutrons are thus just in the ideal energy and wave-number range for inelastic
scattering. Moreover, neutrons interact directly with nuclei, and – through
magnetic interactions – with the electron cloud when the latter possesses a
magnetic moment. Therefore thermal neutrons provide an almost ideal probe
to study lattice vibrations and magnetic excitations in solids.3

3
Bertram Neville Brockhouse (1918–2003) and Clifford Glenwood

Shull (1915–2001) shared the Nobel prize in 1994 “for the development of neutron
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Neutron emitted by reactors or spallation sources are usually many times
more energetic than thermal neutrons. When they are passed through a mod-
erator, a sufficiently intense beam of slow (thermal) neutrons is obtained.
After collimation and monochromatization via Bragg reflection, a beam with
definite energy and momentum emerges. If it is scattered inelastically on the
sample, the task is to measure the angular and energy distribution of the
scattered beam. Instead of the device used in neutron diffraction measure-
ments (Fig. 8.9), a triple-axis spectrometer is now required. This is shown in
Fig. 13.10.

Sample

Detector

Monochromator

Analyzer

&�

'

&

Collimator

Source

Fig. 13.10. Schematic sketch of a triple-axis spectrometer, used in inelastic neutron
scattering measurements

The beam scattered by the sample falls on an analyzing crystal, which
transmits only Bragg reflected neutrons of a particular wavelength (energy)
to the detector. The monochromator, the sample holder, and the analyzing
crystal can be rotated independently, which explains the origin of the name
of the instrument.

13.3.1 Coherent Scattering Cross Section

The general discussion of neutron scattering on crystals with a polyatomic
basis is straightforward in principle, however, for notational simplicity, we
shall refrain from this, and assume that there is a single atom per primitive
cell. We shall denote its position in the mth cell by Rm.

The interaction between the neutron and the nucleus is described by the
Fermi pseudopotential

U(r − Rm) =
2πam�

2

mn
δ(r − Rm) , (13.3.3)

spectroscopy” (BNB) and “for the development of the neutron diffraction tech-
nique” (CGS).
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where am is the scattering length of the atom located at Rm. Even when the
sample is chemically pure, the scattering length can be different for different
isotopes of the same element. Based on the isotopic composition, an average
scattering length may be introduced, and the sample can be conceived as if
atoms with this average scattering length were located at each point of the
lattice. This would lead to perfectly coherent scattering. However, in real sam-
ples an additional incoherent contribution appears in the scattering pattern
because of the random deviations of the scattering length from the average
value. The coherent and incoherent components can be fairly well separated
experimentally. As we shall see, coherent scattering leads to sharp peaks in the
intensity distribution of the scattered beam with respect to energy or scatter-
ing angle, while the incoherent part usually gives a featureless, smeared-out
background. In our calculations we shall focus exclusively on the coherent
contribution.

As demonstrated in the previous chapters on the structure of crystalline
and amorphous materials, the intensity of the scattered beam is proportional
to the K = k−k′ component of the Fourier transform of the pair correlation
function g(r) that characterizes the spatial correlation of scattering centers.
Apart from the contribution of the direct beam, this is just the structure
factor

S(K) =
1
N

∑
m,n

〈
e−iK·RmeiK·Rn

〉
. (13.3.4)

For scattering on a thermally vibrating lattice it is plausible to assume that
the time-dependent displacements u(m, t) need to be taken into account in
the atomic position vectors, and therefore the cross section is related to the
Fourier transform of the time-dependent correlation function, the dynamical
structure factor

S(K, t) =
1
N

∑
m,n

〈
e−iK·(Rm+u(m,t))eiK·(Rn+u(n)

〉
. (13.3.5)

It will be shown in Appendix E that this is indeed so. Here we just summarize
the results derived there.

While neutrons are scattered elastically, without any energy transfer on a
static system of atoms, scattering on a vibrating lattice is not necessarily elas-
tic. According to the Van Hove formula, the doubly differential cross section –
in which variations in the energy of the scattered particle are also taken into
account – is proportional to the temporal Fourier transform of S(K, t):

S(K, ω) =
1
N

∞∫
−∞

dt eiωt
∑
m,n

〈
e−iK·(Rm+u(m,t))eiK·(Rn+u(n))

〉

=
1
N

∞∫
−∞

dt eiωt
∑
m,n

e−iK·(Rm−Rn)
〈
e−iK·u(m,t)eiK·u(n)

〉
,

(13.3.6)
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where ω and the energy transfer Δε are related by

�ω = Δε =
�

2k2

2mn
− �

2k′2

2mn
= Ef − Ei . (13.3.7)

On account of energy conservation, this is the same as the change in the energy
of the sample – that is, the energy of the created or annihilated phonon.

When atomic displacements are expressed, through (12.1.39), in terms of
phonon creation and annihilation operators, the latter appear in the exponents
of the structure factor. Because of their operator character, the exponentials
cannot be merged; the relationship

eAeB = eA+B (13.3.8)

holds only when A and B commute. When they do not, but their commutator
[A,B] commutes with A and B, then the Baker–Hausdorff formula4 applies:

eAeB = eA+Be
1
2 [A,B] . (13.3.9)

Since the thermodynamic average of such terms has to be taken, we shall
make use of another theorem which asserts that for the linear combination

C =
∑

q

(
γqa(q) + γ∗

qa
†(q)

)
(13.3.10)

of the creation and annihilation operators of harmonic oscillators the thermal
average of eiC is given by

〈eiC〉 = e−
1
2 〈C2〉 . (13.3.11)

When this is applied to C = A + B,

〈ei(A+B)〉 = e−
1
2 〈A2+AB+BA+B2〉 . (13.3.12)

From (13.3.9) we then have

〈eiAeiB〉 = e−
1
2 〈A2〉−〈AB〉− 1

2 〈B2〉 = e−
1
2 〈A2〉e−〈AB〉e−

1
2 〈B2〉. (13.3.13)

As suggested by expression (13.3.6) for S(K, ω), we choose A = −K ·
u(m, t) and B = K ·u(n). Since these quantities are the linear combinations
of the phonon creation and annihilation operators with complex conjugate
coefficients, and their commutator is a c-number, the above relations can be
applied. For the first factor in (13.3.13) we introduce the notation

e−W = e−
1
2 〈(K·u(m,t))2〉. (13.3.14)

In homogeneous crystals this quantity is independent of time and the equi-
librium position Rm of the atom. Therefore the third factor gives the same
4

H. F. Baker, 1905, and F. Hausdorff, 1906.
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contribution. The combined factor of exp(−2W ) is called the Debye–Waller
factor.5 This determines the intensity of the scattered beam. Its temperature
dependence will be discussed in the next subsection.

The middle term in (13.3.13) is more interesting. As only those terms
contribute to the thermal average in which the same phonon is created and
annihilated, their contribution is

exp
{∑

q,λ

�

2MNωλ(q)
|K · e(λ)(q)|2

[
〈nλ(q)〉e−i[q·(Rm−Rn)−ωλ(q)t]

+ (〈nλ(q)〉 + 1) ei[q·(Rm−Rn)−ωλ(q)t]
]}

. (13.3.15)

Collecting every term, we have

S(K, ω) =
1
N

∞∫
−∞

dt eiωt
∑
m,n

e−iK·(Rm−Rn)e−2W

× exp
{

�

2MN

∑
q,λ

|K · e(λ)(q)|2
ωλ(q)

[
〈nλ(q)〉e−i[q·(Rm−Rn)−ωλ(q)t]

+ (〈nλ(q)〉 + 1) ei[q·(Rm−Rn)−ωλ(q)t]
]}

. (13.3.16)

The expression in the exponent of the last factor is usually small, therefore
the exponential can be expanded in a power series. Regrouping the terms that
depend on the coordinates of the ions,

S(K, ω) =
1
N

∞∫
−∞

dt eiωte−2W

{∑
m,n

e−iK·(Rm−Rn) (13.3.17)

+
�

2MN

∑
mn

∑
q,λ

|K · e(λ)(q)|2
ωλ(q)

[
〈nλ(q)〉e−i(K+q)·(Rm−Rn)eiωλ(q)t

+ (〈nλ(q)〉 + 1)e−i(K−q)·(Rm−Rn)e−iωλ(q)t
]

+ . . .

}
.

Performing the sum over the lattice points and the integral with respect to
time,

S(K, ω) = e−2W
∑
G

{
δ(K − G)δ(ω) (13.3.18)

+
�

2MN

∑
q,λ

|K · e(λ)(q)|2
ωλ(q)

[
〈nλ(q)〉δ(ω + ωλ(q))δ(K + q − G)

+ (〈n(q)〉 + 1)δ(ω − ωλ(q))δ(K − q − G) + . . .
]}

.

5
P. Debye, 1914, and I. Waller, 1925.
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Because of the presence of the factor δ(ω) the first term corresponds to
an elastic scattering with no energy transfer (Δε = 0). Owing to the factor
δ(K − G), which arises from the sum over the lattice points, the scattered
beam vanishes unless K is a vector of the reciprocal lattice. Thus the Bragg
condition for diffraction is recovered. The other terms correspond to inelastic
processes, in which phonons are emitted or absorbed.

13.3.2 Temperature Dependence of the Intensity of Bragg Peaks

In spite of thermal vibrations, Bragg peaks are not smeared out in the har-
monic approximation. Their intensity is nonetheless reduced, and the Debye–
Waller factor appears in their temperature dependence. Expressing once again
atomic displacements, through (12.1.39), in terms of phonon creation and an-
nihilation operators, and making use of the property that once again only
those terms contribute to the thermal average in which the same phonon is
created and annihilated,

2W =
〈
(K · u(m))2

〉
=
∑
q,λ

�

2MNωλ(q)

∣∣K · e(λ)(q)
∣∣2〈aλ(q)a†λ(q) + a†λ(q)aλ(q)

〉

=
∑
q,λ

�

MNωλ(q)

∣∣K · e(λ)(q)
∣∣2 (〈nλ(q)

〉
+ 1

2

)
. (13.3.19)

In the isotropic case the branches that correspond to the three polarization
directions are degenerate, and the polarization vectors of the longitudinal and
two transverse branches can be taken as the basis vectors of a Cartesian coor-
dinate system. Then summation over the polarization index λ of the branches
leads to the expression

2W =
∑

q

�K2

MNω(q)
(〈

n(q)
〉

+ 1
2

)
. (13.3.20)

Note that via (12.3.2) a very simple relation can be established between this
quantity and the mean square displacement of ions:

2W =
K2

3
〈
u2(m)

〉
. (13.3.21)

When the phonon spectrum is taken in the Debye approximation, the mean
square displacement – and with it, the Debye–Waller factor – can be evaluated.
Using the formulas given in (12.3.10) and (12.3.12),

2W =
3
2

�
2K2

2M
1

kBΘD

[
1 +

2π2

3

(
T

ΘD

)2

+ . . .

]
(13.3.22)
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at low temperatures, and

2W = 6
�

2K2

2M
1

kBΘD

[(
T

ΘD

)
+

1
36

(
ΘD

T

)
+ . . .

]
(13.3.23)

at high temperatures. Since W appears in the exponent, the intensity of the
Bragg peaks decreases with increasing temperature. The decrease in the scat-
tering intensity occurs because neutrons emit virtual phonons and then (after
an extremely short time) reabsorb them, or absorb phonons and after a short
time re-emit them. Energy and momentum conservation is imposed only on
the initial and final states but not on the intermediate virtual state – how-
ever, such processes modify the transition probability, and through it the
scattered intensity. The probability of the process in which the phonon is first
absorbed and then re-emitted is proportional to the thermal population of
phonon states. The other process is proportional to 〈n(q)〉+ 1 because of the
possibility of stimulated emission. This explains the factor 2〈n(q)〉 + 1 in W .
Since an infinite succession of such processes can occur, W appears in the
exponent in the Debye–Waller factor.

13.3.3 Inelastic Phonon Peaks

Having analyzed the first term in the expansion (13.3.18), which corresponds
to elastic scattering (diffraction), let us now turn to the study of higher-order
terms. These describe how additional peaks – which are due to processes with
nonvanishing energy transfer – appear in the scattering pattern, at shifted
positions relative to the Bragg peaks. Owing to the factor δ(K + q − G),
the second term corresponds to a process in which the momentum of the
scattered neutron is �k′ = �k + �q − �G. The energy transfer in the scat-
tering process can be written as Ef = Ei − �ωλ(q) because of the restric-
tion Δε = Ef − Ei = −�ωλ(q). This means that a phonon is absorbed
in the scattering process. In Fig. 13.11 the phonon dispersion relation and
εn(k + q) − εn(k) are plotted against the component of q along the direc-
tion of k. To account for the reciprocal-lattice vector that appears in the
equation for crystal-momentum conservation, the phonon dispersion relation
is repeated periodically, at equivalent wave vectors q.

As the figure shows there are at least two intersection points, i.e., there are
two qs that satisfy both conditions simultaneously. Scattered neutrons must
occur at the corresponding values of energy transfer. The intensity of this pro-
cess is proportional to the thermal occupation 〈n(q)〉 of the phonon state that
has to be annihilated. As (13.3.18) shows, the temperature-dependent Debye–
Waller factor modifies the scattered intensity independently of the momentum
and energy transfer – that is, the intensity of phonon peaks decreases with
increasing temperature in the same way as the intensity of Bragg peaks.

The third term describes processes in which phonons are created. The
presence of the factor δ(K−q−G) implies that the momentum of the neutron
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Fig. 13.11. Phonon and neutron dispersion relations for phonon absorption pro-
cesses. The points of intersection indicate the solutions for which energy and quasi-
momentum conservation are both satisfied

is changed to �k′ = �k−�q−�G, while the restriction Δε = Ef−Ei = �ωλ(q)
shows that the energy of the scattering system is increased by the amount of
the phonon energy: Ef = Ei+�ωλ(q). As this is a stimulated emission process,
its intensity is proportional to 〈n(q)+1〉. The conditions for phonon emission
processes are shown in Fig. 13.12. It can be demonstrated that emission occurs
only above a certain threshold energy, which corresponds to the requirement
that the neutron should possess more energy than the phonon that is to be
created.
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Fig. 13.12. Phonon and neutron dispersion relations for phonon emission processes.
The points of intersection indicate the solutions for which energy and quasimomen-
tum conservation are both satisfied

The equations for energy and crystal-momentum conservation impose se-
vere restrictions on the energy and direction of the scattered beam. When
neutrons of energy εn and wave vector k are incident on the sample, the above
conditions are satisfied only at certain values of the energy for a given direc-
tion of the scattered beam. Using a triple-axis spectrometer, one can change
the energy of the incident beam and its direction relative to the crystallo-
graphic axes of the sample. By measuring the energy of the scattered beam in
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several directions, the changes in energy and crystal momentum permit the
determination of the phonon spectrum.

In higher orders of the expansion (13.3.17) multiphonon processes are ob-
tained with the corresponding restrictions of energy and momentum conser-
vation. These usually give rise to a wide, smeared-out background.

13.3.4 The Finite Width of Phonon Peaks

In contrast to the infinitely narrow δ(ω ∓ ωλ(q))-type peaks of the previous
description, peaks of finite width are observed in experiments, as shown in
Fig. 13.13.

Fig. 13.13. The intensity of scattered neutrons as a function of energy for the one-
phonon absorption peak in aluminum [K.-E. Larsson et al., Proc. of the Symp. on
Inelastic Scattering of Neutrons in Solids and Liquids, Vienna, p. 587 (1960)]

The finite resolution of detectors is just one of the reasons. More important
is that the phonon states obtained in the harmonic approximation are not
exact eigenstates of the system. As we have seen, anharmonicity gives rise to
phonon decay, leading to a finite phonon lifetime. Assume that the probability
of finding the phonon decreases exponentially because of decay processes.
Denoting the inverse lifetime by Γλ(q), the time dependence of the phonon
creation and annihilation operators are expected to be given by

aλ(q, t) = aλ(q)e−iωλ(q)t−Γλ(q)|t|,

a†λ(q, t) = a†λ(q)eiωλ(q)t−Γλ(q)|t| (13.3.24)

instead of (12.1.37). Therefore S(K, ω) in the cross section will have a form
analogous to (13.3.17), however, an exponentially decreasing factor appears
in the time integral because of the finite lifetime. Expression
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∞∫
−∞

dt eiωte±iωλ(q)t−Γλ(q)|t| = 2
Γλ(q)

(ω ± ωλ(q))2 + Γ 2
λ(q)

(13.3.25)

shows that the inelastic peaks that correspond to phonon creation and anni-
hilation are no longer sharp deltas: their intensity distribution is a Lorentzian
curve. The smaller the parameter Γ (i.e, the longer the lifetime) the sharper
the phonon peak. From the peak width the phonon lifetime can be determined
quantitatively.
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Magnetically Ordered Systems

A particularly interesting class of crystalline solids is constituted by those
materials that exhibit regularity not only in the spatial arrangement of atoms
but also in the alignment of their magnetic moments. It was shown in Chap-
ter 3 that in a stand-alone atom or ion the orbital angular momentum L
and the spin S of electrons on incomplete shells give rise to a magnetic mo-
ment −gJμBJ , where J is the dimensionless total angular momentum. Since
the d- and f -electrons of ionic cores are usually localized in solids, too, these
atomic moments are observed in the crystalline phase as well – although the
crystalline field due to neighboring atoms may split the multiply degenerate
ground state of the free ion, and therefore the moment may be modified. When
the interaction between magnetic moments – namely, the quantum mechanical
exchange interaction – is sufficiently strong on the scale of thermal energies,
the magnetic moments of neighboring atoms may mutually align each other
in some direction. It may occur that, in contrast to paramagnets, the orien-
tation of each spin is rigidly fixed, however no correlation is observed in the
orientation of magnetic moments, and the correlation function of spins drops
off rapidly with distance. Since this static disorder is similar to the situation
encountered in glasses, where atomic positions show a similar disorder, such
systems are referred to as spin glasses. We shall analyze the properties of
such materials in Chapter 36 of Volume 3. In the present chapter we shall be
concerned with materials in which magnetic moments are aligned in some –
usually crystallographically determined, high-symmetry – direction in such a
way that their orientation shows long-range correlations. Such structures are
said to be magnetically ordered.

First we shall get acquainted with the magnetic structure of ferromagnets,
antiferromagnets, and ferrimagnets, which are the most common families of
magnetically ordered materials. Then we shall examine the interactions that
are responsible for magnetic ordering. At sufficiently high temperatures ther-
mal fluctuations disrupt this order; the mechanism is similar to the melting of
crystal lattices. First the simplest description provided by the mean-field the-
ory will be presented, and then the behavior around the critical point will be
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examined, using a phenomenological approach. After a brief discussion of the
role of anisotropy in magnetic ordering we shall survey some properties of the
domain structure, which plays an important role in technical applications of
magnets. The quantum mechanical treatment of the behavior of magnetically
ordered systems will be the subject of the next chapter.

14.1 Magnetic Materials

Atomic magnetic moments in paramagnetic materials become partially or-
dered upon the application of an external magnetic field. In their crystalline
state the majority of the elements show this behavior. However, in certain
3d metals, rare-earth metals, and their compounds atomic magnetic moments
become spontaneously ordered, aligned in a particular direction below a char-
acteristic temperature. Based on the relative orientation of moments, ferro-
magnetic, antiferromagnetic, and ferrimagnetic materials are distinguished.
Below we shall give a brief overview of these three types of magnetic materi-
als, together with their most important properties.

14.1.1 Ferromagnetic Materials

A material is said to be ferromagnetic when the atomic magnetic moments
of equal magnitude are aligned in a common direction by the interactions
among them.1 In the ground state this is perfectly true, however at higher
temperatures alignment in a common direction is valid only in an average
sense. Above a critical temperature TC called the Curie temperature the order
of the magnetic moments is completely destroyed.

Among transition metals with an incompletely filled 3d shell bcc iron (α-
Fe) and fcc nickel become ferromagnetically ordered at relatively high tem-
peratures, so they behave as magnetic materials at room temperature. Cobalt
has two ferromagnetically ordered forms: ε-Co, which has an hcp structure
and is stable at room temperature, and α-Co, which has an fcc structure and
is stable at higher temperatures. Their magnetic transition temperatures (of
the cubic structure for cobalt) and their saturation magnetization values are
listed in Table 14.1. It is still common practice to express saturation magne-
tization in CGS units. To convert it to SI values, 1 gauss (CGS) is equivalent
(=̂) to 103 A/m (SI). Comparison of different sources is sometimes difficult
because some authors use the magnetic polarization J = μ0M , while others
prefer the saturation value of the magnetic moment per unit mass (σs).

In addition to the saturation magnetization, we have also given the mo-
ment μ per atom, which is calculated from it using Avogadro’s number and the
1 In a broader sense a system may be called ferromagnetic even when the ordered

moments are not aligned completely parallel. The requirement is that one com-
ponent should point in the same direction, while the perpendicular components
must cancel out.
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Table 14.1. The critical temperature TC, saturation magnetization Ms, ordered
moment μ, and two parameters that appear in the high-temperature susceptibility:
the effective magneton number peff, and the paramagnetic Curie temperature Θ for
the ferromagnetic 3d elements

Element TC

(K)
Ms

(103 A/m)
μ (T = 0)

(μB)
peff

(T > Tc)
Θ

(K)

Fe 1043 1752 2.226 3.13 1101
Co 1388 1446 1.715 3.15 1415
Ni 627 5210 0.619 1.61 650

molar volume. The reader may realize that the values are different from those
obtained for free ions. For comparison, we also give the magnetic moment – or
more precisely, the effective magneton number peff obtained from the suscep-
tibility measured in the high-temperature paramagnetic phase. Considering
that the saturation moment is |ge|SμB for localized spins of magnitude S,
while the effective moment in the paramagnetic phase is |ge|(S(S + 1))1/2 μB,
the closeness of the low- and high-temperature values indicates that in metal-
lic ferromagnets, too, the momentum that is responsible for magnetism comes
predominantly from core electrons, rather than conduction electrons – the mo-
bile electrons which are not bound to the ion cores, and which are responsible
for metallic conduction. If this were not the case, the atomic magnetic mo-
ment would vanish at the same time as magnetization as the system is heated
above the Curie temperature. Nevertheless the deviations from the free-ion
values indicate that the ferromagnetic character of the elements of the iron
group cannot be explained solely in terms of the localized moments of the ion
cores: conduction electrons contribute as well. In this chapter we shall deal
only with the model of localized spins. The magnetic properties due to mobile
electrons will be discussed in Chapters 16 and 33.

Provided the moments are localized, their orientation in a magnetic struc-
ture can be represented by arrows drawn at the magnetic atoms. The ferro-
magnetic structures in simple, face-centered, and body-centered cubic crystals
are shown in Fig. 14.1.

Since the moment of each magnetic atom points in the same direction
in the ordered state, the translational symmetry of the lattice is not al-
tered by the appearance of magnetic order. The symmetry of the magnetic
structure is nonetheless lower than that of the nonmagnetic crystal because
magnetic moments single out a preferred direction, and hence some of the
rotational or reflection symmetries of the nonmagnetic state may be bro-
ken. For example, in cubic crystals magnetic moments may be aligned in
the direction of a crystallographic axis. This axis is then no longer equiv-
alent with the two others, and so the initial cubic symmetry is reduced to
tetragonal.
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Fig. 14.1. Orientation of ordered magnetic moments in simple, face-centered, and
body-centered cubic crystals

Ferromagnetic materials are found among the metallic and nonmetallic
compounds of several elements with an incomplete 3d shell, not only the three
listed in Table 14.1. Certain rare-earth metals and some of their compounds
also show ferromagnetic properties at low temperatures. A handful of them are
shown in Table 14.2, along with the critical temperature of the ferromagnetic
phase and the saturation magnetization extrapolated to T = 0. As we shall
see, the listed rare-earth metals are not purely ferromagnetic, as magnetic
moments are not perfectly aligned in the ground state, but they possess a
nonvanishing magnetization.

Table 14.2. Curie temperature and saturation magnetization (in units of 103 A/m)
for some ferromagnetic rare-earth metals and their compounds, as well as ferromag-
netic compounds containing 3d elements

Element TC (K) Ms Compound TC (K) Ms Compound TC (K) Ms

Gd 293 2000 EuO 77 1910 Au2MnAl 200 323
Tb 219 1440 EuS 16.5 1184 Cu2MnAl 630 726
Ho 20 2550 GdCl3 2.2 550 MnBi 620 675
Er 18 FeB 598 MnAs 670 870
Dy 85 Fe2B 1043 CrBr3 37 270

As it was mentioned on page 178, in 3d metals the orbital angular mo-
mentum is quenched, and so the localized moment comes entirely from spins.
Consequently the electron g-factor, ge appears in the moment. In rare-earth
ions, where no such quenching occurs, the magnetic moment is calculated from
the total angular momentum J and the Landé factor gJ . Measured data for
the saturation magnetic moment are usually in excellent agreement with the
expected value of the ordered moment for trivalent ions, calculated as gJμBJ
from the data given in Table 3.6.

In each of the above compounds only one component has a nonvanishing
magnetic moment. There exists a special group of ferromagnetic materials in
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which two different types of atom possess a nonzero ordered moment. A few
examples are given in Table 14.3.

Table 14.3. Curie temperature and ordered moment (in Bohr magnetons) for some
ferromagnetic 3d compounds

Compound TC (K) μ μ

Fe3Pt 400 μFe = 2.7μB μPt = 0.5μB

CoPt 750 μCo = 1.6μB μPt = 0.25μB

CoPt3 290 μCo = 1.64μB μPt = 0.26μB

14.1.2 Antiferromagnetic Materials

It was first suggested by L. Néel
2 in 1932 that in addition to ferromagnets

with a macroscopic magnetization there may exist another class of materials,
in which localized magnetic moments are aligned but the net spontaneous
magnetization is nonetheless zero.

This happens because the magnetic moments of half of the atoms point in
one direction, while those of the other half in the opposite direction. However,
the cancellation of the magnetic moments occurs already on atomic scales,
since the atoms with the two spin orientations are arranged in a checkerboard-
like pattern; the magnetic moment of an atom is compensated by that of a
nearest neighbor. Such materials are called antiferromagnetic. The transition
temperatures TN – called Néel temperature – of some antiferromagnetic ma-
terials are listed in Table 14.4. Comparison with Table 14.2 reveals that some
rare-earth metals have both ferromagnetic and antiferromagnetic phases. In
such cases the high-temperature paramagnetic phase is first transformed into
an antiferromagnetic phase (the net spontaneous magnetization remains zero),
and then, at a lower temperature, into the ferromagnetic phase (a nonzero net
spontaneous magnetization appears).

The rare-earth metals listed in the first column crystallize in hexagonal
close-packed structure; the oxides of composition AB in sodium chloride struc-
ture; the oxides and fluorides of composition ABC3 in perovskite structure;
the oxides of composition AB2O4 in spinel structure; the fluorides of compo-
sition XF2 in tetragonal rutile structure – and antiferromagnetic materials of
even more complex structure abound.

In contrast to ferromagnetic systems, many different antiferromagnetic
structures are possible even in the simplest crystal lattices, as the requirement
of zero net moment can be satisfied in various ways. We saw in Chapter 5 that
2

Louis Eugène Félix Néel (1904–2000) was awarded the Nobel prize in 1970
“for [his] fundamental work and discoveries concerning antiferromagnetism and
ferrimagnetism which have led to important applications in solid state physics”.
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Table 14.4. Néel temperature TN for some antiferromagnetic materials

Element TN (K) Compound TN (K) Compound TN (K)

Cr 311 MnO 118 FeS 593
Mn 100 FeO 185 MnF2 72
Ce 12.5 CoO 291 FeF2 79
Nd 19.2 NiO 515 CoF2 38
Sm 106 CuO 230 FeF3 394
Eu 90.5 NdFeO3 760 CoF3 460
Dy 178 LaFeO3 750 K2NiF4 97
Ho 132 KMnF3 88 α-Fe2O3 948
Er 84 KNiF3 275 Cr2O3 318
Tb 230 NiCr2O4 65 MnPt 975
Tm 56 GeFe2O4 10 Mn3Pt 485

even when the restriction of collinearity is imposed – i.e., magnetic moments
can only point in two opposite directions, up and down, for example –, a whole
wealth of magnetic structures can still be found. Without going into details,
we shall just present the antiferromagnetic structures that may occur in cubic
crystals.

In one of the simplest antiferromagnetic structures occuring in simple cu-
bic crystals with a monatomic basis the magnetic moments on adjacent lattice
sites are directed oppositely. This structure, called type-G antiferromagnet, is
shown in Fig. 14.2(c). The atoms with upward (downward) pointing spin form
a face-centered cubic sublattice. The magnetic structure is therefore made up
of two interpenetrating ferromagnetic fcc sublattices of opposite magnetiza-
tion. The six nearest neighbors of each atom are on the other sublattice.
Consequently the magnetic primitive cell is just the primitive cell of the fcc
sublattice.

( )a ( )c( )bType A Type GType C

Fig. 14.2. Antiferromagnetic structures in simple cubic lattices
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Other antiferromagnetic structures are also possible in a simple cubic crys-
tal. Two of them are shown in parts (a) and (b) of Fig. 14.2. In the first case,
called type-A antiferromagnet, magnetic moments are all parallel in the base
plane but oppositely magnetized planes alternate along the perpendicular di-
rection. The primitive translation vector of this magnetically ordered structure
is twice as long in this direction as in the magnetically disordered state. In
the second case, called type-C antiferromagnet, atoms with up and down spin
are arranged in a checkerboard-like pattern in the base plane, and identical
planes are stacked in the perpendicular direction. At first sight the primitive
cell would seem to have been doubled in two directions. However, this is not
so: the new primitive vectors are along the old face diagonals. The volume
of the magnetic primitive cell is thus just twice the volume of the chemical
primitive cell.

While in the previous case (part a) moments were aligned ferromagneti-
cally in the planes (100), now (part b) they are aligned in the planes (110).
In the perpendicular direction [110] oppositely magnetized planes alternate.
Note that in the first case (part c) atomic magnetic moments are aligned fer-
romagnetically in the planes (111), and the magnetization direction alternates
in subsequent planes. Therefore the magnetic moment density shows periodic
variations along the direction [111].

Assuming that magnetic moments are strictly localized on atoms, its spa-
tial distribution can be written as

μ(r) =
∑
m

μ(Rm)δ(r − Rm) , (14.1.1)

where the sum is over the position of each atom with a magnetic moment.
Function μ(Rm) is defined in discrete lattice points, therefore it can be ex-
panded into a Fourier series according to (C.1.49):

μ(Rm) =
1√
N

∑
q

μq eiq·Rm , (14.1.2)

where the sum is over the wave vectors q inside the Brillouin zone. Note that
the spatial distribution of the magnetic moment can be characterized by a
single Fourier component μq for the antiferromagnetic structures presented
above. In the three cases the vectors q are

qA = (π/a)(0, 0, 1) , qC = (π/a)(1, 1, 0) , qG = (π/a)(1, 1, 1) . (14.1.3)

These vectors of the reciprocal space correspond to high-symmetry points of
the Brillouin zone: a face center, an edge center, and a vertex – that is, points
X , M , and R in Fig. 7.2. Similar conclusions are drawn for the antiferromag-
netic structures in body- and face-centered cubic lattices. This is not acci-
dental – however its explanation requires the Landau theory of second-order
phase transitions.
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Up to now we have always spoken of up and down spins. The actual
orientation of the moments with respect to the crystallographic axes – and
thereby the possible directions of the vector μq – is determined by crystalline
anisotropy. Energetically favorable directions usually correspond to some high-
symmetry directions. This is why moments were drawn parallel to one of the
crystallographic axes, although they can equally point in the direction of a
face or body diagonal. We shall discuss this in more detail later.

( )a ( )c( )b

Fig. 14.3. Simple antiferromagnetic structures in body-centered cubic lattices

Three simple structures are possible in a body-centered cubic crystal; they
are shown in Fig. 14.3. In structure (a) the atomic magnetic moments at the
vertices point in the opposite direction as at the body centers. Atoms with up-
ward and downward pointing moments form two interpenetrating simple cubic
lattices. The nearest neighbors of each atom are on the opposite sublattice.
Ferromagnetically coupled planes are perpendicular to the crystallographic
axes. In structure (b) moments are coupled ferromagnetically along one edge
of the cube, and antiferromagnetically along the two others. Ferromagnetic
planes are now perpendicular to one of the face diagonals. In both magnetic
structures the relative orientation of magnetic moments can be specified by a
single vector q, namely

q1 = (2π/a)(0, 0, 1), and q2 = (2π/a)(1
2 ,

1
2 , 0) . (14.1.4)

This is not the case for structure (c). Here the moment of the atom at
a vertex of the cube is antiparallel to the moments of the six second-nearest
neighbors, located at adjacent vertices. The relative orientation is character-
ized by the vector

q3 = (2π/a)(1
2 ,

1
2 ,

1
2 ) . (14.1.5)

This means that atomic moments are coupled ferromagnetically within planes
(111), however, owing to the complex phase factor, the relative orientation of
the moments at body centers with respect to those at vertices is not fixed. To
understand the underlying physical reason consider the nearest neighbors of
an atom: the moment points upward at four of them and downward at the four
others. As the effects of the nearest neighbors cancel out, the direction of the
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moment at the cube center is not specified by the moments at the vertices;
instead, it is determined by the interactions with more distant neighbors.
When the orientation of the moment at a particular cube center is fixed,
then the moments at other cube centers cannot be chosen at will any more:
an alternating pattern has to emerge. From a magnetic viewpoint the lattice
can be decomposed into four face-centered cubic sublattices. The freedom
in the choice of the orientation of the spin at the center manifests itself in
the mathematical description as the requirement that both q3 and −q3 must
appear in the Fourier representation of the moment density. The phases of the
corresponding Fourier components determine the orientation of the atomic
moment at the cell center. When the upper sign is chosen in

μ(Rm) =
1√
2
μ
[
ei(q3·Rm±π/4) + e−i(q3·Rm±π/4)

]
= μ [cos(q3 · Rm) ∓ sin(q3 · Rm)] ,

(14.1.6)

the structure shown in part (c) is obtained; when the lower sign is chosen, the
spin at the center points in the opposite direction.

In terms of the primitive vectors (7.2.7) of the reciprocal of the bcc lattice
the q are expressed as

q1 = 1
2 (b1 + b2 − b3) , q2 = 1

2b3 , q3 = 1
4 (b1 + b2 + b3) . (14.1.7)

It is readily seen in Fig. 7.7 that these vectors q are high-symmetry points –
H , P , and N – at the boundary of the corresponding Brillouin zone.

The simple magnetic structures that occur in face-centered cubic crystals
and their customary notation are shown in Fig. 14.4. For the overwhelming
majority of antiferromagnetic materials with this type of Bravais lattice the
alignment of the moments corresponds to the structures of the first or second
type, although structures of the third and fourth types also exist in nature.

The spatial distribution of magnetic moments can be characterized by a
single vector q in type-I and type-II antiferromagnets, while in type-III and
type-IV structures both qi and −qi appear, in the form given by (14.1.6).
Expressed in terms of the primitive vectors (7.2.12) of the reciprocal lattice,
the vectors q characterizing the magnetic structure are

qI = (2π/a)(0, 0, 1) = 1
2 (b1 + b2) ,

qII = (2π/a)(1
2 ,

1
2 ,

1
2 ) = 1

2 (b1 + b2 + b3) ,

qIII = (2π/a)(1, 1
2 , 0) = 1

4 (b1 + 2b2 + 3b3) ,

qIV = (2π/a)(1
2 ,

1
2 , 0) = 1

4 (b1 + b2 + 2b3) .

(14.1.8)

By way of example, an even more complicated magnetic structure is also
shown in Fig. 14.4. This could be called a four-q version of type-II antiferro-
magnets. It is derived from the simple type-II structure by flipping the atomic
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Type I Type−II

Type−IV 4q ypeT II−

Type−III−

Fig. 14.4. Collinear magnetic structures in face-centered cubic crystals

moments at the face centers. This is possible because nearest-neighbor interac-
tions do not determine the relative orientation of these moments with respect
to the moments at the cube vertices. Specification of the structure requires
four vectors

q = (2π/a)(1
2 ,

1
2 ,

1
2 ) , q′ = (2π/a)(1

2 ,
1
2 ,− 1

2 ) ,

q′′ = (2π/a)(1
2 ,− 1

2 ,
1
2 ) , q′′′ = (2π/a)(− 1

2 ,
1
2 ,

1
2 ) ,

(14.1.9)

and the magnetic moments can be given as

μ(Rm) = 1
2μ

[
−eiq·Rm + eiq′·Rm + eiq′′·Rm + eiq′′′·Rm

]
. (14.1.10)

Apart from the type-IV structure, which occurs very rarely anyway, the
antiferromagnetic structures are again represented by wave vectors q that
correspond to high-symmetry points of the Brillouin zone, namely X , L,
and W .

As it was mentioned in Chapter 8, neutron diffraction is ideally suited to
the determination of magnetic structures. If neutrons interacted only with nu-
clei, the location of the diffraction peaks would permit only the determination
of atomic positions, i.e., the crystal structure. However, through their spin and
magnetic moment, neutrons also interact with electrons on incomplete shells
that carry a nonzero moment. If these moments are arranged in an ordered
magnetic structure, the Bragg condition of elastic magnetic scattering can
only be met by the vectors of the reciprocal of the magnetic Bravais lattice,
i.e., of the lattice spanned by the primitive translation vectors of the magnetic
structure. Since the magnetic primitive cell may be larger than the chemical
one, the primitive vectors of the magnetic reciprocal lattice may be shorter
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than those determined by the nonmagnetic crystal structure. Therefore new
Bragg peaks may appear at certain angles where no nuclear scattering occurs.
Since they show different temperature dependence than the Bragg peaks aris-
ing from nuclear scattering, these satellite peaks permit the determination of
the magnetic structure. An example is shown in Fig. 14.5.

Fig. 14.5. Neutron-diffraction pattern of MnO: (a) in the low-temperature antifer-
romagnetically ordered phase at 80 K; (b) in the magnetically disordered phase at
room temperature. The extra peaks that appear in the magnetic phase are satellites
[C. G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev. 83, 333 (1951)]

When the diffraction peaks are indexed inside the chemical primitive cell,
fractional numbers appear in the indices of the satellites. To ensure that only
integers appear among the indices of the diffraction peaks, the magnetic prim-
itive cell has to be used.

14.1.3 Spiral Magnetic Structures

In the foregoing we have examined magnetic structures in which adjacent
magnetic moments are aligned either parallel or antiparallel. Such so-called
collinear structures are by far the commonest, nevertheless there exist non-
collinear structures as well in which the moments of adjacent atoms are at an
angle to each other. Among such structures the most interesting are the spiral
(helical or conical) structures observed in rare-earth metals. Four examples
are shown in Fig. 14.6.
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c axis c axis c axisc axis

( )a ( )b ( )c ( )d

Fig. 14.6. Noncollinear magnetic structures in rare-earth metals: (a) the helical
structure of dysprosium and holmium; (b) the conical ferromagnetic structure of
holmium and erbium; (c) the sinusoidally modulated conical structure of erbium;
(d) the longitudinal-wave structure of erbium

In the antiferromagnetic phase of dysprosium (between TN and TC) mag-
netic moments lie in the basal plane (the plane perpendicular to the sixfold
axis) and are aligned ferromagnetically within each atomic plane perpendic-
ular to the sixfold axis. However, the moments in adjacent layers make an
angle ϕ with each other, and so the net magnetization of this helical struc-
ture is zero. The spatial variations of the magnetic moments can again be
characterized by a single vector q:

μx(Rm) = μ0 cos(q · Rm) , μy(Rm) = μ0 sin(q · Rm) , μz(Rm) = 0 .
(14.1.11)

Here q is along the sixfold axis but it does not usually correspond to any
high-symmetry point of the Brillouin zone. Consequently the periodicity of
the magnetic structure can be incommensurate with the periodicity of the
lattice. As we shall see in Chapter 29 of Volume 3, the underlying reason is
that the oscillation period of the interaction governing magnetism in these
systems is determined by the Fermi wave number. This is characteristic of
the system of conduction electrons: in particular, it depends on the density of
conduction electrons, and is of the same order as the linear dimensions of the
Brillouin zone – but it may easily be incommensurate with it.
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The same type of helical magnetic structure is observed in the antiferro-
magnetic phase of holmium below 132 K. Around 20 K another phase tran-
sition occurs, and a new (conical) magnetic structure appears in which the
magnetic moment has a nonvanishing component along the sixfold axis. This
component shows ferromagnetic order, whereas the perpendicular component
is left practically unchanged. Thus the magnetic moment rotates on the sur-
face of a cone whose axis is along the c-direction, as shown in Fig. 14.6(b).

Magnetic moments are not perfectly aligned in the low-temperature ferro-
magnetic phase of erbium, either. The magnetic moment has a nonvanishing
ferromagnetic component along the sixfold axis, and another nonvanishing
and rotating component perpendicular to it. Above the ferromagnetic phase
two different antiferromagnetic phases are observed.

Between 18 and 52 K the component in the basal plane still rotates as
one moves along the sixfold axis, but the axial component is also modulated
sinusoidally with a wave vector that is the same as for the component in the
basal plane. Finally, between 52 and 84 K the magnetic moments are oriented
along the c-axis but their lengths oscillate sinusoidally. This pattern is called
the longitudinal-wave structure.

14.1.4 Ferrimagnetic Materials

A magnetically ordered crystalline material is called ferrimagnetic if it is made
up of two or more kinds of antiferromagnetically coupled ions whose magnetic
moments are of different magnitude. Their existence was first pointed out
by L. Néel in 1948. The magnetic moments are localized on rare-earth ions
or trivalent iron ions, but similar magnetic materials can be obtained by ar-
ranging divalent and trivalent ions at the sites of two appropriately chosen
sublattices in a complicated structure. Even when the magnetic primitive cell
contains the same number of ions of each type – which is not always the case
–, the two types of magnetic moment do not cancel perfectly in the antipar-
allel arrangement because of their different magnitudes. Table 14.5 shows the
critical temperature for magnetic ordering for some ferrimagnetic materials.

Table 14.5. Magnetic ordering temperature for some ferrimagnetic materials

Ferrite spinels TC (K) Garnets TC (K)

Fe3O4 860 Y3Fe5O12 550
CoFe2O4 790 Eu3Fe5O12 565
NiFe2O4 850 Sm3Fe5O12 580
MnFe2O4 570 Gd3Fe5O12 560
CuFe2O4 730 (Y,Al)3Fe5O12 520
(Ni,Al)Fe2O4 2130 (Y,Gd)3Fe5O12 520
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A characteristic class of ferrimagnets is that of ferrites – compounds of
composition M2+Fe3+

2 O2−
4 (where M stands for Co, Ni, Cu, Zn, or Cd) that

crystallize in spinel or inverse spinel structure. A particular representative of
this class is magnetite, Fe3O4, a compound that contains di- and trivalent
iron ions and crystallizes in inverse spinel structure, as specified on page 224.
The oxygen atoms form an fcc lattice. The tetrahedral sites of this lattice
are occupied by Fe3+ ions; their moments are aligned. They are antiferro-
magnetically coupled to the moments of Fe2+ ions – which occupy the oc-
tahedral sites – and the remaining Fe3+ ions. The moment of divalent ions
gives rise to the net magnetization below the critical temperature of magnetic
ordering.

Another characteristic class of ferrimagnets is that of rare-earth garnets.
Their general composition is M3+

3 Fe3+
5 O2−

12 , or in an alternative notation
3M2O3 · 5Fe2O3. These crystals belong to the space group O10

h (Ia3̄d), and
their primitive cells contain eight M3Fe5O12 units each, hence the Pearson
symbol of this structure is cI160. Of the five Fe3+ ions per unit three have
their moments aligned ferromagnetically; the two others are antiparallel to
them, just like the moments of the rare-earth ions.

Because of the appearance of spontaneous magnetization, ferrimagnets
could be expected to show a similar magnetic behavior to ferromagnets. How-
ever, the temperature dependence of the moment of rare-earth ions and iron
ions may be essentially different in garnets. It may occur upon heating that
the magnetization of the oppositely directed sublattices cancel out at the com-
pensation point Tcomp, and then a finite magnetization reappears at higher
temperatures. Such an example is shown in Fig. 14.7.

Fig. 14.7. The temperature dependence of the magnetization of gadolinium–iron
garnet [E. E. Anderson, Proc. of the Int. Conf. on Magnetism, p. 660 (1964)]
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14.2 Exchange Interactions

The dipole–dipole interaction

Hdipole–dipole =
μ0

4π

[
μ1 · μ2

r3
− 3(μ1 · r)(μ2 · r)

r5

]
(14.2.1)

is always present between atomic magnetic moments. To evaluate the order of
magnitude of the energy of this interaction, we shall assume that the magnetic
moment is on the order of a Bohr magneton μB, while the distance r is on
the order of the Bohr radius a0. Making use of the formulas for μB and a0

expressed in terms of more fundamental physical constants (see Appendix A),
and the relation ε0μ0 = 1/c2,

E ≈ μ0

4π
μ2

B
a3
0

=
(

e2

4πε0�c

)2
e2

16πε0a0
. (14.2.2)

The first term is recognized as the square of the fine-structure constant
α ≈ 1/137, and the second as the Rydberg energy, 13.6 eV. The energy of
dipole–dipole interactions is therefore on the order of a meV at most. Such
an energy cannot be responsible for the ordering of magnetic moments at
temperatures as high as several hundred kelvins, as it could not stabilize any
structure against the disruptive effects of thermal fluctuations. Dipole–dipole
interactions play an important role only in magnetic anisotropy and the de-
magnetization of finite samples. Magnetism is due to another, much stronger
interaction that is rooted in the Coulomb interaction but manifests itself only
for quantum mechanical reasons: the exchange interaction.

14.2.1 Direct Exchange

As it was demonstrated in Section 4.4 on covalent bonds, even though the
Coulomb interaction is spin independent, the singlet and triplet states of a
two-electron hydrogen molecule are not of the same energy. According to
(4.4.17), their energy difference is

εt − εs = 2C
(
N2

− −N2
+

)− 2I
(
N2

− + N2
+

)
= 2

C|S|2 − I

1 − |S|4 , (14.2.3)

where S is the overlap integral between the wavefunctions of neighboring
atoms, C is the two-particle interaction matrix element, and I is the exchange
integral. These quantities are defined in (4.4.15) and (4.4.18).

When the overlap integral is small, the energy difference is determined by
the exchange integral. It is therefore customary to call J , defined through the
formula

εt − εs = −2J , (14.2.4)
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the exchange energy. Depending on the overlap, this quantity may be positive
as well as negative; in one case the triplet, and in the other, the singlet state
of the two spins is energetically more favorable.

When the higher-lying states of the two-atom, two-electron system are
ignored because they cannot be excited thermally, and only the lowest-lying
singlet and triplet states are considered, the Hamiltonian that determines the
state of the electrons in this subspace of the Hilbert space can be replaced by
a particularly simple effective Hamiltonian, as it was pointed out by Heisen-

berg and Dirac.3 By making use of the property that the eigenvalue of the
square of the total spin S = s1 + s2 is zero in the singlet state (S = 0) and
two in the triplet state (S = 1), the effective Hamiltonian

Heff = εs + 1
2 (εt − εs)S2 = εs − JS2 (14.2.5)

indeed leads to the same energy eigenvalues as the full Hamiltonian in the
space of the singlet and triplet states. Since

S2 = (s1 + s2)2 = s2
1 + s2

2 + 2s1 · s2 , (14.2.6)

and the eigenvalues for s2
1 and s2

2 are both 3/4, the effective Hamiltonian can
be written as

Heff = −2J
(
s1 · s2 + 3

4

)
+ εs . (14.2.7)

This form of the effective Hamiltonian is called the Heisenberg exchange
Hamiltonian (also known as the Heisenberg–Dirac(–Van Vleck) Hamiltonian),
and J is the Heisenberg exchange coupling. Considering spins as classical vec-
tors, the triplet state – which is energetically more favorable when J > 0 –
can be pictured as a state with two parallel spins. This is the situation of
ferromagnetic coupling. On the other hand, when J < 0 the two spins are
antiparallel in the classical picture. This corresponds to an antiferromagnetic
coupling.

14.2.2 Indirect Exchange in Metals

Direct exchange is the consequence of the Pauli principle, i.e., the antisym-
metry of the total wavefunction of two electrons with spins S1 and S2. Direct
exchange can occur only if there is a finite overlap between the wavefunctions
of the two electrons. This mechanism cannot account for the magnetic proper-
ties of every single magnetically ordered material. There are a large number of
magnetic materials in which the distance between neighboring magnetic atoms
is large, and therefore direct exchange can be ignored. In such materials the
spins of core electrons localized on magnetic ions interact via another mecha-
nism in which the other electrons of the system play an essential intermediary
role.

3
W. Heisenberg, 1926, and P. A. M. Dirac, 1926.
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One possibility that is realized in metals is that the interaction is mediated
by mobile conduction electrons. This mechanism can play an important role
in elements of the iron group, while it becomes clearly dominant in rare-earth
metals. This indirect interaction between two spins will be derived in the
Appendix I of Volume 2. Below we shall briefly illustrate the processes that
give rise to the interaction, using some concepts, applicable to the more or less
freely moving electrons, that will be thoroughly discussed only in Volume 2.
Suppose that a localized spin S1 is placed at R1 = 0, and its projection along
the quantization axis is Sz1 . If this spin interacts with the conduction electrons
through a so-called s–d interaction (characterized by the coupling constant
Js–d), it will modify the distribution of conduction electrons around itself. The
total charge density – which is just the sum of the electron densities for the
two spin orientations, ρ(r) = ρ↑(r) + ρ↓(r) – remains uniform in space, while
the spin density, σ(r) = 1

2 (ρ↑(r) − ρ↓(r)) becomes position dependent. Far
from the localized moment spin density decreases as 1/r3 but oscillates with
a wavelength determined by the formula 2kFλ = 2π, where kF is the Fermi
wave number, the characteristic wave number of the system of electrons. This
is the Ruderman–Kittel oscillation,4 which will be discussed in Chapter 29.
According to the results derived there,

σ(r) =
k3
F

6π2�2

3meJs–dS
z
1kF

π
F (2kFr) , (14.2.8)

where
F (x) =

x cosx− sinx

x4
. (14.2.9)

Since the spatial periodicity of the oscillation is determined by kF, which
depends on the number of free electrons, and is therefore characteristic of the
system of electrons, it may be incommensurate with the periodicity of the
lattice.

If another localized moment with spin S2 is placed at a distance r from S1,
its energetically most favorable orientation is determined by the local value of
the spin density induced by S1. When the projection of S2 along the z-axis
is Sz2 , its interaction with the local spin density gives a contribution

E = − 1
2Js–dS

z
2 [ρ↑(r) − ρ↓(r)] = Sz1S

z
2

4meJ
2
s–dk

4
F

(2π)3�2
F (2kFr) (14.2.10)

to the energy. The same would be obtained if the interaction between the two
rigidly fixed spins were assumed to be given by the effective Hamiltonian

Heff = −2J(R1 − R2)Sz1S
z
2 , (14.2.11)

where

J(r) =
2meJ

2
s–dk

4
F

(2π)3�2
F (2kFr) . (14.2.12)

4 M. A. Ruderman and C. Kittel 1954.
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Depending on their distance, the parallel or antiparallel alignment of S2 and
S1 would be energetically more favorable.

In reality the orientation of the spins is not fixed; conduction electrons
and localized spins may mutually flip each other. Nevertheless the total spin
of the two localized moments and the electron system is conserved. Thus
in certain processes mediated by electrons the spins of conduction electrons
remain eventually unchanged, while the two localized moments are flipped.
The two localized spins can then be considered to have flipped each other,
just like in the case of direct exchange.

As demonstrated in detail in Appendix I of Volume 2, the effective Hamil-
tonian eventually takes the form

Heff = −2J(R1 − R2)S1 · S2 , (14.2.13)

with the same J(r) as above. This is the RKKY interaction.5 Depending
on the separation of the atoms, this interaction may be either ferromagnetic
or antiferromagnetic. It gives rise to the formation of long-wavelength spi-
ral structures in rare-earth metals, and also plays an important role in the
development of quenched disorder in spin glasses.

14.2.3 Superexchange

In 1934 H. A. Kramers proposed another mechanism that would give rise
to an effective exchange interaction between two magnetic atoms when there
is no overlap between the wavefunctions of the electrons that are responsi-
ble for the magnetic behavior (and so direct exchange is not possible). In
this mechanism the interaction is not mediated by the conduction electrons
but by the electrons localized on the nonmagnetic atoms between the two
interacting magnetic atoms. Now the wavefunctions of nonmagnetic atoms
have to overlap with the wavefunctions of the electrons that are responsible
for magnetism. This indirect exchange is called superexchange. The antiferro-
magnetism of certain fluorides (MnF2, FeF2, CoF2) and oxides (e.g., MnO)
can be interpreted in terms of this interaction.

A more precise description of the interaction was given by
P. W. Anderson (1950 and 1959). Below we shall present just a simple
illustration. Consider two transition-metal ions (e.g., Mn2+), with a number
of oxygen, fluorine, chlorine, or some other similar ions between, and suppose
that the wavefunction of their outermost p state overlaps with the wavefunc-
tion of the d-electrons of the transition-metal ion.

According to Hund’s rules, the ground state of the Mn2+ ion – which
contains five electrons on its 3d shell (3d5) – is 6S5/2, with quantum numbers
S = 5/2, L = 0, J = 5/2, while the O2− or F− ion is in state 1S0 on account of
its completely filled 2p6 shell, and the total moment of the oxygen vanishes.
5

M. A. Ruderman and C. Kittel 1954, T. Kasuya 1956, and K. Yosida 1957.
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The total spin of a system made up of an oxygen atom in a singlet state
and two manganese ions of spin S = 5/2 is 0, 1, 2, . . . , or 5. Just like in a
hydrogen molecule, where the energy is different for the singlet and triplet
states, different energies are obtained for the six possible values of the total
spin, even though the 3d states do not overlap directly, and the elementary
interactions are spin independent. The energy of the system thus depends on
the relative orientation of the spins of the two manganese ions.

In contrast to the calculation of the hydrogen molecule, one has to go to
the fourth order of perturbation theory. Starting from the initial configuration
Mn2+O2−Mn2+, one has to allow for the possibility of an electron jumping
from the oxygen to a manganese ion, i.e., the appearance of configurations
Mn+O−Mn2+ and Mn2+O−Mn+ as intermediate states.

Instead of a detailed calculation we shall just list the intermediate states
that lead to an exchange. Suppose that an electron of the O2− ion jumps to
the metal ion on the left-hand side. In this intermediate state the Mn+ ion
of configuration 3d6 is in state 5D, while the O− ion of configuration 2p5 is
in state 2P. Now the O− has a spin of 1/2, and can enter into a two-step
direct-exchange process with the Mn2+ ion on the right-hand side: the two
ions exchange an electron, and the spin of the O− ion may be reversed. In
the last step an electron jumps back to the O− ion from the Mn+ ion on the
left-hand side. Since in the meantime a spin reversal occurred on the oxygen
ion, the spin of the rendered electron is opposite to the initial one (with which
the whole process started). Thus an effective exchange occurs between the
two Mn2+ ions. The electron-shell configurations and spin orientations in the
initial and final, as well as intermediate states are shown in Fig. 14.8.

Mn2+ (3d5) ↑↑↑↑↑ O2− (2p6) ↑↑↑↓↓↓ Mn2+ (3d5) ↓↓↓↓↓
Mn+ (3d6) ↑↑↑↑↑↓ O− (2p5) ↑↑↑↓↓ Mn2+ (3d5) ↓↓↓↓↓
Mn+ (3d6) ↑↑↑↑↑↓ O2− (2p6) ↑↑↑↓↓↓ Mn3+ (3d4) ↓↓↓↓
Mn+ (3d6) ↑↑↑↑↑↓ O− (2p5) ↑↑↓↓↓ Mn2+ (3d5) ↓↓↓↓↑
Mn2+ (3d5) ↑↑↑↑↓ O2− (2p6) ↑↑↑↓↓↓ Mn2+ (3d5) ↓↓↓↓↑

Fig. 14.8. The configuration of electron spins in the initial, three intermediate, and
final states of the superexchange interaction

Naturally, there exist other processes in which the spin projection is con-
served. By collecting them it can be established that the singlet state of the
two spins is the energetically most favorable arrangement. This also means
that the two spins are not rigidly fixed in opposite directions but can flip
each other. Neglecting those states (of higher energy) where the magnitude
of the spin is changed, the spectrum of the low-lying states can be identi-
fied with that of an effective Heisenberg exchange Hamiltonian. However, the
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strength of the superexchange interaction is rather difficult to calculate from
first principles. The sign of the coupling depends on the population of the
levels. In line with the previous results for the manganese ion, superexchange
is antiferromagnetic for the heaviest 3d metals. The antiferromagnetic struc-
ture of insulating metal oxides can be interpreted along these lines, and the
same kind of superexchange is responsible for the magnetic coupling in high-Tc
superconductors that contain Cu–O planes.

14.2.4 Double Exchange

In 1951 C. Zener proposed another exchange mechanism in oxides of mixed
valence where an oxygen ion is surrounded by two transition-metal ions of
unequal valence. Let us consider the configuration in Fig. 14.9, where the
O2− ion is between a Mn4+ ion (which has three electrons on its 3d shell) and
an Mn3+ ion (which has four electrons on its 3d shell).

Mn4+ O2− Mn3+ Mn3+ O2− Mn4+

3d3 2p6 3d4 ⇒ 3d4 2p6 3d3

S = 3/2 S = 0 S = 2 S = 2 S = 0 S = 3/2

Fig. 14.9. The electron configuration of the ions in the initial and final states of
the double exchange interaction

Via two subsequent processes, in which an electron jumps from the oxygen
to the Mn4+ ion, and then the empty level on the oxygen is filled by an
electron of the Mn3+ ion, an electron of the Mn3+ is eventually transferred
to the Mn4+ ion. In reality, this process can occur only when the spins of
the two ions are parallel. To understand this let us examine how the atomic
levels are populated by 3d electrons in Mn3+ and Mn4+ ions. In a cubic
crystal field d levels are known to be split into threefold degenerate t2g and
twofold degenerate eg levels. According to Hund’s first rule, the spins of the
four electrons of the Mn3+ ion and of the three electrons of the Mn4+ ion are
parallel on these levels. Consequently the total electron spin of the Mn3+ ion
is S = 2, while that of the Mn4+ ion is S = 3/2. This is shown in Fig. 14.10.

When only the initial and final states of the two-step transfer process are
considered, it is as if the two manganese ions had exchanged their spins. In
this phenomenon, called double exchange, an electron from the eg level of
the Mn3+ ion hops via the oxygen ion on the so far empty eg level of the
Mn4+ ion. According to Hund’s first rule the spin of the eg electron has to
be aligned with the spins of the three electrons on the t2g level, otherwise the
energy of the state would be much higher. Thus it is energetically unfavor-
able for a spin-up eg electron to hop on a Mn4+ ion if its total spin S = 3/2
points downward. Therefore spin exchange (or the hopping of the electron)
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Fig. 14.10. The d electrons of Mn3+ and Mn4+ ions on the t2g and eg levels

takes place with high probability only when the spins of neighboring ions are
aligned ferromagnetically. Since hopping lowers the total energy by reducing
the kinetic energy, ferromagnetic alignment of the spins is energetically fa-
vored. Thus, in contrast to superexchange, which is often antiferromagnetic,
double exchange is always ferromagnetic. The propagation (hopping) of the
electrons in the crystal indicates that such systems are metallic.

Such a double exchange plays an important role in magnetite, which con-
tains divalent (Fe2+, 3d6) and trivalent (Fe3+, 3d5) iron ions. The spins of
the Fe2+ and Fe3+ ions at octahedral sites are aligned by double exchange in-
teractions. On the other hand, the spins of the Fe3+ ions at tetrahedral sites
are antiparallel to the spins at octahedral sites because of antiferromagnetic
superexchange interactions.

14.3 Simple Models of Magnetism

In the previous section we saw that, up to an additive constant, the interaction
between two localized spins S1 and S2 can always be written as

H = −2JS1 · S2 , (14.3.1)

independently of the specific mechanism of the exchange – although the cou-
pling strength J depends on the character of the exchange and on the separa-
tion of atomic spins. We now have to generalize this formula to the case when
atomic spins are arranged in a regular crystalline structure.

14.3.1 The Isotropic Heisenberg Model

It is not easy to generalize the exchange interaction between two spins to a
solid that contains a large number of magnetic atoms. For simplicity we shall
assume that a net spin Si is located at each lattice point Ri of the crystal.
It is known that the atomic magnetic moment can also come from orbital
motion; indeed, one should therefore deal with the total angular momentum
J i and the corresponding magnetic moment μi = −gJμBJ i. However, the
microscopic origin of the moments is of little importance for the phenomena
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discussed here, therefore we shall continue to speak about spins and use the
notation Si – although by this we shall invariably mean the total localized
angular momentum of the ion. The only notational hint for this will be using
g instead of ge or gJ for the g-factor.

The net spin Si can be the resultant of several electronic spins, and elec-
trons may be exchanged with the electrons of several neighboring atoms. The
problem is greatly simplified by the assumption that the total interaction
can be written as the sum of pairwise interactions. If it is also assumed that
for each atom it is sufficient to consider only the ground-state configuration
as determined by Hund’s rules (or by the splitting due to the crystal field),
and higher-lying excited states can be neglected, then using some simple con-
siderations the results obtained for two electrons are fairly straightforwardly
generalized without a full quantum mechanical treatment. In the subspace of
the Hilbert space that contains the lowest-lying states the magnitude of each
atomic spin (and therefore of each atomic magnetic moment) is constant. In-
teractions may at most change their orientations. If the interaction between
the atomic spins at lattice points Ri and Rj is given by a term of the form
of the Heisenberg exchange interaction, Si · Sj , and the strength of the in-
teraction can be characterized by the exchange coupling – i.e., the amplitude
Jij = J(Ri − Rj), which depends on the separation of the spins –, then the
system of spins is described by the effective Hamiltonian

H = −
∑
ij

JijSi · Sj . (14.3.2)

Since the indices i and j both run over the entire lattice, each pair of
spins occurs with the correct weight factor. It was first pointed out by
W. Heisenberg (1928), and independently of him by J. Frenkel that fer-
romagnetism can be explained in terms of such pairwise interactions between
localized spins. For this reason the model described by the above Hamiltonian
is called the Heisenberg model of magnetism. According to the foregoing, states
in which electrons are transferred from one atom to the other (for no mat-
ter how short a period) are not present explicitly in this model. Only the
orientation of atomic moments is considered.

At low temperatures the exchange interaction does not usually leave
atomic spins independent: they tend to align each other into a preferred direc-
tion, giving rise to an ordered structure. The simplest of them is ferromagnetic
order.This is observed in materials in which the sign of the exchange inter-
action is positive, hence it lines up neighboring spins in the same direction.
However, the exchange interaction is not necessarily of ferromagnetic charac-
ter. As it was discussed at the beginning of this chapter, ferromagnets form
a relatively small group of magnetically ordered materials. More numerous
are antiferromagnets, in which the dominant nearest-neighbor coupling is an-
tiferromagnetic (Jij < 0), which gives rise to an ordered array of alternately
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oriented spins – the details of which depend on the coupling between more
distant neighbors.

In magnetic materials described with the isotropic Heisenberg model the
interaction fixes only the relative orientation of spins; it does not determine
their exact spatial orientation, as the Hamiltonian itself possesses full spher-
ical symmetry (O(3) or SU(2) symmetry). The ordered ferromagnetic or an-
tiferromagnetic state does not show this continuous spherical symmetry. The
continuous symmetry of the Hamiltonian is therefore spontaneously broken
in the actual state. This has important consequences on the low-energy ex-
citation spectrum of the system. Namely, according to Goldstone’s theorem
presented in Chapter 6, when the ground state of the system breaks a contin-
uous symmetry of the Hamiltonian, there must be a gapless bosonic branch
in the excitation spectrum.

Turning on a symmetry-breaking magnetic field facilitates the mathemat-
ical determination of the symmetry-breaking solutions of the Hamiltonian.
Since magnetization will point in this direction, it is practical to choose this
direction as the spin quantization axis. At the end of the calculation we may
take the limit of vanishing magnetic field. In this approach the Hamiltonian
is customarily written as

H = −
∑
i,j

JijSi · Sj − gμBB ·
(∑

i

Si

)
, (14.3.3)

where g is the g-factor of the localized moment. If the moment comes entirely
from the spin then g is the g-factor of the electron, which is negative. If
the total atomic moment has a part that comes from the orbital angular
momentum then the Landé factor gJ must be used, however comparison with
(3.2.70) shows that g = −gJ .

The field B can be replaced by μ0H. If we were to use the full magnetic
induction μrμ0H for B then the effects of other moments would be counted
twice in magnetically ordered materials as the exchange part of the Heisenberg
model contains precisely the effects of the neighbors.

14.3.2 Anisotropic Models

We have seen that the effective Hamiltonian of the exchange interaction be-
tween two spins is spherically symmetric, therefore it is invariant under ar-
bitrary rotations of the two spins through a common angle. For spins in a
crystal lattice the interaction is expected to depend on the orientation of the
spins with respect to the crystalline axes, since the symmetries of the crystal
also have to appear in the form of spin–spin interactions. When only terms
bilinear in the spin are allowed, the magnetic behavior for systems with cubic
symmetry remains to be described by the Hamiltonian

H = −
∑
i,j

JijSi · Sj , (14.3.4)
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since the only bilinear expression in the spin components that is invariant
under the symmetries of a cubic crystal is the isotropic combination

H = −
∑
i,j

Jij
{
Sxi S

x
j + Syi S

y
j + Szi S

z
j

}
. (14.3.5)

In tetragonal crystals one axis has a privileged status over the two others.
This uniaxial anisotropy has to be reflected in the magnetic Hamiltonian, too.
Choosing the z-axis along this direction, the Hamiltonian that possesses the
symmetries of the crystal is

H = −
∑
i,j

Jij
{
Sxi S

x
j + Syi S

y
j + ΔSzi S

z
j

}
. (14.3.6)

When Δ > 1, the z components of the spins are coupled most strongly, so a
nonvanishing magnetization appears preferentially along this direction. In this
case the magnetic material has an easy axis of magnetization.When Δ < 1, the
spin components in the (x, y) plane are coupled strongly, and so magnetization
appears in this plane – the easy plane of magnetization. In an extreme case
of uniaxial anisotropy only the z components of the spins are coupled:

HIsing = −
∑
i,j

JijS
z
i S

z
j . (14.3.7)

This is the Ising model,6 a fundamental model of statistical physics, since
the partition function can be calculated as a sum over all possible classical
configurations of the spin projections. On the other hand, when Δ = 0, the
XY model is recovered:

HXY = −
∑
i,j

Jij
{
Sxi S

x
j + Syi S

y
j

}
. (14.3.8)

In tetragonal crystals, in addition to the contribution of ion pairs to uni-
axial anisotropy, a term that corresponds to single-ion anisotropy,

−D
∑
i

(Szi )
2 (14.3.9)

may also appear in the Hamiltonian. In cubic crystals the first anisotropic con-
tribution contains the fourth-order product of spins. The single-ion anisotropy
term is

Haniso = −K
∑
i

[
(Sxi )4 + (Syi )

4 + (Szi )
4
]
. (14.3.10)

We shall choose the z-axis as the quantization direction, and instead of
the operators Sx and Sy we shall repeatedly use the spin-projection-lowering
and -raising operators
6

E. Ising, 1925. It would be more appropriate to call it the Lenz–Ising model,
since it was proposed by Ising’s supervisor, W. Lenz, in 1920.
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S+
i = Sxi + iSyi , S−

i = Sxi − iSyi . (14.3.11)

In terms of these the Hamiltonian of the isotropic and uniaxially anisotropic
systems are

H = −
∑
i,j

Jij
{

1
2

(
S+
i S−

j + S−
i S+

j

)
+ Szi S

z
j

}
(14.3.12)

and
H = −

∑
i,j

Jij
{

1
2

(
S+
i S−

j + S−
i S+

j

)
+ ΔSzi S

z
j

}
. (14.3.13)

These forms show even more clearly that the Heisenberg model – unlike the
Ising model – is truly quantum mechanical. And although the classical model
is more easily treated, we shall deal with the quantum mechanical model, as
it corresponds more closely to physical reality.

14.4 The Mean-Field Approximation

In the introductory section magnetically ordered states were characterized
by the relative orientation of a classical vector, the expectation value of the
spin or magnetic moment. At low temperatures the orientation of spins is
such that their projection along the preferred direction is maximum with
high probability. As temperature is increased, the expectation value of the
magnetic moment decreases and finally vanishes. The simplest description of
this phenomenon can be given in the framework of the mean-field theory. This
approximation is based on the assumption that the alignment of individual
spins is not sensitive to the thermal or quantum fluctuations of neighboring
spins. Assuming that neighboring moments can be replaced by their average,
they create an effective static magnetic field, and the magnetic moment of the
atom lines up with this. On the other hand, when the g-factor in μi = gμBSi

(i.e., the negative of the Landé factor) is negative, spins line up in the opposite
direction.

To determine the field generated by the neighbors, we shall write the spin
operator Si in the equivalent form

Si = 〈Si〉 + (Si − 〈Si〉) , (14.4.1)

where 〈〉 denotes the thermal average. Substituting this in the Hamiltonian,

H = −
∑
i,j

Jij (Si − 〈Si〉 + 〈Si〉) · (Sj − 〈Sj〉 + 〈Sj〉) − gμ0μBH ·
(∑

i

Si

)

=
∑
i,j

Jij〈Si〉〈Sj〉 − 2
∑
i,j

Jij〈Sj〉Si − gμ0μBH ·
(∑

i

Si

)

−
∑
i,j

Jij (Si − 〈Si〉) · (Sj − 〈Sj〉) . (14.4.2)
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The mean-field approximation consists of neglecting the last term that
is of second order in the fluctuations, i.e., in the deviations Si − 〈Si〉 from
the mean value. The Hamiltonian obtained in this way is linear in the spin
operators, so it can be rewritten as

Hmean field =
∑
i,j

Jij〈Si〉〈Sj〉 − gμBBeff ·
(∑

i

Si

)
, (14.4.3)

where
Beff = μ0H +

2
gμB

∑
j

Jij〈Sj〉 . (14.4.4)

Using the magnetic moment instead of the spin,

Beff = μ0H +
2

g2μ2
B

∑
j

Jij〈μj〉 . (14.4.5)

Even in the absence of an external magnetic field, the effective magnetic field
– which depends on the average magnetic moment of the neighboring spins
– can give rise to magnetic ordering. This effective internal field is called the
mean field or the Weiss field, as it was P. Weiss (1907) who gave the first
phenomenological account of ferromagnetism based on the assumption of such
an internal field. The term molecular field is also used.

14.4.1 The Mean-Field Theory of Ferromagnetism

In a ferromagnetically ordered state the mean value of the atomic magnetic
moment is the same at each lattice point, therefore Beff is independent of the
choice of the lattice point. Making use of the relation M = N〈μi〉/V between
magnetization and atomic moment,

Beff = μ0H +
2V

Ng2μ2
B

∑
j

JijM . (14.4.6)

As in the ferromagnetic case (Jij > 0) the internal field is parallel to the
external field, scalar quantities can be used:

Beff = μ0H +
2V

Ng2μ2
B

∑
j

JijM . (14.4.7)

In the previous formula the exchange interaction appears in the combination

J0 =
∑
j

Jij . (14.4.8)

Expressing the effective field in terms of this,
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Beff = μ0H + λM , where λ =
2V

Ng2μ2
B
J0 . (14.4.9)

The coefficient λ specifies the relation between the internal field and magne-
tization in the Weiss theory. If exchange occurs only with the z nearest neigh-
bors then J0 = Jz. When second- and third-neighbor interactions cannot be
neglected, J0 is the weighted average of the various coupling constants. The
necessary condition for ferromagnetic ordering is that J0 should be positive.
This can happen even if some of the latter couplings are antiferromagnetic.

It was derived on page 57 in Section 3.2.6 on paramagnetism that the
magnetization due to the magnetic moment of an atom of spin S in a magnetic
field B is

M =
N

V
|g|μBSBS(β|g|μBSB) , (14.4.10)

where BS(x) is the Brillouin function. In the mean-field theory this expression
has to be modified by replacing the magnetic induction B by the effective field
Beff, leading to

M =
N

V
|g|μBSBS(β|g|μBSBeff) . (14.4.11)

In contrast to the paramagnetic case, the effective field itself also depends on
magnetization. Therefore the self-consistent equation

M =
N

V
|g|μBSBS

(
β|g|μBS(μ0H + λM)

)
(14.4.12)

has to be solved now.
In the absence of an external magnetic field the argument of the Brillouin

function is
x = β|g|μBSλM =

2V SJ0M

N |g|μBkBT
. (14.4.13)

Expressing condition (14.4.12) of self-consistency in terms of this variable,

kBT

2J0S2
x = BS(x) . (14.4.14)

The solutions to this equation are easily obtained graphically by plotting the
left- and right-hand sides separately, as in Fig. 14.11. The thermal average of
the magnetic moment can be read off from the intersection points.

The slope of the expression on the left-hand side is proportional to tem-
perature. Therefore above a certain critical temperature TC only the trivial
solution x = 0 – and consequently M = 0 – exists. The same solution ex-
ists also below TC, however it becomes unstable. In this regime there exists
another solution with finite magnetization whose free energy is lower.

According to the expansion (3.2.84), the slope of the Brillouin function at
x = 0 is (S+1)/3S, thus the equation that determines the critical temperature
of the ferromagnetic state, the Curie temperature is
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Fig. 14.11. Graphical determination of the mean-field magnetization from the inter-
section points of the Brillouin function and straight lines of temperature-dependent
slope

kBTC

2J0S2
=

S + 1
3S

, (14.4.15)

from which

TC =
2J0S(S + 1)

3kB
. (14.4.16)

Spontaneous magnetization vanishes above TC. However, an external mag-
netic field aligns the magnetic moments, at least partially. The spin system
then behaves paramagnetically. To determine the magnetic susceptibility, we
shall take (14.4.11) and (14.4.12), but this time in the presence of a magnetic
field. For weak fields it is sufficient to keep the leading, linear term in the
expansion of the right-hand side, obtained via (3.2.84). In this approximation

M =
N

V
|g|μBS

S + 1
3S

|g|μB

kBT
SBeff

=
N

V
|g|μBS

S + 1
3S

|g|μB

kBT
S

(
μ0H +

2V
Ng2μ2

B
J0 M

)
.

(14.4.17)

Substituting TC from the boxed formula,

M =
N

V

g2μ2
B

kBT

S(S + 1)
3

μ0H +
kBTC

kBT
M . (14.4.18)

Solving this equation for magnetization,

M =
N

V

g2μ2
BS(S + 1)

3kB(T − TC)
μ0H . (14.4.19)

Thus in the paramagnetic region the susceptibility satisfies the Curie–Weiss
law :
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χ =
N

V

g2μ2
Bμ0S(S + 1)

3kB(T − TC)
. (14.4.20)

It is immediately seen that the susceptibility diverges as the critical temper-
ature TC of the ferromagnetic transition is approached.

Below but close to TC an explicit formula can be obtained for the tempera-
ture dependence of spontaneous magnetization as well by taking into account
the first correction beyond the linear term in the expansion of the Brillouin
function. The self-consistent solution of the equation then leads to

M ∝ (TC − T )1/2 . (14.4.21)

In the critical point itself magnetization is a nonlinear function of the magnetic
field, as (14.4.18) shows that the term which is linear in magnetization drops
out at T = TC. This leads to

M ∝ H1/3 . (14.4.22)

(a) (b)

Fig. 14.12. Comparison of the measured magnetic properties of nickel [P. Weiss and
R. Forrer, Ann. de Phys. 5, 153 (1926)] with the results obtained in the mean-field
theory for S = 1/2. (a) Magnetization and (b) inverse susceptibility, as functions of
temperature

At low temperatures magnetization tends to the saturation value M0 =
(N/V )|g|μBS. Using the expansion cothx ≈ 1 + 2e−2x in the form (3.2.79)
of the Brillouin function for large values of its argument, the leading-order
contribution is

BS(x) ≈ 1 − 1
S

e−x/S . (14.4.23)
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In this region the first correction to the temperature dependence of magneti-
zation is obtained by replacing the magnetization by its saturation value on
the right-hand side of (14.4.12). Then

M = M0

[
1 − 1

S
exp

(
− 3

S + 1
TC

T

)]
. (14.4.24)

At intermediate temperatures no analytical expression can be derived. Fig-
ure 14.12 shows the measured temperature dependence of magnetization and
inverse susceptibility for nickel, compared with the results obtained in the
mean-field approximation for a spin S = 1/2 using the Brillouin function, and
from the Curie–Weiss law.

A similar behavior is observed in other ferromagnetic materials, too. This
leads to the conclusion that the mean-field theory provides a qualitatively
good description for the finite-temperature behavior of the properties of fer-
romagnetic materials, however, its quantitative predictions are incorrect at
low temperatures as well as close to the critical point – where analytical re-
sults can be obtained. To improve the description, one has to go beyond the
mean-field approximation. At low temperatures a more accurate treatment of
the low-energy excited states is required, while in the vicinity of the critical
point critical fluctuations need to be taken into account.

14.4.2 The Mean-Field Theory of Antiferromagnetism

We have seen that even in cubic crystals various antiferromagnetic structures
may occur. The reason for this is that besides the exchange interaction be-
tween nearest-neighbor moments, second- and third-neighbor couplings also
play a role in determining the relative orientation of magnetic moments. This
can be demonstrated most easily on the example of structures formed in a
simple cubic lattice.

We shall consider the spins Si localized at lattice points as classical vectors,
expand the spin density

S(r) =
∑
i

Siδ(r − Ri) (14.4.25)

into a Fourier series, and assume that the magnetic structure can be repre-
sented by a single Fourier component, i.e.,

S(r) = Sqeiq·r , (14.4.26)

which is equivalent to saying that localized spins can be given in the form

Si = Sqeiq·Ri . (14.4.27)

This choice is justified for collinear structures, where the upward or downward
direction of the spin vector is determined by the phase factors. Taking the



14.4 The Mean-Field Approximation 479

magnitude of the vector Sq to be S, and assuming that the strength of the
exchange interaction is J1 between first and J2 between second neighbors, the
energy per spin is

E/N = −2J1S
2
[
cos qxa + cos qya + cos qza

]
(14.4.28)

−2J2S
2
[
cos(qx + qy)a + cos(qx − qy)a + cos(qy + qz)a

+ cos(qy − qz)a + cos(qz + qx)a + cos(qz − qx)a
]
.

The energy expression takes its minima for vectors q whose components are
related by

sin qxa = sin qya = sin qza = 0 (14.4.29)

or by
cos qxa = cos qya = cos qza = −J1/4J2 , (14.4.30)

provided |J2| > |J1|/4. The latter would lead to an incommensurate structure,
however the energy associated with such a structure is never an absolute
minimum. Apart from the vector q0 = (0, 0, 0), which corresponds to the
ferromagnetic state, the inequivalent solutions of interest correspond to the
vectors

q1 = (π/a)(0, 0, 1), q2 = (π/a)(1, 1, 0), q3 = (π/a)(1, 1, 1) . (14.4.31)

These are just the vectors given in (14.1.3); they correspond to the structures
shown in Fig. 14.2. From the minimum of the energy it can be determined
which structure is stable for given signs and ratio of J1 and J2. This is shown
in Fig. 14.13.
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Fig. 14.13. The range of stability for magnetic structures in a simple cubic crystal
associated with different vectors q in the space of the couplings J1 and J2

The stability condition for various antiferromagnetic structures can be
determined along the same lines in other crystal lattices, too.

In some of the presented antiferromagnetic structures upward- and
downward-pointing atomic spins are arranged in such a way as to make up



480 14 Magnetically Ordered Systems

two simple interpenetrating sublattices in such a way that the nearest neigh-
bors of each atom with an up spin are atoms with a down spin, and vice
versa. This situation is observed in the antiferromagnetic structure formed in
a simple cubic lattice – shown in Fig. 14.2(c) – in which up and down spins
alternate along the edges, forming face-centered cubic sublattices. Another
example that occurs in body-centered cubic lattices is shown in Fig. 14.3(a);
here the spins at the vertices of the cubic primitive cell point in the oppo-
site direction as spins at the cell centers. Up and down spins now make up
simple cubic sublattices. Other antiferromagnetic structures, especially those
formed in face-centered cubic lattices, are more complicated. Whichever atom
is chosen, among its neighbors there are some with parallel and some with
antiparallel spin, and so the decomposition requires at least four sublattices:
two with spins up, and two with spins down.

For simplicity, we shall deal only with the properties of antiferromagnetic
materials that can be decomposed into two sublattices, and in which each
of the N atoms in volume V is surrounded by z first neighbors located on
the other sublattice. We shall denote the sublattices by A and B, and their
lattice points by i and j, respectively. We shall also assume that the exchange
interaction acts only between nearest neighbors: Jij = J < 0, where i and
j denote nearest neighbor lattice points, which are necessarily on opposite
sublattices. The Hamiltonian can be written as

H = −2
∑
〈i,j〉

JSi · Sj − gμBμ0H ·
(∑
i∈A

Si +
∑
j∈B

Sj

)
, (14.4.32)

where label i runs over sublattice A, and label j over sublattice B, and 〈i, j〉 in
the first term denotes the constraint that i and j should be nearest neighbors.
Since each pair occurs only once in the sum, a factor of two appears in front
of the first term compared to the ferromagnetic case.

The mean-field approximation is introduced in the same way as for ferro-
magnets. By neglecting second-order terms in the deviation from the mean
value,

Hmean field = 2
∑
〈i,j〉

J〈Si〉〈Sj〉 − 2
∑
〈i,j〉

J〈Si〉Sj − 2
∑
〈i,j〉

J〈Sj〉Si

−gμBμ0H ·
(∑

i

Si +
∑
j

Sj

)
. (14.4.33)

This expression can be interpreted again by saying that spins feel an effective
field Beff. However spins on opposite sublattices are aligned in different di-
rections, so the effective fields are different on the two sublattices – but they
are independent of the lattice point on each sublattice:
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Beff,A = μ0H +
2

gμB

∑
j∈B

J〈Sj〉 , (14.4.34-a)

Beff,B = μ0H +
2

gμB

∑
i∈A

J〈Si〉 . (14.4.34-b)

Along with spins, magnetic moments will also be different on the two
sublattices. Let us therefore introduce the magnetization of the sublattices by
the definition

MA =
1
V

gμB
∑
i∈A

〈Si〉 , MB =
1
V

gμB
∑
j∈B

〈Sj〉 . (14.4.35)

Sublattice magnetizations are aligned with the effective field on the sublattice,
and their magnitude is given by

MA =
N

2V
|g|μBSBS(β|g|μBSBeff,A) ,

MB =
N

2V
|g|μBSBS(β|g|μBSBeff,B) ,

(14.4.36)

in analogy with (14.4.12). The factor 1/2 appeared because each sublattice
contains N/2 magnetic atoms.

We shall first examine the ordered phase, in which sublattice magnetiza-
tions are along an axis, one of them pointing upward, and the other downward:
MA = −MB. Owing to the antiferromagnetic coupling J < 0, in the absence
of an external magnetic field the effective field on sublattice A can also be
written as

Beff,A =
4V

Ng2μ2
B
zJMB =

4V
Ng2μ2

B
z|J |MA . (14.4.37)

Substituting this into the self-consistent equation for the sublattice magne-
tization, the same form is obtained as in the ferromagnetic case – with the
only difference that the number of atoms is now N/2 instead of N . Sublat-
tice magnetization depends on temperature in the same way as spontaneous
magnetization of ferromagnets does. Following the same steps as in the mean-
field theory of ferromagnetism, the critical temperature of magnetic ordering
– called the Néel temperature – is given by

TN =
2|J |zS(S + 1)

3kB
. (14.4.38)

To determine the behavior of susceptibility above TN, we take the linear
expansion of the Brillouin function in the presence of a magnetic field:

MA =
N

2V
g2μ2

B
kBT

S2S + 1
3S

(
μ0H +

4V
Ng2μ2

B
JzMB

)
,

MB =
N

2V
g2μ2

B
kBT

S2S + 1
3S

(
μ0H +

4V
Ng2μ2

B
JzMA

)
.

(14.4.39)
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The sum of the two equations gives

MA + MB =
N

V

g2μ2
Bμ0S(S + 1)

3kBT
H +

2JzS(S + 1)
3kBT

(MA + MB) . (14.4.40)

Making use of formula (14.4.38) for the Néel temperature,

MA + MB =
N

V

g2μ2
Bμ0S(S + 1)

3kBT
H − kBTN

3kBT
(MA + MB) . (14.4.41)

Solving this equation for the net magnetization,

M = MA + MB =
N

V

g2μ2
Bμ0S(S + 1)

3kB(T + TN)
H . (14.4.42)

This leads to the following temperature dependence of the magnetic suscep-
tibility in the paramagnetic phase above the Néel temperature:

χ =
N

V

g2μ2
Bμ0S(S + 1)

3kB(T + TN)
. (14.4.43)

This expression is analogous to the Curie–Weiss law, which gives the sus-
ceptibility of ferromagnets above the Curie temperature; the only difference
is that TC is now replaced by −TN. For this reason, susceptibility remains
finite at the critical temperature of the magnetic transition, that is to say
the divergence observed in the Curie point of ferromagnets does not appear.
This might be surprising at first, since both the ferromagnetic and antiferro-
magnetic phase transitions are of second order, and fluctuations are expected
to play equally important roles at the critical temperature in the two cases.
However, the order parameters are different, so the critical behavior manifests
itself in different quantities.

In ferromagnets the magnetic order parameter is the uniform magnetiza-
tion. Its long-wavelength fluctuations govern the critical behavior around the
critical point TC, and give rise to the divergence of susceptibility in a uniform
magnetic field. In contrast, the order parameter in antiferromagnets is the sub-
lattice magnetization, more precisely MA−MB. According to the Fourier rep-
resentation (14.1.2), when the magnetic moment varies periodically in space
this difference is proportional to the Fourier coefficient associated with the
wave vector q0 of the antiferromagnetic structure. Therefore fluctuations do
not become critical in the long-wavelength limit either but at wavelengths that
correspond to the periodicity of the antiferromagnetic structure. By consid-
ering the wave-number-dependent susceptibility – i.e., the magnetic response
to finite-wavelength perturbations – as a function of k, no divergencies are
observed at k = 0 (which is associated with a uniform field), only around
k = q0. This component of the susceptibility corresponds to the response
to an alternating magnetic field (staggered field) that is opposite on the two
sublattices. It is therefore called staggered susceptibility.
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Below the Néel temperature the net magnetization vanishes. If the ori-
entations of the moments on the two sublattices would remain each other’s
opposite in an external magnetic field, energy could be reduced only by mak-
ing the lengths of the moments unequal on the two sublattices. In fact in
the energetically most favorable arrangement the sublattice magnetizations
are not aligned with the field lines: they are tilted symmetrically and make an
angle θ with the direction perpendicular to the field, as shown in Fig. 14.14(a).
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� �
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Fig. 14.14. (a) The orientation of the sublattice-magnetization vectors of an
isotropic antiferromagnet in a magnetic field. (b) The temperature dependence of
susceptibility

In the mean-field theory the sublattice magnetization MA of sublattice A
must be aligned with the effective field acting on the sublattice,

Beff, A = μ0H +
4V

Ng2μ2
B
JzMB = μ0H + λMB , (14.4.44)

that is, just like MA, Beff, A also has to make an angle θ with the direction
perpendicular to the magnetic field H. Writing this condition in terms of the
components of Beff, A, and bearing in mind that the Weiss coefficient λ is now
negative,

μ0H − |λ|MB sin θ

|λ|MB cos θ
= tan θ . (14.4.45)

In weak magnetic fields θ is small, so the moments are almost perpendicular
to the field. Expanding the trigonometric functions to leading order,

μ0H = 2|λ|MBθ . (14.4.46)

A similar expression applies to the magnetization of the other sublattice, too.
Expressing the component of the induced magnetization in the direction of
the magnetic field,

M = (MA + MB) sin θ ≈ (MA + MB) θ =
μ0H

|λ| . (14.4.47)

Substitution of the expression for λ into this formula gives the susceptibility,
which is independent of the sublattice magnetization and therefore of temper-
ature as well:
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χ⊥ =
N

V

g2μ2
Bμ0

4|J |z =
N

V

g2μ2
Bμ0S(S + 1)
6kBTN

. (14.4.48)

The symbol ⊥ in the subscript refers to the almost perpendicular orientation
of the moments with respect to the magnetic field.

Comparing this result with (14.4.43), the expression for the susceptibility
above the Néel temperature, the same value is obtained at the critical point.
Thus in an isotropic antiferromagnet susceptibility is constant below the Néel
temperature, and starts to decrease above it. As illustrated in Fig. 14.14(b),
at very high temperatures the same 1/T dependence is observed as in para-
magnets (see Curie’s law on page 52).

However, there are no perfectly isotropic materials in which this behavior
could be observed. The inevitable anisotropy stemming from the crystalline
structure gives rise to interactions that will keep spins along a preferred crys-
tallographic direction. If the weak external magnetic field also acts in this
direction, then anisotropy does not let spins rotate away from this direction
and be almost perpendicular to the field. The susceptibility measured under
such circumstances is the so-called parallel susceptibility, χ‖. To determine it,
one should start with (14.4.36), but assume that the magnetization of one
sublattice is along the external magnetic field, while that of the other is along
the opposite direction. At finite temperatures, where the magnitude of the
sublattice magnetization is smaller than the saturation value, the magnetic
field increases the magnetization on the sublattice where it is aligned with the
field, and decreases it on the other sublattice. The result is a highly temper-
ature dependent net magnetization and susceptibility – which vanish in the
T → 0 limit. The temperature dependence of parallel susceptibility is shown
in Fig. 14.14(b). In macroscopic samples the direction of sublattice magne-
tization may vary from domain to domain. Therefore measurements of the
susceptibility give a weighted average of χ‖ and χ⊥, specifically

χ =
1
3
χ‖ +

2
3
χ⊥ . (14.4.49)

According to the foregoing, in antiferromagnets that exhibit sufficiently
strong uniaxial anisotropy sublattice magnetization is along the easy axis of
magnetization even in the presence of a magnetic field. Spins will rotate away
from this direction – that is, the magnetic field will overcome anisotropy – only
when the magnetic field applied in the direction of easy magnetization exceeds
a threshold value. In such a field spins will suddenly turn from the parallel
direction to a configuration in which the sublattice magnetizations are oriented
symmetrically and make an angle θ with the easy axis of magnetization. This
first-order phase transition is therefore called spin-flop transition, and the
resulting phase is the spin-flop phase. When the field is increased even further,
the sublattice magnetizations become more and more aligned with the field,
and finally a perfectly collinear structure arises through a second-order phase
transition. The theoretically predicted and experimentally measured phase
diagrams are shown in Fig. 14.15.
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Fig. 14.15. The phase diagram (temperature vs. magnetic field plot) of an
anisotropic antiferromagnet with an easy axis of magnetization. Part (a) shows a
schematic phase diagram, while part (b) is the measured phase diagram of MnF2

below the Néel temperature [Y. Shapira and S. Foner, Phys. Rev. B 1, 3083 (1970)]

14.4.3 The General Description of Two-Sublattice
Antiferromagnets

The above simple treatment of antiferromagnets led to the result that in the
paramagnetic region the magnetic susceptibility can be written as

χ =
C

T + TN
, (14.4.50)

where TN is the Néel temperature. Experiments, on the other hand, have
shown that while in the vast majority of antiferromagnetic materials the tem-
perature dependence of susceptibility is fairly well approximated by the for-
mula

χ =
C

T + Θ
, (14.4.51)

the value of Θ is nevertheless different from the Néel temperature. As data in
Table 14.6 indicate, the deviation can sometimes be very large.

This deviation is the result of the applied approximation, whereby only
the exchange interaction between nearest neighbors was taken into account,
and so the behavior of each sublattice was entirely determined by the effective
field due to the other sublattice. To demonstrate this, we shall determine the
critical temperature and the Θ parameter of two-sublattice antiferromagnets



486 14 Magnetically Ordered Systems

Table 14.6. Néel temperature and the characteristic temperature Θ that appears
in the fit of susceptibility data

Material TN(K) Θ(K) Material TN(K) Θ(K)

MnO 118 610 FeS 593 917
FeO 185 570 KMnF3 88 158
CoO 291 330 MnF2 72 113
NiO 518 2000 Cr2O3 318 1070

for the case when the exchange interaction between second neighbors (located
on the same sublattice) cannot be neglected.

We shall denote the strength of the exchange interaction between nearest
neighbors on opposite sublattices by JAB; the number of nearest neighbors (on
sublattice B) of an atom on sublattice A by zAB, and the same for an atom
on sublattice B by zBA. Along the same lines, we shall denote the strength
of the exchange interaction between second neighbors (located on the same
sublattice) by JAA and JBB, and the number of second neighbors by zAA and
zBB, respectively. We shall also assume that the two sublattices are of the same
structure, that is zAB = zBA, JAA = JBB, and zAA = zBB. In the mean-field
theory the sublattice magnetization has to be determined self-consistently
from the equations

MA =
N

2V
|g|μBSBS(β|g|μBSBeff,A) ,

MB =
N

2V
|g|μBSBS(β|g|μBSBeff,B) ,

(14.4.52)

where the effective field acting on the spins of sublattice A is given by the
generalization of (14.4.37),

Beff,A =
4V

Ng2μ2
B
zABJABMB +

4V
Ng2μ2

B
zAAJAAMA . (14.4.53)

The effective field acting on sublattice B is given by an analogous formula.
In the absence of a magnetic field, and in the vicinity of the phase transi-

tion point, where the sublattice magnetization is small, the expansion of the
Brillouin function leads to the system of equations

MA =
2S(S + 1)

3kBT
(zABJABMB + zAAJAAMA) ,

MB =
2S(S + 1)

3kBT
(zBAJBAMA + zBBJBBMB) .

(14.4.54)

Nontrivial solutions exist only when the determinant of the coefficients
vanishes. When the nearest-neighbor interaction is antiferromagnetic, i.e.,
JAB < 0, the physically meaningful solution for the transition temperature is
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TN =
2S(S + 1)

3kB
(zAB|JAB| + zAAJAA) . (14.4.55)

To determine the susceptibility in the disordered phase, a weak external
field is turned on. The effective field on the atoms in sublattice A is then

Beff,A = μ0H +
4V

Ng2μ2
B
zABJABMB +

4V
Ng2μ2

B
zAAJAAMA . (14.4.56)

Using the linear expansion of the Brillouin function, the sublattice magneti-
zation in this field is

MA =
N

2V
g2μ2

B
S(S + 1)

3kBT

[
μ0H +

4V
Ng2μ2

B
(JABzABMB + JAAzAAMA)

]
.

(14.4.57)
Adding this expression to the analogous one for the other sublattice,

MA + MB =
N

V

g2μ2
Bμ0S(S + 1)

3kBT
H

+
2S(S + 1)

3kBT
(JABzAB + JAAzAA) (MA + MB) .

(14.4.58)

Using the form (14.4.51) for the susceptibility, some rearrangement leads to

Θ =
2S(S + 1)

3kB
(zAB|JAB| − zAAJAA) . (14.4.59)

Comparison with expression (14.4.55) for the Néel temperature shows that
Θ > TN if the second-neighbor interaction is also antiferromagnetic. This
applies to the majority of cases.

14.4.4 The Mean-Field Theory of Ferrimagnetism

Within the framework of the mean-field theory, ferrimagnets can be treated
much in the same manner as antiferromagnets. In the simplest case the lattice
may be decomposed into two sublattices, however, the sublattice magnetiza-
tions do not cancel each other now. Either because the magnetic atoms on the
two sublattices are unequal in number, or because their magnetic moments
are of unequal magnitude. We shall examine the latter case, and generalize
the equations derived for the sublattice magnetizations in antiferromagnets
by letting the spin magnitudes (SA and SB) as well as the exchange integrals
be different on the two sublattices:

MA =
N

2V
|g|μBSABSA(β|g|μBSABeff,A) ,

MB =
N

2V
|g|μBSBBSB(β|g|μBSBBeff,B) .

(14.4.60)
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In the presence of an applied magnetic field, the effective fields on the two
sublattices are

Beff,A = μ0H + λAAMA + λABMB ,

Beff,B = μ0H + λBAMA + λBBMB .
(14.4.61)

Depending on the signs and magnitudes of the coupling constants, the tem-
perature dependence of the net magnetization traces out strikingly different
curves, as shown in Fig. 14.16.
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Fig. 14.16. Various possibilities for the temperature dependence of magnetization
in ferrimagnets. Dashed lines indicate the slope at T = 0. Above TC long-dashed
lines show the inverse susceptibility

In the simplest case the temperature dependence of the full magnetization
is similar to that of ferromagnets. At low temperatures variations are very
small, until the magnetization gradually decreases to zero at a finite tempera-
ture TC. In some materials magnetization may nevertheless vary substantially
with temperature even at very low temperatures, while in others magnetiza-
tion may not be a monotonic function of temperature but have a maximum
instead. Even more interesting is the case where the oppositely directed sub-
lattice magnetizations cancel (compensate) each other at a finite temperature
Tcomp < TC. The net magnetization vanishes at this temperature, and reap-
pears at higher temperatures. This is shown for gadolinium–iron garnet in
Fig. 14.7.

14.5 The General Description of Magnetic Phase
Transitions

The low-temperature magnetically ordered phase is always separated from
the high-temperature paramagnetic phase by a first- or second-order phase
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transition. In the previous section this transition was described using the
Heisenberg Hamiltonian, and the temperature dependence of magnetization
and susceptibility were determined on both sides of the transition point. In
all our previous examples the transitions were of second order, that is magne-
tization and sublattice magnetization appeared gradually, not with an abrupt
discontinuity. While this is not always the case, second-order magnetic phase
transitions are very common, therefore we shall give a concise overview of
the general theory of second-order transitions. We shall demonstrate that the
characteristic physical quantities of the magnetic system can be derived with-
out making specific assumptions about the Hamiltonian, and that the effects
of fluctuations may also be taken into account by going beyond the mean-field
approximation.

14.5.1 The Landau Theory of Second-Order Phase Transitions

In 1937 L. D. Landau
7 put forward a general phenomenological theory for

the description of second-order phase transitions. He considered the sudden
change of symmetry as one of the most important characteristics of such tran-
sitions. At high temperatures the system is in a disordered state that possesses
high symmetry. At lower temperatures a more ordered – and consequently less
symmetric – state occurs, therefore the higher symmetry of the previous phase
is broken. The two phases are distinguished by the existence and nonexistence
of some symmetries, therefore a sharp line can be drawn between the two. In
Landau’s approach order can be characterized quantitatively by an order pa-
rameter, which is zero in the disordered phase and nonzero in the ordered
phase. The physical meaning of the order parameter is determined by the
character of the transition. In ferromagnetic ordering magnetization itself can
serve as an order parameter, while in antiferromagnetic ordering the sublattice
magnetization is a good candidate. In order–disorder transitions in alloys the
concentration of individual components on the sublattices is a possible choice.
When superfluidity and superconductivity are analyzed, the wavefunction of
the condensate proves to be an appropriate order parameter. Below we shall
demonstrate that, regardless of the physical meaning of the order parameter,
general statements can be made about the variations of the free energy and
other physical quantities during the phase transition.

Landau based the description of second-order phase transitions on the
following assumptions:

1. The phase transition is continuous. This means that the order parameter
ψ0 – which vanishes in the disordered phase but takes a nonzero value in
the ordered phase below the critical temperature Tc – varies continuously
in the phase transition. If the order parameter changed discontinuously to
a finite value, the phase transition would be of first order.

7 See footnote on page 28.
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2. A free-energy-like quantity F can be introduced, which can be defined even
for the nonequilibrium values ψ of the order parameter. This quantity has
its minimum at the equilibrium value ψ0 of the order parameter, and this
minimum value is just the equilibrium value of the free energy. Therefore
F must have its minimum at ψ = 0 in the disordered phase and at a finite
ψ0 in the ordered phase (i.e., below the critical temperature Tc).

3. F is an analytic function of ψ, that is, it can be expanded into a power
series of ψ. Since the order parameter varies continuously in the vicinity
of the transition point, only the first few terms need to be retained if the
behavior of the system is studied in a small temperature range around Tc.

4. The expansion coefficients are analytical functions of temperature.

For simplicity we shall assume that the order parameter is a real scalar,
although this is not always the case.8 It follows from the above assumptions
that the expansion of F is

F = F0 + A(T )ψ2 + 1
2B(T )ψ4 + . . . . (14.5.1)

The linear and cubic terms are missing for simple reasons. The linear term
must be absent, otherwise ψ0, the order parameter at the minimum of the
free energy, would be nonzero everywhere – with the possible exception of
the point where the coefficient of the linear term vanishes –, and so there
would be no order–disorder transition. The cubic term must also be absent,
otherwise the position of the minimum would not change continuously with
temperature – recall that the temperature dependence appears through the
coefficients A and B – but ψ0 would jump abruptly from zero to a finite value,
which would correspond to a first-order phase transition. Generally speaking,
the requirement that the cubic term should vanish imposes severe restrictions
on the possible transitions. In magnetic transitions the situation is simplified
right from the start by the symmetry properties of the magnetic moment
that permit only even powers of ψ. The free energy is plotted against ψ in
Fig. 14.17; the minimum is at ψ = 0 on one graph, and at a finite value ψ0

on the other.
The previous expression has its minimum at ψ = 0 if the coefficients

A and B are both positive. The minimum is at a finite ψ0 if A < 0 and
B > 0. Therefore the following temperature dependence is required for the
coefficients:

A(T )

⎧⎨
⎩

> 0 , if T > Tc ,

< 0 , if T < Tc ,
(14.5.2)

while B(T ) has to be positive in both regions. Assuming that the coefficients
are analytic, the simplest choice is

A(T ) = a(T − Tc) and B(T ) = B(Tc) = B > 0 . (14.5.3)

8 Generalization to an n-component order parameter is straightforward.
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Fig. 14.17. Free energy as a function of the order parameter in the vicinity of the
critical temperature

Determined from the minimum condition for the free energy, the equilib-
rium value of the order parameter is

ψ2
0(T ) =

⎧⎪⎨
⎪⎩

0 , if T ≥ Tc ,

−A(T )
B

, if T < Tc .
(14.5.4)

The order parameter appears continuously in Tc indeed; its temperature de-
pendence is

ψ0(T ) ∼
√

Tc − T . (14.5.5)

Using the terminology of critical phenomena: the critical exponent of the order
parameter is β = 1/2 in the Landau theory.

This value is used in the determination of the equilibrium value of the free
energy F in the ordered phase. F is smaller than the free energy F0 in the
disordered phase:

F = F0 − A2(T )
2B

= F0 − a2

2B
(T − Tc)2 . (14.5.6)

It follows immediately that the specific heat is not continuous but has a finite
jump in the phase transition point:

ΔC =
a2

B
Tc . (14.5.7)

If the order parameter is linearly coupled to some external field, e.g., mag-
netization to the external magnetic field, then the susceptibility associated
with the response to the external field can also be determined from the Lan-
dau theory. In magnetic systems the energy contribution −M · B due to the
magnetic field has to be taken into account. Choosing the order parameter as
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the component of magnetization along the direction of the field, the equilib-
rium value of the magnetization can be determined from the minimum of the
free energy

F = F0 + A(T )M2 + 1
2BM4 − μ0MH , (14.5.8)

which leads to
2A(T )M + 2BM3 = μ0H . (14.5.9)

Keeping only the leading-order term above the critical temperature Tc,

M =
μ0H

2A(T )
=

μ0H

2a(T − Tc)
, (14.5.10)

so the magnetic susceptibility is

χm =
μ0

2a(T − Tc)
. (14.5.11)

The same temperature dependence has appeared as in the Curie–Weiss law
for ferromagnets. In antiferromagnets, where sublattice magnetization is the
order parameter, susceptibility measured in a uniform field remains finite,
however the staggered susceptibility shows the same kind of singularity at
k = q0, the characteristic wave vector of the antiferromagnetic structure.

The differential susceptibility in the ordered phase can be determined from
the relation

2A(T )
∂M

∂H
+ 6BM2∂M

∂H
= μ0 , (14.5.12)

which is derived from (14.5.9). Substituting the order parameter from (14.5.4),

χm = − μ0

4A(T )
=

μ0

4a(Tc − T )
. (14.5.13)

Susceptibility diverges as the −1st power of |T − Tc| on both sides of the
transition point, thus the critical exponent is γ = 1.

14.5.2 Determination of Possible Magnetic Structures

Up to now the order parameter has been assumed to be a real scalar, therefore
only one second- and one fourth-order term appeared in the expansion of the
free energy. As we shall see in Chapter 26, the analysis of superconductivity
requires that a complex order parameter be used. However, even in magnetic
systems the order parameter may be a multicomponent quantity. One could
think that the vector character of magnetization requires a three-component
order parameter. But the situation is not so simple. The number of compo-
nents and the form of the second- and fourth-order terms in the free energy
expansion are determined by the symmetries of the system.

The free energy of a crystal has to be invariant under all the symmetry op-
erations that take the crystal into itself. To obtain such an invariant expression
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for the free energy when the symmetries of the disordered phase are known,
the order parameter has to be expanded in terms of the basis functions of the
irreducible representations of the symmetry group of the disordered phase,
and then second- and fourth-order invariants have to be constructed from the
expansion coefficients. For simplicity, we shall assume that there are two irre-
ducible representations: a two- and a three-dimensional one with normalized
basis functions φ

(1)
i and φ

(2)
i . The expansion of the order parameter is then

ψ = (c1φ
(1)
1 + c2φ

(1)
2 ) + (d1φ

(2)
1 + d2φ

(2)
2 + d3φ

(2)
3 ) . (14.5.14)

Transferring the transformation properties of basis functions to the coeffi-
cients, only those combinations may appear in the free energy that are invari-
ant under all symmetries of the high-temperature phase. A single second-order
invariant is associated with each irreducible representation, and these appear
with independent coefficients in the expansion of the free energy:

F = F0 + A1(T )(c21 + c22) + A2(T )(d2
1 + d2

2 + d2
3) + . . . . (14.5.15)

We shall start from the disordered phase, where each coefficient Ai(T ) is posi-
tive, otherwise the minimum of F would not occur at vanishing order parame-
ter. In the ordered phase those coefficients (ci, dj , or others if there are further
irreducible representations) acquire a finite value that are associated with that
particular irreducible representation for which the temperature-dependent co-
efficients Ai disappears first (i.e., at the highest temperature). Therefore the
dimension of the order parameter is determined by the dimension of the cor-
responding irreducible representation.

Recall that the irreducible representations of the crystal’s space group are
specified by the wave vector k, which characterizes the behavior of the sys-
tem under spatial translations, and more than one irreducible representation
may be associated with a vector k. The coefficient Ai(T ) obviously depends
on the wave vector k associated with the irreducible representation. To em-
phasize this dependence, the notation Aik(T ) will be used. According to the
previous considerations, the transition temperature Tc and the wave vector k0

characterizing the behavior of the magnetic structure under translations are
determined from the condition that it is the highest temperature where one
of the coefficients Aik(T ) vanishes. We shall demonstrate that barring acci-
dental solutions (which are not the consequences of symmetry considerations)
k0 must be a high-symmetry point of the Brillouin zone.

This is because when the coefficients are continuous functions of k there
is no reason why the linear term of the expansion around a general k0 in
powers of k − k0 should be missing. Consequently, if the coefficient at wave
vector k0 vanishes at a temperature Tc, i.e., Aik0(Tc) = 0, then the linear
expansion of the coefficients in both k−k0 and T −Tc shows that it vanishes
at a higher temperature for some wave vector k that is different from k0 –
in striking contradiction with our assumption. This argument does not apply
to high-symmetry points of the Brillouin zone: symmetry considerations may
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imply that the coefficient has an extremum at such a k0. This explains why in
the overwhelming majority of magnetic structures the wave vector k0, which
describes the spatial modulation of the ordered magnetic moment, is a high-
symmetry point of the Brillouin zone.

14.5.3 Spatial Inhomogeneities and the Correlation Length

The Landau theory leads to the same results as the mean-field theory since
fluctuations are neglected in both. However, experiments show deviations
from the Curie–Weiss law, and magnetization does not vanish in the Curie
point with the exponent predicted by the mean-field theory, as illustrated in
Fig. 14.12. This stems from the assumption that the order parameter is per-
fectly homogeneous in space. In reality, spatial inhomogeneities may become
important in the vicinity of the phase transition point. Owing to thermal fluc-
tuations, order is not perfectly homogeneous under Tc, and even above Tc the
order parameter may acquire a nonzero value locally, over small regions. Nev-
ertheless we cannot speak of a magnetically ordered state, since order can be
observed only over a finite correlation length ξ – in other words, only short-
range order exists, and there is no correlation between more distant regions.
To account for spatial inhomogeneities, we shall write the full free energy of
the system in terms of a free-energy density f(r):

F =
∫

f(r) dr , (14.5.16)

where f(r) can be expressed in a form similar to (14.5.1) using a position-
dependent local order parameter ψ(r). Because of the spatial variations, a new
contribution may appear that is proportional to the square of the gradient of
the order parameter and that corresponds to the energy increment due to
spatial inhomogeneities:

f(r) = f0 + A(T )ψ2(r) + 1
2B(T )ψ4(r) + 1

2C(T ) (∇ψ(r))2 + . . . . (14.5.17)

If the order parameter ψ fluctuates about ψ0, the order parameter of the
homogeneous system satisfying the equation

2A(T )ψ0 + 2B(T )ψ3
0 = 0 , (14.5.18)

then it can be written as ψ(r) = ψ0 + δψ(r), where δψ(r) is small and is
subject to the constraint ∫

δψ(r) dr = 0 . (14.5.19)

Using this decomposition, the leading-order increment of the free energy due
to fluctuations is

δF =
∫

dr
[

1
2C

(∇δψ(r)
)2 + A(T )

(
δψ(r)

)2 + 3B(T )ψ2
0

(
δψ(r)

)2]
. (14.5.20)
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Expanding fluctuations into a Fourier series,

δψ(r) =
1
V

∑
k

ψk eik·r , (14.5.21)

where the homogeneous term that corresponds to k = 0 is missing, thus the
contribution of the fluctuations to the free energy is

δF =
1
V

∑
k

[
1
2Ck2 + A(T ) + 3B(T )ψ2

0

]
|ψk|2 . (14.5.22)

Since the probability for such a fluctuation to occur is given by the Boltzmann
factor

P (δF ) = exp
(
− δF

kBT

)
, (14.5.23)

the thermal average of the square of the component ψk is

〈|ψk|2
〉

=
kBTV

Ck2 + 2A(T ) + 6B(T )ψ2
0

. (14.5.24)

Above Tc, where ψ0 = 0 the amplitude of long-wavelength fluctuations in-
creases as the temperature approaches the transition point. The same is true
below Tc, where ψ2

0 = −A(T )/B, that is

〈|ψk|2
〉

=
kBTV

Ck2 − 4A(T )
. (14.5.25)

Writing this expression in the form

〈|ψk|2
〉

=
χ

1 + (kξ)2
, (14.5.26)

the correlation length ξ is defined as

ξ2 =

⎧⎪⎪⎨
⎪⎪⎩

C

2A(T )
, if T > Tc ,

− C

4A(T )
, if T < Tc .

(14.5.27)

As we shall see, this specifies the natural length scale over which the spatial
correlations between fluctuations decay. On both sides of the transition point
ξ2 diverges as 1/|T − Tc|, i.e., the correlation length itself is proportional to
the inverse square root of |T − Tc|.

To see the significance of ξ, we have to determine the expectation value of
the spatial correlation of fluctuations,

Γ (r) =
〈
δψ(r)δψ(0)

〉
. (14.5.28)



496 14 Magnetically Ordered Systems

By recognizing that 〈|ψk|2〉 is the Fourier transform of this expression, an
inverse transformation gives

Γ (r) ∝
∫

dk
eik·r

1 + (kξ)2
∝ e−r/ξ

r
. (14.5.29)

In the general d-dimensional case (d ≥ 2),

Γ (r) ∝ e−r/ξ

rd−2
. (14.5.30)

Thus ξ is indeed the characteristic length of the exponential decay of corre-
lations. Note that in the critical point, where the correlation length becomes
infinitely large, the decay is no longer exponential but power-law-like.

14.5.4 Scaling Laws

Close to the critical point the behavior of the system can be characterized
by a handful of parameters called critical exponents. In general, these specify
the temperature and field dependence of certain thermodynamic quantities.
In ferromagnetic transitions the quantities of particular interest are

C(T ) ∝ |T − Tc|−α , M(T ) ∝ (Tc − T )β ,

χ(T ) ∝ |T − Tc|−γ , M(H) ∝ H1/δ .
(14.5.31)

The exponent ν that characterizes the divergence of the correlation length is
defined as

ξ(T ) ∝ |T − Tc|−ν , (14.5.32)

while the exponent η specifying the slow spatial decay of the correlation func-
tion of the order parameter in the critical point is defined as

Γ (r) ∝ 1
rd−2+η

. (14.5.33)

For those quantities that can be defined both above and below the critical
temperature – such as specific heat, susceptibility, or correlation length –, the
symbol used for the exponent measured in the range below Tc has an extra
prime compared to the value above Tc.

According to the Landau theory, the above calculations yield α = 0, since
specific heat does not have a singularity only a finite jump, and β = 1/2,
γ = 1, δ = 3, ν = 1/2, η = 0. However, experiments do not confirm these
results. As listed in Table 14.7, the critical exponents measured in ferromag-
netic materials deviate substantially from the values predicted by the Landau
theory. The table contains yet another critical exponent, x, which describes
the temperature dependence of the excitation energies in the spectrum of spin
waves (which will be discussed in the next chapter):
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Table 14.7. Experimental values for some critical exponents

α β γ δ x

Fe −0.12 0.38 1.33 0.37
Co 0.42 1.21 0.39
Ni −0.10 0.38 1.32 4.2 0.39

D ∝ (Tc − T )x . (14.5.34)

In the mean-field approximation x = 1/2.
Using strictly valid thermodynamic relations it can be showed that the crit-

ical exponents must satisfy certain inequalities. For example, the Rushbrook
(a), Griffiths (b, c), and Josephson (d, e) inequalities are9

α′ + 2β + γ′ ≥ 2 , (14.5.35-a)

β(δ + 1) ≥ 2 − α′ , (14.5.35-b)

γ′ ≥ β(δ − 1) , (14.5.35-c)

dν′ ≥ 2 − α′ , (14.5.35-d)

dν ≥ 2 − α . (14.5.35-e)

For the values obtained in the Landau theory, equalities are satisfied in-
stead of the rigorously derived inequalities. Even though the experimental
values of the critical exponents deviate from the predictions of the Landau
theory, the equalities are found to hold for them, too, within experimental
error.

An analysis of the experimental data also reveals another important rela-
tionship for magnetization measured as a function of the reduced temperature
difference

t = |T − Tc|/Tc (14.5.36)

and the magnetic field. Instead of studying directly the t- and H-dependence
of magnetization, M/tβ can be plotted against H/tβδ. The measured values
are then found to lie on a single curve in the vicinity of the critical point.
Formulated mathematically,

M(t,H) = tβf(H/tβδ) , (14.5.37)

or alternatively
H

M δ
= g

(
t

M1/β

)
. (14.5.38)

9
G. S. Rushbrook, 1963, R. B. Griffiths, 1965, B. D. Josephson, 1967.
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To understand this scaling property, B. Widom (1965) assumed that for small
values of t and H the free energy is a generalized homogeneous function of
these variables. This means that the free energy – or more precisely, its singular
part coming from critical fluctuations – satisfies the equation

Fsing(λatt, λaHH) = λFsing(t,H) . (14.5.39)

This implies that specific heat, magnetization, and susceptibility show the
same behavior:

λ2atC(λat t, λaHH) = λC(t,H) ,

λaHM(λatt, λaHH) = λM(t,H) , (14.5.40)

λ2aH χm(λat t, λaHH) = λχm(t,H) .

It is readily established that each critical exponent can be expressed with at
and aH :

α = 2 − 1
at

, β =
1 − aH

at
, γ =

2aH − 1
at

, δ =
aH

1 − aH
. (14.5.41)

This requires an appropriate choice of the scale parameter λ – for example
λ = t−1/at for the specific heat. The above-mentioned scaling property follows
directly from the equation for magnetization. It can be proved in much the
same manner that the singular part of free energy also depends only on a
suitably chosen combination of t and H :

Fsing(t,H) = |t|2−αf±
(

H

|t|βδ
)

. (14.5.42)

Critical exponents are not independent of each other as they can be ex-
pressed with the two exponents in Widom’s homogeneous function. From the
equations on β and δ

at =
1
β

1
δ + 1

, aH = δ
1

δ + 1
. (14.5.43)

Substituting them into the formulas for α and γ, it is readily seen that the
Rushbrook and Griffiths inequalities are replaced by equalities:

α + 2β + γ = 2 , γ = β(δ − 1) . (14.5.44)

In the phase transition point t = 0 and H = 0. If either t or H is nonzero,
the system is no longer in the critical point, and so the correlation length
becomes finite. The scaling hypothesis was understood through the insight
that close to the critical point the behavior of the system is governed by
the fluctuations on the only relevant scale: that of the correlation length. In
1966 L. P. Kadanoff assumed that the behavior of the system depended
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only on the value of the correlation length, and that it did not make any
difference whether it arose as the result of changing the magnetic field or the
temperature. Within the correlation length, the length scale could be chosen at
will. If instead of the natural scale of the lattice constant a its s-fold multiple is
chosen as the unit, then the correlation length will be correspondingly smaller:
ξ′ = ξ/s. It is as if the scaled system were farther from the critical point –
that is, if instead of the reduced temperature t and magnetic field H it was
characterized by a more distant temperature t′ and stronger field H ′. The
parameters yt and yH , defined by

t′ = sytt and H ′ = syHH (14.5.45)

are called the scaling dimensions of temperature and magnetic field. In general,
the scaling dimension of any physical quantity A is determined by the relation
between A′, the quantity obtained by changing the length scale, and A:

A′ = syAA . (14.5.46)

It follows from the relation ξ ∝ t−ν that yt = 1/ν. As for any extensive
quantity, the scaling dimension for the free energy is the same as the dimension
of space, therefore Kadanoff’s assumption implies

Fsing(sytt, syHH) = sdFsing(t,H) . (14.5.47)

This is just (14.5.39) – the equation asserting that free energy is a generalized
homogeneous function – with the exponents

at =
yt
d

, aH =
yH
d

. (14.5.48)

Expressing at with the exponent of the specific heat, the Josephson inequality
is also found to be replaced by an equality:

dν = 2 − α . (14.5.49)

In perfect analogy, it is possible to obtain a scaling formula for the corre-
lation function, too. In addition to t and H , the distance r is also scaled now
by the straightforward transformation r′ = r/s:

Γ (sytt, syHH, r/s) = sd−2+ηΓ (t,H, r) . (14.5.50)

Here η characterizes the deviation from the mean-field theory; this is why it
is called anomalous dimension. It then follows that

Γ (r, t) =
1

rd−2+η
g(r/ξ) , (14.5.51)

or taking the Fourier transform

Γ (k, t) =
1

k2−η h(kξ) . (14.5.52)
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The exponent η is related to the other critical exponents by the equalities

γ = (2 − η)ν (14.5.53)

and
2 − η = d

δ − 1
δ + 1

. (14.5.54)

14.5.5 Elimination of Fluctuations and the Renormalization Group

Based on the Kadanoff theory, a physical picture was obtained for the scaling
behavior of thermodynamic quantities and correlation functions close to the
critical point. This allowed us to derive relations among the critical exponents.
It was also understood that the deviation of experimental results from the
predictions of the Landau theory are due to fluctuations. The correlation
between these fluctuations becomes long-ranged in the vicinity of the critical
point, and infinitely long-ranged in the critical point itself. The divergence
of the correlation length gives divergent contributions to the susceptibility
and other physical quantities. However, the scaling hypothesis in itself does
not specify either the critical exponents or the scaling functions. It has to be
complemented by K. G. Wilson’s10 formulation (1971) of a method widely
used in field theory, the renormalization-group method. Below we shall present
only the main ideas.

Since the correlation length gets macroscopically large around the critical
point, fluctuations of any wavelength become important, and so the approx-
imation that the order parameter can be determined from the minimum of
the free-energy density is no longer sufficient. Characterizing the system with
the effective Hamiltonian H, we shall examine the total free energy and the
partition function

Z = Tr exp(−H/kBT ) , (14.5.55)

where the sum of the diagonal matrix elements is taken over all possible states
of the system. Unless the critical point is at zero temperature, quantum effects
are unimportant in its vicinity, so one has to deal only with thermal fluctua-
tions that can be treated classically.11 To this end, we shall write K = H/kBT
in a simple form in terms of the Fourier components ψk of the fluctuations of
the order parameter. Starting with the form

K =
∫

dr
{

1
2r0ψ

2(r) +
u0

4!
ψ4(r) + 1

2 (∇ψ(r))2
}

, (14.5.56)

10
Kenneth Geddes Wilson (1936–) was awarded the Nobel prize in 1982 “for his
theory for critical phenomena in connection with phase transitions”.

11 For an appropriate description of phase transitions at zero temperature (called
quantum phase transitions) at a quantum critical point – where the transition
is not driven by temperature but by the change of the coupling constants of the
Hamiltonian – quantum fluctuations must also be taken into account.
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which bears some resemblance to the Landau expansion of the free-energy
density (14.5.17). In terms of ψk we have

K =
∑

q

1
2 (r0 + q2)ψqψ−q +

u0

4!

∑
q1,q2,q3

ψq1
ψq2

ψq3
ψ−q1−q2−q3

. (14.5.57)

The critical point is specified by r0 = 0, while u0 is the interaction strength
of fluctuations. Both of them will be treated as phenomenological parameters.
One of the most striking features of the theory is the universality of critical
behavior: the critical exponents depend only on the dimensionality of the
system and the order parameter, as well as the symmetries of the system –
however, they are independent of the initial values of the parameters.

Taking the fluctuations into account means taking an average over fluctu-
ations of all possible wavelengths:

Z =
∏
k

∞∫
−∞

dψk exp
(−K[ψk]

)
. (14.5.58)

Assuming that the most important contribution to the critical behavior comes
from long-wavelength fluctuations, an average may be taken over short-
wavelength (large-wave-number) fluctuations as a first step. Replacing the
Brillouin zone by a sphere of radius Λ, this averaging procedure corresponds
to an integration over the wavelengths between Λ′ = Λ/s and Λ. This way a
system of fewer degrees of freedom is obtained. Then a Hamiltonian H′ can
be constructed in the smaller Brillouin zone, along with the corresponding K′

defined as

exp(−K′[ψk]) =
∏

Λ/s<|k|<Λ

∞∫
−∞

dψk exp(−K[ψk]) . (14.5.59)

Obviously, the partition function of this system obtained by averaging over the
still allowed fluctuations must be the same as the original partition function:

ZΛ′ [K′] = ZΛ[K] . (14.5.60)

For purposes of comparing the parameters and coupling constants of the new
and the original systems, the distance has to be scaled from r to r′ = r/s –
which corresponds to scaling the wave numbers from k to k′ = sk. Elimination
of a part of the degrees of freedom through the above transformation is called
renormalization, and the new coupling constant is called the renormalized
coupling.

By continuing the procedure and eliminating further degrees of freedom
– which explains the origin of the name renormalization group, although the
group character of the transformations is not apparent in this description – the
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flow of the coupling constants can be determined.12 Things are highly simpli-
fied when the coupling constant of an interaction gets weaker and eventually
vanishes as fluctuations are gradually eliminated and their effect is absorbed
into the new, renormalized value of the coupling constant. Such interactions
are not relevant from the viewpoint of critical behavior. However, this is gener-
ally not the case; instead the renormalized coupling tends to a finite or infinite
fixed point, and often additional many-particle interactions appear as a result
of renormalization. In such cases the renormalization-group transformation
can be treated only numerically. The exponents that characterize the critical
properties can be determined from the fixed point obtained at the end of the
iteration procedure and the behavior of the system in its vicinity.

Using expressions (14.5.56) and (14.5.57) – which contain the gradient
term – for the free-energy density, this renormalization program can be car-
ried out. It turns out that in d > 4 dimensional systems the contribution
of fluctuations is not important, and the results of the mean-field theory are
recovered. In d = 4 dimensions the role of fluctuations is marginal, which
means that the critical exponents are the same as in the mean-field approxi-
mation, however logarithmic corrections appear in the correlation functions.
In the physically important case of d < 4 dimensions fluctuations are relevant,
and so critical exponents depend on the dimensionality of space and of the
order parameter. Table 14.8 shows the critical exponents determined for the
three-dimensional n = 1, 2, 3-component Ising, XY, and isotropic Heisenberg
models, compared to the values derived from the mean-field theory and the
exact solution of the two-dimensional Ising model.

Table 14.8. Calculated critical exponents of the three-dimensional n = 1, 2, 3-
component Ising, XY, and isotropic Heisenberg models, compared to the values
obtained from the mean-field theory and for the two-dimensional Ising model

α β γ δ ν η

d = 2 Ising 0 1/8 7/4 15 1 1/4
d = 3 Ising 0.11 0.33 1.24 4.8 0.63 0.04
d = 3 XY −0.01 0.35 1.32 4.8 0.67 0.04
d = 3 Heisenberg −0.12 0.36 1.39 4.8 0.71 0.04
Mean-field theory 0 1/2 1 3 1/2 0

Comparison with the data listed in Table 14.7 shows that the agreement
between theoretical and experimental results is fairly good for the isotropic
Heisenberg model.

12 In connection with another problem, an explicit example of the renormalization
procedure will be presented in the appendix of Volume 3.
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14.6 High-Temperature Expansion

On account of its initial hypotheses, the Landau theory and its improvement
that takes the effects of fluctuations into consideration can describe the behav-
ior of a magnetic system only in the vicinity of the phase transition point. We
have seen that fluctuations give significant corrections to the Landau theory.
Since the latter is equivalent to the mean-field theory, the question naturally
arises: to what extent is the mean-field approximation justified at low and
high temperatures? We shall devote the next chapter to the study of low-
temperature behavior, that is the quantum mechanics of ordered magnetic
structures. In the present section we shall discuss the method used in the
high-temperature region.

The free energy of a system characterized by the Hamiltonian H can be
derived from the partition function

Z = Tr e−H/kBT (14.6.1)

as F = −kBT lnZ, where Tr stands for the trace operator, that is, the sum
of the diagonal matrix elements over a complete set of basis functions. The
thermal average of a physical quantity characterized by the operator A is
given by the formula

〈A〉 =
TrAe−H/kBT

Tr e−H/kBT . (14.6.2)

At high temperatures the exponential in the partition function can be
expanded into a power series of β = 1/kBT :

Z = Tr(1)
{
1 − β〈H〉0 + 1

2β
2〈H2〉0 + . . .

}
, (14.6.3)

where Tr(1) is the number of possible states in the complete system of func-
tions, and 〈B〉0 = TrB/Tr(1) stands for the thermodynamic average at in-
finitely large temperature. By taking the logarithm of the series, free energy
can be written in terms of the so-called cumulants:

F = −kBT ln Tr(1) + 〈H〉0 − 1
2

1
kBT

[〈H2〉0 − 〈H〉20
]
+ . . . , (14.6.4)

while for a thermodynamic quantity A

〈A〉 =
(
〈A〉0 − 1

kBT
〈AH〉0 + 1

2

(
1

kBT

)2

〈AH2〉0 − . . .

)

×
(

1 +
1

kBT
〈H〉0 +

(
1

kBT

)2 (〈H〉20 − 1
2 〈H2〉0

)
+ . . .

)
.

(14.6.5)

To determine the susceptibility, the contribution of the external magnetic
field has to be included in the Hamiltonian, and the terms proportional to
the field have to be collected. Using the same steps as in the derivation of
(3.2.49), the susceptibility formula generalized to the case at hand is
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χαβ = V
μ0

kBT
{〈MαMβ〉 − 〈Mα〉〈Mβ〉} , (14.6.6)

where
Mα =

1
V

gμB
∑
i

Sαi (14.6.7)

is the α component of the magnetic moment density. In the high-temperature
region, where no spontaneous magnetization is present and the spin com-
ponents of different directions are uncorrelated, the susceptibility tensor is
diagonal:

χm =
1
V

μ0g
2μ2

B
kBT

〈∑
ij

Sαi S
α
j

〉
. (14.6.8)

Determining the thermal average in the previous formula for the Heisenberg
model as above,

χm =
N

V

μ0g
2μ2

BS(S + 1)
3kBT

[
1 +

2S(S + 1)
3kBT

∑
j

Jij + . . .

]
. (14.6.9)

Using the mean-field value for the Curie temperature,

χm =
N

V

μ0g
2μ2

BS(S + 1)
3kBT

[
1 +

Tc

T
+ . . .

]
, (14.6.10)

which gives the first two terms in the expansion of the Curie–Weiss suscepti-
bility. Deviations from the mean-field theory appear in the next terms of the
high-temperature expansion. By continuing the expansion to sufficiently high
orders, one may try to sum up the expansion formula, that is, to fit a scaling
function – in such a way that the result should be valid even in the vicinity
of the transition point. The values obtained in this way for the critical tem-
perature and the critical exponent of susceptibility in the Heisenberg model
are in fair agreement with experimental data.

14.7 Magnetic Anisotropy, Domains

We have seen that the exchange interaction determines the orientation of mag-
netic moments only relative to each other. In crystals the orientation relative
to the crystallographic axes is determined by the much weaker anisotropic
terms due to relativistic spin–orbit interactions. A particularly interesting
feature of ferromagnets is that in large, macroscopic samples the local magne-
tization does not point in the same crystallographic direction over the whole
of the sample: instead, as the system starts to become ordered below the
transition point, magnetization points in one of the equivalent easy axis di-
rections around each nucleation center. The sample is thus made up of a large
number of domains with different magnetization directions, which are sepa-
rated by domain walls. To describe them, we shall first introduce a continuum
model, and then determine the characteristic dimensions of domains and the
domain-wall energy.
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14.7.1 A Continuum Model of Magnetic Systems

We used a continuous order parameter in the Landau theory, and determined
its magnitude from the minimum of free energy. The continuous order pa-
rameter can be kept even far from the transition point, at low temperatures
– however in this region we are not concerned primarily with its magnitude
(since magnetization is almost saturated here) but rather with its orientation
and possible rotation.

The continuous magnetization density function is defined in terms of the
magnetization density operator

M̂(r) = gμB
∑
i

Siδ(r − Ri) . (14.7.1)

Even when the operator is replaced by its expectation value, the resulting
expression still contains a sum of delta peaks. To obtain a coarse-grained
(smoothed-out) magnetization density, the expectation value has to be av-
eraged around r over a volume v whose radius is much larger than atomic
dimensions but still small on the characteristic scale of the spatial variations
of atomic magnetic moments. The expression

M(r) =
1
v

∫
〈M̂(r)〉dr (14.7.2)

is indeed a classical quantity that varies slowly in space.
To express the energy with M(r), we have to start with the Heisenberg

Hamiltonian. This is expressed in terms of the operator M̂(r) as

H = − 1
(gμB)2

∫
dr

∫
dr′ J(r − r′)M̂(r) · M̂ (r′) , (14.7.3)

since upon reverting to localized spins the well-known formula

H = − 1
(gμB)2

∫
dr

∫
dr′ ∑

i,j

J(r − r′)(gμB)2Si · Sjδ(r − Ri)δ(r′ − Rj)

= −
∑
i,j

J(Ri − Rj)Si · Sj (14.7.4)

is recovered. It is then plausible to assume that in terms of the density M (r)
the magnetic energy can be written in the Hamiltonian-like form

E = − 1
(gμB)2

∫
dr

∫
dr′ J(r − r′)M (r) · M(r′) . (14.7.5)

Just like the exchange integral J(r), J(r) is also short-ranged, therefore the
expansion of the position-dependent magnetization M (r′) in the integrand
around r′ = r gives
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M (r′) = M(r) +
∑
μ

∂M(r)
∂rμ

(r′μ − rμ)

+ 1
2

∑
μν

∂2M(r)
∂rμ∂rν

(r′μ − rμ)(r′ν − rν) + . . . .

(14.7.6)

Substituting this into the integrand, the linear term vanishes on account of the
inversion symmetry of the crystal lattice. The leading term of the magnetic
energy is then

E =
∫

dr

[
−KM(r)M(r) − 1

2

∑
μν

JμνM(r)
∂2M (r)
∂rμ∂rν

]
, (14.7.7)

where

K =
1

(gμB)2

∫
dr′ J(r′) , Jμν =

1
(gμB)2

∫
dr′ J(r′)r′μr

′
ν . (14.7.8)

Integration by parts gives the magnetic energy density

w(r) = −KM2(r) + 1
2

∑
μν

Jμν
∂M(r)
∂rμ

∂M(r)
∂rν

. (14.7.9)

Note that this expression bears strong resemblance to the Landau expan-
sion of free energy; however we are now interested only in the slow spatial
variations in the direction of M (r) therefore the quartic term M4 can be
ignored.

The presence of M 2 in the first term is the consequence of having started
with the isotropic Heisenberg model. In the more general case the expression
for the energy density must be invariant under the symmetry operations of
the crystal. It follows from symmetry considerations that in a uniaxial crystal
the combination

w(r) = −K⊥
[
M2
x(r) + M2

y (r)
]−K‖M2

z (r) (14.7.10)

has to appear. This determines the orientation of magnetization with respect
to the crystallographic axes. The difference of the coefficients K‖ and K⊥ is
therefore related to anisotropy. In cubic crystals higher-order terms have to
be taken into account, since the second-order expression of cubic symmetry

w(r) = −K
[
M2
x(r) + M2

y (r) + M2
z (r)

]
(14.7.11)

possesses full spherical symmetry, hence it does not single out a preferred
direction with respect to the crystallographic axes. In the fourth order, in
addition to the spherically symmetric term M4 there are two other terms
that show cubic symmetry:

M4
x + M4

y + M4
z and M2

xM
2
y + M2

xM
2
z + M2

yM
2
z . (14.7.12)
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These are not independent of each other, since a suitably chosen linear com-
bination gives M4. When one is not concerned with the magnitude of the
moment only with its orientation, it is enough to keep either of them. Us-
ing the direction cosines α1, α2, α3, the energy contribution associated with
magnetic anisotropy in a cubic crystal is

w = K1(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + K2α

2
1α

2
2α

2
3 + . . . , (14.7.13)

which contains contributions up to the sixth order. The orientation of the
moment relative to the crystallographic axes is determined by the sign of the
two anisotropy constants. By minimizing the energy it is straightforward to
show that for K1 > 0 the magnetic moment is along one of the directions
〈100〉, while for K1 < 0 along one of the directions 〈111〉.

The anisotropy constants of ferromagnetic iron and nickel measured at
room temperature are given in Table 14.9. These constants depend sensitively
on temperature, however even at low temperatures K1 is positive for iron and
negative for nickel. Therefore magnetization is along the edges of the cubic
primitive cell in iron, and along the space diagonal in nickel.

Table 14.9. Phenomenological anisotropy constants of iron and nickel, measured
at room temperature (in units of 103 Jm−3)

K1 K2

Fe 47.2 −0.75
Ni −5.7 −2.3

Needless to say, the term arising from the slow spatial variations of magne-
tization in the energy density expression (14.7.9) also depends on the symme-
tries of the system. The formula obtained in the Landau expansion is recovered
only in the isotropic case and for cubic crystals, where the three Cartesian
coordinates are equivalent, Jμν = Jδμν , and hence the derivative term is

1
2J

[(
∂M(r)

∂x

)2

+
(
∂M(r)

∂y

)2

+
(
∂M(r)

∂z

)2
]
. (14.7.14)

In uniaxial crystals, where one axis is inequivalent to the two others the con-
tribution is

1
2J1

[(
∂M(r)

∂x

)2

+
(
∂M(r)

∂y

)2
]

+ 1
2J2

(
∂M(r)

∂z

)2

. (14.7.15)

A similar expression is found for the energy density in antiferromagnets
provided the sublattice magnetization is considered as a classical vector that
varies slowly in space:
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w(r) = KMA(r) · MB(r) + 1
2

∑
μν

Jμν
∂MA(r)

∂rμ

∂MB(r)
∂rν

+ 1
2

∑
μν

J ′
μν

[
∂MA(r)

∂rμ

∂MA(r)
∂rν

+
∂MB(r)

∂rμ

∂MB(r)
∂rν

]
.

(14.7.16)

14.7.2 Magnetic Domains

In the previous calculations we ignored the energy of the magnetic field around
the finite-sized magnetic sample, however this cannot be neglected in the
energy balance. For homogeneous ferromagnets of finite size this field energy
can be significant. As shown in Fig. 14.18, the magnetic field outside the
sample – and along with it, the field energy – is reduced substantially when
the sample is not homogeneously magnetized but is made up of oppositely
polarized domains.

Fig. 14.18. Magnetic structures with one and two domains, and the lines of the
induced magnetic field

At the boundary of the two domains there is a region in which spins are not
aligned properly, therefore the formation of a wall between the domains entails
an increase in magnetic energy. The latter is proportional to the surface area
of the wall, while the decrease in field energy is proportional to the volume
of the sample. In large samples this decrease may become dominant, in which
case it is energetically more favorable to have a domain structure. However,
small samples may contain a single domain.

Inside a domain the direction of magnetization is determined by anisotropy.
The antiparallel orientation of the moments on the two sides of the wall is
equally favorable from the viewpoint of anisotropy, however, there is a sig-
nificant increase in the exchange energy. With a slow rotation over a longer
distance the increase in the exchange energy can be reduced – however, this
would give rise to an increase in the anisotropy energy. The competition of
the two contributions determine the details of the reversal of the moment
across the domain wall. Assuming uniaxial anisotropy, where the upward or
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downward orientation of the moments is preferred, there are two characteristic
types of domain walls. In most cases the rotation of the magnetic moment is
such that it remains in the plane of the wall everywhere. Such a domain wall
is called a Bloch wall.13 When the rotation of the moment is in a plane per-
pendicular to the wall, we speak of a Néel wall.14 These situations are shown
in Fig. 14.19; the wall is perpendicular to the x-axis.

zz

x x

y

( )a ( )b

Fig. 14.19. Rotation of the magnetic moment for domain walls in the (y, z) plane:
(a) Bloch wall; (b) Néel wall

In magnetically uniaxial crystals the energy density is the sum of (14.7.10)
and (14.7.15). The derivative term comes from the exchange between neigh-
boring spins, and J1 and J2 are related to the exchange integral. For simplicity,
neglecting anisotropy in this term and the homogeneous isotropic part in the
other,

E =
∫ {

J

2

∑
μ

(
∂M

∂rμ

)2

− K

2
M2
z

}
dr , (14.7.17)

where K = K‖−K⊥. Assuming that K > 0, magnetization is along the z-axis
inside the domains, pointing either upward or downward. If the domain wall
is in the (y, z) plane, and all the spatial variations occur in the x-direction,

E =

∞∫
−∞

{
J

2

[(
∂Mx

∂x

)2

+
(
∂My

∂x

)2

+
(
∂Mz

∂x

)2 ]
− K

2
M2
z

}
dx . (14.7.18)

Using the position-dependent polar angles θ and ϕ to describe the rotation of
the magnetic moment,

Mx = M sin θ cosϕ , My = M sin θ sinϕ , Mz = M cos θ (14.7.19)

in general. In terms of the variables θ(x) and ϕ(x),

E = M2

∞∫
−∞

{
J

2

[(
dθ
dx

)2

+ sin2 θ

(
dϕ
dx

)2
]
− K

2
cos2 θ

}
dx . (14.7.20)

13
F. Bloch, 1932.

14
L. Néel, 1955.
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Considering the spatial variations of ϕ first: the energy has its minimum when
ϕ is constant. Two special cases are customarily distinguished: ϕ = π/2 cor-
responds to the Bloch wall, and ϕ = 0 to the Néel wall. In the Bloch wall the
magnetic moment stays in the (y, z) plane, that is

Mx = 0 , My = M sin θ , Mz = M cos θ . (14.7.21)

while in the Néel wall

Mx = M sin θ , My = 0 , Mz = M cos θ . (14.7.22)

In both cases

E = M2

∞∫
−∞

{
J

2

(
dθ
dx

)2

− K

2
cos2 θ

}
dx . (14.7.23)

The spatial variations of θ(x) have to be determined from the energy mini-
mum. The Euler equation of the variational problem,

d
dx

∂L

∂θ′
− ∂L

∂θ
= 0 , (14.7.24)

leads to the formula

J
d2θ

dx2
−K sin θ cos θ = 0 . (14.7.25)

Integration gives

J

(
dθ
dx

)2

−K sin2 θ = constant . (14.7.26)

The spins are fully aligned far from the domain wall, so the following
boundary condition can be imposed at infinity:

at x = −∞ θ = 0 , θ′ = 0 ,

at x = +∞ θ = π , θ′ = 0 .
(14.7.27)

The value of the constant is therefore zero, and so
(

dθ
dx

)2

=
K

J
sin2 θ . (14.7.28)

The solution of this equation that satisfies the boundary condition is

cos θ(x) = − tanh
(√

K/J x
)

, (14.7.29)

since

− sin θ
dθ
dx

= −
√

K/J
[
1 − tanh2

(√
K/Jx

)]
= −

√
K/J sin2 θ . (14.7.30)
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Solving (14.7.29) for ex/δ, where δ =
√

J/K,

ex/δ =

√
1 − cos θ(x)
1 + cos θ(x)

= tan
[
1
2θ(x)

]
, (14.7.31)

and hence
θ(x) = 2 arctan(ex/δ) . (14.7.32)

It can be immediately seen that δ is the domain-wall thickness. For obvious
physical reasons, the exchange term prefers a slow rotation of the magnetic
moment; therefore in itself it would lead to an infinitely thick domain wall.
On the other hand, the anisotropy energy is minimal when the reversal of the
moment is abrupt. The competition of these two terms leads to a finite wall
thickness. Choosing values that are typical in ferromagnets for the exchange
constant and the anisotropy constant, δ ∼ 10−6 cm is obtained. The specific
thickness values for iron, cobalt, and nickel are 40, 15, and 100 nm, respec-
tively. Therefore the number of atoms across the domain wall is on the order
of 100.

The energy of the wall can also be calculated. The energy difference per
unit surface area relative to the case of homogeneous magnetization along the
z-axis is

ΔE =

∞∫
−∞

M2

2
{
K sin2 θ(x) −K cos2 θ(x) + K

}
dx

= M2K

∞∫
−∞

[
1 − tanh2

(√
K/Jx

)]
dx (14.7.33)

= M2
√
JK

∞∫
−∞

[
1 − tanh2 x

]
dx = 2M2

√
JK .

This calculation gives the same energy for the Bloch wall and the Néel
wall. This is because the energy contribution of magnetic dipoles has been
neglected. When it is taken into account, the energy of the Bloch wall is
found to be lower – except for very thin samples, since in thin magnetic films
it is energetically more favorable to have the magnetization aligned with the
surface of the sample everywhere, as illustrated in Fig. 14.20.

In the case of very strong uniaxial anisotropy the orientation of the mo-
ments in the interior of the domain extends all the way to the surface. In such
arrangements there is always a substantial fringing field. When the anisotropy
is weaker or cubic, the formation of closure domains at the surfaces is ener-
getically more favorable, as illustrated in Fig. 14.21.

In this arrangement the magnetization component perpendicular to the
surface is everywhere continuous across the boundaries of the closure domains,
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Fig. 14.20. Néel wall between two domains in a thin layer

d

Fig. 14.21. Formation of perpendicularly magnetized closure domains close to the
surface

and no fringing field appears. Using energy considerations, the dimensions of
such closure domains – and through them, the width of the domains, i.e., the
distance between the domain walls – can be determined. Denoting the width
of the domains by d, there are Lx/d closure domains on the surface of a sample
of linear size Lx. Since the volume of the closure domain is (d2/4)Ly, and the
anisotropy energy per unit volume is 1

2KM2, the total anisotropy energy of
all closure domains is

Eaniso =
Lx
d

· d
2

4
Ly · K2 M2 =

1
8
KdLxLyM

2 . (14.7.34)

Neglecting the surface energy of the closure domains in comparison with
the surface energy of the Lx/d large domain walls of surface area LyLz
separated by regular distances d, and making use of the formula 2M2

√
JK

for the surface energy density, the wall energy is found to be

Ewall = 2M2
√
JK

Lx
d

LyLz = 2M2
√
JK

LxLyLz
d

. (14.7.35)

Minimizing the full energy with respect to d,

1
8
KLxLyM

2 − 2M2
√
JK

LxLyLz
d2

= 0 , (14.7.36)

from which
d = 2

√
Lz (J/K)1/4 . (14.7.37)

The typical value of this distance is d ∼ 1–10 μm, that is, the linear ex-
tension of domains corresponds to 104–105 atoms. By increasing d, further
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Fig. 14.22. Spike domains close to the sample surface

spike-shaped domains may appear at the surface of the sample, as shown in
Fig. 14.22.

For technical magnetization curves the displacement of the domain walls
and the rotation of the magnetization direction within the domains are of the
utmost importance. For weak fields wall motion dominates, while for stronger
fields the rotation of magnetization.

Domains can be directly observed using, for example, the powder method,
in which magnetic particles trace out the pattern on the surface, or magneto-
optic methods, such as those based on the Kerr effect15 or the Faraday effect.16
The former method is rooted in the observation that the polarization of light
becomes rotated upon reflection from the surface of the sample because of the
interaction with magnetic material, so the domains become visible in a polar-
ization microscope. The rotation of the polarization plane of light is observed
with methods based on the Faraday effect, too, however this time a beam pen-
etrating through a thin magnetic layer is used. Owing to the relatively large
size of domains, scanning and transmission electron microscopes may also be
used for mapping the domain structure. A recent development in this field
is the magnetic force microscope (MFM), a new version of the atomic force
microscope with a magnetic stylus, designed specifically for probing magnetic
materials. It has been used successfully for measuring the spatial variations
of magnetization at the sample surface.
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15

Elementary Excitations in Magnetic Systems

In the previous chapter we became acquainted with magnetically ordered
materials, as well as the simple description of their behavior based on the
mean-field theory. The essential point was to consider only the thermal aver-
age of atomic magnetic moments and to ignore thermal and quantum fluctu-
ations. We noted that in the vicinity of the critical point a physically as well
as mathematically correct description of critical phenomena is possible only if
thermal fluctuations are taken into account, and we outlined the basics of the
appropriate scaling theory and of the renormalization-group transformation.

However, the mean-field theory does not provide correct quantitative re-
sults at low temperatures, either. This is because in the mean-field-theoretical
treatment ordered atomic magnetic moments are assumed to point rigidly in
some – quite possibly site-dependent – direction, whereas, even classically,
their rotation around the effective field and the ensuing rotational degrees
of freedom have to be taken into account to get a better description of the
magnetic properties. This is analogous to going beyond the rigid-lattice ap-
proximation, and examining the vibrations of the ions about their equilibrium
positions to understand the thermal properties of crystals. This dynamics of
the spins will be examined in the present chapter. As with lattice vibrations,
we shall first present a classical description of the waves formed in the sys-
tem of spins, and give their quantum mechanical treatment next. We shall see
that – similarly to crystalline materials, where the thermodynamic properties
could be described properly with the help of the elementary excitations of
bosonic character that were introduced in the quantum mechanical discussion
of lattice vibrations, namely phonons – in magnetic systems, the destruction
of magnetic order at finite temperature may be interpreted in terms of a gas
of bosonic elementary excitations. At the end of the chapter we shall briefly
discuss the anomalous behavior of low-dimensional magnetic systems, too.
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15.1 Classical Spin Waves

In the mean-field-theoretical description the effective field (14.4.4) acts on the
spins. It was also assumed there that the spins or magnetic moments point
exactly in the direction determined by the effective field. In reality, this as-
sumption is not justified within the classical framework, either. The fact that
the thermal average of atomic moments decreases with increasing temper-
ature should be interpreted like this: the moments turn slightly away from
and precess about the direction of the internal effective magnetic field, while
the component perpendicular to the field averages out to zero. To illustrate
this precessional motion, we shall examine the equation of motion of atomic
magnetic moments that we regard as classical vectors.

15.1.1 Ferromagnetic Spin Waves

According to classical mechanics and electrodynamics, the torque experienced
by a magnetic moment μ placed in a magnetic field B is μ × B, while the
rate of change of the angular momentum I is given by

dI

dt
= μ × B . (15.1.1)

We shall apply this formula to the magnetic moment μi at lattice site Ri

that possesses an angular momentum �Si and feels an effective field Beff.
The classical equation of motion of this spin is

�
dSi

dt
= μi × Beff = gμB Si × Beff . (15.1.2)

Using the formula (14.4.4) for the effective field, assuming zero applied field,
and substituting the classical vector for the average (since the equation is
classical),

�
dSi

dt
= Si ×

(
2
∑
j

JijSj

)
. (15.1.3)

The same equation would have emerged if we had used the quantum-
mechanical equation of motion for the operator Si,

dSi

dt
=

i
�

[H,Si] , (15.1.4)

with the Heisenberg Hamiltonian, and the commutation relations of the spin
operators.

Classically, this is the equation of motion governing the precessional mo-
tion of each spin in the effective field of its neighbors. To determine its angular
frequency, assume that the spins are only slightly tilted from the equilibrium
value S0 common to all lattice sites,



15.1 Classical Spin Waves 517

Si = S0 + δSi , (15.1.5)

where δSi is small and perpendicular to S0. Substituting this into the equation
of motion, and neglecting terms of second order in δSi,

�
dδSi

dt
= 2

∑
j

Jij [δSi × S0 + S0 × δSj ]

= 2
∑
j

Jij [δSi − δSj ] × S0 .
(15.1.6)

In systems that are uniform in the ground state, this precessional motion is
expected to propagate in a wave-like fashion, therefore solutions are sought
in the form

δSi = 1
2

[
Akei(k·Ri−ωkt) + A∗

ke−i(k·Ri−ωkt)
]
. (15.1.7)

Inserting this into the equation of motion, we are led to

−i�ωkAk = 2
∑
j

Jij

[
1 − eik·(Rj−Ri)

]
Ak × S0 , (15.1.8)

and to a similar equation for the complex conjugate amplitude. The con-
straints of the vector character are satisfied by choosing the amplitude Ak

as
−iAk = Ak × e0 , (15.1.9)

where e0 is the unit vector in the direction of the magnetization, e0 = S0/S,
which will be chosen as the z-axis. Since the above equation asserts that Ak

is perpendicular to e0 ≡ ẑ, Ak may be written with a real Ak as

Ak = Ak(x̂ − iŷ) , (15.1.10)

where x̂ and ŷ are the unit vectors in the x and y directions, respectively.
Substituting this into (15.1.7) for δSi, we have

δSxi = Ak cos(k · Ri − ωkt) , δSyi = Ak sin(k · Ri − ωkt) . (15.1.11)

As the snapshot in Fig. 15.1 shows, the spins perform a phase-correlated
precession in the plane perpendicular to the direction of the magnetization.
These precessions propagating in a wave-like fashion in spin systems are called
spin waves.

Going back to (15.1.8), the angular frequency of the precession of spins in
the spin wave can be determined from

�ωk = 2S
∑
j

Jij

[
1 − eik·(Rj−Ri)

]
. (15.1.12)
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Fig. 15.1. The side and top views of the instantaneous orientation of classical spins
in a spin-wave state

Expanding the exponent for large wavelengths, i.e. for small values of the wave
number k, all odd terms cancel on account of the inversion symmetry of the
lattice. In cubic crystals, where the three crystallographic axes are equivalent,
the dispersion relation of the spin waves is isotropic in k space:

�ωk ∼ k2 . (15.1.13)

Similarly to the classical treatment of lattice vibrations, low-frequency vibra-
tions are obtained in the long-wavelength limit – the only difference being
the quadratic, rather than linear frequency dependence of the wave number.
This difference – which is a consequence of the fact that the magnetization
commutes with the Hamiltonian and is therefore a conserved quantity – will
play an important role in the thermodynamics of the system.

15.1.2 Spin Waves in Antiferromagnets

In antiferromagnets, just like in ferromagnets, the system of magnetic mo-
ments is expected to feature propagating waves in which the precessional
motion of adjacent moments follow each other by a certain phase difference.
However, because of the dissimilarity of the ground states, and since the or-
der parameter (the sublattice magnetization) is not conserved, the dispersion
relations will be essentially different.

We shall start off with the equation of motion (15.1.6) for the spin at site
i, keeping in mind that in an antiferromagnet the spins are not all aligned
in the same direction. We shall consider simple collinear structures in which
case the antiferromagnetic order can be characterized by a wave vector k0,
and the phase factor appearing in

〈Si〉 = S0eik0·Ri (15.1.14)

takes the values ±1 for the two possible spin orientations. Due to the pre-
cession of the spins, small time-dependent components perpendicular to the
direction of S0 are superposed,

Si = 〈Si〉 + δSi . (15.1.15)

Retaining only the terms that are linear in the perpendicular component, the
equation of motion reads
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�
dδSi

dt
= 2

∑
j

Jij [δSi × 〈Sj〉 + 〈Si〉 × δSj ]

= 2
∑
i

Jij
[
δSi × S0eik0·Rj + S0eik0·Ri × δSj

]
.

(15.1.16)

Assuming periodic time dependence of angular frequency ω, orienting the z-
axis along the direction of S0, and introducing the variable

S±
i = δSxi ± iδSyi (15.1.17)

in the perpendicular plane, we have

�ωS±
i = ∓2iS±

i

∑
j

JijSeik0·Rj ± 2iSeik0·Ri

∑
j

JijS
±
j . (15.1.18)

Again, these equations can be solved using Fourier transforms. It should be
noted, however, that the components k are mixed with terms of wave vector
k + k0. The reason for this is that the magnetic cell of the antiferromagnetic
structure is larger than the chemical cell and defines a Brillouin zone that is
smaller than the usual one, therefore the vectors k and k + k0, which are not
equivalent in the original Brillouin zone become equivalent in the magnetic
cell. For simplicity, we are considering antiferromagnets with two sublattices
in which 2k0 is identical with a vector in the reciprocal lattice of the chemical
structure, and so further terms need not be taken into account.

Since the Brillouin zone contains N/2 allowed wave vectors in the two-
sublattice case, we shall seek solutions of the form

S+
i =

√
2
N

∑
k

[
Akei(k·Ri−ωkt) + Bkei((k−k0)·Ri−ωkt)

]
,

S−
i =

√
2
N

∑
k

[
A∗

ke−i(k·Ri−ωkt) + B∗
ke−i((k−k0)·Ri−ωkt)

]
.

(15.1.19)

This corresponds to the assumption that the amplitude of the precessing com-
ponent is |Ak+Bk| on one of the sublattices, and |Ak−Bk| on the other. Sepa-
rating terms proportional to exp[±i(k·Ri−ωkt)] and exp[±i((k+k0)·Ri−ωkt)]
in the equation of motion, the following relations are obtained for the coeffi-
cients:

�ωAk = ±2SBk

∑
j

Jijeik0·(Rj−Ri) ∓ 2SBk

∑
j

Jijei(k−k0)·(Rj−Ri) ,

(15.1.20)

�ωBk = ±2SAk

∑
j

Jijeik0·(Rj−Ri) ∓ 2SAk

∑
j

Jijeik·(Rj−Ri) .

Making use of the Fourier transform of the exchange interaction, the preces-
sion frequency is found to be
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�ωk = ±2S
√

[J(k0) − J(k)][J(k0) − J(k − k0)] , (15.1.21)

where
J(k) =

∑
j

Jijeik·(Rj−Ri) . (15.1.22)

In a bipartite lattice where the nearest neighbors of each spin residing in either
sublattice are located in the other sublattice, and the exchange interaction acts
between nearest neighbors only,

J(k0) = z|J | and J(k − k0) = −J(k) , (15.1.23)

where z is the number of nearest neighbors. In this case the frequency takes
the simple form

ωk = ±2Sω0

(
1 − γ2

k

)1/2 (15.1.24)

with
�ω0 =

∑
j

|Jij | = z|J | (15.1.25)

and

γk =

∑
j |Jij |eik·(Ri−Rj)∑

j |Jij |
=

1
z

∑
δj

eik·δj , (15.1.26)

where δi denotes the vectors pointing to the nearest neighbors. In the long-
wavelength limit γk is very close to unity, its leading correction being of the
order k2. Thus, the dispersion relation of spin waves in antiferromagnetic
materials is not quadratic but linear in k.

The snapshot of a propagating spin wave in antiferromagnets is shown
in Fig. 15.2: spins precess with the same frequency but different amplitudes
in the two sublattice. Because of the equivalence of the two sublattices, two
types of spin waves are possible. For one, the amplitude is larger in the “up”,
and for the other in the “down” sublattice.

Fig. 15.2. Propagation of the two types of spin waves in a two-sublattice antifer-
romagnet
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15.2 Quantum Mechanical Treatment of Spin Waves

Analogously to the case of phonons it may be assumed that these waves need
to be quantized in the quantum mechanical treatment, in other words, that
energy can change only by integral multiples of �ωk. Similarly to how classi-
cal vibrations lead to phonons, classical spin waves of magnetic systems will
lead to magnons. Nevertheless, there is an essential difference: while in the
quantization of lattice vibrations the canonical commutation relations for po-
sition and momentum operators implied – after the quantization of the normal
coordinates – the bosonic commutation relations of phonon creation and an-
nihilation operators, the bosonic character is only approximate for magnons,
due to the special commutation relations of spin operators.

15.2.1 The Quantum Mechanics of Ferromagnetic Spin Waves

It can be easily established that the state in which the projection of each
spin along a chosen direction is maximal (minimal), is an exact eigenstate of
the Heisenberg Hamiltonian. To this end, consider the Hamiltonian (14.3.12)
of the Heisenberg model, and choose the direction along which the spins are
aligned as the quantization axis. Considering spins of magnitude S, when
states with Sz = S are acted upon by the part of the Hamiltonian containing
the coupling between the x and y components of the spins, the result is zero,
since operators S+

i – resulting from the transcription of Sxi and Syj – cannot
raise the spin projection any further. The term Szi S

z
j just measures the state

of the spins, it does not change the spin projection. This state is an eigenstate,
indeed, independently of the range and sign of the exchange interaction. Thus
the energy of the state with maximum spin projection is

E = −
∑
i,j

JijS
2 . (15.2.1)

Obviously, the state in which all spins have maximum downward projection
(Sz = −S) is of the same energy. Denoting this state by |0〉, and the previous
one by |F 〉, in an isotropic system, where the total spin is conserved, further
states of the same energy are easily found. Two simple examples are

|ψ1〉 =
1√
N

∑
i

S−
i |F 〉 and |ψ2〉 =

1√
N

∑
i

S+
i |0〉 . (15.2.2)

Each expression is an eigenfunction of the square of the total spin Stot =∑
i Si, too, with the same eigenvalue NS(NS + 1). This shows that they all

represent – with different orientations relative to the quantization axis – the
same ferromagnetic state with all spins aligned.

Further states can be generated from |ψ1〉 and |ψ2〉 when acting upon them
by the same operators that generated them. These new states belong to the
same eigenvalue of S2

tot, that is they, too, correspond to a ferromagnetic state,
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just the total spin is rotated relative to the quantization axis. It can be proved
by the same method that the ferromagnetic state with a spin of magnitude
NS is (2NS +1)-fold degenerate. This has particular relevance when it is the
ground state of the system. The condition for this is that exchange interactions
be dominantly positive. Such a high degeneracy can, however, render the
calculations difficult. This can be avoided by lifting the degeneracy by the
application of an external magnetic field and breaking explicitly the SU(2)
symmetry of the Heisenberg model; calculations are then performed in a finite
field, and the results are eventually taken in the limit of vanishing field. Below,
we shall follow the convention that the applied magnetic field is in the z
direction, and so, if g is negative (which is often the case) the projection of
each spin is −S in the ground state. We shall denote this state by |0〉.

Excited states can be obtained from the ground state by flipping more and
more spins, or partially raising their z-projections nonuniformly. Since spin
flips are generated by the operators S+

i , a general excited state is obtained
by applying a series of the operators S+

i to the ground state. In the simplest
case, a single spin, at lattice site Rl is raised from the state with projection
−S to that with projection −S + 1. The resulting state is

|ψl〉 = S+
l |0〉 . (15.2.3)

However, this is not an eigenstate of the Heisenberg Hamiltonian. To
demonstrate this, let us rewrite the Hamiltonian in terms of the spin rais-
ing and lowering operators:

H = −
∑
ij

Jij
[
1
2

(
S+
i S−

j + S−
i S+

j

)
+ Szi S

z
j

]− gμBμ0H
∑
i

Szi . (15.2.4)

If j = l, then the spin-flip terms of the type S+
i S−

j can lower back the spin
at Rl, while raising another spin at a different lattice site. Therefore, only a
suitable linear combination of the states ψl with a raised spin can be a proper
eigenstate. Since the eigenstates of a Hamiltonian possessing translational
symmetry may be characterized by a wave vector k, we shall seek the proper
eigenstate in the form

|ψk〉 =
1√
2S

1√
N

∑
l

eik·RlS+
l |0〉 . (15.2.5)

When applying the Hamiltonian to this state, we have to separate those terms
in which the projection of both spins connected by the exchange interaction
is −S from those terms in which one of these spins is raised. For the latter
pairs, the Szi S

z
j (i = l or j = l) part of the Hamiltonian is not the only one

that contributes, the S+
i S−

l and S−
l S+

j parts do so, too. Assuming that the
system contains N spins, making use of the properties of the spin operators
and the relation Jij = Jji, one obtains
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H|ψk〉 =
1√

2SN

∑
l

eik·Rl

[
−

∑
i�=l,j �=l

JijS
2 − 2

∑
i�=l

JilS(S − 1)
]
S+
l |0〉

+
1√

2SN

∑
l

eik·Rl

[
− 2

∑
i�=l

JilS

]
S+
i |0〉 (15.2.6)

− 1√
2SN

∑
l

eik·RlgμBμ0H
[− (N − 1)S − (S − 1)

]
S+
l |0〉 .

Changing the summation indices in the second term, the expression chosen
for the wavefunction can be recognized on the right-hand side. Consequently,
the energy eigenvalue is

E = E0 + 2S
∑
j

Jij

[
1 − eik·(Ri−Rj)

]
− gμBμ0H , (15.2.7)

where
E0 = −

∑
ij

JijS
2 + gμBμ0HNS (15.2.8)

is the ground-state energy. The excitation energy �ωk is therefore

�ωk = 2S
∑
j

Jij

[
1 − eik·(Ri−Rj)

]
− gμBμ0H . (15.2.9)

Aside from the second term, which is due to the magnetic field, the previous
expression is analogous to (15.1.12) for the angular frequency of classical spin
waves. Thus, excitation energies in the quantum mechanical treatment1 are
obtained by quantizing the classically derived frequencies in the usual way.

Considering exchange interactions of strength J between nearest neighbors
only, the excitation energy is customarily written as

�ωk = 2JzS (1 − γk) − gμBμ0H , (15.2.10)

where z is the number of nearest neighbors, and γk receives its contributions
from the position vectors δl of the nearest neighbors,

γk =
1
z

∑
δl

eik·δl . (15.2.11)

For a simple cubic lattice with lattice constant a, the factor z(1 − γk) in the
excitation energy is∑

δl

[
1 − eik·δl

]
= 6 − 2 coskxa− 2 cos kya− 2 cos kza

= 4
(

sin2 kxa

2
+ sin2 kya

2
+ sin2 kza

2

)
.

(15.2.12)

1
F. Bloch, 1930.
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Expanding this for small values of the wave number, and then substituting
back into the energy expression,

�ωk ≈ 2JS
(
k2
x + k2

y + k2
z

)
a2 = 2JSk2a2 (15.2.13)

is obtained in the absence of a magnetic field. The very same form applies to
body- and face-centered cubic lattices, since for a body-centered lattice∑

l

[
1 − eik·δl

]
= 8 − 2 cos 1

2 (kx + ky + kz)a− 2 cos 1
2 (kx + ky − kz)a

−2 cos 1
2 (kx − ky + kz)a− 2 cos 1

2 (−kx + ky + kz)a

= 4
[
sin2 1

4 (kx + ky + kz)a + sin2 1
4 (kx + ky − kz)a

+ sin2 1
4 (kx − ky + kz)a + sin2 1

4 (−kx + ky + kz)a
]

≈ (
k2
x + k2

y + k2
z

)
a2 = k2a2 , (15.2.14)

while for a face-centered lattice∑
l

[
1 − eik·δl

]
= 12 − 4 cos

(
1
2kxa

)
cos

(
1
2kya

)
− 4 cos

(
1
2kya

)
cos

(
1
2kza

)− 4 cos
(

1
2kza

)
cos

(
1
2kxa

)
≈ (

k2
x + k2

y + k2
z

)
a2 = k2a2 .

(15.2.15)

In the long-wavelength limit, the dispersion relation of spin waves is written
in the form

�ωk ≈ Dk2 , (15.2.16)

where D is the stiffness constant of the spin waves. The experimental values
for ferromagnets of the iron group are listed in Table 15.1.

Table 15.1. The experimental values of the stiffness constant for some ferromagnets

Element Fe Co Ni

D/kB (10−13 K cm2) 3.32 4.66 3.99

15.2.2 Magnons as Elementary Excitations

Upon closer examination it is noted that the wavefunction (15.2.5) of the
spin-wave state is created by the operator
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a†k =
1√

2SN

∑
l

eik·RlS+
l (15.2.17)

from the ground state. Taking its adjoint as the annihilation operator, their
commutator is[

ak, a
†
k′
]

=
1

2SN

∑
l,l′

e−ik·Rleik′·Rl′
[
S−
l , S+

l′
]

= − 1
2SN

∑
l

e−i(k−k′)·Rl2Szl .
(15.2.18)

At low temperatures, where the magnetization is only slightly different from
the saturation value, the z component of the spins can be well approximated
by −S, therefore

[
ak, a

†
k′
] ≈ 1

N

∑
l

e−i(k−k′)·Rl = δkk′ . (15.2.19)

Thus, in this approximation, the creation and annihilation operators of spin
waves satisfy commutation relations characteristic of bosons.

Transforming the formula (15.2.17) for a†k back into lattice representation
using inverse Fourier transforms, we introduce the operators

a†j =
1√
2S

S+
j , aj =

1√
2S

S−
j . (15.2.20)

In terms of these, the spin operators are

S+
j =

√
2Sa†j , S−

j =
√

2Saj . (15.2.21)

This pair has to be complemented by a third expression, for Szj . Acting on
the state |Mj〉, in which the z component of the spin at site j is Mj,

a†jaj|Mj〉 =
1

2S
S+
j S−

j |Mj〉

=
1

2S
[
S(S + 1) −Mj(Mj − 1)

]|Mj〉

=
[
S + Mj +

1
2S

(S + Mj) − 1
2S

(S + Mj)2
]
|Mj〉 .

(15.2.22)

If S is large enough and the quantum number Mj of the states of interest (i.e.,
the expectation value of Szj ) differs little from −S then the number operator
a†jaj measures this deviation. Thus in the space of these states

Szj = −S + a†jaj . (15.2.23)

Inserting this representation of the spin operators into the Heisenberg
Hamiltonian, in the present approximation
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H = −
∑
ij

JijS
2 + S

∑
ij

Jij

(
a†iai + a†jaj − a†iaj − a†jai

)

− gμBμ0H
∑
i

(
−S + a†iai

)
.

(15.2.24)

Introducing the Fourier transforms of the operators a†j and aj via

a†k =
1√
N

∑
j

eik·Rja†j , ak =
1√
N

∑
j

e−ik·Rjaj , (15.2.25)

which is equivalent to approximating the spin operator by the bosonic operator
in (15.2.17), the Hamiltonian takes the simple form

H = E0 +
∑

k

�ωka
†
kak , (15.2.26)

where the expression for �ωk is identical to (15.2.9) obtained for a single spin
wave, and E0 is the known energy of the ferromagnetic ground state. H has
the same form as the Hamiltonian of a gas of bosons in which the energy
of a particle with wave vector k (momentum �k) is �ωk. The elementary
quanta of the latter are called magnons. Since the ferromagnetic ground state
is exactly known, and – contrary to the case of phonons – there are no quantum
fluctuations in it, the term 1

2 corresponding to zero-point vibrations does not
appear.

According to our previous considerations, this Hamiltonian reproduces cor-
rectly the ground state and the excited states with one raised spin. Finding
further eigenstates is not so easy. Since the interaction of spins in the Heisen-
berg model – even in the case of uniaxial anisotropy – is such that raising the
z component of one spin is always accompanied by the lowering another, thus
the operator Sztot =

∑
i S

z
i commutes with the Hamiltonian,

[Sztot,H] = 0 , (15.2.27)

Sztot is conserved. The projection of the total spin along the quantization axis
can therefore be used as a quantum number to label the states. In the ground
state Sztot = −NS, while in one-magnon states Sztot = −NS + 1, as one spin
has been raised. Higher excited states are expected to have two, three, etc.
raised spins. Therefore further excited states are sought in the Hilbert space
with two raised spins, in the form

|ψ〉 =
∑
ij

cijS
+
i S+

j |0〉 . (15.2.28)

If the two raised spins are not very close to each other, then these states
could be considered – as suggested by the approximate form obtained for the
Hamiltonian – as if two magnons were propagating in them independently.
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Such states can be constructed as the products of two one-magnon states.
Likewise, states containing several raised spins lend themselves to interpreta-
tion in terms of several magnons propagating independently. We shall return
to the justification of this point later; now it will be assumed that an arbitrary
excited state of the ferromagnet may be regarded as if it were composed of
a number of independently propagating magnons. To put it otherwise: the
thermodynamic behavior of ferromagnets is well approximated by that of a
gas of magnons.

15.2.3 Thermodynamics of the Gas of Magnons

Since the creation of each magnon corresponds to raising a spin, in the inde-
pendent spin-wave approximation the deviation of the thermodynamic average
of the z component of the total spin Stot from the ground-state saturation
value is given by the number

Nsw =
∑

k

〈a†kak〉 (15.2.29)

of thermally excited magnons at temperature T , as

〈Sztot〉 = −NS +
∑
i

〈a†iai 〉 = −NS +
∑

k

〈a†kak〉 . (15.2.30)

Replacing summation over wave vectors by integration in the usual way, and
using the Bose–Einstein distribution function for the number of magnons, one
finds that the number of thermally excited magnons is

Nsw = V

∫
dk

(2π)3
1

eβ�ωk − 1
, (15.2.31)

and so the magnetization is

M =
1
V

gμB〈Sztot〉 =
N

V
|g|μBS

[
1 − V

NS

∫
dk

(2π)3
1

eβ�ωk − 1

]
. (15.2.32)

In general, the temperature dependence of magnetization may be deter-
mined numerically from this formula. At low temperatures, however, one can
proceed analogously to the Debye approximation used earlier for phonons.
Approximating the dispersion relation by its asymptotic form in the long-
wavelength limit, the integral in the square brackets may be written as

1
(2π)3

kmax∫
0

4πk2 dk
1

eβDk2 − 1
, (15.2.33)

where kmax, the equivalent of the Debye wave number, is a cutoff related to
the size of the Brillouin zone.
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Unlike for phonons, the dispersion relation is now quadratic in the wave
number, therefore the thermodynamics of a gas of magnons is different from
that of a gas of phonons. Due to the rapid fall-off of the Bose–Einstein distri-
bution, the cutoff can be neglected at low temperatures. Extending the upper
limit of integration to infinity and introducing the new variable βDk2 = x,
the following value is found for the previous expression:

1
4π2

(
kBT

D

)3/2
∞∫
0

x1/2 dx
ex − 1

=
1

4π2

(
kBT

D

)3/2 √
π

2
ζ(3/2)

=
(

kBT

4πD

)3/2

ζ(3/2) ,

(15.2.34)

where we have made use of (C.2.8). Inserting this expression and D = 2JSa2

for the stiffness constant, as implied by (15.2.13), into (15.2.32),

M =
N

V
|g|μBS

[
1 − V

NS
ζ(3/2)

(
kBT

4πD

)3/2
]

=
N

V
|g|μBS

[
1 − V

NSa3

ζ(3/2)
8π3/2

(
kBT

2JS

)3/2
]

.

(15.2.35)

The deviation of the magnetization from its saturation value is due to ther-
mally excited magnons. At low temperatures, the leading correction is pro-
portional to the 3/2th power of the temperature. This result, known as the
Bloch T 3/2 law,2 is well confirmed by various experiments. Fitting the above
function to the temperature dependence of the magnetization of nickel (shown
in Fig. 14.12(a)) provides a much better agreement in the low-temperature
region than the mean-field theory.

In simple cubic lattices V = Na3. Inserting the numerical value ζ(3/2) =
2.612,

M =
μB

a3
|g|S

[
1 − 1

2S
0.117

(
kBT

2JS

)3/2
]

. (15.2.36)

For body-centered cubic lattices V = Na3/2, and for face-centered ones V =
Na3/4. Introducing a multiplicative factor α that takes the values 1/2 and
1/4 in the two cases,

M =
1
α

μB

a3
|g|S

[
1 − α

2S
0.117

(
kBT

2JS

)3/2
]

. (15.2.37)

If more realistic dispersion relations are used, corrections to the leading
term appear. Assuming only nearest-neighbor exchange interactions in simple
cubic lattices, the dispersion relation is
2

F. Bloch, 1930.
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�ωk = 4SJ
[
3 − cos kxa− cos kya− cos kza

]
. (15.2.38)

The temperature dependence of magnetization can be determined in this case,
too. In the low-temperature regime

M = M0 −A3/2

(
kBT

2JS

)3/2

−A5/2

(
kBT

2JS

)5/2

−A7/2

(
kBT

2JS

)7/2

− . . . ,

(15.2.39)
where the coefficients can be expressed in terms of Bessel functions.

To calculate the magnetic energy and the specific heat of the system,
the thermal average of magnon excitation energies has to be evaluated. If
the ground-state energy is neglected, the internal energy of the gas of free
magnons (considered as bosonic particles) becomes

E =
∑

k

�ωk〈a†kak〉 =
V

(2π)3

∫
�ωk

e�ωk/kBT − 1
dk . (15.2.40)

In the regime of low temperatures, this expression can be evaluated similarly
to the temperature dependence of magnetization above. The result is

E =
V

a3

1
4π2

(kBT )5/2

(2JS)3/2

∞∫
0

x3/2 dx
ex − 1

= αN
1

4π2

(kBT )5/2

(2JS)3/2
3π1/2

4
ζ(5/2) .

(15.2.41)

Due to the extra factor of ωk in (15.2.40) compared to the formula for mag-
netization, the energy will go with the 5/2th power of temperature. Thus the
contribution of magnons to the specific heat is proportional to T 3/2:

C = NkBA

(
kBT

2JS

)3/2

, (15.2.42)

where
A = α

15
32π3/2

ζ(5/3) = 0.113α . (15.2.43)

This contribution to the low-temperature specific heat of ferromagnetic ma-
terials can indeed be easily observed in experiments, once the contribution of
phonons, proportional to T 3, has been separated.

It is instructive to examine the results for the differential susceptibility of
ferromagnets below the Curie temperature. To this end, we shall determine
the change in the magnetization and the number of thermally excited magnons
due to a magnetic field,

ΔNsw =
∑

k

[
1

eβ�ωk(H) − 1
− 1

eβ�ωk(H=0) − 1

]
. (15.2.44)
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The excitation spectrum in the presence of a magnetic field will be written as
�ωk(H) = Dk2 + γH . Replacing summation by integration,

ΔNsw = V

∫
dk

(2π)3

[
1

eβ(Dk2+γH) − 1
− 1

eβDk2 − 1

]

= V

∫
dk

(2π)3
eβDk

2 (
1 − eβγH

)(
eβDk2 − 1

) (
eβ(Dk2+γH) − 1

) .

(15.2.45)

For weak fields, the factor 1 − eβγH in the numerator of the integrand is
proportional to H . If this were factored out, susceptibility would be propor-
tional to the remaining integral. The latter, evaluated at H = 0, would yield a
divergent result, since close to the lower limit the integrand is proportional to
1/k4. Thus the term γ H is also retained in the expansion valid in the vicinity
of the lower limit, so we have

ΔNsw = V

∫
dk

(2π)3
−βγ H

βDk2 (βDk2 + βγH)
. (15.2.46)

With the new variable x =
√

D/γH k,

ΔNsw = − 1
βD

(
γH

D

)1/2
V

(2π)3

∫
d3x

1
x2(x2 + 1)

. (15.2.47)

Now the integral is convergent at the lower limit. The most important point is
that the magnetization is proportional to

√
H , hence, below TC, the suscepti-

bility exhibits a strong field dependence proportional to 1/
√
H . In contrast to

the finite value obtained from the mean-field theory, the contribution of spin
waves render the susceptibility divergent in the H → 0 limit. In experiments
large but finite initial susceptibilities are measured instead. This is because
macroscopic samples always contain domains with different directions of mag-
netization, and the field dependence of magnetization is in fact governed by
these.

15.2.4 Rigorous Representations of Spin Operators

If the operators ak and a†k were boson operators, the operators in the lattice
representation would also behave as boson operators. Obviously this cannot
be so, since the z component of the spin at a given lattice site has only
(2S + 1) allowed values. Formulas (15.2.21) and (15.2.23) can be only ap-
proximately true. If, nevertheless, the spin operators are to be represented by
boson operators, more complicated expressions are needed to ensure the right
commutation relations among the spin operators. Several such representations
exist. Below, we shall see three commonly used forms.

In the Holstein–Primakoff representation3 the spin operators are ex-
pressed as
3

T. Holstein and H. Primakoff, 1940.



15.2 Quantum Mechanical Treatment of Spin Waves 531

S+
j =

√
2Sa†j

(
1 − a†jaj/2S

)1/2

,

S−
j =

√
2S

(
1 − a†jaj/2S

)1/2

aj ,

Szj = −S + a†jaj .

(15.2.48)

With the help of the commutation relations[
ai , a

†
j

]
= δij ,

[
ni , ai

]
= −ai ,

[
ni , a

†
i

]
= a†i (15.2.49)

for boson operators, it is straightforward to show that the spin operators in-
deed satisfy the correct commutation relations. For example, for the operators
S+
j and S−

j ,

[
S+
j , S−

j

]
= 2S

[
a†j
(
1 − a†jaj/2S

)
aj

−
(
1 − a†jaj/2S

)1/2

aja
†
j

(
1 − a†jaj/2S

)1/2 ]
= 2S

[
a†jaj

(
1 − (a†jaj − 1)/2S

)
−
(
1 − a†jaj/2S

)1/2 (
1 + a†jaj

)(
1 − a†jaj/2S

)1/2 ]
= 2S

[
a†jaj

(
1 − a†jaj/2S

)
+ a†jaj/2S

−
(
1 + a†jaj

)(
1 − a†jaj/2S

)]
= 2S

[
−1 + a†jaj/S

]
= 2Szj . (15.2.50)

If we wish to go beyond the leading-order terms (which are identical to
the expressions used previously), and take into account the corrections due
to the factor under the square root in the Holstein–Primakoff transformation,
the calculations will run into difficulties because of the square root. That is
why it is often more convenient to use the Dyson–Maleev representation,4 in
which

S+
j =

√
2Sa†j ,

S−
j =

√
2S

(
1 − a†jaj/2S

)
aj , (15.2.51)

Szj = −S + a†jaj .

Again, it is easy to demonstrate that the usual commutation relations hold
among the spin operators, however, S+

j and S−
j are not each other’s adjoints,

as they should be. Nonetheless, the Hamiltonian of the Heisenberg model
proves to be Hermitian.

4
F. J. Dyson, 1956 and S. V. Maleev, 1957.
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Whether one form is used or the other, the corrections are small for large
values of S, and we get back to the same expression that was used earlier.
Therefore it is straightforward to assume that the gas of free magnons provides
a good approximation for large spins. In reality, however, the obtained results
are sufficiently precise even for S = 1/2 in the low-temperature regime.

In the foregoing, we gave two representations of the spin operators in terms
of operators satisfying bosonic commutation relations. Further representations
of the spin operators are equally possible. In the Schwinger representation,5
two bosons are associated with each lattice site, and – dropping lattice indices
– the vectors

a† =
(
a†1 a†2

)
, a =

(
a1

a2

)
(15.2.52)

are constructed. Then the operator

S = 1
2a† · σ · a (15.2.53)

is defined with the help of the Pauli matrices. Its components,

Sz = 1
2 (a†1a1 − a†2a2) ,

S+ = Sx + iSy = a†1a2 ,

S− = Sx − iSy = a†2a1

(15.2.54)

satisfy the commutation relations of the dimensionless angular momenta. The
properties of bosons imply

S2 = S(S + 1) , (15.2.55)

where
S = 1

2a† · a = 1
2 (a†1a1 + a†2a2) . (15.2.56)

The eigenvalues of S are integers or half-integers (0, 1/2, 1, 3/2, 2, . . .). To
describe the states of spin S in terms of Schwinger bosons, we have to restrict
the allowed states to the subspace of the Hilbert space where the condition

S = 1
2 (a†1a1 + a†2a2) (15.2.57)

is satisfied. If this relation is used to eliminate the boson labeled 2, and the
expressions

a2 =
√

2S

(
1 − a†1a1

2S

)1/2

,

a†2 =
√

2S

(
1 − a†1a1

2S

)1/2
(15.2.58)

5
J. Schwinger, 1952. Julian Schwinger (1918–1994) shared the Nobel price
in 1965 with S. Tomonaga and R. P. Feynman “for their fundamental work in
quantum electrodynamics, with deep-ploughing consequences for the physics of
elementary particles”.
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are substituted into (15.2.54), we obtain the Holstein–Primakoff representa-
tion of the spin operators by a single bosonic variable. If, instead, the boson
labeled 1 is eliminated, then the spin operators will be expressed as

S+
j =

√
2S

(
1 − a†jaj/2S

)1/2

aj ,

S−
j =

√
2Sa†j

(
1 − a†jaj/2S

)1/2

,

Szj = S − a†jaj .

(15.2.59)

This representation is just as good as that given in (15.2.48), but using it is
practical only when the spin at the jth lattice site points upward in the ground
state. We shall use this form for studying antiferromagnetic excitations.

Alternatively, in the S = 1/2 case spin operators can be represented by
anticommuting fermion operators as

Sj =
∑
σσ′

c†jσσσσ′cjσ′ , (15.2.60)

or, using the explicit form of the Pauli operators

S+
j = c†j↑cj↓,

S−
j = c†j↓cj↑,

Szj = 1
2 (c†j↑cj↑ − c†j↓cj↓) .

(15.2.61)

Finally, it should be mentioned that in one dimension the Jordan–Wigner
transformation6 can also be used to obtain a representation of spin-1/2 spin
operators in terms of spinless fermions:

S+
j = c†j exp

(
iπ
∑
l<j

c†l cl
)
,

S−
j = exp

(
− iπ

∑
l<j

c†l cl
)
cj ,

Szj = c†jcj − 1
2 .

(15.2.62)

15.2.5 Interactions Between Magnons

The expressions for spin operators in terms of magnon creation and anni-
hilation operators are fairly complicated. As a consequence, besides bilinear
terms, others containing more operators will also be included in the Heisen-
berg Hamiltonian, whether the Holstein–Primakoff or the Dyson–Maleev rep-
resentation is used. The explicit forms of these terms are, however, different in

6
P. Jordan and E. P. Wigner, 1928.
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the two representations. Expanding the square root in the Holstein–Primakoff
transformation,

S+
j =

√
2Sa†j

[
1 − a†jaj/4S + . . .

]
,

S−
j =

√
2S

[
1 − a†jaj/4S + . . .

]
aj ,

Szj = −S + a†jaj .

(15.2.63)

When this is substituted into the Heisenberg Hamiltonian, and the terms
quadratic and quartic in the boson operators are separated, we get

H = H0 + H1 , (15.2.64)

where H0 is the same as in (15.2.24),

H0 = −
∑
ij

JijS
2 + S

∑
ij

Jij

(
a†iai + a†jaj − a†iaj − a†jai

)

− gμBμ0H
∑
i

(
−S + a†iai

)
,

(15.2.65)

while, making use of the relation Jij = Jji, the quartic part is

H1 = −
∑
ij

Jij

(
a†iaia

†
jaj − 1

2aia
†
ja

†
jaj − 1

2a
†
iaiaia

†
j

)
. (15.2.66)

As we have already seen, when expressed in terms of the Fourier transforms
of the operators, H0 can be diagonalized. This is the Hamiltonian of the free
magnon gas. On the other hand,

H1 =
Jz

2N

∑
k1k2
k3k4

(γk1 + γk3 − 2γk1−k3) a
†
k1

a†k2
ak3

ak4
δ(k1 + k2 − k3 − k4 + G)

(15.2.67)
contains magnon interactions (scattering processes), so-called dynamical in-
teractions. They have to be taken into account if the corrections to ther-
modynamic quantities, etc. due to magnon–magnon interactions are to be
determined.

If the Dyson–Maleev transformation is applied, only such four-operator
terms appear – while if the Holstein–Primakoff transformation is used instead,
the quartic terms do not describe the interaction in full, the expansion of the
square root brings in further terms, corresponding to multi-particle scattering.

The interactions lead to a temperature-dependent change in the magnon
energy. To demonstrate this, consider the diagonal terms of the interactions
that do not change the state of the magnons. For long-wavelength magnons,
when umklapp processes can be neglected (only the G = 0 term survives),
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there are two possibilities: either k1 = k3 and k2 = k4, or k1 = k4 and
k2 = k3. Rearranging the interaction part leads to

H1 =
Jz

N

∑
k1k2

(γk1 + γk2 − γ0 − γk1−k2) a
†
k1

ak1
a†k2

ak2
. (15.2.68)

Assuming that the number of excited magnons fluctuates little, i.e., the terms(
a†k1

ak1
− 〈

a†k1
ak1

〉) (
a†k2

ak2
− 〈

a†k2
ak2

〉)
(15.2.69)

are negligible, the diagonal part of the interaction Hamiltonian can be written
in the form

H1 =
Jz

N

∑
k1k2

(γk1 + γk2 − γ0 − γk1−k2) a
†
k1

ak1

〈
a†k2

ak2

〉

+
Jz

N

∑
k1k2

(γk1 + γk2 − γ0 − γk1−k2)
〈
a†k1

ak1

〉
a†k2

ak2

− Jz

N

∑
k1k2

(γk1 + γk2 − γ0 − γk1−k2)
〈
a†k1

ak1

〉〈
a†k2

ak2

〉
.

(15.2.70)

With a change of variables the total Hamiltonian can be written as

H = E(T ) +
∑

k

�ωk(T )a†kak , (15.2.71)

where

�ωk(T ) = �ωk +
2Jz
N

∑
q

(γk + γq − γ0 − γk−q) 〈a†qaq〉

= �ωk − 1
NS

∑
q

(�ωk + �ωq − �ω0 − �ωk−q) 〈a†qaq〉 .
(15.2.72)

This is the energy needed to excite a magnon when other magnons are al-
ready present in the system. The pairwise interaction between the magnons
renormalizes the energy of both of them, but this energy correction has to be
taken into account in the total energy only once. This is taken care of by the
term

ΔE(T ) = −Jz

N

∑
k1k2

(γk1 + γk2 − γ0 − γk1−k2) 〈a†k1
ak1

〉〈a†k2
ak2

〉 . (15.2.73)

The renormalized energy of the magnons can be written in a simple form for
a simple cubic ferromagnet with nearest-neighbor interactions. Making use of
the cubic symmetry, it can be proved that
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�ωk(T ) = �ωk

[
1 − 1

2JzS2N

∑
q

�ωq〈a†qaq〉
]
. (15.2.74)

The energy of all magnons is renormalized by the same temperature-dependent
factor. The correction appearing in the brackets is proportional to the thermal
energy of the system due to magnetic excitations. It was shown in (15.2.41)
that this quantity is proportional to T 5/2 at low temperatures. Even more
generally, the correction term in the dispersion relation is proportional to k2

in the long-wavelength regime, while its strength depends on the 5/2th power
of temperature.

Over and above such processes yielding temperature-dependent energy
corrections, there exist others that scatter the magnon out of its initial state.
This may be interpreted as magnons having a finite lifetime. It can be shown
that the inverse lifetime is proportional to k4 in ferromagnets, that is long-
wavelength magnons decay very slowly.

In equation (15.2.39) for the magnetization we saw that the corrections
to the Bloch T 3/2 law involve half-integer powers of the temperature. On the
other hand, the lowest-order correction due to magnon–magnon interactions
is proportional to the fourth power of T (since the energy of magnons goes
with T 5/2). Aside from dynamical interactions, we must take into considera-
tion that, strictly speaking, magnons are not bosons. At each lattice site, the
spin can be raised up to 2S times. The resulting correction is the so-called
kinematical interaction. A rigorous treatment was presented by F. J. Dyson

(1956), who showed that the first-order correction to the temperature depen-
dence of magnetization due to kinematical interactions – similarly to that due
to dynamical interactions – is proportional to T 4.

15.2.6 Two-Magnon Bound States

A simple manifestation of magnon–magnon interactions is the existence of
bound states between two magnons under suitable conditions. To see how
they arise, let us recall that in the ground state of the isotropic Heisenberg
model with ferromagnetic (J > 0) exchange interaction, spins are lined up
parallel, irrespective of the dimensionality of the lattice. The low-lying one-
magnon excitations were obtained as linear combinations of states in which
one spin is raised or lowered by one unit relative to the ground state. If spin
waves were propagating independently in the lattice, then the wavefunction
of the excitation of two spin waves, of wave vectors k and k′, could be chosen
as

|ψ〉 =
1

2SN

∑
i

eik·RiS+
i

∑
j

eik′·RjS+
j |0〉 . (15.2.75)

This corresponds to the assumption – mentioned in connection with (15.2.28)
– that the coefficients cij can be chosen in a product form. The above state is,
however, not an exact eigenstate of the Hamiltonian because it contains terms
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in which the two raised spins are located at adjacent sites, or, for S > 1/2,
in which the spin at one site has been raised twice – and the result of the
action of the Hamiltonian on such configurations is different from the results
obtained when the two reversed spins are far apart. Since the weight of these
configurations is on the order 1/N in the wavefunction, the excitation energy
of such states is expected to be approximately

ΔE = �ωk + �ωk′ . (15.2.76)

It can be shown that for the overwhelming majority of states with two reversed
spins the energy is quite close to such a value. However, in addition to states
with two nearly free spin waves, there exist other states – although with a
small thermodynamic weight – that can be considered as bound states of two
spin waves. For simplicity, we shall present the calculation in one dimension.

Assuming that only nearest neighbors interact, the Hamiltonian of the
isotropic spin chain is written as

H = −J
∑
l

Sl · Sl+1 , (15.2.77)

which differs from the previously used form in a factor of 2. In contrast to the
foregoing, the state |F 〉 in which the projection of each spin is maximal along
the z direction will be chosen as the ferromagnetic ground state. Writing the
wavefunction of the state with one lowered spin as

|ψk〉 =
1√
2S

1√
N

∑
l

eikxlS−
l |F 〉 , (15.2.78)

the energy of one-magnon excitations is

�ωk = 2SJ(1 − cos ka) . (15.2.79)

Two-magnon excitations can be obtained by reducing the z component of
the total spin of the ground state by two. In state

|ψl,l′ 〉 = S−
l S−

l′ |F 〉 (15.2.80)

the projection of the spins at sites l and l′ have been reduced by one unit
each. If S = 1/2, the operator S− reverses the spin, and the two sites are
necessarily different. If, however, S > 1/2, then it is possible to reduce the z
component of the spin twice at the same site. These states are not eigenstates
of the Heisenberg Hamiltonian, since, depending on the relative location of
the two lattice sites – whether they are coincident, adjacent, or separated at
a larger distance –

H|ψl,l〉 = (E0 + 4JS)|ψl,l〉 − J [S(2S − 1)]1/2 (|ψl−1,l〉 + |ψl,l+1〉) ,

H|ψl,l+1〉 = (E0 + J(4S − 1))|ψl,l+1〉 − J [S(2S − 1)]1/2 (|ψl,l〉
+|ψl+1,l+1〉) − JS (|ψl−1,l+1〉 + |ψl,l+2〉) , (15.2.81)

H|ψl,l′〉 = (E0 + 4JS)|ψl,l′〉−JS (|ψl−1,l′〉+|ψl+1,l′〉+|ψl,l′−1〉+|ψl,l′+1〉) .
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We shall look for eigenstates expressed as linear combinations of these,

|Ψ〉 =
N∑
l=1

N∑
l′=l

c(xl, xl′ )|ψl,l′〉 , xl ≤ xl′ . (15.2.82)

Applying the Hamiltonian on |Ψ〉, and making use of relations (15.2.81) for
the states |ψl,l′〉, equations are obtained for the coefficients c(xl, xl′ ). If the
energy of the excited state is written as E = E0 + �ω, we have

[�ω − 4JS]c(xl, xl) + J [S(2S − 1)]1/2 [c(xl−1, xl) + c(xl, xl+1)] = 0 ,

[�ω − J(4S − 1)]c(xl, xl+1) + J [S(2S − 1)]1/2 [c(xl, xl) + c(xl+1, xl+1)]

+ JS [c(xl−1, xl+1) + c(xl, xl+2)] = 0 , (15.2.83)

[�ω − 4JS]c(xl, xl′ ) + JS [c(xl−1, xl′) + c(xl+1, xl′ )

+ c(xl, xl′−1) + c(xl, xl′+1)] = 0

for identical, adjacent, and further separated sites.
As a generalization of the expression exp(ikxl) used for one-magnon states

and leading to plane-wave-like solutions, we shall seek the coefficient c(xl, xl′)
in the form

c(xl, xl′) = A12ei(k1xl+k2xl′) + A21ei(k2xl+k1xl′) . (15.2.84)

Both terms are necessary if we wish to obtain a symmetrized form for xl ≤ xl′ .
As an immediate consequence, if periodic boundary conditions are imposed,
we have

c(xl, xl′) = c(xl′ , xl + Na) , (15.2.85)

or
A12 = A21eik1Na = A21e−ik2Na . (15.2.86)

The choice A12 = Aeiφ/2, A21 = Ae−iφ/2 leads to

eik1Na = eiφ , eik2Na = e−iφ , (15.2.87)

or alternatively

Nak1 = 2πI1 + φ , Nak2 = 2πI2 − φ , (15.2.88)

where I1 and I2 are integers. Physically different solutions are obtained only
when I1 and I2 are both in the interval [0, N).

Inserting this into the last equation of (15.2.83), the energy eigenvalue is
found to be

�ω = 2JS [2 − (cos k1a + cos k2a)] . (15.2.89)

This is apparently the same as the sum of the energies of two free magnons,
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�ω = �ωk1 + �ωk2 . (15.2.90)

Care must be taken however, since due to the interaction between the
magnons, the two wave numbers are shifted with respect to the free-magnon
values. Their sum is nonetheless a good quantum number:

k = k1 + k2 =
2π
Na

(I1 + I2) . (15.2.91)

In terms of k and the variable q = (k1 − k2)/2, the excitation energy reads

�ω = 4JS
[
1 − cos

(
1
2ka

)
cos(qa)

]
. (15.2.92)

If q is real, excitation energies are in the interval between

�ω+ = 4JS
[
1 + cos

(
1
2ka

)]
and �ω− = 4JS

[
1 − cos

(
1
2ka

)]
, (15.2.93)

as shown in Fig. 15.3.

��/a ��a
k

!

Fig. 15.3. The spectrum of excitations due to lowering two spins in a chain of
S = 1/2 spins

The possible values of k1 and k2, along with the phase φ are determined
from the condition that the first two equations of (15.2.83) (for c(xl, xl) and
c(xl, xl+1)) should both hold. Expressing c(xl, xl) from the first equation and
substituting it into the formula for c(xl, xl+1), one gets

[�ω − J(4S − 1)]c(xl, xl+1) + JS (c(xl−1, xl+1) + c(xl, xl+2))

=
J2S(2S − 1)

�ω − 4JS
(2c(xl, xl+1) + c(xl−1, xl) + c(xl+1, xl+2)) .

(15.2.94)

Making use of the expression for �ω and the assumption for c(xl, xl′), after a
tedious calculation one arrives at

cot(φ/2) = 1
2 [cot(k1a/2) − cot(k2a/2)]

[
1 + (2S − 1)

cos[(k1 + k2)a/2]
cos[(k1 − k2)a/2]

]
.

(15.2.95)
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It is readily seen that φ changes sign upon the interchange of k1 and k2, so
the wavefunction is unaffected by the same interchange. For k1 = k2, φ = ±π,
and the wave function vanishes. It is therefore sufficient to consider the case
k1 < k2 (I1 < I2).

If k2 and the corresponding I2 are treated as known, and k1 is varied from
zero to k2, the phase φ changes from 0 to π. Each wave number becomes
slightly larger than the free-magnon value 2πI1/Na. The shift in energy is of
order 1/N , that is why the same regime is obtained for the continuum of such
states as for free two-magnon states.

However, I1 can only take the values 0, 1, 2, . . . , I2 − 2, since the solution
for I1 = I2 − 1 would be k1 = k2, implying a vanishing wavefunction, as
we have already seen. Therefore, if the solutions found so far are collected
for all values of I2, we end up with N − 1 less states than we should. To
find the missing ones, we must allow k1 and k2 to take complex values. We
shall not go into the details of the calculation here, just convey the results:
for each value of the total (resultant) wave number k there exists a complex
conjugate pair k1, k2 = k∗

1 such that the corresponding excitation energy is
below the bottom of the continuum of two-magnon excitations. For S = 1/2
the excitation energy can be given analytically as

�ω = 1
2J [1 − cos ka] . (15.2.96)

In Fig. 15.3 these excitation energies are indicated by the curve below the
continuum. Because of the complex wave number, these excitations correspond
to states in which large amplitudes belong to configurations where the two spin
flips have taken place on identical or adjacent lattice sites. These excitations
can thus be regarded as bound states of two magnons. Their energy is below
the continuum, because it is energetically more favorable to flip a spin that
already has a flipped spin as a neighbor.

15.3 Antiferromagnetic Magnons

The description of the ground state and low-lying excited states of ferromag-
netic materials was facilitated by the possibility of building the global ground
state from local ground states of pairs of neighboring spins. For antiferro-
magnetic coupling this is no longer the case. The local ground state of two
antiferromagnetically coupled spins is the singlet configuration of the spins.
In this state the expectation value of the spin operator vanishes for each spin.
Such local ground states cannot serve as building blocks for a global ground
state with nonzero sublattice magnetization. The determination of the ground
state is in fact rather difficult. Discussion of this point will be deferred to the
next subsection. Here, we shall start from the classical, so-called Néel state, in
which the z component of each spin is S in sublattice A, and −S in sublattice
B. In fact, this is not an eigenstate of the Heisenberg Hamiltonian, for neigh-
boring spins cannot have maximum projections in opposite directions because
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of the term
Sxi S

x
j + Syi S

y
j = 1

2

(
S+
i S−

j + S−
i S+

j

)
. (15.3.1)

For lack of a better starting point, we shall adopt this classical ground state,
and try to generalize the results obtained for ferromagnets.

15.3.1 Diagonalization of the Hamiltonian

Excited states can be studied by means of the Holstein–Primakoff or the
Dyson–Maleev transformation, familiar from the treatment of ferromagnets.
However, different assignments must be used on the two sublattices, with
dominantly upward and downward spins (“up” and “down” sublattices). At
low temperatures, the z component of the spins in sublattice A is dominantly
S, while for those in sublattice B it is −S, hence excitations above the Néel
state are created by operator S− in sublattice A, and operator S+ in sublattice
B. Consequently, spin operators can be represented by boson operators as

S+
Ai =

√
2S

(
1 − a†iai/2S

)1/2

ai , S+
Bj =

√
2Sb†j

(
1 − b†jbj/2S

)1/2

,

S−
Ai =

√
2Sa†i

(
1 − a†iai/2S

)1/2

, S−
Bj =

√
2S

(
1 − b†jbj/2S

)1/2

bj ,

SzAi = S − a†iai , SzBj = −S + b†jbj ,
(15.3.2)

or

S+
Ai =

√
2S

(
1 − a†iai/2S

)
ai , S+

Bj =
√

2Sb†j ,

S−
Ai =

√
2Sa†i , S−

Bj =
√

2S
(
1 − b†jbj/2S

)
bj ,

SzAi = S − a†iai , SzBj = −S + b†jbj .
(15.3.3)

Whichever choice is adopted, the correct commutation relations will be re-
covered for the spin operators, as long as the ladder operators ai and bj are
bosonic in character.

We shall restrict our discussion to nearest-neighbor interactions and bi-
partite lattices, where the nearest neighbors of an up spin in a two-sublattice
antiferromagnet are down spins in the other sublattice. Expanding the Hamil-
tonian through bilinear terms – that is, neglecting four-operator terms yielding
magnon-magnon interactions – we have

H0 = 2NzJS2 − 2JS
∑
iδ

(
a†iai + b†i+δbi+δ + ai bi+δ + a†ib

†
i+δ

)
, (15.3.4)

where δ is the vector to the nearest neighbors. In terms of the Fourier trans-
forms,
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ak =

√
2
N

∑
i∈A

e−ik·Riai , a†k =

√
2
N

∑
i∈A

eik·Ria†i ,

bk =

√
2
N

∑
j∈B

e−ik·Rj bj , b†k =

√
2
N

∑
j∈B

eik·Rjb†j ,

(15.3.5)

the Hamiltonian takes the form

H0 = 2NzJS2 − 2JzS
∑

k

[
a†kak + b†−kb−k + γk

(
akb−k + a†kb

†
−k

)]
.

(15.3.6)
As transition to the boson operators had to be performed differently in the

two sublattices, this Hamiltonian is not yet diagonal. We have to make one
more transformation, the unitary Bogoliubov transformation.7 Introducing
two new creation and annihilation operators that mix the operators of the
two sublattices,

αk = ukak − vkb
†
−k , βk = ukb−k − vka

†
k ,

α†
k = uka

†
k − vkb−k , β†

k = ukb
†
−k − vkak .

(15.3.7)

The coefficients are assumed to be real; in retrospect, this will prove justified.
The new operators satisfy bosonic commutation relations if u2

k − v2
k = 1. The

inverse transformation formulas are then

ak = ukαk + vkβ
†
k , b−k = ukβk + vkα

†
k ,

a†k = ukα
†
k + vkβk, b†−k = ukβ

†
k + vkαk .

(15.3.8)

Substituting these into (15.3.6), we find that if condition

2ukvk + γk

(
u2

k + v2
k

)
= 0 (15.3.9)

is met, only the diagonal elements in the Hamiltonian survive. Then

H0 = 2NzJS2 + 2NzJS +
∑

k

�ωk

[
α†

kαk + β†
kβk + 1

]
, (15.3.10)

where
�ωk = 2|J |zS [u2

k + v2
k + 2γkukvk

]
. (15.3.11)

The solution of (15.3.9) satisfying the auxiliary condition u2
k − v2

k = 1 is

u2
k = 1

2

(
1√

1 − γ2
k

+ 1

)
, v2

k = 1
2

(
1√

1 − γ2
k

− 1

)
. (15.3.12)

Inserting this into the excitation energy formula,
7

N. N. Bogoliubov, 1958.
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�ωk = 2|J |zS
[

1√
1 − γ2

k

− γ2
k√

1 − γ2
k

]
= 2|J |zS

√
1 − γ2

k . (15.3.13)

In the long-wavelength limit, where γk is close to unity, the square root can
be approximated as√

1 − γ2
k =

√
1 + γk

√
1 − γk ≈ √

2
√

1 − γk . (15.3.14)

The geometry-dependent factor 1 − γk was determined for cubic crystals in
equations (15.2.12), (15.2.14) and (15.2.15), and in these cases

√
1 − γ2

k ≈
√

2
z
ka . (15.3.15)

Thus, as has been found in the classical limit, the dispersion relation of anti-
ferromagnetic magnons starts linearly:

�ωk ≈ 2JS
√

2zka . (15.3.16)

This is why antiferromagnets are strikingly different from ferromagnets, as far
as thermodynamic behavior is concerned; in some aspects they are similar to
a phonon gas.

In two-sublattice antiferromagnets two types of spin waves (or antiferro-
magnons) may therefore propagate, whose energies are equal in the absence
of anisotropies and external magnetic fields. Spins in both sublattices partici-
pate in each type of excitation, however, spins in the “up” sublattice play the
major role in one type, while those in the “down” sublattice in the other. If
we had considered more complex antiferromagnets with more sublattices, we
would have found not just two excitation branches but as many as there are
sublattices. Nor will it be true any longer that each excitation branch starts
at zero. Using the same terminology as for phonons, we can speak of acoustic
and optical magnons.

15.3.2 The Antiferromagnetic Ground State

When expressed in terms of spin-wave creation and destruction operators, the
Hamiltonian (15.3.10) of the antiferromagnetic system has, in addition to the
magnon number operator, a term – “+1” in the brackets – that corresponds
to the zero-point energy of the two types of magnons. In the ferromagnetic
ground state, with all spins lined up parallel, there is no zero-point energy
contribution. Its presence in antiferromagnets indicates that the Néel state is
not the true ground state.

Taking the zero-point energy contribution into account, we have

E0 = 2NzJS(S + 1) +
∑

k

ωk = 2NzJS

(
S +

β

z

)
(15.3.17)
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for the ground-state energy, where

β

z
=

1
N

∑
k

(
1 −

√
1 − γ2

k

)
. (15.3.18)

For simple and body-centered cubic lattices β ≈ 0.58. The number of nearest
neighbors (the coordination number) is six in the first case and eight in the
second, and so β/z < 0.1. The correction provided by zero-point vibrations is
therefore less than 10% of the Néel state energy.

Due to quantum fluctuations present in the true ground state, the expecta-
tion value of the spins is slightly smaller in magnitude than the ground-state S
value. To determine the zero-point spin contraction, consider the next formula
for the spins in sublattice A:

SzAi = S − a†iai = S − 2
N

∑
k

a†kak . (15.3.19)

Expressing the aks in terms of the magnon creation and annihilation opera-
tors, we have

SzAi = S − 2
N

∑
k

(
u2

kα
†
kαk + v2

kβkβ
†
k + ukvkα

†
kβ

†
−k + ukvkβ−kαk

)
.

(15.3.20)
The ground-state spin reduction is the expectation value of this expression
at T = 0. The only nonvanishing contribution comes from the term βkβ

†
k =

1 − β†
kβk, whence

ΔSz = S − 〈SzAi〉 =
2
N

∑
k

v2
k =

1
N

∑
k

[
1√

1 − γ2
k

− 1

]
. (15.3.21)

Transforming the sum over wave vectors into an integral, and evaluating the
latter numerically, 0.078 is obtained for simple cubic lattices, and 0.059 for
body-centered cubic lattices. (The deviation from the mean-field theory is
smaller for bcc lattices because of the larger number of nearest neighbors.)
Hence, even in the worst case – that is in a cubic antiferromagnet built up of
S = 1/2 spins – the spin is contracted by no more than 15% in the ground
state. As we shall see later, this is not the case in lower-dimensional systems.

15.3.3 Antiferromagnetic Magnons at Finite Temperature

Because of the linear dispersion relation of antiferromagnetic magnons, the
thermodynamic behavior of antiferromagnets is expected to differ from that
of ferromagnets. Indeed, the temperature dependence of sublattice magneti-
zation and specific heat are governed by different power laws in the two types
of material.
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At finite temperature, the sublattice magnetization is

MA =
1
V

gμB
∑
i

〈SzAi〉 =
1
V

gμB
∑
i

[S − 〈a†iai 〉]

=
1
V

gμB

[
1
2NS −

∑
k

〈a†kak〉
]
.

(15.3.22)

Changing to magnon creation and annihilation operators anew, the formula
for the temperature dependence of sublattice magnetization becomes

MA(T ) = MA(0) − gμB
1
V

∑
k

[
u2

k〈α†
kαk〉 + v2

k〈β†
kβk〉

]
. (15.3.23)

Since the two types of magnons possess the same energy, by using the Bose–
Einstein statistics for the occupation numbers, and inserting the expressions
for u2

k and v2
k from (15.3.12), we have

MA(T ) = MA(0) − gμB
1
V

∑
k

1
eβ�ωk − 1

1√
1 − γ2

k

. (15.3.24)

To determine the leading-order correction, the linearity of the dispersion re-
lation is assumed at low temperatures, �ωk = Dk. Introduction of the new
variable x = Dk/kBT and the customary replacement of the sum by an inte-
gral leads to

MA(T ) = MA(0) − gμB
|J |zS
Dπ2

(
kBT

D

)2
xmax∫
0

xdx
ex − 1

, (15.3.25)

where xmax = Dkmax/kBT , while kmax is determined by

N

2V
=

1
(2π)3

4π
3

k3
max , (15.3.26)

in analogy to the Debye wave number. At low temperatures, where one may
extend the integration to infinity, the sublattice magnetization varies as the
square of the temperature. The specific heat contribution of magnons – sim-
ilarly to that of phonons, since the two dispersion relations are identical – is
found to be proportional to T 3.

15.3.4 Excitations in Anisotropic Antiferromagnets

If we had determined the energy of excited states in isotropic antiferromagnets
in the presence of a magnetic field, but with the constraint that in the two
sublattices the spins are respectively lined up parallel and antiparallel to the
applied field, we would have arrived at the simple result
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�ωk = 2|J |zS
√

1 − γ2
k ± gμBB . (15.3.27)

The fact that in the vicinity of k = 0 the excitation energies are negative in one
branch signals immediately that our assumption is flawed. In isotropic models
the state in which the sublattice magnetization is parallel to the magnetic field
direction is not stable. As we saw in the mean-field-theoretical treatment, the
magnetic moments in an isotropic antiferromagnet are not aligned with the
applied magnetic field but are slightly turned with respect to the direction
perpendicular to it. A uniaxial anisotropy, however, may render the alignment
of the sublattice magnetization along the applied field stable. If we write the
Hamiltonian as

H = −
∑
i,j

Jij
{
Sxi S

x
j + Syi S

y
j + ΔSzi S

z
j

}
, (15.3.28)

like in (14.3.6), the excitation spectrum can be determined applying meth-
ods similar to those used in the isotropic case. After a Holstein–Primakoff
transformation from spin to boson operators, the Hamiltonian may be diag-
onalized by a Bogoliubov transformation. In two-sublattice antiferromagnets,
if exchange takes place only between nearest neighbors located in different
sublattices, the spin-wave excitation energies are found to be

�ωk = 2|J |zS
√

Δ2 − γ2
k ± gμBB . (15.3.29)

In the absence of an applied magnetic field there is a finite gap in the magnon
spectrum for Δ > 1. There is no contradiction with Goldstone’s theorem, for
in this easy-axis anisotropic situation the ordered antiferromagnetic ground
state does not break any continuous symmetry. The twofold degeneracy in the
excitation spectrum is lifted by an external magnetic field. The energy in one
branch decreases for increasing field intensities, and vanishes at a critical value
of the magnetic field. It is at this critical field strength that the alignment of
the sublattice magnetization along the easy axis of magnetization becomes
unstable and that the spin-flop transition seen in the previous chapter occurs.

15.3.5 Magnons in Ferrimagnets

The magnetic excitations in ferrimagnets are examined in a bipartite lattice in
the special case when the two sublattices are built up of spins of magnitude SA
and SB, respectively, and each atom located in either sublattice is surrounded
by the same z number of nearest neighbors in the other sublattice. Employing
a straightforward generalization of the method used for antiferromagnets, the
excitations are found to have two branches, with energies

�ωk = |J |z
√

(SA − SB)2 + 4SASB(1 − γ2
k) ± (SA − SB) . (15.3.30)



15.4 Experimental Study of Magnetic Excitations 547

For SA = SB the spectrum of antiferromagnets is recovered. When the two
spins are different, one excitation branch still starts off at zero, in accordance
with Goldstone’s theorem, while the energy values in the other branch are
always finite. Just like for phonons, the gapless modes are called acoustic
magnons, while the others are termed optical magnons.

The structure of most ferrimagnets is more complex than the one presented
above. There might be more than two sublattices, with different coordination
numbers and exchange integrals for each of them. In magnetite, e.g., there
are six sublattices, and, accordingly, six magnon branches, of which five are
optical. In the magnon spectrum of yttrium–iron garnet (YIG), 20 excitation
branches are found, of which 19 are optical. In those rare-earth garnets, in
which the rare-earth ions are magnetic, 32 modes are present, of which 31 are
optical.

15.4 Experimental Study of Magnetic Excitations

In Chapter 13 we gave a detailed account of the experimental methods used
to study lattice vibrations. We saw that by measuring the wave vector and
energy of the particles (photons, neutrons etc.) in the incoming and scattered
beams in scattering experiments, one can determine the spectrum of lattice
vibrations created or annihilated in the scattering process. The general consid-
erations presented there are also valid for magnetic excitations, as long as the
particles in scattered beam can flip the spins of the magnetically ordered sys-
tem, creating or absorbing magnetic excitations. Earlier we had also seen that
neutrons, via their magnetic moments, can interact with magnetic moments
localized to atoms – hence elastic neutron scattering is the most adequate
method of magnetic structure determination. Therefore it comes as no sur-
prise that inelastic neutron scattering is the method of choice for determining
the dispersion relation of magnetic excitations.

According to the Van Hove formula presented in Appendix E, the double
differential cross section of inelastic scattering in a vibrating lattice can be
expressed in terms of the spatial and temporal correlation function of the po-
sition of atoms – or, more precisely, is proportional to its Fourier transform
with respect to space and time variables. Likewise, the magnetic scattering
cross section is proportional to the Fourier transform of the spatial and tempo-
ral correlation function of magnetic moments. Because of the vector character
of magnetic moments, the orientation of the moments relative to the polar-
ization direction of neutrons will be essential. We shall skip the details here –
the Van Hove formula of magnetic scattering will be given in Appendix E –,
and content ourselves with the result: the cross section formula contains the
spatial and temporal Fourier transform of the correlation function

〈Sαi (t)Sβj (0)〉 , (15.4.1)

as
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∑
ij

e−iK·(Ri−Rj)

∞∫
−∞

dt eiεt/�〈Sαi (t)Sβj (0)〉 , (15.4.2)

where K = k−k′ is the change of the neutron propagation vector, also known
as the scattering vector, and ε = Ef −Ei is the energy transfer in the process.

These correlation functions can be easily determined for systems described
by the Heisenberg model if the leading term of the Holstein–Primakoff trans-
formation is used for the spin operators. In the magnetically ordered phase
the term 〈Szi Szj 〉 gives rise dominantly to elastic scattering (diffraction), from
which the static magnetic structure can be determined. Inelastic processes
arise from the terms 〈S+

i S−
j 〉 and 〈S−

i S+
j 〉. Considering, for the sake of sim-

plicity, the ferromagnetic case, it is easily seen that, using the bosonic creation
and annihilation operators, the terms appearing in the inelastic scattering
cross section can be written as

d2σ

dΩ dε
∝
∑
ij

∑
q

e−i(K+q)·(Ri−Rj)

∞∫
−∞

dt eiεt/�〈a†q(t)aq(0)〉

+
∑
ij

∑
q

e−i(K−q)·(Ri−Rj)

∞∫
−∞

dt eiεt/�〈aq(t)a†q(0)〉 .
(15.4.3)

This expression takes a simple form when the interaction between magnons is
neglected. Writing out explicitly the time dependence of the operators, which
is easily obtained for free magnons, the Fourier transform of the spin–spin
correlation function gives a set of Dirac delta peaks at pairs of K and ε that
correspond to the creation or annihilation of magnons:

d2σ

dΩ dε
∝ A〈nq〉δ(K+q) δ(ε+�ωq)+B

(
1+〈nq〉

)
δ(K−q) δ(ε−�ωq) . (15.4.4)

The first term – which is proportional to the magnon occupation number and
has a sharp peak at k′ = k + q, Ef = Ei − �ωq – corresponds to processes
in which a magnon is absorbed by the scattered particle (neutron). The term
proportional to 1 + 〈nq〉 arises from processes in which a magnon is created,
and therefore k′ = k − q, Ef = Ei + �ωq.

By measuring the peaks as a function of the transferred energy and the
scattering angle, the dispersion relation for magnons can be recovered, much in
the same manner as for phonons. Interactions between magnons will broaden
these peaks. Since the resulting line width is related to the decay rate of
magnons, the magnon lifetime can be determined from scattering experiments.

15.5 Low-Dimensional Magnetic Systems

A lot of attention has been recently devoted to the study of magnetic systems
in which the exchange interaction between atoms carrying magnetic moments
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is appreciable only in one or two directions – while in other directions the
energy of this type of interaction is negligibly small compared to the thermal
energy. As far as magnetic properties are concerned, such systems should be
considered as one- or two-dimensional, even if they behave as truly three-
dimensional crystals in other respects.

15.5.1 Destruction of Magnetic Order by Thermal and Quantum
Fluctuations

When studying the temperature dependence of magnetization in ferromagnets
we found in (15.2.32) that the deviation from the saturation value is given by
the integral

ΔM = gμB

∫
dk

(2π)3
1

eβ�ωk − 1
. (15.5.1)

Obviously, in the more general case of d dimensions, one has to evaluate the
integral

ΔM = gμB

∫
ddk

(2π)d
1

eβ�ωk − 1
. (15.5.2)

To provide an estimate, suppose that the dispersion relation is strictly
quadratic. At low temperatures, where only low-energy magnons are excited,
this is a good approximation. Just as in the method employed for phonons, we
shall integrate over a d-dimensional sphere of the same volume as the Brillouin
zone. This leads to

ΔM = gμB

∫
ddk

(2π)d
1

eβDk2 − 1
= gμBKd

kmax∫
0

kd−1

eβDk2 − 1
dk , (15.5.3)

where Kd = 1/(πd/22d−1Γ (d/2)). In terms of the new variable x = βDk2 the
integral becomes

ΔM = 1
2gμBKd

(
kBT

D

)d/2 xmax∫
0

x(d−2)/2

ex − 1
dx . (15.5.4)

In d > 2 dimensions the integral is convergent. Its value can be determined
approximately by choosing the upper limit as infinity, and using the formulas
given in Appendix C. For d ≤ 2, on the other hand, it is readily seen from the
expansion of the integrand about x = 0 that the integral

∞∫
0

x(d−2)/2

ex − 1
dx ∼

∞∫
0

x(d−2)/2

x
dx (15.5.5)

blows up at the lower limit. This indicates that the spin-wave approximation
cannot be applied to such systems. An even stronger statement can also be
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made: long-range ferromagnetic order cannot exist at any finite temperature
in the isotropic Heisenberg model for d ≤ 2. The ordered ferromagnetic state
can appear only as the ground state at T = 0, as at arbitrarily low but finite
temperatures thermal fluctuations destroy the order, and spin–spin correlation
functions decay exponentially.

For antiferromagnets a somewhat different calculation has to be performed.
According to (15.3.23), the sublattice magnetization has to be determined
from the expression

MA(T ) = MA(0) − gμB
1
V

∑
k

[
u2

k〈α†
kαk〉 + v2

k〈β†
kβk〉

]
. (15.5.6)

Using the Bose–Einstein statistics for the magnon occupation number, and
exploiting the fact that the thermal correction is governed mostly by long-
wavelength magnons, the sum in the above expression can be approximated
by the integral

1
V

∑
k

1
eβ�ωk − 1

1√
1 − γ2

k

∼
∫

ddk
(2π)d

1
eβDk − 1

1
k
. (15.5.7)

For any finite temperature there is a region close to the lower limit of integra-
tion where βDk < 1. To determine the contribution of this region, one has to
evaluate

Kd

∫
kd−1 dk
βDk2

. (15.5.8)

At the lower limit (k = 0) the last integral is finite for d = 3, while it is loga-
rithmically divergent for d = 2. The divergence is even stronger for d < 2. This
shows that antiferromagnetic order is also destroyed by thermal fluctuations
in low-dimensional systems. This is in agreement with the Mermin–Wagner
theorem, which has already been mentioned in connection with thermal dis-
ordering in two-dimensional lattices. The theorem, which was originally for-
mulated for models described by the Heisenberg Hamiltonian, declares that
in d ≤ 2 dimensions no long-range ordered state may exist at any finite tem-
perature that breaks a continuous symmetry of the Hamiltonian. This clearly
applies to the isotropic Heisenberg model, where the continuous symmetry is
the rotational symmetry of the spins.

The problem of the ground state is even more interesting. Of course, an
ordered ferromagnetic ground state may exist at T = 0 in arbitrary dimen-
sion because it is an eigenstate of the Hamiltonian (in other words: because
the order parameter of the ferromagnetic state, magnetization, is conserved).
The situation is different in antiferromagnets, where the Néel state is not an
eigenstate. Long-range order may exist at T = 0 in two-dimensional systems,
but it is destroyed by quantum fluctuations even at T = 0 for d < 2.

To demonstrate this, consider the zero-point spin contraction that charac-
terizes the correction to the Néel state. According to (15.3.21), the correction
to the average value of the spin due to spin waves is
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ΔSz =
1
N

∑
k

[
1√

1 − γ2
k

− 1

]
∝ V

N

∫
ddk

(2π)d
1
k
. (15.5.9)

For a two-dimensional square lattice, the correction is about 0.2. Thus, a spin
S = 1/2 is contracted to approximately 0.3, nonetheless the Néel-type order is
preserved. For d < 2, and in particular for d = 1 the contribution at the lower
limit is divergent, indicating that Néel-type antiferromagnetic order cannot
exist in the ground state of one-dimensional systems. As we shall see, the
ground state of the one-dimensional isotropic antiferromagnetic Heisenberg
chain can be regarded as a singlet spin liquid.

15.5.2 Vortices in the Two-Dimensional Planar Model

The foregoing considerations were concerned with systems described by a
Heisenberg model that is isotropic in spin space. As it was shown, such sys-
tems are on a borderline when the spatial dimension of the lattice of spins
is two. In higher dimensions, e.g. in three-dimensional systems an ordered
magnetic state – characterized by some order parameter – can emerge at low
temperatures, and transition to the disordered phase takes place at a finite
critical point. The correlation length becomes infinite in this point, and the
spin–spin correlation function exhibits a power-law decay. At all other tem-
peratures the correlation function decays exponentially.

On the other hand, we have seen in two dimensions that an ordered ground
state may emerge for antiferromagnetic and ferromagnetic couplings alike,
however, in accordance with the Mermin–Wagner theorem, there does not
exist any state at finite temperature that breaks the continuous rotational
symmetry of the Heisenberg model and features long-range order, since ther-
mal fluctuations destroy any such order. The critical (Curie or Néel) temper-
ature of the isotropic Heisenberg model is Tc = 0 for d = 2. The spin–spin
correlation function decays exponentially at any finite temperature.

The Mermin–Wagner theorem does not apply to the Ising model, for the
latter does not possess continuous rotational symmetry in spin space. The
transition between ordered and disordered phases is well known to occur at fi-
nite temperature in the two-dimensional Ising model. What about the planar,
or XY model that falls between the Ising model and the isotropic Heisenberg
model with respect to the dimensionality of the allowed spin space? In this
model, by definition, spins lie in the (x, y) plane. As we shall see, this model
exhibits an unusual phase transition. It takes place at a finite temperature,
hence quantum effects may be ignored. Regarding the spins as classical vec-
tors, it will be assumed that these vectors are of unit length, located at lattice
sites Ri, that they lie in the (x, y) plane, and their orientation is characterized
by a polar angle θi:

Sxi = cos θi , Syi = sin θi . (15.5.10)

Assuming that only nearest-neighbor spins interact, the Hamiltonian of
the XY model reads
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H = −J
∑
<ij>

(
cos θi cos θj + sin θi sin θj

)
= −J

∑
<ij>

cos(θi − θj), (15.5.11)

where 〈ij〉 denotes adjacent lattice sites. Since the model has a continuous
rotation symmetry in the (x, y) plane, at finite temperatures there cannot ex-
ist a phase with long-range order that breaks this symmetry. If, nevertheless,
there exists an “ordered” phase at low temperatures, it cannot be truly or-
dered – however the correlation in the orientation of the classical vectors may
be stronger than in a usual disordered state. The phase transition manifests
itself in a different analytic form of the correlation functions at low and high
temperatures.

At finite temperatures the free energy of the system is obtained from the
partition function

Z =
∫ ∏

i

dθi e−H/kBT , (15.5.12)

which is the sum (or integral) over all possible configurations of the angles
θi. Some of the configurations correspond to spin-wave-like excitations. To
study their effect, we shall assume that the spins of nearest neighbors are
only slightly rotated with respect to one another, and thus it is sufficient to
keep the leading-order term in the expansion of the cosine:

H = E0 + 1
2J

∑
<ij>

(θi − θj)2 , (15.5.13)

where E0 is the energy of the completely ordered state. Replacing the variable
θi defined at discrete lattice sites by the smooth function θ(r), we have

H = E0 + 1
2J

∫
dr

[∇θ(r)
]2

. (15.5.14)

In terms of the Fourier components:

H = E0 + 1
2J

∑
k

k2|θ̂(k)|2 . (15.5.15)

However, we may encounter other configurations in which – apart from
some singular points – θi varies slightly between adjacent lattice sites, nev-
ertheless the sum of the differences Δθi along a closed path C encircling a
singular point will not be zero but an integral multiple of 2π,∑

C

Δθi = 2πq . (15.5.16)

Such a configuration, featuring a singular point, is obtained, e.g., for

θi = θ0 + qϕi = θ0 + q arctan
yi
xi

, (15.5.17)
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that is when the inclination of a spin is q times the polar angle of its lattice
site ri. Needless to say, θi may just as well be a more complicated function
of the polar angle. Such configurations, with quantum number q = ±1 and
q = ±2 are presented in Figs. 15.4 and 15.5, respectively. Because of their
vortex-like character, such configurations are called vortices and the quantum
number is called vorticity.

q��� q��� q���

Fig. 15.4. Vortex configurations of quantum number q = ±1 in the two-dimensional
planar model

q��� q���

Fig. 15.5. Vortex configurations of quantum number q = ±2 in the two-dimensional
planar model

Following the procedure used to show the topological character of disloca-
tions it is easy to show that the integer q is a topological quantum number.
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In this classical spin model the variable θ(r) varies on the unit circle, thus
the order parameter space is the unit circle. Going counter-clockwise around
the core of a vortex of vorticity q = 1, the variable θ(r) goes around the unit
circle once. If the spin orientation is distorted continuously, i.e., θ(r) is varied
continuously locally, then every time when one goes around the vortex along
the same circuit, a deformed path is found in the order parameter space, but
its deformation is also continuous, and since it has to remain on the unit cir-
cle, it is not possible to reduce it to zero or to reach configurations of another
quantum number.

Even when studying the role of vortex configurations it is admissible –
apart from the immediate neighborhood of the core of the vortex – to approx-
imate θi defined at lattice points only by a continuous function θ(r). Then,
going around the vortex of vorticity q on a closed path C, we have, instead of
(15.5.16), ∮

C

dθ(r)
dr

dl = 2πq . (15.5.18)

Assuming that the rate of change of the angle is constant on a circle of radius
r around the core,

|∇θ(r)| =
2πq
2πr

. (15.5.19)

In polar coordinates
∇θ(r) =

q

r
eϕ , (15.5.20)

where eϕ is the tangential unit vector drawn to the point r. Using the radial
unit vector er and the unit vector ez perpendicular to the plane,

∇θ(r) = −q

r
er × ez = −q∇ × (ez ln r) . (15.5.21)

To estimate the energy of such a configuration, we shall further assume
that this form is valid all the way from the lattice constant a to a radius R
characteristic of the size of the system. Then

E = 1
2J

∫ [∇θ(r)
]2 dr = 1

2J

R∫
a

[∇θ(r)
]22πr dr

= πJ

R∫
a

q2

r
dr = πJq2 ln

R

a
.

(15.5.22)

Since this energy diverges as the size of the system is increased indefinitely,
no such configuration is excited thermally at low temperatures.

However, such configurations may appear at high temperatures, since they
may lower the free energy through the −TS term. As the vortex core can be at
any lattice site, the number of vortex configurations is R2/a2, and the entropy
of the vortex is
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S = kB ln
(
R

a

)2

. (15.5.23)

Consequently, the free energy of a system with a single vortex is given by

F = E − TS = (πJq2 − 2kBT ) ln(R/a) . (15.5.24)

This indicates that individual vortices of vorticity q may appear spontaneously
above T = 1

2πJq
2/kB. As it was pointed out by Berezinskii

8 and later by
Kosterlitz and Thouless,9 the behavior of the system – i.e., the character
of the spin–spin correlations – changes at the temperature where the first free
vortices appear,

TBKT = 1
2πJ/kB . (15.5.25)

This is the BKT (Berezinskii–Kosterlitz–Thouless) transition.
At high temperatures – as it is usual in disordered phases –, the correla-

tion function decays exponentially with distance due to the disordered spatial
distribution of vortices. The correlation length ξ(T ) characterizing the de-
cay increases as the temperature is lowered, and diverges at TBKT. At this
temperature the decay of the correlation function is no longer exponential
but power-law-like, as usual in a critical point. The particular feature of the
BKT transition is that this power-law behavior survives even below TBKT, in
the low-temperature regime, where thermal fluctuations prevent ordering, but
with a temperature-dependent exponent:

Γ (r) ∝
(

1
r

)η(T )

. (15.5.26)

In the simplest approximation, where only the effects of spin-wave-like har-
monic fluctuations are taken into account, η(T ) = kBT/(2πJ). To demonstrate
this, consider the correlation function

〈S(0) · S(r)〉 = 〈cos(θ(0) − θ(r))〉
= 1

2

[〈
ei(θ(0)−θ(r))

〉
+
〈
e−i(θ(0)−θ(r))

〉]
.

(15.5.27)

If spin waves alone are taken into account – that is, if we employ the harmonic
approximation and calculate the thermal average with the weight factor from
the Hamiltonian (15.5.15) – then, according to (13.3.11), the averaging pro-
cedure can be performed in the exponent,

〈S(0) · S(r)〉 = exp
[
− 1

2

〈
(θ(0) − θ(r))2

〉]
. (15.5.28)

Writing the exponent in terms of Fourier components,

8
V. L. Berezinskii, 1970.

9
J. M. Kosterlitz and D. J. Thouless, 1972.
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1
2

〈
(θ(0) − θ(r))2

〉
=
∑

k

(1 − cosk · r)
〈|θ(k)|2〉 , (15.5.29)

and using the Boltzmann weight factor that follows from (15.5.15), we have

1
2

〈
(θ(0) − θ(r))2

〉
=
∑

k

(1 − cosk · r)
kBT

Jk2
. (15.5.30)

Replacing the sum over the Brillouin zone by an integral over a circle of radius
π/a, for large values of r

1
2

〈
(θ(0) − θ(r))2

〉
=

kBT

2πJ
ln(πr/a) . (15.5.31)

Substituting this into the exponent, as required by (15.5.28), the form
(15.5.26) is indeed recovered for the correlation function. Below the transi-
tion point, throughout the temperature range from T = 0 up to TBKT the
system behaves as it were critical, however, the critical exponents are not uni-
versal but depend on the coupling and the temperature. This is the so-called
Berezinskii–Kosterlitz–Thouless phase (BKT phase).

Although free vortices appear only above the transition point, configura-
tions that can be regarded as bound states of two oppositely “charged” vor-
tices may exist at lower temperatures as well. Such configurations are shown
in Fig. 15.6.

Fig. 15.6. Configurations corresponding to the bound state of vortices of opposite
vorticity

Assume that the system contains only two vortices, at r1 and at r2, and
that their quantum numbers are q1 and q2. The angular variable θ(r) can be
chosen in the form
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θ(r) = q1 arctan
y − y1

x− x1
+ q2 arctan

y − y2

x− x2
. (15.5.32)

The path integral of ∇θ(r) around a closed circuit gives 2πq1, 2πq2 or 2π(q1+
q2), depending on whether the circuit goes around the first, the second or both
vortices.

As will be shown later (see (15.5.54)), the energy of this configuration is

1
2J

∫
dr
[∇θ(r)

]2 = E1 + E2 + 2πJq1q2 ln
R

|r1 − r2| , (15.5.33)

where E1 and E2 are the energies of the individual vortices, as given in
(15.5.22). The third term, the interaction energy diverges logarithmically as
the size of the system increases. Writing the total energy in the form

1
2J

∫
dr
[∇θ(r)

]2 = πJ(q1 + q2)2 ln
R

a
− 2πJq1q2 ln

|r1 − r2|
a

, (15.5.34)

the size-dependent divergent term is seen to disappear when the two vortices
are of opposite vorticity, q1 + q2 = 0. The energy depends logarithmically on
the distance between the two vortex cores, and it might be much smaller than
the energy of two individual vortices, especially if the distance of the cores is
on the order of the lattice constant. If this energy is small enough, a pair of
vortices with opposite vorticities may be thermally excited. Such vortex pairs
are indeed observed in the low-temperature Berezinskii–Kosterlitz–Thouless
phase of the planar XY model, where the system is “neutral” in the sense that
the total vorticity is zero.

Thus, below TBKT, spin-wave-like configurations and vortex pairs are
present simultaneously. To determine the total energy we assume that the
density of vortices is given by

ρ(r) =
∑
i

qiδ(r − ri) . (15.5.35)

The generalization of (15.5.18) for this case is∮
C

∇θ(r) · dl = 2π
∑
i

qi , (15.5.36)

where the sum is over all vortices inside the closed path C. Transforming, by
means of Stokes’ theorem, the line integral into an integral over the region
enclosed by C, ∫

ez ·
(∇ × ∇θ(r)

)
dr = 2π

∑
i

qi . (15.5.37)

This can be satisfied for any closed region if

∇ × ∇θ(r) = 2πez
∑
i

qiδ(r − ri) = 2πezρ(r) . (15.5.38)
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Seeking the solution in the form

θ(r) = θ0(r) + ψ(r) , (15.5.39)

where ψ(r) is assumed to be a continuous, single-valued function, its gradient
is vortex-free, i.e., ∇ × ∇ψ(r) = 0, and∮

C

∇ψ(r) · dl = 0 . (15.5.40)

Thus ψ(r) describes the fluctuations in the orientation of the spin vectors due
to spin waves, while θ0(r) comes from the vortices or vortex pairs. If θ0(r) is
chosen so that

∇θ0(r) = −∇ × (
ezχ(r)

)
(15.5.41)

is satisfied, then
∇ × ∇θ0(r) = ez∇2χ(r) , (15.5.42)

which implies that χ(r) satisfies the two-dimensional Poisson equation

∇2χ(r) = 2π
∑
i

qiδ(r − ri) = 2πρ(r) . (15.5.43)

The solution of this equation can be written as the sum of two-dimensional
Coulomb potentials:

χ(r) =
∑
i

qi ln(|r − ri|) . (15.5.44)

A more precise form is obtained in terms of the Green function of the Lapla-
cian, which satisfies the equation

∇2g(r) = δ(r) , (15.5.45)

which leads to
χ(r) = 2π

∫
dr′ g(r − r′)ρ(r′) . (15.5.46)

In two dimensions the asymptotic solution for the Green function for large
distances from the core of the vortex is:

g(r) = −
∫

dk

(2π)2
eik·r

k2
≈ 1

2π
ln (|r|/a) − 1

2π
ln (R/a) , (15.5.47)

where R is the radius of the sample.
The energy of the configuration that contains vortices as well can be de-

termined using (15.5.14),

E = E0 + 1
2J

∫
dr
[∇ψ(r) + ∇θ0(r)

]2
= E0 + 1

2J

∫
dr
[∇ψ(r)

]2 + 1
2J

∫
dr
[∇θ0(r)

]2
,

(15.5.48)
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since the mixed term containing the integral of ∇ψ(r) · (∇ × (ezχ(r))
)

van-
ishes, as the reader may verify by a simple integration by parts. This means
that the energy contributions of spin waves and vortices are independent of
each other. Below we shall only deal with the contribution of vortices. Since
(15.5.41),

∇θ0(r) =
(
−∂χ(r)

∂y

∂χ(r)
∂x

)
, (15.5.49)

implies (∇θ0(r)
)2 =

(∇χ(r)
)2

, (15.5.50)

the energy of vortices can be obtained from

E = E0 + 1
2J

∫
dr
[∇χ(r)

]2
, (15.5.51)

or alternatively, after an integration by parts, from

E = E0 − 1
2J

∫
drχ(r)∇2χ(r) . (15.5.52)

Using the expressions obtained for χ(r) and ∇2χ(r),

E = E0 − 2π2J

∫∫
dr dr′ρ(r)g(r − r′)ρ(r′) . (15.5.53)

From the explicit form of the Green function and assumption (15.5.35) for the
density of vortices

E = E0 − πJ
∑
i�=j

qiqj ln
∣∣∣∣ri − rj

a

∣∣∣∣ + πJ

(∑
i

qi

)2

ln
R

a
, (15.5.54)

in agreement the expression anticipated for the energy of a vortex pair. The
term depending on the size of the sample vanishes if

∑
i qi = 0, i.e., if the

total vorticity is zero.
In the foregoing discussion the correlation function in the low-temperature

phase and the transition temperature were determined under the assumption
that only spin waves are excited below TBKT. A more precise treatment re-
quires the inclusion of vortex pairs as well. A rather tedious calculation, whose
details cannot be given here, shows that the effects of the vortex pairs can
be absorbed into the parameters of the vortex-free model. The behavior of
the full system is then similar to a simpler one in which only spin waves are
present but the parameters are modified, renormalized. Below the transition
point the correlation function shows a power-law decay but the exponent η(T )
is renormalized. The transition temperature itself is also renormalized. The
first corrections coming from the vortex pairs give

πJ

2kBTBKT
≈ 1 + 1.3πe−π

2J/2kBTBKT . (15.5.55)
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The most accurate Monte-Carlo simulations give a much lower critical tem-
perature, kBTBKT = 0.893J . Nevertheless, the critical exponent η at the true
transition point is η(TBKT) = 1/4 – the same as the result obtained when
vortex pairs were neglected.

While for increasing temperatures more and more vortex pairs are ex-
cited thermally in the Berezinskii–Kosterlitz–Thouless phase, they are all
confined to neutral pairs made up of nearby vortices. Above the transition
point they become deconfined (liberated). The neutral bound pairs disinte-
grate into freely moving individual vortices. The correlation function changes
character: from this point it decays exponentially. It can also be shown that
the finite correlation length ξ is not proportional to some inverse power of
t = (T − TBKT)/TBKT, as it occurs above ordinary critical points but it de-
pends exponentially on t:

ξ ∝ exp(bt−1/2) . (15.5.56)

15.5.3 The Spin-1/2 Anisotropic Ferromagnetic Heisenberg Chain

It was mentioned earlier that the energy of states with two raised or low-
ered spins relative to the ground state could, in principle, be calculated in
systems of arbitrary dimensionality and spin. The exact determination of fur-
ther states, involving more flipped spins, is impossible for general S, even in
one-dimensional spin chains. The spin-1/2 Heisenberg chain is particular, for
an exact determination of excited states with more reversed spins is possible,
and the calculation can be easily extended to the anisotropic case, too.

Using the Pauli operators instead of the spin operators, and separating
the energy of the ferromagnetic state, the Hamiltonian is customarily cast in
the form

H = −J
∑
l

[
1
2

(
σ+
l σ−

l+1 + σ−
l σ+

l+1

)
+ 1

4Δ
(
σzl σ

z
l+1 − 1

)]− 1
4NJΔ , (15.5.57)

where again, similarly to (15.2.77) a factor of two has been dropped. When
J > 0, Δ = 1 corresponds to an isotropic ferromagnet, and Δ = 0 to the pure
planar model. J < 0 would lead to antiferromagnets, but via the rotation
of every second spin through 180◦ about the z-axis, this case is found to
be equivalent to J > 0, Δ < 0. Consequently, the parameters J > 0, Δ =
−1 and J < 0, Δ = 1 can equally be used in the discussion of isotropic
antiferromagnets.

Taking again the state with all spins aligned upward as the ferromagnetic
ground state, we shall seek eigenstates with one reversed spin in the form

|Ψ〉 =
∑
l

c(xl)σ−
l |F 〉 . (15.5.58)

When the Hamiltonian acts on this state, the following eigenvalue equation is
obtained:
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Ec(xl) = − 1
4NJΔc(xl) + 1

2J [2Δc(xl) − c(xl+1) − c(xl−1)] . (15.5.59)

We shall try to find the solutions using the trial function c(xl) = Aeikxl . The
periodic boundary condition implies c(xl) = c(xl + Na), hence

k =
2π
Na

I, where I = 0,±1,±2, . . . , N/2 . (15.5.60)

Substitution of this formula into the eigenvalue equation leads to

E = − 1
4NJΔ + J (Δ− cos ka) , (15.5.61)

thus the excitation energy is

�ωk = J (Δ− cos ka) . (15.5.62)

In the isotropic case, the spin-wave spectrum starting off as k2 is recovered.
For Δ > 1, the excitation spectrum features a finite gap. For Δ < 1, on
the other hand, the energy of the long-wavelength excitations turns out to
be negative, indicating that the ferromagnetic state is no longer the ground
state. We shall determine the true ground state later.

When two spins are reversed, the wavefunction is chosen as

|Ψ2〉 =
∑
ll′

c(xl, xl′)σ−
l σ−

l′ |F 〉 , (15.5.63)

in line with (15.2.82), and xl < xl′ is assumed. This restriction is necessary as
in a spin-1/2 chain the spin cannot be reversed twice at the same lattice site.
When the two reversed spins are not at adjacent lattice sites, the Schrödinger
equation yields the following relation for the coefficients:

E c(xl, xl′) = − 1
4NJΔc(xl, xl′) + 2JΔc(xl, xl′ )

− 1
2Jc(xl−1, xl′ ) − 1

2Jc(xl+1, xl′)

− 1
2Jc(xl, xl′−1) − 1

2Jc(xl, xl′+1) .

(15.5.64)

Writing the solution in the plane-wave-like form

c(xl, xl′) = A12ei(k1xl+k2xl′) + A21ei(k2xl+k1xl′) , (15.5.65)

the equation for the energy eigenvalue becomes

E = − 1
4NJΔ + J (Δ− cos k1a) + J (Δ− cos k2a) . (15.5.66)

The excitation energy is again equal to the sum of the energies of two free
magnons, therefore these excitations are expected to form a continuum. To
determine the possible values of k1 and k2, we have to examine the case when
spins are reversed at two adjacent lattice sites. The following equation holds
for the amplitude of such states:
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E c(xl, xl+1) = − 1
4NJΔc(xl, xl+1) + JΔc(xl, xl+1)

− 1
2Jc(xl−1, xl+1) − 1

2Jc(xl, xl+2) .
(15.5.67)

By demanding that this equation also hold with the previously given forms of
the wavefunction and the energy – (15.5.65) and (15.5.66) –, restrictions are
imposed on the amplitudes A12 and A21. To determine these, we shall assume
that (15.5.64) formally holds in the l′ = l + 1 case, too, that is,

E c(xl, xl+1) = − 1
4NJΔc(xl, xl+1) + 2JΔc(xl, xl+1)

− 1
2Jc(xl−1, xl+1) − 1

2Jc(xl+1, xl+1)

− 1
2Jc(xl, xl) − 1

2Jc(xl, xl+2) .

(15.5.68)

When combined with the previous equation, consistency requires

2Δc(xl, xl+1) = c(xl, xl) + c(xl+1, xl+1) . (15.5.69)

Using the assumed form (15.5.65) for the coefficients,

2Δ
(
A12eik2a + A21eik1a

)
= (A12 + A21)

(
1 + ei(k1+k2)a

)
, (15.5.70)

whence
A12

A21
= −2Δeik1a − 1 − ei(k1+k2)a

2Δeik2a − 1 − ei(k1+k2)a
. (15.5.71)

Expressing the amplitudes in terms of a phase difference φ(k1, k2) defined on
the interval (−π, π),

A12 = A eiφ(k1,k2)/2 , A21 = Ae−iφ(k1,k2)/2 , (15.5.72)

which corresponds to choosing the coefficient c(xl, xl′) as

c(xl, xl′) = A
(
ei[k1xl+k2xl′+φ(k1,k2)/2] + ei[k2xl+k1xl′−φ(k1,k2)/2]

)
. (15.5.73)

The two terms can be interpreted as follows. Two magnons propagate in the
system. In their interaction – scattering by one another – the total wave
number is not the only conserved quantity: k1 and k2 are conserved separately.
On the other hand, when the two magnons pass through each other, the
wavefunction undergoes a phase shift of φ(k1, k2).

From the expression

eiφ(k1,k2) = −2Δeik1a − 1 − ei(k1+k2)a

2Δeik2a − 1 − ei(k1+k2)a
, (15.5.74)

which is implied by (15.5.71) and (15.5.72),

cot 1
2φ(k1, k2) = i

eiφ(k1,k2) + 1
eiφ(k1,k2) − 1

= Δ
sin[(k1 − k2)a/2]

cos[(k1 + k2)a/2] −Δ cos[(k1 − k2)a/2]

= Δ
cot(k1a/2) − cot(k2a/2)

(1 + Δ) − (1 −Δ) cot(k1a/2) cot(k2a/2)
.

(15.5.75)
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For the isotropic spin-1/2 Heisenberg model this is equivalent to the result
(15.2.95).

The periodic boundary condition provides another relation between the as
yet undetermined wave numbers and the phase. Just like in the calculation
for the isotropic Heisenberg chain with arbitrary S, we arrive at equations
(15.2.87) and (15.2.88) anew,

eik1Na = eiφ(k1,k2), eik2Na = e−iφ(k1,k2), (15.5.76)

or equivalently

k1Na = 2πI1 + φ(k1, k2) , k2Na = 2πI2 − φ(k1, k2) , (15.5.77)

where both I1 and I2 are integers such that 0 ≤ Ii < N .
To get the excitation spectrum, the closed set of equations can be solved

numerically or analytically in the large-N limit. It is found that the energies
associated with real values of ki fill almost continuously the region between
the curves

�ω−(k) = 2J(Δ− cos 1
2ka) and �ω+(k) = 2J(Δ + cos 1

2ka) . (15.5.78)

Apart from these solutions, others, associated with complex conjugate pairs
(k2 = k∗

1) arise, too, with an energy below the continuum,

�ω(k) =
J

Δ

(
Δ− cos 1

2ka
)(

Δ + cos 1
2ka

)
, (15.5.79)

where k = k1 + k2 = 2 Re k1.
In the isotropic case the results obtained from (15.2.93) and (15.2.96)

by setting S = 1/2 are recovered. It will prove convenient to introduce the
variables

λ1 = cot(k1a/2) and λ2 = cot(k2a/2) , (15.5.80)

called rapidities. Then making use of the ensuing formulas

eik1a =
λ1 + i
λ1 − i

and eik2a =
λ2 + i
λ2 − i

, (15.5.81)

along with

eiφ(k1,k2) =
cot(φ(k1, k2)/2) + i
cot(φ(k1, k2)/2) − i

, (15.5.82)

the boundary condition leads to the following algebraic equations for the ra-
pidities

(
λ1 + i
λ1 − i

)N
=

λ1 − λ2 + 2i
λ1 − λ2 − 2i

,

(
λ2 + i
λ2 − i

)N
=

λ2 − λ1 + 2i
λ2 − λ1 − 2i

. (15.5.83)
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It was first pointed out by Bethe
10 that in the special case of a spin-1/2

anisotropic Heisenberg chain the method above can be generalized for states
with arbitrarily many reversed spins.

States with three reversed spins may be written as

|Ψ3〉 =
∑

xl1<xl2<xl3

c(xl1 , xl2 , xl3)
∣∣ψ(xl1 , xl2 , xl3)

〉
, (15.5.84)

where ∣∣ψ(xl1 , xl2 , xl3)
〉

= σ−
l1
σ−
l2
σ−
l3
|F 〉 . (15.5.85)

Substituting this into the Schrödinger equation, we may follow the method
used for states with two reversed spins – that is, separate equations have to
be written for the cases when there are no neighbors and when there are
neighbors among xl1 , xl2 and xl3 . In analogy to (15.5.65), we shall use the
ansatz

c(xl1 , xl2 , xl3) =A123ei(k1xl1+k2xl2+k3xl3) + A132ei(k1xl1+k3xl2+k2xl3 )

+ A213ei(k2xl1+k1xl2+k3xl3) + A231ei(k2xl1+k3xl2+k1xl3)

+ A312ei(k3xl1+k1xl2+k2xl3) + A321ei(k3xl1+k2xl2+k1xl3) ,

(15.5.86)

which indicates immediately that the total wave number of the state is k =
k1 + k2 + k3.

From the equations for nonadjacent lattice sites, the excitation energy

�ω = J (Δ− cos k1a) + J (Δ− cos k2a) + J (Δ− cos k3a) (15.5.87)

emerges, regardless of the amplitude values – as if the energies of three in-
dependent magnons were summed. The allowed values of the wave numbers
and the coefficients in the wavefunctions are determined by the boundary
condition and the requirement that the same energy values have to satisfy
the other types of equations, in which two or all three spin reversals take
place at adjacent lattice sites. It is found that if an interchange of two wave
numbers makes the only difference between two terms, then the ratio of the
corresponding coefficients may be written in terms of precisely the same phase
shift φ(ki, kj) as that which appeared in the wavefunction with two reversed
spins. For example,

A213

A123
= eiφ(k2,k1) . (15.5.88)

When two wave number permutations are needed to reach one term from an-
other, the amplitude ratio contains the sum of the two phase shifts associated
with the permutations. For example,
10

H. Bethe, 1931. Hans Albrecht Bethe (1906–2005) was awarded the Nobel
Prize in 1967 “for his contributions to the theory of nuclear reactions, especially
his discoveries concerning the energy production in stars”.
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A312

A123
= ei(φ(k3,k1)+φ(k3,k2)) . (15.5.89)

This result may be interpreted as follows. The scattering of three magnons
by each other can be understood in terms of a series of two-particle scattering
events. The phase shifts in each two-particle process are of the previously
seen form, irrespective of the state of the third particle. In the language of
scattering theory: the S-matrix of three-particle scattering is factorizable.

Furthermore the boundary condition leads to the generalization of
(15.5.76),

eik1Na = ei(φ(k1,k2)+φ(k1,k3)) ,

eik2Na = ei(φ(k2,k1)+φ(k2,k3)) ,

eik3Na = ei(φ(k3,k1)+φ(k3,k2)) ,

(15.5.90)

or equivalently, to the generalization of (15.5.77),

k1Na = 2πI1 + φ(k1, k2) + φ(k1, k3) ,
k2Na = 2πI2 + φ(k2, k1) + φ(k2, k3) ,
k3Na = 2πI3 + φ(k3, k1) + φ(k3, k2) ,

(15.5.91)

where I1, I2 and I3 are integers such that 0 ≤ Ii < N .
The spectrum of the allowed energies �ω(k) with k = k1 + k2 + k3 has

a broad continuum corresponding to the scattering states of three essentially
independent magnons, but in addition two-magnon bound states and also
three-magnon bound states appear in it. The dispersion relation for the latter
is

�ω = J

[
Δ− 2Δ + cos ka

4Δ2 − 1

]
. (15.5.92)

In the isotropic ferromagnetic point the energy expression of this bound state
simplifies to

�ω = 1
3J [1 − cos ka] . (15.5.93)

The energy of the three-magnon bound state is therefore lower than that of
its two-magnon counterpart.

In m-magnon states, that is when m spins are reversed, the wavefunction
may be written as

|Ψm〉 =
∑

xl1<xl2<···<xlm

c(xl1 , . . . xlm)
∣∣ψ(xl1 , . . . , xlm)

〉
, (15.5.94)

where ∣∣ψ(xl1 , . . . , xlm)
〉

= σ−
l1

. . . σ−
lm
|F 〉 . (15.5.95)

According to the Bethe ansatz, this state may be characterized by m different
wave numbers k1, . . . , km,
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c(xl1 , . . . xlm) =
∑
P

A(P ) exp i
[ m∑
j=1

kPj
xlj

]
, (15.5.96)

where P stands for all possible permutations of the wave numbers. The exci-
tation energy and total wave number of the state appear again as the sum for
m apparently independent magnons,

ΔE = J

m∑
j=1

(Δ− cos kja) and k =
m∑
j=1

kj . (15.5.97)

In fact, the wave numbers kj cannot be chosen arbitrarily. Once more, the
phase factors φ(ki, kj) are involved in the coefficients A(P ) of the wavefunc-
tion, therefore, when periodic boundary conditions are used to determine the
wave numbers, we get

kiNa = 2πIi +
∑
j

φ(ki, kj) , (15.5.98)

where Ii is again an integer, and the phase shift can be calculated from the
generalization of (15.5.75),

cot 1
2φ(ki, kj) =

Δ sin[(ki − kj)a/2]
cos[(ki + kj)a/2] −Δ cos[(ki − kj)a/2]

. (15.5.99)

The solutions of these equations provide a wide spectrum of excitations anew,
and bound states appear as well. The excitation energy of the lowest-lying
bound state is

ΔE =
J

m
(1 − cos ka) . (15.5.100)

15.5.4 The Ground State of the Antiferromagnetic Chain

It follows from our earlier considerations on the anisotropic Heisenberg model
that the fully aligned ferromagnetic state can be the true ground state for
Δ ≥ 1 only. Magnons, the continuum of multi-magnon excitations, and their
bound states appear as low-energy excitations above the energy E0 = − 1

4NJΔ
of the ground state in this case. When Δ < −1, the ground state exhibits an-
tiferromagnetic order, with the sublattice magnetization pointing in the direc-
tion of the z-axis. Between the two, in the planar regime −1 < Δ < 1, the spin
components in the (x, y) plane are more strongly coupled than the component
along the quantization axis, hence in the classical limit the spins would lie in
the (x, y) plane, exhibiting ferromagnetic order, and the mean value of the
z component would vanish. However, in the ground state of one-dimensional
models no continuous symmetry of the Hamiltonian can be broken unless the
order parameter is conserved. This means that in the anisotropic Heisenberg
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model the continuous rotational symmetry around the z-axis cannot be bro-
ken in the region −1 < Δ < 1. In addition to the z component, the mean
values of the x and y components must also vanish. In the ground state half
of the spins must point upward and the other half downward, without any
spatial or temporal regularity in the spin fluctuation pattern. This ground
state can be found using the Bethe ansatz in the subspace where m = N/2
spins are reversed with respect to the fully aligned state. The situation is the
same in the ground state of the isotropic antiferromagnetic chain. We shall
first study this case.

As it was mentioned in connection with (15.5.57), the isotropic antifer-
romagnetic model can be defined in two ways. In the customary approach
the exchange interaction is assumed to be negative, while in the alternative
one adopted there J > 0 and Δ = −1 are assumed. The results obtained for
the ferromagnetic system can be more easily utilized in the first approach:
the equations derived from the Bethe ansatz for the wave numbers and phase
shifts are identical to those of the isotropic ferromagnetic model. Therefore
we shall use the Hamiltonian

H = J
∑
l

[
1
2

(
σ+
l σ−

l+1 + σ−
l σ+

l+1

)
+ 1

4

(
σzl σ

z
l+1 − 1

)]
+ 1

4NJ (15.5.101)

with J > 0 to study the isotropic antiferromagnetic chain.
Since N/2 spins are reversed, the same number of different wave numbers

have to appear in the Bethe ansatz of the wavefunction, and they have to
satisfy the following system of equations:

Naki = 2πIi + 2
∑
j �=i

arccot
[
1
2 (cot(kia/2) − cot(kja/2))

]
. (15.5.102)

The energy and total wave number of the corresponding state are

E = 1
4NJ − J

∑
i

(1 − cos kia) and k =
∑
i

ki . (15.5.103)

In terms of the rapidities λi = cot(kia/2) instead of the wave number ki,

2N arccotλi = 2πIi + 2
∑
j �=i

arccot
(
λi − λj

2

)
, (15.5.104)

which can be transformed into the algebraic form(
λi + i
λi − i

)N
=
∏
j �=i

(
λi − λj + 2i
λi − λj − 2i

)
, (15.5.105)

while the energy takes the form

E = 1
4NJ − J

∑
i

2
1 + λ2

i

. (15.5.106)
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The solution of the Bethe equations would lead us too far afield. We shall
content ourselves with noting that when half of the spins are reversed (N↓ =
N/2), there is only one state in which all wave numbers and rapidities are real
and finite. In this state, which turns out to be the ground state, the quantum
numbers Ii take all odd integer values in the interval 1 ≤ Ii < N . Provided
that N is an integral multiple of four, the wave number of the ground state
is k = 0 and the state is a singlet, i.e., its total spin is zero.

The numerical solution of the Bethe equations reveals that the wave
numbers fill the whole interval (0, 2π/a), albeit not uniformly. Instead of
ki = 2πIi/Na they tend to be located more densely around the middle of
the interval on account of the phase shifts arising from scattering processes,
as shown in Fig. 15.7.

2��a

��a

ki

xi�I Ni�
0

0.60.40.20 10.8

Fig. 15.7. The wave numbers ki obtained from the numerical solution of the Bethe
ansatz equations for the ground state of the isotropic antiferromagnetic Heisenberg
model. The dashed line shows the wave numbers for the case when the phase shift
is neglected

The ground-state energy can be calculated exactly in the large-N limit:

E0 = 1
4NJ −NJ ln 2 = −0.443NJ . (15.5.107)

This energy is lower than that of the Néel state, E0 = − 1
4 NJ , which would

be obtained if there were no phase shifts.
Before proceeding any further it is useful to give the ground state in

another parametrization. If instead of the previously used formula λi =
cot(kia/2) rapidity is defined by

λi = − cot(kia/2) , (15.5.108)

then the following equations are obtained instead of (15.5.104):

2N arctanλi = 2πJi + 2
∑
j �=i

arctan
(
λi − λj

2

)
. (15.5.109)



15.5 Low-Dimensional Magnetic Systems 569

Provided the chain consists of an even number of atoms, Ji is an integer if the
number of reversed spins is odd, and a half-integer if it is even. The energy
and wave number of the state are given by

E = 1
4NJ − J

∑
i

2
1 + λ2

i

(15.5.110)

and

k = N↓
π

a
+

2π
Na

N↓∑
i=1

Ji . (15.5.111)

Using this parametrization all rapidities and wave numbers are real if each
Ji is in the interval

− 1
2 (N −N↓) < Ji <

1
2 (N −N↓) . (15.5.112)

When N↓ = N/2, there are exactly N/2 consecutive integers or half-integers
in the above interval:

− 1
4N + 1

2 ,− 1
4N + 1

2 + 1, . . . , 1
4N − 1

2 . (15.5.113)

When this set is chosen for the quantum numbers Ji, N/2 real rapidities are
obtained. In this parametrization this particular choice of the Bethe quantum
numbers and the corresponding rapidities yield the ground state.

15.5.5 Spinon Excitations in the Antiferromagnetic Chain

The excited states above the singlet ground state can be characterized on the
one hand their wave number, and on the other hand by their total spin and its
z component. The spin of low-energy excitations is expected to differ from the
ground-state spin by at most one unit, therefore excited states will be sought
in the singlet and triplet subspaces. The distribution of the Bethe quantum
numbers Ii, or Ji, will be different, too. For low-energy excitations the set of
these quantum numbers is expected to differ little from the corresponding set
of the ground state. In what follows, the quantum numbers Ji will be used.

We shall first consider triplet excitations with a spin projection Sztot = 1.
Since in these states the number of reversed spins is one less than in the ground
state, N↓ = N/2 − 1, specifying this state requires one less quantum number
ki or Ji, too. On the other hand, the Bethe equations allow N−N↓ = N/2+1
different values for Ji. Since the parity of the number of reversed spins is
changed with respect to the ground state, the quantum numbers Ji have to
be chosen from the sequence

− 1
4N ,− 1

4N + 1 , . . . , 1
4N − 1, 1

4N . (15.5.114)

Real wave numbers are obtained if N/2−1 different numbers are chosen out of
the N/2+ 1 possible values for Ji. In other words, out of the N/2+ 1 allowed
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Bethe quantum numbers N/2−1 are occupied and two are empty in this state.
Thus a set of states characterized by two parameters (the position of the two
holes) is obtained. The energies of these excited states do not determine a
sharp dispersion curve but a continuum whose lower and upper bounds are
given by

�ωmin = 1
2πJ | sin ka| , �ωmax = πJ | sin(ka/2)| . (15.5.115)

Similar results are obtained for the Sztot = 0 component of the triplet. This
continuum of excitations is shown in Fig. 15.8.

��a���a
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2
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Fig. 15.8. The continuum of triplet excitations in an isotropic antiferromagnetic
spin-1/2 chain

Excitation energies can be determined analytically in the N → ∞ limit.
After some rather lengthy calculation the energy and wave number of these
excitations can be written in the form

E − E0 = 1
2πJ sin k1a + 1

2πJ sin k2a , k = k1 + k2 , (15.5.116)

where k1 and k2 lie in the interval (0, π/a). Each true (physically realisable)
triplet excitation appears to be composed of a pair of “elementary” excitations
with the dispersion relation

εs(k) = 1
2πJ sin ka . (15.5.117)

This picture becomes even more pronounced when singlet excited states
are considered. States are then characterized by N/2 quantum numbers, but
some of the Ji are identical, and therefore there are complex conjugate pairs
among the wave numbers and rapidities. The low-energy part of the excitation
spectrum can be determined analytically in the large-N limit, and exactly the
same result is obtained as for triplet excitations – i.e., singlet excitations
can also be interpreted as pairs of “elementary” excitations whose dispersion
relation is given by (15.5.117). We may therefore say that the elementary
excitations of the antiferromagnetic Heisenberg chain are spin-1/2 spinons,
defined over only half of the Brillouin zone, in the region (0, π/a), but in
any physical process they are created in pairs. The physical meaning of this
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Fig. 15.9. Dispersion relation for spinons in an isotropic antiferromagnetic chain

statement will become clear soon. The dispersion relation of the spinons is
shown in Fig. 15.9.

Freely moving spinon excitations can be best illustrated by considering a
chain in which the spins are arranged in a Néel-type antiferromagnetic order,
except at one site, where the spin is reversed. Compared to the antiferro-
magnetic sequence, two bonds are not satisfied. Since this state is not an
eigenstate of the Heisenberg Hamiltonian, two oppositely directed spins can
flip each other. When one of the spins is in a “bad” bond, the antiferromag-
netic order will be reestablished in this bond after the spin flip but, as shown
in Fig. 15.10, a next-nearest bond will become unsatisfied, with two parallel
spins. As the spin flip processes continue, the two “bad” bonds move indepen-
dently. A Néel-type antiferromagnetic order exists between them, but in the
opposite phase. “Bad” bonds can therefore be considered as “domain walls”.
In this picture spinons are these moving domain walls. Their motion makes
the Néel-type order unstable, and gives rise to a spin-liquid state.

Fig. 15.10. Freely propagating spinons (domain walls) in an antiferromagnetic
Heisenberg chain with one reversed spin. Dotted lines denote the „bad” bonds, and
the arrows point to the spins that will be flipped in the next step

When two spins next to a domain wall are flipped by the exchange interac-
tion, the domain wall jumps by two lattice constants. Constructing the spinon
wavefunction as the linear combination of spin configurations containing such
domain walls, states of wave number k and k + π/a are equivalent since the
spinon propagates along the chain as if the lattice constant were doubled. This
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explains why the dispersion relation is defined over only half of the Brillouin
zone, in the range (0, π/a).

When the spectrum of excited states and the corresponding wavefunctions
are known, the correlation function between two spins a distance r apart could
be calculated, in principle. However, the calculation cannot be performed ana-
lytically along these lines. We shall return to this problem in the third volume.
Here we just mention that the correlation functions shows a power-law decay,
as expected for a gapless critical model.

15.5.6 The One-Dimensional XY Model

Since the Bethe ansatz is satisfied even in the anisotropic spin-1/2 Heisenberg
model, as has been discussed for the anisotropic ferromagnetic case, the be-
havior of the system can be studied in the planar regime, −1 < Δ < 1, too.
The behavior is qualitatively similar to that observed in the isotropic antifer-
romagnetic point. The ground state is a singlet, low-lying singlet and triplet
excitations form a gapless continuum, and the energy and wave number of
the excitations inside the continuum can be constructed as if they consisted
of pairs of spin-1/2 spinons with dispersion relation

εs(k) = 1
2πJ

sinΘ

Θ
sin ka , (15.5.118)

where Θ is related to the anisotropy parameter Δ via cosΘ = Δ,11 and the
spinons are defined in the interval (0, π/a). The continuum of excitations is
similar to that shown in Fig. 15.8 for the isotropic antiferromagnetic point,
only the scale is different. The boundaries of the continuum are given by

�ωmin = 1
2πJ

sinΘ

Θ
| sin ka| , �ωmax = πJ

sinΘ

Θ
| sin(ka/2)| . (15.5.119)

To get an even better picture of why low-energy excitations appear as
pairs of fictitious particles, it is worthwile to study the special case Δ = 0.
This is the XY model. The Jordan–Wigner transformation (15.2.62) allows us
to express the Hamiltonian of this model in terms of spinless fermions in a
particularly simple form:

H = − 1
2J

∑
j

(
c†jcj+1 + c†j+1cj

)
. (15.5.120)

The negative sign is chosen for later convenience, and J > 0 is assumed.
Using the Fourier transforms of the creation and annihilation operators, the
Hamiltonian is rewritten as

11 Here, too, the choice J > 0, Δ = 1 corresponds to the isotropic antiferromagnetic
point.
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H =
∑
k

εkc
†
kck , (15.5.121)

where εk = −J cos ka. The magnetic system is thus equivalent to a gas of
free spinless fermions with a simple cosine dispersion relation. To specify the
allowed values of the wave number it should be noted that (15.5.99) implies
that for Δ = 0 the phase shifts φ(ki, kj) assume the values ±π. Depending on
the number of reversed spins relative to the ferromagnetic ground state with
all spins pointing upward, the net phase shift is either 0 or π. Denoting the
number of downward spins by N↓,

ki =
2π
Na

(Ii + 1
2 ) , (15.5.122)

if N↓ is even, and

ki =
2π
Na

Ii , (15.5.123)

if N↓ is odd. Figure 15.11 shows the spectrum of a finite chain with the possible
values of ki.
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Fig. 15.11. The spectrum of free spinless fermions in the XY model, and the allowed
values of the wave number for N↓ even and odd, respectively. N = 16, N↓ = 8 on
the left side, and N = 18, N↓ = 9 on the right side. Full (empty) circles indicate
states that are occupied (unoccupied) in the ground state

When J > 0, wave numbers in the range −π/2a ≤ k ≤ π/2a appear in
the ground-state wavefunction, since the associated one-particle states have
negative energy. One may say that states characterized by such wave num-
bers are occupied. As k has as many possible values in the Brillouin zone
−π/a ≤ k ≤ π/a as there are lattice sites, and half of the corresponding
states are occupied, one may speak of a half-filled band. The Jordan–Wigner
transformation also implies that

〈Szj 〉 = 〈c†jcj〉 − 1
2 =

1
N

∑
k

〈c†kck〉 − 1
2 = 0 (15.5.124)

in this half-filled case, that is the expectation values of the spin and the
magnetic moment vanish at each lattice site in the ground state. Likewise,
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the expectation values for the x and y components vanish, too. Furthermore,
if the number of lattice sites is even, then the magnitude of the total spin also
vanishes – in other words, the system has a singlet ground state. The spins are
completely disordered, therefore we may call the ground state a spin liquid.

There are two ways to create low-energy excitations above this ground
state. The first option is leaving the number of spinless fermions unaltered, and
choosing the wave numbers in the wave function differently – in other words,
changing the distribution of occupied states. In the simplest case instead of
a state of wave number ki filled in the ground state, another state of wave
number kj will be occupied. Wave numbers associated with such low-energy
excited states are shown in Fig. 15.12.
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Fig. 15.12. Two possible wave-number configurations for N = 16 and N↓ = 8 in
low-energy excited states in the XY model. Occupied states are indicated by full
circles

In terms of spinless fermions, these excitations of the spin model may
be interpreted as particle–hole excitations. Taking away a particle with wave
number k1 and adding another with wave number k2, the energies of exci-
tations with wave numbers k = k2 − k1 form a continuum, as depicted in
Fig. 15.13. The continuum is bounded by

�ωmin = J | sin ka| and �ωmax = 2J | sin(ka/2)| . (15.5.125)

This result was derived in light of the fact that the creation of holes is possible
only in the interval −π/2a < k1 < π/2a, while that of particles only in the
complementary range of the Brillouin zone.

Another type of excitation is obtained when a spinless fermion is added to
or removed from the system – corresponding to raising or lowering the z com-
ponent of the total spin by unity. In contrast to the two-particle excitations
discussed above, they might seem to be one-particle excitations. In reality,
they are particle–hole excitations, too, but with respect to a modified config-
uration. Namely, it has to be taken into account that spin reversal changes
the parity of N↓ with respect to the ground state, and therefore all wave num-
bers are shifted. In the lowest-energy state of the subspace Sztot = 1 the wave
numbers are located symmetrically anew. To obtain excited states above it,
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Fig. 15.13. The continuum of low-energy excitations in the XY model

a particle–hole pair has to be created in this distribution. The distribution of
the occupied states is shown in Fig. 15.14.
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Fig. 15.14. Wave numbers of free spinless fermions in the lowest-energy state of
the Sz

tot = 1 sector and in a possible excited configuration for N = 16 and N↓ = 7.
Occupied sites are indicated by full circles

It can be shown that in the N → ∞ limit the continuum of these excita-
tions coincides with the continuum arising in the subspace Sztot = 0.

This mapping to free spinless fermions is valid for Δ = 0 only. The Jordan–
Wigner transformation can be applied to the case when Δ is finite, but then
an interaction appears among the spinless fermions. We shall defer the dis-
cussion of the effects of this interaction to the third volume, where we shall
derive the above-mentioned result – namely that the picture presented for the
isotropic antiferromagnet and the XY model is qualitatively true in the whole
planar regime −1 < Δ < 1, where the spin projection along the z direction is
expected to vanish classically. In fact, the quantum mechanical ground state
is in the subspace Sztot = 0 and the continuum of low-energy excitations can
be interpreted as arising from pairs of spin-1/2 spinons.

15.5.7 The Role of Next-Nearest-Neighbor Interactions

So far it has been assumed that the antiferromagnetic exchange interaction
acts between nearest neighbor spins only. A different type of disordered spin
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configuration can be found when the interaction between farther neighbors is
not negligible, since in addition to quantum fluctuations spin frustration that
may arise from the competition between magnetic couplings has to be taken
into account, too.

We shall denote the strength of the antiferromagnetic coupling between
nearest neighbors by J1, and between next-nearest neighbors by J2. The
Hamiltonian of the spin chain is then

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2 . (15.5.126)

Both J1 and J2 are assumed to be positive. Spin frustration is best illustrated
on a zigzag ladder, as shown in Fig. 15.15. Spins located at even and odd
sites of the original chain form two antiferromagnetic chains – the legs of the
ladder – that are somewhat displaced relative to each other. Each spin on one
leg is coupled antiferromagnetically to two spins on the other leg.
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Fig. 15.15. Spin chain with nearest- and next-nearest-neighbor interactions illus-
trated by a zigzag ladder

Separating the terms within the legs and between them, the system is
described by the Hamiltonian

H = J1

∑
i

[
S2i−1 · S2i + S2i · S2i+1

]
+ J2

∑
i

[
S2i−1 · S2i+1 + S2i · S2i+2

]
.

(15.5.127)

The coupling J2 tends to align the spins on the legs antiferromagnetically
– at least on short distances. Assuming that two neighboring spins on a leg
are aligned oppositely (as they should be if the antiferromagnetic coupling
between them is strong enough), they create opposite effective fields at the
position of the spin lying between them on the other leg, canceling each other’s
effect. If, on the other hand, the coupling J1 is stronger, then a short-range
antiferromanetic order may be expected along the zigzag path, which would
give rise to a parallel alignment of neighboring spins on the same leg. When
J1 and J2 are of comparable strength, spins become frustrated, and a new
type of singlet phase appears.
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The ground state of this model is exactly known in the Majumdar–Ghosh
point,12 where J2 = 1

2J1. In this special case the Hamiltonian can be written
as

H = 3
4J1

∑
i

[
P3/2(S2i−1+S2i+S2i+1)+P3/2(S2i+S2i+1+S2i+2)

]−3J1N/8 ,

(15.5.128)
where the operator

P3/2(S2i−1+S2i+S2i+1) = 1
3

[
(S2i−1 +S2i+S2i+1)2− 1

2

(
1
2 +1

)]
(15.5.129)

projects to the subspace where the three S = 1/2 spins add up to a total spin
of 3/2. It is immediately seen from this form that the state in which singlet
pairs are formed between nearest neighbors along the zigzag path is an exact
ground state as three consecutive spins can never be combined into a total
spin of 3/2. As shown in Fig. 15.16, there are two ways to form singlet pairs,
so the system has a doubly degenerate ground state. Since the singlet pairs
are independent of each other there is no correlation between the spins beyond
the nearest-neighbor distance.

Fig. 15.16. The two equivalent ground states of the antiferromagnetic spin chain
in the zigzag ladder representation for J2 = 1

2
J1 . The spins connected by solid lines

form singlet pairs

Breaking any of the singlet pairs gives rise to an excited state. A relatively
low-energy excitation is expected when the two spins of the broken singlet
are not bound into a triplet but move farther away, and the singlet bonds
between them are rearranged, as shown in Fig. 15.17. The configuration of
singlet bonds corresponds to different ground states at the two ends and in
the intermediate region. Since the energy of the singlet pairs is not modi-
fied by the rearrangement, the energy of the configuration is independent of
the length of the rearranged region, i.e., on the distance between the free
spins. Therefore they can propagate freely. Consequently the continuum of
low-energy excitations can be interpreted as arising from a pair of spinons or
domain walls, the creation of which requires a finite amount of energy that is
equal to the binding energy of the singlets.

Such a behavior is observed not only in the point J2 = 1
2J1 but when-

ever the antiferromagnetic second-neighbor coupling is stronger than a critical
value (J2/J1)c = 0.241.

12
C. K. Majumdar and D. K. Ghosh, 1969.
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Fig. 15.17. Freely moving spinons in the spin-1/2 antiferromagnetic zigzag ladder

In the previous discussion we have seen two possible types of behavior
for the S = 1/2 spin chains. The ground state was either a unique singlet
state with a gapless excitation spectrum, or the ground state was doubly
degenerate, dimerized, and the excitation spectrum was separated from the
ground state by a finite gap. According to the Lieb–Schultz–Mattis theorem,13
these two types of behavior are generic in one-dimensional spin models with
half-odd-integer spin. More precisely, the authors established that in half-
odd-integer spin models that are invariant under translation by the lattice
constant and have full rotational symmetry in spin space, the ground state
and the excitation continuum may be separated by a gap only if the ground
state is degenerate and breaks the translational symmetry spontaneously.

15.5.8 Excitations in the Spin-One Heisenberg Chain

In contrast to the spin-1/2 chain, the ground state and the excitation spectrum
of antiferromagnetic Heisenberg models with S > 1/2 cannot be determined
exactly. States with more than two reversed spins cannot be given in the Bethe
ansatz form, and scattering processes involving several magnons cannot be
described in terms of the phase shifts occurring in two-magnon scattering. To
obtain exactly solvable models, terms involving higher powers of the product
of two spins, or the products of several spins – with suitably chosen coupling
constants – must be included in the Hamiltonian. In the S = 1 case, the model
defined by the Hamiltonian

H = −J
∑
i

[
Si · Si+1 − (Si · Si+1)

2
]
, (15.5.130)

while in the S = 3/2 case, the system with the Hamiltonian

H = −J
∑
i

[
Si · Si+1 − 8

27 (Si · Si+1)
2 − 16

27 (Si · Si+1)
3
]

(15.5.131)

are exactly solvable by straightforward generalization of the Bethe ansatz.
Both the ground state and the excitation spectrum can be determined, and the
behavior of the system is found to be similar to that of the spin-1/2 isotropic
Heisenberg model. When the coupling is ferromagnetic, the ground state is
fully aligned, and low-lying excitations are spin-1 magnons. Antiferromagnetic
coupling, on the other hand, leads to a singlet ground state with a gapless
13

E. Lieb, T. D. Schultz, and D. C. Mattis, 1962.
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continuum of excitations that consists of singlet and triplet pairs of spin-1/2
spinons.

Another exactly solvable version of the spin-1 model is obtained by revers-
ing the sign of the biquadratic term:

H = −J
∑
i

[
Si · Si+1 + (Si · Si+1)

2
]
. (15.5.132)

This model possesses not only SU(2) but also SU(3) symmetry. Here, too,
the continuum of excitations appears above the ground state without gap,
however, the soft modes appear at k = 0 and ±2π/3a in this model, and not
at k = 0 and π/a as in the spin-1/2 antiferromagnetic Heisenberg chain.

These models should nevertheless be considered as exceptions. In general,
isotropic magnetic chains with integer spin do not have a gapless branch of ex-
citations. The Lieb–Schultz–Mattis theorem is not applicable to these models,
and, barring certain exceptions, even if the ground state is nondegenerate, the
continuum of excited states in integer-spin antiferromagnetic chains is sepa-
rated from the ground state by a forbidden region, the Haldane gap.14

To understand the nature of this state better, consider the most general
Hamiltonian describing an interacting S = 1 chain with an SU(2)-invariant
isotropic nearest-neighbor interaction. It follows from the properties of spin-1
operators discussed in Appendix F that, besides the usual exchange interac-
tion, a biquadratic term (Si · Si+1)

2 also appears in the Hamiltonian, but no
higher powers. The most general form satisfying these requirements is

H = J
∑
i

[
Si · Si+1 + β (Si · Si+1)

2
]
. (15.5.133)

This Hamiltonian can be written in an alternative form by taking into account
that the combination of two neighboring S = 1 spins gives rise to total spins
Spair = 0, 1 and 2. The operators that project onto the respective subspaces
are

P0(i, i + 1) = 1 − 2
3 (Si + Si+1)2 + 1

12 (Si + Si+1)4

= − 1
3 + 1

3 (Si · Si+1)
2 ,

P1(i, i + 1) = 3
4 (Si + Si+1)2 − 1

8 (Si + Si+1)4

= 1 − 1
2 (Si · Si+1) − 1

2 (Si · Si+1)
2 ,

P2(i, i + 1) = − 1
12 (Si + Si+1)2 + 1

24 (Si + Si+1)4

= 1
3 + 1

2 (Si · Si+1) + 1
6 (Si · Si+1)

2 .

(15.5.134)

The most general isotropic model is constructed by taking an arbitrary linear
combination,

14
F. D. M. Haldane, 1983.
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H =
N∑
i=1

2S∑
j=0

fjPj(i, i + 1) . (15.5.135)

The usual antiferromagnetic Heisenberg model is recovered by choosing fj =
j(j + 1).

Let us now consider the special case when only those states contribute
to the energy for which every pair of neighboring spins is in the Spair = 2
state. With an appropriately chosen additive constant the Hamiltonian may
be written as

H = J
∑
i

[
2P2(i, i + 1) − 2

3

]
, (15.5.136)

or, in terms of the spin operators, as

H = J
∑
i

[
Si · Si+1 + 1

3 (Si · Si+1)
2
]
. (15.5.137)

If we succeed in constructing a state without any pairs of neighbors being
in the Spair = 2 state, then the energy of the state in question will simply
be E0 = − 2

3NJ . Such a state can be put together as follows. First, at each
lattice site, the S = 1 spin operator is built up of two spin-1/2 operators,
σi and τi, allowing only the symmetric combination. Then, a singlet state is
formed between lattice sites i and i + 1, using one of the 1/2 spins at each
lattice site. The other 1/2 spin at lattice site i (i + 1) is paired with one of
the spins at lattice site i− 1 (i + 2) to give another singlet state. Thus, with
the exception of the two end points, every lattice point of the chain is bound
to its left and right neighbors by a singlet bond. The bond arrangement is
shown schematically in Fig. 15.18.

Fig. 15.18. Singlet bonds in the ground state of the model defined by (15.5.137)

When the projection operator P2 acts on any such configuration, the result
is indeed zero. By choosing the linear combination of all possible states with
equal weights, symmetrization is taken care of. The resulting state turns out
to be more than just an eigenstate of the Hamiltonian (15.5.137): it is the
ground state. Since the state comprises singlets between nearest neighbors,
and is therefore reminiscent of valence bonds, such models are also called
valence bond solids (VBS).

To create an excited state one or more short-range valence bonds have
to be broken. Since this requires a finite amount of energy, the ground state
is separated by a gap from the excitation spectrum in these models. Conse-
quently the spin–spin correlation function decays exponentially, with a corre-
lation length that is not much larger than atomic dimensions. Another inter-
esting point that distinguishes this spin-1 model from the spin-1/2 Heisenberg
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model is that the low-lying excitations do not form a continuum. The excita-
tions are not pairs of deconfined spin-1/2 spinons but spin-1 magnons with a
well-defined dispersion relation.

If the parameter β in (15.5.133) is not exactly β = 1/3, then for −1 < β <
1 (note that this interval contains the isotropic antiferromagnetic Heisenberg
model, which corresponds to β = 0) the ground state and the excitation
spectrum are similar to those discussed above – with the exception that singlet
bonds are not necessarily formed between neighboring sites, however their
average range is short. Once again, the spin–spin correlation functions decay
exponentially. This is the Haldane phase of the spin-1 Heisenberg chain.

15.5.9 Spin Ladders

Having overviewed the properties of spin chains, we can now generalize these
considerations to two or more coupled spin chains. In the simplest case, where
two chains are coupled by an exchange coupling J⊥, the system is described
by the Hamiltonian

H = J‖
N∑
i=1

(S1,i · S1,i+1 + S2,i · S2,i+1) + J⊥
N∑
i=1

S1,i · S2,i . (15.5.138)

When the couplings between the spins are drawn as straight lines, they make
up a ladder: J‖ is the coupling along the legs, while J⊥ is the coupling between
spins on the same rung. This is why the system is called a spin ladder. When
several chains are coupled, multileg ladders are obtained.

If the rung coupling J⊥ is ferromagnetic and strong enough, the spins
on the same rung are bound into a triplet (S = 1), and the spin ladder
behaves as an S = 1 spin chain. When J‖ is antiferromagnetic, and periodic
boundary conditions are imposed, then the ground state is a nondegenerate
singlet state (the analogue of the VBS state discussed above), in which spins
on neighboring or not too distant rungs form singlets. Such a configuration
is shown in Fig. 15.19(a). Note that if the ladder were cut anywhere between
two neighboring rungs an odd number of singlet bonds would be broken.

Figure 15.19(b) shows an excited state in which one singlet bond is bro-
ken. Breaking a bond requires a finite amount of energy, thus the excitation
spectrum starts with a finite gap, the Haldane gap. It can also be understood
from the figure why the two “unbound” spins do not propagate freely, and
why the excitation spectrum is not a continuum of spinon pairs (unlike for
the zigzag ladder). If this ladder were cut between the two “unbound” spins,
an even number of singlet bonds would be broken. The energy of this configu-
ration increases when the two spins are moved farther apart, therefore they do
not become truly unbound. Using the language of particle physics, the force
increases linearly with distance, and confines the two spinons into a magnon.

A similar, nondegenerate singlet ground state is found when J⊥ is anti-
ferromagnetic: for sufficiently strong coupling spins on the same rung form
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Fig. 15.19. (a) A possible configuration of singlet bonds in the ground state of
a ferromagnetically coupled two-leg spin ladder. (b) An excited state obtained by
breaking a singlet bond

singlets with high probability. Such a configuration is shown in Fig. 15.20.
Note that in this case the number of singlet bonds between neighboring rungs
is always even.

Fig. 15.20. A possible configuration of singlet bonds in the ground state of an
antiferromagnetic two-leg spin ladder

The low-lying excitations are magnons again, and the spectrum has a
finite energy gap, for the same reason as above: if a singlet bond is broken,
the number of singlet bonds between the two “free” spins changes parity, and
the energy increases linearly with the distance between the spins, confining
the spinons into magnons.

Thus, whether the coupling between the legs is ferromagnetic or antifer-
romagnetic, two-leg spin ladders behave like spin-1 chains. It can be shown
by a generalization of the Lieb–Schultz–Mattis theorem that in odd-leg spin
ladders made up of an odd number of S = 1/2 spin chains either the ground
state is degenerate or the excitation spectrum is gapless. Such spin ladders
behave like chains of half-integer spins. On the other hand, the behavior of
even-leg spin ladders is analogous to that of chains of integer spins.
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15.5.10 Physical Realizations of Spin Chains and Spin Ladders

Ideal, free-standing spin chains and spin ladders (such as the ones studied
theoretically in the previous subsections) do not exist in nature. However,
there are a number of materials that have truly three-dimensional crystalline
structure but quantum mechanical exchange is strongly anisotropic in them:
much stronger in one direction than in others. These materials can, therefore,
be considered as if they consisted of weakly coupled chains of spins. At low
temperatures, where the thermal energy is comparable to or less than the
exchange energy between the chains, a three-dimensional ordered magnetic
structure may arise. Above this temperature, the chains behave independently
as far as magnetic properties are concerned. Here we give just a small selection
of materials that exhibit such properties.

A typical example is CPC – CuCl2·2N(C5H5) –, in which the chains formed
by spin-1/2 Cu2+ ions are separated by large pyridine molecules. The ex-
change interaction between the chains is about 300 times weaker than within
the chains, and antiferromagnetic ordering takes place at only TN = 1.14 K.
Copper pyrazine dinitrate (CuPzN) – Cu(C4H4N2)(NO3)2 – is an even bet-
ter candidate for the ideal isotropic antiferromagnetic Heisenberg chain. The
coupling between the chains is four orders of magnitude weaker than within
the chains, and no magnetic ordering has been observed down to 0.1 K. The
continuum of low-lying excitations of the spin-1/2 Heisenberg chain, which
has been interpreted in terms of spinon pairs, can be observed very well in
these materials.

An almost ideal representative of integer-spin antiferromagnetic Heisen-
berg chains is Y2BaNiO5. The spin-1 nickel ions surrounded by oxygens form
chains that are extremely weakly coupled. In agreement with theoretical pre-
dictions, the excitation spectrum has a finite Haldane gap (Δ = 8.6 meV).

Several materials have been produced synthetically in which spins form
two- or multileg ladders. In the homologous series Srn−1CunO2n−1 spin-1/2
Cu2+ ions are arranged in such a way that the copper chains lie in magnetically
isolated layers; within the layers n chains form an n-leg ladder, but adjacent
ladders are displaced by half a unit, and thus the coupling between ladders
is frustrated, and has a negligible effect. Figure 15.21 shows the susceptibility
for the two- and three-leg members of this series.

It can be seen that by subtracting the Curie component – which arises from
the end spins of the chains or from paramagnetic impurities –, the susceptibil-
ity becomes exponentially small at low temperatures for the two-leg ladder,
while it remains finite for the three-leg ladder. This is in good agreement
with the result explained above: there are no gapless magnetic excitations in
the two-leg ladder, while the excitations spectrum of the three-leg ladder is
gapless.
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Fig. 15.21. Temperature dependence of the susceptibility of the two-leg (SrCu2O3)
and three-leg (Sr2Cu3O5) members of the series. Empty circles indicate raw data,
while full circles are corrected data obtained by subtracting the Curie component
[M. Azuma et al., Phys. Rev. Lett. 73, 3463 (1994)]

15.6 Spin Liquids

It was shown in the previous sections that quantum fluctuations become rele-
vant in low-dimensional systems. In one dimension they will hinder magnetic
ordering, with the sole exception of the ferromagnetic phase. The ground state
of antiferromagnetic spin chains and spin ladders is a spin singlet in which the
continuous SU(2) symmetry of the Hamiltonian is not broken. Such a state
might be called a spin liquid.

When considering the excitation spectrum and the decay of the correlation
functions in these systems, various fundamentally different types of behavior
are found. As we shall see in Chapter 32, owing to the gapless character of
the excitation continuum the decay of the correlation function is power-law-
like in the spin-1/2 antiferromagnetic Heisenberg model, just like in a critical
system. Such systems are called algebraic or critical spin liquids. When the
next-nearest exchange is sufficiently strong and also antiferromagnetic, the
competition of the couplings leads to frustration, resulting in an exponen-
tially decaying correlation. Although the situation is similar to the decay of
correlations in liquids, the spin system is not homogeneous: the symmetry
of the Hamiltonian under translation through the lattice constant is broken.
Correlations decay exponentially in the Haldane phase, too, however, a cer-
tain order is exhibited by the singlet valence bonds: a hidden order in the spin
components.

Thus, none of the above examples is a true spin liquid in the strict sense –
namely, that the magnetically disordered singlet ground state should break no
symmetry of the Hamiltonian, that there should be no hidden order parame-
ters, and that the spin–spin correlation functions should decay exponentially.
They indicate, however, that if a spin liquid phase exists, it may arise from
quantum fluctuations, frustration caused by competing interactions, or geo-
metric frustration resulting from the topology of the arrangement of spins.
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As a first example consider a two-dimensional square lattice with nearest-
neighbor interactions. In this system spins are not frustrated, and quantum
fluctuations cannot destroy the Néel-type antiferromagnetic order. However,
in the presence of a sufficiently strong (Jd ≈ 0.5J) antiferromagnetic cou-
pling between (diagonally separated) next-nearest neighbors the ground state
is disordered – although the exact nature of this disorder is not fully under-
stood yet.

Frustration arising from the geometry (topology) of the lattice is observed
in the antiferromagnetic triangular lattice. Considering first a single triangle,
the three spins at the vertices are each others’ nearest neighbors. If, owing
to the antiferromagnetic coupling, the spins at two vertices are oriented op-
positely (quantum mechanically: if their spin projections are 1/2 and −1/2),
then they act oppositely on the third spin. With its orientation undetermined,
the state of the third spin is the combination of the sz = 1/2 and sz = −1/2
components with equal weights since the two spin orientations are of the
same energy. As a resolution of this frustration Anderson

15 suggested that
the ground state of the isotropic antiferromagnetic Heisenberg model on a
triangular lattice is a disordered singlet. It is a superposition of singlet states
in which every spin forms a singlet pair with a nearby spin. In the language
of quantum chemistry, the state is a superposition of valence bonds. The en-
ergy can be lowered if the singlet pairs break up and reform – that is, if they
resonate. Hence the name for this hypothetical spin liquid: resonating valence
bond spin liquid (RVB spin liquid).

It turned out that resonating singlets do not sufficiently lower the energy
on a triangular lattice. The true ground state is a three-sublattice Néel-type
state. If, however, in addition to nearest-neighbors interactions other couplings
– e.g., multi-spin exchange processes – are also important, the ground state
may be a spin-liquid state.

There exist certain lattices in nature that are topologically more strongly
frustrated than the triangular lattice, e.g., the two-dimensional kagome lat-
tice or the three-dimensional pyrochlore lattice. The kagome lattice shown in
Fig. 5.4 can be described as a network of corner-sharing (interlaced) triangles.
In the pyrochlore lattice corner-sharing tetrahedra form a face-centered cubic
lattice. Assuming classical spins in both cases, the orientation of the spins
on neighboring units is not fixed even when the sum of the spins on each
triangle or tetrahedron is required to vanish, and the ground state is disor-
dered. The quantum mechanical ground states of these models are not yet
known, but they are expected to be spin liquids. An indication for this is that
Cu3V2O7(OH)2·2H2O – in which the spin-1/2 copper ions form a kagome
lattice – does not have any usual magnetically ordered state. Similarly, in
Tb2Ti2O7 – which has a pyrochlore structure, with magnetic rare-earth ions
at the vertices of the tetrahedra – no magnetic ordering has been observed
down to 70 mK.

15
P. W. Anderson, 1973.
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If the RVB state proposed by Anderson is realized in these materials,
then, on account of the resonance of short-range singlet valence bonds, the
two spins liberated in the excited state from the singlet pair are expected
to propagate practically independently, and the true elementary excitations
are gapped spin-1/2 spinons. According to the numerical results obtained for
such models the spectrum of triplet excitations does, indeed, have a finite gap,
however, it is filled with a continuum of singlet excitations. This indicates that
there are still a lot of mysteries to be resolved about the spin-liquid state.

Further Reading

1. A. Herpin, Théorie du magnétisme, Presses Universitaires de France, Paris
(1968).

2. L.-P. Lévy, Magnetism and Superconductivity, Texts and Monographs in
Physics, Springer-Verlag, Berlin (2000).

3. D. C. Mattis, The Theory of Magnetism I: Thermodynamics and Statisti-
cal Mechanics, Springer-Verlag, Berlin (1988); The Theory of Magnetism
II: Statics and Dynamics, Springer-Verlag, Berlin (1985).

4. K. Yosida, Theory of Magnetism, Springer Series in Solid-State Sciences,
Vol. 122, Springer-Verlag, Berlin (1996).

5. S. V. Vonsovskii, Magnetism, John Wiley & Sons, New York (1974).
6. R. M. White, Quantum Theory of Magnetism, Springer Series in Solid-

State Sciences, Vol 32, Springer-Verlag, Berlin (2002).



A

Physical Constants and Units

A.1 Physical Constants

The following table contains the values in SI units for some physical constants
that are particularly important in solid-state physics.

Name Symbol Value

speed of light
in vacuum c 299 792 458 m s−1

magnetic constant
(permeability of free space) μ0 4π × 10−7 NA−2

electric constant
(permittivity of free space) ε0 = 1/μ0c

2 8.854 188× 10−12 F m−1

elementary charge e 1.602 176× 10−19 C
Planck constant h 6.626 069× 10−34 J s

in eV h/{e} 4.135 667× 10−15 eV s
reduced Planck constant � = h/2π 1.054 572× 10−34 J s

in eV �/{e} 6.582 119× 10−16 eV s
fine-structure constant α = e2/4πε0�c 7.297 353× 10−3

inverse of α α−1 137.035 999
magnetic flux quantum Φ0 = h/2e 2.067 834× 10−15 Wb
conductance quantum G0 = 2e2/h 7.748 092× 10−5 S

inverse of G0 G−1
0 = h/2e2 12 906.404 Ω

Josephson constant KJ = 2e/h 483 597.9× 109 Hz V−1

von Klitzing constant RK = h/e2 25 812.807 Ω
Boltzmann constant kB 1.380 650× 10−23 J K−1

Avogadro constant NA 6.022 142× 1023 mol−1

Continued on the next page
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Name Symbol Value

molar gas constant R = NAkB 8.314 472 J mol−1 K−1

Bohr magneton μB = e�/2me 9.274 009× 10−24 J T−1

nuclear magneton μN = e�/2mp 5.050 783× 10−27 J T−1

Bohr radius a0 = 4πε0�2/mee
2 0.529 177× 10−10 m

electron mass me 9.109 382× 10−31 kg
electron magnetic μe −9.284 764× 10−24 J T−1

moment −1.001 160μB
electron g-factor ge = 2μe/μB −2.002 319
electron gyromagnetic γe = 2|μe|/� 1.760 860× 1011 s−1 T−1

ratio γe/2π 28 024.9532 MHzT−1

neutron mass mn 1.674 927× 10−27 kg
neutron magnetic μn −0.966 236× 10−26 J T−1

moment −1.913 043μN
neutron g-factor gn = 2μn/μN −3.826 085
proton mass mp 1.672 622× 10−27 kg
proton–electron

mass ratio mp/me 1836.152 667
electron–proton

mass ratio me/mp 5.446 170 10−4

proton magnetic μp 1.410 607× 10−26 J T−1

moment 2.792 847μN
proton g-factor gp = 2μp/μN 5.585 695
proton gyromagnetic γp = 2μp/� 2.675 222× 108 s−1 T−1

ratio γp/2π 42.577 481 MHzT−1

Rydberg constant R∞ = α2mec/2h 10 973 731.569 m−1

Rydberg energy Ry = R∞hc 2.179 872× 10−18 J
in electronvolts 13.605 692 eV

Hartree energy Eh = e2/4πε0a0 4.359 744× 10−18 J
in electronvolts 27.211 384 eV

A.2 Relationships Among Units

The fundamental units of the SI system are meter (m), kilogram (kg), second
(s), ampere (A), kelvin (K), mole (mol), and candela (Cd). In the next table
derived units are expressed in terms of these fundamental ones – and other
derived units.
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1 coulomb (C) = 1 A s 1 pascal (Pa) = 1 Nm−2

1 farad (F) = 1 C V−1 = 1 A2 s2 J−1 1 siemens (S) = 1 Ω−1 = 1 AV−1

1 henry (H) = 1 V s A−1 = 1 J A−2 1 tesla (T) = 1 Wb m−2

1 joule (J) = 1 Nm = 1 kg m2 s−2 1 volt (V) = 1 W A−1

1 newton (N) = 1 kg m s−2 1 watt (W) = 1 J s−1

1 ohm (Ω) = 1 V A−1 1 weber (Wb) = 1 V s = 1 J A−1

It is immediately established that the unit of magnetic moment is 1 Am2 =
1 J T−1.

The following SI prefixes are used to denote the multiples and fractions of
the units:

Name Symbol Corresponding power of 10

yotta- Y 1024

zetta- Z 1021

exa- E 1018

peta- P 1015

tera- T 1012

giga- G 109

mega- M 106

kilo- k 103

milli- m 10−3

micro- μ 10−6

nano- n 10−9

pico- p 10−12

femto- f 10−15

atto- a 10−18

zepto- z 10−21

yocto- y 10−24

Non-SI Units

Much of the solid-state physics literature continues to use CGS units. Some
of the most frequently used units are:

1 Å = 10−10 m = 0.1 nm , 1 erg = 10−7 J ,
1 atm = 101 325 Pa , 1 bar = 105 Pa .

The CGS unit of magnetic field strength is the oersted (Oe), while that
of magnetic induction (flux density) and magnetization is the gauss (G). In
SI, magnetic induction is given in teslas, while magnetic field strength and
magnetization in A/m. Therefore

1 G =̂ 10−4 T
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when specifying the magnetic induction, however

1 G =̂ 103 A/m

when it comes to magnetization. The relationship between the units of mag-
netic flux is

1 Gcm2 =̂ 10−8 Wb .

The units of magnetic field strength are related by

1 Oe =̂
103

4π
A/m = 79.58 A/m .

When CGS units are used, equations for electromagnetic quantities are usu-
ally written in their nonrationalized form. The table below shows the con-
version factors used in the transformation of the rationalized equations into
nonrationalized ones that apply to the Gaussian quantities (denoted by ∗);
c2 = 1/ε0μ0.

Physical quantity Conversion formula (CGS–SI)

electric charge q∗ = (4πε0)−1/2q
electric current j∗ = (4πε0)−1/2j

electric field E∗ = (4πε0)1/2E
electric displacement D∗ = (4π/ε0)1/2D
magnetic field H∗ = (4πμ0)1/2H
magnetic induction B∗ = (4π/μ0)1/2B
scalar potential ϕ∗ = (4πε0)1/2ϕ
vector potential A∗ = (4π/μ0)1/2A
resistivity !∗ = 4πε0!
conductivity σ∗ = (4πε0)−1σ
permittivity ε∗ = ε/ε0
permeability μ∗ = μ/μ0

magnetic susceptibility χ∗ = χ/4π
magnetization M∗ = (μ0/4π)1/2M
magnetic flux Φ∗ = (4π/μ0)1/2Φ

For example, the expression ωc = eB/me for cyclotron frequency goes over
into

ωc =
√
ε0μ0e

∗B∗/me =
e∗B∗

mec
.

To convert electromagnetic SI units into CGS units, the next relationship
(of mixed units) has to be used:√

μ0

4π
= 0.1

√
dyn
A

.

The nonrationalized form and CGS value of some electromagnetic con-
stants are listed below.
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Name of physical constant Symbol Value

elementary charge e∗ 4.803 24× 10−10 dyn1/2 cm
Bohr radius a0 = �

2/mee
∗2 5.291 772× 10−9 cm

Bohr magneton μ∗
B = e∗�/2mec 9.274 009× 10−21 ergG−1

fine-structure constant α = e∗2/�c 1/137.036
flux quantum Φ∗

0 = hc/2e∗ 2.067 834× 10−7 G cm2

Conversion Factors of Energy Equivalents

In solid-state physics energies are very often given in electronvolts: 1 eV =
(e/C)J. Thermal energies are usually specified using the relation E = kBT ,
with the temperature given in kelvins, while magnetic field energies are com-
monly converted to field strengths given in teslas or gausses through E = μBB.
In spectroscopy energy is often expressed in hertz units via E = hν or in in-
verse (centi)meters, via E = hc/λ. The energies corresponding to these units
are

E(1 K) = (1 K)kB = 1.380 650× 10−23 J ,

E(1 T) = (1 T)μB = 9.274 009× 10−24 J ,

E(1 cm−1) = (1 cm−1)hc = 1.986 445× 10−23 J ,

E(1 Hz) = (1 Hz)h = 6.626 069× 10−34 J .

The rydberg (1 Ry = 1R∞hc) and hartree (1 hartree = 2 Ry) units are
widely used, too. The conversion factors relating energies given in the previous
units are listed in the following table.

1 eV =̂ 1.602 176× 10−19 J 1 K =̂ 1.380 650× 10−23 J
1.160 451× 104 K 8.617 343× 10−5 eV
1.727 599× 104 T 1.488 731 T
7.349 865× 10−2 Ry 6.333 631× 10−6 Ry
8.065 544× 103 cm−1 6.950 356× 10−1 cm−1

2.417 989× 1014 Hz 2.083 664× 1010 Hz

1 T =̂ 9.274 009× 10−24 J 1 Ry =̂ 2.179 872× 10−18 J
5.788 382× 10−5 eV 13.605 692 eV
0.671 713 K 1.578 873× 105 K
4.254 383× 10−6 Ry 2.350 517× 105 T
4.668 645× 10−1 cm−1 1.097 373× 105 cm−1

1.399 625× 1010 Hz 3.289 842× 1015 Hz
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1 cm−1 =̂ 1.986 445× 10−23 J 1 Hz =̂ 6.626 069× 10−34 J
1.239 842 × 10−4 eV 4.135 667× 10−15 eV
1.438 775 K 4.799 237× 10−11 K
2.141 949 T 7.144 773× 10−11 T
9.112 670× 10−6 Ry 3.039 660× 10−16 Ry
2.997 925× 1010 Hz 3.335 641× 10−11 cm−1

Binding and cohesive energies in solids are commonly given per atom or
per mole. In addition to eV, Ry, and J, older tables also contain data given in
calories. Its usual value is 1 cal = 4.1868 J, however that of the thermochemical
calory is 1 cal = 4.184 J. Consequently

1
eV

atom
= 73.499

mRy
atom

= 96.4853
kJ
mol

= 23.05
kcal
mol

.

Reference

1. P. J. Mohr and B. N. Taylor, 2002 CODATA recommended values of the
fundamental physical constants, National Institute of Standards and Tech-
nology (2003). The data are available on the WWW at
http://physics.nist.gov/cuu/Constants.



B

The Periodic Table of Elements

B.1 The Electron and Crystal Structures of Elements

The next table shows the electron structure for the elements of the periodic
table as well as the Pearson symbol of their crystal structure that is stable at
low temperatures and atmospheric pressure. When another crystal structure
is stable at room temperature, its Pearson symbol is also listed.

Atomic Name of Chemical Electron Crystal structure
number element symbol structure at 0K at 300 K

1 hydrogen H 1s1 cF4 (fcc) gas
2 helium He 1s2 hP2 (hcp) gas

3 lithium Li [He] 2s1 hP2 (hcp) cI2 (bcc)
4 beryllium Be [He] 2s2 hP2 (hcp)
5 boron B [He] 2s2 2p1 hR105
6 carbon C [He] 2s2 2p2 hP4
7 nitrogen N [He] 2s2 2p3 cP8 gas
8 oxygen O [He] 2s2 2p4 mC4 gas
9 fluorine F [He] 2s2 2p5 mC6 gas

10 neon Ne [He] 2s2 2p6 cF4 (fcc) gas

11 sodium Na [Ne] 3s1 hP2 (hcp) cI2 (bcc)
12 magnesium Mg [Ne] 3s2 hP2 (hcp)
13 aluminum Al [Ne] 3s2 3p1 cF4 (fcc)
14 silicon Si [Ne] 3s2 3p2 cF8
15 phosphorus P [Ne] 3s2 3p3 oC8
16 sulfur S [Ne] 3s2 3p4 oF128
17 chlorine Cl [Ne] 3s2 3p5 oC8 gas
18 argon Ar [Ne] 3s2 3p6 cF4 (fcc) gas

19 potassium K [Ar] 4s1 cI2 (bcc)
Continued on the next page
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Atomic Name of Chemical Electron Crystal structure
number element symbol structure at 0K at 300 K

20 calcium Ca [Ar] 4s2 cF4 (fcc)
21 scandium Sc [Ar] 4s2 3d1 hP2 (hcp)
22 titanium Ti [Ar] 4s2 3d2 hP2 (hcp)
23 vanadium V [Ar] 4s2 3d3 cI2 (bcc)
24 chromium Cr [Ar] 4s1 3d5 cI2 (bcc)
25 manganese Mn [Ar] 4s2 3d5 cI58
26 iron Fe [Ar] 4s2 3d6 cI2 (bcc)
27 cobalt Co [Ar] 4s2 3d7 hP2 (hcp)
28 nickel Ni [Ar] 4s2 3d8 cF4 (fcc)
29 copper Cu [Ar] 4s1 3d10 cF4 (fcc)
30 zinc Zn [Ar] 4s2 3d10 hP2 (hcp)
31 gallium Ga [Ar] 4s2 3d10 4p1 oC8
32 germanium Ge [Ar] 4s2 3d10 4p2 cF8
33 arsenic As [Ar] 4s2 3d10 4p3 hR2
34 selenium Se [Ar] 4s2 3d10 4p4 hP3
35 bromine Br [Ar] 4s2 3d10 4p5 oC8 liquid
36 krypton Kr [Ar] 4s2 3d10 4p6 cF4 (fcc) gas

37 rubidium Rb [Kr] 5s1 cI2 (bcc)
38 strontium Sr [Kr] 5s2 cF4 (fcc)
39 yttrium Y [Kr] 5s2 4d1 hP2 (hcp)
40 zirconium Zr [Kr] 5s2 4d2 hP2 (hcp)
41 niobium Nb [Kr] 5s1 4d4 cI2 (bcc)
42 molybdenum Mo [Kr] 5s1 4d5 cI2 (bcc)
43 technetium Tc [Kr] 5s2 4d5 hP2 (hcp)
44 ruthenium Ru [Kr] 5s1 4d7 hP2 (hcp)
45 rhodium Rh [Kr] 5s1 4d8 cF4 (fcc)
46 palladium Pd [Kr] 4d10 cF4 (fcc)
47 silver Ag [Kr] 5s1 4d10 cF4 (fcc)
48 cadmium Cd [Kr] 5s2 4d10 hP2 (hcp)
49 indium In [Kr] 5s2 4d10 5p1 tI2
50 tin Sn [Kr] 5s2 4d10 5p2 cF8 tI4
51 antimony Sb [Kr] 5s2 4d10 5p3 hR2
52 tellurium Te [Kr] 5s2 4d10 5p4 hP3
53 iodine I [Kr] 5s2 4d10 5p5 oC8
54 xenon Xe [Kr] 5s2 4d10 5p6 cF4 (fcc) gas

55 cesium Cs [Xe] 6s1 cI2 (bcc)
56 barium Ba [Xe] 6s2 cI2 (bcc)
57 lanthanum La [Xe] 6s2 5d1 hP4 (dhcp)
58 cerium Ce [Xe] 6s2 4f2 cF4 (fcc) hP4 (dhcp)
59 praseodymium Pr [Xe] 6s2 4f3 hP4 (dhcp)
60 neodymium Nd [Xe] 6s2 4f4 hP4 (dhcp)
61 promethium Pm [Xe] 6s2 4f5 hP4 (dhcp)
62 samarium Sm [Xe] 6s2 4f6 hR3

Continued on the next page
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Atomic Name of Chemical Electron Crystal structure
number element symbol structure at 0K at 300 K

63 europium Eu [Xe] 6s2 4f7 cI2 (bcc)
64 gadolinium Gd [Xe] 6s2 4f7 5d1 hP2 (hcp)
65 terbium Tb [Xe] 6s2 4f9 hP2 (hcp)
66 dysprosium Dy [Xe] 6s2 4f10 oC4 hP2 (hcp)
67 holmium Ho [Xe] 6s2 4f11 hP2 (hcp)
68 erbium Er [Xe] 6s2 4f12 hP2 (hcp)
69 thulium Tm [Xe] 6s2 4f13 hP2 (hcp)
70 ytterbium Yb [Xe] 6s2 4f14 hP2 (hcp) cF4 (fcc)
71 lutetium Lu [Xe] 6s2 4f14 5d1 hP2 (hcp)
72 hafnium Hf [Xe] 6s2 4f14 5d2 hP2 (hcp)
73 tantalum Ta [Xe] 6s2 4f14 5d3 cI2 (bcc)
74 tungsten W [Xe] 6s2 4f14 5d4 cI2 (bcc)
75 rhenium Re [Xe] 6s2 4f14 5d5 hP2 (hcp)
76 osmium Os [Xe] 6s2 4f14 5d6 hP2 (hcp)
77 iridium Ir [Xe] 6s2 4f14 5d7 cF4 (fcc)
78 platinum Pt [Xe] 6s1 4f14 5d9 cF4 (fcc)
79 gold Au [Xe] 6s1 4f14 5d10 cF4 (fcc)
80 mercury Hg [Xe] 6s2 4f14 5d10 hR1 liquid
81 thallium Tl [Xe] 6s2 4f14 5d10 6p1 hP2 (hcp)
82 lead Pb [Xe] 6s2 4f14 5d10 6p2 cF4 (fcc)
83 bismuth Bi [Xe] 6s2 4f14 5d10 6p3 hR2
84 polonium Po [Xe] 6s2 4f14 5d10 6p4 cP1 (sc)
85 astatine At [Xe] 6s2 4f14 5d10 6p5

86 radon Rn [Xe] 6s2 4f14 5d10 6p6 gas

87 francium Fr [Rn] 7s1

88 radium Ra [Rn] 7s2 cI2 (bcc)
89 actinium Ac [Rn] 7s2 6d1 cF4 (fcc)
90 thorium Th [Rn] 7s2 6d2 cF4 (fcc)
91 protactinium Pa [Rn] 7s2 5f2 6d1 tI2
92 uranium U [Rn] 7s2 5f3 6d1 oC4
93 neptunium Np [Rn] 7s2 5f4 6d1 oP8
94 plutonium Pu [Rn] 7s2 5f6 mP16
95 americium Am [Rn] 7s2 5f7 hP4 (dhcp)
96 curium Cm [Rn] 7s2 5f7 6d1 hP4 (dhcp)
97 berkelium Bk [Rn] 7s2 5f9 hP4 (dhcp)
98 californium Cf [Rn] 7s2 5f10 hP4 (dhcp)
99 einsteinium Es [Rn] 7s2 5f11 hP4 (dhcp)

100 fermium Fm [Rn] 7s2 5f12

101 mendelevium Md [Rn] 7s2 5f13

102 nobelium No [Rn] 7s2 5f14

103 lawrencium Lr [Rn] 7s2 5f14 6d1

104 rutherfordium Rf [Rn] 7s2 5f14 6d2

105 dubnium Db [Rn] 7s2 5f14 6d3

Continued on the next page



596 B The Periodic Table of Elements

Atomic Name of Chemical Electron Crystal structure
number element symbol structure at 0 K at 300 K

106 seaborgium Sg [Rn] 7s2 5f14 6d4

107 bohrium Bh [Rn] 7s2 5f14 6d5

108 hassium Hs [Rn] 7s2 5f14 6d6

109 meitnerium Mt [Rn] 7s2 5f14 6d7

110 darmstadtium Ds [Rn] 7s1 5f14 6d9

111 roentgenium Rg [Rn] 7s1 5f14 6d10

B.2 Characteristic Temperatures of the Elements

The following table contains the melting point (in Celsius degrees), the Debye
temperature (in kelvins), and the critical temperature of the superconducting
or magnetic phase transition (in kelvins) for the elements of the periodic
table. The symbols S, F, and AF denote superconducting, ferromagnetic, and
antiferromagnetic phases, respectively. When more than one magnetic phases
are possible, only the transition temperature to the ground-state structure
is given. The symbol F does not mean that moments are rigorously parallel,
only that the material possesses a finite net magnetization.

Atomic Name of Chemical Melting ΘD Ordered Transition
number element symbol point (◦C) (K) phase temperature

1 hydrogen H −259 105
2 helium He 26

3 lithium Li 180 344
4 beryllium Be 1287 1440 S Tc = 0.026 K
5 boron B 2075 1315
6 carbon C 3825 420
7 nitrogen N −210 68
8 oxygen O −218 91
9 fluorine F −220

10 neon Ne −249 75

11 sodium Na 98 158
12 magnesium Mg 650 400
13 aluminum Al 660 428 S Tc = 1.175 K
14 silicon Si 1414 640
15 phosphorus P 44 193
16 sulfur S 115 250
17 chlorine Cl −101 115
18 argon Ar −189 93

19 potassium K 63 91
Continued on the next page
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Atomic Name of Chemical Melting ΘD Ordered Transition
number element symbol point (◦C) (K) phase temperature

20 calcium Ca 842 230
21 scandium Sc 1541 360
22 titanium Ti 1668 420 S Tc = 0.40 K
23 vanadium V 1910 380 S Tc = 5.46 K
24 chromium Cr 1907 630 AF TN = 311 K
25 manganese Mn 1246 410 AF TN = 100 K
26 iron Fe 1538 467 F TC = 1043 K
27 cobalt Co 1495 445 F TC = 1388 K
28 nickel Ni 1455 450 F TC = 627 K
29 copper Cu 1085 343
30 zinc Zn 420 327 S Tc = 0.86 K
31 gallium Ga 30 320 S Tc = 1.08 K
32 germanium Ge 938 370
33 arsenic As 817 282
34 selenium Se 221 90
35 bromine Br −7
36 krypton Kr −157 72

37 rubidium Rb 39 56
38 strontium Sr 777 147
39 yttrium Y 1522 280
40 zirconium Zr 1855 291 S Tc = 0.63 K
41 niobium Nb 2477 275 S Tc = 9.25 K
42 molybdenum Mo 2623 450 S Tc = 0.92 K
43 technetium Tc 2157 351 S Tc = 7.8 K
44 ruthenium Ru 2334 600 S Tc = 0.49 K
45 rhodium Rh 1964 480 S Tc = 0.035 mK
46 palladium Pd 1555 274
47 silver Ag 962 225
48 cadmium Cd 321 209 S Tc = 0.52 K
49 indium In 157 108 S Tc = 3.41 K
50 tin Sn 232 199 S Tc = 3.72 K
51 antimony Sb 631 211
52 tellurium Te 450 153
53 iodine I 114 106
54 xenon Xe −112 64

55 cesium Cs 28 38
56 barium Ba 727 110
57 lanthanum La 920 142 S Tc = 5 K
58 cerium Ce 798 146 AF TN = 12.5 K

Continued on the next page
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Atomic Name of Chemical Melting ΘD Ordered Transition
number element symbol point (◦C) (K) phase temperature

59 praseodymium Pr 931 85 AF TN = 0.03 K
60 neodymium Nd 1016 159 AF TN = 6 K
61 promethium Pm 1042 158
62 samarium Sm 1074 116 AF TN = 14.0 K
63 europium Eu 822 127 AF TN = 90.4 K
64 gadolinium Gd 1313 195 F TC = 293 K
65 terbium Tb 1356 150 F TC = 220 K
66 dysprosium Dy 1412 210 F TC = 90 K
67 holmium Ho 1474 114 F TC = 20 K
68 erbium Er 1529 134 F TC = 18 K
69 thulium Tm 1545 127 F TC = 32 K
70 ytterbium Yb 824 118
71 lutetium Lu 1663 210 S Tc = 0.1 K
72 hafnium Hf 2233 252 S Tc = 0.13 K
73 tantalum Ta 3017 240 S Tc = 4.47 K
74 tungsten W 3422 400 S Tc = 0.02 K
75 rhenium Re 3186 430 S Tc = 1.70 K
76 osmium Os 3033 500 S Tc = 0.66 K
77 iridium Ir 2446 420 S Tc = 0.11 K
78 platinum Pt 1768 240
79 gold Au 1064 165
80 mercury Hg −39 72 S Tc = 4.15 K
81 thallium Tl 304 78 S Tc = 2.38 K
82 lead Pb 327 105 S Tc = 7.20 K
83 bismuth Bi 271 119
84 polonium Po 254 81
85 astatine At 302
86 radon Rn −71

87 francium Fr 27
88 radium Ra 696 89
89 actinium Ac 1051 124
90 thorium Th 1750 170 S Tc = 1.37 K
91 protactinium Pa 1572 159 S Tc = 1.4 K
92 uranium U 1135 207 S Tc = 0.68 K
93 neptunium Np 644 121
94 plutonium Pu 640 171
95 americium Am 1176 S Tc = 0.60 K
96 curium Cm 1345
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C

Mathematical Formulas

C.1 Fourier Transforms

When surface effects are neglected and only bulk properties are examined in
macroscopic crystalline samples, periodic boundary conditions are frequently
applied, since the Fourier components that appear in the Fourier series or
Fourier integral representation of the position-dependent quantities are often
easier to determine. Nevertheless, owing to the invariance of crystals under
discrete translations, functions that show the same periodicity as the crystal
lattice and functions defined at the vertices of the crystal lattice are frequently
encountered, too. It is often more convenient to specify them using the Fourier
components associated with the vectors defined in the reciprocal lattice. The
most important formulas of such functions are listed in the present section.

C.1.1 Fourier Transform of Continuous Functions

A periodic function of period L (f(x + L) = f(x)) can be expanded into a
Fourier series as

f(x) = 1
2a0 +

∞∑
n=0

[
an cos

(
2πn
L

x

)
+ bn sin

(
2πn
L

x

)]
. (C.1.1)

Making use of the orthogonality relation of trigonometric functions, it can be
shown that the coefficients are given by the integrals

an =
2
L

L/2∫
−L/2

f(x) cos
(

2πn
L

x

)
dx, bn =

2
L

L/2∫
−L/2

f(x) sin
(

2πn
L

x

)
dx .

(C.1.2)
It is often more convenient to use exponential functions:

f(x) =
∞∑

n=−∞
fne2πinx/L , (C.1.3)
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where

fn =
1
L

L/2∫
−L/2

f(x)e−2πinx/L dx . (C.1.4)

This can be demonstrated directly by exploiting the completeness relation

∞∑
n=−∞

e2πinx/L = lim
N→∞

N∑
n=−N

e2πinx/L

= lim
N→∞

sin[π(2N + 1)x/L]
sin(πx/L)

= Lδ(x)

(C.1.5)

and the orthogonality relation

L/2∫
−L/2

e−2πi(n−n′)x/L dx =
sin[π(n− n′)]
π(n− n′)/L

= Lδn,n′ . (C.1.6)

The coefficients fn of the Fourier series make up the Fourier spectrum of
function f .

The Fourier series representation is straightforward to generalize to func-
tions defined in d-dimensional space, provided they satisfy periodic boundary
conditions on hypercubes (or even more generally, hyperparallelepipeds) of
volume Ld – and are repeated periodically outside it. For simplicity, consider
a function f defined inside a three-dimensional general parallelepiped of edges
N1a1, N2a2, N3a3, and volume V that satisfies the periodic boundary condi-
tions

f(r + Niai) = f(r) , i = 1, 2, 3 (C.1.7)

on and beyond the boundaries. The Fourier series can then be written as

f(r) =
1
V

∑
k

f̂(k) eik·r . (C.1.8)

On account of the periodic boundary conditions, the allowed vectors k are
most easily expressed in terms of the primitive vectors bi of the reciprocal
lattice:

k =
3∑
i=1

mi

Ni
bi , (C.1.9)

where the mi are arbitrary integers. Recall that the primitive vectors of the
direct and reciprocal lattices are related by (5.2.13).

The explicit form of the Fourier coefficient f̂(k) can be derived either using
the generalization ∑

k

eik·(r−r′) = V δ(r − r′) (C.1.10)
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of the completeness relation (C.1.5), or the orthogonality relation∫
V

e−i(k−k′)·rdr = V δk,k′ , (C.1.11)

leading to

f̂(k) =
∫
V

f(r) e−ik·r dr . (C.1.12)

It is easily seen that the convention used in the one-dimensional case is recov-
ered if instead of (C.1.8) the Fourier series is defined as

f(r) =
∑

k

f̂(k) eik·r , (C.1.13)

and consequently the Fourier coefficients are given by

f̂(k) =
1
V

∫
V

f(r) e−ik·r dr (C.1.14)

instead of (C.1.12). The rationale behind choosing a different convention is
that in sufficiently large samples, where discrete sums are replaced by contin-
uous integrals, the obtained formulas are independent of the sample volume
in the V → ∞ limit. Since each vector k in the primitive cell of the reciprocal
lattice is associated with a volume (2π)3/V , the sum over the k vectors can
be replaced by an integral, using the formal substitution

∑
k

→ V

(2π)3

∫
dk . (C.1.15)

Then the Fourier integral representation of an arbitrary function f(r) defined
on the whole space is, by definition,

f(r) =
1

(2π)3

∫
f̂(k) eik·r dk , (C.1.16)

where
f̂(k) =

∫
f(r) e−ik·r dr , (C.1.17)

as in the V → ∞ limit ∫
dk

(2π)3
eik·(r−r′) = δ(r − r′) , (C.1.18)

and ∫
e−i(k−k′)·rdr = (2π)3δ(k − k′) . (C.1.19)
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The function f̂(k) is the Fourier transform of f(r) and (C.1.16) defines the
inverse Fourier transform.

More generally, the Fourier transform of a function defined in d-dimensional
space is given in the space of the d-dimensional k vectors as

f̂(k) =
∫

f(r) e−ik·x ddx , (C.1.20)

and the inverse Fourier transform is defined by

f(x) =
1

(2π)d

∫
f̂(k) eik·x ddk . (C.1.21)

The completeness and orthogonality relations then take the form∫
ddk

(2π)d
eik·(x−x′) = δ(d)(x − x′) (C.1.22)

and ∫
e−i(k−k′)·xddx = (2π)dδ(d)(k − k′) . (C.1.23)

In quantum mechanics, a common choice for the Fourier transform of the
function f(r) is

f̂(k) =
1

(2π)d/2

∞∫
−∞

f(x)e−ik·x ddx , (C.1.24)

and the inverse Fourier transform is then

f(x) =
1

(2π)d/2

∞∫
−∞

f̂(k)eik·x ddk . (C.1.25)

With this choice ∫ ∣∣f(x)
∣∣2ddx =

∫ ∣∣f̂(k)
∣∣2ddk , (C.1.26)

or more generally ∫
f∗(x)g(x)ddx =

∫
f̂∗(k)ĝ(k)ddk , (C.1.27)

which indicates that the Fourier transform is a unitary transformation in the
space of square integrable functions that preserves lengths and inner products.

Another convention is used for the time variable. The Fourier transform
of an arbitrary time-dependent function f(t) is defined as

f̂(ω) =

∞∫
−∞

f(t) eiωt dt , (C.1.28)
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and the inverse transform as

f(t) =
1
2π

∞∫
−∞

f̂(ω) e−iωt dω . (C.1.29)

Therefore the following formula is used for space- and time-dependent func-
tions that satisfy periodic boundary conditions at the boundaries of a sample
of volume V :

f̂(k, ω) =
∫
V

dr

∞∫
−∞

dt f(r, t) e−i(k·r−ωt) , (C.1.30)

and

f(r, t) =
1
V

∑
k

1
2π

∞∫
−∞

dω f̂(k, ω) ei(k·r−ωt) , (C.1.31)

while for samples of infinite extent

f̂(k, ω) =
∫

dr

∞∫
−∞

dt f(r, t) e−i(k·r−ωt) , (C.1.32)

and

f(r, t) =
1

(2π)4

∫
dk

∞∫
−∞

dω f̂(k, ω) ei(k·r−ωt) . (C.1.33)

These formulas can be applied to lattice-periodic functions, whose values
inside the primitive cell of volume v spanned by the vectors a1, a2, a3 are re-
peated with the periodicity of the lattice – in other words, for each translation
vector tn that can be written in the form (5.1.1),

f(r + tn) = f(r) . (C.1.34)

Since condition (C.1.7) is now met by the choice N1 = N2 = N3 = 1, the
vectors k appearing in the Fourier representation are the same as the vectors
G of the reciprocal lattice, hence the Fourier transform of f(r) is

f̂(G) =
∫
v

f(r) e−iG·r dr , (C.1.35)

while the inverse transform is

f(r) =
1
v

∑
G

f̂(G) eiG·r . (C.1.36)
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C.1.2 Fourier Transform of Functions Defined at Lattice Points

Functions defined at the vertices of a discrete lattice are frequently used in
solid-state physics. Consider a discrete lattice of volume V , with N lattice
points. When the function f(Ri) is subject to periodic boundary conditions,
it can be represented as

f(Ri) =
1
N

∑
k

f̂(k) eik·Ri , (C.1.37)

and the Fourier transform f̂(k) can be written as

f̂(k) =
∑
Ri

f(Ri) e−ik·Ri . (C.1.38)

Since f̂(k) = f̂(k+G) for any vector G of the reciprocal lattice, it is sufficient
to consider one vector k in each set of equivalent vectors (which differ by a
reciprocal-lattice vector) – in other words, the vectors k given in (C.1.9) are
defined within the primitive cell or Brillouin zone of the reciprocal lattice.
The number of allowed vectors k is just N .

To justify the previous formulas, we shall demonstrate that in the limit
where the number of lattice points is large,

1
N

∑
Ri

e−i(k−k′)·Ri =
∑
G

δk−k′,G . (C.1.39)

The equality obviously holds when k − k′ is the same as a vector G of the
reciprocal lattice, since each of the N terms in the sum∑

Ri

e−i(k−k′)·Ri (C.1.40)

is then unity. Otherwise the phase factors cancel out to a good approxima-
tion. This cancellation can be most easily demonstrated in the case where
the crystal contains odd numbers of lattice points along the direction of each
primitive vector (a1, a2, a3). Expressed in terms of the primitive vectors b1,
b2, b3 of the reciprocal lattice, k − k′ is

k − k′ =
∑
i

(ki − k′
i)bi , (C.1.41)

and so the sum in question reads

1
N

N1∑
n1=−N1

N2∑
n2=−N2

N3∑
n3=−N3

exp{−2πi[(k1−k′
1)n1 +(k2−k′

2)n2 +(k3 −k′
3)n3]} .

(C.1.42)
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Performing the sum separately along the three directions,

1
2Ni + 1

Ni∑
ni=−Ni

exp[−2πi(ki − k′
i)ni]

=
exp[2πi(ki − k′

i)Ni]
2Ni + 1

2Ni∑
ni=0

exp[−2πi(ki − k′
i)ni]

=
exp[2πi(ki − k′

i)Ni]
2Ni + 1

[
exp[−2πi(ki − k′

i)(2Ni + 1)] − 1
exp[−2πi(ki − k′

i)] − 1

]

=
sin[π(ki − k′

i)(2Ni + 1)]
(2Ni + 1) sin[π(ki − k′

i)]
. (C.1.43)

Wherever the denominator is zero, i.e., when ki−k′
i = 0,±1,±2, . . . (in other

words, k − k′ is a vector of the reciprocal lattice), the expression tends to 1
in the limit N → ∞. Everywhere else it vanishes in the same limit.

Since the allowed vectors k are distributed continuously in the N → ∞
limit, the relation (C.1.39) can be recast in the equivalent form

1
N

∑
Ri

e−i(k−k′)·Ri =
(2π)3

V

∑
G

δ(k − k′ − G) . (C.1.44)

In one dimension this can be rewritten as

1
N

∑
Rn

e−i(k−k′)·Rn =
2π
L

∑
h

δ(k − k′ −Gh) , (C.1.45)

where Rn = na and Gh = (2π/a)h. Owing to the properties of the delta
function, this is equivalent to

∞∑
n=−∞

e−2πinx =
∞∑

h=−∞
δ(x− h) . (C.1.46)

It can be shown along the same lines that for the sum over the discrete vectors
k in the Brillouin zone

1
N

∑
k∈BZ

eik·(Ri−Rj) = δRi,Rj . (C.1.47)

In the N → ∞ limit, where the sum over the reciprocal lattice can be replaced
by an integral,

V

N

1
(2π)3

∫
k∈BZ

dk eik·(Ri−Rj) = δRi,Rj . (C.1.48)

Naturally, integration is once again over the primitive cell or Brillouin zone
of the reciprocal lattice.
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A different normalization of Fourier transform can be chosen for functions
defined on a lattice, too. The alternative

f(Ri) =
1√
N

∑
k

f̂(k) eik·Ri ,

f̂(k) =
1√
N

∑
Ri

f(Ri) e−ik·Ri ,
(C.1.49)

which is commonly used in the literature, is also extensively applied in the
present book.

C.1.3 Fourier Transform of Some Simple Functions

Owing to the periodicity of sinϕ, the function exp(iz sinϕ) is also periodic
with period 2π. Its Fourier decomposition is

eiz sinϕ =
∞∑

n=−∞
Jn(z) einϕ , (C.1.50)

where Jn(z) is the Bessel function of order n. Similarly,

eiz cosϕ =
∞∑

n=−∞
inJn(z) einϕ . (C.1.51)

The sawtooth wave is defined to take the value 2x/L over the interval
−L/2 < x < L/2, which is then repeated with period L in both directions.
Its Fourier representation is

f(x) = − 2
π

∞∑
n=1

(−1)n

n
sin

2πnx
L

. (C.1.52)

The Fourier transform of the Heaviside step function

θ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x > 0 ,

1
2 x = 0 ,

0 x < 0

(C.1.53)

is
θ̂(k) = πδ(k) − i

k
. (C.1.54)

To determine the Fourier transform of the top-hat function

Π(x) =

⎧⎨
⎩

1/a −a/2 ≤ x ≤ a/2 ,

0 |x| > a/2
(C.1.55)
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one has to exploit the relation

Π(x) =
1
a
[θ(x + a/2) − θ(x− a/2)] (C.1.56)

and the property that the Fourier transform of θ(x − x0) differs from that of
θ(x) by a factor exp(−ikx0). The result is

Π̂(k) =
sin(ka/2)

ka/2
. (C.1.57)

The Fourier transform of the Gaussian function

f(x) = e−ax
2

(C.1.58)

is another Gaussian function,

f̂(k) =
√

π/a e−k
2/4a . (C.1.59)

The Fourier transform of the Lorentzian function

f(x) =
1
π

Γ

(x− x0)2 + Γ 2
(C.1.60)

contains an exponentially decaying term,

f̂(k) = e−ikx0−Γ |k| . (C.1.61)

Because of its slow decay, the Coulomb potential 1/r does not have an
unambiguous Fourier transform, but the Yukawa potential, which contains an
additional exponentially decaying factor, does:∫

e−αr

r
e−ik·r dr =

4π
k2 + α2

. (C.1.62)

The relationship ∫
1
r
e−ik·r dr =

4π
k2

(C.1.63)

can be interpreted as a limit of the preceding formula. The inverse Fourier
transform leads to

1
r

=
4π
V

∑
k

1
k2

eik·r . (C.1.64)

Changing to a continuous variable,

1
r

=
1

2π2

∫
1
k2

eik·r dk . (C.1.65)

The following inverse Fourier transform is related to the Green function
of particles with a k2 dispersion relation:

1
V

∑
k

eik·r

k2 − a2
=

cos ar
4πr

. (C.1.66)
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C.2 Some Useful Integrals

Below we shall present some definite integrals of particular importance in
solid-state physics. The special functions in terms of which certain integrals
are expressed will be introduced and evaluated in the next section.

C.2.1 Integrals Containing Exponential Functions

Integrals that contain the product of an exponential and a power-law function
can very generally be rewritten in the form

∞∫
0

e−μxxν−1 dx =
1
μν

Γ (ν) Reμ > 0 , Re ν > 0 . (C.2.1)

In the special case when the power is an integer or a half-integer,

∞∫
0

e−xxn−1 dx = Γ (n) , (C.2.2)

∞∫
0

e−αx
√
xdx =

√
π

2α3/2
. (C.2.3)

When x2 appears in the exponent,

∞∫
0

e−αx
2
x2n+1 dx =

n!
2αn+1

, (C.2.4)

∞∫
0

e−αx
2
x2n dx =

(2n− 1)!!
2n+1

√
π

α2n+1
(C.2.5)

for odd and even powers of x, while for n = 0

∞∫
0

e−αx
2
dx =

1
2

√
π

α
. (C.2.6)

When the argument of the exponent is imaginary,

∞∫
0

e−iαx2
dx = e−iπ/4

√
π

α
. (C.2.7)
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C.2.2 Integrals Containing the Bose Function

When the chemical potential is zero, the definite integral over the interval
(0,∞) of the product of the Bose function 1/(ex−1) and an arbitrary positive
power of x can be determined exactly:

∞∫
0

xν−1

ex − 1
dx =

∞∑
k=1

∞∫
0

xν−1 e−kx dx =
∞∑
k=1

1
kν

Γ (ν) = Γ (ν)ζ(ν) (C.2.8)

if ν > 1. When ν is an integer,

∞∫
0

xn

ex − 1
dx =

∞∑
k=1

∞∫
0

xn e−kx dx = n!
∞∑
k=1

1
kn+1

= n!ζ(n + 1) . (C.2.9)

For odd powers, the integral can be expressed in terms of Bernoulli numbers:

∞∫
0

x2n−1

ex − 1
dx = (−1)n−1 (2π)2n

4n
B2n =

(2π)2n

4n
|B2n| . (C.2.10)

Integrals containing the derivative of the Bose function can also be evaluated:

∞∫
0

xn ex

(ex − 1)2
dx = n!

∞∑
k=1

1
kn

= n!ζ(n) . (C.2.11)

When the spectrum is cut off at a finite frequency, the Debye function
defined as

Dn(x) =
n

xn

x∫
0

tn

et − 1
dt (C.2.12)

appears. For small values of its argument

Dn(x) = 1 − n

2(n + 1)
x +

∞∑
k=1

nB2k

(2k + n)(2k)!
x2k , (C.2.13)

while for large values of x

Dn(x) =
n

xn

{
n!ζ(n + 1) −

∞∑
k=1

e−kx
[
xn

k
+

nxn−1

k2
+

n(n− 1)xn−2

k3
+ . . .

]}
.

(C.2.14)
Through integration by parts integrals of the form

Jn(x) =

x∫
0

tn et

(et − 1)2
dt , (C.2.15)
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which contain the derivative of the Bose function, can be rewritten as

Jn(x) = − xn

ex − 1
+ n

x∫
0

tn−1

et − 1
dt

= − xn

ex − 1
+

n

n− 1
xn−1Dn−1(x) .

(C.2.16)

C.2.3 Integrals Containing the Fermi Function

The definite integral over the interval (0,∞) of the product of the Fermi
function 1/(ex + 1) – which specifies the occupation of states in fermionic
systems – and a power α > −1 of x can be determined exactly:

∞∫
0

xν−1

ex + 1
dx =

∞∑
k=1

∞∫
0

xν−1(−1)k−1e−kx dx

=
∞∑
k=1

(−1)k−1

kν
Γ (ν) = (1 − 21−ν)Γ (ν)ζ(ν)

(C.2.17)

if ν > 0. For ν = 1 ∞∫
0

dx
ex + 1

= ln 2 . (C.2.18)

For odd powers (α = 2n− 1) the integral can be expressed with the Bernoulli
numbers:

∞∫
0

x2n−1

ex + 1
dx = (−1)n−1(1 − 21−2n)

(2π)2n

4n
B2n = (1 − 21−2n)

(2π)2n

4n
|B2n| .

(C.2.19)
Sometimes integrals containing the derivative of the Fermi function need to
be evaluated:

∞∫
0

xnex

(ex + 1)2
dx =

∞∑
k=1

∞∫
0

xn(−1)k−1ke−kx dx

= n!
∞∑
k=1

(−1)k−1

kn
= n!(1 − 21−n)ζ(n) .

(C.2.20)

When the chemical potential is nonzero, the Fermi integrals

Fj(η) =
1
j!

∞∫
0

xj dx
exp(x− η) + 1

(C.2.21)
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appear, where the definition of j! is extended to noninteger values of j via the
Γ function. For η = 0

Fj(0) =
(
1 − 2−j

)
ζ(j + 1) . (C.2.22)

For negative values of η the Fermi integral can be expanded into a series as

Fj(η) =
1
j!

∑
l

∞∫
0

xj(−1)l−1elηe−lx dx =
∞∑
l=1

(−1)l−1 elη

lj+1
. (C.2.23)

For large negative values the leading-order term is

Fj(η) ≈ eη . (C.2.24)

When η is positive, only an asymptotic form can be obtained:

Fj(η) =
ηj+1

(j + 1)!

[
1 +

s∑
r=1

a2rη
−2r

]
+ R2s , (C.2.25)

where
a2r = 2(j + 1)j . . . (j − 2r + 2)(1 − 21−2r)ζ(2r) , (C.2.26)

and the remainder R2s is less than

1
j!

(2s + 2)a2s+2η
j−2s−1 . (C.2.27)

For j = 1/2 and j = 3/2

F1/2(η) =
η3/2

(3/2)!

[
1 +

π2

8
η−2 +

7π4

640
η−4

]
+ R4 , (C.2.28-a)

F3/2(η) =
η5/2

(5/2)!

[
1 +

5π2

8
η−2 − 7π4

384
η−4

]
+ R4 . (C.2.28-b)

C.2.4 Integrals over the Fermi Sphere

We shall repeatedly encounter sums and integrals over the Fermi sphere:

1
V

∑
|k|<kF

eik·r =
∫

|k|<kF

d3k

(2π)3
eik·r

=
1

(2π)3

kF∫
0

k2 dk

π∫
0

sin θ dθ

2π∫
0

dϕ eikr cos θ

=
k3
F

2π2

j1(kFr)
kFr

=
k3
F

2π2

sin kFr − kFr cos kFr

(kFr)3
,

(C.2.29)
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where j1(x) is the spherical Bessel function of the first kind of order n = 1.

1
V

∑
|k′|<kF

1
|k − k′|2 =

∫
|k′|<kF

d3k′

(2π)3
1

|k − k′|2 (C.2.30)

=
1

(2π)3

kF∫
0

k′2 dk′
π∫

0

sin θ dθ

2π∫
0

dϕ
1

k2 + k′2 − 2kk′ cos θ
.

Using the substitution cos θ = x,

1
V

∑
|k′|<kF

1
|k − k′|2 =

1
(2π)2

kF∫
0

k′2 dk′
1∫

−1

dx
k2 + k′2 − 2kk′x

=
1

(2π)2
1
k

kF∫
0

k′ dk′ ln
∣∣∣∣k + k′

k − k′

∣∣∣∣
=

kF

2π2

[
1
2

+
k2
F − k2

4kkF
ln
∣∣∣∣kF + k

kF − k

∣∣∣∣
]
.

(C.2.31)

The following integral can be determined along the same lines:

1
V

∑
|k|<kF

1
|k + q|2 − k2 =

1
(2π)3

kF∫
0

k2 dk

π∫
0

sin θ dθ

2π∫
0

dϕ
1

q2 + 2kq cos θ

=
1

(2π)2

kF∫
0

k2

2kq
ln
∣∣∣∣q2 + 2kq
q2 − 2kq

∣∣∣∣ dk

=
kF

8π2

[
1
2

+
4k2

F − q2

8qkF
ln
∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣
]
. (C.2.32)

If (C.2.30) has to be summed with respect to the variable k on the Fermi
sphere, then the introduction of the variable k′ = k + q gives

1
V 2

∑
|k|<kF

∑
|k′|<kF

1
|k − k′|2 =

∫
|k|<kF

d3k

(2π)3

∫
|k′|<kF

d3k′

(2π)3
1

|k − k′|2

=
∫∫

|k|<kF
|k+q|<kF

d3k

(2π)3
d3q

(2π)3
1

|q|2 . (C.2.33)

First the integration with respect to k (with q fixed) is performed. The re-
gion of integration allowed by the constraints is the intersection of two Fermi
spheres with a relative displacement of q (see Fig. C.1).
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Fig. C.1. Domain of integration in the space of variables k and k′ = k + q

With q fixed, the k-integration is most easily done using cylindrical coor-
dinates; the component along q is then denoted by kz . Since |q| may vary be-
tween 0 and 2kF, and as the regions −kF < kz < −q/2 and −q/2 < kz < kF−q
contribute equally,

1
V 2

∑
|k|<kF

∑
|k′|<kF

1
|k − k′|2 =

1
(2π)6

2kF∫
0

4π dq

−q/2∫
−kF

dkz 2π[k2
F − k2

z ]

=
(
kF

2π

)4

. (C.2.34)

C.2.5 d-Dimensional Integrals

The d-dimensional integral of a function that depends only on the magnitude
of the vector k is given by

1
(2π)d

∫
f(k2) ddk = Kd

∞∫
0

f(k2)kd−1 dk , (C.2.35)

where
Kd =

1
πd/22d−1

1
Γ (d/2)

. (C.2.36)

If the integrand depends not only on the magnitude of k but also on its
component along the direction of a given vector k1,

1
(2π)d

∫
f(k2,k·k1) ddk =

1
2π

Kd−1

∞∫
0

dk

π∫
0

dθkd−1(sin θ)d−2f(k2, kk1 cos θ) .

(C.2.37)

C.3 Special Functions

C.3.1 The Dirac Delta Function

By definition, the Dirac delta function (or simply delta function) vanishes
everywhere except for x = 0 where it takes an infinitely large value, in such
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a way that its integral over the entire number line is unity. Some common
representations are

δ(x) = lim
ε→0

1√
πε

e−x
2/ε2 (C.3.1-a)

= lim
ε→0

1
π

sin(x/ε)
x

(C.3.1-b)

= lim
ε→0

1
π

ε

x2 + ε2
(C.3.1-c)

=
1
2π

∞∫
−∞

dk eikx. (C.3.1-d)

The d-dimensional generalization of the last formula is

δ(d)(r) =
1

(2π)d

∫
dk eik·r . (C.3.2)

The imaginary part of a function that has a simple pole close to the real
axis can be expressed in terms of the Dirac delta function as

1
x± iα

= P
1
x
∓ iπδ(x) , (C.3.3)

where α is infinitesimally small, and P stands for the principal value. This
expression appears in the result of the integral

∞∫
0

eiωt dt =
i

ω + iα
(C.3.4)

when an infinitesimally small imaginary part is added to the variable ω to
render the integral convergent at the upper limit.

The Heaviside step function can be defined as the integral of the Dirac
delta function:

θ(x) =

x∫
−∞

δ(t) dt , (C.3.5)

that is
δ(x) =

d
dx

θ(x) . (C.3.6)

An alternative representation is

θ(t) = lim
α→0

i
2π

∞∫
−∞

e−iωt

ω + iα
dω , (C.3.7)

which can be obtained by taking the inverse Fourier transform of (C.3.4).
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The Dirac delta function also appears in the frequently encountered
formula

�1
r

= ∇2 1
r

= −4πδ(r) . (C.3.8)

To demonstrate this, consider a sphere of radius R and volume V , centered
at the origin, and integrate the left-hand side of the previous formula over
this sphere. Using Gauss’s law, the volume integral can be converted into an
integral over the surface S of the sphere:∫

V

∇2 1
r

dr =
∫
S

∇1
r
dS = −

∫
S

dS
r2

= −4π , (C.3.9)

which is just the integral of the right-hand side.

C.3.2 Zeta and Gamma Functions

The Riemann Zeta Function

The Riemann zeta function is defined by the sum

ζ(z) =
∞∑
k=1

k−z , (C.3.10)

which is convergent for Re z > 1. Alternatively, it may be represented by the
integral

ζ(z) =
1

Γ (z)

∞∫
0

xz−1

ex − 1
dx =

1
Γ (z)

∞∑
k=1

∞∫
0

e−kx
∞∫
0

xz−1 dx . (C.3.11)

It can be analytically continued to the entire complex plane except for the
point z = 1.

For the first few integer values of the argument

ζ(2) = 1 +
1
22

+
1
32

+ · · · =
π2

6
,

ζ(3) = 1 +
1
23

+
1
33

+ · · · = 1.202 ,

ζ(4) = 1 +
1
24

+
1
34

+ · · · =
π4

90
, (C.3.12)

ζ(5) = 1 +
1
25

+
1
35

+ · · · = 1.037 ,

ζ(6) = 1 +
1
26

+
1
36

+ · · · =
π6

945
,

while for a couple of half-integer values
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ζ(3/2) = 2.612 , ζ(5/2) = 1.341 . (C.3.13)

When the sum runs over odd numbers only,
∞∑
k=0

1
(2k + 1)n

= (1 − 2−n)ζ(n) . (C.3.14)

On the other hand, when the terms are added with an alternating sign, the
Dirichlet eta function or alternating zeta function is obtained:

η(n) =
∞∑
k=1

(−1)k−1

kn
= (1 − 21−n)ζ(n) . (C.3.15)

Its integral representation can be analytically continued as

η(z) =
1

Γ (z)

∞∫
0

xz−1

ex + 1
dx =

1
Γ (z)

∞∑
k=1

∞∫
0

(−1)k−1e−kxxz−1 dx . (C.3.16)

For particular values of the argument

η(1) = ln 2 , η(2) =
π2

12
, η(4) =

7π4

720
. (C.3.17)

The Bernoulli Numbers and their Relationship with the Zeta
Function

The Bernoulli numbers Bn are defined via the series expansion

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
. (C.3.18)

The first few Bernoulli numbers are

B0 = 1 , B1 = −1
2
, B2 =

1
6
, B2n+1 = 0 ,

B4 = − 1
30

, B6 =
1
42

, B8 = − 1
30

, B10 =
5
66

.

(C.3.19)

For positive even (and negative odd) numbers the ζ function can also be
expressed in terms of the Bernoulli numbers:

ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n (C.3.20)

and
ζ(1 − 2n) = −B2n

2n
, (C.3.21)

or conversely

B2n =
(−1)n−12(2n)!

(2π)2n
ζ(2n) . (C.3.22)
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The Gamma Function

The gamma function (also called Euler’s gamma function or the factorial
function) can be defined via the recursion relation

Γ (z + 1) = zΓ (z) , (C.3.23)

with the additional condition Γ (1) = 1. In the Re z > 0 region, when the
condition Re k > 0 is met, it can be represented by the integrals

Γ (z) =

∞∫
0

tz−1e−t dt = kz
∞∫
0

tz−1e−kt dt . (C.3.24)

It can be easily shown by integration by parts that these expressions satisfy
the above recursion formula. Via analytical continuation they can be extended
to the whole complex plane, where it has poles at nonpositive integers.

By iterating the recursion formula for integer values of z,

Γ (n) = (n− 1)! . (C.3.25)

Therefore the factorial can be defined for noninteger values of z via the gamma
function. For z = 1

2

Γ (1
2 ) =

∞∫
0

t−1/2e−t dt = 2

∞∫
0

e−t
2
dt =

√
π , (C.3.26)

thus for half-integer values of z

Γ (n + 1
2 ) =

(2n− 1)!!
2n

√
π . (C.3.27)

Consequently 1
2 ! = Γ (3

2 ) = 1
2

√
π = 0.886.

For large values of the argument,

Γ (x) =

√
2π
x

xx e−x
{

1 +
1

12x
+

1
288x2

+ . . .

}
. (C.3.28)

This leads to the Stirling formula:

n! = nΓ (n) ≈
√

2πnnn e−n . (C.3.29)

The digamma function (or psi function) is defined as

ψ(z) =
d
dz

lnΓ (z) . (C.3.30)

Apart from negative integers, the function can be given in the form of an
asymptotic series,
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ψ(z + 1) = −γ −
∞∑
n=1

( 1
z + n

− 1
n

)
, (C.3.31)

where γ is the Euler–Mascheroni constant (or Euler’s constant):

γ = −ψ(1) = lim
n→∞

(
n∑
k=1

1
k
− lnn

)
≈ 0.577 215 . . . . (C.3.32)

For z = 1
2

ψ(1
2 ) = −γ − 2 ln 2 . (C.3.33)

C.3.3 Bessel Functions

The Bessel functions (also called cylinder functions) of order ν are defined as
solutions to the Bessel differential equation

z2 d2w(z)
dz2

+ z
dw(z)

dz
+ (z2 − ν2)w(z) = 0 , (C.3.34)

where ν can be any real or complex number. One particular solution can be
written as a power series of z,

Jν(z) =
∞∑
k=0

(−1)k

k!Γ (ν + k + 1)

(z

2

)2k+ν

. (C.3.35)

Except for integer orders ν = n, when

J−n(z) = (−1)nJn(z) , (C.3.36)

Jν(z) and J−ν(z) are linearly independent, and the general solution of the
Bessel differential equation is

Zν(z) = c1Jν(z) + c2J−ν(z) . (C.3.37)

There are two classes of solutions to the Bessel equation for any ν with
different analytic properties. The functions Jν(z) are called Bessel functions
of the first kind (or simply Bessel functions), while the Bessel functions of the
second kind (more commonly called Neumann functions or Weber functions)
can be written as

Nν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
. (C.3.38)

For integer orders n the Neumann function Nn(z) is defined as the ν → n
limit of Nν(z). The Bessel functions of the third kind, also known as Hankel
functions are special combinations of the Bessel functions of the first and
second kinds:
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H(1)
ν (z) = Jν(z) + iNν(z) , H(2)

ν (z) = Jν(z) − iNν(z) . (C.3.39)

For large values of |z|

Jν(z) ∼
√

2
πz

cos
(
z − 1

2πν − 1
4π
)
, (C.3.40-a)

Nν(z) ∼
√

2
πz

sin
(
z − 1

2πν − 1
4π
)

(C.3.40-b)

asymptotically.
The Bessel functions of integer order have a simple integral representation:

Jn(z) =
i−n

π

π∫
0

eiz cos θ cos(nθ) dθ =
i−n

2π

2π∫
0

eiz cos θeinθ dθ . (C.3.41)

Among the Bessel functions of fractional order particularly important are
the Bessel functions of half-integer order. Instead of Jn+1/2(z), it is customary
to use the spherical Bessel function of the first kind

jn(z) =
√

π

2z
Jn+1/2(z) , (C.3.42)

which satisfies the equation

z2 d2jn(z)
dz2

+ 2z
djn(z)

dz
+ [z2 − n(n + 1)]jn(z) = 0 , (C.3.43)

where n = 0,±1,±2, . . . . It can be shown that

jn(z) = zn
(
−1

z

d
dz

)n sin z

z
. (C.3.44)

The explicit expressions for the first few spherical Bessel functions are

j0(z) =
sin z

z
,

j1(z) =
sin z

z2
− cos z

z
,

j2(z) =
(

3
z3

− 1
z

)
sin z − 3

z2
cos z .

(C.3.45)

For small values of z the leading-order contribution is

jn(z) ∼ zn

(2n + 1)!!
, (C.3.46)

while for large values of z
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jn(z) ∼ 1
z

cos
[
z − 1

2 (n + 1)π
] ∼ i−(n+1)

2z
[
eiz + (−1)n+1e−iz

]
(C.3.47)

asymptotically.
Just like the Bessel differential equation, (C.3.43) also has other sets of

solutions, the spherical Neumann functions or spherical Bessel functions of
the second kind :

nn(z) =
√

π

2z
Nn+1/2(z) = (−1)n+1

√
π

2z
J−n−1/2(z) , (C.3.48)

and the spherical Hankel functions or spherical Bessel functions of the third
kind :

h(1)
n (z) = jn(z) + inn(z) , h(2)

n (z) = jn(z) − inn(z) . (C.3.49)

In analogy with (C.3.44), the spherical Bessel functions of the second kind
may be written as

nn(z) = −zn
(
−1

z

d
dz

)n cos z
z

. (C.3.50)

The first few spherical Bessel functions of the second and third kinds are

n0(z) = −cos z
z

,

n1(z) = −cos z
z2

− sin z

z
, (C.3.51-a)

n2(z) = −
(

3
z3

− 1
z

)
cos z − 3

z2
sin z ,

h
(1)
0 (z) = − i

z
eiz ,

h
(1)
1 (z) = eiz

(
−1

z
− i

z2

)
, (C.3.51-b)

h
(1)
2 (z) = eiz

(
i
z
− 3

z2
− 3i

z3

)
.

For small values of z the leading-order singularity of nn(z) is of the type

nn(z) ∼ (2n− 1)!!
zn+1

, (C.3.52)

while for large values of z

nn(z) ∼ 1
z

sin
[
z − 1

2 (n + 1)π
]
, (C.3.53-a)

h(1)
n (z) ∼ 1

z
ei[z−(n+1)π/2] (C.3.53-b)

asymptotically.
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The modified Bessel functions of order ν satisfy the modified Bessel dif-
ferential equation

z2 d2w(z)
dz2

+ z
dw(z)

dz
− (z2 + ν2)w(z) = 0 . (C.3.54)

Comparison with the Bessel differential equation immediately shows that the
series expansion in powers of z,

Iν(z) =
∞∑
k=0

1
k!Γ (ν + k + 1)

(z

2

)ν+2k

(C.3.55)

is a solution. This is called modified Bessel function of the first kind. For
integer orders ν = n

In(z) = i−nJn(iz) , (C.3.56)

while for general ν the solutions Iν(z) and I−ν(z) are linearly independent. A
particular linear combination of these functions,

Kν(z) =
π

2
I−ν(z) − Iν(z)

sin(νz)
(C.3.57)

is the modified Bessel function of the second kind or Macdonald function. It
can also be obtained from the analytical continuation of the Hankel function:

Kν(z) = 1
2 iπeiπν/2H(1)

ν (iz) . (C.3.58)

Of special importance is the function K0; its asymptotic form for small and
large values of its argument are

K0(z) =

⎧⎪⎪⎨
⎪⎪⎩
− (

ln(1
2z) + γ

)
z � 1 ,√

π

2z
e−z z � 1 ,

(C.3.59)

where γ = 0.57721 is the Euler–Mascheroni constant given in (C.3.32).

C.4 Orthogonal Polynomials

C.4.1 Hermite Polynomials

The Hermite polynomials are the solutions of the differential equation

d2Hn(x)
dx2

− 2x
dHn(x)

dx
+ 2nHn(x) = 0 , n = 0, 1, 2, . . . . (C.4.1)

A compact representation is given by Rodrigues’ formula:
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Hn(x) = (−1)n ex
2 dn

dxn
e−x

2
(C.4.2)

They are orthogonal with respect to the weight function w(x) = e−x
2
:

∞∫
−∞

e−x
2
Hn(x)Hm(x) dx = 2nn!

√
πδnm . (C.4.3)

The explicit expressions for the first few Hermite polynomials are

H0(x) = 1 ,

H1(x) = 2x ,

H2(x) = 4x2 − 1 , (C.4.4)
H3(x) = 8x3 − 12x ,

H4(x) = 16x4 − 48x2 + 12 ,

while their general formula is

Hn(x) =
[n/2]∑
k=0

(−1)k
n!(2x)n−2k

k!(n− 2k)!
. (C.4.5)

C.4.2 Laguerre Polynomials

The Laguerre polynomials are the solutions of the differential equation

x
d2Ln(x)

dx2
+ (1 − x)

dLn(x)
dx

+ nLn(x) = 0 n = 0, 1, 2, . . . . (C.4.6)

Alternatively, they can be given by Rodrigues’ formula:

Ln(x) =
1
n!

ex
dn

dxn
(
e−xxn

)
. (C.4.7)

They are orthogonal with respect to the weight function w(x) = e−x:

∞∫
0

e−xLm(x)Ln(x) dx = δm,n . (C.4.8)

The explicit expressions for the first few Laguerre polynomials are

L0(x) = 1 ,

L1(x) = 1 − x ,

L2(x) = 1 − 2x +
1
2
x2 , (C.4.9)

L3(x) = 1 − 3x +
3
2
x2 − 1

6
x3 .
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The generalized Laguerre polynomials are the solutions of the differential
equation

x
d2L

(α)
n (x)

dx2
+ (α + 1 − x)

dL(α)
n (x)
dx

+ nL(α)
n (x) = 0 (C.4.10)

for nonnegative values of n, where α is an arbitrary complex number. Conse-
quently, Rodrigues’ formula reads

L(α)
n (x) =

1
n!

exx−α dn

dxn
(
e−xxn+α

)
. (C.4.11)

For α > −1 the generalized Laguerre polynomials satisfy the orthogonality
relation with respect to the weight function w(x) = e−xxα

∞∫
0

e−xxαL(α)
n (x)L(α)

n′ (x) dx =
Γ (α + n + 1)

n!
δnn′ . (C.4.12)

Of particular interest are the generalized Laguerre polynomials whose index
α is a nonnegative integer. Their polynomial form is

Lmn (x) =
n∑
k=0

(−1)k
(
n + m

n− k

)
xk

k!
, (C.4.13)

while their connection with ordinary Laguerre polynomials is given by

Lmn (x) = (−1)m
dm

dxm
Ln+m(x) (C.4.14)

and L0
n(x) = Ln(x).

C.4.3 Legendre Polynomials

The Legendre polynomials are defined on the interval |x| ≤ 1, and satisfy the
differential equation

(1 − x2)
d2Pl(x)

dx2
− 2x

dPl(x)
dx

+ l(l + 1)Pl(x) = 0 , (C.4.15)

that is,

Pl(x) =
1

2ll!
dl

dxl
(x2 − 1)l =

1
2l

[l/2]∑
k=0

(−1)k
(
l

k

)(
2l− 2k

l

)
xl−2k . (C.4.16)

The Legendre polynomials are mutually orthogonal, however they are not
normalized:
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+1∫
−1

Pl(x)Pl′ (x) dx = δl,l′
2

2l + 1
. (C.4.17)

The explicit expressions of the first few polynomials are

P0(x) = 1 ,

P1(x) = x = cos θ ,

P2(x) =
1
2
(3x2 − 1) =

1
4
(3 cos 2θ + 1) , (C.4.18)

P3(x) =
1
2
(5x3 − 3x) =

1
8
(5 cos 3θ + 3 cos θ) ,

P4(x) =
1
8
(35x4 − 30x2 + 3) =

1
64

(35 cos 4θ + 20 cos 2θ + 9) .

The same equation, (C.4.15), is satisfied by the Legendre polynomials of the
second kind,

Q0(x) = 1
2 ln

(
1 + x

1 − x

)
,

Q1(x) =
x

2
ln
(

1 + x

1 − x

)
− 1 ,

Q2(x) =
3x2 − 1

4
ln
(

1 + x

1 − x

)
− 3

2
x .

(C.4.19)

The associated Legendre polynomials are solutions of the equation

(1 − x2)
d2Pm

l (x)
dx2

− 2x
dPm

l (x)
dx

+
[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0 , (C.4.20)

that is

Pm
l (x) = (1 − x2)m/2

dmPl(x)
dxm

l,m = 0, 1, 2, . . . m ≤ l , (C.4.21)

while the associated Legendre polynomials of the second kind are defined as

Qm
l (x) = (1 − x2)m/2

dmQl(x)
dxm

l,m = 0, 1, 2, . . . m ≤ l . (C.4.22)

In several references an additional factor (−1)m appears in the definition.
The associated Legendre polynomials satisfy the orthogonality relation

+1∫
−1

Pm
l (x)Pm

l′ (x) dx = δl,l′
2

2l + 1
(l + m)!
(l −m)!

. (C.4.23)

The explicit expressions for the first few associated Legendre polynomials are
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P 1
1 (x) = (1 − x2)1/2 = sin θ ,

P 1
2 (x) = 3(1 − x2)1/2x =

3
2

sin 2θ ,

P 2
2 (x) = 3(1 − x2) =

3
2
(1 − cos 2θ) , (C.4.24)

P 1
3 (x) =

3
2
(1 − x2)1/2(5x2 − 1) =

3
8
(sin θ + 5 sin 3θ) ,

P 2
3 (x) = 15(1 − x2)x =

15
4

(cos θ − cos 3θ) ,

P 3
3 (x) = 15(1 − x2)3/2 =

15
4

(3 sin θ − sin 3θ) .

C.4.4 Spherical Harmonics

In physics, instead of the associated Legendre polynomials, the functions

Y m
l (θ, ϕ) = (−1)

m+|m|
2

(
1
2π

)1/2 [ (2l + 1)(l − |m|)!
2(l + |m|)!

]1/2

P
|m|
l (cos θ)eimϕ

(C.4.25)
are used, where −l ≤ m ≤ l. They are called spherical harmonics (or surface
harmonics). Spherical harmonics satisfy the spherical harmonic differential
equation, which is given by the angular part of Laplace’s equation in spherical
coordinates. It is immediately seen from the above form that

Y −m
l (θ, ϕ) = (−1)mY m

l
∗(θ, ϕ) . (C.4.26)

The spherical harmonics are normalized in such a way that the orthogonality
relation

2π∫
0

π∫
0

Y m
l

∗(θ, ϕ)Y m′
l′ (θ, ϕ) sin θ dθ dϕ = δll′δmm′ (C.4.27)

and the completeness relation
∞∑
l=0

+l∑
m=−l

Y m
l

∗(θ, ϕ)Y m
l (θ′, ϕ′) =

δ(θ − θ′)δ(ϕ− ϕ′)
sin θ

(C.4.28)

= δ(cos θ − cos θ′)δ(ϕ − ϕ′) ≡ δ(Ω −Ω′)

are both satisfied.
According to the addition theorem for spherical harmonics, the product of

two spherical harmonics can be written as the linear combination of spherical
harmonics:

Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ) =
l1+l2∑

l=|l1−l2|

l∑
m=−l

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
(C.4.29)

×(l1l2m1m2|lm)(l1l200|l0)Ym
l (θ, ϕ) .
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Since only the m = m1 + m2 terms give nonvanishing contribution, this can
be rewritten in the form

Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ) =
∑
l

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π
(C.4.30)

×
(

l1 l2 l
m1 m2 −(m1 + m2)

)(
l1 l2 l
0 0 0

)
Y

−(m1+m2)
l

∗
(θ, ϕ) ,

where the square-root term on the right-hand side is a Clebsch–Gordan coef-
ficient, while the parenthesized terms are the Wigner 3j symbols. Both will
be discussed in detail in Appendix F.

This formula and the orthogonality relation for spherical harmonics imply
that the integral of the product of three spherical harmonics is∫

dΩ Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ)Y m3
l3

(θ, ϕ) (C.4.31)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
0 0 0

)
.

The explicit expressions for the first few spherical harmonics are

Y 0
0 =

(
1
4π

)1/2

,

Y 0
1 =

(
3
4π

)1/2

cos θ ,

Y ±1
1 = ∓

(
3
8π

)1/2

sin θe±iϕ ,

Y 0
2 =

(
5

16π

)1/2

(3 cos2 θ − 1) ,

Y ±1
2 = ∓

(
15
8π

)1/2

sin θ cos θe±iϕ , (C.4.32)

Y ±2
2 =

(
15
32π

)1/2

sin2 θe±2iϕ ,

Y 0
3 =

(
7

16π

)1/2

(5 cos3 θ − 3 cos θ) ,

Y ±1
3 = ∓

(
21
64π

)1/2

(5 cos2 θ − 1) sin θe±iϕ ,

Y ±2
3 =

(
105
32π

)1/2

sin2 θ cos θe±2iϕ ,

Y ±3
3 = ∓

(
35
64π

)1/2

sin3 θe±3iϕ .
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C.4.5 Expansion in Spherical Harmonics

It follows from the orthogonality and completeness relations that any function
f(θ, ϕ) that depends only on the polar angles can be expanded in spherical
harmonics:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

clmY m
l (θ, ϕ) , (C.4.33)

where
clm =

∫
Y m
l

∗(θ, ϕ)f(θ, ϕ) dΩ . (C.4.34)

Another expansion is used for functions that depend on the angle between
two vectors specified by spherical coordinates. We shall denote the angle be-
tween the directions specified by the polar angles θ, ϕ and θ′, ϕ′ by ζ. They
are related by

cos ζ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) . (C.4.35)

In the expansion in associated Legendre polynomials or spherical harmonics

Pl(cos ζ) = Pl(cos θ)Pl(cos θ′)

+2
l∑

m=1

(l −m)!
(l + m)!

Pm
l (cos θ)Pm

l (cos θ′) cosm(ϕ− ϕ′)

=
4π

2l + 1

+l∑
m=−l

Y m
l

∗(θ, ϕ)Y m
l (θ′, ϕ′) . (C.4.36)

By applying the relation

eixy =
∞∑
l=0

(2l + 1)iljl(y)Pl(x) (C.4.37)

to the expansion of a plane wave,

eik·r =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ)

= 4π
∞∑
l=0

+l∑
m=−l

iljl(kr)Y m
l

∗(θk, ϕk)Y m
l (θr, ϕr) ,

(C.4.38)

where (θk, ϕk), and (θr, ϕr) are the polar angles of the vectors k and r.
The so-called multipole expansion of the Coulomb potential is

1
|r − r′| =

∞∑
l=0

rl<

rl+1
>

Pl(cos ζ)

=
∞∑
l=0

rl<

rl+1
>

4π
2l + 1

+l∑
m=−l

Y m
l

∗(θ, ϕ)Y m
l (θ′, ϕ′) ,

(C.4.39)
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where r< (r>) denotes the length of the shorter (longer) vector of r and r′.
As will be shown in Chapter 16 (Volume 2), the Green function of free

electrons can be written as

G(r, r′) = − me

2π�2

eik|r−r′|

|r − r′| , (C.4.40)

since

(∇2 + k2
) eik|r|

|r| = −4πδ(r) ,
(∇2 + k2

) cos k|r|
|r| = −4πδ(r) . (C.4.41)

The Green function, as well as its real and imaginary parts can be expressed
in terms of the spherical harmonics

eik|r−r′|

|r − r′| = ik
∞∑
l=0

(2l + 1)jl(kr<)h(1)
l (kr>)Pl(cos ζ)

= 4π ik
∞∑
l=0

+l∑
m=−l

jl(kr<)h(1)
l (kr>)Y m

l
∗(θ, ϕ)Y m

l (θ′, ϕ′) ,

(C.4.42)

sin(k|r − r′|)
|r − r′| = k

∞∑
l=0

(2l + 1)jl(kr<)jl(kr>)Pl(cos ζ) (C.4.43)

= 4πk
∞∑
l=0

jl(kr<)jl(kr>)
+l∑

m=−l
Y m
l

∗(θ, ϕ)Y m
l (θ′, ϕ′) ,

cos(k|r − r′|)
|r − r′| = −k

∞∑
l=0

(2l + 1)jl(kr<)nl(kr>)Pl(cos ζ) (C.4.44)

= −4πk
∞∑
l=0

jl(kr<)nl(kr>)
+l∑

m=−l
Y m
l

∗(θ, ϕ)Y m
l (θ′, ϕ′)

where ζ is the angle between the directions of r and r′, while (θ, ϕ) and (θ′, ϕ′)
are the polar angles of r and r′.

It follows from the orthogonality relation for associated Legendre polyno-
mials that if the two functions

Al(θ, ϕ) = a0Pl(cos θ) +
l∑

m=1

(am cosmϕ + bm sinmϕ)Pm
l (cos θ) ,

(C.4.45)

Bl′(θ, ϕ) = α0Pl′ (cos θ) +
l′∑

m=1

(αm cosmϕ + βm sinmϕ)Pm
l′ (cos θ)

(C.4.46)
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are introduced with arbitrary coefficients, the following formulas are valid:

2π∫
0

dϕ

π∫
0

Al(θ, ϕ)Bl′ (θ, ϕ) sin θ dθ = 0 (C.4.47)

if l �= l′, and

2π∫
0

dϕ

π∫
0

Al(θ, ϕ)Pl(cos ζ) sin θ dθ =
4π

2l + 1
Al(θ′, ϕ′) . (C.4.48)

The general solution of the free Schrödinger equation in spherical coordi-
nates can be written as

ψ(r′, θ′, ϕ′) =
∑
l,m

fl(r′)Y m
l (θ′, ϕ′) , (C.4.49)

where the fl(r′) are spherical Bessel functions of the first or second kind. The
same function can be expanded around a different origin (displaced by r with
respect to the first), using the spherical coordinates r′′, θ′′, ϕ′′ of the vector
r′′ = r + r′. The obtained functions fl(r′′) are related to the fl(r′) via the
Wigner 3j symbols:

fl(r′′)Y m
l (θ′′, ϕ′′) =

∑
l′,l′′,m′

il
′+l′′−l(−1)m(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)

(C.4.50)

×
(

l l′ l′′

m −m′ m′ −m

)
jl′′ (r)Y m−m′

l′′ (θ, ϕ)fl′ (r′)Y m′
l′ (θ′, ϕ′) ,

where r, θ, ϕ are the spherical coordinates of r.
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D

Fundamentals of Group Theory

As mentioned in Chapter 6, crystalline materials occupy a special place among
solids not in the least because the symmetries of their structure manifest
themselves in macroscopic properties, which highly facilitates the theoretical
description of their behavior. Symmetry operations form a group in the math-
ematical sense, therefore statements of general validity can often be based on
group-theoretical considerations. In this appendix we shall review some basic
notions and relationships of group theory, then present the irreducible rep-
resentations of the Oh group, and finally list the group theoretical theorems
related to the quantum mechanical eigenvalue problem.

D.1 Basic Notions of Group Theory

There exists a whole wealth of group theoretical textbooks written by physi-
cists for physicists. A few of them are listed among the references. These
contain plenty of solid-state physics applications. Therefore below we shall
discuss only a few basic notions and theorems.

D.1.1 Definition of Groups

The set of elements R,S, T, . . . are said to form a group G if a binary opera-
tion called multiplication is defined among group elements, which satisfies the
following requirements:

1. For any two elements R and S the product, denoted as RS, is an element
T of the group:

RS = T (R,S, T ∈ G) . (D.1.1)

The operation of group multiplication does not need to be commutative:
in general the order of the elements is not immaterial. A group is called
commutative or Abelian if group multiplication satisfies the commutative
law, i.e., RS = S R for any two elements R and S.



634 D Fundamentals of Group Theory

2. Multiplication satisfies the associative law, i.e., for any elements R, S,
and T

R(S T ) = (RS)T , (D.1.2)

where, naturally, multiplication within the parentheses has to be per-
formed first.

3. There exists an identity element (also called unit element) E in the set.
When any element R of the group is multiplied by E, it remains un-
changed:

RE = E R = R . (D.1.3)

4. For any element R of the group there exists a unique element S in the
group such that

RS = S R = E . (D.1.4)

This element S is called the inverse of R, and is denoted by S ≡ R−1.

The number g of elements in the set is called the order of the group. The
number of elements can be either finite or infinite; these correspond to finite
and infinite groups. In solid-state physics applications we deal mostly with
finite groups.

When the group is finite, the elements in the sequence R, R2, R3, . . .
repeat themselves from a certain point onward. Consequently one of these
elements must be the identity element. The order of an element R in the
group is the least positive integer n such that Rn = E.

A subset G′ of the group elements is called a subgroup of G if it satisfies
in itself the previous requirements that define a group – i.e., it contains the
identity element, for every element in G′ its inverse is also in G′, and the
product of any two elements in G′ is also in G′.

A subgroup G′ of the group G is an invariant subgroup or normal subgroup
if RS R−1 ∈ G′ for every R ∈ G and every S ∈ G′.

If R1, S1, T1, . . . are the elements of a group G1 of order g1, and R2, S2,
T2, . . . are the elements of a group G2 of order g2, then the direct product
(or Kronecker product) of the two groups, denoted by G1 ⊗ G2 is the group
made up of the elements (R1, R2), (R1, S2), . . . , (S1, R2), (S1, S2), . . . , with
the group multiplication defined as

(R1, S2)(T1, U2) = (R1T1, S2U2) . (D.1.5)

This group is of order g1 g2.
If G1 and G2 are such subgroups of G that 1.) the elements in G1 commute

with the elements in G2; 2.) they have a single element in common, the identity
element; and 3.) each element in G can be written as the product of an element
in G1 and an element in G2, then the group G is isomorphic to the direct
product group G1 ⊗ G2.

The group G is the semidirect product of its subgroups G1 and G2 (G =
G1 � G2), if 1.) the elements in G1 do not commute with the elements in G2
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but G1 is an invariant subgroup; 2.) they have a single element in common,
the identity element; and 3.) each element in G can be written as the product
of an element in G1 and an element in G2.

D.1.2 Conjugate Elements and Conjugacy Classes

The group element S is conjugate to R if there exists at least one element U
in the group such that S = URU−1. This property is mutual, since along with
U , its inverse U−1 is also an element of the group, consequently whenever the
relation S = URU−1 holds, so does R = U−1S(U−1)−1. Thus S and R are
said to be conjugate.

The conjugate property is transitive, that is if S and R are conjugate
(S = URU−1) and so are T and S (T = V SV −1) then T and R are conjugate,
too:

T = V SV −1 = V URU−1V −1 = (V U)R(V U)−1 . (D.1.6)

Therefore the elements of the group can be unambiguously divided into classes
of conjugate elements, conjugacy classes.

The multiplication rule RS = SR of Abelian groups implies that for any
R and S the relation R = S−1RS holds. Then each element is only conjugate
to itself, and so forms a separate conjugacy class.

D.1.3 Representations and Characters

Consider a d-dimensional vector space spanned by the linearly independent
vectors e1, e2, . . . , ed. Now define a nonsingular linear transformation O on
this space such that each point

r =
d∑
i=1

aiei (D.1.7)

of the space is taken into another point

r′ = Or =
d∑
i=1

biei . (D.1.8)

Expressing the transforms of vectors ei in terms of the original vectors, the
matrix D defined through

Oei =
∑
j

Djiej (D.1.9)

specifies the mapping between the components of r and r′:

bi =
∑
j

Dijaj . (D.1.10)
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If the transformation between r and r′ is a one-to-one correspondence, then
the inverse of the transformation O exists,

r = O−1r′ , (D.1.11)

and this mapping can be given by the inverse of the matrix D:

ai =
∑
j

(
D−1

)
ij
bj . (D.1.12)

Consider a group G, and associate a linear operator O(R) and the corre-
sponding matrix Dij(R) with each element R. If the same multiplication rule
applies to the operators as to the group elements, i.e., for RS = T

O(R)O(S) = O(T ) , (D.1.13)

then the analogous relation

D(R)D(S) = D(T ) (D.1.14)

applies to the matrices, too. In component form∑
k

Djk(R)Dki(S) = Dji(T ) , (D.1.15)

as

O(R)O(S)ei = O(R)
∑
k

Dki(S)ek (D.1.16)

=
∑
k

∑
j

Dki(S)Djk(R)ej =
∑
j

[
D(R)D(S)

]
ji

ej .

The identity element E is associated with the identity operator and the unit
matrix, while the inverse of the element R is associated with the inverse of the
operator O(R) and the inverse of the matrix D(R). These matrices provide
a representation of the group. The representation is faithful if the mapping
is not only homomorphic but also isomorphic, i.e., there exists a one-to-one
correspondence.

Two representations of a group are equivalent if there exists a unitary
matrix U

(
U† = U−1

)
that transforms the matrices D(1)(R) and D(2)(R)

belonging to the two representations into each other for each element of the
group:

D(2)(R) = UD(1)(R)U−1 . (D.1.17)

For every representation of a finite group there exists an equivalent represen-
tation in which the matrices are unitary. In what follows we shall only deal
with unitary representations.

Being an invariant expression of the matrix elements, the diagonal sum
(trace) of the matrices in the representation of the group plays an important
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role in the characterization of the representations. The trace of matrix D(R)
that represents the element R is called the character of the representation
associated with the group element:

χ(R) = TrD(R) =
∑
i

Dii(R) . (D.1.18)

In any representation the characters of mutually conjugate elements (elements
of the same conjugacy class) are identical, since if S = T RT−1 then

χ(S) = Tr
(
D(T )D(R)D(T−1)

)
= TrD(R) = χ(R) . (D.1.19)

Equivalent representations are associated with identical characters.

D.1.4 Reducible and Irreducible Representations

The matrices representing the group elements can be separately diagonalized
by a unitary transformation D ′(R) = U D(R)U−1, however different matrices
U are usually required for different elements. A representation is called re-
ducible if there exists a matrix U that simultaneously block diagonalizes the
matrices associated with each group element. If there exist no such unitary
transformations that would lead to such a block-diagonal form, the represen-
tation is said to be irreducible.

Determining whether a representation is reducible or irreducible, finding
the irreducible representations, and the reduction of a reducible representa-
tion rank among the most important applications of group theory in solid-
state physics. These tasks are facilitated by the following theorems (presented
without proof).

The number r of irreducible representations D(1), D(2), . . . , D(r) of a finite
group is equal to the number of conjugacy classes in the group.

The dimensions dμ of irreducible representations and the number g of
group elements (the order of the group) are related by

r∑
μ=1

d2
μ = g . (D.1.20)

The matrix elements of the matrices D(μ) and D(ν) belonging to the unitary
irreducible representations D(μ) and D(ν) satisfy the orthogonality relation∑

R∈G
D

(μ)
ij

∗
(R)D(ν)

kl (R) =
g

dμ
δikδjlδμν , (D.1.21)

where dμ is the dimension of the μth irreducible representation.
This implies the following formula for the characters of unitary irreducible

representations: ∑
R∈G

χ(μ)∗(R)χ(ν)(R) = gδμν . (D.1.22)
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Since the character is the same for elements in the same class, the sum over the
group elements can be replaced by a sum over the conjugacy classes. Denoting
the number of elements in the ith class by gi, and the character in the μth
irreducible representation of the elements in the ith class by χ

(μ)
i ,

r∑
i=1

giχ
(μ)
i

∗
χ

(ν)
i = gδμν . (D.1.23)

The characters of the irreducible representations satisfy another orthogonality
relation,

r∑
μ=1

χ
(μ)
i

∗
χ

(μ)
j =

g

gi
δij . (D.1.24)

For the point groups most often encountered in solid-state physics, the charac-
ters of the irreducible representations can be looked up in a various references.
The present appendix presents one such example: the character table of the
group Oh is given in Table D.1 on page 648.

D.1.5 The Reduction of Reducible Representations

According to (D.1.22), the characters of irreducible representations must sat-
isfy the relation

1
g

∑
R∈G

|χ(μ)(R)|2 = 1 . (D.1.25)

This necessary condition is at the same time the sufficient condition for the
irreducibility of the representation. If the characters χ(R) of a representation
do not satisfy the relation

1
g

∑
R∈G

|χ(R)|2 = 1 (D.1.26)

then the representation is reducible.
The matrix D of any reducible representation D can be block diagonalized

with a suitably chosen unitary transformation U in such a way that the ma-
trices of the irreducible representations appear in the individual blocks. The
reducible representation is then said to have been decomposed into the direct
sum of irreducible representations:

D(R) = D(1)(R) ⊕D(1)(R) ⊕ · · · ⊕D(2)(R) ⊕D(2)(R) ⊕ . . .

=
r∑

μ=1

nμD
(μ)(R) .

(D.1.27)

It follows from this decomposition that the characters of the reducible repre-
sentation can be expressed with the characters of the irreducible
representations:
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χ(R) =
r∑

μ=1

nμχ
(μ)(R) . (D.1.28)

Since their character is the same, for any element in the ith conjugacy class

χi =
r∑

μ=1

nμχ
(μ)
i . (D.1.29)

The number nμ, which specifies how many times the irreducible representation
D(μ) appears in the reduction formula, can be determined from the relation

nμ =
1
g

∑
R∈G

χ(μ)∗(R)χ(R) =
1
g

r∑
i=1

giχ
(μ)
i

∗
χi . (D.1.30)

Based on this formula, the reduction of an arbitrary representation is straight-
forward when its character and the characters of the irreducible representa-
tions are known.

D.1.6 Compatibility Condition

In applications, where certain symmetries are broken by the perturbing po-
tential the relationship between the irreducible representations of a group and
of one of its subgroups may become particularly important. Consider a group
G and a subgroup G1 thereof. An irreducible representation of the group G
may be reducible on the elements of the subgroup G1. Usually only a small
number of the irreducible representations of the subgroup G1 appear in the re-
duction formula. These irreducible representations of the subgroup are said to
be compatible with the corresponding irreducible representations of the group
G.

D.1.7 Basis Functions of the Representations

The representation matrices were defined to act on a linear space. However,
no significance has been attached to the basis vectors of the space up to now.
Physical applications are especially interesting when group elements act on a
function space rather than an abstract linear space. Then the basis functions
of irreducible representations exhibit special properties.

To define the action of the group elements on a function space, consider
the coordinate transformations that are of particular importance in solid-state
physics. The coordinate transformation R, which moves point r into r′ = Rr,
is associated with a linear operator O(R) that acts on the space of functions
and takes the function ψ(r) into ψ′(r)

O(R)ψ(r) = ψ′(r) . (D.1.31)
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The transformation is defined by the requirement that the transformed
function take the same value at r′ as the original function at r, that is

ψ′(r′) = O(R)ψ(r′) = ψ(r) , (D.1.32)

which implies
O(R)ψ(r) = ψ(R−1r) . (D.1.33)

The operators O(R) form a group with the same multiplication rule as
the group of coordinate transformations. Since the mapping of the group of
coordinate transformations on the group of these operators is homomorphic,
any representation of the group of operators is also a representation of the
group of coordinate transformations.

Now select an arbitrary function ψ(r), and act on it with the operators
O(R) that belong to a group G of coordinate transformations. When the group
is of order g, the number of functions obtained this way is also g. However,
they are not necessarily linearly independent. In the space of transformed
functions a linearly independent set of basis functions (φ1, φ2, . . . , φr) can be
chosen. Expanding ψ(r) in terms of these,

ψ(r) =
r∑
i=1

aiφi(r) . (D.1.34)

Applying the transformation O(R) on the basis functions,

O(R)φi(r) = φi(R−1r) =
r∑
j=1

Dji(R)φj(r) . (D.1.35)

The matrix D(R) in the previous formula provides a representation of the
group on the space spanned by the functions φi(r). When the transformed
functions ψ(R−1r) are also expanded using this basis, the coefficients in the
formula

ψ(R−1r) =
r∑
i=1

bi(R)φi(r) (D.1.36)

and in the expansion of ψ(r) are found to be related by

bi(R) =
r∑
j=1

Dij(R)aj . (D.1.37)

The representation generated above is not necessarily irreducible, therefore an
additional reduction procedure may be required. It may then be established
that any function ψ(r) can be expanded into suitably chosen basis functions
of the irreducible representations,

ψ(r) =
∑
μ

dμ∑
i=1

a
(μ)
i φ

(μ)
i (r) . (D.1.38)
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There is a certain arbitrariness in the choice of the basis functions of
the irreducible representations since they are not unambiguously determined.
However, regardless of the particular choice of the basis functions, some im-
portant relationships among them are always valid.

If a group G of coordinate transformations is represented irreducibly on the
function spaces φ

(μ)
1 (r), φ

(μ)
2 (r), . . . and φ

(ν)
1 (r), φ

(ν)
2 (r), . . . by the unitary

irreducible representations D(μ)(R) and D(ν)(R), then

(
φ

(μ)
i , φ

(ν)
j

)
=
∫

dr φ
(μ)
i

∗
(r)φ(ν)

j (r) = A(μ)δμνδij , (D.1.39)

that is, two basis functions with different labels are orthogonal. The product
of two basis functions with the same label depends only on the choice of the
representation but not on the choice of the basis function.

It is not too difficult to construct an operator

P
(μ)
ij =

dμ
g

∑
R∈G

D
(μ)
ij

∗
(R)O(R) (D.1.40)

such that
P

(μ)
ij φ

(ν)
k (r) = δμνδjkφ

(μ)
i (r) . (D.1.41)

The diagonal elements

P
(μ)
i =

dμ
g

∑
R∈G

D
(μ)
ii

∗
(R)O(R) (D.1.42)

of this operator behave as projection operators. When acting on an arbitrary
function ψ(r), they project out the part proportional to the ith basis function
of the μth irreducible representation:

P
(μ)
i ψ(r) = a

(μ)
i φ

(μ)
i (r) . (D.1.43)

D.1.8 The Double Group

In addition to the position coordinate r, the wavefunction of electrons may
also contain the spin variable σ. Writing the wave function as a two-component
spinor,

ψ(r, σ) =
(

ψ+(r)
ψ−(r)

)
. (D.1.44)

The action of an operator O(R) associated with a coordinate transformation R
consists not only in the inclusion of R−1r in the argument of the wavefunction
but also in the mixing of the two components:

O(R)ψσ(r) =
∑
σ′

D
1/2
σ′σ(R)ψσ′ (R−1r) . (D.1.45)
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The form of the matrix D
1/2
σ′σ(R) valid for arbitrary rotations is given in Ap-

pendix F. Here we shall content ourselves with the remark that a rotation
through 2π around any axis takes the spinor not into itself but into its nega-
tive:

O
(
Cn(2π)

)(ψ+(r)
ψ−(r)

)
= −

(
ψ+(r)
ψ−(r)

)
. (D.1.46)

The initial state is recovered only after a rotation through 4π. Likewise, since
mirror reflection can be considered as the product of an inversion and a ro-
tation through π, two subsequent mirror reflections take the spinor into its
negative. Therefore we introduce a new symmetry operation, denoted by E,
which corresponds to a rotation through 2π around any axis. In the spinor
space this is represented by the matrix

O
(
E
)

=
(−1 0

0 −1

)
. (D.1.47)

If for each transformation R the operation R = RE = ER is also allowed,
then the corresponding operator O(R) acts on the spinor according to the
formula

O
(
R
)
ψσ(r) = −

∑
σ′

D
1/2
σ′σ(R)ψσ′ (R−1r) . (D.1.48)

The transformations R and R – as well as the corresponding operators –
defined in this way form a group. Since this contains twice as many elements
as the group G, this is called the double group1 G′ of the group G.

The irreducible representations and the character table of this group can
be determined using the methods discussed above. Rotations that differ by
2π are associated with the same character in certain representations and with
opposite characters in others. They are called single- and double-valued rep-
resentations, respectively. Double-valued representations become important
only when spin–orbit interactions have to be taken into account, too. Other-
wise even for electrons it is sufficient to know the single-valued representations.

D.1.9 Continuous Groups

Up to now we have always considered groups that contain a finite number of
elements, since crystalline solids are invariant only under discrete translations
and discrete rotations. However, since the angular momentum discussed in
Appendix F is related to the continuous rotation group, we shall briefly present
some concepts specific to continuous groups.

O(n), the orthogonal group of degree n is a group of real n × n matrices
such that

AAT = I , (D.1.49)
1

H. Bethe, 1929.
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where the transpose of a matrix is defined as
(
AT

)
ij

= Aji. This is equivalent
to defining O(n) as the group of continuous transformations that conserve the
length of vectors in n-dimensional space, since if

x′
i =

∑
j

Aijxj (D.1.50)

then, on account of the above property of A,∑
i

x′
i
2 =

∑
i

x2
i . (D.1.51)

Therefore the group O(n) contains rotations through an arbitrary angle
around axes of arbitrary orientation that pass through a fixed point in n-
dimensional space, reflections on the planes that contain the same point, and
inversion in the same point.

Owing to the condition imposed on matrix A, det(A) = ±1. By taking
only those matrices for which det(A) = 1, one obtains SO(n), the special
orthogonal group of degree n. This corresponds to pure rotations in n-space.

U(n), the unitary group of degree n is the group of n×n complex matrices
such that

AA† = I , (D.1.52)

where the adjoint matrix is defined as
(
A†)

ij
= A∗

ji. This is equivalent to
defining U(n) as the group of continuous transformations that conserve the
quantity

∑
i

∣∣zi∣∣2 in n-dimensional complex space, that is∑
i

∣∣z′i∣∣2 =
∑
i

∣∣zi∣∣2. (D.1.53)

On account of the condition imposed on matrix A, det(A) = ±1 here, too.
By taking only those matrices for which det(A) = 1, one obtains SU(n), the
special unitary group of degree n. In the n = 2 case their most general form
is (

a b
−b∗ a∗

)
, (D.1.54)

where a and b are complex numbers and |a|2 + |b|2 = 1, or in another form(
eiξ cos η −eiζ sin η
e−iζ sin η e−iξ cos η

)
. (D.1.55)

These are special cases of continuous Lie groups. The r-parameter Lie
group of coordinate transformations can be given as

x′
i = fi(x1, . . . , xn, a1, . . . , ar) . (D.1.56)

The number of parameters is n(n − 1)/2 for SO(n), n2 for U(n), and n2 −
1 for SU(n) groups. Without loss of generality the parameters aν can be
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chosen in such a way that their zero value should correspond to the identity
transformation. For small values δaν of the parameters it is required that up
to linear order the transformation could be written as

x′
i =

[
1 + i

r∑
ν=1

Iνδaν

]
xi . (D.1.57)

The quantities Iν (ν = 1, . . . , r) in the previous expression are the generators
of the transformation, since it can be shown that for arbitrary values of the
parameters the new coordinates can be expressed in terms of these:

x′
i = exp

(
i
r∑

ν=1

Iνaν

)
xi . (D.1.58)

As usual, an operator O(R) is associated with the coordinate transforma-
tion in such a way that

O(R)ψ(r) = ψ(R−1r) , (D.1.59)

that is for ψ(r) = r

O(R)r =

[
1 − i

r∑
ν=1

Iνδaν

]
r . (D.1.60)

The generators therefore appear as n × n matrices. For finite values of the
parameters,

O(R)r = exp

(
−i

r∑
ν=1

Iνaν

)
r . (D.1.61)

The commutator of two generators is also a generator, and the coefficients
cαβγ present in the commutator

[
Iα, Iβ

]
= i

r∑
γ=1

cαβγIγ (D.1.62)

are the structure constants of the Lie group’s Lie algebra.
For rotations in the (x, y) plane, when the transformation is characterized

by a single parameter, the angle φ of the rotation,

x′ = x cosφ− y sinφ ,

y′ = x sinφ + y cosφ ,
(D.1.63)

a single generator appears:

I =
1
i

(
x

∂

∂y
− y

∂

∂x

)
=

1
i

∂

∂φ
, (D.1.64)
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since

eiφIx = x cosφ− y sinφ ,

eiφIy = x sinφ + y cosφ .
(D.1.65)

Note that I is just the z component of the dimensionless angular momentum
operator. Writing the generator as a 2 × 2 matrix,

I =
(

0 −i
i 0

)
, (D.1.66)

and obviously (
cosφ − sinφ
sinφ cosφ

)
= e−iφI . (D.1.67)

For the group SO(3) the three generators belong to the infinitesimal ro-
tations around the three axes. Rotation through angle φ around the z-axis
corresponds to the transformation

x′ = x cosφ− y sinφ ,

y′ = x sinφ + y cosφ ,

z′ = z ;
(D.1.68)

its generator is

Iz =
1
i

(
x

∂

∂y
− y

∂

∂x

)
. (D.1.69)

The generators of rotations around the x- and y-axes are, likewise,

Ix =
1
i

(
y

∂

∂z
− z

∂

∂y

)
, Iy =

1
i

(
z

∂

∂x
− x

∂

∂z

)
. (D.1.70)

It is readily seen that the generators of the rotation group are the same as the
components of the angular momentum operator. Their commutator is known,

[
Iα, Iβ

]
= i

3∑
γ=1

εαβγIγ , (D.1.71)

where εαβγ is the completely antisymmetric (Levi-Civita) tensor.
Based on (D.1.60), the generators Iα can be represented by 3× 3 matrices

as

Ix =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , Iy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ , Iz =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ . (D.1.72)

The structure constant of the SU(2) group is also the Levi-Civita symbol,
and the three generators satisfy the commutation relation
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[
Iα, Iβ

]
= 2i

3∑
γ=1

εαβγIγ , (D.1.73)

while for SU(3) the structure constant cαβγ that relates the eight generators
is totally antisymmetric in its three indices. Its nonvanishing components are
c123 = 2, c147 = c165 = c246 = c257 = c345 = c376 = 1, and c458 = c678 =

√
3.

The simplest, fundamental representation of the SU(2) generators are the
three 2 × 2 Pauli matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (D.1.74)

while that of the SU(3) group is given by the eight Gell-Mann matrices:2

λ1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ,

λ7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 =

1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

(D.1.75)

D.2 Applications of Group Theory

While in specific calculations it is important to consider the group that cor-
responds to the true symmetries of the crystal, for simplicity, we shall almost
invariably assume cubic symmetry in our examples. Therefore below we shall
give the irreducible representations for the cubic Oh group. Then we shall
list a number of statements and theorems that arise from the connection be-
tween group theory and quantum mechanics, and that are particularly useful
in solid-state physics applications.

D.2.1 Irreducible Representations of the Group Oh

The rotations and rotoinversions of the group Oh are listed in Tables 5.1 and
5.4. From the multiplication law for symmetry elements it may be shown that
rotations through 90◦, 120◦, and 180◦ belong to separate classes – and even
2

Murray Gell-Mann (1929–) was awarded the Nobel Prize in 1969 “for his
contributions and discoveries concerning the classification of elementary particles
and their interactions”.
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among 180◦ rotations separate classes are formed by rotations around edges
and face diagonals. Since the identity element always constitutes a separate
class, the 24 rotations can be divided into 5 classes:

1. the identity element E;
2. the 6 fourfold rotations, C4m and C3

4m (m = x, y, z);
3. the 3 twofold rotations C2m around the same axes;
4. the 6 twofold rotations C2p (p = a, b, c, d, e, f) around the face diagonals;
5. the 8 threefold rotations C3j and C2

3j (j = a, b, c, d) around the space
diagonals.

The other 24 elements – which can be obtained from rotations via a multi-
plication by inversion – form 5 classes analogously: just the elements of the
above classes need to be multiplied by the inversion element.

As for finite groups the number of irreducible representations is the same as
the number of classes, the group Oh has 10 irreducible representations. Using
(D.1.20), the relation for the dimensionality of the irreducible representations,
the equation

10∑
i=1

d2
i = 48 (D.2.1)

can be satisfied by integers if there are 4 one-, 2 two-, and 4 three-dimensional
irreducible representations.

Two conventions are used in the literature for the notation of irreducible
representations. The first one is due to L. P. Bouckaert, R. Smolu-

chowski, and E. P. Wigner, who determined in 1936 the irreducible repre-
sentations of the groups that are of importance in solid-state physics. A letter
denotes the point of the Brillouin zone for which the group in question is
the symmetry group. An additional number shows the dimensionality of the
representation, and a prime (′) if the representation is odd under inversion.
In the other notation (called the chemical notation) the letters A, E, and T
show the dimensionality of the representation, while the indices g and u show
whether the representation is even (in German: gerade) or odd (ungerade). Us-
ing the orthogonality relations (D.1.23) and (D.1.24) of the characters of the
irreducible representations, the characters can be determined. The character
table of the group Oh is given in Table D.1.

Now consider the irreducible representations of the double group. We have
seen that the group O that contains the 24 rotational symmetries of the cube
has 5 irreducible representations. However, the corresponding 48-element dou-
ble group O′ has only 8 irreducible representations (i.e., its elements can be
divided into 8 classes). Besides the identity element E, the element E that
corresponds to a rotation through 2π constitutes a group on its own. New
classes are formed also by the rotations through π/2 + 2π and 2π/3 + 2π,
however rotations through π and π + 2π belong to the same class. Of the 8
representations 5 are single-valued – these are the same as the representations
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Table D.1. The character table of the irreducible representations of the group Oh

E 3C2
4m 6C4m 6C2p 8C3j I 3σm 6S4m 6σp 8S3j

Γ1 A1g 1 1 1 1 1 1 1 1 1 1

Γ2 A2g 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 Eg 2 2 0 0 −1 2 2 0 0 −1

Γ ′
15 T1g 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 T2g 3 −1 −1 1 0 3 −1 −1 1 0

Γ ′
1 A1u 1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2 A2u 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 Eu 2 2 0 0 −1 −2 −2 0 0 1

Γ15 T1u 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 T2u 3 −1 −1 1 0 −3 1 1 −1 0

of the group O –, and 3 are double-valued. The character table of the double
group is given in Table D.2.

Table D.2. Character table of the irreducible representations for the double group
O′ of the point group O

E E
3C2

4m

+3C
2
4m

6C4m 6C4m
6C2p

+6C2p
8C3j 8C3j

Γ1 A1 1 1 1 1 1 1 1 1
Γ2 A2 1 1 1 −1 −1 −1 1 1
Γ3 E 2 2 2 0 0 0 −1 −1

Γ4 T1 3 3 −1 1 1 −1 0 0
Γ5 T2 3 3 −1 −1 −1 1 0 0

Γ6 E1 2 −2 0
√

2 −√
2 0 1 −1

Γ7 E2 2 −2 0 −√
2

√
2 0 1 −1

Γ8 U 4 −4 0 0 0 0 −1 1

D.2.2 Group Theory and Quantum Mechanics

The Hamiltonian of a quantum mechanical system may be invariant under
certain coordinate transformations R, that is for each point r in space the
relation
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H(r′) = H(r) , if r′ = Rr (D.2.2)

may be satisfied. The coordinate transformations R that meet this require-
ment form a group G. This is called the symmetry group of the Hamiltonian.
Invariance under the elements of the group G also means that the Hamiltonian
commutes with the operator O(R) associated with the coordinate transforma-
tion R, since

O(R) [H(r)ψ(r)] = H(R−1r)ψ(R−1r) = H(r)O(R)ψ(r) , (D.2.3)

and hence
O(R)H(r) = H(r)O(R) . (D.2.4)

This also implies that if ψ(r) is an eigenfunction of the Hamiltonian with
energy ε then O(R)ψ(r) is also an eigenfunction, with the same energy. This
is Wigner’s theorem, which was discussed in Chapter 6.

The irreducible representations of the symmetry group of the Hamiltonian
and the basis functions of the representations play a privileged role in the
solution of the quantum mechanical eigenvalue problem. Below we shall list
without proof a couple of theorems which are, to a certain extent, different
formulations of the same statement.

If the Hamiltonian H is invariant under the transformations of a symmetry
group G then the eigenfunctions that belong to the same energy form the
basis of a representation of the group G. For an n-fold degenerate energy level
there exist n linearly independent eigenfunctions ψi(r); the representation is
provided by the matrices D(R) that appear in the equation

O(R)ψi(r) =
∑
j

Dji(R)ψj(r) (D.2.5)

specifying their transformation properties. This representation is usually re-
ducible. If, however, the group G contains every possible symmetry of the
Hamiltonian then – barring accidental degeneracies – for each energy level
the corresponding eigenfunctions transform according to an irreducible repre-
sentation of the group G.

In quantum mechanical calculations one often needs to determine the ma-
trix elements

Mij =
(
φ

(μ)
i , Qφ

(ν)
j

)
(D.2.6)

of an operator Q, where φ
(μ)
i (r) and φ

(ν)
j (r) are the basis functions of the

irreducible representations D(μ) and D(ν). If the symmetry of the operator Q
is lower than that of the Hamiltonian then the operators O(R) that belong to
the elements of the group G take the operator Q into

Qi ≡ O(R)QO−1(R) . (D.2.7)

The operators Qi obtained this way are transformed into each other according
to a representation D that is not the identity representation:
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O(R)QiO
−1(R) =

∑
j

Dij(R)Qj . (D.2.8)

It can be shown that the matrix element in (D.2.6) vanishes unless the repre-
sentation D(μ) appears in the reduction of the direct product of D and D(ν).
In other words: the matrix element vanishes unless the identity representation
appears in the reduction of the direct product of D(μ)∗, D, and D(ν). Using
these selection rules it is possible to determine whether a quantum mechanical
transition occurs.

If the operator Q possesses the full symmetry of the Hamiltonian then the
matrix element is finite provided the identity representation appears in the
reduction of the direct product D(μ)∗ ⊗ D(ν). As a special case consider the
matrix elements of the Hamiltonian between the basis functions of irreducible
representations. If D(μ)(R) and D(ν)(R) are two irreducible unitary represen-
tations of the symmetry group of the Hamiltonian, and the associated basis
functions are φ

(μ)
1 (r), φ(μ)

2 (r), . . . and φ
(ν)
1 (r), φ(ν)

2 (r), . . . then(
φ

(μ)
i ,Hφ

(ν)
j

)
= ε(μ)δμνδij , (D.2.9)

that is, the Hamiltonian has only diagonal matrix elements in this basis, and
the matrix element is the same for each basis function of the μth irreducible
representation. This means that if the Hamiltonian H is invariant under the
transformations of a group G then the eigenfunctions that transform according
to the same irreducible representation are of the same energy.

As a consequence of this, consider a Hamiltonian that may be written in
the form H = H0 + H1, where H1 can be taken as a perturbation. Assume
further that the symmetry group of H0 is G0, while H1 is invariant only
under the transformations of a subgroup G of G0. Then under the perturbation
H1 any energy level ε0 of H0 will split so that when the (usually reducible)
representation of the group G over the eigenfunctions of the level ε0 is reduced
only those states will necessarily be of the same energy that belong to the same
irreducible representation. The energy level ε0 will be split into at most as
many levels of different energy as the number of irreducible representations
that appear in the reduction (and that are compatible with the representation
of the level ε0). If the representation of the group G over the eigenfunctions of
the level ε0 is irreducible then the perturbation only shifts but does not split
the level.
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E

Scattering of Particles by Solids

A frequently used method for the investigation of solids is the scattering of
particles (electrons, photons, neutrons, etc.) by the solid. In an ideal setup
well-collimated monoenergetic beams are used in which the energy and the
wave vector of the incident particles are known. By measuring the energy
of the particles scattered in various directions (i.e., the energy distribution),
the changes in energy and momentum permit us to determine the dispersion
relation of the excitations created or absorbed in the sample, and through it
to study the internal dynamics of the system.

By assuming potential scattering and magnetic interactions, we shall derive
the general formula for the scattering cross section expressed in terms of some
correlation function of the system. For potential scattering this will be the
density–density correlation function, while for magnetic interactions it will be
the correlation function for magnetic density.

E.1 The Scattering Cross Section

For simplicity, assume that the incoming and scattered beams can be both
approximated by plane waves, of wave vectors k and k′, respectively. The
properly normalized wavefunctions are

|k〉 =
1√
V

eik·r , |k′〉 =
1√
V

eik′·r , (E.1.1)

where V is the total volume, not only that of the sample. Assuming that the
interaction with the scattered particle gives rise to the creation or absorption
of an elementary excitation in the sample, and using the consequences of
discrete translational symmetries derived in Chapter 6, the wave vector of the
elementary excitation created in the scattering process between states |k〉 and
|k′〉 is

q = k − k′ + G . (E.1.2)
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In the absorption process an elementary excitation of wave vector −q is ab-
sorbed. G is a vector of the reciprocal lattice.

Simultaneously, the crystal makes a transition from the initial state |i〉
of energy Ei to a final state |f〉 of energy Ef. The energy of the elementary
excitation is the difference of these two. On account of energy conservation,
the change in the energy of the sample can be expressed with the change in the
particle energy. For the scattering of particles of mass mn with a quadratic
dispersion relation, the energy transferred to the sample in the scattering
process is

ε =
�

2k2

2mn
− �

2k′2

2mn
= Ef − Ei . (E.1.3)

If a single elementary excitation is created or annihilated in the scattering
process, then an inelastic peak appears in the distribution of the scattered
particles. Its direction is determined by the momentum of the excitation, while
its energy is specified by the energy transfer in the process. If the changes in
the momentum and energy of the scattered particle can be measured simul-
taneously, then the dispersion relation for the elementary excitation created
or annihilated in the process can be determined.

The situation is often not so simple in scattering experiments, therefore
evaluating the scattering cross section, which determines the strength of the
scattering process is of the utmost importance.

Suppose that scattering takes the sample from a well-defined initial state
|i〉 to an equally well defined final state |f〉. The joint state of the sample
and the particle is denoted by |i〉|k〉 before scattering, and by |f〉|k′〉 after it.
Assume, furthermore, that the Hamiltonian Hint of the interaction between
the particle and the crystal is known.

Owing to the weakness of the interaction, the Born approximation suffices
to determine the scattering cross section in the majority of cases. According to
quantum mechanics, the transition probability between the initial state and
a specified final state is

Wi,k→f,k′ =
2π
�

∣∣〈k′|〈f |Hint|i〉|k
〉∣∣2 δ(ε− Ef + Ei) , (E.1.4)

where the factor δ(ε− Ef + Ei) ensures the conservation of energy.
We shall follow the convention that separates the factor 1/V 1/2 arising

from the normalization of the incident and scattered wavefunctions, i.e., uses
the notations |k〉 = eik·r and |k′〉 = eik′·r for the expressions without this
normalization factor. Therefore

Wi,k→f,k′ =
2π
�

1
V 2

∣∣〈k′|〈f |Hint|i〉|k
〉∣∣2 δ(ε− Ef + Ei) . (E.1.5)

The energy and propagation direction of the scattered particle can be mea-
sured only with a certain precision. Therefore we have to sum the contributions
of those states with wave vector k′ whose energy is in the interval
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dε =
dε
dk′ dk′ =

�
2k′

mn
dk′ (E.1.6)

and whose direction is in the element of solid angle dΩ = sin θ dθ dϕ. The
number of such states is given by

ρ(ε)dε dΩ =
V

(2π)3
k′2 dk′ sin θ dθ dϕ = V

k′mn

(2π)3�2
dε dΩ . (E.1.7)

The intensity of the beam scattered into the selected solid angle element and
energy range is obtained by multiplying the transition probability by this
density of final states and the number Nk of incoming particles in state k:

ΔIk = NkV
k′mn

(2π)3�2

2π
�

1
V 2

∣∣〈k′|〈f |Hint|i〉|k
〉∣∣2 δ(ε−Ef + Ei) dε dΩ . (E.1.8)

The doubly differential cross section is then obtained through division by the
incoming flux Φ. This flux – that is, the number of particles passing through
a unit surface in unit time – is just the product of the density of particles in
state k and their velocity:

Φ =
Nk

V

�k

mn
. (E.1.9)

Thus the volume factors eventually cancel out, and the cross section is

d2σ

dΩ dε
=

k′

k

( mn

2π�2

)2 ∣∣〈k′|〈f |Hint|i〉|k
〉∣∣2 δ(ε− Ef + Ei) . (E.1.10)

Very similar expressions are derived for photon scattering, only the pre-
factors of the matrix element are slightly different: owing to the different
dispersion relation, neither the density of final states nor the incident flux are
the same as before. Using the angular frequency instead of the energy, the
density of final states, derived from

ρ(ω)dω dΩ =
V

(2π)3
k′2 dk′ sin θ dθ dϕ , (E.1.11)

is now
ρ(ω) =

V

(2π)3
k′2 dk′

dω
=

V

(2π)3
k′2 n

c
, (E.1.12)

where n is the refractive index of the sample. Writing the incoming photon
flux as

Φ =
v

V
=

c

nV
, (E.1.13)

and expressing it in terms of the change in frequency rather than the change
in energy, the cross section is now

d2σ

dΩ dω
=
(

nk′

2π�c

)2 ∣∣〈k′|〈f |Hint|i〉|k
〉∣∣2 δ(ω − (Ef − Ei)/�) . (E.1.14)
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Below we shall derive the formulas for neutron scattering, however, our results
will apply – up to a multiplicative factor – to light scattering as well.

The expression studied above is for fixed initial and final states of the
sample. However, neither is known from measurements, which provide data
only about the incident and scattered particles. Assuming that the sample is
initially in thermal equilibrium, the probability of the initial state |i〉 is

pi =
1
Z

e−βEi . (E.1.15)

This probability has to be used as the weighting factor of the initial states in
the averaging procedure. Finally, the final states |f〉 for which the transition
matrix element is finite must be summed over. The doubly differential cross
section is then

d2σ

dΩ dε
=

k′

k

( mn

2π�2

)2 ∑
if

pi
∣∣〈k′|〈f |Hint|i〉|k

〉∣∣2 δ(ε− Ef + Ei) . (E.1.16)

E.2 The Van Hove Formula for Cross Section

As it was pointed out by L. Van Hove in 1954, the above form of the scat-
tering cross section can be expressed with some correlation function of the
scattering centers, the exact form of which depends on the type of the inter-
action between the scattered particles and the sample.

E.2.1 Potential Scattering

The previous general expression will be reformulated by assuming that the
interaction between the scattered particle and the electrons or ions of the
crystal can be written as

Hint =
∑
m

U(r − rm) , (E.2.1)

where rm stands for the position coordinates of the mth scattering center in
the crystal. Substituting this expression into the transition matrix element,
and choosing the wavefunction of the scattered particles as a plane wave,

〈
k|〈i|Hint|f〉|k′〉 =

∫
dr

〈
i
∣∣∣ e−i(k−k′)·r ∑

m

U(r − rm)
∣∣∣f〉

= UK

〈
i
∣∣∣∑
m

e−iK·rm

∣∣∣f〉 (E.2.2)

is obtained, where K = k − k′ and �K is the momentum transferred in the
scattering process, while
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UK =
∫

dr e−iK·rU(r) (E.2.3)

is the Fourier transform of the interaction at the wave number that corre-
sponds to the above momentum transfer.

Substituting this into the cross section formula (E.1.16),

d2σ

dΩ dε
=

k′

k

( mn

2π�2

)2

|UK |2
∑
i,f

∑
m,n

pi
〈
i
∣∣ e−iK·rm

∣∣ f〉
× 〈

f
∣∣ eiK·rn

∣∣ i〉 δ(ε− Ef + Ei) .

(E.2.4)

Using the notation

AK =
k′

k

( mn

2π�2

)2

|UK |2 , (E.2.5)

the cross section is written as

d2σ

dΩ dε
= AK

∑
i,f

∑
m,n

pi
〈
i
∣∣ e−iK·rm

∣∣ f〉 〈f ∣∣ eiK·rn
∣∣ i〉 δ(ε− Ef + Ei) . (E.2.6)

Making use of the integral representation (C.3.1-d) of the Dirac delta func-
tion,

δ(ε− Ef + Ei) =
1

2π�

∞∫
−∞

dt ei(ε−Ef+Ei)t/� . (E.2.7)

A suitable rearrangement of the terms in the exponent leads to

d2σ

dΩ dε
= AK

1
2π�

∞∫
−∞

dt
∑
i,f

∑
m,n

pi

〈
i
∣∣∣ eiEit/� e−iK·rm e−iEft/�

∣∣∣ f〉

× 〈
f
∣∣ eiK·rn

∣∣ i〉 eiεt/� .

(E.2.8)

Expressing the time-dependent factors of the first matrix element in terms
of the Hamiltonian H0 of the sample, and using the usual form of the time-
dependent operators,

d2σ

dΩ dε
= AK

1
2π�

∞∫
−∞

dt eiεt/�
∑
i,f

∑
m,n

pi

〈
i
∣∣∣eiH0t/� e−iK·rm e−iH0t/�

∣∣∣ f〉

× 〈
f
∣∣ eiK·rn

∣∣ i〉 (E.2.9)

= AK
1

2π�

∞∫
−∞

dt eiεt/�
∑
i,f

∑
m,n

pi

〈
i
∣∣∣ e−iK·rm(t)

∣∣∣f〉〈f ∣∣∣ eiK·rn

∣∣∣i〉 .

Making use of the completeness relation for the states, the sum over final
states can be evaluated. Using the notation of thermal averaging for denoting
summation over the initial states multiplied by the weight factors pi,
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d2σ

dΩ dε
= AK

1
2π�

∞∫
−∞

dt eiεt/�
∑
m,n

〈
e−iK·rm(t)eiK·rn

〉
. (E.2.10)

Using the identity

〈
e−iK·rm(t) eiK·rn

〉
=
〈∫

dr e−iK·rδ(r − rm(t))
∫

dr′ eiK·r′
δ(r′ − rn)

〉
(E.2.11)

and the density
ρ(r, t) =

∑
m

δ(r − rm(t)) (E.2.12)

of the scattering system, the thermal average in the cross section can be
rewritten as
∑
m,n

〈
e−iK·rm(t) eiK·rn

〉
=
∫∫

dr dr′ e−iK·(r−r′) 〈ρ(r, t)ρ(r′, 0)〉 . (E.2.13)

This formula contains the density–density correlation function of scattering
centers.

In line with the normalization introduced in Chapter 2,

Γ (r, r′, t) =
V

N
〈ρ(r, t)ρ(r′, 0)〉 , (E.2.14)

where N is the number of scattering centers. For spatially homogeneous sys-
tems Γ (r, r′, t) is a function of r − r′ alone, therefore it is customary to use
the notation

Γ (r, t) =
V

N
〈ρ(r + r′, t)ρ(r′, 0)〉 , (E.2.15)

which gives

∑
m,n

〈
e−iK·rm(t) eiK·rn

〉
=
∫∫

dr dr′ e−iK·r 〈ρ(r + r′, t)ρ(r′, 0)〉 . (E.2.16)

Since the integrand is in fact independent of r′, integration with respect to r′

gives the volume of the sample, so

∑
m,n

〈
e−iK·rm(t) eiK·rn

〉
= N

∫
dr e−iK·rΓ (r, t) . (E.2.17)

Introducing the spatial and temporal Fourier transform of the density–density
correlation function Γ (r, t) by

S(K, ε/�) =

∞∫
−∞

dt eiεt/�

∫
dr e−iK·rΓ (r, t) , (E.2.18)
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the cross section is written as

d2σ

dΩ dε
=

N

2π�
AKS(K, ε/�) . (E.2.19)

Looking back at (E.2.5), the previous expression is factorized into three terms:
k′

k

( mn

2π�2

)2

, which is specific to the scattered particle alone, |UK |2 which de-
scribes the interaction, and S(K, ε/�), the dynamical structure factor, which
depends only on the internal dynamics of the scattering system. The above
expression for the cross section is called the Van Hove formula. It is very gen-
erally valid, since only the applicability of the Born approximation has been
assumed. Whether the correlation function of nuclear positions, electronic
charge density, or spin density appears in the cross section is determined by
the dominant interaction between the incoming particles and the sample.

In nonmagnetic scattering neutrons interact with nuclei at positions rm.
Using the Fermi pseudopotential

U(r) =
2π�

2

mn
amδ(r − rm) (E.2.20)

for characterizing the interaction, the point-like character of the scattering
center makes the Fourier transform independent of K:

UK =
2π�

2

mn
am . (E.2.21)

For identical atoms the factor AK takes the K-independent form (k/k′)|am|2,
and the Fourier transform of the correlation function for the density of the
nuclei appears in the cross section. From this formula information can be
obtained about nuclear positions, about the equilibrium atomic positions in
the crystal, and, through the motion of the nuclei, about phonons. This is
discussed in more detail in Chapter 13.

Expression (E.2.10) for the cross section is valid also for the scattering
of electrons by crystals. Through electronic position coordinates the spatial
distribution of electrons bound to atoms appear in this case. If the electronic
wavefunction is φi (r) in the initial and φf (r) in the final state, the transition
matrix element is

〈k, i |Hint| f,k′〉 =
∫

drn drφ∗
i (r)φf (r)e−i(k−k′)·rnU(r − rn) . (E.2.22)

When the relative coordinate is used, then, besides the Fourier transform of
the potential, an additional factor

F (K) =
∫

drφ∗
i (r)φf (r)e−iK·r (E.2.23)
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appears. If there is no change in the state of the electrons then F (K) is the
Fourier transform of the electron density inside the atom. If the electron is
around an atom at rm, that is, if the wavefunctions are in fact functions of
r − rm, then

F (K)e−iK·rm (E.2.24)

appears instead of F (K). The structure constant that is left behind after the
separation of |F (K)| in the transition probability is now determined only by
the structure and motion of the centers of mass of atomic electron clouds.
Similarly to potential scattering, this leads to Bragg peaks and phonon peaks.
From |F (G)| – the expression specifying the dependence of the Bragg peak
intensities on the reciprocal-lattice vectors G – the spatial distribution of the
electrons around the atom can be inferred.

As it was mentioned in Section 13.3, if the scattering amplitude is not
the same for each scattering center then, in addition to coherent scattering,
an additional incoherent contribution appears. This contribution accounts for
interference that occurs not between rays scattered by different atoms but
between rays scattered by the same atom at different times. Consequently the
cross section of incoherent scattering is proportional to the Fourier transform
of the self-correlation function of the atoms.

E.2.2 Magnetic Scattering

Neutrons can be scattered not only by nuclei but, on account of their mag-
netic moment, by electrons, too. The magnetic field of a neutron of magnetic
moment μn at rn can be given by the vector potential A(r). Either of the
three equivalent forms

A(r) =
μ0

4π
μn × (r − rn)

|r − rn|3

= −μ0

4π
μn ×

(
grad

1
|r − rn|

)

=
μ0

4π
curl

μn

|r − rn| (E.2.25)

can be used. The derived magnetic induction is

B(r) = curl A(r) . (E.2.26)

If the magnetic moment of the jth electron, located at rj , is μj , then
the interaction of such moments with the magnetic field can be given by the
Hamiltonian

Hint = −
∑
j

μj · B(rj) . (E.2.27)

Considering a single term of this sum, and introducing the relative coordi-
nate r = rj − rn, some simple algebra leads to the following formula for the
interaction with the magnetic moment of the jth electron:
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Hint = −μ0

4π
μj ·

(
curl curl

μn

|r|
)

= −μ0

4π
[(

μj · ∇
)
(μn · ∇)

] 1
r

+
μ0

4π
(
μj · μn

)∇2 1
r
.

(E.2.28)

For r �= 0 the first term yields the well-known dipole–dipole interaction:

Hdipole =
μ0

4π

[
μj · μn

r3
− 3(μj · r)(μn · r)

r5

]
. (E.2.29)

An extra contribution arises at r = 0; this is clearly seen when the relation

∇2 1
r

= −4πδ(r) (E.2.30)

is used in the second term. However, a similar singular contribution arises
from the first term, too, as it was shown in Section 3.3.1. By repeating the
derivation presented there, the interaction Hamiltonian can be given as the
sum of two terms:

Hint = Hdipole + Hcontact , (E.2.31)

where, in addition to the usual dipole–dipole interaction term, the Fermi con-
tact interaction

Hcontact = −2μ0

3
μj · μn δ(r) (E.2.32)

appears. This term is related to the overlap of the two moments, and plays a
fundamental role in hyperfine interactions.

In magnetic scattering the spin direction can change for neutrons as well as
for electrons bound to atoms. Therefore, besides the wave vector of the neutron
and the spatial part of the electron wavefunction, the spin states of the neutron
and electron must also be explicitly included in the wavefunction of the initial
and final states. Denoting the spatial part of the electron wavefunction before
and after scattering by φi and φf, the initial and final states are

|i,k〉 = eik·rn |sn〉φi(rj)|σj〉 ,
|f,k′〉 = eik′·rn |s′n〉φf(rj)|σ′

j〉 .
(E.2.33)

The matrix element between these initial and final states is〈
k, i |Hint| f,k′〉 =

〈
σj , sn

∣∣∣ ∫ drn drjφ
∗
i (rj)φf (rj)e

−i(k−k′)·rnHint

∣∣∣sn, σj

〉
.

(E.2.34)
To evaluate this expression, the form (E.2.28) of the interaction is best used.
Integration by parts of the first term gives∫

dre−iK·r (μj · ∇)(
μn · ∇1

r

)
= iK · μj

∫
dre−iK·rμn · ∇1

r

= −(K · μj
)(

K · μn
) ∫

dr
1
r
e−iK·r

= −(K · μj
)(

K · μn
) 4π
K2

. (E.2.35)
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Making use of (E.2.30) in the second term, the matrix element becomes

〈k, i |Hint| f,k′〉 = μ0

〈
σj , sn

∣∣(K · μj)(K · μn)K−2 − μj · μn
∣∣s′n, σ′

j

〉
F (K) ,
(E.2.36)

where F (K) is the atomic form factor introduced in (8.1.27),

F (K) =
∫

drjφ
∗
i (rj)φf (rj)e

−iK·rj . (E.2.37)

Expressed in terms of the unit vector e along the direction of K, the matrix
element can be rewritten as

〈k, i |Hint| f,k′〉 = −μ0〈σj , sn
∣∣μn · (e × [

μj × e
])∣∣ s′n, σ′

j〉F (K)

= −μ0〈sn|μn|s′n〉 · 〈σj |
(
e × [

μj × e
]) |σ′

j〉F (K) .
(E.2.38)

If zm electrons of the mth atom participate in the magnetic scattering process,
and their common wavefunction is Ψm(r1, r2, . . .rzm), then the cross section
contains the magnetic form factor

Fm(K) =
∫ ∏

drνΨ
∗
m(r1, r2, . . . rzm)

×
zm∑
ν=1

e−iK·rν (sν · Sm)
S(S + 1)

Ψm(r1, r2, . . .rzm) ,
(E.2.39)

which characterizes the spatial distribution of “magnetic” electrons. Here Sm

is the total spin of the mth atom; the associated magnetic moment μm is
given by

μm = gμBSm . (E.2.40)

This total atomic moment appears in the matrix element, too,

〈k, i |Hint| f,k′〉 = −μ0〈sn|μn|s′n〉 · 〈σj | (e × [μm × e]) |σ′
j〉Fm(K) . (E.2.41)

In expressions (E.2.37) and (E.2.39) for the atomic form factor rj and rν de-
note the absolute position of the electron. Changing to the relative coordinate
with respect to the position rm of the atom, the substitution

Fm(K) → Fm(K)e−iK·rm (E.2.42)

allows for the separation of a phase factor due to the actual atomic position,
and the obtained Fm(K) is the true atomic magnetic form factor.

The cross section is obtained by summing over all atoms. The calculations
below are for the simple case when the incident neutron beam is unpolar-
ized and the polarization of the scattered beam is not measured, either. By
characterizing the probabilities of the possible spin states of the neutron by
the density matrix ρn, summing over final-state spins, and using the density
matrix ρ for specifying the initial spin state of the atoms, the cross section is
given by
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d2σ

dΩ dε
=

k′

k

(mnμ0

2π�2

)2 ∑
mn

∑
sn,s′n

∑
{σl},{σ′

l}
〈sn|ρn|sn〉〈{σl}|ρ|{σl}〉

× Fm(K)e−iK·rmF ∗
n(K)eiK·rn

× 〈sn|μn|s′n〉 · 〈{σl}| (e × [Sm × e]) |{σ′
l}〉 (E.2.43)

× 〈s′n|μn|sn〉 · 〈{σ′
l}| (e × [Sn × e]) |{σl}〉δ(ε− Ef + Ei) .

Separating the factors that contain the neutron magnetic moment, and ex-
pressing the moment with the neutron g-factor, the nuclear magneton and the
spin as

μn = gnμNsn , (E.2.44)

we have∑
sn,s′n

〈sn|ρn|sn〉〈sn|μαn |s′n〉〈s′n|μβn |sn〉 =
∑
sn

〈sn|ρn|sn〉〈sn|μαnμβn |sn〉

= 1
4

(
gnμN

)2
δαβ

∑
sn

〈sn|ρn|sn〉

= 1
4

(
gnμN

)2
δαβ . (E.2.45)

Now the integral representation can be used for the delta function of en-
ergy conservation, and the time dependence can be absorbed in one of the
operators, as was done for potential scattering. Then, by making use of the
completeness relation to sum over the intermediate spin states of the electron
system, by exploiting the identity

(e × [a × e]) · (e × [b × e]) = a · b − (a · e) (b · e) , (E.2.46)

and finally by eliminating the atomic moments in favor of the spin variables,
one obtains

d2σ

dΩ dε
= 1

4

(
gnμN

)2(
gμB

)2 k′

k

(mnμ0

2π�2

)2 ∑
mn,αβ

(δαβ − eαeβ)

× Fm(K)F ∗
n(K)e−iK·rmeiK·rn

× 1
2π�

∞∫
−∞

dt eiεt/�
〈
Sαm(t)Sβn(0)

〉
.

(E.2.47)

Atomic motions were ignored in the previous derivation. When due care is
taken of them, atomic positions also appear in the thermal averages, leading to
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d2σ

dΩ dε
= 1

4

(
gnμN

)2(
gμB

)2 k′

k

(mnμ0

2π�2

)2 ∑
mn,αβ

(δαβ − eαeβ)

× Fm(K)F ∗
n (K)e−iK·RmeiK·Rn

× 1
2π�

∞∫
−∞

dt eiεt/�

〈
e−iK·um(t)Sαm(t)eiK·unSβn(0)

〉
.

(E.2.48)

If spin–phonon interactions are neglected, the averaging procedures can be
performed separately for spins and atomic positions. When calculating the
contribution of magnetic scattering, atoms are assumed to occupy their equi-
librium positions, and so

d2σ

dΩ dε
= 1

4

(
gnμN

)2(
gμB

)2 k′

k

(mnμ0

2π�2

)2 ∑
mn

Fm(K)F ∗
n(K)e−iK·(Rm−Rn)

×
∑
αβ

(δαβ − eαeβ)
1

2π�

∞∫
−∞

dt eiεt/�
〈
Sαm(t)Sβn(0)

〉
. (E.2.49)

The spatial distribution of the moment is characterized by the atomic mag-
netic form factor, while the spin correlation function describes spin dynamics.
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F

The Algebra of Angular-Momentum and Spin
Operators

In this Appendix we shall first list some basic relations for quantum mechan-
ical angular-momentum operators, and then turn to the special properties of
spin operators.

F.1 Angular Momentum

It was mentioned in Appendix D that the dimensionless orbital angular mo-
mentum operator defined via �L = r × p is the generator of the transforma-
tions of the continuous rotation group. We shall discuss this relation in more
detail below, and then present the irreducible representations of the rotation
group as well as the addition theorem for angular momenta.

F.1.1 Angular Momentum and the Rotation Group

The set of all possible rotations around any axis through the origin form
a continuous group, the full rotation group SO(3). The infinitesimal rotation
through angle δα around the axis characterized by the unit vector n is denoted
by Cn(δα); in this operation the end point of the vector r is displaced by

δr = δαn × r . (F.1.1)

In the space of the functions ψ(r) an operator O
(
Cn(δα)

)
is associated with

this transformation; it takes function ψ(r) into

O
(
Cn(δα)

)
ψ(r) = ψ

(
C−1

n (δα)r
)

= ψ(r − δr)
= [1 − δαn · (r × ∇)]ψ(r) ,

(F.1.2)

that is, the rotation operator can be written as

O
(
Cn(δα)

)
= 1 − δαn · (r × ∇) = 1 − iδα(n · L) . (F.1.3)
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It then follows that for a rotation through an arbitrary angle α

O
(
Cn(α)

)
= e−iα(n·L) . (F.1.4)

For conciseness we shall use the commoner notation

Rn(α) ≡ O
(
Cn(α)

)
. (F.1.5)

The components of the operator L satisfy the commutation relations

[Lx, Ly] = iLz , [Ly, Lz] = iLx , [Lz, Lx] = iLy , (F.1.6)

which can be concisely written as

[Lα, Lβ ] = i
∑
γ

εαβγLγ , (F.1.7)

or as
L × L = iL , (F.1.8)

where εαβγ is the Levi-Civita tensor. We shall call any operator J an angular-
momentum operator if it appears as a generator for rotations and its compo-
nents satisfy the commutation relation

[Jα, Jβ] = i
∑
γ

εαβγJγ , (F.1.9)

even if the transformation does not concern a complex function ψ(r) but a
spinor or a vector function.

It is not always convenient to give the rotation operator in this form.
Namely, if the rotation axis n is specified by its polar angles θ and ϕ, the
term

−iα(sin θ cosϕJx + sin θ sinϕJy + cos θJz) (F.1.10)

appears in the exponent – and since the components of the angular-momentum
operator do not commute, this expression is more difficult to evaluate. There-
fore rotations are customarily characterized using the Euler angles. Several
widely used conventions exist; we shall adopt the one in which a rotation
through φ around the z-axis is followed by a rotation through ϑ around the
new y′-axis, and finally by a rotation through ψ around the even newer z′′-axis:

Rn(α) = R(φ, ϑ, ψ) = Rz′′(ψ)Ry′ (ϑ)Rz(φ) . (F.1.11)

In terms of the generators of rotations,

R(φ, ϑ, ψ) = e−iψJz′′e−iϑJy′ e−iφJz . (F.1.12)

An even simpler form is obtained when it is recognized that the y′-axis is
obtained from the y-axis via a rotation around the z-axis through angle φ,
that is
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Jy′ = Rz(φ)JyR−1
z (φ) , (F.1.13)

and therefore
e−iϑJy′ = e−iφJze−iϑJyeiφJz . (F.1.14)

Using the corresponding expression for the operator of the rotation around
the z′′-axis,

R(φ, ϑ, ψ) = e−iφJze−iϑJye−iψJz (F.1.15)

is finally obtained.
A possible representation of the rotation matrices can be easily obtained

from determining their action on the function ψ(r) = r. For a rotation around
the z-axis through angle φ,

Rz(φ) =

⎛
⎝ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎞
⎠ . (F.1.16)

Likewise, for a rotation around the y-axis through angle ϑ,

Ry(ϑ) =

⎛
⎝ cosϑ 0 − sinϑ

0 1 0
sinϑ 0 cosϑ

⎞
⎠ , (F.1.17)

while for a rotation around the z-axis through angle ψ,

Rz(ψ) =

⎛
⎝ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎞
⎠ . (F.1.18)

Owing to the transformations of the axes, rotations appear in the reverse
order in (F.1.15):

R(φ, ϑ, ψ) =

⎛
⎝ cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎞
⎠
⎛
⎝ cosϑ 0 − sinϑ

0 1 0
sinϑ 0 cosϑ

⎞
⎠
⎛
⎝ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎞
⎠ .

(F.1.19)
Thus we have obtained the representation of the rotation group by 3 × 3
orthogonal matrices of unit determinant, as RT = R−1. Spatial rotations in
three dimensions are indeed isomorphic to the group SO(3).

F.1.2 The Irreducible Representations of the Rotation Group

To determine further representations of the rotation group, we shall exploit
the fact that J2 and Jz commute, and therefore have a common set of eigen-
functions. Denoting the eigenvalues of J2 by j(j + 1) and those of Jz by m,
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it follows from the properties of the operators that j can take only positive,
while m any integer or half-integer1 value,

j = 0, 1/2, 1, 3/2, 2, . . . ,
m = 0,±1/2,±1,±3/2,±2, . . . ,

(F.1.20)

but for a given j the eigenvalues of m can only be

m = −j,−j + 1, . . . , j . (F.1.21)

The angular-momentum operator can be given in the space of states with
quantum numbers j,m – denoted as |j,m〉 – by (2j+1)×(2j+1) matrices. To
determine the matrix element, the raising and lowering operators J± = Jx±iJy
are introduced; they increase and decrease the component Jz by unity:

J+|j,m〉 = [j(j + 1) −m(m + 1)]1/2|j,m + 1〉
= (j −m)1/2(j + m + 1)1/2|j,m + 1〉 ,

J−|j,m〉 = [j(j + 1) −m(m− 1)]1/2|j,m− 1〉
= (j + m)1/2(j −m + 1)1/2|j,m + 1〉 ,

(F.1.22)

in line with the relations

J+J− = J2 − Jz(Jz − 1) ,

J−J+ = J2 − Jz(Jz + 1) ,

J2 = J2
z + 1

2 (J+J− + J−J+) .

(F.1.23)

For j = 1/2 the generators are 2 × 2 matrices of the form

Jx = 1
2

(
0 1
1 0

)
, Jy = 1

2

(
0 −i
i 0

)
, Jz = 1

2

(
1 0
0 −1

)
, (F.1.24)

while for j = 1

Jx =
1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , Jy =

1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , Jz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ . (F.1.25)

It is straightforward to show that a suitable unitary transformation can take
these matrices into (D.1.72), that is, the two forms are equivalent.

Expressing the rotation matrices in terms of these generators, as in
(F.1.15), the matrix elements in the space of states |j,m〉 are

Rj
mm′(φ, ϑ, ψ) =

〈
j,m

∣∣e−iφJze−iϑJye−iψJz
∣∣j,m′〉 . (F.1.26)

1 By half-integer or half-odd-integer numbers we mean numbers of the form (2n+
1)/2, where n is integer.
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It can be shown that these representations are irreducible, and a single irre-
ducible representation is associated with each j. The irreducible representa-
tions can thus be characterized by the quantum number j, so in what follows
we shall use the customary notation Dj(φ, ϑ, ψ).

To determine the character of the irreducible representation of quantum
number j associated with a rotation through angle ϕ, we may choose the
rotation axis along the direction of the z-axis of quantization, as rotations
through identical angles around different axes are conjugate to each other.
On the space of the states |j,m〉 the matrix of the generator of infinitesimal
rotations is diagonal:

Jz =

⎛
⎜⎜⎜⎜⎝

j 0 . . . 0

0 j − 1 . . . 0
...

...
. . .

...
0 0 . . . −j

⎞
⎟⎟⎟⎟⎠ . (F.1.27)

This implies directly that the matrix for the rotation through angle φ around
the quantization axis is

Dj(φ) = e−iφJz =

⎛
⎜⎜⎜⎜⎝

e−ijφ 0 . . . 0

0 e−i(j−1)φ . . . 0
...

...
. . .

...
0 0 . . . eijφ

⎞
⎟⎟⎟⎟⎠ , (F.1.28)

consequently the character of this irreducible representation is

χj(φ) =
j∑

m=−j
eimφ =

sin(j + 1
2 )φ

sin 1
2φ

. (F.1.29)

The characters satisfy the orthogonality relation

1
π

π∫
0

dφ(1 − cosφ)χj(φ)χj′ (φ) = δjj′ . (F.1.30)

F.1.3 Orbital Angular Momentum and Spin

A rotations through 2π around the z-axis takes the state |j,m〉 into

Rz(2π)|j,m〉 = e−i2πm|j,m〉 . (F.1.31)

As m is an integer, the phase factor is unity for integer values of j and −1
for half-integer j. This means that integer js are associated with single-valued
representations, and half-integer js with double-valued ones. Since a wave-
function that depends only on the position variable r must be single-valued,
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the orbital angular momentum quantum number (henceforth denoted by l)
can take only integer values in such states.

On the other hand, the wavefunction is a two-component spinor for elec-
trons:

ψ(r, σ) =
(

ψ+(r)
ψ−(r)

)
. (F.1.32)

Now, in addition to transforming the position coordinate r, the operator
R(φ, ϑ, ψ) also mixes the spinor components; as the spinor has two components
(j = 1/2), the transformation is specified by the 2 × 2 matrix D1/2(φ, ϑ, ψ):

R(φ, ϑ, ψ)ψσ(r) =
∑
σ′

D
1/2
σ′σ(φ, ϑ, ψ)ψσ′ (R−1r) , (F.1.33)

as given in (D.1.45). This wavefunction is taken into itself only by rotations
through 4π.

An infinitesimal rotation around the z-axis gives

Rz(δφ)
(

ψ+(r)
ψ−(r)

)
=
[
1 − iδφ

(
sz + lz

)](ψ+(r)
ψ−(r)

)
, (F.1.34)

where sz and lz are the generators for the rotation of the spinor components
and the spatial part of the wavefunction. Similar formulas apply to rotations
around the other axes. Denoting the dimensionless angular momentum asso-
ciated with spin and with orbital angular momentum by s and l, the total
dimensionless angular momentum of the electron is

j = s + l . (F.1.35)

For particles described by vector fields the vector components are transformed
according to the representation D1 of the rotation group (j = 1), thus they
can be considered as spin-1 particles (s = 1). Spin can therefore take integer
or half-integer values.

F.1.4 Addition Theorem for Angular Momenta

The combination of two systems, of angular momenta j1 and j2 leads to a net
angular momentum of j = j1 + j2. The eigenvalue of its square is j(j + 1),
while that of its z component is m, where

j = |j1 − j2|, . . . , j1 + j2; m = −j, . . . , j. (F.1.36)

Now consider the eigenstates |j1m1〉 and |j2m2〉 of the pairs of operators (j2
1,

j1z) and (j2
2, j2z) with quantum numbers j1,m1 and j2,m2; their products

span a (2j1 + 1)(2j2 + 1)-dimensional space. Counting the eigenstates |jm〉
using the allowed quantum numbers j and m of the operators j2 and jz leads
to the same result, as
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j1+j2∑
j=|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) . (F.1.37)

This means that the direct product of two representations (of indices j1 and
j2) can be reduced, and this reduction leads to the direct sum of the repre-
sentations of indices ranging from |j1 − j2| to j1 + j2, each of them occurring
once:

Dj1 ⊗Dj2 =
j1+j2∑

μ=|j1−j2|
Dμ . (F.1.38)

Writing these states as the linear combination of the products of states
|j1m1〉 and |j2m2〉, the arising coefficients are the Clebsch–Gordan coefficients
(j1j2m1m2|jm) or the Wigner 3j symbols defined as(

j1 j2 j
m1 m2 −m

)
=

(−1)j1−j2+m

(2j + 1)1/2
(j1j2m1m2|jm) , (F.1.39)

in terms of which

|jm〉 =
∑
m1m2

(j1j2m1m2|jm)|j1m1〉|j2m2〉 (F.1.40)

=
∑
m1m2

(−1)j1−j2+m(2j + 1)1/2
(

j1 j2 j
m1 m2 −m

)
|j1m1〉|j2m2〉 .

This expression vanishes unless m = m1 + m2. Various notations are used in
the literature for the Clebsch–Gordan coefficients, for example,

Cjm
j1m1j2m2

= (j1j2m1m2|jm) . (F.1.41)

They can be chosen as real, and can be given explicitly as

(j1j2m1m2|jm) =

√
(2j + 1)(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!

(j1 + j2 + j + 1)!

×δm,m1+m2

√
(j1 + m1)!(j1 −m1)!(j2 + m2)!(j2 −m2)!(j + m)!(j −m)!

×
∑
k

(−1)k
[
k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 + m2 − k)!

× (j − j2 + m1 + k)!(j − j1 −m2 + k)!
]−1

, (F.1.42)

where the restriction on the k-sum is imposed by the requirement that the
argument of the factorial function should be nonnegative.

These coefficients satisfy the orthogonality relations
j1∑

m1=−j1

j2∑
m2=−j2

(j1j2m1m2|jm)(j1j2m1m2|j′m′) = δjj′δmm′ ,

j1+j2∑
j=|j1−j2|

j∑
m=−j

(j1j2m1m2|jm)(j1j2m′
1m

′
2|jm) = δm1m′

1
δm2m′

2
.

(F.1.43)
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For the 3j symbols these relations are formulated as

∑
m1m2

(2j + 1)
(

j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
= δjj′δmm′ ,

∑
jm

(2j + 1)
(

j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m′
2 m

)
= δm1m′

1
δm2m′

2
.

(F.1.44)

It is then directly established that

|j1m1〉|j2m2〉 =
j1+j2∑

j=|j1−j2|

j∑
m=−j

(j1j2m1m2|jm)|jm〉 . (F.1.45)

Using the spherical harmonics as eigenfunctions for integer values of j1 and
j2, and noting that they are normalized over the surface of the unit sphere,
the previous expression implies the addition theorem for spherical harmonics,
(C.4.30).

The sum of more than two angular momenta involves the Wigner 6j and
9j symbols or the Racah coefficients.2

F.2 Orbital Angular Momentum

It follows from the explicit form �l = r ×p of the orbital angular momentum
that the corresponding operator satisfies the following commutation relations
with the position and momentum operators:

[lα, xβ ] = i
∑
γ

εαβγxγ ,

[lα, pβ ] = i
∑
γ

εαβγpγ .
(F.2.1)

For orbital angular momentum the quantum number l can take nonnegative
integer values. It can be shown that a single eigenstate belongs to each value
of l and m. This is obtained most easily from the spherical coordinate form
of the angular momentum operator:

L± = Lx ± iLy = e±iϕ

[
± ∂

∂θ
+ i cot θ

∂

∂ϕ

]
, Lz =

1
i

∂

∂ϕ
. (F.2.2)

The square of the angular momentum is then

L2 = −
[

∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

]
. (F.2.3)

2
G. Racah, 1942.
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Since spherical harmonics satisfy the equation

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ
Y m
l (θ, ϕ)

)
+

1
sin2 θ

∂2

∂ϕ2
Y m
l (θ, ϕ) + l(l + 1)Y m

l (θ, ϕ) = 0 ,

(F.2.4)
they are eigenfunctions of the squared angular momentum operator with an
eigenvalue l(l+1), and of the z component of the angular momentum operator
with an eigenvalue m. The normalization of the functions is such that the
recursion relation

L±Y m
l (θ, ϕ) =

[
l(l + 1) −m(m± 1)

]1/2
Y m±1
l (θ, ϕ) (F.2.5)

holds.
Being the basis functions of the irreducible representations of the rotation

group, spherical harmonics are transformed by rotation R into

R(φ, ϑ, ψ)Y m
l (θ, ϕ) =

∑
m′

Y m′
l (θ, ϕ)Dl

m′m(φ, ϑ, ψ) . (F.2.6)

On the other hand, any single-valued representation over the space of functions
of the variables (x, y, z) can be written as the linear combination of those
representations Dl that belong to integer indices l, since the latter constitute
a complete system.

F.3 Spin Operators

As spin operators play a special role in the description of magnetic properties,
it is useful to recall some important relations among them.

F.3.1 Two-Dimensional Representations of the Rotation Group

Using the representation of the generators of the rotation group by the 2 × 2
matrices given in (F.1.24),

Rz(φ) = e−iφJz = 1 +
∞∑
n=1

(−iφJz)n

n!
=

(
e−iφ/2 0

0 eiφ/2

)
, (F.3.1)

and

Ry(ϑ) = e−iϑJy = 1 +
∞∑
n=1

(−iϑJy)n

n!
=

(
cos 1

2ϑ − sin 1
2ϑ

sin 1
2ϑ cos 1

2ϑ

)
. (F.3.2)

Thus for the rotation characterized by the Euler angles φ, ϑ, and ψ,

D1/2 =

⎛
⎝ cos 1

2ϑ exp(− 1
2 i(φ + ψ)) − sin 1

2ϑ exp(− 1
2 i(φ− ψ))

sin 1
2ϑ exp(1

2 i(φ− ψ)) cos 1
2ϑ exp(1

2 i(φ + ψ))

⎞
⎠ . (F.3.3)
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These matrices are in fact unimodular3 unitary matrices, D† = D−1, indi-
cating that the rotational group of the three-dimensional space, SO(3), can
be mapped onto the group SU(2). Some care must nevertheless be exercised
as two different matrices in SU(2) correspond to each element in SO(3). If
the rotations are complemented by the element E of rotation through 2π, the
obtained double group SO′(3) will be isomorphic to SU(2).

If instead of the Euler angles the rotation is characterized by the unit vector
n of the rotation axis (or by its polar angle) and by the angle of rotation, the
expression

Rn(α) = e−iαn·J (F.3.4)

simplifies to

Rn(α) = cos 1
2α− in · J sin 1

2α

=
(

cos 1
2α− i cos θ sin 1

2α −i sin θe−iϕ sin 1
2α−i sin θeiϕ sin 1

2α cos 1
2α + i cos θ sin 1

2α

) (F.3.5)

on account of the simple multiplication rule of the spin-half operators Jx, Jy,
and Jz .

F.3.2 Spin Algebra

Naturally, the dimensionless spin operators satisfy the same commutation
relations as the orbital angular momentum components:

[Sx, Sy] = iSz , [Sy, Sz] = iSx , [Sz, Sx] = iSy . (F.3.6)

The eigenvalues of S2 and Sz are S(S + 1) and M = −S, . . . , S. However S
is not necessarily an integer now: it may be a half-integer as well.

The raising and lowering operators S± = Sx ± iSy are commonly used for
spin, too; their commutation relations are

[Sz, S±] = ±S± , [S+, S−] = 2Sz . (F.3.7)

They transform the state |S,M〉 according to

S±|S,M〉 =
[
S(S + 1) −M(M ± 1)

]1/2|S,M ± 1〉 . (F.3.8)

For S = 1/2 the spin operator can be expressed in terms of the Pauli
matrices:

Sα = 1
2σα , (F.3.9)

where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (F.3.10)

3 A matrix is called unimodular if its determinant is unity.
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It is readily seen from these formulas that

σ2
x = σ2

y = σ2
z = 1 ,

σxσy = −σyσx = iσz ,
σyσz = −σzσy = iσx ,
σzσx = −σxσz = iσy ,

(F.3.11)

and that for arbitrary vector operators A and B

(σ · A)(σ · B) = (A · B) + iσ · [A × B] , (F.3.12)

where the order of the operators is not immaterial. If A and B are spin
operators of magnitude S, then∑

βη

(σαβ · Sεη)(σβγ · Sηζ) = S(S + 1)δαγδεζ − (σαγ · Sεζ) . (F.3.13)

Likewise,∑
βη

(σαβ · Sηζ)(σβγ · Sεη) = S(S + 1)δαγδεζ + (σαγ · Sεζ) (F.3.14)

and ∑
εη

(σαβ · Sεη)(σγδ · Sηε) = 1
3S(S + 1)(2S + 1)(σαβ · σγδ) . (F.3.15)

Taking two spin-half operators, the only SU(2)-invariant combination is
their product S1 ·S2. Higher powers of this product do not give new terms as

(S1 · S2)2 = 3
16 − 1

2S1 · S2 . (F.3.16)

For S = 1 the customary matrix form of the spin components is

Sx =
1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , Sy =

1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , Sz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ . (F.3.17)

In addition to the product S1 ·S2, which is invariant under SU(2) transforma-
tions for any S, (S1 · S2)2 also appears as an independent term in the S = 1
case – however, higher powers can be expressed in terms of this:

(S1 · S2)3 = 2 + S1 · S2 − 2(S1 · S2)2 . (F.3.18)

It is fairly straightforward to show that the combination

S1 · S2 + (S1 · S2)2 (F.3.19)

of the independent quantities S1 · S2 and (S1 · S2)2 is invariant even under
SU(3) transformations for S = 1. To this end, the spin operators have to be
represented by their 3 × 3 matrices, and the latter have to be expressed with
the Gell-Mann matrices.
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F.3.3 Projection Operators

We have seen for angular momentum in general that the magnitude of the
resultant of two angular momenta, j1 and j2, can take any value between
|j1 − j2| and j1 + j2. For two identical spins of length S the magnitude of the
resultant may vary between 0 and 2S. We shall now determine the projection
operators P (S)

j (S1+S2) that project onto the subspace in which the eigenvalue
of (S1 + S2)2 is j(j + 1).

Starting with the relation

S1 · S2 = 1
2

[
(S1 + S2)2 − S2

1 − S2
2

]
= 1

2

[
(S1 + S2)2 − 2S(S + 1)

]
,

(F.3.20)

and exploiting the previously mentioned property that the eigenvalues of (S1+
S2)2 are of the form j(j +1), where j = 0, 1, 2, . . .2S, the projection operator
can be written in the perfectly general form

P
(S)
j (S1 + S2) =

2S∏
k=0
k �=j

S1 · S2 − x
(S)
k

x
(S)
j − x

(S)
k

, (F.3.21)

where x
(S)
k = [k(k + 1) − 2S(S + 1)] /2.

For two one-half spins their resultant can be a singlet state j = 0 and a
triplet state j = 1. The operators that project onto the singlet and triplet
subspaces are

P
(1/2)
0 (S1 + S2) = 1

4 − S1 · S2,

P
(1/2)
1 (S1 + S2) = 3

4 + S1 · S2.
(F.3.22)

For two S = 1 spins the total spin can take the values j = 0, 1 and 2. The
operators projecting on the corresponding subspaces are

P
(1)
0 (S1 + S2) = − 1

3 + 1
3 (S1 · S2)

2 ,

P
(1)
1 (S1 + S2) = 1 − 1

2 (S1 · S2) − 1
2 (S1 · S2)

2 ,

P
(1)
2 (S1 + S2) = 1

3 + 1
2 (S1 · S2) + 1

6 (S1 · S2)
2
.

(F.3.23)
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harmonic approximation 331–337
harmonic oscillator 392–393
Hartree energy 588
Hartree–Fock approximation 96
hcp structure see hexagonal crystal

structures, close-packed
Heaviside step function 608, 616
HEED 262
Heisenberg chain

anisotropic ferromagnetic
spin-1/2 560–566

antiferromagnetic
spin-1 578–580
spin-1/2 566–569

Heisenberg exchange see exchange,
Heisenberg

Heisenberg model 469
Hamiltonian

eigenstates of 521–522, 526–527,
538, 540

quadratic and quartic parts
534–535

Heitler–London approximation 90
Helmholtz free energy 278

of phonon gas 414
Hermann–Mauguin symbols 125
Hermite polynomials 623
heteropolar bond 83
Heusler alloy see Heusler phase
Heusler phase 204, 220
hexa-n-alkoxy triphenylene 24
hexagonal crystal structures 224–229

close-packed 204, 224, 226

double close-packed 224, 226
simple 224

hexatic phase 28
Higgs bosons 201
high-temperature expansion 503–504
HMTTF-TCNQ 232
Holstein–Primakoff

transformation 530
and the Hamiltonian of interacting

magnons 534
application of 534, 546

homeopolar bond 89
homopolar bond 89
honeycomb lattice 113, 114
Hooke’s law 365, 368
Hubbard model 5
Hund’s rules 42
hybrid states 103–105, 233
hydrogen bond 106
hyperfine structure 69

icosahedral group 131
ideal crystal 14, 109
improper rotation 126
incoherent scattering 660
incommensurate structures 312

magnetic see spiral structures
indirect exchange see

RKKY interaction
inelastic neutron scattering see

neutron scattering, inelastic, 547
infrared absorption 431–433
infrared active mode 432
integrated density of states 399
interaction

electron–phonon 193
phonon–phonon 423–424

interfacial defects 274
international notation see Hermann–

Mauguin symbols
interstitials 278–280

split 279
inversion 126
ionic bond 83
ionic–covalent bond 94
ionic crystals 83–89

optical vibrations in 373–377
ionic radius 236
irreducible representations 637
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Ising model 472
and Mermin–Wagner theorem 551
two-dimensional 551

isomer shift 73

jj coupling 40
Jones symbol 130
Jordan–Wigner transformation 533

application of 572
Josephson constant 587
Josephson inequality 497, 499
junction transistor 4

kagome lattice 113, 114
Kerr effect 513
kinematical interaction 536
Knight shift 72
Kondo effect 5
Korringa law 71
Korringa relaxation 71
Kosterlitz–Thouless transition see

Berezinskii–Kosterlitz–Thouless
transition

Kramers–Kronig relation 64
Kramers’ theorem 182

L1 structure 204, 207
L2 structure 204
L′3 structure 204
ladder operator 393
Lagrange’s equation 34, 359
Laguerre polynomials 624
Lamé constants 365
Landé g-factor 54
Landau–Peierls instability 28, 201
Landau theory of phase transitions

199, 489–492
Langevin diamagnetism see Larmor

diamagnetism
Langevin function 57
Langevin susceptibility 53
lanthanoids 179, 218
Larmor diamagnetism 49
Larmor frequency 50
lattice parameters 229
lattice vibrations

classical description of 331–385
Einstein model 387–389
quantum description of 387–427

lattices that are not Bravais lattices
113, 114

Laue condition 194, 244, 245
Laue method 265
Laves phase 204, 223
layered structures 229–233
LCAO method 97
LEED 262
Legendre polynomials 625
Lennard-Jones potential 81
level splitting in crystals 173–182
Lie groups 643
Lieb–Schultz–Mattis theorem 578, 582
lifetime

of magnons 536, 548
of phonons 424

Lindemann criterion 413
line defects 274, 283–292
linear chain

diatomic 341–345
dimerized 345–348
monatomic 337–341

liquid crystals 24–29
liquid phase 22–23
localized excitations

lattice vibrations 377–383
long-range order 14
longitudinal vibrations 341
Lorentz formula 374
Lorentz–Lorenz equation 375
Lorentzian function

Fourier transform of 609
low-angle grain boundary 298
low-dimensional magnetic

systems 548f
LS coupling 40
Lyddane–Sachs–Teller relation 377

M -center 282
Madelung constant 87
Madelung energy 84
magnetic force microscope 513
magnetic form factor 249
magnetic group see color group,

black-and-white
magnetic lattice see black-and-white

lattice
magnetic space groups see space

groups, black and white
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magnetic structures 453–462
magnetism

antiferro- 453–459
atomic 51
ferri- 461, 462
ferro- 450–453, 470

magnetization see also sublattice
magnetization

definition of 48
temperature dependence of see

Bloch T 3/2 law
magnetomechanical ratio see

gyromagnetic ratio
magnon energy

temperature-dependent corrections
to 535

magnons
antiferromagnetic 540–547
approximate bosonic character of

521, 525
as magnetic counterparts of phonons

521
bound states of 536–540, 565–566
cutoff for 527, 545
ferrimagnetic 546–547
ferromagnetic 521
interaction of 533–536

Hamiltonian for 534
thermodynamics of 527–530

Majumdar–Ghosh point 577
mass susceptibility see

susceptibility, mass
MBBA 24
mean free path

of phonons 427
mean-field theory

of antiferromagnetism 478–484
of ferrimagnetism 487–488
of ferromagnetism 474–478

melting point of elements 596
Mermin–Wagner theorem 411, 550
mesogen 24
mesomorphic phases 13, 23–24
mesoscopic systems 7
metallic bond 106
metallic glass 21, 303
Mg structure see hexagonal crystal

structures, close-packed
Miller indices 119

Miller–Bravais indices 119
mirror line 124
mirror plane 124
misorientation angle 298
mixed dislocation 285, 286
MoAl12 structure 214
modulus of elasticity see Young’s

modulus
modulus of rigidity see shear modulus
molar susceptibility see susceptibility,

molar
molecular crystals 78–83
molecular-orbital method 96
monatomic chain see linear chain,

monatomic
mosaic structure 298
Mössbauer effect 72
motif 114

N-process see normal process
NaCl structure see sodium chloride,

structure
nanostructures 7
Néel state 540
Néel temperature 454, 481
Néel wall 509
nematic phase 25, 26

biaxial 26
calamitic 25
chiral 26
cholesteric 26
discotic 25, 26

Neumann functions 620
Neumann’s principle 171
neutron scattering

cross section of see Van Hove
formula

elastic 241
inelastic 242, 438–447
magnetic 660–664

NiAs structure 227, 228
NMR see nuclear magnetic resonance
noble gases 77, 218
noble metals 218
Noether’s theorem 191
noncrystalline solids 21–22
nonsymmorphic plane groups 163
nonsymmorphic space groups 166
normal coordinates 357
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normal modes 359
normal process 193
nuclear magnetic resonance 71

octahedral group 130
octahedral sites 213, 218
optical branch 343
optical vibrations 343, 361–363

in ionic crystals 373–377
order

center-of-mass 19
long-range 14

absence of in finite temperature XY
model 555

absence of in low-dimensional finite
temperature Heisenberg model
550

magnetic 450–462
orientational 19
short-range 14

order–disorder transitions 489
orientational order 19
oscillator 392–393
overlap integral 92

PAA 24
packing fraction

definition of 208
for ccp crystal 217
for diamond structure 222
for hcp crystal 226
for sc crystal 208

pair-correlation function 17
para-azoxy anisole 24
parallel susceptibility 484
paramagnetic resonance 61

fine structure 68
paramagnetic space groups see space

groups, gray
paramagnetism 51

atomic 51
Van Vleck 60

partial dislocations 294–298
partial structure factor 307
particle–hole excitations

in the XY model 574–575
Pauli exclusion principle 36, 464
Pauli matrices 646, 674
Pauling ionic radius 236

Pearson symbol 205
Penrose tiling 323–326
periodic boundary condition

see boundary conditions,
Born–von Kármán

periodic table 593
perovskite structure 204, 209
perpendicular susceptibility 484
phonon–phonon interaction 423–424
phonons 395

acoustic 397
density of states of 398–409
experimental study of 429–447
interaction among see phonon–

phonon interaction
lifetime of 446
specific heat of 413–418

physical constants 587–588
planar defects 274, 293–301
planar model see XY model
planar regime 566
plane groups 162
plastic crystals 29–30
point defects 274–283
point group of the crystal 161
point groups 127–135
point-contact transistor 4
Poisson’s ratio 369
polar covalent bond 94
polarization vector 357
polycrystals 21, 293
polymers 30
powder method 267
primitive cell 115
primitive vectors 110

choice of 111–113
pyrite structure 204

quantum critical point 500
quantum Hall effect 6
quantum phase transitions 500
quasicrystals 3, 21, 315–330
quasimomentum 191
quasiperiodic functions 311
quasiperiodic structures 309–330
quasiperiodic tiling see Penrose tiling

R-center 282
radial distribution function 17, 305
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in amorphous silicon 306
in quasicrystals 316

Raman active mode 435
Raman scattering 433–436
rapidity 563
rare-earth garnet 547
rare-earth metals 452
Rashba term 38
reciprocal lattice 120–124

definition 120
of bcc lattice 212
of fcc lattice 216
of hexagonal lattice 225
primitive vectors of 122

reduction 638
relativistic effects 36–38
relaxation function 63
relaxation time

spin–lattice 64
spin–spin 65

renormalization 501
renormalization-group transformation

500–502
resonance absorption 61, 72
resonance fluorescence 72
resonance integral 98
resonating valence bond spin

liquid 585
Riemann zeta function 617
RKKY interaction 466
rock-salt structure see sodium

chloride, structure
Rodrigues’ formula

for generalized Laguerre
polynomials 625

for Hermite polynomials 623
for Laguerre polynomials 624

rotating-crystal method 265
rotation axis 125
rotation group 642, 665
rotation–inversion see symmetry

operations, rotation–inversion
rotation–reflection see symmetry

operations, rotation–reflection
rotational symmetry 125
rotoinversion see symmetry opera-

tions, rotation–inversion
rotoreflection see symmetry opera-

tions, rotation–reflection

Ruderman–Kittel oscillation 465
Rushbrook inequality 497
Russell–Saunders coupling 40
rutile structure 204
RVB see spin liquid, resonating

valence bond
Rydberg energy 588

satellite peaks 314, 459
saturated bond 99
scaling laws 496–500
scanning tunneling microscope 270
scattering length 247, 440
scattering vector 548
Schoenflies symbols 125
Schottky defect 280–282
Schwinger boson 532
screw axis 158
screw dislocation 285
screw rotation 158
s–d interaction 465
Seitz symbol 157
selection rules 184, 650
separation energy 77
shear modulus 365, 369
shift operator see ladder operator
Shockley partial dislocation 295
short-range order 14, 305–309
Shubnikov groups 167
simple cubic crystals 205–210
single crystal 20
skutterudite structure 204
Slater determinant 101
smectic phases 27–28
sodium chloride

Madelung energy of 86
structure 204, 219, 238

solid solutions 21
space groups 162

black-and-white 168
gray 168
in two dimensions see plane groups
magnetic 166

specific heat
of classical crystals 383–385
of magnon gas 529
of phonon gas 413–418

specific susceptibility see susceptibil-
ity, specific
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spectrum
in chain of S = 1/2 spins 539
in the XY model 575

sphalerite structure 204, 221–224
spherical Bessel functions 621
spherical Hankel functions 622
spherical harmonics 627
spherical Neumann functions 622
spin

classical
precession of 516

classical equation of motion in
magnetic field 516

quantum mechanical equation of
motion 516

spin-flop phase 484
spin-flop transition 484, 546
spin glass 449
spin ladders 581–583
spin–lattice relaxation 64
spin liquid 551, 574 584–586

algebraic 584
resonating valence bond 585

spin operators 665
representation in terms of boson

operators 530–533, 541
representation in terms of fermion

operators 533
spin–orbit interaction 38
spin waves

antiferromagnetic 540–547
classical 516–520

antiferromagnetic 518–520
ferromagnetic 516–518
illustration of 518, 520

definition of 517
ferromagnetic 521
quantum mechanical description of

521–540
spinel structure 204, 223
spinons 570

dispersion relation of see dispersion
relation, of spinons

spiral structures 459–461
split interstitial 279
stacking faults 293–294
staggered susceptibility 482
step function see Heaviside

step function

stiffness constant
of spin waves 524

Stirling formula 619
STM see scanning tunneling

microscope
Stokes component 434
strain tensor 364
stress tensor 365
structure amplitude 248
structure factor 18, 248

dynamical see dynamical structure
factor

in amorphous silicon 306
partial 307

Strukturbericht designation 205
sublattice magnetization see also

magnetization
temperature dependence of 545

substitutional impurity 274
superconductivity 2
superexchange 466–468
susceptibility

Curie 53
definition of 48
Langevin 53
mass 49
molar 49
of antiferromagnets 482–484
of ferromagnets see Curie–Weiss

law
divergent spin-wave contribution

to 530
specific 49
Van Vleck 60
volume 49

symmetry breaking 199
symmetry elements

glide line 158
glide plane 158
inversion center 126
mirror line 124
mirror plane 124, 125
rotation axis 125
rotation–inversion axis 126
rotation–reflection axis 126
screw axis 158

symmetry operations
glide reflection 158
inversion 126
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reflection 125
rotation–inversion 126
rotation–reflection 126
screw rotation 158

symmorphic plane groups 163
symmorphic space groups 164
synchrotron radiation 241
syngony see crystal systems

Taylor–Orowan dislocation see edge
dislocation

TBBA 24
tensile modulus see Young’s modulus
terephtal-bis-butyl-aniline 24
tetrahedral group 130
tetrahedral sites 213, 218
thermal conductivity

by phonons 427
thermal expansion 425–427
tilt grain boundary 298
time reversal 196
top-hat function

Fourier transform of 608
topological quantum number 554
torsional waves 366
transistor

junction 4
point-contact 4

transition metals 213, 218
translational symmetry 110
transverse vibrations 341
triple-axis spectrometer 439, 445
TTF-TCNQ 76
twin crystals 299, 301
twist grain boundary 298
twisted boundary conditions

see boundary conditions,
antiperiodic

two-phonon Raman scattering 436

umklapp process 193, 424, 427
uniaxial anisotropy 472
unsaturated bond 99

vacancies 275–278
formation energies of 276

vacancy pair 280
valence-bond method 90

valence-bond-solid state 580
van der Waals bond 79–81
van der Waals interaction 78
Van Hove formula 440, 656
Van Hove singularities 405–409
Van Vleck paramagnetism 60
Van Vleck susceptibility 60
vector operator

definition of 53
Voigt elastic constants 368
Volterra construction 284
volume defects 274, 302
volume susceptibility see susceptibil-

ity, volume
von Klitzing constant 587
Voronoi polyhedron 117
vortices 553–559

W structure 213
wallpaper groups see plane groups
Weiss field 474
Weiss indices 119
Wigner–Eckart theorem 53
Wigner–Seitz cell 117
Wigner–Seitz sphere 116
Wigner’s theorem 173
wurtzite structure

204, 228

X-ray diffraction
experimental methods of 261–268
theory of 242–260

XY model 472, 551, 572
entropy of vortices in see entropy,

of vortices in XY model
free energy of vortices in see

free energy, of vortices in
XY model

Hamiltonian of 551
phase transition in see Berezinskii–

Kosterlitz–Thouless transition

YIG see yttrium–iron garnet
Young’s modulus 369
yttrium–iron garnet 547
Yukawa function

Fourier transform of 609
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zero-point energy 392, 543
zero-point spin contraction

in antiferromagnetic ground
state 544

in two-dimensional antiferro-
magnets 551

zero-point vibrations 89, 392
zeta function 617
zincblende structure see

sphalerite structure



Fundamental physical constants

Name Symbol Value

Bohr magneton μB = e�/2me 9.274 009 × 10−24 JT−1

Bohr radius a0 = 4πε0�
2/mee

2 0.529 177 × 10−10 m
Boltzmann constant kB 1.380 650 × 10−23 JK−1

Conductance quantum G0 = 2e2/h 7.748 092 × 10−5 S
Electron g-factor ge = 2μe/μB −2.002 319
Electron gyromagnetic ratio γe = 2|μe|/� 1.760 860 × 1011 s−1 T−1

γe/2π 28 024.9540 MHz T−1

Electron magnetic moment μe −9.284 764 × 10−24 J T−1

−1.001 160μB

Electron mass me 9.109 382 × 10−31 kg
Electric constant ε0 = 1/μ0c

2 8.854 188 × 10−12 F m−1

Elementary charge e 1.602 176 × 10−19 C
Hartree energy Eh = e2/4πε0a0 4.359 744 × 10−18 J

in eV 27.211 383 eV
Josephson constant KJ = 2e/h 483 597.9 × 109 Hz V−1

Magnetic constant μ0 4π × 10−7 N A−2

Magnetic flux quantum Φ0 = h/2e 2.067 834 × 10−15 Wb
Nuclear magneton μN = e�/2mp 5.050 783 × 10−27 JT−1

Neutron mass mn 1.674 927 × 10−27 kg
Neutron magnetic moment μn −0.966 236 × 10−26 J T−1

−1.913 043μN

Neutron g-factor gn = 2μn/μN −3.826 085
Planck constant h 6.626 069 × 10−34 J s

in eV h/{e} 4.135 667 × 10−15 eV s
Proton g-factor gp = 2μp/μN 5.585 695
Proton gyromagnetic ratio γp = 2μp/� 2.675 222 × 108 s−1 T−1

γp/2π 42.577 482 MHz T−1

Proton magnetic moment μp 1.410 607 × 10−26 JT−1

2.792 847μN

Proton mass mp 1.672 622 × 10−27 kg
Reduced Planck constant � = h/2π 1.054 572 × 10−34 J s

in eV �/{e} 6.582 119 × 10−16 eV s
Rydberg constant R∞ = α2mec/2h 10 973 731.569 m−1

Rydberg energy Ry = R∞hc 2.179 872 × 10−18 J
in eV 13.605 692 eV

Speed of light c 299 792 458 m s−1

Von Klitzing constant RK = h/e2 25 812.807 572 Ω
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