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Preface

The reader is holding the first volume of a three-volume textbook on solid-
state physics. This book is the outgrowth of the courses I have taught for
many years at E6tvos University, Budapest, for undergraduate and graduate
students under the titles Solid-State Physics and Modern Solid-State Physics.

The main motivation for the publication of my lecture notes as a book
was that none of the truly numerous textbooks covered all those areas that
I felt should be included in a multi-semester course. Especially, if the course
strives to present solid-state physics in a unified structure, and aims at dis-
cussing not only classic chapters of the subject matter but also (in more or
less detail) problems that are of great interest for today’s researcher as well.
Besides, the book presents a much larger material than what can be covered
in a two- or three-semester course. In the first part of the first volume the
analysis of crystal symmetries and structure goes into details that certainly
cannot be included in a usual course on solid-state physics. The same applies,
among others, to the discussion of the methods used in the determination of
band structure, the properties of Fermi liquids and non-Fermi liquids, and the
theory of unconventional superconductors in the second and third volumes.
These parts can be assigned as supplementary reading for interested students,
or can be discussed in advanced courses.

The line of development and the order of the chapters are based on the
prerequisites for understanding each part. Therefore a gradual shift can be
observed in the style of the book. While the intermediate steps of calculations
are presented in considerable detail and explanations are also more lengthy in
the first and second volumes, they are much sparser and more concise in the
third one, thus this volume relies more on the individual work of the students.
On account of the prerequisites, certain topics have to be revisited. This is why
magnetic properties are treated in three, and superconductivity in two parts.
The magnetism of individual atoms is presented in an introductory chapter.
The structure and dynamics of magnetically ordered systems built up of local-
ized moments are best discussed after lattice vibrations, along the same lines.
Magnetism is revisited in the third volume, where the role of electron—electron
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interactions is discussed in more detail. Similarly, the phenomenological de-
scription of superconductivity is presented after the analysis of the transport
properties of normal metals, in contrast to them, while the microscopic theory
is outlined later, when the effects of interactions are discussed.

Separating the material into three similar-sized volumes is a necessity in
view of the size of the material — but it also reflects the internal logical struc-
ture of the subject matter. At those universities where the basic course in
solid-state physics runs for three semesters working through one volume per
semester is a natural schedule. In this case the discussion of the electron gas —
which is traditionally part of the introduction — is left for the second semester.
This choice is particularly suited to curricula in which the course on solid-state
physics is held parallel with quantum mechanics or statistical physics. If the
lecturer feels more comfortable with the traditional approach, the discussion
of the Drude model presented in the second volume can be moved to the be-
ginning of the whole course. Nevertheless the discussion of the Sommerfeld
model should be postponed until students have familiarized themselves with
the fundamentals of statistical physics. For the same reason the lecturer may
prefer to change the order of other chapters as well. Apart from the presen-
tation of the consequences of translational symmetry, the topics discussed in
Chapters 3, 4, and 6 can be deferred to a later time, when students have
acquired a sound knowledge of quantum mechanics, atomic, and molecular
physics. The consequences of translational symmetry can also be analyzed af-
ter the discussion of phonons. All this is, to a large extent, up to the personal
preferences of the lecturer.

In presenting the field of solid-state physics, special emphasis has been
laid on discussing the physical phenomena that can be observed in solids.
Nevertheless I have tried to give — or at least outline — the theoretical inter-
pretation for each phenomenon, too. As is common practice for textbooks, I
have omitted precise references that would give the publication data of the
discussed results. I have made exceptions only for figures taken directly from
published articles. At the end of the first, introductory chapter I have given
a list of textbooks and series on solid-state physics, while at the end of each
subsequent chapter I have listed textbooks and review articles that present
further details and references pertaining to the subject matter of the chapter
in question.

Bulky as it might be, this three-volume treatise presents only the funda-
mentals of solid-state physics. Today, when articles about condensed matter
physics fill tens of thousands of pages every year in Physical Review alone, it
would be obviously overambitious to aim at more. Therefore, building on the
foundations presented in this book students will have to acquire a substantial
amount of extra knowledge before they can understand the subtleties of the
topics in the forefront of today’s research. Nevertheless at the end of the third
volume students will also appreciate the number of open questions and the
necessity of further research.
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A certain knowledge of quantum mechanics is a prerequisite for studying
solid-state physics. Various techniques of quantum mechanics — above all field-
theoretical methods and methods employed in solving many-body problems
— play an important role in present-day solid-state physics. Some essential
details are listed in one of the appendices of the third volume, however, I have
omitted more complicated calculations that would have required the applica-
tion of the modern apparatus of many-body problems. This is especially true
for the third volume, where central research topics of present-day solid-state
physics are discussed, in which the theoretical interpretation of experimen-
tal results is often impossible without some extremely complex mathematical
formulation.

The selection of topics obviously bears the stamp of the author’s own re-
search interest, too. This explains why the discussion of certain important
fields — such as the mechanical properties of solids, surface phenomena, amor-
phous systems or mesoscopic systems, to name but a few — have been omitted.

I have used the International System of Units (SI), and have given the
equations of electromagnetism in rationalized form. Nonrationalized equations
as well as gaussian CGS (and other) units are nevertheless still very much in
use in the solid-state physics literature. This has been indicated at the appro-
priate places. On a few occasions I have also given the formulas obtained from
nonrationalized equations. In addition to the fundamental physical constants
used in solid-state physics, the commonest conversion factors are also listed
in Appendix A. Only once have I deviated from standard practice, denoting
Boltzmann’s constant by kp instead of k — reserving the latter for the wave
number, which plays a central role in solid-state physics.

To give an impression of the usual values of the quantities occurring in
solid-state physics, typical calculated values or measured data are often tabu-
lated. To provide the most precise data available, I have relied on the Landolt—
Bornstein series, the CRC Handbook of Chemistry and Physics, and other
renowned sources. Since these data are for information only, I have not indi-
cated either their error or in many cases the measurement temperature, and
I have not mentioned when different measurement methods lead to slightly
disparate results. As a rule of thumb, the error is usually smaller than or on
the order of the last digit.

I would like to thank all my colleagues who read certain chapters and
improved the text through their suggestions and criticism. Particular thanks
go to professors Gyorgy Mihaly and Attila Virosztek for reading the whole
manuscript. In spite of all efforts, some mistakes have certainly remained in
the book. Obviously, the author alone bears the responsibility for them.

Special thanks are due to Karoly Héartlein for his careful work in draw-
ing the majority of the figures. The figures presenting experimental results
are reproduced with the permission of the authors or the publishers. M. C.
Escher’s drawings in Chapter 5 are reproduced with the permission of the
copyright holder (C) 2006 The M. C. Escher Company-Holland. The challenge
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of translating the book from the Hungarian original was taken up by Attila
Pir6th. I acknowledge his work.

Finally, I am indebted to my family, to my wife and children, for their
patience during all those years when I spent evenings and weekends with
writing this book.

Budapest, May 2007 Jeng Solyom
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Introduction

It is our everyday experience that materials in the solid, liquid, and gas phases
are equally present in the world around us.! Nevertheless it is the physics
of solids that has acquired a privileged status in the vast field of research
into the physical properties of macroscopic bodies. The reason for this is
that while investigating liquids and real gases, let alone materials in so-called
mesomorphic phases can yield a lot of new and interesting results, it is the
processes taking place in solids that have, in the first place, led to a great
many fundamentally new concepts. Moreover, solids have a much larger scope
of application.

Certain physical properties of solids, most notably the external regularity
of crystals have long been known. By the end of the nineteenth century a
considerable body of classical knowledge had been amassed about the elastic,
thermal, electric, optic, and magnetic properties as well as the symmetries
of crystals — without an explanation based on the structure of matter. The
birth of solid-state physics can be dated to 1900, when — three years after the
discovery of the electron? — P. DRUDE put forward a simple model (based on
the late nineteenth century results of statistical mechanics) for the microscopic
description of the properties of metals. Using the results of the classical kinetic

! This would not be the case in a colder world, as at sufficiently low temperatures
and at the same atmospheric pressure all matter would be in the solid phase — with
the sole exception of helium. The behavior of the latter is governed by quantum
fluctuations, since owing to the small mass of helium atoms these become more
important than the weak forces between noble-gas atoms. That is why helium will
stay in the liquid phase under atmospheric pressure. To solidify it, the pressure has
to reach 25 atm (2.5 MPa) even at low temperatures. The quantum fluid nature
of helium manifests itself in yet another way: at very low temperatures liquid *He
and *He show strikingly different behavior as one is made up of fermionic and
the other of bosonic atoms.

The discoverer of the electron, JOSEPH JOHN THOMSON (1856-1940) was awarded
the Nobel Prize in 1906 “in recognition of the great merits of his theoretical and
experimental investigations on the conduction of electricity by gases.”
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theory of gases he showed that certain properties of metals can be understood,
at least qualitatively, by assuming that electrons move like quasi-free classical
particles: billiard balls that collide with obstacles from time to time but oth-
erwise move freely. This picture was developed further by H. A. LORENTZ,3
who gave a somewhat more precise description of the conduction properties
of metals in 1905.

The initial successes were soon followed by the first experimental results
clearly indicating that certain conduction phenomena could not be properly
interpreted within the framework of the Drude—Lorentz model. The most spec-
tacular of these was the discovery of superconductivity by H. KAMERLINGH
OnNEs? in 1911.

At the same time the understanding of the structure of solids was advanced
by several important discoveries. In 1912 M. vON LAUE,® W. FRIEDRICH, and
P. KNIPPING showed that X-rays (also known as Réntgen rays)® diffracted by
crystals produce the same interference pattern as light diffracted by an optical
grating. The following year W. H. BRAGG and W. L. BrAGG (father and
son)” demonstrated that not only the regularity in the atomic positions — i.e.,
the crystal structure — but also the crystal lattice parameters can be inferred
from the interference pattern. They embarked upon the systematic investiga-
tion of crystal structures using X-ray diffraction, laying the foundations of the
study of crystal structures: crystallography.

Structural studies continue to be an important element of solid-state phys-
ical investigations to date; as we shall see later, physical (mechanical, electric,
or magnetic) properties are in many respects determined by the structure.
However, a large number of phenomena observed in solids — most notably
those determined by the behavior of electrons — are less sensitive to structure.
The very difference between classical materials science and solid-state physics
(in its customary sense) is that the former focuses on applications and there-
fore does not deal with the properties of materials with an idealized structure;
instead it is concerned with the study of how physical properties depend on

3 HENDRIK ANTOON LORENTZ (1853-1928) and PIETER ZEEMAN (1865-1943) were
awarded the Nobel Prize in 1902, “in recognition of the extraordinary service
they rendered by their researches into the influence of magnetism upon radiation
phenomena’.

* HEike KAMERLINGH ONNES (1853-1926) was awarded the Nobel Prize in 1913
“for his investigations on the properties of matter at low temperatures which led,
inter alia, to the production of liquid helium”.

® Max voN Laug (1879-1960) was awarded the Nobel Prize in 1914 “for his dis-
covery of the diffraction of X-rays by crystals”.

6 WiLHELM CONRAD RONTGEN (1845-1923) was the first Nobel Prize Winner in
physics, in 1901, “in recognition of the extraordinary services he has rendered by
the discovery of the remarkable rays subsequently named after him”.

" St WiLLIaAM HENRY BRAGG (1862-1942) and WILLIAM LAWRENCE BRAGG
(1890-1971) were awarded the Nobel Prize in 1915 “for their services in the anal-
ysis of crystal structure by means of X-rays”.
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the real structure. Solid-state physics, on the other hand, is primarily con-
cerned with the interpretation of phenomena, above all those determined by
the electrons in solids. The connection between these disciplines is nonethe-
less strong. One cannot ignore the structures formed by atoms in solid-state
physics either since it determines the state of the electrons. We shall see that
some of the recently observed most interesting phenomena can manifest them-
selves only in materials featuring special structures. As it was shown by the
example of quasicrystals,® the interpretation of the latest discoveries in solid
structures present serious challenges for solid-state physicists, too.

The advent of quantum mechanics brought about dramatic changes in
the evolution of solid-state physics. It was probably in this field that the
new theory had its most spectacular successes, topping the correct qualitative
explanations with quantitative ones for a wide range of phenomena. By the
second half of the 1920s it had become clear that the state of electrons within
solids had to be described using Fermi—Dirac statistics. It then took just about
ten years to lay the theoretical foundations that solid-state physics continues
to be built upon even today. The most important contributions were due to
H. BETHE, F. BrocH, L. BRILLOUIN, W. HEISENBERG, L.. D. LANDAU,
W. PauLrl, J. C. SLATER, A. SOMMERFELD, A. H. WILSON, and E. P.
WIGNER.?

The forces holding solids together were finally understood in this classi-
cal era of solid-state physics through the description provided by quantum
mechanics. This allowed a more precise formulation of the vibrations of crys-
tal lattices, and thus the explanation of thermal properties in crystals, the
interpretation of conduction and optical properties through the quantum me-
chanical treatment of electronic states, and, after the identification of the
exchange interaction, the elaboration of the theory of magnetic phenomena.

A new generation, including J. BARDEEN,!° R. E. PEIERLS, and F. SEITZ,
to name but a few outstanding figures, started to work in the 1930s. During
this period, the main lines of research were the experimental and theoretical
studies of the properties of metals and insulators. At that time, following the
development of quantum mechanics, the theory of metals meant the applica-
tion of the one-electron approximation — that is, ignoring interactions among
electrons or incorporating them into an average potential. While this proved
sufficient in many cases, the self-consistent treatment of the average potential
necessitated the development of more and more complicated approximation
methods, most of which could be treated only numerically.

8 D. SHECHTMAN, I. BLECH, D. GRATIAS, and J. W. CAHN, 1984.

® Among them the following received the Nobel Prize: HANS ALBRECHT BETHE
(1906—2005) in 1967, FELIX BLoCH (1905-1983) in 1952, WERNER KARL HEISEN-
BERG (1901-1976) in 1932, LEvV DaviDovICH LANDAU (1908-1968) in 1962,
WOLFGANG PAULI (1900-1958) in 1945, and EUGENE PAuL WIGNER (1902-1995)
in 1963, although some of the prizes were awarded for achievements in other fields
of physics.

10 JouN BARDEEN was awarded two Nobel Prizes, in 1956 and in 1972, see later.
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It is in fact surprising that the one-particle approximation can ever be used,
as the system of electrons is a typical many-particle system with a by no means
weak interaction, the Coulomb repulsion. That is why field theoretical meth-
ods developed in quantum electrodynamics (QED) and quantum field theory
(QFT) found new applications in statistical and solid-state physics after the
Second World War. This marked the start of the epoch of modern solid-state
physics. The application of the methods used in many-body problems to solid-
state physics — as pioneered by the Landau school and in particular A. A.
ABRIKOSOV,!! L. P. GOrKov, and 1. E. DZYALOSHINSKY — had a deep im-
pact on the theory of metals, as it provided a consistent approximation scheme
for taking the interactions among electrons into consideration.

After the early experimental observation of superconductivity, the exciting
problem of working out its microscopic theory remained unsolved for several
years. Finally, not only the interaction responsible for superconductivity was
identified, but also the theoretical description of the superconducting state
was established in 1957 by J. BARDEEN, L. N. COOPER, and J. R. SCHRI-
EFFER.'2 This gave a tremendous boost to both experimental and theoretical
investigations into superconductivity. For almost a decade this was the hottest
research topic for the solid-state physics community, being the first success-
fully explained phenomenon for which the usual one-particle approximation
failed to provide an adequate interpretation.

Simultaneously, giant steps were made in the understanding of other phe-
nomena of solid-state physics, and devices stemming from these quickly made
their way into our everyday life. In 1947 J. BARDEEN and W. H. BRATTAIN in-
vented the point-contact transistor, and shortly afterwards W. B. SHOCKLEY
developed the junction transistor.'® Yet another branch of solid-state physics
burst into blooms: the physics of semiconductors. As a result of its breathtak-
ing development, it has become one of the most important fields of solid-state
physics in terms of applications. It is probably in this field that solid-state
physics and materials science get closest to each other, since through the
step-by-step discovery of new phenomena newer and newer applications may
be developed.

In the 1960s research into magnetism gained new momentum as well. Us-
ing field theoretical methods, a more precise solution was obtained for the
model of magnetism based on localized magnetic moments. At the same
time important progress was made in the quantum mechanical treatment of

" ALEXEI ALEXEEVICH ABRIKOSOV (1928-) shared the Nobel Prize with VITaLy
LAZAREVICH GINZBURG (1916—-) and ANTHONY JAMES LEGGETT (1938-) in 2003
“for pioneering contributions to the theory of superconductors and superfluids”.

2 JonN BARDEEN (1908-1991), LEo NEIL CoOPER (1930-), and JOHN ROBERT
SCHRIEFFER (1931-) shared the Nobel Prize in 1972 “for their jointly developed
theory of superconductivity, usually called the BCS-theory”.

13 WiLLIAM BRADFORD SHOCKLEY (1910-1989), JoHN BARDEEN (1908-1991), and
WALTER HOUSER BRATTAIN (1902-1987) shared the Nobel Prize in 1956 “for
their researches on semiconductors and their discovery of the transistor effect”.
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magnetism in metals. In 1963, independently of one another, J. HUBBARD and
M. C. GUTZWILLER proposed a seemingly simple model that was expected
to give a theoretical description of ferromagnetic behavior caused by non-
localized electrons. Although nature is too complex for such an apparently
simple theory to yield a valid explanation of magnetism in metals, the Hub-
bard model and its generalizations nonetheless continue to be the subject of
intense research to date.

A breakthrough in the investigations into magnetism came in 1964, when
J. KOoNDO showed in a classic article that the anomalous temperature de-
pendence of resistivity observed in dilute alloys can be explained in terms
of the scattering of electrons by magnetic impurities if one goes beyond the
customary approximations. This discovery triggered off a veritable avalanche
in the experimental and theoretical studies of electronic states around mag-
netic atoms. It was recognized that some related manifestations of the strong
correlations among electrons are difficult to fit into the previous picture of
the behavior of fermionic systems, and so new theoretical approaches were
called for. The analysis of the problem of magnetic impurities, the so-called
Kondo effect then quite naturally led to the correct interpretation of one of the
most interesting discoveries of the past decades, the behavior of heavy-fermion
systems.

Starting from the 1970s, the experimental methods of solid-state physics
have been applied to materials that are not solid in the customary sense of
the word, for example polymers and liquid crystals. The discipline encompass-
ing the study of both the customary “hard” materials and such “soft” ones is
called condensed matter physics. The behavior of crystalline solids on the one
hand and polymers and liquid crystals on the other hand share many common
points, especially when it comes to phase transitions. To understand critical
phenomena the same concepts can be used and the same statistical physical
methods may be employed in their quantitative description. As the properties
of liquid crystals are not determined by the behavior of electrons but mostly
by the geometrical shape of and interactions between large molecules consti-
tuting it, they cannot be interpreted along the same lines as those used in
the description of the behavior of electrons within solids. Lack of space will
prevent us from presenting a discussion of condensed matter physics covering
these new aspects as well.

Even in the study of crystalline materials it was a turning point when, dur-
ing the past decades, the production of newer and newer families of materials,
often featuring surprising properties, became possible. A prime example for
this was the appearance of organic superconductors in the early 1970s, causing
a scientific sensation. In these materials large organic molecules form a highly
anisotropic structure in which electrons can propagate more or less freely in
one or two directions only. Then in addition to superconductivity, a new type
of order, a charge-density-wave state or a spin-density-wave state can also be
established. Despite initial hopes, the study of these low-dimensional systems
has not provided important new insights into superconductivity, nonetheless
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a rich variety of new phenomena has been discovered that cannot be inter-
preted within the one-particle framework. The reason for this is that correla-
tion among electrons is enhanced because of the spatially restricted character
of their motion, so they can give rise to states whose properties are completely
different from those observed in ordinary electron systems.

In 1980 K. voN KLITZING, G. DORDA, and M. PEPPER discovered
the quantized Hall effect in a suitably prepared semiconducting structure.'*
Shortly afterwards, the fractional quantum Hall effect was also observed.!®

The interpretation of these discoveries changed the perspective on the role
of impurities and disorder-induced localization, each an interesting field of
research in itself. The fractional quantum Hall effect also shed light on a new
kind of state in two-dimensional interacting electron gases, enriching the lore
of solid-state physics with several new concepts.

In 1986 an experimental observation made by K. A. MULLER and J. G.
BEDNORZ!® sparked off a hitherto unprecedented hunt after superconduc-
tors with higher and higher transition temperatures. Although these new
superconducting materials have not yet brought a real breakthrough in ap-
plications, the fact that their properties are different from those of conven-
tional superconductors has opened new perspectives for considerations about
possible novel mechanisms of superconductivity. In this respect, the work of
P. W. ANDERSON!7 is particularly noteworthy. There is still no agreement
on what can give rise to superconductivity at such high temperatures but
there are more and more signs indicating that the nature of the correlations
among electrons is different from that observed in so-called conventional su-
perconductors, and so a theoretical description genuinely different from the
Bardeen—Cooper—Schrieffer theory is sought. Research along these lines has
taught us a lot about the behavior of strongly correlated electron systems,
both in theoretical and experimental aspects.

Solid-state physics experiments are usually conducted on samples that,
small as they might be, are macroscopic on atomic scales. Measurements are
usually aimed at bulk properties that are independent of the shape and finite

1 Kraus voN KLiTzING (1943-) was awarded the Nobel Prize in 1985 “for the
discovery of the quantized Hall effect”.
15D, C. Tsul, H. L. STORMER, and A. C. GosSARD, 1982. “For their discovery
of a new form of quantum fluid with fractionally charged excitations”, HORST
LupwiG STORMER (1949-) and DANIEL CHEE Tsul (1939-) were awarded the
Nobel Prize in 1998 together with ROBERT BETTS LAUGHLIN (1950-), who gave
the theoretical description of the phenomenon.
JOHANNES GEORG BEDNORZ (1950-) and KARL ALEXANDER MULLER (1927-)
shared the Nobel Prize in 1987 “for their important break-through in the discovery
of superconductivity in ceramic materials”.
PuIiLIP WARREN ANDERSON (1923-) shared the Nobel Prize with SIR NEVILL
Francis MoTT (1905-1996) and JoHN HASBROUCK VAN VLECK (1899-1980) in
1977 “for their fundamental theoretical investigations of the electronic structure
of magnetic and disordered systems”.

16
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extent of the sample. The theoretical description is also much simpler when
surface phenomena and finite-size effects are ignored. In many cases, however,
one’s attention turns precisely toward the properties determined by the surface
or the finite size of the sample. This is how new fields, such as surface physics,
the physics of thin films, and more recently the physics of mesoscopic systems
and the physics of nanostructures were born. The extremely fine technologies
developed by the semiconducting industry permit the high-precision prepara-
tion of samples whose linear dimensions are on the order of 10-100 nm, that is,
100-1000 times larger than atomic distances. In these samples one may study
phenomena that occur on scales not much larger than atomic dimensions.

The study of disordered, amorphous systems, glass-like materials, and in
particular amorphous semiconductors and metallic glasses has recently re-
ceived an increasing attention in solid-state physics, too. Materials science
had been interested in such materials for some time because of their practical
applicability, however, understanding their behavior is equally important in
solid-state physics and in statistical physics. This is especially true for spin
glasses, whose theoretical description has required the introduction of new
concepts and the development of novel theoretical methods. These concepts
and method have been found to be applicable to phenomena and systems
beyond the traditional scope of physics, such as stock markets or behavior
research. The term physics of complex systems is used for the discipline where
the methods of statistical and solid-state physics are applied to such new
fields.

In this three-volume treatise the presentation of solid-state physics fol-
lows the historical development outlined above only in the sense that we shall
encounter newer and newer phenomena and will be led to more and more
complex considerations. Our primary aim is to show how one can determine
the properties of solids using the methods of quantum mechanics — basing the
discussion, as much as possible, on first principles —, and how one can interpret
the observed behavior of solids. However, solid-state physics is a science that
is both experimental and theoretical, with the characteristic features of both
approaches. Therefore besides theoretical explanations, one should always be
aware of the experimental methods for investigating the discussed phenom-
ena. Some of these techniques are extremely simple, accessible in practically all
solid-state physics laboratories, while others require state-of-the-art technol-
ogy or large-scale equipment. In this book we shall indicate at the appropriate
places how one may study certain phenomena, and on some occasions we shall
present experimental methods in some detail.

The first volume begins with a brief introduction into the structure of con-
densed matter; then some simple properties — known from classical physics,
atomic physics, or statistical physics — of the building blocks of solids (ion
cores) are recalled. The discussion of forces that hold solids together in the
condensed phase is followed by the presentation of the structure determined
by atomic positions within the solid, its defects, and the dynamical properties
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of the structure. Formal analogy justifies treating magnetically ordered struc-
tures and some simple questions of their dynamics in the same volume.

In the second volume we turn to our main task, the study of the states
and behavior of the system of electrons. Its importance is clearly shown by
the fact that among the mechanical, thermal, electric, optical, and magnetic
properties of solids all except for the first and to some extent the second group
are primarily determined by the behavior of electrons. We shall start out with
the discussion of a gas of free electrons and then gradually take into account
their interactions with atoms. First we shall be concerned only with the effects
of the periodic potential of atoms sitting statically in a crystal lattice, and
only later shall we examine how the behavior of the electrons is affected by the
oscillatory motion of the atoms. After the presentation of both theoretical and
experimental methods for determining the electronic state and the semiclas-
sical treatment of the dynamics of electrons we shall devote separate chapters
to the properties of metals, semiconductors, insulators, and superconductors.
Throughout this volume, we shall use the one-particle approximation.

A more profound study of the interaction among electrons is presented
in the third volume. The analysis of the correlations among electrons will
lead us to the instabilities occurring in the electron gas that are responsible
for the appearance of magnetic, superconducting, charge-density-wave and
spin-density-wave states. The microscopic theory of superconductivity is also
discussed there. Finally, the effects of strong electron correlations are explored,
and some questions of the physics of disordered systems are addressed.

A series of appendices conclude each volume. The first appendix of the
present volume contains the numerical values of fundamental physical con-
stants. The next covers some properties of the elements in the periodic table
that play important roles in solid-state physics. The one on mathematical rela-
tions provides a summary of the conventions used in Fourier transformations,
some useful integrals, as well as the essentials about the special functions
used in the text. This is followed by a summary of group theory, the scatter-
ing of particles by solids, and the quantum theory of spin and orbital angular
momentum. The fundamentals of many-body problems are presented in the
appendices of the second and third volumes. None of the appendices purport
to be complete, they just evoke the basic concepts that the reader should be
familiar with to be able to follow the arguments of the text.

Further Reading

To complement the material in the present book, the interested reader can
consult a wide range of solid-state physics textbooks. An exhaustive listing
would be impossible, therefore a rather subjective selection is given below
that contains a few classics and some newer texts.'® Some treat the subject

18 For some classic texts that have been republished in unaltered form the original
year of publishing is given. Otherwise the year of the last edition is usually given.
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an introductory level, while others are more advanced and can serve as

useful references for undergraduate or graduate students preparing for their
final exams.

Introductory textbooks

1

[\

10.

11.

12.

13.

14.

. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart
and Winston, New York (1976).

. G. Burns, Solid State Physics, Academic Press, Inc., Orlando, Florida
(1990).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter
Physics, Cambridge University Press, Cambridge (1995).

J. R. Christman, Fundamentals of Solid State Physics, John Wiley & Sons,
New York (1988).

J. R. Hook and H. E. Hall, Solid State Physics, Second Edition, John
Wiley & Sons, Chichester (1991).

H. Ibach and H. Liith, Solid-State Physics, An Introduction to Principles
of Materials Science, Third edition, Springer-Verlag, Berlin (2003).

C. Kittel, Introduction to Solid State Physics, Eighth edition, John Wiley
& Sons, New York (2004).

R. Kubo and T. Nagamiya, Solid State Physics, McGraw-Hill Book Co.,
Inc., New York (1969).

M. P. Marder, Condensed Matter Physics, 5th corrected printing, John
Wiley & Sons, Inc., New York (2004).

U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge
University Press, Cambridge (2001).

E. Mooser, Introduction a la physique des solides, Presses polytechniques
et universitaires romandes, Lausanne (1993).

H. P. Myers, Introductory Solid State Physics, Second Edition, Taylor &
Francis, London (1997).

Oxford Master Series in Condensed Matter Physics, Oxford University
Press, Oxford.

— J. Singleton, Band Theory and Electronic Properties of Solids (2001).
— A. M. Fox, Optical Properties of Solids (2001).

— S. Blundell, Magnetism in Condensed Matter (2001).

—R. A. L. Jones, Soft Condensed Matter (2002).

— M. T. Dove, Structure and Dynamics, An Atomic View of Materials
(2003).

— J. F. Annett, Superconductivity, Superfluidity and Condensates (2004).
H. M. Rosenberg, The Solid State, Third Edition, Oxford Physics Series,
Oxford University Press, Oxford (1988).
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. U. Rossler, Solid State Theory, An Introduction, Advanced Texts in
Physics, Springer-Verlag, Berlin (2004).

. R. J. Turton, The Physics of Solids, Oxford University Press, Oxford
(2000).

Textbooks with a more theoretical approach

1

10.

11.

12.

13.

. P. W. Anderson, Concepts in Solids, The Benjamin-Cummings Publishing
Co., Inc., Reading, Massachusetts (1963).

. P. W. Anderson, Basic Notions of Condensed Matter Physics, The
Benjamin-Cummings Publishing Co., Inc., Menlo Park, California (1984).
A. O. E. Animalu, Intermediate Quantum Theory of Crystalline Solids,
Prentice Hall, Inc., Englewood Cliffs, New Jersey (1977).

J. Callaway, Quantum Theory of the Solid State, Second Edition, Aca-
demic Press, Inc., Boston (1991).
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2
The Structure of Condensed Matter

One of the most characteristic features of solids is their relatively high me-
chanical rigidity, that is, resistance to external forces that would force them to
change their shape. At first sight this is what distinguishes them from matter
in the liquid and gas phases. The word “solid” refers to this very property.
However, this rigidity is not perfect. Weaker forces will produce elastic strain,
while stronger ones may cause plastic deformation or rupture.

Mechanical rigidity is due to stronger or weaker bonds that hold atoms
or molecules together in a solid. A solid can be classically pictured as a col-
lection of atoms held together by springs. These springs tend to hinder the
free displacement of atoms relative to each other. Because of thermal motion,
however, the atoms will not be strictly at rest but will oscillate about their
equilibrium position within the cavity among its neighbors. At sufficiently high
temperatures the oscillation amplitude — and thus the mean square displace-
ment from equilibrium — can become so large that the atoms are no longer
localized. This corresponds to the melting of the solid.! When temperature is
increased even further, thermal motion completely overcomes binding forces,
and the liquid vaporizes.

In substances built up of large nonspherical molecules transition from solid
to liquid phase may not occur in a single step but through intermediate, so-
called mesomorphic phases. In such phases substances are less rigid than in
their solid phase; in many respects they are closer to liquids. A clear distinction
from gases is offered by the collective term condensed phases for the solid,
mesomorphic, and liquid phases.

In this chapter we shall present the general characteristics of condensed
matter, paying special attention to those nonsolid phases that we shall not
discuss in detail elsewhere.

! The melting point of the elements is listed in Appendix B.
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2.1 Characterization of the Structure

The arrangement of atoms is usually not completely random in condensed
phases. Interatomic forces create some order in the atomic structure. This
order may apply to the entire sample or it may manifest itself only locally; it
may comprise the internal atomic degrees of freedom but it may just as well
be restricted to atomic positions.

2.1.1 Short- and Long-Range Order

The largest and by far most thoroughly analyzed class of solids is that of
crystalline solids. In ideal crystals atoms are arranged in strictly periodic
arrays, i.e., spaced at regular distances in each direction. This perfect order of
the crystalline structure is assumed to be maintained indefinitely. The system
is homogeneous in the sense that the neighborhoods of any two equivalent
atoms are identical no matter how far they are separated. The crystal is
then said to possess long-range order. In such cases atomic densities show
strong correlations even for large spatial and temporal separations. At finite
(nonzero) temperatures positions are always slightly smeared out by thermal
motion, thus correlations are reduced but they are not destroyed. Long-range
order is preserved in the crystal up to the melting point.

A large proportion of the substances do not exhibit long-range order in
the condensed phase. Atoms separated by macroscopic distances are uncor-
related in such samples. In other cases long-range order is present in certain
spatial directions but absent in others. Nonetheless atomic positions may still
be related (correlated) over microscopic distances comparable to atomic di-
mensions. The appearance of such correlations is most readily understood in
substances where covalent bonds play an essential role. Because of the direc-
tionality of these bonds, in all parts of the sample the relative orientation of
the first few neighbors, located at more or less regular distances from each
other, is fairly definite. Locally, over distances among the first few neighbors
(in other words, on scales comparable to atomic dimensions) some kind of
order is observed that is similar to the one in crystalline solids. Over larger
distances, deviations from the regular bond directions and distances may be-
come so important that correlations among atomic positions are lost. In such
cases one speaks of short-range order.

Short- and long-range order can be observed not only in the spatial ar-
rangement of atoms but also in their internal degrees of freedom, for example
the orientation of their magnetic moments. In Chapter 14 we shall study mag-
netic systems in which atomic magnetic moments exhibit long-range order.
Below we shall consider systems built up of identical atoms and we shall be
concerned with their spatial arrangement only. These considerations will be
generalized in Chapter 10 to multicomponent substances and in Chapter 28
to systems of electrons, where will shall also analyze the short-range order in
the spatial arrangement of spins.
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Owing to the long-range order in the atomic arrangement, structure can be
completely characterized by a handful of parameters in crystalline materials.
In other cases even if the position and the expectation values of internal
degrees of freedom were known for the very large number of atoms, specifying
them would give an inextricable and unmanageable set of data. Instead of
this the structure can be fully characterized in terms of atomic distribution
functions.?

The n-particle probability density function p,,(r1,72,...,7,) is defined by
stipulating that the probability that the volumes dr; around 7, dre around
79, etc. contain precisely one atom each be given by

dP,(r1,72,...,7n) = pn(r1,72,...,7y)dr1dry...dr, . (2.1.1)

In disordered systems where a large number of random atomic configurations
are possible, the n-particle probability density function is determined by aver-
aging over all possible configurations. At finite (nonzero) temperatures, where
particles are in thermal motion, a so-called thermal average is taken in which
each possible state is multiplied by an energy-dependent statistical weight, the
Boltzmann factor. The n-particle probability distribution function is obtained
by dividing the n-particle density function by the one-particle densities:

pn(rla Ir27 s 7”"71)

p1(r1)pi(r2)...p1(ryn) (2.1.2)

gn(rlar27'~'7rn) =

For a complete description of a disordered physical system, the infinite
hierarchy of such expressions would be required in principle. However, we shall
see later that it is sufficient to know the one- and two-particle distribution
functions — which can be determined from experiments. In what follows we
shall study only these.

Consider a system with N atoms in a volume V', and denote the position
vector of the ith atom by R;. The one-particle probability density function,
p1, which we shall call p, is

N
r) = <Z§(T—Ri)>, (2.1.3)

where (...) denotes the configurational or thermal average. The above ex-
pression is the actual density. The two-particle probability density function
p2, which we shall henceforth call P, is given by

7‘1,7‘2 <ZZ(5 T — TQ—Rj)>. (214)

=1 j=1
i

2 Later we shall introduce further functions that indicate whether the positions of
atoms at different times are correlated. Here we shall consider the static case only.
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The definition of probability densities implies

/p(r) dr = N, (2.1.5)

\4
/P(Tl,TQ) dTQ = (N - 1)p(’l”1) y (216)
v
and, of course,
/ P(’l"l,’l"g)d’l"l d’l"2 :N(N— 1) (217)

If long-range order is present, the positions of the two atoms are correlated
even if the separation between r1 and 7o is very large. If, however, there is no
long-range order then the correlation between atomic positions is washed out
at large separations, and so

P(Tl,’l"z) — p(’l”l)p('l‘g), if |T1 —’I”Q| — 0. (218)
One separates out this expression to define the correlation function C(r1,r2):
O(’I”l, TQ) = P(Tl,’l"z) - p(rl)p('rg) . (219)

This correlation function indeed indicates whether the presence of an atom
at r; affects the probability of finding another atom at ry. For perfectly
random atomic arrangements the correlation function is identically zero. For
amorphous systems with short-range order the function takes finite values at
small separations and drops off exponentially at large distances. On the other
hand, for crystalline samples the function shows the same periodicity as the
underlying structure even at large separations.

We shall focus on the distribution function rather than the probability
density function and suppress the index in the highly important two-particle
expression:

P(’I”l, TQ)
p(ri)p(rs)

In what follows, we shall almost exclusively study homogeneous systems, in
which the one-particle density is uniform, and we shall denote the ratio N/V
by n. The two-particle probability density will depend only on the difference
of r1 and ro; this is clearly seen when P is written as

P(ri,7m2) = </ZZ§ (ri—7" — R;)d(ra — 7' _Rj)dr/>

g(ri,m2) = (2.1.10)

1 N N
= <ZZ§(7~1 —ry— R, + Rj)>. (2.1.11)
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In terms of the new variable r = r{ — r5 we have

N N
P(r) = ‘1/ <;;6(r—Ri+Rj)>, (2.1.12)
i

and the two-particle distribution function becomes

174 N N
9(r) = s <ZZ§(7’—RH—RJ—)>. (2.1.13)

i=1 j=1
J#i

In isotropic systems the distribution function g(r) depends only on r = |r|.
The quantity g(r) is then called the radial distribution function. If an atom is
now selected, the average number of particles within a spherical shell of radius
r and thickness dr around it is

n(r)dr = 4mn g(r)r? dr, (2.1.14)

which explains why sometimes 4772g(r) rather than g(r) is called the radial
distribution function.

If there is only short-range order then g(r) — 1 for |r| — co. When this
term is separated out, one is left with the pair-correlation function

e(r)=g(r)—1. (2.1.15)

We shall often encounter this correlation function, sometimes in another form
that contains ¢ = j terms as well. We therefore introduce the expression

N N
1
rr)= <Zzé(r—Ri+Rj)>. (2.1.16)
i=1 j=1

When the term ¢ = j is separated, it is readily seen that
I'(r)=46(r) +ng(r). (2.1.17)

By taking the Fourier transform of both sides,
IN'NK)=1+n /g(r)e_iK'T dr. (2.1.18)
v

Separating from I'(K) the Fourier component K = 0, which is equal to the
number of particles regardless of the structure, we have

I'(K) = Nég o+ S(K). (2.1.19)
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This expression defines the structure factor S(K).? Using the relation

n/e—i’” dr = Nik o, (2.1.20)
\4

and comparing (2.1.18) and (2.1.19),

S(K)=1+ n/ [g(r) —1]e KT dr. (2.1.21)
v

An inverse Fourier transform now gives

c(r)=g(r)—1= (zi)gn/[S(K) —1]eErdK. (2.1.22)

In the isotropic case angular integration in (2.1.21) leads to

sin Kr

d 2.1.23
Kr T ( )

S(K) :1+n/47r7“2 [g(r) — 1]
0

that is, S(K) depends only on K = | K|. Now the inverse transformation gives

_ 1 r 2 o sinKr
() =gr) ~1= / 4k (5(6) - 1)k (2109)
0

The definition (2.1.19) of S(K) implies that S(K) vanishes for K = 0.
It can also be seen from the equations that the normalization conditions on
the pair-correlation function implies that S(K) vanishes in the K — 0 limit
as well. The limiting process must be treated with care when the spatial
distribution of the atoms is totally uncorrelated, and thus g(r) = 1 follows
from ¢(r) = 0. In this case everywhere except for the point K = 0 the structure
factor is constant, S(K) = 1.

As we shall see later, not only does the pair-correlation function lend it-
self to simple theoretical interpretation, but — with certain restrictions — it
can also be determined from measurements. The cross section in elastic scat-
tering experiments, e.g. in X-ray diffraction is proportional to the structure
factor S(K). From the measured K-dependence of the structure factor the
spatial correlations among atoms can be inferred. Some examples of the radial
distribution function will be presented later.

3 In the literature the term structure factor is sometimes used for related but not
identical expressions as well. See the footnote on page 248.
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2.1.2 Order in the Center-of-Mass Positions, Orientation, and
Chemical Composition

Up to now atoms have been assumed to be point-like, but our considera-
tions are equally valid for condensed matter built up of spherical atoms or
molecules. The centers of mass of the building blocks (atoms or molecules)
may exhibit short- or long-range order. If a long-range order is present then
— as we shall examine it in detail in Chapter 5 — the full translational sym-
metry of the sample observed macroscopically is broken on atomic scales. On
the other hand, if a snapshot is taken of the liquid, the centers of mass are
found to be distributed randomly, and so invariance under arbitrary transla-
tions is preserved. The generalization of this conclusion is also justified: the
appearance of order is always accompanied by the breaking of some symmetry.

Besides order in the positions of the centers of mass, other types of order
may also appear in the condensed phase if the building blocks of the sample are
not spherical. In substances made up of large molecules, building blocks are
often long, rod-shaped, or flat, disk-like molecules. In the condensed phase —
almost independently of the ordered or disordered arrangement of the centers
of mass — the rod axes or the disk planes may also be ordered. Denoting the
angle between a certain reference direction and the rod axis or the normal to
the disk plane by 6, one can determine the quantity <(3052 0— §>, where (...)
denotes the average over all molecules. If this quantity is different from zero
then the sample is said to exhibit orientational order.

Orientational order may also be present when the direction is not deter-
mined by the form of the molecules but by an internal degree of freedom, e.g.
atomic magnetic moment. To characterize magnetic materials the specification
of the orientation of magnetic moments is just as necessary as the specifica-
tion of atomic positions. In ordered magnetic structures where the directions
of magnetic moments are also ordered, this orientational order may show an
even greater diversity than the crystalline arrangements of atomic positions.
We shall return to this problem in Chapter 14 on magnetic materials.

Disorder may also be rooted in chemical composition. In nonstoichiometric
alloys even when atoms occupy the sites of a regular lattice, the order is im-
perfect, as the distribution of the components over the lattice sites is identical
only in an average sense in different parts of the sample. The same chemical
disorder may also appear in stoichiometric alloys at sufficiently high tempera-
tures, since due to its entropy, a disordered state has lower free energy than an
ordered one. Chemical ordering occurs through a disorder—order phase transi-
tion, and long-range order appears only below the critical point. Short-range
order may nonetheless exist in the high-temperature phase. As an example,
consider a material composed of two types of atoms, A and B, and assume
that the configuration in which atoms of either type are surrounded by atoms
of the opposite type is energetically more favorable than the configuration in
which atoms of the same kind are next to each other. Then the majority of
the nearest neighbors will be atoms of the opposite type. At small scales the
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material seems to be chemically ordered. When temperature is increased, the
free energy is more and more dominated by the term —7'S, and short-range
order is gradually destroyed.

2.2 Classification of Condensed Matter According to
Structure

One possible classification of condensed matter is according to the degree
center-of-mass or orientational order is present. Before turning to the vast
subject of the study of crystalline materials, we shall give a highly simplified
and very concise overview of the characteristics of the structure of condensed
matter.

2.2.1 Solid Phase

When classifying materials that are, from a mechanical point of view, in the
solid phase, if small oscillations of the atoms are neglected, the atomic ar-
rangement is found to be regular in some substances and irregular in others.
Thus solids are divided into two broad categories according to their structure:
crystalline and noncrystalline. It should be noted that certain mesomorphic
phases can also be considered solid from a mechanical viewpoint. However,
due to their special structure, they will be considered separately.

Crystalline Solids

Although it is impossible to prove it with mathematical rigor, it is a generally
accepted assumption that at low temperatures crystalline structure is the
energetically most stable. This statement is based on the experience that it is
indeed possible to produce genuinely regular structures using crystal-growth
processes — provided they are slow enough and so the system has sufficient
time to find the most stable, lowest-energy state among local minima.

In a crystal each atom sits at a well-defined site that is easily determined.
This also means that in crystals built up of molecules both the molecular
centers of mass and the orientation of the molecular axes with respect to the
crystallographic axes show long-range order. In such cases the pair-correlation
function is the sum of a periodic sequence of Dirac deltas, and thus in K-space
S(K) will also be the sum of a periodic sequence of Dirac deltas. We shall see
this in more detail in Chapter 8.

If the orientation of the crystallographic axes is the same throughout the
sample then the sample is called a single crystal. In real crystals, however, the
order is never perfect. First, there may be defects in the atomic arrangement
due to imperfect crystal growth, and these defects can destroy the correlation
between the positions of distant atoms. For example, if the crystal starts to
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grow at several points then the sample will consist of crystal grains of different
(usually macroscopic) sizes and irregular shapes, so-called crystallites. The
crystallographic axes of individual grains are oriented independently of each
other. Such samples are said to be polycrystalline.

Second, at finite temperatures the ubiquitous thermal fluctuations may
also create defects, which will disrupt strict periodicity over large distances.
Nonetheless, the physical properties of such materials — and also of polycrys-
talline samples, provided the crystallites are not too small — are in many
respects similar to those of ideal crystals, so our results are usually valid for
them as well.

Noncrystalline Solids

With the sole exception of helium, all samples in thermodynamic equilibrium
are expected to be in an ordered crystalline phase at low temperatures. How-
ever, using quenching (rapid cooling) or other methods, it is equally possible
to produce samples that are solid from a mechanical point of view but in which
atoms are frozen in random (disordered) positions — unlike in crystals, where
they arrange themselves into a regular periodic array. The prime example for
this is glass. Therefore solid materials with a perfectly disordered structure
are often called glasses. For example, in metallic glasses two or more metallic
components are arranged randomly — but in such a way that atoms are packed
closely to fill space as tightly as possible. The structure of such amorphous
materials is disordered, and so — in contrast to crystals — long-range order is
absent. No correlation is found between the positions of two distant atoms; the
correlation function defined in (2.1.9) vanishes at large distances. Short-range
order may, however, exist, as we shall see it in Chapter 10. An important
difference with liquids is that in amorphous solids the disordered atomic posi-
tions do not vary with time, that is why these materials are sometimes called
solid solutions as well.

As it was mentioned in the introductory chapter, 1984 brought the dis-
covery of a new type of solid material, which, in a sense, is halfway between
crystalline and disordered systems. There is some sort of long-range order in
the spatial orientation of relative atomic positions, however no regular peri-
odic structure is formed. We shall see in Chapter 10 that the pair-correlation
function is then similar to that of amorphous materials, while the diffraction
pattern and the structure factor S(K) — determined using methods of struc-
tural analysis — are similar to those of crystalline materials. For this reason,
they are called quasicrystals.

In the largest part of our solid-state physics studies we shall be concerned
with the properties of crystalline solids, since classical solid-state physics is
the physics of crystalline materials. The behavior of noncrystalline materials
has nevertheless attracted more and more attention recently. Therefore our
investigation into crystalline structures will be followed by the presentation
of the most important structural characteristics of such systems (Chapter 10)
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and some of their physical properties (Chapter 36). As we shall not discuss
the properties of liquid crystals and plastic crystals elsewhere, below we shall
give a brief overview of some of the characteristic features of their structure.

2.2.2 Liquid Phase

In liquids no long-range order is present either in atomic (molecular) positions
or the relative orientation of atomic (molecular) axes. If a snapshot is taken
of the atoms of the liquid at any instant of time, the static two-particle distri-
bution function g(r1,72) is found to be homogeneous and isotropic — in other
words, g(r1,r2) depends only on r = |r| = |r; — r2| and for large separa-
tions it tends to a constant value that is independent of the direction and the
separation. This is readily seen in Fig. 2.1, which shows the experimentally
determined structure factor S(K) for liquid argon and the two-particle radial
distribution function obtained from its Fourier transform.

K (A7 ro (&)

Fig. 2.1. The structure factor S(K) of liquid argon, measured at 85 kelvins in
neutron scattering experiments, and the radial distribution function obtained from
its Fourier transform [J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973)]

Similar things would be observed in other liquids. The radial distribution
function approaches unity for large distances showing that in liquids there is no
long-range correlation among the atoms. On the other hand, the sharp peak in
the structure factor S(K') and the oscillation following it — or, in terms of the
derived radial distribution function, the small number of relatively sharp peaks
at short distances — indicate short-range order among atoms. An explanation
for this short-range order is provided by the simplest model for the structure
of liquids, the Bernal model.*

This model, shown in Fig. 2.2, is obtained by arranging the atoms — con-
sidered to be rigid spheres — randomly next to each other so that they should
be quite closely packed. As it is seen in the magnified part, whichever atomic
sphere is selected, due to close packing, the distance to the centers of its near-
est neighbors is equal to or just slightly larger than twice the atomic radius.

4 J. D. BERNAL, 1959.
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Fig. 2.2. The Bernal model of liquids, with a relatively close-packed random ar-
rangement of atomic spheres on two different length scales

Therefore g(r) is sharply peaked at twice the atomic radius. The system is
thus not homogeneous on such small scales. In subsequent layers the distri-
bution of the centers is smoother, and correlation between the positions of
atomic centers gets weaker with increasing separation.

Although space is not so tightly filled in real liquids, the radial distribution
function indicates strong correlations. From the position of the first maximum
Kiax in S(K), the distance rg to the nearest neighbors is directly calculated
from Kyax &~ 27/rg, in agreement with the nearest-neighbor distance read
off from the graph of g(r). The distribution is less sharply peaked in the
second and third layers but the peak is nonetheless clearly visible. For atoms
separated by even larger distances there is practically no correlation.

Qualitatively one may say that the sharper and more numerous the peaks,
the longer the range of the correlation among atomic positions. The limiting
case is that of an ideal crystal where — as mentioned above — the structure
factor S(K) is a sequence of infinitely sharp discrete peaks (Dirac deltas).

2.2.3 Mesomorphic Phases

It is always possible to draw a sharp line between the order in the centers of
mass and in the orientation of molecules/atoms observed in crystals on the
one hand, and the disordered atomic arrangement in the molten phase at high
temperatures or in the glass-like phase obtained from the melt by quenching
on the other hand, in the sense that one can always determine whether or not
long-range order is present. In other words, the state with broken translational
and rotational symmetry can be clearly distinguished from the state with full
translational and rotational symmetry. However, transition between ordered
and disordered states does not always happen in a single step. Order in the
spatial arrangement of molecular centers of mass and in molecular orientations
do not necessarily appear or disappear at the same time, i.e., the breaking of
translational and rotational symmetry may occur at different temperatures.
This is how mesomorphic phases are formed. When starting from the low-
temperature solid phase, if center-of-mass order is disrupted but orientational
order is maintained in the phase transition, the new phase is called the liquid
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crystal phase. In some cases the destruction of the center-of-mass order does
not occur simultaneously along the three directions. It might happen along
one or two directions only, leading to different types of liquid crystals. On the
other hand, if center-of-mass order is maintained in the phase transition and
only orientational order is lost in the new phase then one speaks of plastic
crystals.

Liquid Crystals

The liquid-crystalline phase usually manifests itself as one of the condensed
phases of mesogenic compounds (mesogens) made up of long (rod- or lath-
like), or flat (disk- or sheet-shaped) molecules — or molecules containing a
rigid molecular moiety (mesogenic unit) of one of the above shapes that plays
an important role in the formation of the mesomorphic phase.® Figure 2.3
shows some classic examples of long organic molecules that exhibit a liquid-
crystalline phase. PAA stands for para-azoxy anisole, MBBA for 4-methoxy-
benzilidene-4-butyl-aniline, and TBBA for terephtal-bis-butyl-aniline. Figure
2.4 shows two disk-shaped molecules that have attracted much attention re-
cently, benzene-hexa-n-alkanoate and hexa-n-alkoxy triphenylene.

PAA CHB—OOTZN@O—CH3
0
MBBA  CH,—0— Y—cH—=N— Y-CH,
mBA  CH~ Y N=cH—~{ Ycu=N—~H-cH,

Fig. 2.3. Typical organic molecules exhibiting a liquid-crystalline phase

Phases can be classified according to the extent center-of-mass or orienta-
tional order is present in them. This classification goes back to G. FRIEDEL
(1922), although some liquid crystals have been known since the 19th century.5

5 While liquid crystals made up of rod-like molecules were known for a long time,
the first liquid crystal made up of disk-shaped molecules and exhibiting a new
type of molecular arrangement was discovered by S. CHANDRASEKHAR in 1977.

5 The discovery of liquid crystals dates to 1888, when the Austrian botanist
F. REINITZER observed that cholesteryl benzoate had two distinct melting points:
first a fuzzy liquid appeared, which suddenly became transparent at a higher tem-
perature. One year later a German physicist, O. LEHMANN demonstrated that
this was a new phase of matter, possessing the characteristic properties of crystals
and liquids alike, and he coined the term liquid crystal.



2.2 Classification of Condensed Matter According to Structure 25

]f OR
OR
R 0 Ce
\Cl/ O/ X0
0 0 R OR
0 e
! Il
R~ o (l) OR
o 0 C
0 O
(|3 0 R OR
R OR

Fig. 2.4. Flat, disk-shaped molecules exhibiting a discotic liquid-crystalline phase.
R = C,,Ha,+1 is an alkyl group

In nematic” (N) liquid crystals the positions of the centers of mass of
rod-like molecules is disordered, while the orientation of their longitudinal
axes is more or less ordered, as shown schematically in Fig. 2.5(a). Because
of the disordered arrangement of the centers of mass, the system — just like
any liquid — is invariant under arbitrary translations. Isotropy, i.e. invariance
under rotations is broken: only rotations about the director — that is, the
direction n of the long axis of the mesogenic groups —, and rotations through
180° about the directions perpendicular to it will take the system into itself.
This is true even if the two tips of the molecules are inequivalent but half of
the molecules point in one direction and the other half in the other. Thus,
the director is not a true vector, since directions n and —n are equivalent.
Therefore order cannot be characterized by the expectation value of the angle
between the rod axes and a reference direction, rather the quantity

S=1{((3cos’0—1)) (2.2.1)

plays the role of an order parameter. In the nematic phase the sample pos-
sesses cylindrical symmetry around the direction of the director. Because of
the cylindrical symmetry — or the underlying preferential orientation of the
molecules — the macroscopic properties of nematic liquid crystals show uniax-
ial anisotropy.

The nematic phase may appear in materials made up of flat, disk-shaped
molecules as well. If the normal vectors to the disk planes are aligned but
the arrangement of the centers of mass exhibits no order, as illustrated in
Fig. 2.5(b), the system is said to be in a discotic nematic phase.®

" From the Greek words vnua (nema) and vnuatikos (nematikos), meaning thread,
and woven, respectively.

8 The nematic phase of rod-shaped molecules is sometimes called the calamitic
nematic phase to emphasize the difference, although the calamitic and discotic
nematic phases have the same symmetries, and the same notation N is recom-
mended for both.
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Fig. 2.5. Molecular arrangement in various liquid-crystalline phases: (a) nematic;
(b) discotic nematic; (¢) cholesteric phase
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More recently nematic liquid crystals made up of rectangular, rather than
rod- or disk-shaped molecules have been found. The arrangement of the cen-
ters of the rectangles is disordered but the molecules are packed together in
such a way that their axes are more or less aligned. Cylindrical symmetry
around the director is thus broken. This is called the biazial nematic (Ny,)
phase.

The nematic phase is usually formed by molecules possessing left-right
(up-down) symmetry. Chiral® — that is, not mirror symmetric — molecules
can also form a nematic phase as long as left- and right-handed molecules
are present in equal numbers — however, symmetries of the nematic phase
are easily broken because of chirality, in which case another liquid-crystalline
phase, the cholesteric'® phase appears. In this phase the centers of mass are
not ordered, and the director is not constant in space — as in the nematic phase
— but rotates uniformly in a plane as one moves in the direction perpendicular
to this plane. Choosing the z-axis along this direction,

n(z) = [&cos(qz + ¢), Psin(gz + ¢), 0]. (2.2.2)

The molecular arrangement is shown schematically in Fig. 2.5(c). In fact the
molecules are not organized in planes; the change is continuous along the
preferred axis. That is why the cholesteric phase is also called the chiral ne-
matic phase, hence the notation N*. As directions n and —n are equivalent,

% From the Greek word for hand, yetp (cheir), referring to the fact that hands are
not mirror symmetric.

10 The name refers to cholesterol esters, the first substances that were identified as
liquid crystals.
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the wavelength (chiral pitch) of the cholesteric phase is given by A = 7 /q. This
may depend sensitively on temperature but it is usually around 300-500 nm,
that is, the pitch is on the same order as the wavelength of visible light. For
this reason cholesteric liquid crystals exhibit unique optical properties. This
is exploited in a number of applications, for example in liquid crystal displays
(LCDs).

Smectic'' liquid crystals come in several varieties. Figure 2.6 shows the
structure of two of these, A and C (SmA and SmC, or Sa and S¢). Besides the
alignment of the molecules, some kind of order is observed in the coordinates
of the centers of mass, too, but only in one spatial direction. This means that
molecules form layers. Within the layers, the arrangement of the molecular
centers of mass is disordered, much in the same manner as in liquids, but
their axes are along a preferred direction. The separation of adjacent layers is
determined by the length of the molecules. The difference between smectic A
and C phases is that the molecular axes are perpendicular to the plane of the
layer in the former but not in the latter. In this case the average tilt angle in
subsequent layers may be identical, reversed (giving a fishbone-like pattern of
two neighboring layers), or it may even change periodically.

Fig. 2.6. Side view of the molecular arrangement in different smectic liquid crystals.
(a): the smectic A phase; (b) and (c): two variants of the smectic C phase

Alternatively, one can say that smectic A and C liquid crystals are like
solids in one direction but behave like liquids in the two perpendicular direc-
tions. Because of the incomplete order, the viscosity of liquid crystals is close
to that of liquids. In materials possessing both smectic and nematic phases
the former appears at a lower temperature, indicating that the smectic phase
is more ordered than the nematic. When temperature is increased, a phase
transition occurs: the layers disappear, and the symmetries of the nematic
phase appear. Full translational symmetry is restored.

If individual layers are considered as rigid structural units, the smectic
phase can be pictured as one in which these units are arranged regularly

1 From the Greek words for soap, ounyua (smegma) and smeared, layered, ounsros
(smektos).
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along one direction. R. E. PEIERLS (1935) and L. D. LANDAU!? (1937)
showed that in one-dimensional systems short-range forces cannot give rise to
such a long-range order: thermal fluctuations are so strong that they will al-
ways destroy the order. This is the so-called Landau—Peierls instability. Thus,
strictly speaking, the sequence of smectic layers cannot show long-range order.
A quasi-long-range order can, nevertheless exist. Experiments have revealed
that along the direction of the layers the periodicity in the variations of the
pair-correlation function is not perfect: the periodic function is multiplied by
a function that decreases with a temperature-dependent power of distance.
Moreover, the boundaries of smectic layers are smeared out — however, only
to an extent that is much smaller than the width of individual layers.

There are further known variants of the smectic phase. However, their
presentation would lead us too far afield — especially since some of them
exhibit ordered crystalline structures in all three directions. We shall just
mention one, the smectic B (SmB or Sg) or hexatic phase. In this phase, shown
in Fig. 2.7(a), the arrangement of the molecules in a smectic layer is such
that each molecule is surrounded by six neighbors. No hexagonal crystalline
structure is formed, however, since the centers of mass exhibit only short- and
not long-range order within the layers. On the other hand, the axes of the
hexagons are aligned over long distances, so long-range orientational order is

i
T
o

Fig. 2.7. Molecular arrangement in two liquid-crystalline phases: (a) smectic B
phase; (b) discotic columnar phase

Hexagonal-type structures can also be formed by disk-shaped molecules. In
the discotic columnar phase (or simply columnar phase) such flat molecules are
stacked, forming a column. As shown in Fig. 2.7(b), these columns are packed
locally hexagonally to ensure efficient space filling. In this hexagonal columnar
phase (Coly,) the columns make up a regular hexagonal crystal. In two direc-
tions the substance behaves as a crystal, however, within the columns the
order is only short-ranged, and thus typical liquid behavior is observed along
this third direction. These columns do not always form hexagonal lattices:

12 1Ev DavipovicH LANDAU was awarded the Nobel Prize in 1962, “for his pioneer-
ing theories for condensed matter, especially liquid helium”.
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other two-dimensional crystal structures are equally possible. For example,
the Col, phase features a rectangular lattice. Disk normals are not necessarily
aligned with the column axis, either. This leads to an even greater wealth of
possible structures.

A hierarchical order can be established among different liquid crystal types
according to their symmetries. Starting out with the invariance under all
rotations and translations in the liquid phase, symmetries are broken one by
one, and so, through the symmetries characteristic of the nematic, smectic
A, smectic C, and smectic B phases, one finally arrives at the symmetries of
crystals. At this point all that is left is invariance under discrete translations
and discrete rotations. This hierarchy exists not only in theory: it is also
realized in some liquid crystals via subsequent phase transitions.

Orientationally Disordered Plastic Crystals

We have seen that in liquid crystals the arrangement of molecular centers of
mass is more or less disordered, while molecular axes are aligned, and the
system exhibits orientational order. Another kind of partially ordered state is
possible in materials built up of large, almost spherical molecules that — due
to their internal structure — are invariant only under discrete rotations. Here
molecular centers of mass are arranged in a regular crystalline array while the
orientation of molecular axes is disordered; center-of-mass order is thus not
accompanied by orientational order. Because of their plastic properties such
solids are called plastic crystals.

Fig. 2.8. The arrangement of carbon atoms in a Cgp molecule

The Cgg molecule shown in Fig. 2.8 has sixty carbon atoms arranged on
the surface of a sphere in rings of five and six, much like a soccer ball or
the geodesic domes of the architect R. Buckminster Fuller. From the latter’s
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name, the Cgp molecule is also called a fullerene or a buckyball.'® In the solid
crystalline phase called fullerite Cgy molecules are arranged in the vertices
and face centers of the primitive cells of a cubic lattice. At room temperature
molecular axes are not aligned along any particular direction relative to the
axes of the lattice, moreover, they can rotate freely. Around 263 K a phase
transition occurs and molecular axes become aligned. Instead of free rotation,
the axis is allowed to rotate only around certain directions determined by
symmetry. Only below this temperature is there a genuine crystalline order,
including long-range orientational order.

Polymers constitute another interesting class of large organic molecules.
Interactions between molecules will often get their chains intertwined, which
is why arrangement into regular crystalline structures from the ordinary con-
densed phase requires special techniques. In general, only partial order is
achieved. The interested reader is urged to consult the specialized literature.
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3
The Building Blocks of Solids

In what follows, of all condensed phases we shall study only the solid phase in
the strictest sense of the word. Depending on what properties are examined,
different theoretical methods and experimental techniques must be employed.
The phenomenological approach is often sufficient for a theoretical descrip-
tion. This is especially true for mechanical properties, when the material is
considered as an elastic continuum and the equations of elasticity can be used.
Similarly, the conceptual framework and methods of thermodynamics or the
electrodynamics of continuous media often provide a sufficiently good descrip-
tion of thermal, electric, or magnetic properties. Nevertheless to gain a deeper
insight into the phenomena one has to study them more profoundly, starting
off with the atomic structure of matter. In this theoretical approach solids
have to be considered as highly complicated quantum mechanical systems
comprised of many interacting particles.

Before tackling the many-particle problem, we shall separately summarize
the behavior of ion cores and electrons that are not bound to atoms. In the
present volume we shall deal almost exclusively with the role of ion cores.
In this introductory chapter we shall first write down the Hamiltonian of
the system of electrons and ions, and then recall, for future reference, some
important results of quantum mechanics and atomic physics concerning the
states of bound electrons in free atoms and ions.

3.1 Solids as Many-Particle Systems
The subject of theoretical investigations in solid-state physics is, in principle,

very simple to present. Consider a quantum mechanical system that consists
of N nuclei and N, electrons. The Hamiltonian associated with the system is



32 3 The Building Blocks of Solids

denoted by H. First, one has to determine the energy spectrum of the system,
that is, the eigenvalues and eigenfunctions of the Schrédinger equation !

HY = EV . (3.1.1)

From these not only the ground-state characteristics can be read off: using
the methods of statistical physics one can, in principle, determine all static
and dynamic properties of the system in thermodynamic equilibrium at some
finite temperature.

3.1.1 The Hamiltonian of Many-Particle Systems

The Hamiltonian can be split into three parts: nuclear and electronic contri-
butions, and Coulomb interactions between the nuclei and the electrons:

H = Huuel + Hel + Hel-nucl - (3.1.2)

In the previous expression Hyue contains the kinetic energies of the nuclei
i =1,2,...,N of charge Q;e and mass M; located at R; plus their mutual
Coulomb repulsion:

N

- K2 02 1 L QiQje?
7_(nuc = Hﬁlllnc +Hnuc —nucl = — + v . (3.1.3
1 1 Fnucl ; 2M; OR? ' 87eg ijZ:1 |R; — R, (3.1.3)

i#£]

The kinetic energies of and Coulomb interactions between electrons of
charge —e appear in a similar expression:

He = HE +H ——hz 82 12 (3.1.4)
el = el-el — : 8 |’l"l—’l"j| -1

2Me ey &
,J

i
while Coulomb interactions between the nuclei and the electrons are given by

N Ne

Helfnucl 471'6() Z Z |R . ’I”j| (315)

=1 j=1

We shall often encounter these expressions below. For simplicity, we introduce

the notation
2 ¢ 3.1.6
= ey (3.1.6)

It will make many expressions appear as if they were written in Gaussian
rather than rationalized units. For example, using this notation the electronic
part of the Hamiltonian takes the form

! E. SCHRODINGER, 1926. ERWIN SCHRODINGER (1887-1961) shared the Nobel
Prize with PAUL ADRIEN MAURICE DIrAC (1902-1984) in 1933 “for the discovery
of new productive forms of atomic theory”.
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which is commonly used in the literature even today.

Up to this point, the above Hamiltonian can equally well describe a gas,
a plasma, a liquid, or a solid. In gases and liquids our task is much simpler
as electrons do not move around freely but are bound to nuclei. Now interac-
tions are relatively weak between neutral atoms or molecules, which can be
considered as the new elementary units. Interactions continue to be weak even
when the elementary units are multiply charged positive or negative ions, since
the long-range mutual Coulomb forces between them are rapidly screened by
other ions.

The situation is somewhat more complicated in plasmas. While a part
of the electrons are again bound to nuclei, giving rise to relatively rigid ion
cores, there are other electrons that are not bound and form an electron liquid.
The description of the electronic states in solids is further complicated by the
arbitrariness in choosing whether the electron belongs to the ion core or not.
In general those electrons are considered to belong to the ion cores, which do
not participate in chemical bonding.

In ab initio (first-principles) calculations the state of each electron has to
be treated in the same manner. Less sophisticated calculations are consid-
erably simplified by separating the contributions of ion cores and unbound
electrons in the Hamiltonian. The Hamiltonian is then written as

H = Hion + Hel + Hel-ion , (3.1.8)
where
N N ~
; h? 02 1 AYATR
kin ]
ion = /ljon ion—ion — — 3.1.9
Fion =Ttion + 7 gzMiaRerzijZ:lmi—Rﬂ (3.1.9)
i#j

is the sum of the kinetic energies of ions of charge Z;e and mass M, and
their mutual Coulomb energies. The Hamiltonian of the system of electrons,
Hel, can again be written in the form given in (3.1.4) and (3.1.7). However,
summation is now not over all electrons but only over the N, electrons that are
not bound to ion cores. Finally, the Hamiltonian of the Coulomb interactions
between ions and electrons is

7,8
Helfion = - Ez |RZ —e’l"J| . (3110)

Finding the solution to the eigenvalue problem of the total Hamiltonian is
impossible for two reasons. First, the number of nuclei and electrons is exces-
sively large. Second, the interaction is strong and long-ranged. This implies
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that one must always employ some approximation method in the calcula-
tions; the (in)applicability of a particular method is often revealed only by
the (dis)agreement with experiments.

The study of solids is considerably simplified if it is possible to assume
that ions are essentially localized, even when their arrangement is not regular.
Suppose the ionic positions are known; then the potential generated by them
at point r is given by

Uien(r) = = > Zie* (3.1.11)

Electrons move in this field. The great difficulty is that the mutual Coulomb
interactions of the electrons cannot be written as a one-particle potential.
Therefore approximation methods are necessary to study these interactions.
As we proceed, we shall encounter more and more sophisticated methods.

3.1.2 Effects of Applied Fields

Solid-state physics is concerned not only with the properties of solids in ther-
mal equilibrium: much more effort goes into the investigation of their behavior
under external perturbations. In most cases this external perturbation is a
temperature gradient or an applied electromagnetic field but it may also be
an external pressure or a combination of them. The electromagnetic field can
be a simple potential difference between two points of the sample, a uniform
magnetic field, visible light, or a high-frequency electromagnetic radiation.
Thus the Hamiltonian must very often be complemented by a term Hext rep-
resenting the applied field. As we shall see, an analysis of the response of
the system to such external perturbations provides a deeper insight into its
thermal equilibrium properties.

In the simplest case, when the sample is placed in an electromagnetic field
and only the electrons’ behavior is considered, an external potential appears
in the Hamiltonian of the system of electrons. Besides, the kinetic energy term
is modified: instead of the canonical momentum p = (h/1)V it now contains
the kinetic momentum p + eA.

To prove this consider the Newtonian equation of motion of a particle of
mass m and charge ¢ in external electric and magnetic fields,

d?r

LS =q¢(E+vxB)=q(E+7+xB). (3.1.12)
When the fields are expressed in terms of a scalar and a vector potential as
0A
E = —gradp(r) — ot B =curl A, (3.1.13)

it is readily seen that the above equation of motion can be derived in the
Lagrangian formulation of mechanics from Lagrange’s equation
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doL oL
- = 1.14
dtor Or 0 8 )
if the Lagrangian is chosen in the form
L= ;mi*Q—qtp('r')—l—qv-A, (3.1.15)

where v = 7 is the velocity, and the relation

dA _0A 0A

dar ot + or (3.1.16)

is taken into account. Canonically conjugate momenta are customarily defined

by the relation
oL

L
in the Hamiltonian formulation. Thus, in the presence of an external electro-
magnetic field,

(3.1.17)

p=mi+gA. (3.1.18)

When r and the conjugate momentum p are used as canonical variables, the
Hamiltonian is obtained from

H=p-i—L. (3.1.19)

In our case this leads to the expression

1 2

H= 9m (p—qA) +qp. (3.1.20)
The quantum mechanical Hamiltonian has the same form, only the canon-
ical commutation relations have to be required for » and p. The quantity
p — qA is called the kinetic momentum, since according to (3.1.18) it is equal
to m7, which appears in the kinetic energy formula. In contrast to the canon-
ical momentum the kinetic momentum is gauge invariant, since the gauge
transformation

gpﬁ(p':(p—aafj A—>A':A—|—gradf (3.1.21)

takes the wavefunction and an operator O into
Y — ) =Urp, 0O—0 =U0U", (3.1.22)

where .
U = e/, (3.1.23)

When the potential due to the ions is combined with the external potential,
and the notation U(r) is introduced for the total potential, we obtain for
electrons (¢ = —e)
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N, N, N,
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ol = ; A(r; i 3.1.24
Hel sz;(pﬂre (’"))+;U(”+2i;|m—rj| (3.1.24)
i#i

There is another term that has been ignored so far. Electrons possess an
intrinsic angular momentum, a spin of one-half, and along with it a mag-
netic moment — thus they interact with the applied magnetic field. When the
electron spin is treated as a dimensionless quantity (i.e., i is separated off),?
the interaction with the magnetic field gives the following contribution to the
Hamiltonian:

Ne
—gepts Y B s, (3.1.25)
=1

where g, = —2 is the electron g factor, and B is the magnetic induction (also
called the magnetic-flux density). The latter is related to the vector potential
A by B = curl A.

Electron spin plays an important role even in the absence of a magnetic
field. To determine the wavefunction of a many-electron system, one has to
take the Pauli exclusion principle® into account. This states that the wavefunc-
tion changes sign when the coordinates of any two electrons are interchanged.
In addition to spatial coordinates, spin variables are also included among these
coordinates. Thus even when the Hamiltonian is apparently spin-independent,
the solution can depend on spin.

The magnetic field was considered as an external perturbation here. How-
ever, the field felt by the electrons may be partly due to the magnetic moment
p; of the nuclei. At the end of the chapter we shall present a derivation of
the corresponding term in the Hamiltonian.

3.1.3 Relativistic Effects

When writing down the previous form of the Hamiltonian it was tacitly as-
sumed that relativistic effects can be ignored. More precisely, it was taken
into account that electrons have a spin — but apart from that the Schréodinger
equation of nonrelativistic quantum mechanics was used. In solid-state physics
this is often justified as the energy correction due to relativistic effects is four
orders of magnitude smaller than the kinetic energy or the Coulomb energy.*
However, these effects can be observed for electrons moving in the field of

2 Throughout the book, we follow the convention that s and I are dimensionless
quantities for the electron’s intrinsic angular momentum (spin) and orbital an-
gular momentum. Dimensionful quantities are obtained by multiplication with
h.

3 W. PauLl, 1925. WOLFGANG PAULI (1900-1958) was awarded the Nobel Prize in
1945 “for the discovery of the Exclusion Principle, also called the Pauli Principle”.

* The energy correction is on the order of o, where a = é2/hic ~ 1/137 is the
fine-structure constant.
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heavy ions. To demonstrate this, we shall consider a single electron, and start
off with the Dirac equation.® When it is expanded in powers of 1/c, the large
component describing electrons can be separated from the small components
describing positrons, thus an effective Hamiltonian can be obtained for elec-
trons.

Keeping only first-order terms in 1/c¢ we have

1
H=mec?+, (o (p+ed))’+U(r), (3.1.26)
where o denotes the Pauli matrices given in (F.3.10). Making use of the
identity
(0-A)oc-B)=(A-B)+ioc-(Ax B) (3.1.27)

among Pauli matrices, and neglecting the term mec?, we are left with

1
HD = o (PF eA(r))> +U(r) — geps B - s, (3.1.28)

1

the Pauli Hamiltonian of a single electron, since for spin-1/2 electrons s = ;

up = eh/2me, and for g. the Dirac equation gives precisely —2.

Keeping terms of the next order in the power series of 1/c¢ and taking into
account the proper normalization of large and small components, two new
terms appear,

g,

M = (ot )’
i’ (3.1.29)
~ gmze? (0 (p+e),[(o-(@+eca),Um)]],
where [, | denotes the commutator. After some algebra, the following form is
obtained:
1 4 h?
@ = : A ViU
S g (O A g VOO
b 1.
+ 4m2620 . (VU(’I") x (p+ eA)) )
The first term, which can also be written as
1 (p+eA)? ?
- -B .1.31
mac? < om, + upo , (3.1.31)

contains the relativistic correction to the kinetic and magnetic energy. In solid-
state physics this can be neglected. The second term is called the Darwin
term;% in atomic Coulomb fields this is important only for s-electrons, since

5 P. A. M. DirAc, 1928. See footnote on page 32.
6 C. G. DARWIN, 1928.



38 3 The Building Blocks of Solids

V2(1/r) o 6(r). The most important is the third, spin-dependent term, which
gives a correction that depends on the spin as well as the orbital motion of
the electron. This is the spin—orbit interaction term.

The spin—orbit interaction term takes a particularly simple form when the
potential U(r) is central, i.e. depends only on r = |r|, and so

dU(r) r
= . 3.1.32
vue) =" (3.1.32)
If the vector potential is then neglected,
Hoo= 1 Y0 p e (3.1.33)

dm2c?r dr

is obtained. The term in parentheses is recognized as the orbital angular mo-
mentum operator of the electron, il = r x p. Now if o is replaced by the
electron spin operator, the expression takes the usual form

K 1dU(r)
2m2cr  dr

Hs o = l-s. (3.1.34)
It can be shown that for an atom of atomic number Z the contribution of this
term to the energy is proportional to Z2, therefore it becomes important for
the heavy elements at the high end of the periodic table. For lighter elements
it can be considered as a weak perturbation to the interaction due to other
electrons.

If U(r) is the scalar potential of a uniform electric field E, the state of the
electron is determined by the Hamiltonian

1
H=_ [p+eA@)’ +U(r) - gousB s
2me
. (3.1.35)
+ 4mgczd- [E x (p+ eA)} .

When the electric field is directed along the z-axis and the magnetic field is
absent, the spin—orbit interaction term is customarily written as

Hs o = a(oepy — oypz) (3.1.36)

where the applied electric field is contained in the coefficient «. This term may
play a major role in two-dimensional electron gases produced in semiconductor
devices. In this context the term is called the Rashba term.”

3.2 The State of Ion Cores

The configuration of the electron shells in various (free) chemical elements is
given in Appendix B. Data on the chemical reactivity of the elements have

" E. 1. RAasHBA, 1960.



3.2 The State of Ion Cores 39

revealed that electrons in completely filled electron shells — whose state thus
corresponds to that of the electrons in a noble-gas atom — belong to the ion
core as they do not take part in chemical bonding. Things are different beyond
the closed shells. Inside a solid, electrons in the not completely filled s- and
p-shells can be easily stripped off the atom, leaving behind a charged ionized
core. The situation is not so clear-cut for electrons in partially filled d- and f-
shells. Sometimes they are thought to belong to the core, while in other cases
they are considered to have broken free of the core, their state extending over
the entire crystal. In the rest of this chapter we analyze the state of the ion
core only, taking the number of core electrons from experiments.

It is well known that the energy spectrum can be exactly determined for a
hydrogen atom with a single electron — whereas only an approximate calcula-
tion of the energy spectrum is possible for an ion core with Z electrons around
the nucleus. In a zeroth-order approximation the many-electron atom can be
viewed as if each electron were on a hydrogen-like orbit. (Restrictions of the
Pauli exclusion principle apply.) The electron states obtained in this way are
highly degenerate since their energy depends only on the principal quantum
number n. When the Coulomb interaction between electrons is taken into
account through an average central potential, the same energies will depend
also on the azimuthal quantum number. Degenerate levels may split up, and
then degeneracy will be partially lifted. In the next step fluctuations about
the average potential and spin-orbit interaction are taken into account, which
may give rise to further splitting, as energy will now depend on magnetic and
spin quantum numbers as well. In many cases it is sufficient to determine
this splitting in the first nonvanishing order in perturbation theory. However,
some care must be taken, as it is not immaterial whether spin—orbit interac-
tions are larger or smaller than the fluctuations about the average potential
of the mutual Coulomb interactions among the electrons.

Apart from the heaviest elements, throughout the periodic table spin—orbit
coupling is less important than fluctuations of the interelectronic Coulomb
interaction. Thus in a first approximation spin—orbit interaction can be ne-
glected, whereupon the orbital momenta I; and spins s; of individual electrons
add up independently. The resultant angular momentum and spin® of the atom

are then
L=>1;, S=)s. (3.2.1)

Since both L and S commute with the unperturbed Hamiltonian (i.e., the
Hamiltonian without the spin—orbit interaction term), the electronic state is
characterized by the quantum numbers L, S, my, and mg derived from the
eigenvalues of the operators L2, S2, L., and S,. The states obtained this way
are (2L +1)(25+1)-fold degenerate. Next, spin-orbit interaction is taken into
account. It is readily seen from the form

L-S= (LS +L Sy)+L.S., (3.2.2)

8 The rules for the addition of angular momenta are summarized in Appendix F.
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where Ly = L,+iL, and S = S,+iS, that this interaction mixes states with
different my, and mg, and splits multiply degenerate states into several levels.
This gives the fine structure of electronic states. The energy shift of states
with different values of the total angular momentum J = L+ S is determined
by the strength of the spin—orbit interaction. Then the state of the ion core is
characterized by four quantum numbers: the magnitudes L, S, and J of the
dimensionless vectors L, S, and J — more precisely, the eigenvalues of

L*=L(L+1), S§°=85(S+1), J*=JJ+1), (3.2.3)

plus the projection m; of the component J, along the quantization direction.
Energy depends only on the quantum numbers L, S, and J, but not on m.
These atomic terms — which are now only 2.J 4 1-fold degenerate for any given
J — are customarily denoted by 2*1L;; however, for historical reasons, a
letter rather than a number is used for L, according to the following code:

L 0O 1 2 3 4 5 6
Letter S P D F G H

This coupling of the angular momenta of individual electrons is called the LS
coupling or the Russell-Saunders coupling.’

Because of the strong spin—orbit coupling, this perturbative approach can-
not be used for the characterization of the electronic state in elements at the
high end of the periodic table. While it is possible to define a total orbital
angular momentum L and a total spin S, these are not meaningful quantum
numbers as they do not commute with the Hamiltonian. In such cases one first
has to add up the orbital angular momentum I; and the spin s; individually
for each electron. These total angular momenta j, = l; + s; commute with
the l; - s; term of the Hamiltonian, and their sum gives the resultant angular
momentum J of the system of electrons:

J=> i (3.2.4)

This is the so-called jj coupling. For simplicity, in the rest of this chapter we
shall assume that LS coupling can be used.

In what follows, we shall first discuss how to determine the quantum num-
bers L and S of the total orbital angular momentum and spin of the ground-
state configuration, and how L and S are added to obtain the ground-state
quantum number J. Then we shall examine how core electrons are affected by
an external magnetic field. Owing to their orbital motion and spin, electrons
possess a magnetic moment as well, consequently ion cores show diamagnetic

9 H. N. RusseLL and F. A. SAUNDERs, 1925.
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or paramagnetic behavior in an applied magnetic field. This phenomenon
opens the way to the experimental determination of the electronic state of
ion cores.

3.2.1 Hund’s Rules

Consider an atom with some electrons on its outermost, partially filled shell.
According to the rules of angular momentum addition, the sum of the orbital
and spin angular momenta of individual electrons can lead to many different
resultant Ls and Ses. Consider, for example, the configuration p? in which
two p-electrons (I = 1) have the same principal quantum number. Denoting
the states with magnetic quantum number m; = 1,0, —1 and spin quantum
number m, = i% by |my, ms), the two-electron state can be written as a linear
combination of the states |my,, ms, )|mi,, ms,) — where, again, due attention
must be paid to the antisymmetrization required by the Pauli exclusion princi-
ple. The six one-particle states will then give fifteen two-particle states, which
are best grouped according to their total quantum numbers L and S. The
total angular orbital momentum of two [ = 1 particles is L = 0, 1, or 2. Simi-
larly, the total spin quantum number of two spin-1/2 particles is either S = 0
or S = 1. The singlet state S = 0 is antisymmetric with respect to the inter-
change of the spin of the two particles. This can appear only in wavefunctions
that are symmetric in their spatial variables, that is, the total orbital angular
momentum must be L = 0 or L = 2. The triplet configuration S = 1 is sym-
metric in its spin variables, and thus the corresponding wavefunction must be
antisymmetric in its spatial variables. This corresponds to an orbital angular
momentum of L = 1. The allowed configurations and their multiplicities —
(2L 4 1)(2S + 1) — are listed in Table 3.1.

Table 3.1. Allowed values of L and S and multiplicity in states with two p-electrons

L S Multiplicity Notation
0 0 1 9
1 1 9 3p
2 0 5 'D

In the singlet state S = 0 the spatial parts of the wavefunctions of the
two electrons can be identical, while in the S = 1 state they are necessarily
different. The Coulomb repulsion between the electrons is expected to be
weaker in this state, leading to a lower energy than in the singlet state.

Spin—orbit interaction causes further splitting of the ninefold degenerate
energy level L =1, S = 1. In the vector sum J = L + S the allowed values
of J range from |L — S| to L + S. Hence for a 3P level the possible values of
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J are 0, 1, and 2. The corresponding multiplicities — given by J(J + 1) — are
1, 3, and 5. Spin—orbit interaction thus splits the ninefold degenerate energy
level into three levels, a nondegenerate, a threefold degenerate, and a fivefold
degenerate level. Table 3.2 lists the possible configurations for two p-electrons
when spin—orbit interaction is taken into account.

Table 3.2. Allowed values of L, S, and J, and multiplicity in states with two
p-electrons

L S J Multiplicity Notation
0 0 0 1 13,
1 1 0 1 3Pg
1 1 1 3 3p,
1 1 2 5 3Py
2 0 2 5 D,

Experience shows that of the five allowed states listed above, 3P (with
quantum numbers (L = 1, S = 1, J = 0) is the ground state. Such experi-
mental findings are generalized by Hund’s rules,'® established in the golden
age of spectroscopy, which provide a set of rules to determine the quantum
numbers of the lowest-energy configuration.

1.) To minimize the Coulomb repulsion due to the overlap of their wave-
functions, electrons tend to occupy states with different magnetic quantum
numbers m; (as long as this is possible). As we shall see in Chapter 4, even
though the Coulomb interaction is spin independent, the indistinguishability
of quantum mechanical particles nevertheless gives rise to a spin-dependent
interaction, the exchange interaction. As the exchange integral of two orthog-
onal states is positive, in less than half filled shells it is energetically more
favorable to have the spins of all the electrons aligned, which of course re-
quires that their magnetic quantum numbers m; be different. When a shell is
more than half filled, there will certainly be electrons with identical m; but op-
posite ms quantum numbers. Nevertheless even in this case the lowest-energy
state is found to be the one in which the total spin has the largest possible
value. If n of the 2(2]+ 1) possible states of the shell with azimuthal quantum
number [ are filled, the quantum number S of the ground state is

;n n<2l+1,
S=320+1—-2041-n| = (3.2.5)
20+1—4n n>2+1.

2.) Once the total S is determined, the total orbital angular momentum
L has to be chosen as large as possible. If there are n electrons on the shell

10 B Hunp, 1925.
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with azimuthal quantum number [, the total orbital angular momentum L is
given by

sn(2l+1—n) n<2l+1,
L=521+1—n|= (3.2.6)
(204+1—-jn)(n—20—1) n>2l+1.

This arrangement is also dictated by the Coulomb energy — although it cannot
be illustrated with an intuitive picture.

3.) Owing to the spin—orbit interaction, L and S are no longer conserved,
only their sum, the total angular momentum J = L + S is. For fixed values
of S and L the allowed values of the quantum number J (i.e., the length of
J) range from |L — S| to L + S. The multiplicities of the split levels indeed
add up to (2L + 1)(2S + 1), the multiplicity prior to splitting:

L+S
> I +1)=0QL+1)(25+1). (3.2.7)
J=|L-5]

The sign of the coupling constant of the spin—orbit interaction determines
which of these has a lower energy. It is possible to provide theoretical justi-
fication to the empirical rule asserting that if a shell of azimuthal quantum
number [ is less than half filled (that is, when the number of electrons is
smaller than 2/ + 1) then the lowest-energy state has J = |L — S|, while if it
is more then half filled then it has J = L + S. In case of n electrons

n(2l —n) n <2,
J=S|2l—n| = (3.2.8)

1
2
(204+1— in)(n—21) n>2l.

The quantum numbers S, L, and J of the lowest-energy state satisfying
Hund’s rules are given in Table 3.3 for the case when the 10 states of the
d-shell (I = 2) are gradually filled in.

It should be kept in mind that the table shows only schematically how
the quantum numbers S and L could be determined for a given filling of the
level. The wavefunction itself cannot be inferred directly from it. For this one
has to use the angular momentum addition rules given in Appendix F. E.g.,
if there is a single electron on the 3d level, the wavefunctions of the fourfold
degenerate 2Dj /2 multiplet are linear combinations of the ten |m;, ms) states
with orbital and spin quantum numbers ! = 2 and s = 1/2. The state with
maximal my; = 3/2 is

2 1
J=3/2,m;=3/2)=  [2,-1/2) — _|1,1/2). 3.2.9
T =3/2my =32 = LRI/ = o [L12). (329)
The three other states that correspond to my; =1/2,—1/2, and —3/2 can be

obtained from this state by successive applications of the lowering operator
J- =L"+5".
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Table 3.3. The n-electron ground states of the d-shell, as required by Hund’s rules

n 2 1 0 —1-2 S L J 25+,
1 1 /2 2 32 *Dy /o
2 T 1 1 3 2 3F,
3 T T 323 3)2 Fy
4 T T 2 2 0 Do
5 LI N | 520 5/2 %Ss5/2
6 L R | 2 2 4 °Dy
7 L B | 323 9)2 “Fo2
8 L U 1 3 4 °Fy4
9 L U /2 2 5/2 Dy s
10 L VR A 0 0 0 'So

The energy splitting between levels with different quantum numbers L and
S is typically on the order of an electronvolt, since it is due to the Coulomb
interaction and its consequence, the exchange interaction. However, the split-
ting between states with different Js is at most 0.1 eV, since this is the result
of the spin—orbit interaction. In spectroscopy, energy differences are custom-
arily given by the wave number (in cm™! units) of the photon associated
with the transition. According to the conversion formulas presented in Ap-
pendix A, 1eV ~ 8 x 10> cm~!. Thus, the typical energy difference between
multiplets with different L and S quantum numbers is 103-10% cm™!, while
between states with different Js it is usually 102-10% cm™?.

As thermal energy reaches 0.1eV at temperatures around 10® K, higher
multiplets are usually not excited thermally because of the large energy dif-
ference. Therefore in the overwhelming majority of cases it is sufficient to
consider only levels whose quantum numbers S and L are determined by
Hund’s first and second rules. Moreover, it is often enough to consider only the
ground-state multiplet whose quantum number J is determined from Hund’s
third rule.

3.2.2 Angular Momentum and Magnetic Moment

It is known from the Zeeman'! splitting of energy levels that the angular
momentum AL of an ion is always accompanied by a magnetic moment

pw=—upL, (3.2.10)

where pup = efi/(2m.) is the Bohr magneton. We shall shortly see how this
is derived from the Schrodinger equation of an electron in a magnetic field.
Using the physical angular momentum AL instead of the dimensionless L, the
previous formula is alternatively written as

11 See footnote on page 2.
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= —vhL, (3.2.11)

where 7, is the gyromagnetic (magnetomechanical) ratio of the electron. Its
value is e
Yo = =1.760860 x 10'' s~ T~ 1. (3.2.12)
2me
Owing to its orbital motion, an electron in a state characterized by the quan-
tum numbers n, [, and m; has a magnetic moment of magnitude

w = ps/I1(1+1), (3.2.13)

while the z component of this magnetic moment is
w; = —psmy . (3.2.14)

The electron’s intrinsic angular momentum, its spin s is accompanied by
an intrinsic magnetic moment p . Just like orbital angular momentum and
magnetic moment, spin and intrinsic magnetic moment are also oppositely
directed. However, as the FEinstein-de Haas experiment'? revealed, the gy-
romagnetic ratio is now different from that obtained for the orbital angular
momentum. The same conclusion is drawn from the Dirac equation. As men-
tioned earlier, the following relation holds between the dimensionless spin and
the intrinsic magnetic moment in the nonrelativistic limit:

e = —2uBs. (3.2.15)

This relation is slightly modified by the radiation corrections of quantum
electrodynamics:

Ks = GeUBS , (3.2.16)

where calculations and measurements give the same value for g., the electron
g-factor:

ge=—2[1+ 20; + O(oﬁ)} — —2.002319. (3.2.17)

As before, « is the fine-structure constant. To a very good approximation, ge
is equal to —2.13

Thus the z component of the magnetic moment in a state with spin quan-
tum number mg = :I:; takes the value

z

pZ = £ gepn ~ Fup - (3.2.18)

2 A. EnsTEIN and J. W. DE Haas, 1915. ALBERT EINSTEIN (1879-1955) was
awarded the Nobel Prize in 1921, “for his services to Theoretical Physics, and
especially for his discovery of the law of the photoelectric effect”.

13 Note that while in its rigorous definition ge is negative, most solid-state physics
references nevertheless use its absolute value. For easy comparison, we shall often
use the notation |ge| below.
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3.2.3 The Magnetic Hamiltonian of Atomic Electrons

To determine the magnetic properties of atomic electrons, consider an electron
moving in a potential U(r) and an applied magnetic field B(r). If the latter is
represented by a vector potential A(r), the canonical momentum p is replaced
by the kinetic momentum p + eA in the electron’s Hamiltonian. When the
interaction between the magnetic field and the magnetic moment due to the
electron spin is taken into account, the behavior of a single electron is governed
by the Hamiltonian (3.1.28),

1
H= 2m. (p+ eA(r))2 +U(r)+ |gelusB - s. (3.2.19)
e
When expanding the quadratic expression of the kinetic energy, it should
be remembered that the order of the operators p and A is not immaterial. It
can be seen from the form of the momentum operator,

h h(fo 0 0
= = 3.2.2

P iV i <83:’ oy’ 82’) ( 0
that p and A do not commute in general:

p Al = " divA. (3.2.21)

1
To simplify calculations it is useful to choose the Coulomb gauge (also known

as radiation gauge or transverse gauge) div A = 0. When the magnetic field
is uniform, one possible choice for the vector potential is

A=][Bxr]. (3.2.22)

This is the so-called symmetric gauge. It is easily seen that both B = curl A
and the condition div A = 0 are satisfied.

Substituting this form of the vector potential into the first term of the
Hamiltonian (3.2.19), the following form is obtained:

1 e 2 p> e €2 2
— B) = - . B B
2Me (p 2[7’ x B] 2Mme 2mep [r > B] + 8 [ x B]
(3.2.23)
_p e rxp] B+ ¢ r x B)?
T 2me  2me p 8me '

The angular momentum r X p = hl is immediately recognized in the middle
term, and the Bohr magneton in its coefficient. The total Hamiltonian can
therefore be written as

2 2
H=P tupl- B+ [rxBP+U(r)+|ge|usB s
2Me 8
; , (3.2.24)
p

= om. +U(r) + us(l + |gels) - B + ane [rx B]>.
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Using 7, the component of the electron’s position vector perpendicular
to the magnetic field, the vector product in the last term can be rewritten as
|r x B| = |B| - |r.|, leading to

2 2
_ b ) € 2 2
H= o, +U(r)+ pus(l + |gels) - B+ 8meB ri. (3.2.25)
This expression is readily generalized for the case when the atom has Z

electrons. Labeling the electrons by i, one starts off with the counterpart of
the Hamilton (3.2.19),

Z
H=3 { (p; + €A(ri)* + U(ri) + [gelup B - sz} : (3.2.26)

i=1
Following the same steps as above, the final result is now

Z 2 62 A
Z P; Hus (L lelS) B+ B2y r?, (3.2.27)

where
z

hL = Zhl => (rixp,) (3.2.28)
=1

is the total orbital angular momentum due to the orbital motion of the elec-
trons, and

S=> s (3.2.29)

is the total spin of the system of electrons.

3.2.4 Magnetization and Susceptibility

The Hamiltonian of the electrons contains terms that are linear and quadratic
in the magnetic field. The linear term is present when the total magnetic
moment —up(L + |ge|S) is finite (nonzero). In this case this moment tends to
be aligned with the field. This paramagnetic contribution is dominant unless
the total moment vanishes for some reason. Before analyzing the conditions
for this, we have to say a few words about the determination of magnetization
and susceptibility.

If the energies F; of the states of the system are shifted under the influence
of a magnetic field B, the free energy also depends on the field. Using the
partition function

Z =Y e PiB)/knT, (3.2.30)

the Helmholtz free energy can be written as
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F=—kgTlnZ = —kpgTln {Z eENB)/’“BT} : (3.2.31)

Magnetization is the negative partial derivative of the free energy density
f = F/V with respect to magnetic induction:

of _ 10F

M(B.T)==35~"voB"

(3.2.32)

This can equally be written as

ZiMi(B)e*Ei(B)/kBT
MB.T) = L D yr (3.2.33)

where
_ 1 0F;(B)
vV 0B

is the contribution of the ith state to magnetization.
The customary definition of magnetic susceptibility — the response of the
system to a magnetic field — is not based on the straightforward choice

M;(B) = (3.2.34)

oM
= 3.2.35
X'= o, ( )
but rather on aM
= . 3.2.36
X= om|,_, ( )

The derivative can also be taken at finite values of the field, leading to a
field-dependent susceptibility. Susceptibility, with its ordinary definition, is
the weak-field limit of the latter. In certain systems nonlinear contributions
to the magnetization are also used to characterize magnetic properties.
Susceptibility defined in this manner is usually a tensor quantity,

OM,

oy = . 3.2.37
Xad = o s ( )

However, in the isotropic case off-diagonal elements vanish and diagonal ones
are identical — so susceptibility can be considered a scalar. The dimensionless
scalar susceptibility is related to magnetic permeability via

1= prpto = (L + x)po - (3.2.38)

Apart from some magnetically ordered materials (to be discussed in Chap-
ter 14), the magnetization of solids is usually rather small (y < 1). As x’ of
(3.2.26) is much more easy to determine theoretically, the relation B =~ poH
permits one to obtain the dimensionless susceptibility x from

X = pox’ - (3.2.39)
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When this approximation is justified, susceptibility can be calculated from
the free-energy expression as

_ Mo 9*F(B)
-V 0B?

As we started off with the free-energy density, x above is frequently referred
to as the volume susceptibility or bulk susceptibility.

Note that instead of the dimensionless susceptibility often Xmass, the
mass or specific susceptibility, or xmol, the molar susceptibility is given as
experimental data. The former can be obtained by dividing x by the den-
Sity, Xmass = X/p, while the latter by multiplying x by the molar volume,
Xmol = XVmol-

(3.2.40)

3.2.5 Langevin or Larmor Diamagnetism

If the outermost electron shell of an atom or ion is completely filled, as in noble
gases (He, Ne, Ar, etc.) or ionic crystals (Nat, C17, etc.), the ground-state
quantum numbers are

L=S=J=0. (3.2.41)

When the energy correction due to the magnetic field is calculated to
the lowest order in perturbation theory, the second term in (3.2.27) does not
contribute. The only surviving term is proportional to B?. For a single atom
with Z electrons, the change in energy is

2

zZ
AE = Sjnc B2<0‘ ;ri‘0> . (3.2.42)

For completely filled electron shells the electron distribution is spherically
symmetric. It is an elementary exercise to show that in such cases the mean
square of the position vector component perpendicular to the magnetic field
is equal to two-thirds of the mean square of the magnitude of the position
vector. Thus,

62 z
AE = 12ch2<0‘ ; r? o> . (3.2.43)

In systems containing N atoms in volume V', this shift of the ground-state
energy gives rise to a susceptibility on the order of

_ - 3.2.44
Hoy op2 6me V 0>’ ( )

N 9*AE 200 N /| <
__C¢Ho <0‘ Z 7“12

i=1
as at T = 0 susceptibility should be calculated from the energy instead of the
free energy. As the negative sign shows, ions with closed shells behave dia-
magnetically. This is the Langevin or Larmor diamagnetism. The latter name
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reflects that the phenomenon lends itself to classical interpretation based on
Larmor’s theorem on the motion of electrons in a magnetic field'* — however,
the interpretation is due to P. LANGEVIN (1905). This asserts that when an
electron moving in a closed orbit around a nucleus is placed in a magnetic field,
the angular frequency of the orbiting electron will be shifted by the Larmor
frequency wi, = eB/2m,, inducing a magnetic moment that is proportional
to the applied magnetic field. According to Lenz’s law, the induced moment
will oppose the applied field. This is the root of diamagnetism.

To obtain an order-of-magnitude estimate for the diamagnetic energy cor-
rection, we shall approximate the radius of atomic orbits by the Bohr radius
ag = 4megh? /mee? = h? /me€%. The energy shift per electron is then

2
o~ € 2 2
AEgi, ~ 12ch ag . (3.2.45)

In terms of the Larmor frequency,

e, R 1.,/eB\a 1 NN
Alaax y,, Brao o =gl <2m0> g2 = g (her) <a0) '

(3.2.46)
While é2/ag is on the order of atomic energies, the magnetic energy Awr, is
much smaller. Even for fields as strong as B ~ 1tesla the difference is five
orders of magnitude. In SI units, the dimensionless susceptibility x is on the
order of 107 for noble gases. This corresponds to a molar susceptibility of
10~1-10~ m3 /mol, and a specific susceptibility on the order of 109 m?3 /kg.
Molar and specific susceptibilities for noble gases are listed in Table 3.4. When
working with CGS units, the numerical value of the susceptibility differs by a
factor of 4r: XCGs = XSI/47T-

Table 3.4. Molar and specific susceptibilies of noble gases at room temperature

Xmol [SI] Xmol [CGS] Xmass [SI]
(107" m®/mol)  (107°cm®/mol)  (107° m®/kg)
He —25.4 —2.02 —5.9
Ne —87.5 —6.96 —4.2
Ar —243 -19.3 —6.16
Kr —364 —29.0 —4.32
Xe —572 —45.5 —4.20

In ionic crystals, the dimensionless susceptibility is on the order of 10~*
to 1076 — e.g., for NaCl y = —13.9 x 1075, which corresponds to a molar
susceptibility of xme1 = —3.75 x 10719 m?3 /mol. Diamagnetic susceptibilities of

14 J. LARMOR, 1897.
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the same order are found for a great number of elements as well. Experimental
data obtained at room temperature for some of them are listed in Table 3.5.

Table 3.5. Molar and specific magnetic susceptibility values (in SI units) for dia-
magnetic elements at room temperatures. For carbon, diamond data are given

Xmol  [SI] Xmass _[ST]
(107" m?®/mol) (107" m?/kg)

Cu —68.6 —1.08
Ag —245 297
Ga —271 -3.9

C —74.1 —6.17

Si —39.2 -1.8

Ge —146 —1.33

Sn —470 —-3.3

Sb —1244 —-10

Bi —3520 —16.8

Se —314 —4.0

Te —478 -39

Alert readers have no doubt noticed that among diamagnetic materials
there are not only covalently bonded semiconductors and insulators with
closed electron shells but also semimetals, like bismuth, and a few metals,
such as noble metals. In the latter electrons outside the closed d-shell can
be considered practically free: they are responsible for electric conduction.
While they give a positive, paramagnetic contribution to susceptibility,'® the
total susceptibility receives a more important diamagnetic contribution from
d-electrons.

3.2.6 Atomic Paramagnetism

When outer shells are not completely filled and thus J # 0, the atom has
a permanent magnetic moment. If an external magnetic field is applied, this
magnetic moment will be more likely to line up with the field than against
it. Consequently a magnetization proportional to the magnetic field appears.
This is called paramagnetic behavior. The value of paramagnetic susceptibility
can be easily determined classically. In a magnetic field of induction B the
energy of a classical permanent magnetic moment g is —p - B. Using classical
Boltzmann statistics, the probability that the magnetic moment points in the
elementary solid angle d{2 around the direction given by the polar angles 6
and ¢ is

15 The susceptibility due to the electrons not bound to the ion core (free electrons)
will be determined in Volume 2.
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P(6, ) d02 = ;ewB/kBT 0, (3.2.47)

where - B = B cos 6, and Z is some normalization factor. With this weight
factor, the thermal average of the magnetic moment is found to be

1
=, /ue“'B/’“BT agn. (3.2.48)

If there are N magnetic moments in volume V', then magnetization is given by
the density of the total magnetic moment, M = (u)N/V, and susceptibility
by its derivative with respect to magnetic field H — for which the approxima-
tion H = B/uo can be used. The components of the susceptibility tensor are
thus

N 1
o = Ho { /’uauﬁeu.B/kBT a0

VkgT | Z
1 . .
_ZZ/MO‘GH B/kBTdQ/MBeuB/kBTdQ}
N o

Thermal fluctuations of the magnetic moment are recognized on the right-
hand side. This is an example of the fluctuation—dissipation theorem which
states that the linear response of the system to an external perturbation can be
expressed in terms of the fluctuations of some quantity in thermal equilibrium.

The initial susceptibility is obtained by determining the thermal averages
in (3.2.49) in thermal equilibrium, in the absence of any applied field. As free
moments can point in any direction, (1) = 0, and the various components
are uncorrelated — that is, off-diagonal elements vanish in (. pg). Equivalence
of the three spatial directions implies that the diagonal elements are equal to
one-third of the squared magnitude of the momentum,

(taps) = §1°0as - (3.2.50)

Thus the magnetic susceptibility of a system made up of atoms with classical
magnetic moments of magnitude p is

N pop?

= . .2.51
V 3kgT (3251)

X

It was first observed by P. CURIE!® (1895) that the susceptibility of para-
magnetic materials varies inversely with temperature. This temperature de-
pendence is called Curie’s law, and susceptibilities proportional to 1/T are

6 PigrrRE CURIE (1859-1906) shared the Nobel Prize with his wife, MArRIE CURIE
NEE SKLODOWSKA (1867-1934), and HENRI BECQUEREL (1852-1908); the Curies
received the accolade “in recognition of the extraordinary services they have ren-
dered by their joint researches on the radiation phenomena discovered by Profes-
sor Henri Becquerel”.
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in general known as Curie susceptibilities. The above formula was, however,
first derived by P. LANGEVIN (1905), hence the name Langevin susceptibility
is also used.

To obtain a more precise, quantum mechanical description of paramagnetic
behavior, one has to focus on the second term in the Hamiltonian (3.2.27),

e (L +|ge|S) - B. (3.2.52)

Assuming that the applied magnetic field is weak, the contribution of this
term is calculated in the first nonvanishing order of perturbation theory. For
this one needs to know the matrix elements of L and S in the atomic state.

Because of spin—orbit interaction, L and S are not conserved separately:
the state is determined by the magnitude of the resultant J = L + S and
its component along the magnetic field. When the z-axis is chosen along the
magnetic field direction, states are characterized by the quantum numbers
L, S, J, and m; — the last being the eigenvalue of J,. The matrix elements
necessary for determining the energy are obtained using the Wigner—FEckart
theorem.!” Before formulating this theorem, the concept of vector operators
has to be introduced first.

An operator V is called a vector operator if it is transformed as a vec-
tor under rotations — or, equivalently, if its commutation relations with the
components of the total angular momentum are

[Jwa Vw] =0 5
[, V,] = ihV, (3.2.53)
[Jz, V2] = =RV,

and other similar expressions obtained by cyclic permutation of the indices.
Making use of the equality J = L + S, it is easy to show that both L and S
satisfy the above conditions, i.e., they are vector operators.

The Wigner—Eckart theorem asserts that for fixed L and S, in the
(2L 4+ 1)(2S + 1)-dimensional subspace of the eigenfunctions of the total an-
gular momentum operator, the matrix elements of any vector operator are
proportional to the matrix elements of the total angular momentum operator,
and the constant of proportionality is independent of the value of m :

(L,S,J,m;|VIL,S,J,m') = «(L,S, J)L,S,J,my|J|L,S,J,m}). (3.2.54)

In other words: within this subspace the vector operator V is equivalent to
the quantity aJ:
V=oL,S,J)J. (3.2.55)

17 C. EckArr (1930), E. P. WieNER (1931). EUGENE PauL WIGNER (1902-1995)
was awarded the Nobel Prize in 1963 “for his contributions to the theory of the
atomic nucleus and the elementary particles, particularly through the discovery
and application of fundamental symmetry principles”.
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Let us now introduce the operator

P(L,8,J) =Y _|L,S, J,ms)L, S, J,m,|. (3.2.56)

my

Exploiting the mutual orthogonality of angular momentum eigenfunctions it
is readily seen that P?(L,S,J) = P(L,S,J), and also that the completeness
relation

S OP(L,S, ) =Y LS, Jymy) (L, S, J,my| =1 (3.2.57)
J

J my

holds, thus for given L and S the operator P(L, S, J) projects onto the sub-
space of quantum number J. Moreover, this projection operator commutes
will all three components of J. When (3.2.54) is multiplied by |L, S, J, m)
from the left and by (L, S, J,m/;| from the right, summation yields

P(L,S, J\VP(L,S,J) = (L, S, J)P(L, S, J)JP(L,S, J). (3.2.58)

To determine the coefficient «(L, S, J), consider the following matrix element
of the scalar V - J:

(L, S, J,ms|V - J|L, S, J ymy). (3.2.59)

Making use of the completeness relation, the fact that only those matrix ele-
ments of J are nonzero that belong to the same quantum number J, and the
Wigner—Eckart theorem we have

<L, S, J7 mJ|V . J|L7S, J',mJ/> = a(L, S, J)<L, S, J7 mJ|J2|L7S, J',mJ/>.

(3.2.60)
When (L, S, J) is expressed, we arrive at
v.J

vl , ). (3.2.61)
(%)

in the space of the angular momentum eigenfunctions. Thus one can draw
the intuitive conclusion that within this subspace only the J-projection of the
vector operator is important.

For the vector operator L + |ge|S this implies

L+|g|lS=gsJ (3.2.62)

in the relevant subspace. The value of gy, called the Landé g-factor'® can be
determined from (L + |g|) - )
+ ge :
= . 3.2.63
gj <J2> ( )

18 A. LANDE, 1923.



3.2 The State of Ion Cores 55

One only has to make use of

L-S=1J%-L%-8%, (3.2.64)

and thus
L-J=L-(L+8)=L*+]}[J"-L*- 57, (3.2.65)

as well as
S-J=8-(L+8)=58"+3iJ>-L*-8%. (3.2.66)

In the subspace of the eigenvectors of J = L + S

(L-J)y=L(L+1)+ J[J(J+1)— L(L+1)—S(5+1)],

(3.2.67)
(8- Jy=8(S+1)+3[J(J+1)—L(L+1)—S(S+1)].
This finally yields
o 1 S +1) - L(L+1)
gJ = 2(|ge| +1) + 2(|ge| 1) J(J+1) (3'2'68)

J(J+1)+8(S+1) — L(L+1)

:1+(|ge|_1) ZJ(J—I—I)

The importance of this result lies in the fact that g; determines the total
magnetic moment

p=—pp(L+[ge|S) = —gsupd (3.2.69)

of an ion core, and therefore the energy level splitting in an applied magnetic
field.

The interaction of the magnetic moment with an applied magnetic field is
included in the Hamiltonian as the perturbation term

Hext = —M- B = giuB J-B. (3270)

This completely lifts the 2.J 4 1-fold degeneracy of the original state, splitting
it into 2J + 1 nondegenerate Zeeman levels. When the quantization axis is
chosen along the applied field direction, the energy shift of the individual
levels is given by

AFE = gJMBmJB, (3271)

where my=—-J,—-J+1,...,J.

A simple physical interpretation can be given to the foregoing by pic-
turing the moments L and S as classical vectors of length /L(L + 1) and
\/ S(S + 1). Because of the spin—orbit interaction, these will precess about a
third classical vector, J, of length \/J(J + 1), as shown in Fig. 3.1.

Owing to the precession, all components perpendicular to the direction of
J are averaged out, and only the projection of L and S on the direction of
J survive. As the gyromagnetic ratio is different for spin and orbital angular
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Fig. 3.1. Precession of the orbital angular momentum and the spin about the total
angular momentum

momentum, the total magnetic moment — that is, the resultant of the intrin-
sic magnetic moment and the magnetic moment associated with the orbital
angular momentum — does not point in the same direction as J but rather
precesses about it, and only its component parallel to J is conserved. This
component is given in terms of the lengths of the vectors p; and pg,

lprl = peVLL+1), sl = |gelusy/S(S +1) (3.2.72)

and the angles 07, and fg that J makes with L and S as
|| = |pp | cosOr + |pg| cosfs . (3.2.73)

By reading off the angles from the figure and making use of the relation

gl =957/ I (T + 1) (3.2.74)

the previous result for the Landé g-factor is recovered. When a magnetic field
is turned on, this average magnetic moment (of magnitude |u ;| and direction
J) starts to precess about the field direction, and only its component along
the field contributes to energy. The classical picture cannot account for the
fact that the component along the field direction is quantized, i.e., it can take
only discrete values.

To specify the Curie or Langevin susceptibility, we shall assume that the
energy difference between the ground state (as determined by Hund’s rules)
and higher-lying states is larger than the thermal energy kT at experimen-
tally relevant temperatures, and consequently the thermal occupation of the
latter states can be neglected. If this assumption is justified, only a single
level with quantum number J has to be considered for each atom — which,
however, splits into 2J + 1 levels in a magnetic field. A well-known theorem
in statistical mechanics states that the partition function of a system made
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up of independent subsystems is the product of the partition functions of
the subsystems. In a first approximation, the state of individual atoms will
be considered independent of each another. The partition function Z, of all
possible states of a single atom is given by

J
Zo = ZefﬁE" = Z exp(—BEy) exp(—BgsusmB) . (3.2.75)

my=—J
Summation yields

exp[Bgsps(2J +1)B] — 1
exp(BgspusB) — 1
_ BB, XPBgsp(J +1/2)B] — exp[-fgsus(J +1/2)B]
exp(BgspuB/2) — exp(—BgspneB/2)
— o~ BFo sinh[Bgsus(J +1/2)B]
sinh[Bg B /2]
Because of the independence of individual atoms, the partition function

of the entire system with N atoms is just the Nth power of the partition
function of a single atom,

Zo = exp(—pBEo) exp(—pgspupJ B)

(3.2.76)

zZ =27V, (3.2.77)

As free energy is the logarithm of the partition function, the component
of magnetization along the magnetic field is

10F N

M==yvop~ v

gsps JBy(BgspsJB), (3.2.78)

where Bj(z), the Brillouin function can be written as

2J+1 2J +1 1 1
= + coth + T — coth2

Bi@) ="y, 2J 27 g

(3.2.79)

For J = 1/2, the Brillouin function takes the particularly simple form
By /s(r) = tanh . (3.2.80)

In the J > 1 limit the component of the magnetic moment along the magnetic
field is found to be
(pz) = p L(pB/ksT), (3.2.81)

in perfect agreement with the result that would be obtained from the classical
equation (3.2.48). Here
L(z) = cotha — 1/x (3.2.82)

is the Langevin function.
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In strong fields, where the energy due to the coupling to the magnetic field
is much larger than the thermal energy (gjupJB > kgT), the projection of
the spins will be maximal along the field direction, and so magnetization
reaches saturation. Apart from extremely low temperatures, upB < kg7 in
fields customarily applied in susceptibility measurements, therefore the argu-
ment of the Brillouin function is small. Using the small-x expansion of the
coth function,

1 1 1
thz = — 2 3.2.83
cothz x+3x 4595 +..., ( )

we have
CJ4lz (241 —128

Bi@="5" 5= a5

(3.2.84)

Substitution into (3.2.78) gives the leading-order term of the susceptibility:

N 2J(J+1
v 3kpT
To compare this formula with the expression in (3.2.51) valid for classical mag-
netic moments, the effective magnetic moment peg and the effective magneton
number p are customarily introduced via

=N pouds _ N poppp® (3.2.86)
V 3kgT V 3kpT

Their theoretical values are ufh = g;/J(J + 1)up and p™ = g;1/J(J + 1).

Table 3.6 lists the values of p calculated from Hund’s rules for trivalent rare-

earth metals (p'") as well as determined from experimental data on the sus-

ceptibility of paramagnetic salts containing such ions (p®*P).

As the data in the table show, the agreement between calculated and
measured values is excellent — except for samarium and europium. The reason
for the discrepancy in the latter is that our earlier assumption — that it is
sufficient to consider only the lowest 2J 4 1 energy levels associated with the
value of J given by Hund’s rules — is not justified now. In this case somewhat
higher-lying states must also be included in calculations of the susceptibility,
as their occupation can no longer be neglected. We shall see a remarkable
example in the following subsection.

A far worse agreement is found for 3d transition metals when the calculated
magnetic moment of the configuration given by Hund’s rules is compared to
the effective moment determined from measured data of the paramagnetic
susceptibility in solids containing transition-metal ions. This is illustrated in
Table 3.7.

The table clearly shows that an agreement can be found only when the
effective magneton number due to the electrons’ intrinsic magnetic moment
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Table 3.6. Ground-state electron configuration, Landé g-factor, as well as calculated
and measured effective magneton numbers for trivalent rare-earth ions

Ton

La3t
Cedt
Pr3+
Nd3*
Pm3+
Sm3+
Eut
Qd3+
Th3+
Dy**
Ho3+
Er3+
Tm3*
Yh3+
Lu®t

W
3

0O Utk W~ O

Ne

—_
o

—_
—_

—
(]

—
w

—
S~

1/2
3/2
5/2
7/2
5/2
3/2

1/2

h

O WU OO UTlWw O WLt O tw O

5/2
9/2
5/2
7/2
15/2
15/2

7/2
0

Ground
state

6,7
4/5
8/11
3/5
2/7

3/2
4/3
5/4
6/5
7/6
8/7
0

th

exp

p

0 0
2.535 2.4-2.7
3.578 3.4-3.6
3.618 3.4-3.7
2.683 -
0.845 1.3-1.6

0 3.2-34
7.937 7.9-8.0
9.721 9.4-9.8
10.646  10.5-10.7
10.607  10.3-10.6
9.581 9.4-9.6
7.561 7.3-7.6
4.536 4.4-4.6

0 0

Table 3.7. Electron configuration, quantum numbers of the ground state (as spec-
ified by Hund’s rules), calculated and measured values of the effective magneton
number p, and spin the theoretically determined contribution to the effective mag-
neton number ps for some transition-metal ions

Ton

3d

—_

n

O © 00 IO O UL U b WWw W~

1/2
1/2

3/2

3/2
3/2

5/2
5/2

3/2

1/2

h

ONWWNNODONNWWWWNDN

3/2
3/2

3/2

3/2
3/2

5/2
5/2
9/2

5/2
0

Ground
state

’Dy/s

*Ds»
3F2

gJ

4/5
4/5
2/3
2/5

th

1.549
1.549
1.633
0.775
0.775
0.775

5.916
5.916
6.708
6.708
6.633
5.590
3.550
0

exp

1.6-1.8
1.6-1.8
2.5-2.8
3.7-4.0
3.7-4.0
3.7-4.0
4.8-5.0
4.8-5.0

5.9

5.9
5.2-5.4
5.2-5.4
4.8-4.9
3.1-3.2

1.9

0

th
Ps

1.732
1.732
2.828
3.873
3.873
3.873
4.900
4.900
5.916
5.916
4.900
4.900
3.873
2.828
1.732
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Ds = |ge|\/S(S + 1) is considered, i.e., the contribution of the orbital angular
momentum is neglected. It seems as if the electrons’ orbit were rigidly fixed
— quenched — and unaffected by the magnetic field. As we shall see in Chap-
ter 6, this happens because inside the solid the transition-metal ions feel the
relatively strong electrostatic field of the neighboring ions. Therefore ions can
no longer be considered to be independent of each other, and so Hund’s rules
may become invalid. For iron, cobalt, and nickel ions the agreement is not very
good even for p; when the effective moment is taken from room-temperature
measurements. The reason for this is that for such ions thermal energies are on
the order of the energy difference between the ground state and higher-lying
energy levels, and thus the contribution of the latter to susceptibility cannot
be neglected.

3.2.7 Van Vleck Paramagnetism

In this subsection we shall return to the problem of europium, in which the
outermost electron shell is not closed although according to Hund’s rules
J = 0 in the ground state. The same situation occurs when two electrons
are present in the p-shell or four in the d-shell (or, in general, n = 21 electrons
in the shell with azimuthal quantum number [). In such cases the first nonva-
nishing contribution to paramagnetic susceptibility is obtained in the second
order of perturbation theory, and so higher-lying energy levels must also be
taken into account as intermediate states. The second-order correction to the
ground-state energy is given by

Z |(O|uB(L. + |9e|5 )[n)[?

3.2.87

n#0

This energy shift is always negative as the energy denominator is negative
in each term. The resulting magnetization is always along the magnetic field
direction, and the susceptibility is positive:

(O|(L + |ge|S2)|n
—2 JHon BZ' I |;q1|%)| ) . (3.2.88)

This phenomenon is called Van Vieck paramagnetism, and x the Van Vieck
susceptibility.r® If the excitation energy of the state |n) is not too large, the
small energy denominator may make this correction more important than the
diamagnetic contribution. When this Van Vleck contribution is taken into
account, the calculated paramagnetic susceptibility of substances containing
trivalent europium ions is in good agreement with measured data.

In the ground state of the samarium ion J takes a nonzero value, therefore
Sm** has a nonvanishing paramagnetic moment. Nevertheless the lowest-lying
excited states are close enough for that the Van Vleck second-order correction

193 H. VAN VLECK, 1932. See footnote on page 6.
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be comparable to the paramagnetic contribution. This explains why the effec-
tive magneton number determined from the ground-state configuration does
not agree with the measured value.

3.2.8 Electron Spin Resonance

As we have seen, when a paramagnetic ion of angular momentum J is placed
in a uniform magnetic field, the initial 2J 4 1-fold degeneracy of the ground
state — that is due to the 2J + 1 possible values of the quantum number
my — is split. In the presence of an electromagnetic radiation, transitions
between neighboring levels become possible in accordance with the selection
rule Amjy = £1. As the energy difference between two adjacent Zeeman levels
is

AFE = gJ,uBB, (3289)

atoms can absorb photons of this energy, and thus the electromagnetic field
of the corresponding frequency is absorbed in a resonant manner. This phe-
nomenon is called electron spin resonance (ESR) or electron paramagnetic
resonance (EPR). In fields on the order of several teslas, this resonant ab-
sorption occurs at a frequency of a few GHz (or, in terms of the wavelength,
in the centimeter (microwave) range). In experimental studies samples are
placed in a microwave field whose frequency is determined by the dimensions
of the cavity, and absorption is measured as the strength of the applied field is
varied. Then the Landé g j-factor is determined from the transition frequency.
The method is therefore suited to identifying paramagnetic ions within the
sample.

To understand resonant absorption, consider the magnetic moment u ; as
a classical vector that has an angular momentum hJ = —p ; /7, where

’}/J:gJM;:ngec (3290)

is the gyromagnetic ratio. For notational simplicity, we shall omit the label J.
A magnetic moment p whose axis makes an angle 6 with the direction of the
uniform magnetic field B experiences a torque

M =pux B, (3.2.91)
therefore the equation of motion of the magnetic moment is given by

1dp
=Bxpu. 3.2.92
St % ( )

Thus the moment precesses about the magnetic field direction at a con-
stant angular frequency wy, = B — the Larmor frequency. When a weak
perpendicular field of angular frequency w is superimposed on the uniform
field, the precessing moment will resonantly absorb energy from the magnetic
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field, provided w is equal to the precession frequency wr,. For all other fre-
quencies the relative phases shift continuously with time, and so no energy
will be absorbed.

For a quantum mechanical derivation of this equation we start with

WO (o) o) (3.2.93)

where the contribution of the magnetic field to the total Hamiltonian is
Hext = —p - B(t). (3.2.94)

According to (3.2.69), the magnetic moment is proportional to the total an-
gular momentum, thus the known commutation relations of the latter lead
to
dp
dt
When quantum mechanical averages of the operators are taken, classical equa-
tions of motions are recovered. In what follows, this average will be meant by

u

=B x pu. (3.2.95)

We shall now consider the previously outlined case. Two fields are applied:
a constant field, of magnitude By, along the z-axis, and a linearly polarized
time-dependent one, of amplitude 2B; and angular frequency w, along the
T-axis:

B, = 2B coswt, B, =0, B,=0By. (3.2.96)

The equation of motion in component form is

dpiy

= —vu,B
dt Aﬁj’y 05
Wy By~ 9yu.B (3.2.97)
dt = Yz Do — 2YHz 1 coswt, i
dp,
a = 2y By coswt .

If the time-dependent field is assumed to be weak compared to the constant
field, then the time dependence of the z component of the magnetic moment
can be ignored, as it is on the order of Bf. The solution of the system of
equations is then

_ B wr, (fz)

M 2 2
wi—w

2By w(pz)
coswt , =
Hy wi —w?

sinwt (3.2.98)
where wr, = vBy. Besides p, (which is in phase with the perturbing field) a
y component (which lags 7/2 behind the applied field) is also present. As a
generalization of this result the time dependence of the magnetic moment can
be written as
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p= () +x 2B, coswt + x” 2B sinwt , (3.2.99)
Ho Ho
where the quantities x’ and x” are tensors. The term proportional to x’
gives the response that is in phase with the applied field, so x’ is the usual
susceptibility. The term proportional to x”, which is 7/2 out of phase with
the applied field, can be related to energy absorption, as the energy absorbed
per unit time is

Q= 2°;OB1 X" B . (3.2.100)

It is customary to consider x’ and x” as the real and imaginary parts of a
complex susceptibility, x = x’ + ix”. Then

B : B .
u:<u>+x 1eflwt_|_x* 1e1wt.

(3.2.101)
Ho Ho

The linearly polarized field can be made up of two counterrotating circularly
polarized radiations; in this case x and its complex conjugate correspond
to the response to positive and negative polarization, respectively. From the
expressions in (3.2.98) it is readily seen that

w w?
Xoz = Xyo = 75% _L<52> =2 X0, (3.2.102)
where xo = po{u.)/Bo is the paramagnetic susceptibility.

The above expressions are singular at w = wr,. The imaginary part of x4z
cannot be precisely determined from these equations. One can only say that
it vanishes for all frequencies w # wy,, i.e., energy absorption is possible only
at the resonance frequency. The amplitude can nevertheless be determined
when one takes into account the interrelatedness of the real and complex
parts. To see this, consider the so-called relaxation function, ¢(t — to). This
describes how a system in thermal equilibrium in a magnetic field of unit
strength will relax toward its new equilibrium state when the magnetic field
is suddenly turned off at time to. Similarly, —¢'(t —to) = —d(t —to)/dt gives
the magnetization caused at time ¢ by the application of a delta function pulse
at an earlier time ty. For time-dependent magnetic fields integration of the
contributions from times prior to ¢ leads to

plt) = () = [ ¢/t~ t0)Blto) dt. (3.2.103)

When a harmonic magnetic field B(t) = uoHe “? of frequency w is applied,
the time-dependent part of the magnetic moment will vary with the same
frequency, _

p(t) = () + p(w)e ™", (3.2.104)

and thus the frequency-dependent magnetic susceptibility is given by
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t 0
X(@) = —po / &' (t — to)e =) dty = —pio / o (et (3.2.105)
o0 0
Integration by parts now leads to
xX(w) = xo + 1w po / o(t)e'dt. (3.2.106)
0

One may, in principle, obtain the relaxation function — and thus the real and
imaginary parts of the susceptibility as well — by solving the earlier equations
for the temporal variation of the magnetic moment in the special case when
the magnetic field is suddenly turned off. Instead of proceeding along this line
we shall make use of only one point of the above considerations: that magneti-
zation is the causal response to an applied field. As it will be demonstrated in
the Appendix of Volume 3, causality implies that when the frequency variable
is extended to the complex plane, the frequency-dependent susceptibility is
analytic on the upper half plane — moreover, its real and imaginary parts are
related by the Kramers—Kronig relations®°

2 1\ 1 /
X' (W) = x/(c0) + W/wé (“’3 dw’, (3.2.107-a)
0 w w
2 o / /
X' (w) = - / X (3.2.107-b)
™) W —w?
0

Using the previously derived form for x. ., we have

Xy = 7;5(1,«) — WL)WL X0 - (3.2.108)
A sharp resonance appears only because we have ignored all mechanisms
that can cause the magnetic moment to relax. For an isolated atom the z com-
ponent of the angular momentum is conserved. However, in condensed matter
angular momentum can be transferred to other atoms or the lattice, and this
leads to the relaxation of the magnetic moment toward its equilibrium value.
This phenomenon is called the spin-lattice relaxation. We shall not discuss
these interactions in detail here — nonetheless assume that the relaxation of
a magnetic moment can be characterized by a longitudinal or spin-lattice re-
laxzation time T;. Then the equation of motion for the z component of the
magnetization is

dp
dt

20 H. A. KRAMERS, 1927, R. Kronia, 1926.

Mz — <NZ> .

= 2y By coswt — T

(3.2.109)
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The new term corresponds to the assumption that without the driving pre-
cessing field the system would approach its equilibrium state exponentially,
with a characteristic time 7. As the variation of the spin component along
the field By is accompanied by the variation of the magnetic energy of the
ion, during the spin-lattice relaxation process energy has to be transferred to
another part of the system: the lattice.

Other ions also influence the temporal variations of the x and y components
of the magnetic moment, as the moment is moving in the nonuniform field
created by its neighbors. This can be characterized phenomenologically by
a transverse or spin—spin relaxation time T. As no energy transfer occurs
during transverse relaxation, spin—spin relaxation is usually several orders of
magnitude faster than spin—lattice relaxation: 75 <« Tj. Typical values are
Ty ~107%s and Tp ~ 107105,

When relaxation is taken into account, the equation of motion reads

dps g _ Ha

dt = —YlyDo — T )

d 2 (3.2.110)
:ty = Yz Bo — 2yp. By coswt — ';Z .

These equations and (3.2.109) are jointly called the Bloch equations.>’ When
only the constant field is present, the previous equations simplify to

dpg Ha
= — B —
dt P)//'L’l/ 0 z—y2 )
dpiy Hy
Y — yugBy— 1Y, 3.2.111
q = YHaBo— 1 ( )
d,uz — _,uz - <:uz>
dt T, '
Their solution is
py = Acoswrt - e T2
7t/T2

fy = Asinwrt - e (3.2.112)

e = (e} [1 = Bt/ T

The oscillation of angular frequency wy, is indeed damped exponentially, and
also the z component approaches its saturation value exponentially — however,
the two relaxation times are different.

When precession is maintained via the application of a field of angular
frequency w, a forced oscillation is obtained. To simplify the solution of the

21 F. BrocH, 1946. FELIX BrLocH (1905-1983) shared the Nobel Prize with Ep-
WARD MILLS PURCELL (1912-1997) in 1952 “for their development of new meth-
ods for nuclear magnetic precision measurements and discoveries in connection
therewith”.
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equations of motion, the linearly polarized field of frequency w is replaced by
two fields of amplitude B; that are circularly polarized and counterrotating
in the (z,y) plane. Only the component corotating with the precession direc-
tion will have important effects, the other can be neglected. In the circularly
polarized field obtained this way the equations of motion are

a = —YyBo + yp.Bisinwt — T,
dpay Hy

= zB - zB t— 5 3.2.113
ar = VHeBo—p=Breoswt — ( )
d z . z z
c/;t = Yy By coswt — By sinwt — a Tfﬂ ) .

As the magnetic moment corotates with the perturbing field, it is convenient
to switch to a coordinate system rotating with angular frequency w. The
components in the two frames are related by

Hgr = fhgp COSWE + Ly sinwt [y = by COSWE — fig SIDWE (3.2.114)
and
fa = g COSWE — gy sinwt fy = by COS Wt + [ sinwt . (3.2.115)
Thus, in the rotating reference frame
d'p dp
dt a B ( )

where w is a vector of magnitude w along the constant magnetic field. In this
reference frame the equations of motion are

d’ prgr Ko
dt - _A///fy’BO +wﬂy’ - T, )
d/ Y Y
(;y — vt Bo — s B — Wt — ‘;32 , (3.2.117)
d'p, Mz — <NZ>
= /B - .
dt YHy D1 T

It is immediately seen that in the rotating coordinate system the moment
precesses as if acted upon by an effective field Beg = B — w/7.
Assuming again that the temporal variations of the z component can be
neglected, a stationary solution is found in the rotating reference frame:
o A/Bl (w - WL)T22 < >
Ho' =0 4 (w — wp)2T2 + 2 B2 T,

vB1Ts

My = _1 + (w _ wL)2T22 + "/2B%T1T2 <:U“Z> ) (32118)

B 14 (w— wp)?T2 (i)
He = 14 (w - wL)2T22 + 72312T1T2 Bal-
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Going back to the original coordinate system, we have

T2 1.
fy = |4 (w0 — wi)?T2 + 12BN T, [(w — wy,) coswt + T smwt} vBi{u.),
(3.2.119)
T3

= s wt B z) -
=y (w—wL)?T3 +2BITh T3 cose } B ps)

(w— wy,)sinwt — !
111
w wr, w Tg

These yield

X/ _Xo w. Ty (WL - W)TQ
w2 1 — 272 2B2NT,’
(@ —wnf Ty + 2 BT, (3.2.120)
Xy = X0 T !
T 2 1+ (w — wL)2T22 + 72312T1T2 ’
Introducing the notation
I = 2 \/1 + 2BV T ~ 2 (3.2.121)
T ! T’
the real and imaginary parts of susceptibility are found to be
/ X0 (wr, —w)
Xzz — 9 WL(w _WL)2 + (F/Q)Z ;
(3.2.122)
n X0 1 1
X:E:E - WL,

2 Ts (w —wL)2 + (F/2)2 ’

Figure 3.2 shows the frequency dependence of the real and imaginary parts of
susceptibility for typical values of the magnetic field and the relaxation time.

n

Fig. 3.2. Frequency dependence of the real and imaginary parts of susceptibility

Thus, instead of the infinitely sharp resonance obtained with the neglect of
relaxation processes, a Lorentzian form is obtained for the imaginary part. In
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weak perturbing fields the full width at half maximum (FWHM) is given by
1/T5. The line width is therefore a measure of the spin—spin relaxation time.
In the relaxation-free limit 7o — oo (I" — 0) (3.2.108) is recovered for the
imaginary part — however, the real part is now not precisely (3.2.102), as the
field counterrotating with the magnetic moment has been neglected. The two
expressions are, nonetheless, identical in the vicinity of the resonance (i.e., for
frequencies w & wy,) indicating that the approximation is justified.

The foregoing analysis showed that for a given external field there is a sin-
gle resonant frequency. The selection rule Am; = +1 implies that transition is
possible only between adjacent levels. As the energy difference AE = gyupB
is independent of m s, the spectrum would consist of a single line for any value
of J. In solids, however, this may change. The electrostatic potential due to
neighboring atoms modifies the ground state of paramagnetic ions, and in par-
ticular, may partially lift the 2.J + 1-fold degeneracy. If the resulting energy
shift is smaller than that caused by the magnetic field, absorption may occur
at several nearby frequencies. This gives the fine structure of paramagnetic
resonance. Atomic levels are further split by the hyperfine interaction with
the nucleus of magnetic moment p;. This gives rise to the hyperfine structure
of the absorption spectrum. The location of the resonance thus indicates the
species of the paramagnetic ion as well as the properties of its surroundings,
while its line width yields information about the interactions responsible for
relaxation.

3.3 The Role of Nuclei

So far we have only discussed the states of core electrons. The nucleus has been
assumed to be a pointlike and structureless object whose charge — together
with that of the electrons — determines the total charge of the ion. However,
the nucleus also possesses a magnetic moment through which it can interact
with the electrons’ spin. The role of the nucleus will also be important in the
study of the structure and dynamics of solids by neutron scattering. Below
we shall only consider the consequences of magnetic interactions.

3.3.1 Interaction with Nuclear Magnetic Moments

Both nucleon types, protons and neutrons, possess a magnetic moment. When
expressed in terms of the nuclear magneton pn = efi/2mp, the magnetic
moment of the proton is p, = 2.793 un, while that of the neutron is p, =
—1.913 un. Consequently most of the nuclei also possess a magnetic moment.
The magnetic moment of a nucleus of angular momentum (nuclear spin) kI
is customarily written as

pr = grun, (3.3.1)

where g7 is the g-factor of the nucleus. Protons and neutrons are spin-1/2
particles, thus their g-factors are g, = 5.586 and g, = —3.826. For most
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nuclei, the g-factor is of order unity, and the quantum number I can take
integer or half-integer values.

Owing to the great disparity between the proton and electron mass, the
nuclear magneton is three orders of magnitude smaller than the Bohr magne-
ton, un ~ up/1836. For this reason one can usually ignore nuclear magnetic
moments when studying magnetic properties. However, there are some situ-
ations where the magnetic field due to nuclear magnetic moments becomes
important. As we have already mentioned, such fields give rise to the hyperfine
structure of energy levels.?? Using the Hamiltonian (3.2.19) of an electron in
a magnetic field and the Coulomb gauge div A =0,

Hus = Wi p-A(r)— B(r)-p,, (3.3.2)

gives the nonrelativistic contribution to the hyperfine interaction that is pro-
portional to the nuclear magnetic moment. The field B(r) due to a nucleus
of magnetic moment p; is derived from the vector potential
X T
A(T) — Ho M1 H

1
- s = —4; prx Vo (3.3.3)
Here 7 is the position vector relative to the nucleus. The first term in (3.3.2)
represents the spin—orbit interaction between the nuclear spin and the orbiting
electron, while the second term is the spin—spin (or dipole-dipole) coupling.
Substitution of the above expression for the vector potential into the
Hamiltonian of the hyperfine interaction and rearrangement of the scalar triple

product gives the following form for the first term:

euoh

(1) €lo
H 4mmers

hf — Tgp'[ulxr]:

l- . 3.3.4
Arme 1295 ( )

This expression can also be viewed as the energy of the nuclear magnetic
moment p; in the magnetic field

o —ehl

B(r) (3.3.5)

4T mers

created by orbiting electron charges.
In the second term of (3.3.2) B(r) is derived from the previous expression
for the vector potential as B =V x A. Making use of the vector identity

ax(bxec)=(a-c)b—(a-b)c (3.3.6)
that also holds when some of the vectors are the operator V, we have
22 The electric quadrupole moment of nonspherically symmetric nuclei also con-

tributes to the hyperfine structure — but here we are concerned with magnetic
interactions alone.
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MY =M (V) V)~ (g )V B3)

According to (C.3.8), V?(1/r) vanishes everywhere except at r = 0, thus
with the exception of this point

47 B

W — _Ho <3(u1.7;)5(us.r) (H[T'?)Ns)>’ (3.3.8)

which is indeed a dipole—dipole interaction between the nuclear magnetic mo-
ment and the electron spin.
At r = 0 the Laplacian is V?(1/r) = —4md(r), thus the second term in

Hff) gives a singular contribution on the order of

—404ﬂ'ul g O(T) . (3.3.9)
T

Another singular contribution comes from the first term of (3.3.7). It can be
evaluated using the Fourier representation of 1/r, as given in (C.1.65):

. 1 . 1 elar
li Gy 9 V) ==ty [ @)y a)da. (3310)

When the parentheses are expanded,

(- @(Bs @) =D pir.abis,plads , (3.3.11)
af

and the limit » — 0 is taken, only the terms o = 3 contribute to the integral
on the right-hand side of (3.3.10):

. - 1 . .
liH%) elq»rq gﬁ L1 abs,sdg = 6a53 hn%)/elq"'uz,a/ﬁsﬂ dqg
" a " (3.3.12)
(2m)?
= 6&5 3 MLa//*s,a(s(r) P
hence 1 4
. T
lim (e V) (k- V= = () g ) (3.3.13)

When all these contributions are collected, the interaction between the
nuclear magnetic moment p; and the electrons is written as

rd r3

—eh 3(pg - r -7 -
th:_Zo{ 3l-u1+[ (s m)(r-m) (B 1p)
T | MeT

(3.3.14)

8
o |
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The last term is the Fermi contact term.2? It is nonzero only when the elec-
tron’s wavefunction overlaps with that of the nucleus, therefore it is important
only for s electrons.

3.3.2 Nuclear Magnetic Resonance

In perfect analogy to the behavior of the paramagnetic moment of the electron
shell in a magnetic field, the nuclear magnetic moment also precesses around
the direction of the applied magnetic field. If the nucleus is simultaneously
subjected to an electromagnetic radiation of finite frequency, it can absorb
energy as long as the frequency of the radiation is equal to the precession
frequency. This phenomenon is called nuclear magnetic resonance (NMR).?4
The principle is the same as for electron spin resonance. The only apparent
difference is that the resonance frequency is determined from the expression

hw = gyusB (3.3.15)

for ESR and from
hw = grunB (3.3.16)

for NMR. In a magnetic field of 1 tesla, the resonant frequency for a free
electron spin is v, = 28 GHz. Because of the huge disparity between the
Bohr magneton and the nuclear magneton, the resonance for protons occurs
at a much lower frequency, 42.6 MHz. This means that for field strengths
commonly used in experiments — B is typically a few (at most 10 to 15)
teslas — measurements can be made in the radiofrequency (rather than the
microwave) region.

The same Bloch equations are used in both cases, however, the physical
processes that determine the relaxation times 77 and T» are, naturally, com-
pletely different for the relaxation of the nuclear spin and for the relaxation
of the paramagnetic moment of an electron shell. Instead of the spin-lattice
interaction, the relaxation time 7j is basically determined by the hyperfine
interaction in metals. As it was shown by J. KORRINGA (1950), T is then
inversely proportional to temperature. This relation is called the Korringa
law, and the phenomenon itself the Korringa relazation.

Just as the electron spin feels the presence of the nuclear spin, the field felt
by the nuclear spin also depends on the polarization of the electron states. This
will be of particular interest in metals where s-electrons have a nonvanishing
density at the nucleus, therefore their polarization induced by the uniform

% B. FErRMI, 1930. ENrRICO FERMI (1901-1954) was awarded the Nobel Prize in 1938
“for his demonstrations of the existence of new radioactive elements produced by
neutron irradiation, and for his related discovery of nuclear reactions brought
about by slow neutrons”.

24 See footnote on page 65.



72 3 The Building Blocks of Solids

field gives rise to an additional energy shift through the Fermi contact term.
This leads to the Knight shift?® of the NMR line in metals.

NMR does not have the same scope of applications as ESR since in solid-
state physics (and in many applications) one is not interested in the magnetic
moment of the nucleus but rather in the internal, local magnetic field within
the sample, which can be inferred from the location of the resonance. Com-
pared to a free atom, this frequency is shifted as neighboring para- or diamag-
netic atoms/ions cause tiny variations in the effective magnetic field felt by
the nucleus. This chemical shift being characteristic of the local environment
of the nucleus, its measurement can yield information about it. Nuclear mag-
netic resonance methods are therefore extensively used in chemical, biological,
and medical applications.

Further information can be gained about the local environment if the nu-
cleus also possesses an electric quadrupole moment, since the latter interacts
with the gradient of the crystalline electric field at the nucleus. This inter-
action modifies the location and width of the absorption peak measured by
NMR.

3.3.3 The Mossbauer effect

As we have already mentioned, the most important field of application of NMR
is the mapping of the vicinity of a nucleus within a bulk matter (in many
cases a living tissue). Another method for studying the local environment
is provided by the Mdssbauer effect?® (1957) through its influence on the
transitions between the energy levels of the nucleus. In contrast to NMR,
here one is concerned with transitions between states with different quantum
numbers I — and not between the sublevels of different magnetic quantum
numbers m; into which the nuclear level I is split in a magnetic field. The
most commonly used isotope is iron-57 (°"Fe) — however the phenomenon can
be studied on a handful of other isotopes as well.

Upon the capture of an electron, the radioactive >"Co nucleus decays into
a spin-5/2 excited state of the ®”Fe isotope, which, in turn, quickly decays into
a spin-3/2 excited state through the emission of a high-energy y photon. The
I = 3/2 level is somewhat longer lived (7 = 1077 s), and will eventually make
a transition to the I = 1/2 ground state through the emission of a 14.4keV y
photon.

The process in which a photon absorbed by an atom is re-emitted at the
same frequency is called resonance fluorescence. The inverse process, in which
a photon emitted by an atom is absorbed by an identical atom, is called
resonance absorption. Such processes occur with high probability when the

25 W. D. KNIGHT, 1949.

26 RupoLF Lupwic MOSSBAUER (1929-) was awarded the Nobel Prize in 1961 “for
his researches concerning the resonance absorption of gamma radiation and his
discovery in this connection of the effect which bears his name”.
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photon is emitted and absorbed in a transition in the electron shell. Although
momentum is conserved in emission and absorption processes alike, and thus
the atoms will be recoiled, the recoil energy is nonetheless smaller than the
natural line width. The situation is different for y rays emitted by individual
nuclei. Here the recoil energy can be several orders of magnitude larger than
the natural line width — for the above mentioned transition of °"Fe, I' =
1078 eV, while the recoil energy is 2meV —, and so the photon emitted by
a free nucleus could not be absorbed by another free identical nucleus in its
ground state. As MOSSBAUER pointed out, the situation is radically different
when the emitting and absorbing isotopes are embedded in crystal lattices. In
this case the momentum is taken up by the entire lattice, making the recoil
energy negligible. Thus at low temperatures, where the lattice vibrations are
small, resonance absorption may occur with high probability. This is why the
phenomenon is also referred to as the recoilless emission and nuclear resonance
absorption of gamma radiation.

To be more precise, there can be a small difference between the frequen-
cies of the emitted and absorbable photons. Since the size of the nucleus is
slightly but distinctly different in the I = 3/2 and I = 1/2 states, the en-
ergy corrections due to the Coulomb interaction between the nucleus and the
electron cloud are different in the excited state and in the ground state. The
energy difference between the two states is proportional to the difference of
the nuclear radii, and also depends on the electron density at the nucleus. If
the electron densities at the emitter and absorber nuclei are different, isomer
shift — the frequency difference of the emitted and absorbable rays — can pre-
vent absorption. This can be remedied by moving the radiation source relative
to the sample: the Doppler shift caused by the relative velocity of the emitter
and the absorber can compensate for the isomer shift.

If a local magnetic field is present at the nucleus, it will split the energy
levels of both the ground and excited states by an amount called the Zeeman
energy. Moreover, if the electric field has a finite gradient at the nucleus be-
cause of the crystalline surroundings, then — due to the quadrupole moment
of the I = 3/2 state — the excited levels m; = £3/2 and m; = £1/2 will suffer
additional shifts in opposite directions. The arising level structure is shown
schematically in Fig. 3.3(a). Due attention has been paid to the sign of the
magnetic moment: positive in the ground state (1 = 0.09 ux) and negative
in the excited state (u = —0.15 un). The selection rules Am; = 0,+1 allow
six transitions among these levels. The transition energies are shifted by dif-
ferent amounts with respect to the transition energy in a free atom but the
Doppler effect can compensate for these shifts as well. From measurements
of the extent of the splitting and of the relative intensities of these lines one
can determine the internal local fields, their direction and temperature depen-
dence, and from these specify the local environment. As an example, consider
Fig. 3.3(b) showing the Mdssbauer spectrum of an iron sample containing
5TFe, measured at various temperatures using a °”Co source. Above the Curie
temperature, where no internal magnetic field is present, a single line appears.



74 3 The Building Blocks of Solids

120~ T73°C —

—_— 132

"

+3/2/ g
[=5/2 = y L +12

=302 < e &

+1/2 %, 2

0g .y X -12 2

-32 3

z

e £,=14.4keV

08 4 _
4% x1p 12

12 == e 12

S2ben Vo b o by b 1A L]

Emission Isomer Quadrupole Zeeman 6 4 2 0 2 4 6
Process  Shift  Splitting  Splitting SPEED (mm/sec)
(a) (b)

Fig. 3.3. (a) Splitting of the levels of °"Fe in the presence of a local magnetic field
and a finite-gradient electric field. (b) Typical Mdssbauer spectra for metallic 5"Fe
between room temperature and the Curie temperature [R. S. Preston, S. S. Hanna,
and J. Heberle, Phys. Rev. 128, 2207 (1962)]

At lower temperatures the sample becomes spontaneously magnetized. The
internal magnetic field splits the nuclear levels, and six distinct lines appear;
they correspond to the six allowed transitions.
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Bonding in Solids

The foregoing discussion of the electron shells of individual atoms and ions
belongs essentially to the realm of atomic or molecular physics. Condensed
matter physics is principally concerned with what happens or changes when
atoms are placed in the vicinity of each other, at distances characteristic of
solids. Experience shows that for such densities direct interactions between
the ion cores and effective ones mediated by unbound electrons create stable,
rigid structures. In this chapter we shall give a brief overview of the types
of bonds electrons can create between atoms, ions, or molecules, and then
discuss the methods used for calculating the cohesive energy — the measure of
stability in solids. We shall return to the relation between the dominant type
of bonding in the solid and its structure after the presentation of crystalline
structures, in Chapter 7.

4.1 Types of Bonds and Cohesive Energy

One can imagine building up solids from a free gas of atoms or molecules
by letting them approach each other until they are at the positions they
would occupy within the solid. During this procedure the state of electrons
on closed inner shells does not change considerably. On the other hand, the
state of electrons on incompletely filled outer shells may change essentially.
Such electrons may be stripped off from the atomic core leaving behind a
positive ion, and become more or less free, delocalized. They may equally
become localized around another atom, thereby changing its charge. In other
cases they may create bonds between two atoms that are similar to covalent
chemical bonds in molecules — then the density of the electrons involved in the
bond (the bonding electrons) has its maximum in the region between the two
atoms. In each case, the bonding of atomic cores is ensured by electrons. One
may say that electrons are the glue that holds ion cores together via Coulomb
interactions.
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Depending on the character of the electron states within the solid that
are primarily responsible for bonding, the following types of bonds are dis-
tinguished: (i) van der Waals bond, (ii) ionic bond, (iii) covalent bond, (iv)
metallic bond.

For completeness, at the end of the chapter we shall briefly discuss a
particular possibility for chemical bonding, the so-called hydrogen bond. This
plays an important role in biological substances but hardly any in solid-state
physics. Bonding between atomic cores is then ensured by hydrogen bonds
created by HT ions (bare protons), and not by electrons.

4.1.1 Classification of Solids According to the Type of the Bond

The properties of solids are determined to a large extent by the bonds that
hold their constituents together. Thus the classification of bonds gives a pos-
sible classification of solids as well. However, it should be borne in mind that
in many cases bonds do not appear in a clear-cut manner. Ionic and covalent
bonds can be regarded as two extremes between which a continuity exists. It
is not uncommon either that different types of bonding occur along different
directions in the same sample. For example, in graphite covalent bonds are
found within the planes but only van der Waals forces between layers. Accord-
ing to the dominant type of bonding, the following classes are distinguished:
(i) molecular crystals, (ii) ionic crystals, (iii) covalent crystals, (iv) metals.

In molecular crystals closed-shell atoms or molecules are held together by
van der Waals forces. Noble gases form such molecular crystals in their solid
state — and so do certain large molecules, e.g. soccer-ball-shaped fullerene
molecules (Cgp) (see page 30).

The other names are self-explanatory. In ionic crystals the dominant bond-
ing is ionic. The most prominent representatives of this class are alkali halides.
Donor—acceptor salts are also held together by ionic bonds; in this case the
regular crystalline structure is formed by donor molecules that easily give away
electrons and acceptor molecules that easily take them up. Special mention
should be made of TTF-TCNQ and its derivatives: their particular properties
— to be discussed in detail in Chapter 33 — opened up the door through which
organic materials found their way into solid-state physics.

A crystal is called covalent if the ion cores are bound together by covalent
chemical bonds formed by valence electrons localized along the bond. Owing
to the saturated character of covalent bonds such materials are insulators.
When bonds are unsaturated the material is a conductor. However, such a
simple explanation cannot account for the forces that hold metals together.
That is why metallic bond forms a separate category, in which delocalized
electrons play the primary role.

4.1.2 Cohesive Energy

Solids are usually thermally stable up to a certain temperature. The attractive
interaction among atoms gives rise to a lower energy in a solid than in a



4.1 Types of Bonds and Cohesive Energy 7

liquid, which is less bonded, or in a gas, which is made up of practically
freely moving atoms or molecules. The extent by which the energy of the solid
state is lower than the energy of the set of independent constituent atoms is
called the cohesive energy, since it accounts for the cohesion of the solid. In
the literature it is customarily given as the energy (usually in units of eV)
required to remove one atom or molecule — or, alternatively, as the cohesive
energy for one mole of substance (in units of kJ/mol). For convenience, we
shall use both definitions below. The conversion factor is'

v kJ
1 ¢ —96.4853 . (4.1.1)
atom mol

A precise calculation of the cohesive energy is rather difficult. Besides the en-
ergies of the bonds formed by electrons between the atoms, due account must
be taken of the oscillatory motion of the atoms within the crystal, which also
contributes to the total energy of the solid. Its measurement is not straightfor-
ward either, therefore data cited by different sources may significantly differ.

Table 4.1. Cohesive energy of some chemical elements (in units of €V /atom)

Li Be C O F Ne
1.66 3.33 7.35 2.60 0.84 0.020
Na Mg Si S Cl Ar
1.13 1.53 466 286 1.40 0.080
K Ca Fe Co Ni Cu Ge Se Br Kr
0.94 1.83 4.31 441 444 3.50 3.85 2.13 1.22 0.116
Rb Sr Ru Rh Pd Ag Sn Te I Xe
0.88 1.70 6.68 5.77 3.90 2.96 3.12 2,02 1.11 0.17
Cs Ba Os Ir Pt Au Pb Po At Rn
0.83 1.86 812 6.89 585 3.80 2.04 150 N/A 0.202

Table 4.1 clearly shows that cohesive energies are substantially different
for “noble gases” — that form molecular crystals in the solid state —, for simple
or transition metals, and covalently bonded elemental semiconductors. The
cohesive energy of noble gases is the smallest of all, on the order of 0.1eV
per atom. For simple metals it is around 1eV per atom, and even larger for
transition metals and covalently bonded crystals.

Similar or even larger cohesive energies are found in covalently bonded
crystals with a partially ionic character, and also in crystals with purely ionic
bonds. For the latter, it is often not the cohesive energy that is listed in tables
but the separation energy, which is the energy difference between the total
crystal energy per molecule and the energy of a free molecule. Table 4.2 con-
tains the cohesive and separation energies for some purely ionic alkali halide
crystals and some compounds with partially ionic bonds.

! Units of kcal/mol are often used in older tables. This can be converted to units
of kJ/mol using the conversion factor 1kcal = 4.184 kJ.
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Table 4.2. Low-temperature cohesive and separation energies for some purely ionic
alkali halide crystals and some compounds with partially ionic bonds (in units of
kJ/mol and eV /molecule)

Cohesive energy Cohesive energy
Substance Substance
kJ/mol eV /molecule kJ/mol eV /molecule
LiF 1036 10.74 LiCl 853 8.84
NaF 923 9.57 NaCl 786 8.15
KF 821 8.51 KCl1 715 7.41
RbF 785 8.14 RbCl 689 7.14
CsF 740 7.67 CsCl 659 6.83
S ti S ti
Substance eparation energy Substance eparation energy
kJ/mol eV /molecule kJ/mol eV /molecule
CaF2 625 6.48 MgO 950 9.85
PbCl, 521 5.40 Cu20 788 8.17
ZnS 852 8.83 Al>O3 2790 28.92

In the following sections we shall briefly discuss the various types of bond-
ing, the fundamentals of the underlying quantum mechanics — without getting
involved in the subtleties of quantum chemistry —, the theoretical methods for
calculating the cohesive energy, and its expected order of magnitude.

4.2 Molecular crystals

As it has been already mentioned, stable and inert closed-shell molecules are
held together by rather weak forces in molecular crystals. This weak interac-
tion is a consequence of quantum fluctuations. A fluctuating dipole moment
on one atom will polarize the closed electron shell of another, giving rise to an
induced dipole moment. As the electric field of a dipole drops off as the inverse
cube of the distance, the energy of attraction between a randomly appearing
electric dipole and the dipole it induces is inversely proportional to the sixth
power of their separation R:

C
€= R (4.2.1)
This interaction is called the van der Waals interaction? although its quantum
mechanical interpretation is due to F. LONDON (1930).

2 J. D. VAN DER WAALS, 1873. JOHANNES DIDERIK VAN DER WAALS (1837-1923)
was awarded the Nobel Prize in 1910 “for his work on the equation of state for
gases and liquids”.
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4.2.1 Van der Waals Bonds in Quantum Mechanics

For a more precise description of the van der Waals interaction consider two
noble-gas atoms, at points Ry and Rp, separated by a distance R = |R| =
|Rp — Ra|. As we are concerned with the state of electrons only, the positions
of atoms are assumed to be rigidly fixed and thus their kinetic energy is ignored
throughout this chapter. As long as the size of the electron clouds are smaller
than the separation R of the atoms, each electron can be unambiguously
associated with one atom. The position vectors of the Z electrons that belong
to the atom at Rx (Rgp) will be denoted by rEA) (TEB)). Thus the Hamiltonian
of the system is composed of three parts:

H = Ha + Hp + Hin , (4.2.2)

where Ha contains the kinetic energy operator of the electrons that belong to
the atom at Ra plus the Coulomb interactions of these electrons with each
other and with the nucleus:

== V2+1i - i ze (4.2.3)
A - i - . . .
=1 2me 2 i,.j;l |Tz(‘A) - TE'A)| i=1 }T‘l(‘A) - RA|
7]

The Hamiltonian of the other atom, Hp takes the same form, while Hj,¢ con-
tains the pairwise Coulomb interactions between the two nuclei, between the
nuclei and the electrons bound to the other atom, and between the electrons
bound to different atoms:

7% & 7 72 z &
Hint = — + + .
i ; <ITEA) ~Rp| |r” - RAI) i; =]
(4.2.4)
When the notations ’FZ(-A) = rz(-A) —RA and ’FZ(-B) = rz(-B) — Rp are introduced,
i.e., when the position vectors of the electrons are referred to the equilibrium
position of their respective atoms, we have

728 & < 7& z& ) z &2
Hint - — _ + _ 4 B - .
] ; ‘rl(’A) - R‘ |7"z(‘B) + R‘ zjzz:l ‘ z('A) - TS'B) - R‘

(4.2.5)

As R is assumed to be much larger than |FZ(.A)| and |7FEB) |, we shall expand

the previous expression into a power series in the electron position vectors.
Using the expansions

1 A 001 Lm0 1
- . (4.26
R—#®™ Z T gr, R T 2 £ T i gpaors R T (1H20)

and
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1 _ L N _amy 901
|R— (FEA) _ ;§B))| "R Z (Tiot Tja )5Ra R (4.2.7)
L™ (+A) _ By () _ @)y 071
+QZ(T' Tia ) (Tis rjﬁ)aRaaRgR+""

as well as the relations

0 1 Ne 0? 1 1

OR\R~ R OR.ORs R R Pmems Sl (4.28)

where n, = R, /R is the o component of the unit vector n along the direction
R, it is easily seen that the zeroth- as well as the first-order terms cancel out,
and the surviving second-order term contains the coordinates of the electrons
of both atoms:

52
€ ~(A ~ ~(A) ~

Hint = ~ps g {3(7’1(- ) ~n)(r§B) ‘n) — 7'1(‘ ) -’I”S-B)} . (4.2.9)

ij

Introducing the dipole moments of the atoms by

A
d® = —3FN L a® = N FE) (4.2.10)
=1

i=1

the Hamiltonian of the interaction takes the usual form of dipole-dipole in-
teractions,

1
— ps
This shows that the leading term in the interaction of two distant neutral
atoms is the dipole—dipole interaction. For closed-shell atoms the dipole mo-
ment vanishes as their charge distribution is spherically symmetric. The first
nonvanishing contribution to the energy appears in the second order of per-
turbation theory. This correction can be viewed as the interaction between
the induced dipole moments of the electron clouds. A well-known theorem of
quantum mechanical perturbation theory asserts that the second-order energy
correction is always negative for ground-state atoms — which means that in
this particular approximation the two atoms attract one another. The energy
correction depends on separation as 1/R%, and its strength is determined by
the induced dipole moments of the atoms.

An estimation of the matrix elements that appear in perturbation theory
gives the interaction energy

Hing = [3(d<A> n)(d® -n) —d?) . d(B>] . (4.2.11)

E=-6° (‘;‘,’)5, (4.2.12)

where ag is the Bohr radius. As ag is smaller than usual interatomic distances,
this energy is much smaller than usual Coulomb energies of order €2/ R. Weak
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and short as it may be, the van der Waals force is the only one that can hold
together neutral atoms or molecules with zero permanent dipole moment in
a solid when interatomic distances are larger than the dimensions of atomic
electron clouds (i.e., when each electron is essentially localized around one
particular nucleus). Van der Waals forces act under other circumstances as
well. However, their effects can be safely ignored when other interactions are
also present.

4.2.2 Cohesive Energy of Molecular Crystals

If attractive 1/76 interactions were present in molecular crystals all the way
down to arbitrarily small scales, these crystals would collapse. This is obvi-
ously not the case. The derivation of the van der Waals interaction was based
on the assumption that the electron clouds of the two molecules do not over-
lap. At small distances, when the electron shells would overlap, the molecules
repel each other much like rigid spheres. In molecular crystals this short-range
repulsion is customarily taken into account as an empirical term that drops
off as a high power of distance. For computational ease — although not implied
by any rigorous derivation — the most common choice is the Lennard-Jones
(6-12) potential® that contains the van der Waals interaction and the short-
distance repulsion in the form

v =1e|(7)" - (7] (1.213)

The spatial variation of the potential is shown in Fig. 4.1. Although there is
no compelling reason for the choice of 12 as the power in the repulsive term,
it provides a remarkably good description for the solid state of noble gases.

uw)

Lennard-Jones potential

== /G

/ van der Waals potential
/

i
1

Fig. 4.1. The Lennard-Jones potential as a function of distance

The parameters € and ¢ in the potential can be related to the virial coef-
ficients of statistical physics, thus they can be determined from the behavior

3 J. E. LENNARD-JONES, 1924.



82 4 Bonding in Solids

of the gas phase. The values thus obtained for these parameters are given in
Table 4.3. When these are known, the properties of the solid phase can be
determined without further fitting parameters.

Table 4.3. Values of the Lennard-Jones parameters € and o determined from the
behavior of the gas state in noble gases. 7o (rg") and o (e5°7) are the calculated
(measured) values of the smallest interatomic distance and the cohesive energy per

atom, respectively

Ne Ar Kr Xe
e (eV) 0.003  0.010  0.014  0.020

o (A) 2.78 3.40 3.60 4.10

ro (A) 3.03 3.71 3.93 4.47
P (A) 3.155  3.756  3.992  4.336
g0 (V)  —0.026 —0.086 —0.121 —0.172
€SP (V)  —0.020 —0.080 —0.116 —0.17

To calculate the total energy of a molecular crystal, the potential energies
felt by individual molecules have to be summed. Using the notation rq for the
nearest-neighbor distance, the separation r;; between more distant molecules
is customarily written as r;; = p;;79. The total energy is then

o \ 12 N
Ey = 4e —
0 ; <pijT0) <pijr0) 1
(4.2.14)
o\ 12 o\ O
:%N46 Alg( > —Ag( > )
To To
where the structure-dependent coefficients
4,=% < 1 )n (4.2.15)
Pij

J
are easily calculated, as the series converge rapidly because of the large ex-
ponents. For face-centered cubic crystals, where each atom has 12 nearest
neighbors, Ag = 14.4539 and A5 = 12.1319. For body-centered cubic struc-

tures, where the coordination number is 8, Ag = 12.2533 and A2 = 9.1142.
The equilibrium distance between nearest neighbors obtained by minimiz-
2412

ing the energy is
1/6
Tro = < A6 > g

With this value for the equilibrium lattice constant the energy per atom is

(4.2.16)
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AQ
- 6 €.
241

The above values for the coefficients Ag and Ajs give g = 1.09 o for face-
centered cubic crystals. Using the o obtained from the virial coefficients (which
are, in turn, determined from the properties of the gas phase), (4.2.16) gives
a good estimate for the lattice constants of noble-gas crystals. Experimental
values for the energy per atom — listed in Table 4.3 — are also in good agreement
with calculated ones, which are obtained from the parameter ¢ through g =
—8.61 €. Given the energy, elastic properties such as the bulk modulus can be
determined, once again in good agreement with experimental data.

Owing to the weakness of van der Waals forces the cohesive energy per
molecule is typically 0.1eV in other molecular crystals, too. Therefore the
melting point of molecular crystals is low.

€0 = (4.2.17)

4.3 Ionic Bond

Another type of bond is formed between two initially neutral atoms if their
electronegativities are very different. (We shall refer to atoms but our consid-
erations are equally valid for a pair of molecules, when one attracts electrons
much more strongly than the other.) When the difference in electronegativity
is larger than 1.7 on the Pauling scale,* the atom with higher electronegativity
can attract to itself the relatively weakly bound electrons on the outermost
partially filled electron shell of the second atom. This charge transfer process
may continue up to the point when no partially filled shells are found on either
ion. The crystal is held together by the Coulomb interaction between positive
cations or negative anions. This is called ionic bonding.®

The most typical examples are alkali halide compounds formed by elements
of group 1 (TA, alkali metals) and group 17 (VIIA, halogens) of the periodic
table. The difference in electronegativity is smaller between the elements of
groups 12 (IIB) and 16 (VIA), nonetheless it is still large enough for the
complete transfer of two electrons. In other cases the outermost shells of the
ions are not necessarily complete but the electrons are relatively well localized
around the ions produced by the charge transfer. Such systems also belong
to the same type of bonding provided the dominant force is the Coulomb
interaction between oppositely charged ions.

In ionically bonded crystals ions form a lattice in which each cation (an-
ion) is surrounded by as many anions (cations) as possible, in a symmetric ar-
rangement. It is thus not possible to distinguish electrically neutral molecules

4 L. C. PAauLING, 1932. LiNnus CARL PAULING (1901-1994) was awarded the Nobel
Prize in Chemistry in 1954 “for his research into the nature of the chemical bond
and its application to the elucidation of the structure of complex substances”.
Eight years later he also received the Nobel Peace Prize.

5 The alternative term, heteropolar bonding refers to the opposite charge of the
ions.
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within the lattice. The most important contribution to the cohesive energy
of crystals is due to the Coulomb interactions between ions. Because of their
long range, one must take into account the attraction and repulsion between
arbitrarily distant ions when calculating the energy of the system. When site
R; is occupied by an ion of charge Z;, the Coulomb interaction energy

1 Z;7 ;€2 1 7.7.62
E= Y= Y 4.3.19
8W60;|Ri_Rj| 2;|Ri—Rj| ( )

is called the Madelung energy of the ionic crystal.’ For most types of ionic
crystals this is an asymptotic series in which slowly decreasing positive and
negative terms alternate, due to the signs of Z; and Z; and the 1/r decay
of the Coulomb potential. Although strictly speaking asymptotic series do
not converge, fairly rapidly converging methods have been worked out for
calculating of the sum of the series — i.e., the energy — by P. P. EWALD
(1921) and H. M. EvJEN (1932).

By way of example, consider two typical ionic crystals, NaCl and CsCl. In
the sodium chloride (or rock-salt) crystal the sites of a regular cubic lattice
are occupied by Nat and C1™ ions alternately, in a 3D checkerboard pattern.
In the CsCl crystal, Cs™ ions make up a regular cubic lattice, and Cl~ ions
occupy the center of each elementary cube. Figure 4.2 shows small portions
of the two lattice types, as well as the distances between first- (nearest-),
second-, third-, fourth-, and fifth-neighbor ions.

(a) ®)

Fig. 4.2. The structure of two typical ionic crystals, (a) NaCl, and (b) CsCl, with
first-, second-, third-, fourth-, and fifth-neighbor distances

The lattice constant a of the rock-salt crystal is customarily defined as the
shortest distance between two similar ions along one of the lattice axes. The
nearest neighbors of each Na™ ion are then six C1~ ions at a distance d; = a/2.

6 E. MADELUNG, 1918.
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The 12 second-neighbor Na™ ions are located at a distance dy = \/2a/2, the
8 third-neighbor C1~ ions at d3 = v/3a/2, and the 6 fourth-neighbor Na™
ions at dy = a. The number of fifth neighbors is 24; these are at a distance
ds = v/5a/2. Selecting one Na™t ion and calculating its contribution to the
energy (4.3.19) by performing the summation for its neighbors, we have

@128 6 2
Nat — a \/2 \/3 \/4 \/5 I

where due account has been taken of the fact that the energy of each ion pair
should be shared between the two ions in question.

In its present form the series does not converge at all, as the partial sums
oscillate wildly. EVJEN proposed a suitable rearrangement of the terms that
corresponds to decomposing the crystal into neutral shells. An ion of the rock-
salt crystal is singled out; the first layer is then composed of the ions that are
on or within the boundaries of a cube of edge a, centered on the selected ion.
However, for each ion only the part of its charge that falls within the cube is
counted for the layer in question — that is, ions at the face centers, edge centers,
and vertices are counted with weights of 1/2, 1/4, and 1/8, respectively. This
is shown in Fig. 4.3.

(4.3.20)

) o /0 ol
: [ S e1/2
o
L oou4
/ o1/
o
Q/L o; C

Fig. 4.3. The first neutralizing shell around the central atom, and the weights of
the ions within. This shell provides the first approximation in Evjen’s method for
the calculation of the Madelung energy in a sodium chloride crystal

Using these weights, the contribution of the first shell to the energy is

oy =2
) &1, 112 18 é
= — — =—1.456 . 4.3.21

“Nat a |27 442 Ty V3 a ( )

In the next approximation a cube of edge 2a is considered around the
selected ion. Figure 4.4 shows the ions within an octant of this cube, along

with their distances from the central ion. (Once again, the unit is chosen as
the distance between nearest neighbors, di = a/2.) Ions that lie inside this
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Fig. 4.4. Charges in one octant of the shell around the selected ion (bottom left)
that have to be taken into account in the second approximation of Evjen’s method.
The numbers above and to the left give the distance of these ions from the central
one of the shell, while those below and to the right give their weights within this
shell

cube are counted with their full charge, while those at the face centers, edge
centers, and vertices are counted with weights of 1/2, 1/4, and 1/8, as above.
In this approximation the Madelung energy per sodium ion is given by

e ) (G v )

+1< 12+24> 1 8]
4\ V8 V9/) 8V12
éQ
=—-1.752 . (4.3.22)
a
The same applies for each Cl™ ion, too. When expressed in terms of the
nearest-neighbor distance d; rather than the lattice constant a, the Madelung
energy per NaCl molecule is
é2
eNacl = —1.752 . (4.3.23)
dy
Taking the next shell into account would give a correction smaller than one
percent. This is the same as the difference with the result obtained from the
Ewald summation method, and considered as precise:
=2

smm:emumz. (4.3.24)
1
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This value comes from a clever evaluation of the explicit formula

ENat — E

mnp

m+n+p
\/mQ 24 (4.3.25)

where m, n, and p run through all integers from —oo to oo, only the origin
m =n = p =0 is excluded.

In the cesium chloride structure Cs™ and C1~ ions form interpenetrating
cubic lattices, in such a way that the center of each elementary cube formed by
Cs™ is occupied by a C1™ ion — and vice versa. Thus each Cs™ ion (cation) is
surrounded by 8 C1~ ions (anions), at a distance d; = v/3a/2. The 6 second-
neighbor and 12 third-neighbor cations are found at distances do = a and
ds = v/2a. The 16 fourth-neighbor sites, at dy = v/11a/2, are occupied by
anions, and the 8 fifth-neighbor sites by cations again, at ds = v/3a. The
Madelung energy per Cs* ion is now

ezl 2 12 2 8
fost = 7y, \/38 -6 - V2 + \/1116 - 3 + (4.3.26)
Decomposing this series, too, into suitably chosen partial sums,
82
Eos+ = —2.0354 9 " (4.3.27)

Expressed in terms of the nearest-neighbor distance d; rather than the
edge a of the cubic lattice, the Madelung energy per CsCl molecule is
é2
ecscl = —1.7627 . (4.3.28)
dy
When the contribution of the Coulomb interactions to the total energy F
of a crystal made up of NV molecules is expressed with the nearest-neighbor

distance as 5 I
° (4.3.29)

the coefficient « is called the Madelung constant. This constant is just the
ratio of the Coulomb energy per molecule in the crystalline state and the
Coulomb energy of a single molecule in which the ions are separated by the
nearest-neighbor distance d; characteristic of the lattice.

Similarly, the Madelung constant of an ionic crystal MZTX#~ made up
of charge-Ze ions is defined in terms of the electrostatic energy of a single
M?*X”~ molecule as . o

€
N 4 (4.3.30)

This cannot be unambiguously generalized to the case of ionic crystals made
up of cations of charge Z;e and anions of charge —Zse, i.e., of ionic compo-
sition Mg;*ngi — where electric neutrality implies n1Z; = noZs. Thus in
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standard tables one finds different values for the Madelung constant, corre-
sponding to different definitions. In one commonly used definition the energy
per chemical unit is given by

E 71 Z6>

=—«a , 4.3.31

N . ( )
where d;y is the smallest distance between anions and cations, as before. The
corresponding Madelung constants of some typical ionic crystals are listed in
Table 4.4. The underlying structures will be presented in Chapter 7.

Table 4.4. The Madelung constant for some typical ionic crystals

Structure Tonic Madelung
Name Notation composition  constant
Sodium chloride (NaCl) Bl  cF8 M+tX~ 1.74756
Cesium chloride (CsCl) B2 c¢P2  M*TX~ 1.76267
Sphalerite (ZnS) B3 cF8  M?TX?*" 1.63806
Waurtzite (ZnS) B4 hP4  M*TX* 1.64132
Fluorite (CaF5) Cl cF12 M**X; 2.51939
Cuprite (Cuz0) C3  cP6  MPX* 2.22124
Corundum (AlzO3) D5; hR10 M3TX:~ 4.1719

The stability of ionic crystals cannot be understood in terms of the
Madelung energy alone. Once again, one has to take into account the repul-
sion between ion cores that has been discussed for molecular crystals. Instead
of the 1/r'? term in the Lennard-Jones potential, following M. BORN and
J. E. MAYER (1932), the repulsion is customarily taken into account by an
exponentially decreasing term in this case. This is the Born-Mayer approxi-
mation. Denoting the shortest distance between an anion and a cation by r,
the energy per chemical unit can be written as

E AV
N @
This expression is required to attain its minimum at d, the equilibrium dis-
tance between neighbors, which can be determined from the equation

+ Bexp(—r/l). (4.3.32)

7.17:8> B
L2 7 exp(—dy /1) = 0. (4.3.33)
di l
Using this equation to eliminate B, we have
E AV l
= - 1-— 4.3.34
NT Y 4 [ dl] (4.3.34)

for the equilibrium configuration.
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The quantity [/d; is related to compressibility. Its value is on the order
of 0.1. When this correction is also taken into account, good agreement is
found between the theoretical values obtained for the cohesive energies of
ionic crystals and the experimental data listed in Table 4.2. To calculate the
total energy, the electrostatic contribution is not the only one to be taken
into account. According to the laws of quantum mechanics, ions are not fixed
rigidly to lattice sites but oscillate even at the absolute zero of temperature.
However, the energy corrections due to such zero-point vibrations do not ex-
ceed a few percent.

4.4 Covalent Bond

In solids built up of identical atoms or different atoms with not too disparate
electronegativities, the characteristic electron transfer of ionic bonding does
not occur. Instead, new electronic states appear, in which electrons are located
between two neighboring atoms — and thus belong to both of them. The bond
brought about by such electron states is called a covalent bond.” The electron
density reaches its maximum in the region between the two atoms. This is
clearly seen in Fig. 4.5, which shows the plane section of electron density
contours around two neighboring atoms of a typical covalently bonded solid,
a germanium crystal.

Fig. 4.5. Calculated density contours in the (110) plane of the electrons forming
the covalent bond in germanium. [J. R. Chelikowsky and M. L. Cohen, Phys. Rev.
B 14, 556 (1976)]

As a matter of fact, the covalent bond is the generalization of the chem-
ical concept of intramolecular valence bonds to solids. For a mathematical

" The terms homopolar and homeopolar bond are also used in the literature; they
refer to situations where the electronegativities of the two atoms are identical and
similar, respectively.
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description, consider first a diatomic molecule that has two electrons (Ha).
The position of atoms A and B will be denoted by Ra and Rg, and we shall
assume that each atom contains one of the two electrons. This assumption is
justified when the atoms are sufficiently separated, and so the electron clouds
do not overlap. We shall now ask: What happens when the two atoms ap-
proach one another so much that the other’s presence is no longer a weak
perturbation?

Using the notations 71 and 7, for the position vectors of the two electrons,
the Hamiltonian of the system reads

hQ 5 ~2
- "y
H 2me b Z 7 — RAI Z |ri — Rp]
(4.4.1)
62 ‘“2

e
+ .
|71 —7‘2| |RA — Rp|

This Hamiltonian does not usually admit an analytical solution to the
Schrédinger equation. The customary way of tackling this problem consists
of choosing a trial wavefunction (ansatz) with a few variational parameters
which are determined from the condition that energy should take a minimum
value. The individual methods differ in the assumptions made about the form
of the multi-electron wavefunction.

4.4.1 The Valence-Bond Method

Even simpler than the variational method is the Heitler—London approxima-
tion,® also known as the wvalence-bond method. This approximation is based
on atomic functions. The underlying assumption is that one of the electrons
forming the covalent bond is mostly found in the vicinity of one nucleus, while
the other electron around the other nucleus. Then, following the same steps
as for the van der Waals interaction, the Hamiltonian is split into three parts.
As the whole system is comprised of only two atoms, we have

7'((7‘17 1”2) = HA(’I”l) + HB(’I”Q) + Hint("'l, 7‘2) s (442)
where
h2 &2
A = =0 Vi~ Rl
h; 52 (4.4.3)
Mo =, VA s Rl
and
&2 &2 &2 &2
(71, 72) = — _ . (4.4.4
P (rom2) = = Ryl " rs— Ral e -l TRy~ Ry Y

8 W. HEITLER and F. LoNDON (1927).
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Assuming that the solutions to the one-center Schrodinger equation

Ha(r1)pa(r) = eaa(ri) (4.4.5)

and to its counterpart for the wavefunction ¥p(r2) of the other electron
around atom B are known — e.g., for a 1s state it is

1 1/2
sz(r)z( 3) e~ Ir=Ral/ao (4.4.6)

Tagy

the wavefunction of the two-electron system can be written as the product of
one-particle wavefunctions,

Y(r1,r2) = Ya(r)yvs(ra). (4.4.7)

This automatically satisfies the two-center Schrodinger equation

[HA(rl) + HB(rg)]w(rl, 7o) = (24 +28)e(r1, 72). (4.4.8)

When the expectation value of the interaction Hamiltonian is calculated with
this wavefunction, an estimate is obtained for the binding energy.

Before doing so, it should be noted that the wavefunction (4.4.7) does not
satisfy the general condition of antisymmetry required for fermionic systems.
This lack of antisymmetry is the consequence of the fact that the two electrons
were considered as distinguishable, thus Ha (1) +Hp(7r2) is not invariant un-
der the interchange of their coordinates — even though the total Hamiltonian
is. Therefore another wavefunction has to be chosen, one that is consistent
with the Pauli exclusion principle. To see antisymmetry clearly, electron spins
have to be taken into account, too, even though the interaction is spin inde-
pendent. Using the notations s = 4, or T and | (rather than my = :l:;) for the
two possible values of the spin variable s of the electron, the corresponding
wavefunctions are

a=1n=(5) wma aw=1n=(7). (149

In the nonrelativistic case when the spin—orbit interaction is neglected, the
spin independence of the Hamiltonian permits the separation of spatial and
spin variables in the wavefunction:

Lp(’l"l,Sl,’l"Q,SQ) = ¢(7’1,7’2)X(81,82). (4410)

Either the wavefunction is symmetric in its spatial variables:

Us(r1,72) = Ny [Ya(r1)ys(r2) + ¥a(r2)vs(r)] (4.4.11)

and then it has to be antisymmetric — singlet — in its spin variables:



92 4 Bonding in Solids

Xs(s1,82) = J, [ID1 D2 =11 11)2], (4.4.12)
or it is antisymmetric in its spatial variables:
Yi(r1,m2) = N_[a(r1)ys(r2) — ¥a(ra)vs(r)] (4.4.13)
and then it has to be symmetric — triplet — in its spin variables:
[T [T)2
Xt(81,82) = \}2 (D12 + 1] 1)2] (4.4.14)
[ D1l

In what follows, we shall suppress the spin-dependent parts, as the Hamil-
tonian does not act on the spins. We shall nevertheless bear in mind that
the spin state of 15 is a singlet, while that of v is a triplet. We now have
to determine the constant N that takes care of the proper normalization of
the wavefunctions. Since the wavefunctions around different ion cores are not
mutually orthogonal, the overlap integral

Sap = /wj&(r)wg(r) dr (4.4.15)

must be taken into account. The normalization factor is then
1
V21 £ [Sagl?)

In the Heitler-London approximation these completely antisymmetrized
wavefunctions are chosen, and the energy is then calculated as the expectation
value of the total Hamiltonian,

Ny = (4.4.16)

es = (Ys|H|tbs) = ea + e + 2N2(C + 1),

2 (4.4.17)
ey = (Y| H[ht) = ea +ep +2NZ(C = 1),

where

C= / G (1 )0 () Hin o (1) (172) iy iy
(4.4.18)

I= /¢Z(T1)¢E(T2)Hint¢3(rl)¢A(7'2)drl drsy.

C is the direct contribution of the interaction (Coulomb integral), while I, the
exchange integral comes from quantum mechanical exchange, the existence of
which was pointed out independently by HEISENBERG® and DIRAC!? in 1926.

9 WERNER KARL HEISENBERG (1901-1976) was awarded the Nobel Prize in 1932
“for the creation of quantum mechanics, the application of which has, inter alia,
led to the discovery of the allotropic forms of hydrogen”.

10 Qee footnote on page 32.
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If there were no overlap between the wavefunctions of electrons on neighboring
ion cores then the two electrons could not be exchanged and I would vanish.
When the overlap is finite and the wavefunctions are orthogonal (this would
be the case for the two electrons on different orbitals around the same atom)
then I can be shown to be positive. This implies Hund’s first rule: within
an atom the orthogonal orbitals of the same azimuthal quantum number are
occupied by the electrons in such a way that the total spin should be maximal.
For electrons on neighboring atoms the lack of orthogonality means that the
exchange integral I can be negative. The sequence of the levels is determined
by the relation of I and CS35, as
C+1 C-1

s >e, if > , 4.4.19
S (I S R (4.4.19)

whence
I>CS3g. (4.4.20)

Usually Sap < 1, in which case the sign of I will determine whether the
triplet or the singlet state is of lower energy.

&
(Ry)

R/a,

-0.5 Observed

Fig. 4.6. Binding energies of singlet and triplet states in the Heitler-London ap-
proximation as functions of the separation R of the nuclei

Heitler and London’s calculations have shown that I is strongly negative
for the hydrogen molecule. Figure 4.6 shows the energies of the singlet and
triplet states as functions of the separation R = |Ra — Rp| of the nuclei. For
large values of R the energy of free atoms is recovered. The short-distance
behavior is, on the other hand, dominated by repulsion that is rooted in
the exclusion principle. In the singlet state the energy has its minimum at an
intermediate value of the separation R, giving rise to bonding. In this approach
a binding energy of 3.14 éV and a bonding distance of 0.87 A are found. Despite
the roughness of the approximation, these values are surprisingly close to
the experimental data, 4.75e¢V and 0.74 A. For our purposes, however, the
most important point in this result is not this fair agreement (as it is not
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difficult to find better approximations for the binding energy) but that it
highlights the energy difference between singlet and triplet states in a case
when the Hamiltonian is spin independent. The energy difference is entirely
due to the symmetric and antisymmetric characters of the spatial parts of
the wavefunctions, and the exchange integral I may lead to the appearance of
magnetic states. We shall return to this point in Chapter 14 where we shall
study magnetically ordered systems.

4.4.2 Polar Covalent Bond

The Heitler—London approximation deals only with so-called walence-bond
configurations — in which one electron is around core A and the other is around
core B. The spatial part of the corresponding singlet covalent wavefunction is

Yeov(T1,72) = Ya(r1)Ys(r2) + ¥s(r1)a(rs) . (4.4.21)

During the motion of the electrons it may happen that both electrons are
on orbitals around the same atomic core. Such configurations are called ionic
configurations. When the two nuclei are identical, and therefore electrons are
equally likely to be around either atom, the spatial part of the corresponding
wavefunction reads

Yion(T1,72) = Ya(r1)Pa(re) £ ¢Yp(ri1)Ys(rs). (4.4.22)

The symmetric character of the spatial part implies that the spin variables
are, again, in a singlet configuration. To obtain a more precise description
than that provided by the Heitler-London approximation for the problem of
two electrons moving in the field of two nuclei, one has to take into account
not only the covalent terms but also the above ionic one — with a weight that
will be determined later. This is known as the polar covalent bond or the
tonic—covalent bond. Then the spatial part of the singlet wavefunction of the
two-electron system is chosen as

Y(r1,72) = N[Ya(ri)es(ra) + ¥B(ri)pa(rs)
+ Ma (1) (r2) + Mp(r1)YB(ra)]

where A is a variational parameter. Its value is determined by the minimum
energy condition. Calculations have shown that in a hydrogen molecule the
energy minimum at equilibrium distance occurs for A = 0.25 — that is, the
bond is ionic only to the extent of a few percent: it is predominantly covalent.
The binding energy is found to be 3.23 eV.

Note that for even more precise results one has to include variational
parameters in the atomic wavefunction as well. For example, in the case of
atomic s states, the expression

(4.4.23)

3 1/2
1/}(7")=( 3> e /a0 (4.4.24)

Tag
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can be used instead of (4.4.6), and energy is minimized with respect to +.
Calculations show that the minimum occurs for v > 1 — that is, because of
bonding, electrons approach the nucleus more than in a free atom.

For identical atoms this bonding gives rise to apolar molecules. In solids
made up of atoms with different electronegativity values the bond can by no
means be purely covalent. Electrons are more attracted to one kind of atom.
This is illustrated in Fig. 4.7, where the plane section of the electron density
contours are shown in two crystals, GaP and ZnSe. These compounds are
made up of elements in groups 13 (IITA, boron group) and 15 (VA, nitrogen
group), and groups 12 (IIB) and 16 (VIA) of the periodic table, respectively.
A comparison with Fig. 4.5 clearly shows a more and more pronounced asym-
metry of the electron density.

Fig. 4.7. Calculated density contours between two neighboring ions in a plane
section of GaP and ZnSe crystals. [J. R. Chelikowsky and M. L. Cohen, Phys. Rev.
B 14, 556 (1976)]

When the two atoms are not identical — and thus the symmetry with
respect to the exchange of atoms A and B is broken —, the configurations
in which both electrons are found around core A and core B appear in the
wavefunction with different weight factors. The wavefunction that corresponds
to the singlet state reads

P(r1,72) = N[Ya(ri)es(ra) + ¥B(ri)pa(rs)
+ Aa¥a(r1)a(r2) + AsYs(r1)Ys(ra)] .
Treating the quantities A and Ap as variational parameters, the obtained en-
ergy will be lower than that calculated from the Heitler-London wavefunction

Yeov i (4.4.21) — which corresponds to a purely covalent bond. The binding
energy is written as

(4.4.25)

E=Feoy— A, (4.4.26)

where F.,, would be the energy of a purely covalent bond, and A is called
the contribution of ionic resonance. The energy of the covalent bonds A-B
between atoms A and B can be estimated by the arithmetic (or in some refer-
ences, geometric) mean of the bond energies A-A and B-B. The contribution
of ionic resonance is a function of the difference of the electronegativities.
Thus a simple estimate can be given for the bond energy.
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4.4.3 The Molecular-Orbital Method

In the previously presented methods the Schrédinger equation is first solved
in the field of one nucleus, and then the obtained one-center electron states
are used to construct the wavefunction of the electrons in the multi-atom sys-
tem. A different approach was proposed by F. HUND and R. S. MULLIKEN!! in
1928. First the one-electron states of the multi-atom molecule are determined,
and then these are populated with electrons step by step. For this reason the
Hund-Mulliken approach is called the molecular-orbital method (MO method)
nowadays. When calculating the one-electron states some care must be exer-
cised as the potential felt by the electrons is changed by the addition of a new
electron — i.e., the potential itself needs to be determined in a self-consistent
manner. The simplest method for this is the Hartree-Fock approximation,
which will be discussed in Chapter 28. As in the present chapter we just want
to develop a qualitative picture about the nature of different types of bonds,
we shall not analyze the condition of self-consistency. Instead, we shall as-
sume that for any selected electron the effect of the other electron(s) can be
accounted for by using an average potential.

Coulomb repulsion between two immobile cores of a two-atom molecule
must be taken into account when calculating the total energy but it can be
ignored when the energy of the system of electrons is considered. In this
approximation the Hamiltonian is split into two independent parts,

H=Hi+H-, (4.4.27)
where
K2 &2 &2
= — \vi - U. , 1=1,2. 4.4.28
Hl 2m0 l |rl _ RA| |Tl _ RB| + H(Irl) ( )

The average potential due to the other electron(s) is included in the term
Ucff(’r’l).

The state associated with the eigenfunction ;(r) of the two-center, one-
electron Schrodinger equation

R, &2 &2

_chv ~|r—Ra| |r— Rg| + Uest(r) | i(r) = eihi(r)  (4.4.29)

is called the ith molecular orbital. Solving this two-center Schrédinger equa-
tion usually requires further approximations. We shall present one possibility
in the next subsection.

Before doing so it should be mentioned that, provided the molecular or-
bitals are known, the separation of the Hamiltonian permits us to write the

"1 ROBERT SANDERSON MULLIKEN (1896-1986) was awarded the Nobel Prize in
Chemistry in 1966 “for his fundamental work concerning chemical bonds and the
electronic structure of molecules by the molecular orbital method”.
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total wavefunction of the two-electron system as the product of the wavefunc-
tions of single electrons on the molecular orbitals,

Y(r1,r2) = Yi(r1)Y;(ra). (4.4.30)

This wavefunction must be complemented by a spin-dependent part, and
consistency with the Pauli exclusion principle must be ensured. If the same
molecular orbital 1); is selected for both electrons, the spin part must be
chosen antisymmetric. When different molecular orbitals, and thus different
spatial functions are selected, there are two options. Either the symmetric
combination of the variables 1 and 7o,

Y1, r2) = 12 (41205 (r2) + i ()b (1)) (4.4.31)

Vv

is chosen, and then the spin part is given by an antisymmetric (singlet) wave-
function, or the antisymmetric combination

1
V2

which is then complemented by a symmetric spin part.

Y(ry,re) = [Wi(r)w;(r2) — Yi(ra);(r1)], (4.4.32)

4.4.4 The LCAO Method

An approximate form of the molecular orbitals can be obtained using atomic
wavefunctions. Assuming that the solutions ¥ (7) to the atomic Schrédinger
equation (4.4.5) are known, following the proposal of J. E. LENNARD-JONES
(1929), the molecular orbital is constructed as the linear combination of the
solutions A (r) and g(r) obtained for individual atoms,

V(1) = caa(r) + ceyB(r). (4.4.33)

This is the linear combination of atomic orbitals (LCAO) method.

If the atoms are identical, the two atomic wavefunctions are expected to
appear with the same probability, i.e., cA = Fcp. This is indeed the case: the
combination is either symmetric or antisymmetric. When the overlap integral
defined in (4.4.15) is taken into consideration, the normalized wavefunction is

1
/24 (San + Sip)

and the corresponding energy value is

P(r) [Ya(r) £ ¢(r)], (4.4.34)

_eat+ept(eaB +e4p)

- , 4.4.35
= 24 (Sap + S%p) ( )

where
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ea= [ Ul HvA( dr.
on = [ wi(r)Han(r) dr (4.4.36)
EAB =/¢Z(T)H1¢B(T)dr~

The molecular energy levels are shifted with respect to the atomic levels ea
and eg.

If the overlap is ignored, the amount of splitting is determined by the res-
onance integral exp. This is generally negative since it contains the matrix
element of the Coulomb attraction between the nucleus and the electron. Then
the spatially symmetric combination has the lowest energy. This configuration
is called a bonding state, while the spatially antisymmetric combination gives
rise to an antibonding state. The wavefunctions of the bonding and antibond-
ing molecular orbitals and the corresponding electron densities are shown in
Fig. 4.8 when a hydrogenic 1s wavefunction is chosen as the atomic function.

Fig. 4.8. (a) The wavefunction of the electrons for bonding (left) and antibond-
ing (right) molecular orbitals in a two-atom system. (b) The corresponding charge
distributions

In bonding states electron density is large between the two atoms: bonding
localizes the electrons to this region. (Figure 4.5 shows this for germanium.)
In antibonding orbitals the opposite happens: electron density is smaller in
this region than it would be for free atoms at A and B. Therefore one can say
that covalent bonding is caused by electron pairs that are located between the
atoms with a high probability.

The bonding state formed by the s states is cylindrically symmetric around
the axis joining the two atoms, and also symmetric with respect to inversion
in the midpoint. It is also called the o, state. The antibonding state is anti-
symmetric with respect to space inversion, hence it is also known as the oy
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state. Atomic p orbitals give rise to 7t molecular orbitals. These can also be
classified according to their symmetry properties.

Since the wavefunctions 1 (r) and ¥g(r) that correspond to electron
states around ion cores A and B contain in their arguments the variables
r — Ry and r — Rp, the quantities eap and Sap as well as the energies of
the bonding and antibonding states depend on the distance between the two
atoms. This is shown in Fig. 4.9. The equilibrium distance between the two
atoms is determined by the location of the energy minimum of the bonding
state.

Antibonding

Bonding

Fig. 4.9. Variation of the energy of bonding and antibonding electron states with
the separation of the two atoms

In the ground state of a hydrogen molecule the two electrons occupy the
bonding state with opposite spins, making a spin singlet; antibonding states
remain empty. This way a saturated covalent bond is formed. When the num-
ber of electrons in bonding states is less than the maximum permitted by the
Pauli exclusion principle, the bond is unsaturated. On the other hand, when
the number of electrons exceeds the number of bonding states, some antibond-
ing states need to be occupied. Then the energy of the resulting state may be
so high that no bond is formed. That is why the He; molecule is not stable.

When the molecular-orbital method is used in conjunction with the LCAO
approximation for a hydrogen molecule, the obtained results are worse than
those of the Heitler—London approximation. Although the calculated equi-
librium distance of the nuclei, 0.85A, is closer to the observed value, the
computed binding energy, 2.68 eV is far too low. The reason for this is easy
to understand. When both electrons are accommodated on the symmetric
binding orbital with opposite spins, the spatial part of the two-particle wave-
function may also be written as

1

Y(ry,re) = 2+ Sap + 5%, [Va(r1)YB(re) + ¥B(11)YA(T2) (4.4.37)

+ Pa(r1)va(rz) + ¥e(ri)vs(ra)].

It is readily seen that covalent and ionic configurations have the same
weight in this approximation. The exceedingly large weight of the ionic
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contribution leads to a worse result than that obtained in the Heitler-London
approximation, where only covalent configurations are taken into account. As
we have seen, better results can be obtained when the relative weight of the
two types of configuration is also a free parameter.

4.4.5 Molecular Orbitals Between Different Atoms

While the bond in a hydrogen molecule (H2) is dominantly covalent, this is
not at all the case for a hydrogen fluoride molecule (HF). Here the highly elec-
tronegative fluorine atom pulls the electron from the hydrogen — nonetheless
the bond will not be perfectly ionic, only to about 50%. Using the molecular-
orbital method in the LCAQO approximation, the wavefunction of the molecular
orbital is again chosen as

Y(r) = caa(r) + cayp(r) (4.4.38)

but ca and cg will be different. The Schrédinger equation Hvy = e can be
written in the equivalent form

Zc,, (Huw — Suwe) =0 wv=A,B, (4.4.39)

where

Hy = [ w3y, () dr.

(4.4.40)
S = [ wir)r)dr.
The above equation has nontrivial solutions only when
|H, — Swel =0. (4.4.41)

The energy of the molecular orbital can be determined from this equation.
The lower (higher) energy solution corresponds to the bonding (antibonding)
state.

Note that when both electrons are in bonding states, the wavefunction

Y(r1,72) = [ca¥a(r1) + ey (r1)|[cata(r2) + cibp(rs))] (4.4.42)

is very similar to (4.4.25). However, the two expressions are usually different,
since (4.4.25) has two fitting parameters, Ay and Ap, while only one is left in
(4.4.42) after normalization. The MO method can yield the same results only
if electrons are allowed to occupy the orthogonal antibonding orbital with a
weight A. This way of taking the antibonding states into account is called
configuration interaction (CI) in quantum chemistry. Quantitatively correct
results can be obtained only by including this interaction.
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4.4.6 Slater Determinant Form of the Wavefunction

For future generalization it will be useful to write the two-particle states built
up of atomic states as a Slater determinant.'? To start with, one constructs
four functions using the atomic wavefunctions ¥4 and ¢p:

1 [¥a(r)| ) ¢¥B(ry) T

1= 2 Lpnlra) The vn(ra)] e

, (4.4.43-a)
W, = : (4.4.43-b)

Wy = : (4.4.43-c)

1 [ alr)l D gs(ro)llh
V2 [Ya(r2)| )2 YB(ra)| 2|

States ¥, and ¥, are antisymmetric in the spatial variables and symmetric in
the spin variable; they correspond to the components S* = £1 of a triplet.
The S* = 0 component of the triplet and the spin-singlet state — which is
symmetric in the spatial variables — are respectively given by the symmetric
and antisymmetric combinations of the functions ¥ and ¥s3:
1 1
/2 (W, + ¥3) , U = V2 (Wy —W3). (4.4.44)
The four wavefunctions in (4.4.43) contain the combinations that are taken
into account in the Heitler—-London approximation. In addition to these va-
lence configurations, one might wish to include ionic configurations as well —
since they appear even in the simplest LCAO approximation. This is possible
through the inclusion of the functions

(4.4.43-d)

W, =

7 — 1 1/’A("‘1)|T>1 1/’A("'1)|l>1 (4445—&)
T V2 [Yara) 1)z a(ra)l ) -
1 |¥B(r)| T ¥B(ry) )
— . 4.45-b
Y6 = V2 s ra) 1) vn(ra)L)s (445D)

The total two-particle wavefunction can be written as the linear combination

of the six determinants ¥;,

123 C. SLATER, 1929.

(4.4.46)
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The Slater determinants may also be expressed in terms of the wavefunc-
tions of the molecular orbitals rather than the atomic wavefunctions. The six
functions can then be chosen as

by =

Dy =

1 | Y+ ¥-(r)|Th
V2 [y (r2)[ 1)z Y- (r2)[1)2

1 |1 Y(ro)|
V2 [y (r2)[ T)2 s (r2)]])2

_ 1 Yi(r)| T ¥—(r1)| I
V2 [y (ra)[ 1)z ¥-(r2)]])2

1 Yy(ry) ) ¥—(r)|[ T
V2 [y (r2)|1)2 - (r2)|1)2

1 [Y-(r)[ 1 —(r1)] I
V2 [P (ra)[ )2 ¥ (r2)|L)2

1 |Ye(r)[ D1 Y-(r)[Ih

V2 () D)e ()] 1|

(4.4.47-a)

(4.4.47-b)

(4.4.47-c)

(4.4.47-d)

(4.4.47-¢)

(4.4.47-f)

It can be easily shown that in the LCAO approximation — where the wave-
functions of the molecular orbitals are constructed from the atomic functions
in the form (4.4.34) — the functions @; in (4.4.47) are linear combinations of
the ¥; given in (4.4.43) and (4.4.45):

and

¢ = -V, Pg = —¥y

1
(Vg — W3 + V5 + W),

by, =
2=
By = L (0 -0yt T — )
3= (T st - ),
1
@42\/2(—W2—W3—!l75+g/6),
1
D5 = —Wy + W3 + Uy + Ug) .
5 \/2( 2+ U3 + Uy + V)

In this sense the two choices are equivalent.

(4.4.48)

(4.4.49)
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4.4.7 Hybridized Orbitals

Up to now we have focused on how the covalent bond is formed between two
atoms. In solids each atom has to make bonds with several neighbors. As a
generalization of the previous findings, each atom is expected to participate
in as many covalent bonds as they have singly occupied electron states. The
electron configuration of a ground-state carbon atom is 1522s?2p? (see Ap-
pendix B), which means that only the two 2p electrons are on open shells.
This would then imply that each carbon atom could take part in two covalent
bonds. However, this is known not to be the case: carbon is tetravalent. The
reason for this is that one of the 2s electrons is excited to an empty 2p state,
transforming the configuration into 1s22s'2p?, and thus making further bonds
possible. Although in a free atom this configuration has higher energy than
the ground state, the difference is compensated for by the decrease in energy
caused by the appearance of new bonds.

Wavefunctions are customarily expressed in terms of spherical harmonics:

¢nlm (7‘) =Ry (T)}/lm(97 QO) . (4450)

However, for p (I = 1) states the real linear combinations v, ¥, , and ¥,
offer a more practical choice:

-1
V2
sp V00 +Y710.9)
Ylo(av(p)

x/r,
1/2
= (f;_) Rpa(r) < y/r, (4.4.51)

z/r.

These formulas give high electron densities along the coordinate axes, as shown
in Fig. 4.10.

(Yll (97 90) - Yl_l(ev 90))

Ynpa (1) = Rna(r)

Fig. 4.10. Sketch of the wavefunctions of states s, ps, py, and p.



104 4 Bonding in Solids

To get a better insight into the states 2s, 2p,, 2py, and 2p., consider the
four orthogonal combinations

P = ;W)% + Pop, + ¢2py + wQPz] )
= 1 - -
Yo = 5 [Y2s + Yap, — Yop, —P2p.], (4.4.52)
s = ;[¢2s — Yap, + d’?py - w2pz] )
Vg = 5[5 — Vop, — thap, +2p.]

From the formulas for the wavefunctions of the s- and p-states it is straight-
forward to show that these sp? hybrid functions give high electron densities in
the directions of the four vertices of a regular tetrahedron. This is illustrated
in Fig. 4.11.

Fig. 4.11. Spatial distribution of the electron density in the states that correspond
to the four sp® hybrid wavefunctions

Now consider two carbon atoms, in Rx and Rp. Denoting the correspond-
ing hybrid one-particle wavefunctions by %(A) and wj(»B), one can construct
two-particle wavefunctions along the same lines as in (4.4.23):

Yij(ri,m2) = N[0 (e (r2) + 08P ()0l (12)

(4.4.53)

+ M )™ (r2) + 20 e ()|
Among the numerous such possibilities there are only a few with low-energy
covalent bonds: those for which the hybrid wavefunctions of two neighboring
atoms display high electron density along the line joining the two atoms. The
covalent bond is therefore highly directional. This approach is well suited
for the description of bonds in diamond (built up of carbon atoms) and in
semiconducting materials with a similar structure.

Besides the hybrid sp® wavefunctions presented above, other hybrid states
are possible as well. For example, one s- and one p-state can give rise to an sp
state; one s- and two p-states to an sp? state. p- and d-states can also lead to
hybrid orbitals. Needless to say, the bonds are now oriented in other directions
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than the vertices of a tetrahedron. We shall revisit this question at the end of
Section 7.6 on the relationship between crystal structure and bonding.

4.4.8 Covalent Bonds in Solids

Covalent solids are held together by networks of directional covalent bonds
between neighboring atoms, where the wavefunctions of covalent bonds are
constructed from pairs of atomic states. If each bonding state is occupied
by two electrons of opposite spins — i.e., each bond is saturated — then the
electrons that participate in bonding are localized in space and cannot con-
tribute to electrical conductivity. That is why covalent materials are usually
insulators or semiconductors. This is the case for diamond and for two further
elements of the carbon group: germanium and silicon, which have a diamond
structure. Here each atom has four sp? hybrid states, and the bonds formed
by them make up a tetrahedral network, as shown in Fig. 7.16(a). The same
structure is seen in semiconducting compounds formed by elements in groups
13 (ITITA) and 15 (VA) of the periodic table.

As it was mentioned in the previous subsection, besides sp® wavefunctions,
other hybrid states may also give rise to covalent bonding — however, their
spatial directionality depends on which states are hybridized. The orientation
of the bonds plays a crucial role in determining the crystal structure. The
development of short-range order in the amorphous state of covalently bonded
solids is also related to the directionality of the bonds.

The cohesive energy of covalent crystals is given by the sum of the binding
energies of individual bonds. The binding energies of some typical covalent
bonds are listed in Table 4.5. Much larger than their counterparts for molec-
ular crystals, these values are comparable to the energies of ionic crystals.

Table 4.5. Binding energy of some typical covalent bonds (in units of eV and
kJ/mol)

Bond eV kJ/mol Bond eV kJ/mol
H-H 4.48 432 C-H 4.28 413
N-N 1.65 159 C-N 3.16 305
P-P 2.08 201 N-H 4.03 389
c-C 3.58 346 Al-P 2.13 205
Si-Si 2.30 222 Si-C 3.17 306
Ge-Ge  1.95 188 Ga-As 1.63 157

0-0 1.47 142 Ga-P 1.78 172
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4.5 Metallic Bond

A great part of the chemical elements have fewer electrons on the incomplete
shells than what is necessary for having saturated covalent bonds between
each pair of neighboring atoms in the solid state. Electrons participating in
unsaturated bonds are not localized. One may also say that the atoms lose
these outermost (in general, s or p) electrons. While the positively charged ions
left behind are arranged in a more or less regular pattern, the freed electrons
fill the region among the ions almost evenly. This moving cloud of electrons
gives rise to metallic bonding. In transition metals, where incomplete d-shells
are also found under the outermost shell, further electrons may participate in
metallic bonding. The same kind of bonding may appear in materials built up
of molecules with incomplete shells.

The wavefunction of such an electron system cannot be written as the
product of the wavefunctions of pairs of electrons forming bonds. It has to be
chosen in such a way that it should show explicitly the antisymmetry with
respect to the interchange of the coordinates of any two electrons. This can
be done through the generalization of the formulas in (4.4.43) or (4.4.47),
using functions of the Slater determinant form. The analysis of such systems,
the determination of electronic energies and states, and the study of those
properties of solids that are due to electrons will be among our most important
tasks. Volumes 2 and 3 are devoted almost exclusively to these issues. To a
large extent, the present volume serves as preparation for this.

The determination of the total energy of metals is a difficult problem of
solid-state physics. We shall take a closer look at it in Chapter 30, after the
study of electron states. Here we only mention that the cohesive energy per
atom is usually 1-5eV.

4.6 The Hydrogen Bond

The hydrogen atom has a single electron on the 1s shell — lacking another one
to have the shell closed. That is why covalent bonding would permit hydrogen
to be linked to a single other ion. Due to its small size, even with ionic bonding
only two ions can be tightly packed around the proton. However, because of
its high ionization energy (13.6€eV) hydrogen is not easily ionized. Instead
of participating in such bonds, hydrogen can create a special bond between
highly electronegative atoms like fluorine, oxygen, or nitrogen. This is the
hydrogen bond (or, as it is called in several languages, the “hydrogen bridge”).

In this type of bonding the hydrogen atom is not located at the midpoint
between the F, O, N atoms, but has two symmetrical equilibrium positions
between which it oscillates.

Crystalline ice is held together by such bonds, as shown in Fig. 4.12(a) —
but hydrogen bonds play an important role in water, too. The distance be-
tween oxygen atoms is about 2.75 A in the ground state of ice and about 2.9 A
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Fig. 4.12. Hydrogen bonds in (a) ice; and (b) the alpha helix structure of a polypep-
tide

in water. The two equilibrium positions of the hydrogen atom are located at
a distance of about 1 A from either of them. The bond between the hydrogen
and the nearby oxygen can be considered as covalent, although the huge differ-
ence in electronegativity makes it highly polar. That is why the hydrogen can
be linked to another oxygen atom on the other side, at a distance of 1.8-2 A.
The hydrogen bond is stronger on one side and weaker on the other; this is
reflected in the notation O—H---O. The bond is relatively weak; breaking it
requires some 0.2 eV of energy. Between two fluorine atoms the binding energy
is 0.29eV.

In crystalline ice each oxygen atom is connected to four others through
hydrogen bonds. If a snapshot were made of the structure, in two of these
bonds the hydrogen would be in its equilibrium position closer to the oxygen,
and in the farther one in the other two. It can be shown that there are expo-
nentially many states that satisfy this condition. This high degeneracy exists
in the ground state, too — giving rise to a finite entropy at zero temperature.
That is why ice is a model of choice in statistical physics.

Even more important is the fact that the structure of proteins is deter-
mined by hydrogen bonds (with binding energies of 8 to 40 kJ/mol) between
the CO and NH groups of the polypeptide chains. The blueprint of life, the
double helix of DNA is also held together by hydrogen bonds between base
pairs. The schematic structure of an alpha helix is shown in Fig. 4.12(b).
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Hydrogen bonding is therefore essential for biological materials — however,
substances held together by hydrogen bonds do not play an important role in
solid-state physics. That is why we shall not pursue the study of this type of
bond any further.
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Symmetries of Crystals

It has already been mentioned that crystalline materials constitute a highly
important group of solids. In what follows, we shall be mostly concerned with
the study of the properties of such materials. The reasons for this are not
purely historical. On the one hand, crystalline materials are used in many
applications. On the other hand, quite a few electronic properties do not
depend on structure, and the theoretical study of the behavior of electrons
within solids is much simpler in crystalline materials than in noncrystalline
ones.

One of the most striking features of natural crystals is that they are usually
bounded by regular plane faces. The regularity of the form — and thus the
rotations and reflections that take the crystal into itself — are even better seen
on artificially grown crystals.! As R.-J. HAUY pointed out already in 1784,
the regular form of carefully grown crystals implies that crystals are built up of
regularly arranged small blocks. The regularity of the overall form is therefore
the consequence of an internal regularity. It was well after Haiiy’s time that
atoms and ions were identified as the elementary building blocks, and it was
shown that in the crystalline state atoms (or ions) with identical surroundings
are arranged in a regular periodic array — implying that the crystal exhibits
long-range order.

In the present chapter we shall discuss the geometrical characteristics of
crystalline solids. Although atoms are not arranged in perfect order in real
crystals — which may have important consequences on the properties of the
solid —, here we shall assume that the crystal is ideal, i.e., perfectly regular and
without defects. The various types of defects will be presented in Chapter 9.
Noncrystalline solid structures will be discussed in Chapter 10.

! Being highly malleable, the crystalline symmetry of metals is almost always dis-
guised in finished products.
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5.1 Translational Symmetry in Crystals

The characteristic regularity of crystalline structures is usually formulated in
terms of the invariance of the crystal under certain discrete translations. As
we saw in Chapter 2, there exist mesomorphic phases in which the material
possesses discrete translational symmetries along one or two directions only
and continuous ones along the others. Below we shall consider solids which
are taken into themselves only by discrete translations in all three spatial
directions. To put it more rigorously: A solid is said to be crystalline if there
exist three non-coplanar vectors a1, as, and as such that for any three integers
n1, ng, and ng translation through the vector

t, = niai + noas + nsas (511)

takes the sample into itself — while this is not the case for linear combinations
in which the coefficients are not all integers. The vectors a; appearing in the
definition are called primitive translation vectors or primitive vectors, and are
said to span or generate the lattice. This formulation of discrete translational
symmetry is the mathematical definition of ideal crystals.

Mathematically speaking, these translations form a group, 73. For conve-
nience, we shall frequently refer to two-dimensional crystals. These are planar
arrangements that are translationally invariant in the two planar dimensions
(under the elements of the group T5).

Invariance under discrete translations does not apply solely to the regular
array of spatially localized atoms. It also implies that the charge density pe(7)
of delocalized electrons, as well as the internal degrees of freedom (e.g., spin
density) must be left unaltered by a translation through t,,. Consequently, for
any local observable quantity F'(r)

F(r)=F(r+t,) (5.1.2)

must hold. For nonobservable quantities — such as electron wavefunctions —
this invariance does not apply. As we shall later, when considered separately,
localized atoms and the charge density of delocalized electrons may exhibit
different translational symmetries. Then the true translational symmetries of
the whole system are translations through those vectors ¢, that transform
both the localized atoms and the charge density into themselves.

5.1.1 Translational Symmetry in Finite Crystals

Strictly speaking, the previous formulation is valid only for infinite crystals.
Finite crystals obviously cannot be taken perfectly into themselves by transla-
tions. However, where the original and translated samples overlap, the atomic
arrangements must be identical — with the possible exception of a few atomic
layers near the surface. The previous statement can be reformulated to be
valid for finite samples: A sample of finite extent is said to be crystalline if
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it is built up of identical elementary blocks (atoms, molecules, or groups of
atomns/molecules) whose positions are given by the vectors in (5.1.1), and the
triplets of integers ni, na, nz form a compact region. Figure 5.1 shows such a
finite crystalline structure built up of groups of five atoms.

Fig. 5.1. A finite crystalline structure: a finite regular three-dimensional array of
identical groups of atoms

A similar situation is encountered in crystal-growth processes. First, a
nucleus is formed at random, and then other atoms/molecules condense onto
it in a regular pattern. This construction of the crystal implies that whichever
atom (of position vector ) of the starting group of atoms is chosen, identical
atoms (in equivalent surroundings) are found at all points

r'=r+t,=r+na +nas +nsas, (5.1.3)

where the coefficients n; are integers, just as in (5.1.1). In general, when r and
r’ are related through (5.1.3), F(r') = F(r) holds for the spatial distribution
of electron density and any local observable physical quantity F'(r) — with the
possible exception of the vicinity of the surface. Thus for finite crystals the
relation (5.1.2) is valid only for positions r and 7 + ¢,, that are both inside
the sample.

5.1.2 The Choice of Primitive Vectors

One usually faces the opposite problem as in the previous theoretical construc-
tion of crystals. Given some regular arrangement of the atoms, one needs to
determine the primitive vectors a1, a2, and as. The choice of these vectors
is ambiguous: if a vector triplet a1, a2, a3 is found such that the crystal is
invariant under the translations ¢,, given in (5.1.1), then the same invariance
holds for any other vector triplet af, a}, a4 that is a linearly independent set
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of linear combinations of the previous one with integer coefficients. However,
the new vector triplet is not necessarily primitive (even when the old one is):
it does not necessarily satisfy the condition that all translation vectors should
be given by integer coefficients.

A possible choice for the primitive vectors a; and as and a new set af,
al, are shown in Fig. 5.2 for a two-dimensional crystal. With either choice,
translations through ¢, = nja; + neag or t), = nfa) + nha} take the lattice
into itself: each point is moved to an equivalent one. It is immediately seen
that the two choices are nevertheless inequivalent: when translations through
integer n’s only are allowed, the choice on the right does not cover all the
points that are equivalent to r: @] and a’ are thus not primitive vectors.

Fig. 5.2. A possible choice for the primitive vectors and a pair of new vectors
obtained through their linear combination in a two-dimensional crystal

Therefore the requirement that the vectors ai, as, as be primitive — in
other words: that the translations ¢, obtained with triplets of integers ni, no,
ng yield all points " = r + t,, in the crystal that are equivalent to r — is
tantamount to stipulating that the volume of the parallelepiped spanned by
the non-coplanar vectors ai, a2, a3 be minimum.

The minimum volume requirement is not perfectly restrictive either: it
allows for many possible choices of the primitive vector, as shown in Fig. 5.3.
For clarity, instead of the entire crystal only points that are equivalent to a
selected one are marked.

Therefore it is useful to impose the restriction that the length of the vec-
tors should be the smallest possible. Among the possible choices shown in
Fig. 5.3 the leftmost meets this requirement. In many cases it is possible to
go even further. Later, when the rotational symmetry of crystals will have
been presented, it will be appreciated that primitive vectors should possibly
be chosen in such a way that they are related through some symmetry oper-
ation. Moreover, in certain cases even the requirements of minimum volume
and minimum length are abandoned so that rotational symmetry should be
manifest. The lattice is then characterized by vectors a, b, and c that are
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Fig. 5.3. Several possible choices for the pair of primitive vectors in a two-
dimensional crystal. In each case every equivalent point can be reached by a integer
linear combination of the primitive vectors

more symmetric than the previously used primitive vectors a1, as and as.
Since a, b, and ¢ are not primitive vectors, a part of the equivalent sites in
the original lattice can be reached only via triplets of coefficients that contain
nonintegers.

5.1.3 Bravais Lattice and Basis

Once the primitive vectors have been chosen and an origin selected, the end-
points of the vectors (5.1.1) marked for all possible integer values of nj, na,
and n3g make up a regular albeit empty lattice. This is called the point lat-
tice or Bravais lattice of the crystal — named after the French crystallographer
A. BRAVAIS who was the first to determine correctly the possible lattice types
in 1850. The points of a Bravais lattice are thus given by

Rn =ni1ai + ngaz + n3as . (514)

This will be important when we shall try to exploit the consequences of rota-
tional symmetry.

Note that the lattice concept introduced above is different from that used
in statistical physics. Statistical physical models are often solved on honey-
comb and kagome (basketweave)? lattices (shown in Fig. 5.4). However, their
vertices (sites) do not make up a lattice in the above sense. There are no
primitive vectors whose linear combinations with integer coefficients give all
the vertices and only the vertices. This is why when we present all possible
types of planar lattices below these structures will not appear.

The knowledge of the primitive vectors, i.e., the point lattice is not suf-
ficient for characterizing the crystal structure — even when only the spatial

2 The name comes from the Japanese word kagome, meaning the pattern of holes
(“me” = holes, literally “eyes”) in a woven (bamboo) basket (“kago”).
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B) NANANANH

Fig. 5.4. “Lattices” that are not Bravais lattices, and their primitive vectors: (a)
honeycomb lattice; (b) kagome lattice

arrangement of atoms, i.e., the geometry of the crystal is considered. One must
also identify the group of atoms whose regularly repeated pattern makes up
the lattice. This group of atoms is called the basis or motif of the crystal. The
honeycomb net and the kagome lattice are thus Bravais lattices with a two-
and a three-point basis, respectively.

When the same Bravais lattice is decorated with different bases, different
crystal structures are obtained. Conversely, crystals with strikingly different
structure may share the same underlying Bravais lattice. It is easily seen
that the two-dimensional crystals shown in parts (a) and (b) of Fig. 5.5 have
different bases but a common Bravais lattice, which is shown in part (c¢). The
crystal structure is therefore determined by its Bravais lattice and its basis.

YYYY bbb d oo
YYYY hdckd oo
YYY O ckdkd © oo

Fig. 5.5. (a) and (b): Two-dimensional crystals that are built up of different groups
of atoms but exhibit the same translational symmetries. (¢): Their common Bravais
lattice

When the basis consists of a single atom, then the origin of the coordinate
system can always be chosen so that each atom should occupy a lattice site
R,,. On the other hand, in crystals with a p-point basis the arrangement of the
atoms in the basis should appear exactly the same around each lattice site;
therefore atomic positions are given by the sum of a lattice vector R,, and a
vector 7, (u=1,2,...,p), which is referred to the corresponding lattice site,
thus lies in the unit cell.

5.1.4 Primitive Cells, Wigner—Seitz Cells, and Bravais Cells

The basis is not always pictured as a group of several point-like atoms. It
can also be thought of as an extended charge distribution. It is then not
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just a collection of atoms but an elementary region with atoms (ions) and a
smeared-out electron cloud. Such an elementary region called primitive unit
cell or primitive cell contains exactly one lattice point. When it is repeated
according to a regular spatial pattern, i.e., translated through all vectors %,,,
the volume of the crystal is covered in its entirety. This condition does not
impose a strong restriction on the shape of the primitive cell. It does not need
to possess high symmetry, nor are its faces required to be plane (or in the
two-dimensional case: its sides to be straight). Complete filling of the space or
complete tiling of the plane requires only that opposite faces (sides) could be
moved into one another by simple translations — leaving considerable freedom
in the choice of the figures. Beautiful examples for periodic tilings of the
plane are found on embroideries, wall decorations, and mosaics. In his artistic
program the Dutch artist M. C. EScHER? illustrated possible symmetries in
the complete tiling of the plane using human and animal figures. Some of his
works are shown in Fig. 5.6, as well as in Figs. 5.27 and 5.31 in the later parts
of this chapter.

Fig. 5.6. ESCHER’s drawings show the complete tiling of the plane with human and
animal figures

3 M. C. ESCHER, 1898-1972.
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It is a straightforward matter to prove that it is often impossible to fill
the space or tile the plane with patterns of high symmetry. The plane cannot
be perfectly tiled with identical circles, and space cannot be entirely filled
with identical spheres. For mathematical simplicity, the electron states are
nevertheless often determined within a sphere centered on a lattice site (the
Wigner—Seitz sphere). This approximation and its problems will be discussed
in Chapter 19 of Volume 2 where the study of electron states is presented.

It should also be mentioned here — without going into the details of the
geometrical problem of finding those solids bounded by plane faces that can
fill up space perfectly — that perfect tilings of the plane are possible with reg-
ular or distorted triangles, quadrilaterals, or hexagons while the tiling will be
imperfect when regular pentagons or octagons are used, as shown in Fig. 5.7.
In the case of pentagons allowing for nonidentical orientation does not help
either. It will be shown in Section 10.2 on quasicrystals that the plane can
be tiled in such a manner that local fivefold symmetry is manifest — provided
that the requirement of complete translational symmetry is relaxed and only
that of quasiperiodicity is imposed.

Fig. 5.7. Incomplete tiling of the plane with regular pentagons and octagons

A common choice for the primitive cell is the parallelepiped spanned by
the primitive vectors a1, a2, and as. Clearly, a regular array of such paral-
lelepipeds fills the space completely, without overlaps. Figure 5.8(a) shows the
division of the two-dimensional periodic crystal structure of Fig. 5.2 into cells
spanned by the minimum-length primitive vectors a; and as.

The freedom in the choice of the origin is customarily abandoned in favor
of choosing a characteristic atom of the crystal as the starting point of the
primitive vectors. In this construction the group of atoms around a particular
lattice site is usually divided among several primitive cells. Another disadvan-
tage of this choice for the primitive cell is that translational symmetry alone
is taken into account: the internal structure and symmetries of the figure the
crystal is built up of are completely ignored. That is why in many cases —
in particular, when the electron states are to be determined — the crystal is
divided into primitive cells in such a manner that in addition to the atoms,
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the core electrons should also belong to the same region. Such a division is
obtained through Dirichlet’s construction.

Consider the points of a crystal lattice. In Dirichlet’s construction one
associates with each lattice point the region of space that is closer to that
point than to any other lattice point. To construct these regions, vectors
are drawn from the point in question to its first, second and perhaps third
neighbors, and then perpendicular planes are drawn through the midpoint of
each vector. The primitive cell obtained this way is called the Wigner—Seitz
cell.* Part (c) of Fig. 5.8 shows the tessellation of the two-dimensional crystal
of parts (a) and (b) into Wigner—Seitz cells.

(b)

Fig. 5.8. Three different choices for the primitive cells (shaded areas) that allow
for perfect tiling of the two-dimensional crystal. (a) and (b) differ only in the choice
of the origin; (c) tessellation by Wigner—Seitz cells

It has been mentioned that the relative orientation of the primitive vectors
does not necessarily reflect the crystal symmetries, which is why sometimes
longer but more symmetric vectors, a, b, and ¢ are used instead. As an ex-
ample, consider the plane lattice shown in Fig. 5.9. The primitive vectors are
of different lengths, and their angle is such that 2as — a; is perpendicular to
ai.

Instead of @7 and as one might choose the vectors a = a; and b =
2a9—a;. This choice gives a rectangular (nonprimitive) unit cell instead of the
rhomboid-shaped primitive cell. Horizontal and vertical reflection symmetry
— which are the consequence of the particular relation between a; and as
(2a2 — a1 L a;) as well as the appropriate choice of b — are manifest in this
case. The parallelepiped spanned by these vectors is called the conventional
unit cell or the Bravais cell of the crystal. The general definition of the Bravais
cell will be given on page 144.

Since it may contain several crystallographically equivalent sites, the Bra-
vais cell may have a larger volume than the primitive cell or the Wigner—Seitz
cell. In the above example lattice points are found inside the rectangles as well

4 E. WicNER and F. SEITZ, 1933. When Dirichlet’s construction is applied to sets
of discrete points that do not necessarily form a Bravais lattice, the obtained
irregular units are known as Voronoi polyhedra (G. VOroNoI, 1908).
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a=a,
° b=2a,—a, 1 a,

a, ’

Fig. 5.9. The rhomboid-shaped primitive cell and the rectangular Bravais cell of a
special oblique lattice

as at their vertices. The Bravais cell is thus not necessarily a primitive cell —
it is nevertheless often a convenient choice because of its higher symmetry.

5.1.5 Crystallographic Positions, Directions, and Planes

As it was mentioned on page 114, the position vectors r; of the atoms of
the basis are referred to the points of the Bravais lattice — and these vectors
do not depend on the choice of the particular cell. The position vectors are
customarily expressed in terms of the primitive vectors (which are generally
not mutually orthogonal):

r; =101 + TigQo + Tizas3 s (515)

where the coordinates x;1, x;2, and x;3 range between 0 and 1 or —% and ;
The position vector is concisely denoted by the three coordinates x;1 ;o x;3.
Thus ;%0 refers to the position given by the vector %al + %ag. Negative

numbers are denoted by overlines, e.g., the concise notation for the point at
1 1

201 — ;a2 is ;iO.

A specified direction in the crystal is denoted by a triplet of integers in
square brackets: [u v w] stands for the direction of the vector u a;+v as+w as.
In a cubic lattice — made up of cubic primitive cells — [100], [110], and [111]
denote the direction of an edge, a face diagonal, and a space diagonal. The
directions of the three cube edges ([100], [010], [001]) and their opposites
([100], [010], [001]) are obviously equivalent. They are collectively referred to
as the (100) directions.

In what follows, coplanar atoms will be of particular importance. Con-
sider any three noncollinear points of a Bravais lattice and their common
plane. Translational symmetry of the lattice implies that there are an infinite
number of lattice points on this plane — moreover the family of equidistant
parallel planes contains all the lattice points. Figure 5.10 shows this for a two-
dimensional section of the lattice with three possible choices for the family of
planes.

Crystal planes are also denoted by triplets of integers. To specify the three
indices, consider the member of the family of planes that is closest to the plane
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Fig. 5.10. Sections of planes through the sites of a Bravais lattice for different
choices of the Miller indices (hkl)

through the origin and intercepts each of the three crystallographic axes (the
lines along the primitive translation vectors) at lattice points. Using the lattice
constants ai, as, as (i.e., the lengths of the primitive vectors) as units, these
intercepts are written as p00, 0¢0, and 007, where p, ¢, and r are integers.
The plane — and the family of planes as well — is then unambiguously specified
by the three numbers (pgr), the Weiss indices.® It is easily shown that in the
oblique coordinate system spanned by the primitive vectors the equation of
the family of planes is

X1 i) T3

+ + =n, (5.1.6)
pay q a2 ras

where n is an integer.
For reasons that will become apparent later, the reciprocal of these num-
bers — or more precisely, the smallest triplet of integers h, k, [ for which

h:lﬂ:l:lzlz1 (5.1.7)
p q T
is used to specify the orientation of the plane. These numbers are called the
Miller indices® of the plane, and are customarily given in parentheses: (hkl).
Figure 5.11 shows some planes of a cubic lattice with their Miller indices.
Similarly to directions, some of the planes are also equivalent for symmetry
reasons — e.g., planes (110), (110), (011) etc. in a cubic crystal. Such equivalent
planes are collectively denoted as {110}.

5 CH. S. WEIss, 1818.
6 W. H. MILLER, 1839. In trigonal and hexagonal structures the four Miller—
Bravais indices are also commonly used.
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@11) (213) (T12)

Fig. 5.11. Planes in a cubic lattice and their Miller indices

Figure 5.10 also shows that the larger the Miller indices h, k, [, the smaller
the separation dpy; of the planes — and the larger the distance between the
nearest coplanar lattice points. Since the separation of the planes plays an
important role in the experimental studies of the crystal structure, methods
for its determination will be discussed later.

5.2 The Reciprocal Lattice

The structure of the crystal and the coordinates of the atoms within a prim-
itive cell are specified in terms of the primitive vectors a1, as, a3 or the edge
vectors a, b, ¢ of the Bravais cell (conventional unit cell). Experimental de-
termination of the structure and especially specification of the states within
the crystal are highly simplified by using another type of lattice, the reciprocal
lattice.” For future reference, below we define and present some properties of
the reciprocal lattice.

5.2.1 Definition of the Reciprocal Lattice

As we have seen, the primitive vectors a1, as, a3 usually constitute an oblique
system. In terms of the mutually perpendicular unit vectors &, ¥, 2

a; = iz + aiyY + a2, 1=1,2,3. (5.2.1)

" P. P. EwaLD, 1913.
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When the coordinates of the primitive vectors are written as a column vector

Qg
a; = Ay (522)
Qijz
and then as a matrix
A1y A2 A3y
A= A1y A2y A3y 5 (523)
a1z A2z A3z
the volume v of the primitive cell — i.e., the triple scalar product of the vectors
— is given by the determinant

v=ay- (a2 X ag) = [a1aza3] = det A. (5.2.4)

In terms of the column vectors, the position vector R, = nja; + nsas +
nsag of an arbitrary lattice point of the Bravais lattice is

A1y A2g A3z
R, =m a1y | +ne | azy | +n3 | asy |- (525)
A1z a2z a3z
Using the matrix A, this can be simply rewritten as
A1z A2z A3g ni ni
Rn = A1y A2y A3y . no =A- n9 . (526)
A1z A2z A3z ns ns

The matrix B is then defined through the relation
BA =2xl, (5.2.7)

where / is the unit matrix. Denoting the elements of B by

blr bly blz
B = | b bay ba. |, (5.2.8)
b390 bBy b3z
the vectors
bi = bin® + by + b2,  i=1,2,3 (5.2.9)

are introduced, which will be written as row vectors
b; = (big biy biz), 1=1,2,3. (5.2.10)
Writing the defining equation (5.2.7) in component form, we have

biwaJ@ + biyajy + bizajz = 27T(5ij . (5211)
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This can be expressed equivalently in terms of the scalar product of vectors
b; and a;:
bi cay = 271'51']' . (5212)

Each of the three new vectors is thus perpendicular to the plane spanned by
the two primitive vectors whose index is different. The vector triplet satisfying
this condition is easily found:

as X ag a3z X a; a; X az
by =2 by =2 by =2 .
! Fal . (CEQ X a3) 2 Fal . (CEQ X a3) 3 Wal . (CEQ X 113)
(5.2.13)

Considered as primitive vectors, the b; span a lattice whose points are
given by
G = h1by + hobs + hsbs (5.2.14)

where hi, ho, and hs are arbitrary integers. In analogy to (5.2.6), these can

be written in the form
G = (hy he h3) - B. (5.2.15)

The new lattice is called the reciprocal lattice of the original lattice, and by,
b2, and bs are the primitive vectors of the reciprocal lattice. In connection with
its reciprocal the original lattice is often called the direct lattice.

5.2.2 Properties of the Reciprocal Lattice
Transposition of both sides in (5.2.7) gives
ATBT =271 (5.2.16)

This means that when a lattice is generated using as primitive vectors the
b; — i.e., the columns of the matrix BT —, then the primitive vectors of its
reciprocal lattice are given by the rows of the matrix AT, and also

a; =2m b2 X b as =27 b3 X by as = om by X by
! bl'(bQng)’ 2 bl-(bQng)7 3 bl(bQ)Ebg))
5.2.17

These relations could have also been derived using (5.2.13) for the vectors b;
and making use of the identity (3.3.6). The reciprocal of the reciprocal lattice
is thus the original direct lattice.

The primitive cell of the reciprocal lattice is spanned by the primitive
vectors b;. Its volume v, = by - (by X bs) is related to the volume v of the
direct-lattice primitive cell — given in (5.2.4) — in a particularly simple manner.
Expressing the primitive vectors of the reciprocal lattice in terms of their
direct-lattice counterparts and using of the vector identity (3.3.6) gives

(27)° (27)°

vy = by - (b2 X bg) = = (5218)
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Alternatively, the definition of the vectors b; implies that the volume v, is just
the determinant of the matrix B. Making use of (5.2.7) and (5.2.4),

3 3
v = det B = Ei:)A = (2:) . (5.2.19)
Instead of the parallelepiped spanned by the b;, cells of different shape
but equal volume may be used in the reciprocal lattice, too. In particular, one
might choose Dirichlet’s construction, which gave the Wigner—Seitz cell in the
direct lattice. In the reciprocal lattice it leads to the Brillouin zone,® which
will be presented in detail in Chapters 7 and 17.
Expression (5.2.12) for the scalar product of a; and b; implies that the
product of any reciprocal-lattice vector Gy, = hi1by 4+ hobs + h3bs with any
direct-lattice vector R,, = niai + nsas + nsas is

Gy - R, =27n(n1h1 4+ noha + nshg) . (5.2.20)

Since the n; and the h; are integers, this implies a relation that will be fre-
quently used in the forthcoming;:

S (5.2.21)

This relation has an important consequence that will be proved in Appendix C.
When a function F' is lattice periodic, i.e., satisfies the condition

F(r) = F(r + Ry) (5.2.22)

for any vector R, of the lattice then its Fourier series contains only the
reciprocal-lattice vectors: the sum in

F(r)=) Fge®" (5.2.23)
G

is over reciprocal-lattice vectors only.

Finally, another relation between reciprocal-lattice vectors and the direct
lattice is worth noting. The definition of the direct-lattice plane with Miller
indices (hkl) on page 119 was fairly complicated because the primitive vec-
tors generally form an oblique coordinate system, and the plane (hkl) is not
necessarily perpendicular to the direction [hkl] of the vector ha; +k az+1 as.
On the other hand, the reciprocal-lattice vector

Gpri = hby + kby +1bs (5.2.24)

is readily shown to be directed along the normal to the planes with Miller
indices (hkl). It should be recalled that these planes intercept the three crys-
tallographic axes in mas /h, mas/k, and mas/l, where h, k, and [ are relatively

8 L. BRILLOUIN, 1930.
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prime, and m is also an integer. This means that the vector mai/h — mas/k
lies in the plane (hkl). The relation between direct- and reciprocal-lattice
vectors immediately implies that

(hby + k by + Lbs) - (TZ

that is, the two vectors are perpendicular. By the same token, the vector h by +
k by 41 bs is perpendicular to other vectors of the plane, e.g., mai/h—mas/l,
confirming that Gpg; is indeed the normal of the plane.

Making use of this property, the separation dpy; of the neighboring mem-
bers of the family of planes with Miller indices (hkl) is easily expressed in
terms of the magnitude of the reciprocal-lattice vector Gpi;. Two adjacent
planes of the family intercept the ai-axis of the direct lattice in ma;/h and
(m + 1)ay/h. The separation of these planes is given by the projection of the
vector joining the two intercepts on the normal of the planes:

1 Ghi 2

d = aj- = . 5.2.26
PR T |Gritl  |Ghial ( )

m
a— a2) =0, (5.2.25)

5.3 Rotations and Reflections

Besides translational symmetry, crystals have further characteristic symme-
tries. Such symmetry operations are geometrical transformations that leave
distances and angles unaffected. Therefore, before turning to the symmetries
of Bravais lattices and crystals, we shall present the groups of possible rota-
tions and reflections.

5.3.1 Symmetry Operations and Symmetry Elements

The congruence transformations (isometries) of interest to us are rotations
through a finite angle a around an axis along the direction of the unit vector n,
reflections in a mirror plane of normal n, and inversion. Reflection across a line
(mirror line) leads to the same result as rotation around the same line through
180°, which is why we shall not discuss it any further. Inversion (i.e., reflection
through a point) is, however, treated separately, even though rotation through
180° around an axis n followed or preceded by reflection across a plane of
normal n leads to the same result as inversion in the intersection point of the
rotation axis and the mirror plane.

The symmetry elements of an object are rotation axes, mirror planes,
and/or an inversion center such that the figure is taken into itself by rotations
through suitably chosen angles around them or by reflections in them.? When

9 In the spirit of the foregoing, the mirror line is omitted from the previous listing.
However, to keep the wording simple, we shall sometimes refer to mirror lines —
by which we shall invariably mean rotation axes with 180° operations.
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the object is brought into coincidence with itself by a rotation through 27 /n
around an axis, the axis is called an n-fold symmetry azis.'° Two notational
conventions are used in the literature for rotations as symmetry operations
and rotation axes as symmetry elements. Crystallographic texts dealing with
the structural study of crystals almost invariably use the international or
Hermann—Mauguin symbols,'! while in solid-state physics texts the traditional
Schoenflies symbols'? are more common.

In this book we shall use either or both of them. In the present chapter on
structure preference will be given to the international notation: this will ap-
pear first, followed by the Schoenflies symbol in parentheses. In later chapters
dealing with physical properties we shall mostly use the Schoenflies notation.

In the international notation the integer n stands for an n-fold rotation
axis, as well as the clockwise rotation through 27/n around this axis. For
the same concepts Schoenflies proposed the symbol C),, making reference to
the word “cyclic”. In other cases, too, even when not marked explicitly, the
same notation is used for the symmetry element and the symmetry operation.
We shall see later that for crystals n can take on the values 1, 2, 3, 4, and
6 only — however, for the time being we do not impose this restriction. The
special case n = 1 corresponds to the unit transformation £.13 For rotational
elements the direction of the rotation axis is customarily given by a letter or
number label. For example, the notation 2, (C,;) means that z is a twofold
rotation axis, but at the same time it also refers to a 180° rotation around the
x-axis. 2, (Cqp), with p =a, b, ¢, d, e, f stands for 180° rotations around the
face diagonals in a cube, while 3; (Cs;), with j = 1, 2, 3, 4 stands for 120°
rotations around the space diagonals.

The restriction that only rotations through 27/n (where n is an integer)
and their repetitions should be considered is a consequence of the group prop-
erty of symmetries. Suppose that the angle of the smallest rotation that takes
the system into itself is written as 2m/n. Then k subsequent rotations cor-
respond to a single rotation through 27wk/n (denoted by n* or C¥). Since
rotation through 27 (which is equivalent to the identity transformation) has
to be reached in a finite number of steps, n obviously has to be an integer,
and only the values k =1, 2, ..., (n — 1) correspond to different rotations.

The international notation for reflections as symmetry operations and mir-
ror planes as symmetry elements is m, while their Schoenflies symbol is Cy or
o. The normal to the mirror plane may appear in the subscript, e.g., ms (o)
refers to reflection in the plane perpendicular to the z-axis. When a mirror
plane and a rotation axis are present simultaneously then the orientation of
the plane with respect to the axis is also indicated. The notation for a mirror
plane perpendicular to an n-fold rotation axis is n/m (o}, ). For mirror planes

10 = 2,3, 4, 6-fold axes are also called diad, triad, tetrad, and hexad axes.

11 C. HErRMANN, 1928; C.-V. MAUGUIN, 1931.
12 A. M. SCHOENFLIES, 1891.
13 From the German word for unity, Einheit.
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through the rotation axis Schoenflies used the symbols ¢, and o4, where v
refers to vertical and d to diagonal. The latter is used for mirror planes that
contain a principal rotation axis and bisect the angle between the twofold axes
perpendicular to the principal axis.

Inversion as a symmetry operation (which takes point r into —r) and the
inversion center as a symmetry element are both denoted by 1 (C; or I).
Note that Bravais lattices are always symmetric under inversion since their
definition implies that if R, is a lattice point then so is —R,,. We shall make
use of this fact when investigating the possible symmetry groups of Bravais
lattices.

It has been mentioned that inversion can be considered as a combined
symmetry operation. Denoting rotation through angle o around the axis n by
Cp () and reflection in the plane of normal n by oy,

I =0,Ch(m) =Cp(m)on. (5.3.1)

It is possible that a system is invariant neither under 180° rotation nor
under reflection — only under the combination of the two. A similar situa-
tion may arise with other operations as well. Some objects will be taken into
themselves only when rotation through 27/n is followed by an inversion in a
point on the rotation axis or by a reflection in a mirror plane perpendicular
to the axis. These improper rotations are symmetry operations of the second
kind; the first one is called rotation—inversion or rotoinversion, and the sec-
ond — rotation—reflection or rotoreflection. The order of the two operations
is immaterial. Thus rotoreflection of an object is the rotation of its mirror
image. The corresponding symmetry elements are the rotation—inversion axis
and the rotation-reflection axis.'*

When listing the symmetry operations of a given system, either rotation—
inversion or rotation-reflection has to be included — but not both, as they
are related to each other in a particularly simple way. Rotation—inversion and
rotation—reflection lead to the same result when the two angles of rotation
differ by .

Rotation—inversion — that is, rotation through 27 /n around a rotation axis,
followed by an inversion in a point of the rotation axis — is considered as the
fundamental operation in the international crystallographic system. Both the
operation and the corresponding symmetry element, the rotation—inversion
axis are denoted by 7 (Cp;). Since the order of rotation and inversion can be
interchanged, n =n1=1n (Cp; = C, I = I C,). This symmetry may appear
even when neither rotation n (C),) nor inversion is a symmetry of the system
alone. However, this is not the case for n = 1 and n = 3. n = 1 corresponds
to a pure inversion, while for n =3 32 =371 (C2, = C; 1), 33 =1 (C3;, = 1),
and 3* = 3 (C4, = C3). The twofold operation 2 (Cy;) is not a new one, either,

14 9., 3, 4-, and 6-fold rotation—inversion axes are also called inversion diad, triad,
tetrad, and hexad azes, respectively.
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since it corresponds to a reflection in the plane perpendicular to the rotation
axis: 2 =m (Cy = Cy).

Following Schoenflies’ proposition, rotation-reflection — that is, rotation
through 27 /n followed by a reflection in a plane perpendicular to the axis of
rotation — is often considered to be a fundamental operation. This symmetry
operation and the corresponding symmetry element, the rotoreflection axis
are both denoted by S,,,'5 or 7 in the international notation. Because of the
interchangeability of the two transformations S,, = 0, C, = Cpop (0 =
nm = mmn). Specifically, S; (1) is a reflection and Sy (2) is an inversion.

As mentioned above, the two symmetry operations of the second kind are

not independent of one another, e.g., (i) 1 =2 =m (S1 = C = 0); (ii) 2=1

(S = C; = 1); (iil) 3 = 671 (S5 = Ci;'); (iv) 4 = 471 (Sy = C;Y); (iv)
6=3""1 (5 =Cy").

5.3.2 Point Groups

With the sole exception of spheres, all figures are invariant only under a finite
of infinite subgroup of the above symmetry operations. Possible symmetry op-
erations constitute a group in the algebraic sense: when each of two symmetry
operations takes a figure into itself then the succession of the two (which can
be defined as the group multiplication operation) is also a symmetry. These
elements make up the symmetry group of the figure. Before identifying the
group of possible rotation and reflection symmetries of crystal lattices, con-
sider finite geometrical figures that have rotation axes, mirror planes, and/or
inversion centers. Due to finiteness and hence the lack of translational sym-
metry, one point of the figure always remains invariant. Rotation axes and
mirror planes must all go through this point, and if the figure has an inver-
sion center then it must be in the same point as well. The group of symmetry
transformations that leave this point invariant is called the point group of the
figure. For d-dimensional figures these are collectively denoted by Gg.

Point groups may also be defined as the discrete subgroups of the full or-
thogonal group O(3)16 (or, in the d-dimensional case, of the group O(d)): they
consist of rotations through 27 /n, reflections, inversions, rotation—inversions,
and their combinations.

Two-Dimensional Point Groups (G2)

The set of possible symmetry operations for two-dimensional (plane) figures
consists of rotations around the axis perpendicular to the plane, reflection in

15§ stands for “Spiegel”, the German word for mirror.

16 The full rotation group (or special orthogonal group) SO(3) consists of rotations
that leave a specific point of space — the fixed point — invariant. In addition to
these, the full orthogonal group contains the inversion operation and rotation—
inversions.
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a line within the plane, and inversion in a point of the plane. The last one
can be ignored as it corresponds to a rotation through 180°. Following the
international notation, we shall denote n-fold rotations by n, and mirror lines
by m.

The simplest point groups cousist of rotations through 27/n and its mul-
tiples. These n-element groups are also denoted by n. For the symmetries of
finite figures all integer values n are allowed.

The two-element point group consisting of a reflection in a line and the
square of this operation (i.e., the identity element) is denoted by m.

Now comnsider those groups that contain mirror lines and a rotation axis
that is perpendicular to the plane. Then any line obtained from a mirror line
via rotation through 27 /n around the n-fold axis is also a mirror line. For
n odd, the angular separation of the n mirror lines obtained this way is just
m/n. The group thus has 2n elements and is denoted by nm.

For n even, rotations of a mirror line will yield only n/2 different mirror
lines whose angular separation is 27/n. Nevertheless in this case there must
exist another set of mirror lines — the angle bisectors of the previously obtained
lines. This is so because the composition of a reflection in a mirror line and a
rotation through 27/n is equivalent to a reflection in a mirror line that makes
an angle 7/n with the original mirror line. Thus there are two independent
sets of mirror lines. This is expressed by the notation nmm of such groups.

Three-Dimensional Point Groups (G3)

We shall now turn to the much more interesting case of three dimensions
where point groups can be divided into two large classes. Point groups of
the first kind consist only of rotations, while those of the second kind contain
reflections as well.!” This means that point groups of the first kind are discrete
subgroups of the rotation group SO(3).

Again, two equally common notational conventions are used in the litera-
ture. In the international notation numbers — more specifically: numbers giving
the order of the rotation axes — refer to rotational symmetry, and the letter m
to (mirror) reflection. For example, 432 means that the point group contains
four-, three-, and twofold rotation axes, while 4/m means that the plane per-
pendicular to the fourfold rotation axis is a mirror plane. Point groups have
a full and a short notation. For the symmetry group of a cube — where planes
perpendicular to the fourfold axes parallel to the edges and to the twofold
axes parallel to the face diagonals are mirror planes, and space diagonals are
threefold rotation axes as well as threefold rotation—inversion axes —, the point

17 This distinction between point groups of the first and second kinds is justified by
the fact that rotation conserves the “handedness” (chirality) of the object, while
reflection, inversion, rotoreflection and rotoinversion change it. The latter are
called enantiomorphous operations — from the Greek word, evarrios (enantios)
for opposite.
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group can be specified as 4/m 32/m. However, it is customary to use the short
notation m3m. In what follows, we shall give the short version only.

The Schoenflies notation uses the symbols of symmetry operations (C, S)
or letters that refer to figures with the appropriate symmetry (D = dihedral,
T = tetrahedral, O = octahedral, I or Y = icosahedral), and optionally an
index (h = horizontal, v = vertical, d = diagonal). Below we shall first give the
short international notation and then the Schoenflies symbol in parentheses.

Point Groups of the First Kind

Several intersecting rotation axes are possible in point groups of the first
kind. Symmetries of one axis determine the number as well as relative spatial
orientation of the other axes. Point groups of the first kind exist in five types.
These correspond to the rotational symmetry groups of the simple geometric
figures shown in Fig. 5.12. These figures may possess further symmetries, e.g.
mirror planes which will be ignored here as we are concerned with rotations
only.

432(0) 235 (1)

Fig. 5.12. Finite figures showing the symmetries of the five point groups of the first
kind
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1. Cyclic or uniazial group: n (Cy). The group of rotations through angles
27k /n around a rotation axis. It has n elements.

2. Dihedral group: n22 for n even and n2 for n odd. (The Schoenflies symbol
is D,, in both cases.) A group with 2n elements that contains rotations
around an n-fold rotation axis as well as rotations about n twofold axes
that are perpendicular to the first axis. The difference between n odd and
n even — which lies at the root of the difference in notation — is whether
the twofold axes are obtained from the same axis or two separate axes
by m-fold rotation. In the n = 2 case the notations Dy and V' are both
common.

3. Tetrahedral group: 23 (T). A group with 12 elements that contains rota-
tions around four threefold and three twofold axes that all pass through
a common point. The relative orientations of the rotation axes are such
that they transform a regular tetrahedron into itself.

4. Octahedral group: 432 (O). A group with 24 elements, which contains all
those two-, three- and fourfold rotations that take a cube or an octahedron
inscribed in a cube into itself. These symmetry operations are the same
as the rotations that take a cube into itself. In what follows, we shall fre-
quently use these symmetries, therefore we shall also list them separately
in Table 5.1.

Besides the Schoenflies symbols, the Jones symbol — also called the faithful
representation — is also given in the table. Using the latter, the symmetry
operation is characterized by the three relations

= f(x7y’ z) Y
=g(z,y,2), (5.3.2)

x/
y/
2 = h(z,y,2)

that specify the point ' = z'& + 3’9 + 2’2 into which r = & + yg§ + 22
is taken by the symmetry operation. It is customary to have & = —z. It
is particularly simple to find the product of two group elements — which is
obtained via the composition of the two symmetry operations — in the Jones
faithful representation. For example, by making use of C3, = (¥, z,z) and
Cae = (2,7, ) one is lead to

CocC3y(xd + yg + 22) = Coc (Y2 + 2§ + 22) = 2@ + 2§ + Y2,

that is, the Jones notation for C2.C%, is z, 2,y — according to Table 5.1 this
is the faithful representation of C3, —, thus C».C3, = C3,, while

O§4Ozc(azsfc +yg+22) = 034(,25& +yg+a2) =y +Tg+ 22,

that is, C3,Cy. is represented by y,Z,z, which corresponds to C3,, and so
C32,Co. = C3..
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Table 5.1. Rotations around axes through the cube center that take the cube into

itself
Schoenflies Jones Description of the
symbol symbol symmetry operation

E z,Y, %2 identity element

Coy z,7, 2 rotation through 180° around [100]
Cay z,Y,2 rotation through 180° around [010]
Co. z,7,2 rotation through 180° around [001]
Cs1 z,z,y  rotation through 120° around [111]
Cs2 Z,x,§  rotation through 120° around [111]
Css Z, T,y rotation through 120° around [111]
C3y 2,Z,7 rotation through 120° around [111]
3 Y, 2, T rotation through 240° around [111]
cs, y,Z,@  rotation through 240° around [111]
C3, §,2,@  rotation through 240° around [111]
c3 Y, Z, T rotation through 240° around [111]
Ciz z,Z,y rotation through 90° around [100]
Cyy z,y,Z  rotation through 90° around [010]
Cy- ¥,x,z  rotation through 90° around [001]
Cc3, x,2,79 rotation through 270° around [100]
cs, Z,Y,T rotation through 270° around [010]
C3, Y, T, 2 rotation through 270° around [001]
Caa Y, T, Z rotation through 180° around [110]
Ca ¥,Z,Z  rotation through 180° around [110]
Cae 2,7, % rotation through 180° around [101]
Coaq Z,2,y rotation through 180° around [011]
Coe zZ,%,T rotation through 180° around [101]
Cay Z,Z,§  rotation through 180° around [011]

5. Icosahedral group: 235 (I or Y). A group with 60 elements, which contains
6 fivefold, 10 threefold and 15 twofold axes arranged in such a way that
they take a regular pentagonal dodecahedron (a polyhedron bounded by
12 congruent regular pentagonal faces) or a regular icosahedron (a poly-
hedron bounded by 20 congruent regular triangular faces) into itself.

Point Groups of the Second Kind

Besides rotations, point groups of the second kind also contain inversions, re-
flections, and rotation—inversions or rotation—reflections. Some of these groups
are obtained by adding inversion and its products with rotations to point
groups of the first kind. In other cases rotations are complemented by re-
flections. Comparison of the international (Hermann—Mauguin) and Schoen-
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flies notations is cumbersome because the fundamental operation is chosen as
rotation—inversion in the former and rotation—reflection in the latter. That is
why the point group 72, which contains rotation—inversions, appears as S, in
the Schoenflies system when n is odd, as .S,, when n is divisible by 4, and
as Cai41,, when n = 2(2{ + 1). For notational simplicity, we shall exception-
ally give the Schoenflies notation first. Some simple relations between the two
notations are given in Table 5.2.

1. S, (2n if n is even and 7 if n is odd): a group with 2n elements, which
contains rotation-reflections around an n-fold axis. This group contains
the point group C, as its subgroup. For n = 1 the group S; has two
elements, the identity element E and inversion I. The notation C; is also
used for this group.

2. Cpp, (n/m if n is even and 2n if n is odd): a group with 2n elements,
which contains rotations around an n-fold axis and a mirror plane that
is perpendicular to it. For n = 1 the group C1; has two elements, the
identity element F and the reflection o}, (m). The notations Cs and S;
(m) are also used for this group.

3. Cpy (nmm if n is even and nm if n is odd): a group with 2n elements,
which contains rotations around an n-fold axis and n mirror planes, each
of which passes through the axis. This is the group of symmetries for a
right pyramid whose base is a regular n-gon.

4. Dpp (n/mmm if n is even and (2n)2m if n is odd): a group with 4n
elements, which contains the symmetry elements of the point group D,
plus a mirror plane perpendicular to the n-fold axis. This is the group of
symmetries for a right prism whose base is a regular n-gon. Of particular
interest is the group Dgp,, which contains the 24 symmetries of the regular

Table 5.2. Connections between international and Schoenflies symbols for point
groups

n=2+1 n=44+2 n=4

n Ch Ch Cn
n San Cé nh Sn
n/m Cnh Cnh
n2 D,
n22 D, Dy,
nm Chy
nmm Cho Cnov
nm Dya
n2m D 1nd D Lnd

n/mmm Dnp Dy
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hexagonal prism. The 24 operations are listed in Table 5.3. In the Jones
notation the components are given in a coordinate system that is particu-
larly well suited to hexagonal symmetry: the x- and y-axes make an angle
of 120°. In the n = 2 case the notations Dy, and V}, are also used.

5. Dpa ((2n)2m if n is even and fim if n is odd): a group with 4n elements,
which contains the symmetry elements of the point group D,, plus mirror
planes containing the n-fold axis, which bisect the angles between the
twofold axes. This is the group of symmetries for a figure in which a
regular n-gonal prism is stacked directly above another, and rotated with
respect to it. In the n = 2 case the notations Dsg and V are also used.

Figure 5.13 shows finite objects whose full symmetry group is one of the
above five point groups.

Table 5.3. Rotation and reflection symmetries of a regular hexagonal prism

Schoenflies Jones Description of the
symbol symbol symmetry operation
E T,Y, 2 identity element
Cs T—Y,T,2 rotation through 60° around [001]
Cs YT — Y, 2 rotation through 120° around [001]
Co z,Y, % rotation through 180° around [001]
Cc3 —x+y,T,z rotation through 240° around [001]
Ce Y, —T+ Y,z rotation through 300° around [001]
Coq —-r+y,y,z rotation through 180° around [120]
Cop T, —Y, 2 rotation through 180° around [210]
Cae 9y, T,z rotation through 180° around [110]
Caq =Y, 2 rotation through 180° around [100]
Coe T,—r+vy,Z rotation through 180° around [010]
Cay Y, T, 2 rotation through 180° around [110]
I T,Y,Z inversion
S2=1-Cs —z+y,T,z rotoreflection through 240° around [001]
Se=1-Cs y,—x +y,z rotoreflection through 300° around [001]
opn=1-C4 Ty, Z reflection in the (001) plane

Se=1-C2 T—Y,T,Z rotoreflection through 60° around [001]
S3=1-C8 YT —Y, 2 rotoreflection through 120° around [001]

0o =1-Caq T —Y, 7,z reflection in the (120) plane
opb=1-Cop Z,—x+4y,z reflection in the (210) plane
oc=1-C4 Y, X, 2 reflection in the (110) plane
oca=1-Coq —x+yvy,z2 reflection in the (100) plane
e =1-Cae T, —Y, 2 reflection in the (010) plane
op =1-Cyy Y, T, 2 reflection in the (110) plane
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VA A

Se 3) Cg, (6/m) Ce, (6mm) Dy, (6/mm) D;, (3m)

Fig. 5.13. Objects possessing the symmetries of some point groups of the second
kind

6.

7.

Ty, (m3): a group with 24 elements, which contains the symmetries of the
point group T plus inversion. T, = T ® C; (m3 =23 ®1).

Ty (43m): a group with 24 elements, which contains all the symmetry
operations of a regular tetrahedron. T, =T ® Cs (43m = 23 @ m).

. Op (m3m): a group with 48 elements, which contains all the symmetry

operations of a cube. The 24 rotational symmetries of the cube are com-
plemented by 24 new operations. Some of the latter are reflections, others
are rotation-reflections. These are listed in Table 5.4. Note that these
symmetry operations are obtained from the elements of the point group
O (432) listed in Table 5.1 by multiplication by the inversion operation.
O,=0RC; (mgm =432 ® I)

. Iy, or Y}, (m35): A group with 120 elements, which contains all the sym-

metry operations of a regular pentagonal dodecahedron or a regular icosa-
hedron. I, = I ® C; (m35 =235® 1).

Figure 5.14 shows finite objects whose full symmetry group is one of the

above point groups of the second kind, T}, Ty, Op, or Ip,.

I P

T, (m3) T, (43m) 0, (m3m) 1, (m33)

Fig. 5.14. Objects possessing the symmetries of some point groups of the second
kind
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Table 5.4. Reflection symmetries of a cube
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rotoreflection through 270° around [010
rotoreflection through 270° around [001
rotoreflection through 90° around
rotoreflection through 90° around
rotoreflection through 90° around [001
10) plane

rotoreflection through 300° around [111]
rotoreflection through 300° around [111]
rotoreflection through 300° around [111]
rotoreflection through 300° around [111]
rotoreflection through 60° around [111]
rotoreflection through 60° around [111]
rotoreflection through 60° around [111]
rotoreflection through 60° around [111]
rotoreflection through 270° around [100]
]
J
]
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]

Description of the
symmetry operation

inversion

reflection in the (100) plane
reflection in the (010) plane
reflection in the (001) plane

010

==
o
=)

reflection in the (110)
reflection in the (110)
reflection in the (101)
reflection in the (011)
reflection in the (101)
reflection in the (011)

10) plane

1) plane
011) plane
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After the presentation of point groups we shall now turn back to crystals and
examine the rotations and reflections, or, more precisely, the point groups
they might possess. As a first step, we shall study the rotation and reflection
symmetries of Bravais lattices. When the Bravais lattice is taken into itself
by a rotation or reflection then so is the Wigner—Seitz cell because of its
construction. The group of symmetries of a Bravais lattice is thus the group
of symmetries of a finite geometrical figure — that is, one of the point groups.

5.4.1 Rotation Symmetries of Bravais Lattices

It has been mentioned that Bravais lattices always possess inversion symmetry
(centrosymmetry). Therefore only those point groups need to be considered
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that contain inversion.'® Moreover, the requirement that the lattice should
also have discrete translational symmetries imposes a severe restriction on
the allowed rotation angles. Indeed, translation symmetry does not allow for
invariance under rotations through arbitrary angles 27 /n. We shall demon-
strate that if (in addition to the translational symmetry that is due to its
periodicity) the lattice possesses rotational symmetry — that is, if there exists
an axis such that rotation through an angle ¢ around it moves the lattice into
itself — then the angle of rotation must be £60°, £90°, +120°, or 180°. We
shall first prove this statement for planar lattices, and then show that only
two-, three-, four-, and sixfold rotation axes can exist in three-dimensional
crystal lattices as well.

Consider a planar (two-dimensional) Bravais lattice. If there exists a rota-
tion axis that is perpendicular to the plane then there exist an infinite number
of such axes — whose parallel displacements relative to each other are given
by lattice vectors t,,. These axes cannot be considered as essentially different,
therefore a single one has to be chosen among them. On the other hand, it
is conceivable that there are several independent nonparallel rotation axes.
Their positions are not arbitrary: they must pass through special points of
the primitive cell, e.g., vertices, edge centers, or face centers. More general
positions are excluded since the requirements that the lattice should be in-
variant under translations and rotations could not be fulfilled simultaneously
otherwise.

' 94
N
Ca NN
N
Na N
P e
7
-1 .7
CaN’

Fig. 5.15. Transformation of a primitive lattice vector under a rotation

Consider a rotation axis that goes through a vertex of the primitive cell,
and choose the coordinate system in such a way that the shorter primitive
vector, denoted by a, should be directed along the x-axis. In this coordinate
system a = (a,0,0). Now perform the rotations C(yp) and C(—¢) = C~1(p)
— through angles ¢ and —¢ —, as shown in Figure 5.15. The resulting vectors
are

18 In two dimensions inversion is equivalent to a rotation through 180° around an
axis perpendicular to the plane, thus planar Bravais lattices always possess a
twofold rotation axis.
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a = C(p)a = a(cos p,sin p,0),
() (cos @, sin g, 0) (5.4.1)

a = C *(p)a = acos g, —sin ¢, 0) .
If rotation C' through angle ¢ is a symmetry of the lattice, then so is C~1,
and both points are in the lattice. Moreover, the vector

a' +a’ =a(2cosp,0,0) (5.4.2)

must also point to a lattice site. Since this vector is along the direction of
a, and a was chosen as the shortest lattice vector in the (x,y) plane, the
previously obtained vector has to be an integral multiple of a. So, for a rotation
through angle ¢ to be a symmetry operation, we must have

2cosp=2,1,0, =1, or —2. (5.4.3)

The corresponding angles are

m T 2T

=0, :I:37 j:2, j:3, . (5.4.4)
Only those angles appeared that correspond to two-, three-, four-, and sixfold
rotations. Therefore only those point groups can be the symmetry groups of
a Bravais lattice that contain only such rotations. The absence of fivefold ro-
tations can also be explained by the impossibility of tiling the plane perfectly
with regular pentagons, as it was mentioned on page 116. While fivefold sym-
metry cannot be present in periodic structures, it may manifest itself in some
patterns that are regular in a broader sense. Such quasiperiodic structures —
quasicrystals — will be discussed in Chapter 10.

A similar path is followed in the case of three-dimensional crystals. The
origin of the coordinate system is now chosen at a lattice point, and the z-
axis is directed along the axis of rotation. It is a straightforward matter to
show that the existence of a rotation axis implies that some — not necessarily
primitive — lattice vectors lie in the (x,y) plane, which is perpendicular to
the rotation axis. Consider the rotation of the primitive vector a; around the
z-axis through an angle ¢. Provided this rotation is a symmetry of the lattice,
the endpoint of the rotated vector is also at a lattice site. Thus the vector
a; — a; is an element of the group of translations. Owing to its construction,
it is obviously perpendicular to the rotation axis, that is, it lies in the (x,y)
plane. Now consider the shortest lattice vector that starts at the rotation axis
and is perpendicular to it. Denoting this by a, the procedure seen in the two-
dimensional case can be repeated. Finally, a contradiction is found whenever
the rotation axis is not a two-, three-, four-, or sixfold axis.

5.4.2 Crystallographic Point Groups

According to the foregoing, crystals can be invariant only under rotations
through angles 7/3, /2, or an integral multiple of these. This is the reason
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why crystallography is concerned only with those point groups that contain
two-, three-, four-, or sixfold rotation axes. In the two-dimensional case this
implies that only ten point groups need to be studied (1, 2, 3, 4, 6, m, 2mm,
3m, 4mm, and 6mm). Figure 5.16 shows some simple figures whose symmetry
groups are these point groups.

——= v 4

1 2

m 2mm 3m 4dmm 6mm

Fig. 5.16. Finite plane figures whose symmetry groups are the ten planar crystal-
lographic point groups

In the three-dimensional case the number of crystallographic point groups
— in which only two-, three-, four-, and sixfold rotations are allowed — is
32. These point groups, along with their symmetry operations, are listed in
Table 5.5. The reason for dividing point groups into seven classes will transpire
later. The relative spatial orientation of the symmetry elements of each group
can be deduced from the information provided in the general description.
Apart from those of the trigonal and hexagonal systems, all point groups
can be obtained by specifying every possible subgroup of the group m3m
(O), which contains all the rotation and reflection symmetries of a cube.!®
Point groups of the trigonal and hexagonal systems can be written down by
identifying the subgroups of the point group 6/mmm (Dgp), which contains
the symmetry operations of a regular hexagonal prism.2°

5.4.3 Crystal Systems and Bravais Groups

In the foregoing we have listed 10 two-dimensional and 32 three-dimensional
point groups that might be compatible with the conditions imposed by trans-
lational symmetries on the allowed rotational symmetries. However, not each
of them occurs as the point group of a Bravais lattice. This is because two more

9 These rotations and reflections are listed in Tables 5.1 and 5.4.
20 The 12 rotations and 12 (rotation)-reflections are listed in Table 5.3.
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Table 5.5. International and Schoenflies symbols for the 32 crystallographic point
groups and their symmetry operations. Subscripts m, j, and p stand for m = z, v, z,
j = 17273747 a'ndp: a7b7c7d767f

System Notation Symmetry operations
Triclinic 1 Ch E
I CZ = 52 E‘7 I
Monoclinic 2 Cs E, Ca,
2=m Cs=Ciy FE,o0.
2/m Can C2®C;
Orthorhombic 222 D=V E, Caz, Cayy, Ca.
mm2 Cay E, Cs., 04, 0y
mmm Do, =V, D2®C;
Tetragonal 4 Cy E, Cyz, Caz, C},
4 Sy E, Siz, Caz, S5,
4/m C4h 04 ® Cz
422 Dy E, Cyz, Caz, Cffz Caz, Cay, Caa, Cap
4mm o E, Cy, Caz, C3, 04, 0y, 0a, Ob
42m Dyg =Dy E, Saz, Caz, S5, Cou, Chy, 0a, Op
4/mmm Dypn Dy ®C;
Rhombohedral 3 Cs E, Cs, C3
(Trigonal) 3 Csi =8 C31C;
32 Ds E, C3, C3, Cq, Cap, Caec
3m Cl3y E, C3, C2, 04, 0b, 0c
i_’)m ng D3 ® Cz
Hexagonal 6 Cs E, Cs, Cs, C2, C3, C§
6 Cgh E‘7 537 S§7 037 0327 Oh
6/m Cen, Cs ® C;
622 Ds Cs @ C2(Caa)
6mm Ceo Cs ® Cs(0a)
6m2 D3y, Csp @ Co (C2a)
6/mmm Dgp, Ds ® C;
Cubic 23 T E, Cam, Csj, C3;
m3 Th T®C;
432 0] E, Cam, Cs5, C3;, Cap, Cam, Cary
43m Ta E, Copm, Csj, 032j7 Op, Sam, Sffm
m3m Op o®C;

restrictions have to be introduced on the group of rotations and reflections
that transform a Bravais lattice into itself.

Whenever the site at R, is part of the lattice, so is the site at —R,,. This
implies that only point groups that contain inversion need to be taken into
account. In the two-dimensional case 180° rotation (which is equivalent to
inversion) has to be present.
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A further restriction arises from the requirement that if there is an n-
fold symmetry axis (with n > 2) among the symmetry elements then there
must also be n mirror planes each of which contains the axis. In other words,
among all point groups only those can belong to Bravais lattices for which the
following is true: if the point group contains n (Cj,) as a subgroup, then in
the n > 2 case it should also contain the elements of the group nmm (for n
even) or nm (Cp,) (for n odd). The point groups satisfying these conditions
are called Bravais groups.

Thus in the two-dimensional case a rotation axis with n > 2 must be
complemented by n mirror lines perpendicular to it. This is readily seen in
Fig. 5.15. When the primitive vector a is rotated through 27/n and —27/n,
each of the rotated vectors can be chosen as the second primitive vector pro-
vided n > 2. As the vector endpoints are lattice sites and the two points
reached by the two rotations are each other’s mirror images in the z-axis, this
axis is also a mirror line for the entire lattice.

Four of the previous ten point groups meet these requirements:

2, 2mm, 4dmm, 6mm.

The symmetries of the Bravais lattices of two-dimensional crystals are there-
fore given by one of these point groups.

The proof of the statement proceeds along similar lines in three dimensions.
In this case the point group of the crystal’s Bravais lattice must be one of seven
point groups:

1, 2/m, mmm, 4/mmm, 3m, 6/mmm, mdm,
or, in Schoenflies notation,
S2, Con, Dan, Dyp, D3zq, Den, Op.

Thus there are four two-dimensional and seven three-dimensional Bravais
groups.

Two crystals are said to belong to the same crystal system or syngony
if the point groups of their Bravais lattices are identical. This means that
three-dimensional (two-dimensional) crystals can be grouped into seven (four)
crystal systems.

Whenever possible, the primitive translation vectors of the Bravais lattice
are chosen along a mirror line (in two dimensions) or a rotation axis. This
choice provides the coordinate axes of the crystal system. The nomenclature
of crystal systems is based on the relative orientation and possible equivalence
of these axes under suitable symmetry transformations.

The four crystal systems of the two-dimensional case can be described as:

1. Obligue (m). Its symmetry group is the point group 2. There are no pre-
ferred directions within the plane. The two axes are equivalent but not
perpendicular.
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. Rectangular (o). Its symmetry group is the point group 2mm. There are

two perpendicular mirror lines within the plane. The two crystallographic
axes are not equivalent but they are perpendicular.

. Square (t). Its symmetry group is the point group 4mm. The perpendicu-

lar mirror lines possess a fourfold rotational symmetry. The two axes are
equivalent and perpendicular.

. Hezagonal (h). Its symmetry group is the point group 6mm. Within the

plane, equivalent mirror lines are at 120°. There are three equivalent crys-
tallographic axes, making angles of 27/3.

The relations among the axes are shown in Fig. 5.17 for the three-

dimensional crystal systems. They can be described as:

1.

21

Triclinic (a). The point group of the underlying Bravais lattice is 1 (S2).
The three crystallographic axes are neither equivalent nor perpendicular.
Monoclinic (m). The point group of the underlying Bravais lattice is 2/m
(Cap,). The three crystallographic axes are not equivalent but one is per-
pendicular to the plane spanned by the others.

Orthorhombic (o). The point group of the underlying Bravais lattice is
mmm (Dap). The three inequivalent crystallographic axes are mutually
perpendicular.

Tetragonal (t). The point group of the underlying Bravais lattice is
4/mmm (Dyp). Tt has a fourfold principal axis and two equivalent sec-
ondary axes of equal length in the plane perpendicular to the principal
axis.

Rhombohedral (trigonal, h). The point group of the underlying Bravais lat-
tice is 3m (Dzq). It has a threefold principal axis and three secondary axes
of equal length in the plane perpendicular to the principal axis. However,
neither the principal axis nor the secondary axes are along the primitive
translation vectors. The three primitive vectors of the Bravais lattice are
symmetric about the principal axis.

Hezagonal (h). The point group of the underlying Bravais lattice is
6/mmm (Dgp). It has a sixfold principal axis and three secondary axes
of equal length that make angles of 120° with each other in the plane
perpendicular to the principal axis. The relative orientations of the coor-
dinate axes are therefore the same as in the trigonal system, justifying the
common notation (h).?!

Cubic (isometric, tesseral, ¢). The point group of the underlying Bravais
lattice is m3m (Op,). Its has three equivalent axes that are mutually per-
pendicular.

Crystallographers consider the rhombohedral and hexagonal crystal systems to
belong to the same crystal family.
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Fig. 5.17. Coordinate axes in the three-dimensional crystal systems

5.4.4 Two-Dimensional Bravais-Lattice Types

We shall now examine, on planar lattices first, the restrictions imposed on
the primitive vectors by the symmetry operations of the point group that
transform the lattice into itself.

A two-dimensional Bravais lattice is unambiguously determined by its two
primitive vectors. In the most general case the primitive vectors are of unequal
length and their angle ¢ is arbitrary. Without further restrictions the primitive
cell is a rhomboid. Even then, the lattice has a twofold rotation axis that is
perpendicular to the plane — thus its Bravais group is the point group 2 (C3).
Such a lattice belongs to the oblique crystal system. Since this classification
is independent of the lengths and angles of the primitive translation vectors,
lattices that belong to the same oblique system but have different lattice
parameters are said to be of the same type. Formulated more generally: Two
Bravais lattices are said to be of the same type if they can be deformed into one
another by continuously changing the lattice parameters (i.e., the lengths and
angle of the primitive vectors) in such a way that the rotational and reflection
symmetries of the lattice are conserved at all times.

The only oblique lattice type is denoted by mp. Here m refers to the
monoclinic lattice system, and p to primitive, as compared to centered lattices,
which will be presented later.
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The point group of lattices that belong to the rectangular crystal system is
2mm. In addition to the twofold axis this point group contains two mutually
perpendicular mirror lines. If the origin of coordinates is chosen at a lattice
point and the axes along mirror lines, the primitive vectors can be written
as a; = a;(cos p;, siny;, 0). The shortest of them is called a;. This is then
reflected in the z-axis; its mirror image, @] = aj(cosp;, —sinpg , 0), as well
as vectors

a; —a} = (0, 2a;sin¢p, 0) and a1 +a} = (2a;cosp1, 0, 0)
have to point to lattice sites. This requirement is met in three cases:

1. ¢1 =0, and thus a} = ay;

2. ¢1 =90°, and thus @} = —ay;

3. 1 is arbitrary, @) is linearly independent of a;, and thus a} is also a
primitive vector. Reflection symmetry then implies that the two lattice
vectors are of equal length.

\V
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Fig. 5.18. Possible orientations of primitive vectors in planar lattices featuring the
symmetries of the point group 2mm

Consider the third case first. The orientation of primitive vectors is shown
in Fig. 5.18(a). Since a; and a are of equal length, @ = a;+a) and b = a;—a/
are perpendicular and along the two mirror lines. a1 (as well as its mirror
image) is the shortest among lattice vectors provided that ¢ is between 30°
and 60°.

There is an equivalence between the first two cases — in which the shortest
lattice vector is along or perpendicular to the selected mirror line —, since there
are two mutually perpendicular mirror lines among the symmetry elements.
Whichever possibility is chosen, the shortest lattice vector is along a symmetry
line. Now consider the mirror image of the other primitive vector in the x-axis.
As above, there are two possibilities, shown in parts (b) and (c) of Fig. 5.18.
The second primitive vector is either along the other mirror line — in which
case the two primitive vectors are perpendicular — or it is not at right angles
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to the mirror lines — in which case the sum of a5 and its mirror image has to
be a;. This is equivalent to saying that b = 2as — a4 is perpendicular to a;.

The three lattices shown in Fig. 5.18 correspond in reality to two lattice
types, as lattice (a) can be transformed into lattice (¢) by an expansion in the
y-direction and a compression in the z-direction. Throughout this procedure,
the mirror lines remain unaltered. However, lattice (b) cannot be transformed
into the other lattices without breaking the symmetry. This lattice type (b)
is called primitive rectangular (op), and the others, (a) and (¢) — centered
rectangular (oc).

To understand the origin of the name note that the primitive vectors are
along the mirror lines in lattice type (b), whereby the rectangular unit cell
(primitive cell) also possesses the symmetries 2mm of the Bravais lattice. On
the other hand, the primitive cell is a parallelogram for the lattice type shown
in parts (a) and (c), which does not exhibit the symmetries of the point group
2mm. The rectangle spanned by the vectors a = a1 + a2 and b = a1 — as
(or @ = a1 and b = 2as — ay) possesses the symmetry of the point group
of the Bravais lattice — but it is not a primitive cell as the center of the
rectangle is also a lattice point. Nevertheless it is more practical to span the
lattice using vectors a and b, as it has already been mentioned in connection
with Fig. 5.9. When this choice is made, a lattice point has to be included at
the center of each rectangle — hence the name centered rectangular lattice. The
rectangular nonprimitive cell spanned by the vectors a and b is a conventional
unit cell also called the Bravais cell. In general, if the primitive cell does not
exhibit the point-group symmetry of the lattice but it is possible to choose a
larger Bravais cell that does, then the lattice type is called centered because
the Bravais cell contains one or more further lattice points at high-symmetry
positions. Otherwise the lattice type is called simple or primitive.

Finally, we have to consider lattices that show the symmetries of the point
groups 4mm and 6mm. Because of the four- and sixfold rotational symmetry,
the primitive lattice vectors are of equal length in both cases. When the rota-
tion axis is fourfold, the two primitive vectors are also perpendicular, so the
primitive cell is a square, hence the name square crystal system. The length
of the side of the square can be arbitrary, thus the Bravais lattice of any crys-
tal in the crystal system is of the same primitive square type, tp. When the
rotation axis is sixfold, the equally long primitive vectors can make angles of
60° or 120°. Here, again, the Bravais lattice of each crystal that belongs to
the hexagonal system is of the same type, hp.

To summarize, two-dimensional crystal structures are divided into four
systems according to the point group of their underlying Bravais lattices:
oblique (m), rectangular (o), square (t), and hexagonal (h) — however, five
Bravais lattice types are distinguished, since primitive and centered lattice
types are equally possible within the rectangular system. These lattice types
are shown in Fig. 5.19. The relations between the parameters of the Bravais
lattices are listed in Table 5.6.
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Fig. 5.19. Types of Bravais lattices and their primitive cells in two-dimensional
crystal structures. The conventional unit cell (Bravais cell) is also indicated for the
centered rectangular lattice

Table 5.6. The point groups for the four two-dimensional crystal systems (five
Bravais lattice types), and relations for the parameters of the Bravais cell

System Type Symbol Point group Lattice parameters
Oblique primitive mp 2 a#b, v#90°
primitive op  ano
Rectangular centered oc 2mm a#b, v=90
Square primitive tp dmm, a=b, vy=90°
Hexagonal primitive hp 6mm a=1b, vy=120°

It has already been mentioned that one possible choice for the primitive
cell is the Wigner—Seitz cell. This is shown for each of the five planar lattice
types in Fig. 5.20.

It is readily seen for the hexagonal Bravais lattice that the Wigner—Seitz
cell has a much higher symmetry than the primitive cell spanned by the prim-
itive translation vectors. In three dimensional Bravais lattices we shall see
further examples in which the Wigner—Seitz cell has a much more compli-
cated form than parallelepiped-shaped primitive cells but it also has a higher
symmetry. This property fully justifies its usage.
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Fig. 5.20. Wigner—Seitz cells for the five planar lattice types

5.4.5 Three-Dimensional Bravais-Lattice Types

It is straightforward to generalize the results of the two-dimensional case to
three dimensions. However, this would be rather lengthy, therefore on many
occasions we shall content ourselves with presenting the most important re-
sults without derivation.

Corresponding to the seven crystal systems (syngonies) there are seven
primitive (P) Bravais-lattice types. With the exception of the rhombohedral
system, the primitive translation vectors of these lattices are along the direc-
tions that correspond to symmetries of the Bravais group. When and only
when two axes are equivalent, the length of the associated primitive vectors
are equal. The simplest case is that of the Bravais group 1 (S3), whose only el-
ement other than the identity is inversion. This symmetry places no restriction
on the lattice parameters: the lengths a1, as, ag of the primitive translation
vectors a1, ag, as, as well as their angles a1, as, as are arbitrary.

In lattices of higher symmetry, symmetry elements provide relations among
the axes — and thereby also among the lengths and/or orientation of the
primitive vectors. As we shall see, just like in the two-dimensional case, there
are some three-dimensional Bravais lattices in which the primitive cell does not
show the symmetry of the underlying lattice but a larger Bravais cell can be
chosen that exhibits the point-group symmetry of the lattice. The Bravais cell
is spanned by the vectors a, b, ¢, which are appropriate linear combinations of
the primitive translation vectors a1, a2, az. Note that in what follows we shall
always use a1, as, and ag for primitive vectors, a, b, ¢ for the edge vectors of
the Bravais cell, and «, 3, y for the angles of the latter. For primitive lattice
types the two cells are identical, and so the two notations refer to the same
trio of basis vectors.
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Symmetry-implied restrictions on the side lengths and angles of the Bravais
cell are listed in Table 5.7. The name of the crystal system refers to the shape
of the Bravais cell.

Table 5.7. Restrictions on the lattice parameters of the Bravais cell and character-
istic symmetry operations for lattices of the seven crystal systems

System Symbol Lattice parameters Characteristic symmetry
C . a#b#c . .
Triclinic a inversion onl
ot B A Y
.. a#b#c rotation through 180°
Monoclinic m a=v=90°#0 around a single axis
rotation through 180°
Orthorhombic o aFbFe o around three mutually
a=pB=~v=90 .
perpendicular axes
a=b#c rotation through 90°
Tetragonal t a=p=~=90° around a single axis
Rhombohedral L a=b=c rotation through 120°
(Trigonal) 120° > a =B =~ # 90° around a single axis
a=b#c rotation through 60°
Hexagonal h a=[F=90°,y=120° around a single axis

a—b—c rotation through 120°
Cubic c o= ﬂ_— o 90° around the four
=PETE space diagonals

The crystal system specified by a particular Bravais group and the rela-
tionship between the lattice parameters of the Bravais cell may lead to various
Bravais-lattice types in the three-dimensional case, too. We shall now illustrate
this by two examples. Figure 5.21(a) shows the primitive cell of an orthorhom-
bic Bravais lattice spanned by three mutually perpendicular primitive vectors
of different length. The cuboid (rectangular parallelepiped) shaped primitive
cell possesses the characteristic symmetries of the orthorhombic crystal sys-
tem: rotations through 180° around three mutually perpendicular axes.

Among the primitive translation vectors of the Bravais lattice shown in
part (b) of Fig. 5.21, a3 is perpendicular to the plane spanned by a; and
as. The latter are not perpendicular to one another but satisfy the condi-
tion (2a; — a2) L as. We shall now prove that even in this case the lattice
possesses three mutually perpendicular twofold axes, and therefore belongs to
the orthorhombic crystal system. To this end consider the cell spanned by the
translation vectors a = 2a; — as, b = as, and ¢ = as. The condition imposed
on the primitive vectors implies that this cell is a cuboid. This unit cell is
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ala, la;la

Fig. 5.21. Bravais-lattice types of the orthorhombic crystal system: (a) primitive;
(b) base-centered

not, primitive, as it contains two lattice points: one at a vertex and another
at the center of a face that we shall refer to as of the base. (The equivalent
opposite face is also centered but it belongs to the neighboring primitive cell.)
Nevertheless, it is often more convenient to work with it. When the direc-
tions of the vectors a, b, ¢ are chosen as axes, the coordinate axes of the
orthorhombic system are recovered, and so the relations among the param-
eters given in Table 5.7 are satisfied by the Bravais cell spanned by these
vectors. Because of the lattice point at the center of a face (base) this lattice
is called single-face-centered orthorhombic or more commonly base-centered
orthorhombic. This lattice type is denoted by C — or A or B when another
face (that is not perpendicular to ¢) is centered.??

As a second example, consider lattices of the cubic crystal system that are
invariant under the symmetries of the point group Oj,. To obtain such lattices,
the edge vectors of the primitive cell need not be mutually perpendicular and
of equal length. In general, when the three primitive translation vectors are
of equal length and their angles are equal but not right angles, the symmetry
is trigonal. The threefold axis is the resultant of the three primitive vectors.
However, the three vectors may happen to make angles ¢ = arccos(—1/3) or
o = arccos(1/2) with one another. As shown in Fig. 5.22, by choosing

a=as+as, b=ai+as, c=a; +as (5.4.5)
in the first case and
a=-a;+ay+asz, b=a;—ax+a3z, c=a;+ay—as (546)

in the second, one is left with three mutually perpendicular vectors a, b, c
of the same length forming a cube. The primitive translation vectors are now
along face or body diagonals of this cube.

22 Although most books follow this convention, the use of letter S derived from
“side-face-centered” has been recommended recently by a committee of the Inter-
national Union of Crystallography.
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Fig. 5.22. Primitive translation vectors and Bravais cells for body-centered and
face-centered cubic lattices

In addition to the vertices, the cubic Bravais cells or conventional unit
cells now contain lattice sites either at the body centers or the face centers.
These lattices are considered to belong to different lattice types because they
cannot be continuously deformed into one another or into a simple cubic
lattice without breaking some symmetries. For example, if the length of the
primitive vectors were left unaltered but the relative angles were changed,
only symmetries typical of the trigonal system could be conserved upon the
smallest deformation. The lattice type that contains a site at the center of
the Bravais cell is called body-centered; its symbol is I. The lattice type that
contains a site at each face center is called face-centered; its symbol is F'.

From the above examples one may expect that new lattice types of the
same crystal system can be obtained by adding further sites at special po-
sitions of the primitive cell — at the body center, at the centers of a pair of
opposite faces, or at the center of each face provided the point-group symme-
try is unchanged. More general locations are certainly excluded since all the
sites of the original lattice have to be reached by integer linear combinations
of the new, shorter primitive translation vectors.

The seven crystal systems and the three types of centering could thus be
expected to give rise to 21 types of centered lattices. In reality, only seven
centered lattice types appear as centering does not always lead to new lattice
types: in particular, in the triclinic system centering does not lead to a sin-
gle new type. In other cases symmetries of the simple lattice are broken in
the centered lattice. The new lattice types and the primitive ones are listed
Table 5.8 for each crystal system.

The variety of notational conventions used for point groups exists for Bra-
vais lattice types, too. In the Schoenflies notation the subscript of I" specifies
the crystal system (¢ = triclinic, m = monoclinic, o = orthorhombic, ¢ =
tetragonal, rh = rhombohedral, h = hexagonal, ¢ = cubic), and the super-
script refers to the centering the Bravais cell (¢ = base-centered, v = body-
centered, f = face-centered). Another convention uses a code of the form zY,
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Table 5.8. The seven crystal systems and the fourteen types of Bravais lattices

Crystal system Point group Type

Name Symbol P C I F R
Triclinic a 1 C; I
Monoclinic m 2/m Cop I, Iy
Orthorhombic o mmm  Day r, rs ry i1t
Tetragonal t 4/mmm  Duap Iy ry
Rhombohedral h 3m Dsq VSN
Hexagonal h 6/mmm  Dep, Iy
Cubic c m3m Oy, Ie ry I

where z is the international symbol for the crystal system (2nd column), and
Y — one of the letters P, C (5), I, or F — specifies the centering type of
the lattice. The rhombohedral (trigonal) lattice is an exception: although it
is a primitive lattice, its centering type is denoted by R. Thus hP stands for
hexagonal, and hR for rhombohedral crystal system. The reader will under-
stand in hindsight why the rhombohedral system appears as a nonprimitive
type of the hexagonal system. A third notation uses a code of the form Yz,
where Y, once again, refers to the centering type (Y = P, C, I, F, R), and
x is the short international symbol for the point group of 