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Reading Assignment: Reading Assignment: My Electron Liquid lecture notes 5 on, textbook
J. Solyom, Solids II, Ch. 16, 22.

1. Ground-state energy of a noninterating electron gas

(a) Show that the ground state energy of a three-dimensional gas of N electrons at
T = 0K is given by E = 3

5
NεF .

Notice that even T = 0K because of Pauli exclusion principle, electron gas has
anormous kinetic energy even at zero temperature.

(b) Generalize this result to d dimensions, to show that E = d
d+2

NεF .

Hint: To do part (b), write down expressions for the number of particles and

the total kinetic energy in terms of a d-dimensional integral over all the states ~k
(remembering factor of 2 for two spin states per each orbital state ~k) occupied by

the electrons. Then use the fact that
∫

ddk . . . = Sd

∫ kF

0
dkkd−1 . . . (where Sd is

the surface area of a d-dimensional unit radius sphere, e.g., S2 = 2π, S3 = 4π) to
relate the expressions for N and E to each other, thereby obtaining result above.

You do not need to compute Sd, but it is given in earlier lecture notes.

2. Pressure and bulk modulus of a noninteracting electron gas

(a) Show that the equation of state (relation between pressure P and volume V ) for
an electron gas at T = 0K can be written as P = (2/3)E/V .

Notice that unlike classical Boltzmann gas, with PV = kBT , here the pressure is
finite even at T = 0. This is what’s called Pauli’s degeneracy pressure that, for not
too large of a mass supports a neutron star (made up of neutrons that similarly
to electrons in a metal form a degenerate liquid of fermions) from collapsing into
a black hole.

Hint: At T = 0K pressure is given by P = −∂E/∂V , keeping N fixed; answer to
problem 1 should be useful to you.



(b) Show that the bulk modulus B = −V ∂P/∂V of an electron gas at T = 0K is
given by B = 5P/3 = 10E/9V in 3d and generalize it to d-dimensions using
results from problem 1.

(c) Estimate bulk modulus B and fermi velocity vF for Potassium, using for example
Table 1 in Kittel.

3. Consider a nearly free Fermi gas confined by 3d isotropic harmonic potential Vtrap =
1
2
mω2

t r
2, as now is routinely done in JILA, in e.g,. Debbie Jin’s lab. For this system,

calculate:

(a) Fermi energy, EF as function of ωt and number N of fermions in the trap.

(b) Generalize this to finite temperature computing the chemical potential µ(T ) (with,
by definition, µ(0) = EF ).

(c) Compute the energy E(T, N).

(d) Compute the heat capacity Cv(T, N).

Simplifications:

(i) Ignore spin degree of freedom, as spin is usually frozen out by the strong magnetic
field creating the harmonic trap. (ii) Consider N >> 1, which will allow you to ignore
small (order 1) shifts in the principle quantum number n.

Hint:

Your analysis for this problem is a straightforward generalization of the fermion in a
“box” analyzed in class, with the only complication that single particle states are no
longer plane waves labelled by ~k, but are 3d harmonic oscillator states labelled by a
discrete set of eigenvalues ~n = (nx, ny, nz). To solve the problem it will be useful for
you to figure out the density of states, i.e., degeneracy of the 3d harmonic oscillator
at the principle quantum number n = nx + ny + nz (although you do not need to
do this). Also for the purposes of convenience (this is just a redefinition of a zero of
the chemical potential) ignore the zero-point energy. Finally, consider the case of a
very shallow trap, i.e., small ωt, which will allow you to replace sums with integrals
(analogous to looking at L → ∞ for the “box” problem, which makes k = n2π/L a
continuous variable).

The computation in (a) can be done exactly, but for (b),(c),(d) it is sufficient to com-
pute the results to lowest nontrivial order in T .

4. Density of states and the chemical potential.

(a) Compute the density of states for a 1,2, and 3-dimensional noninteracting electron
gas (with εk = ~2k2/2m). Note that in 2d the density of state is actually (ε-
independent) constant.



(b) Generalize part (a) to d-dimensions, showing that D(ε) ∝ ε(d−2)/2, expressing the
proportionality constant in terms of the surface area factor Sd as in problem 1.
You are not required to compute Sd for general d. (Compare this result to the
density of states for acoustic phonons studied previously).

(c) In general dimensions there is no simple closed form expression for the chemical
potential µ(n, T ) (with n the average electron density). However, in d = 2 it hap-
pens that the integral determining the chemical potential can be easily calculated
exactly. Show that in 2d the chemical potential for a electron gas of 2d density n
(number per area) at temperature T is given by

µ(n, T ) = kBT ln[eπn~2/mkBT − 1],

= kBT ln[eεF /kBT − 1]. (1)

Hint: You can do this either directly by evaluating the 2d integral over k or instead
using density of states D(ε) from part (a) and integrating over energies ε.

(d) Verify that µ(n, T ) reduces (as it must) to the Fermi energy εF in the limit of
T → 0.

(e) Plot µ(n, T ) as function of T for few densities n.

(f) Plot using Mathematica or another plotting type of a program that the 2d Dirac-
Fermi distribution function nF (ε) as a function of ε for a few values of temperature
T = εF /100, T = εF /10, T = εF /10, T = 10εF . Make sure to include temperature-
dependent µ(n, T ) found above.

5. Heat capacity

(a) Derive heat capacity C(T ) for a 3d Fermi gas

(b) Plot the full exact expression as a function of T .

(c) Show that at high temperature C(T ) reduces to the Boltzmann gas equipartition
result.

(d) Show that at low temperature C(T ) ≈ γT , with γ = π2

3
g(εF )k2

B, g(εF ) is the
density of states at the Fermi level.

6. Plasmon in two dimensions

Using hydrodynamic equations for the mass density, ρ and momentum density, g (mass
continuity and momentum continuity (Newton’s equation)),

∂tρ + ∇ · g = 0, (2)

∂tg = enE− κ−1∇ρ, (3)



where E is the 2d electric field induced by 2d charge fluctuation and κ is mass com-
pressibility, derive the dispersion of a 2d plasmon collective mode in an electron liquid,
showing that its dispersion at small momenta is given by

ω2d
k = α

√
k,

to be contrasted with the gapped dispersion in 3d.

Hint:

The Coulomb electric field at z = 0, E(r⊥, z = 0), due to a 2d charge fluctuation
ρ(r⊥, z) = ρ(r⊥)δ(z) can be obtained from the standard 3d Coulomb law relation
(easiest formulated in terms of gradient of the scalar potential), working in Fourier
space and focussing on z = 0.


