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Reading Assignment: My lecture notes 4 on Magnetism in Insulators, X-G Wen textbook,
J. Solyom, Solids I, Ch. 14, 15.

1. Curie paramagnetism

Consider a single quantum spin J in an external magnetic field B.

(a) Compute the (i) free energy, F (ii) magnetization, M = gLµB

~ 〈J〉 = −∂F/∂B (iii)
Curie magnetic susceptibility ∂M/∂B at B → 0.

(b) Show that χC(T ) exhibits the characteristic 1/T divergence at low T .

(c) Show that at low T and high B that M saturates and find the saturation value.

(d) Using classical statistical mechanics and treating J as a classical vector with a
continuous orientation over 4π steradians, repeat above computation and show
that in the large J limit the quantum results reduce to this classical analysis.

2. Classical ferromagnetic Ising model mean-field theory

Compute the magnetization, M , transition temperature Tc and the susceptibility χ
within mean-field analysis, showing that they exhibit a PM-FM phase transition.

3. Heisenberg antiferromagnet (AFM)

(a) Verify that Holstein-Primakoff representation of spin operators satisfies the spin
commutation algebra

(b) Considering Neél as the approximate AFM ground state for J < 0, use Holstein-
Primakoff bosonic representation for A and B sublattices of the Neél state to
derive Bogoluibov-like Hamiltonian (r, r′ are nearest neighbors on a cubic lattice)

HAFM ≈ 2NzJS2 − 2JS
∑
〈r,r′〉

(
a†
rar + b†r′br′ + arbr′ + b†r′a

†
r

)
. (1)



(c) Diagonalize this Hamiltonian on a 3d cubic lattice using Bogoluibov transforma-
tion

αk = ukak − vkb
†
−k, βk = ukb−k − vka

†
k,

obtaining

H = E0 +
∑
k

~ωk

[
α†

kαk + β†
kβk

]
,

and find:

i. the ground state energy E0 that includes the mean-field energy of the Neél
state and the zero-point quantum fluctuations,

ii. the coherence factors uk, vk,

iii. the spectrum ~ωk, showing that at small k it is linear in k; what is the speed
of magnon sound cafm?

iv. the T = 0 expectation value of spin projection 〈AFM |Sz
i |AFM〉 that is re-

duced from its fully polarized ±S value (in the Neél state that is not the
ground state), by 2

N

∑
k〈AFM |a†

kak|AFM〉 (note the analogy with the con-
densate depletion by interactions in the Bogoluibov theory of weakly inter-
acting superfluid),

v. and generalize the last calculation to finite T .

Hint:

• You will need to introduce ai and bi Holstein-Primakoff, with appropriate changes
from the standard definition for the B sublattice (e.g., relative minus sign between
the A and B sublattice for Sz

i , creation operator replaced by annihilation operator)
to account for the Néel state of alternating spin between A and B sublattices,
Sz

i = S(−1)i, i.e., | − S〉, |+ S〉 on the A and B sublattices, respectively.

• Note that in the Neél state the period is doubled as A and B sublattices are not
the same. Thus there are N/2 unit cells in the crystal with N sites.

• At finite T the population of the Holstein-Primakoff bosons is given by the corre-
sponding Bose factors.

4. Another very useful representation of spin operators is via Schwingers bosons (the
so-called spinor representation of spin),

z† = (z†1, z
†
2),

with

S =
1

2
z†σz =

1

2
z†ασαβzβ, (2)

Sz =
1

2
(z†1z1 − z†2z2), S+ = z†1z2, S− = z†2z1. (3)

Use above definitions and Pauli matrix σ algebra to show that,



(a) SU(2) transformation U = ei θ
2
n̂·σ of a Schwingers bosons, zα → Uαβzβ corresponds

to a SO(3) rotation R of the spin S → RS by angle θ about axis n̂.

Hint: It is sufficient to demonstrate above for a specific, simple axis of rotation
n̂, e.g., n̂ = ẑ, n̂ = x̂, n̂ = ŷ,

(b) S2 = S(S + 1), when bosons satisfy the constraint S = 1
2
z†z = 1

2
(z†1z1 + z†2z2)

Hint:

It is useful to take advantage of the following identity of Pauli matrices:

σαβ · σγβ = −δαβδγδ + 2δαδδβγ

(How do you prove this?)

(c) components of S satisfy spin algebra commutation relations,

[Sz
i , S

±
i ] = ±S±

i , [S+
i , S−

i ] = 2Sz
i .

5. One-dimensional transverse-field quantum Ising model via Jordan-Wigner transforma-
tion

Consider a 1d spin-1/2 transverse-field Ising model (TFIM)

HTFIM = −J
∑
〈i,j〉

Sx
i Sx

j − h
∑

i

Sz
i ,

with nearest neighbors exchange J . This model can be solved exactly by mapping it
onto 2d classical Ising model or equivalently using Jordan-Wigner (spinless) fermion
representation

S+
i = c†ie

iπ
P

j<i c†jcj , S−
i = e−iπ

P
j<i c†jcjci, Sz

i = c†ici −
1

2
=

1

2
(c†ici − cic

†
i ), (4)

where ci, c
†
i satisfy usual fermion anticommutation algebra

{ci, c
†
j} = δij, {ci, cj} = 0, {c†i , c

†
j} = 0.

This representation allows one to map the TFIM onto free, spinless fermions Hamilto-
nian when expressed in terms of ci, c

†
i .

(a) By carefully taking into account the Jordan-Wigner “string” (exponential factor
above), demonstrate that above spin representation indeed satisfies spin-1/2 al-
gebra on the same site, and with spins simply commuting on distinct sites.

(b) Use above representation to write the TFIM in terms of the fermions, showing
that it is indeed given by a quadratic fermionic Bogoluibov-like Hamiltonian,

HTFIM = −1

4
J

∑
i

(c†i − ci)(c
†
i+1 + ci+1)−

1

2
h

∑
i

(c†ici − cic
†
i ).



(c) Diagonalize this Hamiltonian, such that in terms of true quasi-particles γk, the
Hamiltonian is

HTFIM =
∑
k

Ekγ
†
kγk + E0,

and thereby find the spectrum of excitations, Ek, identify its gap (minimium
excitation energy), and the ground state energy E0.

Hints:

• It is crucial to observe that for spin Sα
i at site i, the“string”has a number operator

that counts the total number of fermions to the left of, but not including site i.

• Think about the (anti)commutation relation between the string operator at j and
the fermion operator at i.

• Since the fermion number operator at site i can only be 0, 1, one can rewrite the
string operator acting on these two states in a simple form that is easy to to
manipulate.

• Since this is a fermionic Bogoluibov Hamiltonian, to retain fermionic nature (an-
ticommutation relations) of the transformed quasi-particles, the transformation
coherence factors must satisfy |uk|2 + |vk|2 = 1, or equivalently the transforma-
tion U is unitary (rather than the pseudo-unitary for the bosons), written in terms
of sin θk, cos θk; actually it is just orthogonal 2× 2 rotation.


