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1. Coordinate to Fourier space transformation

Use the Fourier integral transform φ(r) =
∫

ddk
(2π)d e

ik·rφ̃(k) to demonstrate a very im-
portant result

H =
1

2

∫
ddrddr′φ(r)Γ(r− r′)φ(r′),

=
1

2

∫
ddk

(2π)d
φ̃(−k)Γ̃(k)φ̃(k), (1)

for converting a Hamiltonian from real-space φ(r) to Fourier φ̃(k) degrees of freedom
is, that we will use repeatedly throughout the course.

2. Quantum phonon correlators

Consider a general quantum model (with a single atom per unit cell for simplicity) of
a three dimensional harmonic crystal defined by natural frequencies ωk,i (i labels the
three band corresponding to three dimensions) described by the Hamiltonian

Hph =
∑

k∈1BZ

[
1

2M
P̃†

k · P̃k +
1

2
ũ†
k ·Dk · ũk

]
, (2)

=
∑

i,k∈1BZ

[
1

2M
P̃ †

k,iP̃k,i +
1

2
Mω2

k,iũ
†
k,iũk,i

]
, (3)

discussed in class.

Using the representation of the phonon field uR in terms of the normal modes and the
corresponding creation and annihilation operators, a†k,i, ak,i



(a) Show that phonon correlation function at finite temperature is given by

〈uR · uR′〉 =
1

2N

∑
i,k∈1BZ

~
Mωk,i

coth(
~ωk,i

2kBT
)eik·(R−R′), (4)

where we used the normal modes finite-T Bose-Einstein occupation Nk derived
for bosons.

(b) Use above result to show that mean-squared phonon fluctuations, u2
rms = 〈uR ·

uR〉,
i. In the T = 0 (kBT � ~ωD), quantum limit are given by

u2
rms =

1

2N

∑
i,k∈1BZ

~
Mωk,i

,

and that for 3d degenerate acoustic Debye phonons (ωk,i = csk) reduce to

u2
rms =

3

16

~a
Mcs

≈ ~
MωD

, (5)

(6)

in the continuum limit of N = L3/a3 >> 1 (a is a lattice constant). Note the
units are correct length-squared.

ii. In the high T (kBT � ~ωD), classical limit are given by

u2
rms =

1

N

∑
i,k∈1BZ

kBT

Mω2
k,i

,

and that for 3d degenerate acoustic Debye phonons (ωk,i = csk) reduce to

u2
rms = 3

kBT

2Mc2s
a2 ≈ kBT

~ωD
a2, (7)

in the continuum limit of N = L3/a3 >> 1 (a is a lattice constant). Note:
(i) the units are correct length-squared, (ii) the equipartion is recovered as
expected for a harmonic oscillator in this limit.

Hints:

• Continuum limit allows you to replace the sum over k by an integral according
to

∑
k . . .→ L3

∫
d3k

(2π)3
. . ..

• Introduce a short scale (ultra-violet) cutoff on the largest frequency ωD, cor-
responding to the largest momentum Λ = π/a.

• Do not worry about factors of order 1, as above is just an estimate, with the
quantitatively accurate answer (that you are not asked to produce) requiring
careful treatment of the actual phonon dispersion rather than just using the
Debye model.



(c) Using Lindemann criterion together with result (b) ii, roughly, what is the melting
temperature Tm of for a typical crystal in terms of its Debye frequency?

(d) Repeat your calculation in (b) ii for two dimensions (2d) and show that it is now
given by

u2
rms,2d =

kBT

πMc2s
a2 ln(L/a),

fluctuations that diverge logarithmically with the growing system size L/a→∞.
What do you think the qualitative consequence of this result for 2d crystals?
This divergence is a manifestation of the so-called Hohenberg-Mermin-Wagner
theorem, that in particle physics is referred to as the Coleman’s theorem.

Hint: In addition to the uv (short-scale) cutoff, here you will need to also introduce
an infrared (long scale) cutoff as the size of the sample L, limiting the wavevectors
to k > π/L.

(e) Use above analyses for a harmonic phonon field to show that the static structure
function

S(q) =
1

N

∑
R,R′

e−iq·(R−R′)〈e−iq·uReiq·uR′ 〉, (8)

is given by

S(q) =
1

N

∑
R,R′

e−iq·(R−R′)e−CR−R′ , (9)

with the equal-time correlator

CR−R′ =
1

2N

∑
i,k∈1BZ

~
Mωi,k

(q · êk,i)
2 coth(

~ωk,i

2kBT
)
(
1− eik·(R−R′)

)
. (10)

Hint:

Use a very useful identity, valid for quadratic (Gaussian) operator fields

〈eAeB〉 = e
1
2
〈A2〉+ 1

2
〈B2〉+〈AB〉, (11)

that can be derived by using Baker-Hausdorff formula (valid for operators whose
commutator is a c-number)

eAeB = eA+Be
1
2
[A,B] (12)

together with a formula
〈eφ〉 = e

1
2
〈φ2〉,

that we have derived for classical harmonic (Gaussian) fields using Gaussian in-
tegrals, but can also be shown to hold for quantum harmonic fields using path-
integral formulation.



(f) Evaluate above correlator CR−R′ in the continuum classical limit, for simplicity
specializing to an isotropic crystal with λ = −µ, with linear dispersion (Debye
model) showing that at long scales it behaves according to

CR−R′ ≈ ηq(T ) ln (|R−R′|/a) . (13)

Find the exponent ηq(T ).

Hint:

This is an asymptotic long scale result. You will need to introduce a short-scale
uv cutoff Λ = π/a. Don’t worry too much about factors of order one, particularly
when they appear inside the argument of a logarithm, where they are harmless.

(g) Use above results to demonstrate that at finite temperature T , a structure function
of a 2D crystal no longer exhibits true (δ-function) Bragg peaks, but instead is
characterized by quasi-Bragg power-law peaks

S(q) ∼ v
∑
Gp

1

|q−G|2−ηq
, (14)

i.e., translatonal quasi-long-range order, with reciprocal lattice G.

Hint:

To evaluate the sum over R, use the Poisson summation formula∑
R

e−iq·R =
∑
G

(2π)dδd(q−G),

where G span a reciprocal lattice to the real-space lattice of R.

3. Nonlinear elasticity and thermal expansion

Consider a real crystal that exhibit nonlinear elasticity, with elastic energy still given
quadratically in the elastic strain uαβ

Hel[u(r)] =
1

2

∫
ddrCαβ,γδ uαβuγδ, (15)

however with strain a nonlinear function of the phonon field u.

(a) Using a distorted atomic position R(r) = r + u(r) labelled by a local relaxed
position r and the definition of the nonlinear strain in terms of the metric tensor

uαβ =
1

2
(gαβ − δαβ) =

1

2
(∂αR · ∂βR− δαβ) (16)

show that the nonlinear strain is given exactly by

uαβ =
1

2
(∂αuβ + ∂βuα + ∂αu · ∂βu). (17)



(b) Using above result and the elastic Hamiltonian, (15), above, show that the non-
linear part of the elastic Hamiltonian density Hel = H0,el +Hnonlin is given by

Hnonlin = µ(∂αuβ)(∂αu · ∂βu) +
λ

2
(∂αuα)(∂βu · ∂βu)

+
µ

4
(∂αu · ∂βu)(∂αu · ∂βu) +

λ

8
(∂αu · ∂αu)(∂βu · ∂βu), (18)

with cubic and quartic nonlinearities, and H0
el the harmonic energy density, (3).

(c) As discussed in class (see lecture notes) for low T , but still in the classical limit
(kBT � ~ωk) phonon fluctuations are small and can be treated using classical
statistical mechanics. By Taylor-expanding in the small strain ∂αuβ in above non-
linearities and in δV , derive (but do not actually calculate) the formal expression
(in terms of integrals over products of phonon correlators Gαβ(r) = 〈uα(r)uβ(0)〉0)
for the lowest order contributions to the change in the volume of the sample

δV = 〈
∫
ddr(

√
detg − 1)〉. (19)

Please note that some terms seemingly contributing to δV actually vanish in the
averaging process due to symmetry. Thus, those vanishing terms do not count as
the “lowest order”. Thus I am asking you to derive the contribution to δV from
the lowest nonvanishing terms.

4. Quantization of a bosonic Hamiltonian

In this problem you will second-quantize the Schödinger equation, in preparation of
our study of weakly interacting superfluids, as for example an atomic gas of degenerate
Rb85 as studied in JILA.

(a) Let us begin with a noninteracting action

S0 =

∫
dtd3r

(
i~ψ†∂ψ

∂t
+ ψ† ~2

2m
∇2ψ

)
for a bosonic field ψ(r). By writing down a functional version of the Euler-
Lagrange equation, δS

δψ†(r)
= 0, show that it gives a Schrödinger equation, but now

understood as a wave equation for a field ψ(r) (analog of our phonon equation for
sound u(r) or the Maxwell’s wave equation for an electromagnetic field, E(r)).

(b) Repeat this derivation from the Hamiltonian approach:

i. find the momentum conjugate to ψ(r) using standard definition of a conjugate
momentum from Lagrangian formulation of mechanics,

ii. write down the canonical commutation relations,

iii. write down the Hamiltonian, and the corresponding equations of motion.



(c) Using the normal-modes expansion, ψ(r) = 1√
V

∑
k ake

ik·r write down the Hamil-

tonian in terms of the decoupled normal modes ak and a†k and derive their com-
mutation relation from the canonical one for ψ(r) and Π(r).

(d) Using a more convenient normal mode expansion for dynamic Heisenberg field

ψ(r, t) =
∫

dωddk
(2π)d+1 ψ̃(k, ω)eik·r−iωt express the action in terms of these modes,

ψ(k, ω).

(e) Use grand-canonical quantum statistical mechanics for these conserved bosons (by
using chemical potential µ to control the atom number) to express the average of
number operator N̂ =

∫
r
ψ†(r)ψ(r),

N(µ) =
1

Z
Tr

[
N̂e−β(H0−µN̂)

]
(20)

in terms of the chemical potential, µ. Note that the answer has the same form as
that for phonons, except the dispersion is nonrelativistic here and the chemical
potential is finite, as (in contrast to phonon number) atoms are conserved.


