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1. Band structure

Consider a tight-binding model of an electron described by a Hamiltonian,

H = −t
∑

〈R,R′〉

c†RcR′ ,

with a hopping matrix element t.

Compute the electronic band structure, the spectrum Ek,n (n band index and k crystal
momentum) for

(a) honeycomb lattice

(b) kagome lattice

and plot it in the 2d BZ and as a one-dimensional cut through the Γ (k = 0) point.

Hint:

• These lattices have 2- and 3- atom basis, that needs to be carefully taken into
account as independent intra-cell degrees of freedom.

• As usual use momentum states k (with the crystal momentum confined to the
1st Brillouin zone), Fourier transforming to momentum operators ck,s, with cR =

1√
N

∑
k ck,se

ik·R and s = 1, . . . , p the basis label for intra-cell atoms, to diagonalize
these single particle problems.

2. A diatomic crystal 1d chain

Consider a one-dimensional array of atoms, with Hamiltonian

H =
∑

i

p2
i

2m
+

1

2

∑
i

Bi(ui+1 − ui)
2



in which every mass m is the same, but the harmonic springs alternate in spring-
constant strength Bi on every other site between values of B0 and B1. Take the lattice
period to be 2a and spacing between atoms within the cell to be c. This problem
simulates a crystal chain of a diatomic molecule such as H2.

(a) By diagonalizing the Newton’s equation of motion for atoms in this 1d crystal with
2-atom basis (using Fourier series) show that there is one optical and one acoustic
mode, and compute and plot their dispersions ωo(k) and ωa(k), respectively.

To get full credit, on your graph please indicate all the relevant frequency and
wavevector scales (e.g., ωo/a(k = 0), ωo/a(k = 1BZ − boundary), k1BZ−boundary,...)
characterizing these two dispersions.

(b) Find the eigenmodes for (a) and show that they correspond to in-phase (acoustic
mode) and out-of-phase (optical mode) motion of the two atoms within the unit
cell.

(c) Repeat parts (a,b) by working with a Hamiltonian and diagonalizing it (i.e., by
transforming to its eigenmode basis in terms of which H becomes a sum of Hamil-
tonians for independent harmonic oscillators for each mode k) and then simply
reading off the eigenfrequencies ωo(k) and ωa(k).

(d) Compute the gap between these optical and acoustic branches.

(e) Show that for B0 = B1, and c = a, (after taking advantage of the periodicity of
the k-modes by a shift by a reciprocal lattice vector) your results reduce to that
of a single-atom Bravais lattice chain studied in class.

(f) Working with the decoupled Hamiltonian form above treat this elastic chain quan-
tum mechanically. Introducing bosonic (commuting) creation and annihilation
operators, ak, a

†
k, (as you would for a single harmonic oscillator through their re-

lation to operators x and p) derive the corresponding phonon spectrum and the
total zero point energy.

Hints:

• Approximate the problem with (only) nearest neighbors harmonic springs.

• Use periodic boundary conditions.

• As discussed in class, it is convenient to think of such non-Bravais crystal as a
periodic array of identical units, each of which consists of two atoms, with atoms
labeled by a basis: xα

n, where n ∈ {1, . . . , N/2} (N total number of atoms) labels
repeated units and α ∈ {0, 1}, labels the two atoms in each unit cell. Whether
you work with the Newton’s equation or the Hamiltonian, you will end up with
a 2 × 2 matrix (describing coupling between displacements u0 and u1 of the two
atoms comprising the unit cell) that you will need to diagonalize to answer above
questions.



3. Elastic chain in a continuum limit

(a) Show that for long wavelengths the equation of motion for a one-dimensional
chain of identical atoms of mass m, spacing a and elastic constant B reduces to a
continuum elastic wave equation

∂2u

∂t2
= v2

s

∂2u

∂x2
(1)

(b) What is the sound velocity vs in terms of B, m, and a?

(c) Find the eigenfrequencies of vibration of such sound, i.e., find the dispersion ω(k)
and compare it to the full solution ωfull(k) (no continuum-limit approximation)
that we found in class and in (e) above.

(d) Repeat this exercise of taking a continuum limit at the level of the Hamiltonian
and by decoupling it via Fourier modes, show that it reduces to independent
harmonic oscillators whose natural frequencies ω(k) can be simply read off.

4. “Isotropic” crystal

Consider a higher (d > 1) dimensional crystal. Recall from our discussion in class
(also see Solyom and any text on elasticity, e.g., Landau and Lifshits or Chaikin and
Lubensky) that a generic crystal is characterized by an elastic Hamiltonian (Einstein’s
summation convention over repeated indices is implied)

H =

∫
ddx

[
π2

2ρ
+

1

2
Cijkluijukl

]
,

where π = ρ∂tu is the canonical momentum of the ion displacement (phonons) field
u(r), ρ is the mass density, Cijkl is the matrix of elastic constants that is determined
by the symmetry of the crystal, and

uij =
1

2
(∂iuj + ∂jui)

is the symmetric strain tensor characterizing arbitrary lattice distortion.

For some crystals, (e.g., a very common 2d hexagonal lattice) to harmonic order Cijkl =
µ(δikδjl+δilδjk)+λδijδkl, characterized by just two elastic constants, the so-called Lamé
coefficients µ,λ, and the elastic Hamiltonian reduces to

H =

∫
ddx

[
π2

2ρ
+ µuijuij +

λ

2
uiiujj

]
.

(a) Treating this Hamiltonian classically, use Fourier representation of the phonon

fields u(r) =
∫

ddk
(2π)d uke

ik·r to decouple H into a sum of independent Hamiltonians,
one for each mode k.



(b) Use canonical statistical mechanics to compute the phonon-phonon correlator
〈ui(k)uj(k

′)〉, that is a crucial quantity characterizing ions’ fluctuations, and in
turn deviation from perfect crystalline order as measured by x-rays.

Hint:

(a) In classical statistical mechanics the canonical coordinate and momentum are
treated independently, so 〈u2〉 = 1

Z

∫
dudπe−βH[u,π], where Z is the partition func-

tion and β = 1/(kBT ).

(b) You should find that the elastic part of the Hamiltonian will take the form
Γij(k)ui(−k)uj(k), where your job is to find the dynamical matrix Γij(k), whose
inverse is directly related to the phonon correlator that we are after. To this end it
is convenient to express Γij in terms of longitudinal PL

ij = kikj/k
2 and transverse

P T
ij = δij−kikj/k

2 projection operators with respect to k, as in Γij = APL
ij +BP T

ij .
Once you have this, the inverse of Γij is simple (as transverse and longitudinal
modes are independent), given by

Γ−1
ij =

1

A
PL

ij +
1

B
P T

ij .

(c) In class we will discuss how to generalize this result to the full quantum treatment
of phonons.


