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Abstract

In these lectures, we will study magnetism in insulators. After a warm up with paramagnetism

of independent spins, we will discuss the spin exchange interactions in solids, arising from the

combination of Coulomb repulsion and Pauli exclusion, and leads to the Heisenberg model of

magnetism. Focussing on the simplest ferromagnetic and antiferromagnetic states, we will analyze

thermodynamics and correlations of low-energy excitations around these states using Holstein-

Primakoff and Schwinger bosons descriptions. We will use Jordan-Wigner transformation to solve

a one-dimensional spin-1/2 chain. We will discuss coherent-spin states path-integral formulation of

magnetism emphasizing, the role of Berry’s phase and will analyze phase transitions using Landau’s

mean-field theory of FM and AFM phases.
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I. INTRODUCTION

A. Outline

• Paramagnetism

• Spin exchange vs dipolar interaction

• Heisenberg model and crystalline anisotropies

• Hostein-Primakoff and Schwinger bosons

• Jordan-Wigner transformation and XXZ chain

• Coherent-spin states and Berry phases

• Mean-field and Landau theory of FM and AFM states

B. Background

In these notes we will explore some of aspects of magnetism in charge insulators. Mag-

netism is a formation and response of magnetic moments to external magnetic field H and

their interaction. In general there are two sources of magnetic moment and associated mag-

netization density M. One is quite intuitive, due to orbital charge current j in the material

M =
1

2

∫
r

r× j,

much like current wire loop produces magnetic field. The other source is intrinsic electron

spin S, giving magnetization M = nµ, where the magnetic moment is

µ = −gµB

~
S,

where the g-factor g ≈ 2(1 + α
2π

+O(α2)) (predicted by the Dirac equation with corrections

beyond 2 coming from quantum electrodynamic fluctuations of the electromagnetic field, as

an expansion in powers of the fine structure constant α = e2/(4πε0~c) ≈ 1/137), µB = e~
2m

=

5.788 × 10−5eV/Tesla is Bohr magneton (e > 0 is proton’s charge), and for the most part

we will neglect nuclear spin since it leads to magnetism that is down by a factor of 2000 due

to the electron-proton mass ratio.
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The Hamiltonian for a single electron that predicts both orbital and spin magnetization

is given by[1]

H =
P 2

2m
+ V (r) +

e~
2m

s ·B +
~

4m2c2
σ ·∇V ×P +

~2

8mc2
∇2V +

P 4

8m3c2
+ . . . , (1)

where P = p + eA is the velocity operator that includes the electromagnetic vector po-

tential, V (r) is the scalar potential, and the subsequent terms are respectively the Zeeman

term of spin-magnetic field interaction, spin-orbit interaction, Darwin term, and relativistic

correction to the quadratic spectrum, all coming from the nonrelativisitic limit of the Dirac

equation (that can be obtaining by squaring the Dirac Hamiltonian and expanding it at

small velocities).

Expanding the kinetic energy term for a constant magnetic field in a gauge A = 1
2
B× r,

and neglecting higher order relativistic Darwin and p4 terms, we obtain the simplifed form

H =
p2

2m
+ V (r) + γ(r)` · s +

µB

~
(` + 2s) ·B +

e2

8m
(B× r)2 (2)

where γ(r) = 1
2m2c2

1
r

∂V
∂r

. This Hamiltonian captures the orbital and spin magnetism associ-

ated with a single electron and (appropriately generalized to many-electron system, which

most importantly includes electron-electron Coulomb, crystal-field splitting and phonon

interaction) is the starting point of the study of magnetic response of individual atoms,

molecules and solids.

We note in passing that computing the classical partition function Z(A) as a phase

space integral
∫
dNrdNp with a Boltzmann weight e−βH[p+eA,r], and shifting the integration

variable from p to P allows us to eliminate all the orbital effects of the vector potential, illus-

trating that orbital magnetism is absent in classical physics and is an intrinsically quantum

phenomenon, a result knowns as the Bohr-von Leeuwen theorem.

There is a lot of interesting and extensively studied physics associated with atomic and

molecular magnetism, such as Larmor diamagnetism and van Vleck paramagnetism[1, 2].

However, here we instead focus on magnetism in solids.

II. ORIGIN OF MAGNETISM: COULOMB INTERACTION

As discussed in the Introduction, magnetism in solids arises from orbital and spin effects.

In these set of notes we will first focus on local moment magnetism, valid for insulators,
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leaving the treatment of itinerate magnetism for future lectures. For simplicity we focus on

atomic states with finite total angular momentum J > 0, arising in partially filled atomic

shells and spin-orbit interaction, with {J2, Jz, L
2, S2} as the good atomic quantum numbers.

In such systems the dominant term in the atomic Hamiltonian, (2), capturing the response

to an external magnetic field is H = µB

~ (` + 2s) · B, which when evaluated in the atomic

eigenstates gives an effective J moment

〈JLSJz|(` + 2s)|JLSJz〉 = gL(J, L, S)〈JLSJz|J|JLSJz〉,

where

gL(J, L, S) =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)

is the Landé g-factor, that leads to an effective Hamiltonian

Heff =
gLµB

~
J ·B ≡ −µ ·B, (3)

with 2j + 1 eigenstates with eigenvalues Ej = jgLµBB, where j ∈ {−J, . . . ,+J}.

A. Local moment paramagnetism

Armed with the effective J-moment Hamiltonian, (3), the magnetic linear susceptibility

and other thermodynamic quantities as well as correlation functions are easily computed.

As usual the thermodynamics is contained in the quantum partition function, that is a sum

over 2J + 1 discrete states projections of J along B = µ0H, giving:

Z(H) = e−βF =
J∑

j=−J

e−jgLµBB/kBT =
sinh [(J + 1/2)gLµBB/kBT ]

sinh[gLµBB/(2kBT )]
, (4)

The magnetization density

M = −n∂F/∂B = ngLµBJBJ(JgLµBB/kBT ), (5)

where BJ(x) is the Brillouin function, BJ(x) = (1+ 1
2J

) coth
[
(1 + 1

2J
)x
]
− 1

2J
coth( x

2J
) ≈x→0

1
3
(1 + 1/J)x. For J = 1/2 (the so-called Ising case of L = 0, S = 1/2), gL = 2 and

magnetization reduces to m = nµB tanh(µBB/kBT ). For large J , the 2J + 1 states can be

equivalently treated as continous magnetic moment orientation, integrating
∫
dΩ over the

full 4π steradiands of the solid angle orientations.
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In the classical limit of (J + 1/2)gLµBB � kBT , the result leads to Curie linear suscep-

tibility (using coth x ≈ 1/x+ x/3 + . . .)

χC(H = 0, T ) =
∂M

∂B

∣∣
B→0

=
1

3
n(gLµB)2J(J + 1)

kBT
≡ C

T
,

with C the Curie constant and M ≈ χ(T )B exhibiting a linear response in this regime.

This 1/T susceptibility behavior is a generic experimental signature of independent local

moments, with the amplitude a measure of the size of the magnetic moment and the asso-

ciated spin. At finite T the susceptibility is finite and paramagnetic (i.e., magnetization is

along the applied magnetic field and vanishes with the field), only diverging at vanishing

temperature, capturing a nonzero induced magnetization in response to an infinitesimal field

in the absence of disordering thermal fluctuations. In the opposite quantum limit of large

Zeeman gaps (J + 1/2)gLµBB � kBT , magnetization density saturates at its maximum

value of ngLJ . These limits are illustrated in Figs.(1) and (2). As we will see below in

magnets, as a result of interactions between local moments, the behavior is far richer.

FIG. 1: Reduced magnetization curves for three paramagnetic salts and comparison with Brillouin

theory prediction, from Ref.[1].

B. Spin-spin exchange interaction

As a general “More is Different” theme of condensed physics, its richness arises from

interactions (gases are boring, but liquids and solids are interesting). This of course also
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FIG. 2: Magnetization and corresponding Curie susceptibility in gold (Au) nanoparticles, measured

at several temperatures up to H = 17 Tesla. Reduced magnetization curves for three paramagnetic

salts and comparison with Brillouin theory prediction, from Ref.[3].

extends to magnetism with the rich array of magnetic phases observed in solids is due to

interaction between magnetic moments.

Now, based on magnetostatics one may naturally guess that interaction between spins is

due to dipolar interaction between the associated magnetic moments

Hdipole−dipole =
µ0

4πr3
[µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)] , (6)

where r is the distance between and hatr is the unit vector connecting µ1 and µ2. Using µB

as the scale for the magnetic moment and Bohr radius r0 = as the measure of intermoment

spacing between typical moments in a solid, an estimate of the dipole-dipole interaction

energy is given by

Edipole−dipole ≈
µ0

4π

µ2
B

a3
0

=

(
e2

4πε0~c

)2
e2

16πε0a0

≈
(

1

137

)2

ERy ≈ 5× 10−4eV ≈ few Kelvin,

(7)

and is just quite insignificant for ordering on the eV energy scale (10,000 Kelvin) relevant to

magnetic solids, though can be important as a secondary scale for determining crystalline

magnetic anisotropy.
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Although at first sight quite paradoxical since it is spin-independent, as we will see below,

it is the much larger (order of eV) Coulomb interaction that is responsible for magnetism

in solids through its interplay the Pauli principle, which brins spin configuration into the

problem.

To see this we first examine Heitler-London (HL) theory of a covalent bond in e.g., a

H2 molecule, which one can think of as a toy model of two-site insulator. The system

consists of two electrons and two nuclei (protons in H2 case, assumed to be fixed classical

degrees of freedom) on which electrons prefer to reside, characterized by hydrogenic-like

exponentially localized wavefunction, ψA(r1), ψB(r2). The corresponding Hamiltonian is

H(r1, r2) = HA(r1) +HB(r2) +Hint(r1, r2), where

HA(r1) = − ~2

2m
∇2

1 −
e2

|r1 −RA|
, HB(r2) = − ~2

2m
∇2

2 −
e2

|r2 −RB|
, (8)

Hint(r1, r2) = − e2

|r1 −RB|
− e2

|r2 −RB|
+

e2

|r1 − r2|
(9)

and single particle problems are defined by HA,B(r)ψA(r) = εA,BψA,B(r).

The HL assumption is that each electron predominantly resides on each ion, rather than

being in the state of superposition between the two nuclei; thinking about a double-well po-

tential problem, we note that in the absence of (or weak) interactions, it is this latter solution

that is most natural, and can be thought of as a “toy” wavefunction of a complementary

conductor.

However, a crucial point is that once we consider even a two-electron wavefunction,

quantum statistics enters, Pauli principle requiring antisymmetry of the overall wave-

function under interchange of two electrons. Thus the full two-electron wavefunction

(that for two particles breaks up into a product of orbital and spin parts) is given by

Ψs,t(r1, s1; r2, s2) = ψs,t(r1, r2)χs,t(s1, s2), where the two singlet (s) and triplet (t) possi-

bilities are

ψs(r1, r2) = Ns [ψA(r1)ψB(r2) + ψA(r2)ψB(r1)] , χs(s1, s2) =
1√
2

[| ↑〉1| ↓〉2 − | ↑〉2| ↓〉1] ,

ψt(r1, r2) = Nt [ψA(r1)ψB(r2)− ψA(r2)ψB(r1)] , χt(s1, s2) = | ↑〉1| ↑〉2, | ↓〉1| ↓〉2,
1√
2

[| ↑〉1| ↓〉2 + | ↑〉2| ↓〉1] ,

(10)
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where the singlet/triplet normalization factors are

Ns,t =
1√

2(1± |SAB|2)
, (11)

where SAB ≡
∫
r
ψ∗

A(r)ψB(r)|2.

The key observation is that despite spin-independence of Coulomb interaction its expec-

tation value in these singlet and triplet states are quite different, given by

εs = 〈ψs|H|ψs〉 = εA + εB + 2N2
s (C + I), (12)

εt = 〈ψt|H|ψt〉 = εA + εB + 2N2
t (C − I), (13)

giving the single-triplet splitting energy

∆Es−t ≡ 2J = εs − εt = 2(N2
s −N2

t )C + 2(N2
s +N2

t )I = 2
C|SAB|2 − I

1− |SAB|4
,

that is positive for

I < C|SAB|2,

where

C =

∫
r1,r2

ψ∗
A(r1)ψ

∗
B(r2)HintψA(r1)ψB(r2) =

∫
r1,r2

nA(r1)HintnB(r2), (14)

I =

∫
r1,r2

ψ∗
A(r1)ψ

∗
B(r2)HintψB(r1)ψA(r2), (15)

are the direct (classical electrostatic part coming from density-density interaction) contribu-

tion of the interaction, and the exchange integral comes from quantum mechanical exchange

of the two electrons, the existence of which was also independently pointed out by Heisenberg

and Dirac in 1926.

The nontrivial exchange integral I that splits the singlet-triplet degeneracy arises from

a nonvanishing overlap between the two wavefunctions localized on the A and B nuclei.

For two electrons on a single atom I > 0 and gives the mechanism responsible for the

Hund’s rule of maximizing the total spin in a multi-electron atom. More generally I can

be positive, ferromagnetic (FM) or negative, antiferromagnetic (AFM), but is found to

be strongly negative for H2, showing that the molecule is in a spin-singlet state with the

splitting responsible for H2 binding. More importantly, above analysis thus illustrates the

Coulomb-driven mechanism for magnetism in solids.
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C. Heisenberg model

To flesh this out more explicitly, illustrating the significance of the exchange constant J ,

we illustrate that (when confined to the singlet ((s1 + s2)
2 = 0) — triplet ((s1 + s2)

2 = 2)

subspace of two electrons) above splitting can be captured by a simple effective, pure spin

Hamiltonian,

Heff = εs +
1

2
(εt − εs)(s1 + s2)

2 = εs − J(s1 + s2)
2, (16)

= εs − J(s2
1 + s2

2)− 2Js1 · s2, (17)

= −2Js1 · s2 + E0, (18)

where E0 = εs−3J/2. Heff is the famous Heisenberg Hamiltonian and we have taken spins to

be dimensionless (absorbed ~ into J which then has dimensions of energy). When generalized

for a lattice of “spins” Si (a total localized angular momentum of an ion, that generally

involves both orbital and spin angular momenta, with magnetic moment µi = −gLµBJi, but

we will continue to use the standard notation of Si, and taking it to be dimensionless) at

sites Ri of a solid with exchange Jij between sites Ri and Rj it is given by

H = −
∑
i,j

JijSi · Sj. (19)

FIG. 3: Graphical determination of the mean-field magnetization M from the intersection points of

the Brillouin function BS(x) and straight lines of temperature-dependent slope (figure by Solyom,

Solids State Physics I).
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In the quantum regime, this Hamiltonian is highly nontrivial (despite its deceptively

simple quadratic form) as it is to be supplemented by the nonlinear spin commutation

relation

[Sα
i , S

β
j ] = iδijεαβγS

γ
i .

We note that the ideal Heisenberg Hamiltonian has full SU(2) spin-rotational invariance,

with spin orientation totally independent of the orbital (e.g., bond) orientations. Below

we will discuss deviation from this idealization due to spin-orbit interactions that result in

the so-called crystal-symmetry and other SU(2) symmetry-breaking fields. In the classical

approximation, for J > 0 (J < 0) it predicts ferromagnetic (antiferromagnetic) alignment of

spins at low temperature, that as we will see below leads to ferromagnets and antiferromag-

nets. Of course in the presence of quantum and thermal fluctuations the phenomenology is

much richer and strongly depends on dimensionality of space and lattice structure. In the

presence of an external magnetic field H, with flux density B = µ0H (that does not include

magnetization due to local moments), there is an additional Zeeman interaction

HZeeman = −gµBB ·
∑

i

Si,

(g ≡ −gL) that for strong fields can overwhelm the exchange, aligning all the moments along

B.

In addition to above direct exchange interaction, mediated by overlap between electron

wavefunctions localized on neighboring ions, there are a number of other mechanisms that

can lead to the effective Heisenberg model, even if direct exchange is absent. One is the

superexchange mechanism put forward by H. A. Kramers (1934), where the spin interaction

between magnetic atoms is mediated by electrons on the intermediate nonmagnetic atoms.

Antiferromagnetism in certain fluorides (MnF2, CoF2) and oxides (MnO, CuO) is believed

to arise from this mechanism.

D. Magnetic anisotropies

In real crystals, spin-orbit interaction breaks full global SU(2) spin rotational invari-

ance, introducing coupling of spin orientation with the crystalline axes. The form of these,

so-called, crystalline anisotropies strongly depends on the size of the spin, symmetry of

the lattice and order of the interaction. In a cubic lattice to quadratic order in spins, no

10



anisotropies appear (with lowest order appearing at quartic order as S4
α). In tetragonal

crystals, the Heisenberg model becomes

H = −
∑
i,j

Jij

(
Sx

i S
x
j + Sy

i S
y
j + ∆Sz

i S
z
j

)
.

For ∆ > 1 the ordering is along z axis (uniaxial axis of the tetragonal crystal), the so-called

“easy axis” Ising anisotropy. In the extreme limit of low energies the model reduces to the

Ising model

HIsing = −
∑
i,j

JijS
z
i S

z
j .

Since only commuting Sz
i operators appear, in this Ising limit the model is classical and

at T = 0 clearly exhibits classical magnetic order determined by the form of the exchange

couplings Jij.

Quantum fluctuations re-emerge in the presence of a transverse (to easy Ising axis) field,

described by the tranverse-field Ising (TFI) Hamiltonian

HTFI = −
∑
i,j

Jijσ
z
i σ

z
j −

∑
i

hiσ
x
i ,

where in the simplest case the exchange Jij can be taken to be local (nonzero only for nearest

neighbors, vanishing otherwise) and uniform transverse field h. In above we specialized to

a simplest case of spin-1/2, allowing us to express the Hamiltonian in terms of the Pauli

matrices σx, σy, σz (absorbing the factor ~/2 into the parameters J, h). As we will see below,

this 1d quantum model maps onto 2d classical model and is therefore exactly solvable,

exhibiting a quantum (at T = 0) FM-PM transition as a function of h/J .

In the opposite case of |∆| < 1, the spins order in the isotropic transverse to the uniaxial

axis, in which (to quadratic order in spins) the so-called “easy plane” ordering is isotropic.

In the extreme case the model reduces to the so-called XY model,

HXY = −
∑
i,j

Jij

(
Sx

i S
x
j + Sy

i S
y
j

)
= −

∑
i,j

JijS
⊥
i · S⊥

j .

In addition, for S > ~/2, a single-ion anisotropy Hion = −D
∑

i(S
z
i )

2 can also appear in

tetragonal crystals.

It is convenient to choose the quantization axis along the tetragonal uniaxial axis z and

rewrite the Hamiltonian in terms of spin raising and lowering operators

S+
i = Sx

i + iSy
i , S−

i = Sx
i − iSy

i ,
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which reduces the Hamiltonian to

H = −
∑
i,j

Jij

(
1

2
S+

i S
−
j +

1

2
S−

i S
+
j + ∆Sz

i S
z
j

)
. (20)

This form reminds us of the quantum nature of the Heisenberg and XY (but not Ising)

models. It also emphasizes its relation to the bosonic hopping problem, where spin exchange

corresponds to a destruction of Sz quanta at site j and its creation at site i, and visa versa.

III. MAGNETISM IN CRYSTALLINE SOLIDS

Except for one-dimension (where it can be solved by Bethe Ansatz) the full quantum-

mechanical Heisenberg model cannot be solved exactly. We thus embark on a variety of

approximate analyses of this model, predicting appearance of variety of magnetic orders and

phase transitions between them in crystalline solids.

A. Mean-field theory

The simplest and oldest approximate treatment of interacting systems in general is the

so-called mean-field theory approximation. The general idea is to replace the many-particle

system by an effective one-particle Hamiltonian in the presence of an effective external

field produced collectively by the remaining particles. The approximation is valid deep in

the classically well-ordered state, where fluctuations are small. In the context of magnetic

system this is known as Weiss mean-field (1907), where one replaces interacting spin model

by a single spin in presence of an effective, self-consistently determined Weiss magnetic field.

To implement Weiss mean-field theory on the Heisenberg model we assume the long-range

magnetic order characterized by magnetization proportional to 〈Si〉, with spin then given

by by

Si = 〈Si〉+ (Si − 〈Si〉),

the mean-field value and small fluctuations (presumed small). Inserting this into Heisenberg

Hamiltonian in the presence of real external field and neglecting the small fluctuations terms
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beyond first order, we obtain

Hmft =
∑
i,j

Jij〈Si〉 · 〈Sj〉 − 2
∑
i,j

Jij〈Sj〉 · Si − gµBB ·
∑

i

Si, (21)

=
∑
i,j

Jij〈Si〉 · 〈Sj〉 − gµBBeff ·
∑

i

Si, (22)

where the effective Weiss field is

Beff = B +
2

gµB

∑
j

Jij〈Sj〉,

that quite clearly gives a self-consistent mechanism to induce magnetic order, 〈Sj〉 6= 0 even

for vanishing external magnetic field. Since above mean-field Hamiltonian, (22)lcoalPM is

for a single spin, it can be solved exactly, as we will now do for a ferromagnetic order.

1. Ferromagnetic order

Focussing on the ferromagnetic state, we take 〈Si〉 ≡ S0 = M~/(gµB) to be spatially

uniform, which allows us to directly utilize our analysis from Sec.IIA for Hamiltonian (22).

From Eq.(5) we immediately find magnetization density along the applied field

M = ngLµBSBS [SgLµBBeff(M)/kBT ] , (23)

= ngLµBSBS [SgLµB(B + λM)/kBT ] , (24)

which gives a self-consistent equation for M(B), with constant λ = 2J0/(ng
2
Lµ

2
B) and

J0 ≡
∑

j Jij (≈ Jz for nearest neighbors exchange model with z the lattice coordination

number). This implicit equation can be solved graphically (or numerically), illustrated in

Fig.??.

From its structure and

BS(x) ≈x→0
1

3
(1 + 1/S)x− 1

90S3
(2S3 + 4S2 + 3S + 1)x3

it is clear that for sufficiently high T > Tc (small prefactor in the argument of BS) and zero

external field B = 0, there is only a single trivial paramagnetic solution M = 0. However,

for T < Tc, there is also a nontrivial, ferromagnetic solution M 6= 0, that can be shown to

minimize the free energy for T < Tc. The critical Curie temperature Tc is easily found as
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FIG. 4: Lattice of interacting spins (magnetic moments), exhibiting an antiferromagnetic (AFM)

classical order (figure by Subir Sachdev).

the temperature at which the FM solution first appears and is given by

kBTc =
1

3
ng2

Lµ
2
BS(S + 1)λ, (25)

=
2J0

3
S(S + 1) =

2J0

3~2
〈S2〉. (26)

quite naturally determined by the exchange constant J and square of the spin operator with

larger spin ordering at higher temperature.

Repeating this expansion for finite B, we find the so-called Curie-Weiss linear linear

response

M = χCWB,

with the susceptibility

χCW =
χC

|1− Tc/T |
,

that (in contrast to the paramagnetic Curie susceptiblity χC) diverges at Tc > 0, where

the system exhibits paramagnetic (PM)-ferromagnetic (FM) continuous transitions. From

above solution, for B = 0 we also find, that, while in the PM state M = 0, in the FM phase

the magnetization grows as (see Fig.(5))

M ∝ (Tc − T )1/2, for T < Tc,
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FIG. 5: Comparison of the measured magnetic properties of nickel [P. Weiss and R. Forrer, Ann.

de Phys. 5, 153 (1926)] with the results obtained in the mean-field theory for S = 1/2. (a)

Magnetization and (b) inverse susceptibility, as functions of temperature (figure from Solyom,

Solids State Physics I).

and

M ∝ B1/3, at T = Tc.

Similar mean-field analysis can be carried out for other magnetic states, for example the

AFM Neel or spin-density wave states.

2. Landau mean-field theory

While above mean-field analysis relies on a specific microscopic Heisenberg model, as

was first demonstrated by Lev D. Landau (1937), above mean-field predictions are much

more universal and are a consequence of continuous phase transition and a free-energy that

is analytic function of the order parameter, magnetization in the case of the FM. Indeed

Landau postulated that

F = F0 + a(T )M2 +
1

2
bM4 + . . .−BM,

(with the form dictated by the spin-rotational [or at least M → −M ] symmetry of the

Hamiltonian), with coefficients a smooth function of T and a(T ) = a0(T/Tc − 1), changing
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sign to a(T < Tc) < 0 at Tc. Indeed it is easy to verify that above Weiss mean-field theory

indeed exhibits this Landau form with specific coefficients a(T ), b(T ), etc. Thus, this generic

Landau theory indeed predicts the phenomenology near Tc found above.

3. From Ising model to φ4 field theory

As an illustration of a systemmatic treatment of a lattice model we study the classical

Ising model

HIsing = −1

2

∑
〈i,j〉

Jijσiσj,

where σ = ±1 (representing spin up/down along z axis).

While one can work directly with these Ising degrees of freedom σi, to expose the universal

properties of this model, construct mean-field theory, study fluctuations and the associated

PM-FM phase transition, it is much more convenient to transform this model to a the

so-called φ− 4 field theory in terms of a continuous scalar field φ(r).

To this end we consider the partition function and manipulate it by introducing an aux-

ilary field φi using Hubbard-Stratonovich (HS) transformation (which, despite its “scary”

name, is nothing more than a Gaussian integral), which the allows us to execute the sum

over {σi} exactly, obtaining

Z =
∑
{σi}

e
1
2
β

P
ij Jijσiσj , (27)

= Z−1
0

∑
{σi}

∫
Dφie

1
2
β−1

P
ij J−1

ij φiφj+
P

i σiφi , (28)

= Z−1
0

∫
Dφie

1
2
β−1

P
ij J−1

ij φiφj+
P

i ln cosh φi ≡
∫
Dφie

−Heff (φi). (29)

In above, the inverse of a translationally-invariant exchange Jij ≡ Ji−j with Fourier trans-

form J(k) is straightforwardly inverted in Fourier space,∑
ij

J−1
ij φiφj =

∫
ddk

(2π)d

1

J(k)
φ(−k)φ(k).

For a short-range model, Ji−j is expected to be short-ranged and therefore with a Fourier

transform that is well-defined at Jk=0 and falls off with increasing k beyond a short-scale

microscopic length a. Thus, its generic form is given by

J(k) ≈ J0

1 + (ka)2
.
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Combining this with Heff , we obtain (dropping unimportant constant and going to a

continuum limit i = ri → r)

Heff =
1

2

kBT

J0

∫
k

(
1 + (ka)2

)
φ(−k)φ(k)− ad

∫
r

ln coshφ(r), (30)

=

∫
r

[
1

2
K(∇φ)2 +

1

2

kBT

J0

φ2 − ad ln coshφ(r)

]
, (31)

where in the last line we went back to real (coordinate) space, took the continuum limit and

defined stiffness

K ≡ kBTa
2+d

J0

.

Above continuum theory theory of the Ising model can be straightforwardly analyzed within

mean-field theory, by simply treating φ as spatially uniform (average magnetization), recov-

ering mean-field results in our early Weiss mean-field analysis, and in particular predicting

the PM-FM phase transition at Tc.

However, this model also allows us to conveniently go beyond mean-field by using the

functional integral over φ(r) to analyze the thermodynamics via above partition function. To

make progress we note that near the PM-FM phase transition φ is small (fluctuating around

zero in PM state and around spontaneous small magnetization just below the transition

inside the FM state). Thus we can Taylor expand the effective φ potential to lowest nonlinear

order,

ln coshφ(r) = ln 2 +
1

2
φ2 − 1

12
φ4 +O(φ6). (32)

This then gives,

Heff =

∫
r

[
1

2
K(∇φ)2 +

1

2
tφ2 +

1

4!
uφ4,

]
(33)

where we defined standard coupling constants of this effective Hamiltonian, often referred

to as phi4-theory

t = ad

(
kBT

J0

− 1

)
, u = 2ad,

that (because of its generic nature) prominantly appears in condensed matter and particle

field theory studies. We note that the “reduced temperature”, t (not to be confused with

time) is positive for T > Tc ≡ J0/kB, corresponding to a vanishing magnetization, φ = 0

of the PM phase and is negative for T < Tc, corresponding to a nonzero magnetization,

φ > 0 of the FM phase. Thus we the theory recovers a PM-FM phase transition at t = 0,

corresponding to critical temperature J0/kB.

17



B. Beyond mean-field theory: critical phenomena and universality

Despite considerable success of Landau theory, it was appreciated as early as 1960s, that

for continuous transitions a more general phenomenology is found in experiments, namely

M(T,B = 0) ∝ |Tc − T |β, χ(T ) ∝ |T − Tc|−γ, (34)

M(T = Tc, B) ∝ B1/δ, C(T ) ∝ |T − Tc|−α, (35)

ξ(Tc, B = 0) ∝ |T − Tc|−ν , (36)

(37)

where “critical exponents” β, γ, δ, α, ν are universal, depending only on the symmetry and

dimensionality of the continuous phase transition, namely the so-called its “universality

class”. The satisfy a variety of exact relations: α + 2β + γ = 2, γ = β(δ − 1), dν = 2 −

α, γ = (2 − η)ν. In mean-field theory β = 1/2, γ = 1, δ = 3, α = 0, ν = 1/2, but more

generally are irrational but universal numbers. In above we defined the correlation length ξ

that characterizes the range of spatial correlations that diverge at the phase transition. A

beautiful set of theoretical developments[2, 14] in the 1970s, led by M. Widom, Leo Kadanoff,

Migdal, Michael Fisher, S. Pokrovsky, and Ken Wilson (who received the Nobel Prize for

his development of renormalization group), led to a seminal explanation of experimental

observations of universality and corrections to Landau’s mean-field theory. These arise

due to qualitative and singular importance of fluctuations about mean-field predictions, a

subject[2, 14] that we will not pursue further here as it lies outside of out main focus.

IV. EXCITATIONS IN MAGNETIC STATES

The nature of the magnetic state depends strongly on the microscopic details such as the

exchange interactions Jij (its sign and range) and crystal lattice structure. One of important

characterizations of a phase is its excitations, that strongly depend on the type of magnetic

order (FM, AFM, spin-density wave, etc.). This is quite analogous to the phonon excitations

in the ordered crystalline phase, and to zero-sound Bogoluibov excitations in the superfluid

state, that we studied in previous chapters. Excitations in the magnetic ordered states are

characterized by precessional spin dynamics, that in the classical limit is simply given by the

torque equation dI/dt = µ×B for the local angular momentum Ii = ~Si of the local moment
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µ = −gLµBSi/~, and leads to collective spin-wave excitations. Quantum mechanically this

is equivalent to the Heisenberg equation of motion for the spin operator Si, governed by the

Heisenberg Hamiltonian,

i~
dSi

dt
= [Si, H] = iSi ×

(
2
∑

j

JijSj

)
, (38)

where in the second equality we used spin algebra to evaluate the commutator, obtaining

precessional dynamics of each spin in the effective field of its neighbors. In analogy with

lattice vibrations that in a quantum treatment led to quantized phonon excitations, mag-

netic spin-waves are treated fully quantum-mechanically. As we will see below this leads to

magnetic excitation quanta referred to as magnons. Below we focus on the simplest homo-

geneous FM state and refer the reader for to the literature (see e.g.,[2] for the description of

other states.

A. Ferromagnetic spin-waves

Focussing on the FM state, we study the dynamics of small spin fluctuations, δSi = Si−S0

(not unlike Goldstone modes phonon fluctuations as small distortions of the ordered state)

about the average, spatially uniform mean magnetization S0 of the FM state. These are

governed by linearized Heisenberg equation

~
dδSi

dt
= 2

∑
j

Jij [δSi × S0 + S0 × δSj] , (39)

= 2
∑

j

Jij [δSi − δSj]× S0, (40)

that is decoupled in terms of Fourier components

δSx
i = δSk cos(k ·Ri − ωkt), δSy

i = δSk sin(k ·Ri − ωkt),

giving the dispersion

~ωk = 2S0

∑
j

Jij

[
1− eik·(Rj−Ri)

]
∼ Kk2, (41)

In the last equality we focussed on long-wavelength and utilized inversion symmetry of the

lattice, that gives K = 2S0

d

∑
R JRR

2 obtaining a quadratic (cf linear phonons) dispersion,

that is a well-known signature of the ferromagnetic spin waves.
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B. Antiferromagnetic spin-waves

A similar analysis to the above can be carried out for the AFM, with the key difference

being the nature of the ordered state, characterized by a spatially oscillatory magnitization

〈Si〉 = S0e
ik0·Ri ,

rather than the uniform one of a FM. Focussing on the commensurate Neel state, that

only doubles the crystal’s unit cell, with 2k0 = 2π/a, the corresponding equations can be

straightforwardly solved, giving

~ωk = 2S
√

[J(k0)− J(k)][J(k0)− J(k− k0)],

where J(k) =
∑

j Jije
ik·(Rj−Ri). On a bipartite lattice (each lattice site can be unam-

biguously assigned to one of of two sublattices), J(k0) = zJ and J(k − k0) = −J(k) (z

coordination number), the frequency reduces to

~ωk = 2S0zJ
√

1− γ2
k ∼ ck,

where γk = 1
z

∑
δj
eik·δj and in the last equality we specialized to a long wavelength limit,

obtaining the characteristic linear dispersion of the AFM spin waves.

C. Quantum treatment of ferromagnetic excitations: magnons

Following our earlier treatments of ordered states and excitations about them, we now

study magnetic states in a fully quantum mechanical treatment. We first observe that a

fully polarized FM state, |FM〉 ≡ |0〉 = |−S,−S, . . . ,−S〉, with every spin having the same

maximum projection −S (or equivalently +S) along the same z-axis is an exact eigenstate of

the Heisenberg Hamiltonian. This is obvious from the (20) form since S−
i annihilates a fully

polarized state, |0〉 (and S+
i annihilates |NS〉 FM state) and Sz

i S
z
j leads to E = −

∑
ij JijS

2

eigenvalue. For a ferromagnetic interaction, this fully polarized FM state is the ground state.

This state is degenerate with 2NS + 1 other fully polarized states generated by acting on

FM state by 1/
√
N
∑

i S
+
i , corresponding to FM state with a rotated quantization axis but

same S2
tot = NS(NS + 1) eigenvalue.

Excited state are produced by flipping spins locally, applying a a string of S+
i , though

in general this is not an eigenstate of the Heisenberg Hamiltonian as S+
j S

−
i component will
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move such excitations from site i to j. This is not surprising for a translationally invariant

Hamiltonian, where a single spin excitation is an eigenstate of linear momentum, given by

|ψk〉 =
1√

2SN

∑
`

eik·R`S+
` |0〉 ≡ a†k|0〉.

Above we defined a†k as the single magnon creation operator, that is nearly bosonic, satisfying

[ak, a
†
k′ ] = − 1

2SN

∑
`

e−i(k−k′)·R`2Sz
` ≈ δk,k′ ,

nearly fully saturated state Sz
` ≈ −S. In real space we then have for nearly saturated FM

state with large S,

S+
i =

√
2Sa†i , S−

i =
√

2Sai, Sz
i = −S + a†iai. (42)

Applying Heisenberg Hamiltonian operator to this state, it is straightforward to show[2]

that its eigenvalue is given by Ek = E0 + 2S
∑

j Jij

[
1− eik·(Ri−Rj)

]
− gµBµ0H, where E0 is

the eigenvalue of the |0〉 state and we have added an external magnetic field H = H ẑ. For

the FM exchange and/or in the presence of a large external field, the latter is the ground

state and the single magnon excitation energy is given by (41) found from the Heisenberg

equation of motion. For nearest-neighbors FM exchange on a 3d cubic lattice, we find

~ωk = 2JSz(1− γk), (43)

= 4dJS
∑
δi

(
1− eik·δi

)
, (44)

= 2JS (6− 2 cos kxa− 2 cos kya− 2 cos kza) = 8JS

(
sin2 kxa

2
+ sin2 kya

2
+ sin2 kza

2

)
,

≈ (2JSa2)k2. (45)

D. Holstein-Primakoff, Schwinger bosons and Jordan-Wigner fermion represen-

tations

1. Holstein-Primakoff representation

As we saw above, single spin-flip magnon excitations of a fully polarized and large S

state is well described by approximately bosonic excitations, summarized in Eq.(42). There
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in fact exists a rigorously exact bosonic representation in fact exists as first introduced by

Holstein and Primakoff[6]

S+
i = a†i (2S − a†iai)

1/2, S−
i = (2S − a†iai)

1/2ai, Sz
i = −S + a†iai,with 0 ≤ a†iai ≤ 2S.(46)

With the bosonic commutation relations of a, a†, it is straightforward to show that these spin

operators exactly satisfy the spin algebra, e.g., [S+
i , S

−
i ] = 2Sz

i , with square-roots ensuring

a 2S + 1-dimensional Hilbert space for spin S. To lowest order in the expansion of the

square-root (valid for large S and for a highly polarized state), these reduce the approximate

expressions, (42). Higher order terms generate magnon interactions.

Ferromagnet:

Expression the Heisenberg Hamiltonian in an external field h ≡ gµBBẑ to lowest order

in terms of the Holstein-Primakoff bosons we find

H = −
∑
i,j

Jij

(
1

2
S+

i S
−
j +

1

2
S−

i S
+
j + ∆Sz

i S
z
j

)
− h

∑
i

Sz
i , (47)

≈ −
∑
i,j

Jij∆S
2 + S

∑
ij

Jij

(
∆a†iai + ∆a†jaj − a†iaj − a†jai

)
− h

∑
i

(
−S + a†iai

)
,

+Hint, (48)

≈ E0 + S
∑
ij

Jij

(
a†iai + a†jaj − a†iaj − a†jai

)
− µh

∑
i

a†iai +Hint, (49)

≈ E0 +
∑
k

~ωka
†
kak +Hint (50)

where E0 = −
∑

ij Jij∆S
2 + hS is the ground state energy, µh = h − 2S

∑
j Jij(∆ − 1) the

effective magnon chemical potential coupling to conserved total Sz
tot =

∑
i S

z
i and

~ωk = 2S
∑

δ

Jδ

[
1− eik·δ]− µh ≈ Kk2 − µh,

the corresponding magnon dispersion in agreement with that found by other methods above.

For a dilute gas of magnons we can neglect magnon interactions

Hint ≈ −
∑
ij

Jij

(
a†iaia

†
jaj −

1

2
aia

†
ja

†
jaj −

1

2
a†iaiaia

†
j

)
and treat them as independent bosons, much like for the phonons and Bogoluibov quasi-

particles of previous lectures. For high density of magnons interaction becomes important

and can be treated by a variety of methods like perturbation theory, Hartree mean-field
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theory (as in our Bogoluibov approximation for the Bose gas), etc. The interaction leads

to at temperature-dependent correction to the magnon k2 dispersion and more importantly

generates an imaginary part that corresponds to a finite magnon lifetime, with a decay rate

proportional to k4. The interaction also leads to a two-magnon bound state as rigorously

studied by Dyson (1956).

Antiferromagnet:

Holstein-Primakoff bosons can also be used to study excitations in the Néel state as the

approximate ground state of an AFM for J < 0. Since Néel state doubles the period of

the underlying lattice, it must be treated as two magnetic sublattice sites A (spin up) and

B (spin down), with two distinct Holstein-Primakoff expansions about ±S polarized states,

respectively.

Focusing for simplicity on a nearest neighbor exchange model on a cubic lattice, the

resulting Hamiltonian of excitations takes a Bogoluibov form,

HAFM ≈ 2NzJS2 − 2JS
∑
〈r,r′〉

(
a†rar + b†r′br′ + arbr′ + b†r′a

†
r

)
. (51)

Diagonalizing this Hamiltonian on a 3d cubic lattice using Bogoluibov (symplectic) trans-

formation

αk = ukak − vkb
†
−k, βk = ukb−k − vka

†
k,

obtaining

H = Egs +
∑
k

~ωk

[
α†kαk + β†kβk

]
,

we can find the the ground state energy Egs = 2NzJS(S + 1) +
∑

k ~ωk, that includes the

mean-field energy of the Néel state and the zero-point quantum fluctuations, the coherence

factors

u2
k =

1

2

[
(1− γ2

k)
−1/2 + 1

]
, v2

k =
1

2

[
(1− γ2

k)
−1/2 − 1

]
, (52)

and the spectrum

~ωk = 2|J |zS
(
u2

k + v2
k + 2γkukvk

)
, (53)

= 2|J |zS
√

1− γ2
k, (54)

≈ (2
√

2|J |za)k ≡ cafmk, (55)
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showing that at small ka the AFM spectrum is linear in k (as opposed to k2 in a FM) with

speed of magnon sound cafm.

Because of quantum fluctuations in the ground state (since Néel state is not a true

ground state of Heisenberg Hamiltonian), even a T = 0 expectation value of spin projection

〈AFM |Sz
i |AFM〉 is reduced from its fully polarized ±S value, by

δS =
2

N

∑
k

〈AFM |a†kak|AFM〉 =
1

N

∑
k

[
(1− γ2

k)
−1/2 − 1

]
, (56)

in analogy with the condensate depletion by interactions in the Bogoluibov theory of weakly

interacting superfluid. The actual value depends on the dimensionality, type of a lattice,

and exchange Jij. The result can be straightforwardly generalized to finite temperature, as

in condensate depletion in superfluids.

2. Schwinger bosons

An alternative and a more convenient representation of spin operators is in terms of

“Schwinger bosons”,[7], that is a spinor bosonic operator

z† = (z†1, z
†
2),

with two flavors of bosons on each lattice site, [zα, z
†
β] = δαβ. The Schwinger boson structure

is very intuitive with Sz component counting the difference between two flavors of bosons

and spin raising and lowering operators naturally converting between the two flavors of

Schwinger bosons,

S =
1

2
z†σz =

1

2
z†ασαβzβ, (57)

Sz =
1

2
(z†1z1 − z†2z2), S

+ = z†1z2, S
− = z†2z1, (58)

with spin raising/lowering operators change the number difference, n1− n2 of the two types

of bosons, but preserves the total number of bosons, n1 + n2 = 2S. The spin-rotational

invariance is implemented via SU(2) transformation z → Uz,

Un̂ = eiφSz/~eiθSx/~eiχSz/~, (59)

that corresponds to SO(3) orthogonal rotation, R of the spin S → RS, with

RijSj =
1

2
z†γU

†
γασ

i
αβUβδzδ,
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corresponding to rotation of the ẑ → n̂, latter defined by Euler angles θ, φ, χ. SU(2) algebra

is 22 − 1 = 3 dimensional (three angles), but angle χ spanning U(1) subgroup of SU(2)

clearly does not enter S, so the orbit space spanned by unit vector n̂ is a surface of a sphere

S2 = SU(2)/U(1).

The spin components satisfy spin commutation relations,

[Sz
i , S

±
i ] = ±S±

i , [S+
i , S

−
i ] = 2Sz

i .

and the constraint S2 = S(S + 1) with S = 1
2
z†z = 1

2
(z†1z1 + z†2z2). This constraint intro-

duces an effective hard-core interactions for Schwinger bosons, that if formally eliminated

(by solving for one of the bosons in terms of the other) gives back the Holstein-Primakoff

representation.

To demonstrate above it is useful to take advantage of the following identity of Pauli

matrices:

σαβ · σγβ = −δαβδγδ + 2δαδδβγ

3. S=1/2 hard-core boson representations

Another convenient representation for spin-1/2 is in terms of the so-called “hard-core”

bosons. As we saw in our discussion of Holstein-Primakoff representation one had to intro-

duce square-root factors to limit the bosonic Hilbert space to 2S + 1 and to encode the spin

algebra in terms of bosonic commutation relations. However, for S = 1/2, this can be more

simply done by the following identification:

|S = −1/2〉 → |n = 0〉, |S = 1/2〉 → |n = 1〉, (60)

S+ = a†, S− = a, Sz = a†a− 1/2 = n− 1/2, (61)

[S−, S+] = −2Sz → [a†, a] = −(2n− 1), (62)

together with a hard-core constraint limiting bosonic states to |n = 0〉, |n = 1〉. The latter

can be implemented by strong on-site interaction Hint = U
∑

i(n
2
i − ni) in the limit of

U →∞, hence “hard-core”.

With this the Heisenberg model reduces to:

H = −
∑
i,j

Jij

(
a†iaj + ∆(ninj − 2ni)

)
− h

∑
i

ni, (63)

with an implicit hard-core constraint, of ni = 0, 1.
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4. S=1/2 Jordan-Wigner fermion representations

For spin-1/2, the spin algebra and hard-core constraint can be more simply implemented

by the use of fermionic spinor representation cα = (c↑, c↓), associating the two states with

the “magnetization”. The constraint can equivalently be implemented by a single spinless

fermionic species with Sz = ±1/2 automatically implemented through Pauli principle cor-

responding fermionic occupation of 0 and 1. In 1d a powerful Jordan-Wigner (spinless)

fermion representation exists,

S+
i = c†ie

iπ
P

j<i c†jcj , S−
i = e−iπ

P
j<i c†jcjcj, Sz

i = c†ici −
1

2
. (64)

where ci, c
†
i satisfy usual fermion anticommutation algebra

{ci, c†j} = δij, {ci, cj} = 0, {c†i , c
†
j} = 0.

This representation allows one to map the TFIM onto free, spinless fermions Hamiltonian

when expressed in terms of ci, c
†
i .

Spin raising and lowering operators are associated with fermion creation and annihilation

operators and z-component of spin is associated with fermion site filling value (shifted by

1/2). This “naive” representation must be supplemented with the so-called “string operator”

(the exponential multiplying c, c† above to ensure the correct spin-commutation (rather than

fermion anticommutation) algebra on different sites.

By carefully taking into account the Jordan-Wigner “string”we can demonstrate that the

string ensures that indeed above spin representation satisfies spin-1/2 algebra on the same

site, and with spins simply commuting on distinct sites.

To see this, first note that on the same site i, strings involves fermion number operator

on site distinct from the fermion operator and thus commutes with the fermion operators.

Thus,

[S+
i , S

−
i ] = c†ie

iπ
P

j<i c†jcje−iπ
P

j<i c†jcjci − e−iπ
P

j<i c†jcjcic
†
ie

iπ
P

j<i c†jcj , (65)

= c†ici − cic
†
i = 2(ni − 1/2) = 2Sz. (66)

as required for spin algebra.

On distinct sites, i < j, there is a nontrivial commutation relation between the two strings

and between a string and a fermion operator. To flush this out we first note that on the

26



Hilbert space |0〉, |1〉 a piece of the string at i, e−iπc†i ci = 1 − 2c†ici, giving ±1 for ni = 0, 1,

respectively. Thus, [e−iπc†i ci , c†i ] = e−iπc†i cic†i − c†ie
−iπc†i ci = (1 − 2c†ici)c

†
i − c†i (1 − 2c†ici) =

−2c†i = −2c†i (1− 2c†ici) = −2c†ie
−iπc†i ci , i.e.,

e−iπc†i cic†i = −c†ie−iπc†i ci → {e−iπc†i ci , c†i} = 0

. Armed with this we find

[S+
i , S

−
j ] = c†ie

iπ
P

k<i c†kcke−iπ
P

l<j c†l clcj − e−iπ
P

l<j c†l clcjc
†
ie

iπ
P

k<i c†kck , (67)

= c†icje
iπ

P
k<i c†kcke−iπ

P
l<j c†l cl + cjc

†
ie

−iπ
P

l<j c†l cleiπ
P

k<i c†kck = 0, (68)

as required on different sites.

Using JW representation and carefully taking care of the string (as for above commutation

relation) we can express the TFIM in terms of the JW fermions, finding

HTFIM = −1

4
J
∑

i

(c†i − ci)(c
†
i+1 + ci+1)−

1

2
h
∑

i

(c†ici − cic
†
i ),

with a crucial minus sign in the first term coming from the anticommutation relation between

JW string and a fermion. Namely, the TFIM reduces to a quadratic fermionic Bogoluibov-

like Hamiltonian.

It can then be straightforwardly diagonalized, such that in terms of true quasi-particles

γk, the Hamiltonian is

HTFIM =
∑
k

Ekγ
†
kγk + E0,

with the spectrum of excitations, Ek, the gap (minimium excitation energy, related to the

inverse of the Ising model’s correlation legth), and the ground state energy E0 straightfor-

wardly found.

E. Magnon thermodynamics in a ferromagnetic state

In this dilute magnon gas approximation (valid at low T and well polarized state), we

can compute the corresponding thermodynamics of a ferromagnet.

The magnetization M = V −1gµB〈Sz
tot〉 is well described

〈Sz
tot〉 = −NS +

∑
i

〈a†iai〉 = −NS +
∑
k

〈a†kak〉, (69)

= −NS + V

∫
ddk

(2π)d

1

eβ~ωk − 1
, (70)
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where the correction to the fully polarized value is due to thermally excited magnons and

those created by an external field. There is an obvious close analogy of BEC to the fully

polarized state |0〉 and thermally excited magnons as condensate depletion. We note however,

that in contrast, here there are no anomalous magnon terms, encoding the absence of any

fluctuations in the ferromagnetically ordered state. Furthermore, the dispersion here is

quadratic rather than linear of the phonons.

In the absence of anisotropy and external field h = 0, the density of thermally excited

magnons is easily computed and in 3d given by the well-confirmed Bloch law (kBT/K)3/2,

that gives how magnetization is thermally suppressed. Heat capacity is also straightforwardly

computed as the temperature derivative of the energy E =
∑

k ~ωk〈a†kak〉, which in 3d gives

CFM ∼ (kBT/2JS)3/2,

that contrasts from the acoustic phonon result that is T d, i.e., T 3 in 3d.

The finite temperature magnetic response is also found by computing the increased num-

ber of magnons (that reduce magnetization) with increasing external magnetic field

M(H) = −M0 + gµB

∫
ddk

(2π)d

1

eβ~ωk(H) − 1
− gµB

∫
ddk

(2π)d

1

eβ~ωk(H=0) − 1
, (71)

≈ −M0 + gµB

∫
ddk

(2π)d

1

eβ(Kk2+γH) − 1
− gµB

∫
ddk

(2π)d

1

eβKk2 − 1
, (72)

At vanishing magnetic field H and isotropic model, we find M ∼ H1/2, that contrasts

qualitatively from the constant longitudinal susceptibility, M = χL
mftH found in mean-field

theory.

F. Antiferromagnetic ground state and its excitations

For negative exchange constant J < 0 it is clear that neighboring spins want to anti-

align. This is a reflection of the tendency of two spins (as we saw in London-Heitler theory

of H2 molecule) to form a single state. A natural classical ground state is the Néel state

where spins alternate ±S on A and B sublattices of a bipartite lattice, Sz
i = (−1)(xi+yi+zi).

However, such state is clearly is not even an eigenstate of the Heisenberg Hamiltonian since

its S+
i S

−
j terms interchange spins on sites i, j.

However, analogously to our analysis of an interacting superfluid (for which the strict

BEC state is not a grround state), we can assume that this classical state is an approximate
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ground state and then study corrections to it. In this approach we can again utilize the

Holstein-Primakoff representation that we take to be distinct on the A and B sublattices,

S+
Ai = (2S − a†iai)

1/2ai, S−
Ai = a†i (2S − a†iai)

1/2, Sz
Ai = S − a†iai,with 0 ≤ a†iai ≤ 2S,

S+
Bi = b†i (2S − b†ibi)

1/2, S−
Bi = (2S − b†ibi)

1/2bi, Sz
Bi = −S + b†ibi,with 0 ≤ b†ibi ≤ 2S.

(73)

Using this inside the Heisenberg Hamiltonian for the Néel state, we obtain a Bogoluibov-like

Hamiltonian (r, r′ are nearest neighbors on a cubic lattice)

HAFM ≈ 2NzJS2 − 2JS
∑
〈r,r′〉

(
a†rar + b†r′br′ + arbr′ + b†r′a

†
r

)
, (74)

that can be diagonalize via a Bogoluibov transformation

αk = ukak − vkb
†
−k, βk = ukb−k − vka

†
k,

obtaining

H = E0 +
∑
k

~ωk

[
α†kαk + β†kβk

]
,

which on a cubic lattice gives:

E0 = 2NzJS2 + 2NzJS +
∑
k

~ωk, (75)

u2
k =

1

2

(
(1− γ2

k)
−1/2 + 1

)
, v2

k =
1

2

(
(1− γ2

k)
−1/2 − 1

)
, (76)

~ωk = 2|J |zS
√

1− γ2
k ≈

(
2JS

√
2za
)
k, (77)

where γk = 1
z

∑
δj
eik·δj . Note that the Néel ground state is modified as the true ground

state is annihilated by αk and βk, rather than by ak and bk.

As for an interacting superfluid, we can also compute the magnetization “depletion”, i.e.,

reduction in the staggered magnetization S by quantum fluctuations in the ground state.

This is given by

〈δSz〉 =
2

N

∑
k

〈AFM |a†kak|AFM〉 =
1

N

∑
k

[
(1− γ2

k)
−1/2 − 1

]
.

At finite T this is generalized to give

〈δSz〉 =
2

N

∑
k

〈a†kak〉 =
1

N

∑
k

1

eβ~ωk − 1
(1− γ2

k)
−1/2.

With the spectrum at hand, AFM’s thermodynamics (susceptibility, heat capacity, etc) can

be straightforwardly computed following standard analysis as for example done above for

the FM state.
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G. Spin-coherent states and Berry phase

An alternative and often very convenient description of magnetic states is in terms of

spin coherent states (in analogy with coherent-state path-integral description of bosons). A

coherent state

|n̂〉 = Un̂|Sz = S, ẑ〉,

labeled by a unit vector n̂ is a highest-weight, |Sz = S〉 maximally polarized along the

quantization axis n̂, satisfying

n̂ · S|n̂〉 = S|n̂〉.

Un̂ is the SU(2) rotation, Eq. (59) of the ẑ → n̂, that can also be written as Un̂ = ei θ
2
n̂×ẑ·σ.

Spin coherent state can be expressed in terms of Schwinger bosons according to

|n̂〉 =
1√
2S!

(ua† + vb†)2S|0〉,

where the coherence factors form a coherent-state spinoru
v

 = e−iχ/2

 cos 1
2
θ

e+iφ sin 1
2
θ

 (78)

One can see that for spin-1/2

|n̂〉 = u| ↑〉+ v| ↓〉 =
∑

α=↑,↓

zα|α〉,

where spinor components given by

〈α|n̂〉 ≡ zα =

u
v


α

,

where α =↑, ↓, giving spinor representation n̂ = z†σz, with z†z = 1. For spin-S, the coherent

state can be written as a direct product of 2S identical spin-1/2 coherent states (to ensure

it to be a highest weight state)

|n̂〉 = |z〉 ⊗ |z〉 ⊗ . . .⊗ |z〉.

The key relation for developing spin coherent-state path integral is the resolution of

identity,

1̂ =
2S + 1

4π

∫
dn̂|n̂〉〈n̂|,
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and coherent states overlap

〈n̂|n̂′〉 = (uu′ + vv′)2S = (z†z′)2S, (79)

=
1

2S
(1 + n̂ · n̂′)S, (80)

where we took advantage of the observation that 〈ẑ|n̂′〉 = (u′)2S = [cos2(θ/2)]S = 1/2S[1 +

cos θ]S = 1/2S[1 + ẑ · n̂′]S and rotational invariance.

With these identities, we can now derive spin coherent-state path-integral as we did for a

bosonic system. Using above resolution of identity, we deduce Trotter decomposition of the

evolution operator over time t = Nt/N = Nε,

〈n̂(t) = n̂N |e−iĤt/~|n̂(0) = n̂0〉 = 〈n̂N |e−iĤε/~|n̂N−1〉〈n̂N−1|e−iĤε/~|n̂N−1〉 . . .

〈n̂j|e−iĤε/~|n̂j−1〉 . . . 〈n̂1|e−iĤε/~|n̂0〉. (81)

The matrix elements can be evaluated for ε� 1,

〈n̂j|e−iĤε/~|n̂j−1〉 = 〈n̂j|n̂j−1〉

(
1− iε

~
〈n̂j|Ĥ|n̂j−1〉
〈n̂j|n̂j−1〉

+ . . .

)
, (82)

≈ 〈n̂j|n̂j−1〉e−iεH[n̂j ,n̂j−1]/~, (83)

≈
(
z†jzj−1

)2S

e−iεH[n̂j ,n̂j−1]/~ =
(
1− z†j(zj − zj−1)

)2S

e−iεH[n̂j ,n̂j−1]/~, (84)

= e−2Sεz†j żje−iεH[n̂j ,n̂j−1]/~ ≡ eidS[n̂j ]/~, (85)

where the action is given by

S[n̂(t)] =
N−1∑
j=1

dS =

∫ t

0

dt′
[
i2S~z†(t′)ż(t′)−H[Sn̂(t′)]

]
, (86)

and the evolution operator is given by

〈n̂(t)|e−iĤt/~|n̂(0)〉 =
N−1∏
j=1

[
2S + 1

4π

∫
dn̂je

idS[n̂j ]/~
]
, (87)

≡
∫
Dn̂(t)eiS[n̂(t)]/~ (88)

where we took the continuum limit N → ∞, ignored the higher order corrections that

distinguish n̂j and n̂j−1 inside H[n̂j, n̂j−1], and dropped the boundary terms.

The first term in the action S[n̂(t)] is the Berry phase[10], SB[n̂(t)], that arises from

nontrivial overlap of coherent states, has the same structure as that of bosonic “pq̇” term,
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and therefore gives a nontrivial action even for a vanishing Hamiltonian,

SB[n̂(t)] = −i~
t∑

t′=0

ln (〈n(t′)|n(t′ − dt)〉) = −i~
t∑

t′=0

ln {1− 〈n(t′) [|n(t′)〉 − |n(t′ − dt)〉]} ,(89)

= i~
∫ t

0

dt′〈n̂(t′)|∂t′n̂(t′)〉 = i~
∫ t

0

dt′〈n̂|∇n̂n̂〉 ·
dn̂

dt′
= i~

∫
〈n̂|∇n̂n̂〉 · dn̂, (90)

≡ ~S
∫ t

0

dt′AB(t′) · dn̂
dt′

= ~S
∮

AB · dn̂ = ~S
∫ ∫

(∇n̂ ×AB) · (dn̂× dn̂) , (91)

= i2S~
∫ t

0

dt′z†(t′)ż(t′) = −~S
∫ t

0

dt′(1− cos θ)φ̇ = −~S
∫

(1− cos θ(φ))dφ, (92)

= −~S
∫ φ(t)

φ(0)

dφ

∫ θ(φ)

0

dθ′ sin θ′ ≡ −~SΩ. (93)

In above we have chosen the global phase χ = 0, defined Ω as the solid angle subtended by

ẑ, n̂(0) and n̂(t) and defined the Berry connection, AB[n̂],

AB(n̂) = Aφφ̂ = (1− cos θ)φ̂, (94)

with associated Berry flux density given by

BB(n̂) = ∇n̂ ×AB(n̂) = n̂, (95)

as can be seen from (91). In Cartesian coordinates, related to spherical via A · dn̂ =

Axdx+ Aydy + Azdz = Aφdφ+ Aθdθ + Ardr, we find

Ax =
1

2r

y

z + r
, Ay = − 1

2r

x

z + r
, Az = 0.

Berry phase term SB[n̂(t)] in the above coherent-state formulation is a crucial ingrediant

of capturing the dynamics of a spin, S. As is clear from (91), it maps the dynamics of a spin

(with H = 0) labelled by n̂ onto dynamics of a charge ~S, massless (since there is no 1
2
( ˙̂n)2

term) particle moving on a surface of a unit sphere (|n̂| = 1), with a magnetic monopole at

its center producing magnetic field (95). Canonical formulation of quantum mechanics of

a charged particle in a magnetic field exhibits spectrum of Landau levels (LL)[? ], that at

zero mass reduces to the lowest LL (LLL). The LLL degeneracy in flat space is given by the

number of flux quanta through the surface, while on the sphere it is shifted by 1. Thus, the

number of effective LLL degenerate states is given by

g =
BArea

φ0

+ 1 =
4π

(2π~/q)
+ 1 =

4π

2π~/(~S)
+ 1 = 2S + 1,
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recovering the degeneracy of spin S and its correct partition function, Z = 2S + 1 for a

vanishing Hamiltonian.

This Berry (also known as geometric, topological, or Wess-Zumino) phase term has a

number of important properties. In particular[1, 9]

δΩ[n̂(t)] =

∫
dt

[
∂Aβ

∂nα

dnβ

dt
δnα + Aα

d

dt
δna

]
, (96)

=

∫
dt

[
∂Aβ

∂nα

− ∂Aα

∂nβ

]
dnβ

dt
δna =

∫
dtδn̂ ·

(
dn̂

dt
× n̂

)
, (97)

which gives the expected precessional equation of motion for the spin labelled by n̂(t)

−δS[n̂(t)]

δn̂(t)
= ~S

δΩ[n̂(t)]

δn̂(t)
+
∂H

∂n̂
= 0, (98)

= ~S
dn̂(t)

dt
× n̂ +

∂H

∂n̂
= 0, (99)

i.e., consistent with (38), we find

~S
∂n̂(t)

∂t
=
∂H

∂n̂
× n̂,

in a effective magnetic field given by ∂H
∂n̂

. We note that above the projection transverse to n̂

is implicit, implemented by a Lagrange multiplier term
∫
dtλ(n̂2 − 1) added to the action.

Thus, SB[n̂(t)] is absolutely crucial for getting the correct spin dynamics even at the

classical level. It is also essential for quantization of spin S as half-intergers. To see the latter

we note (in close analogy of Dirac’s argument for quantization of electrical charge in inverse

units of magnetic monopole charge), that for single-valueness of the evolution operator,

SB/~ needs to be periodic modulo 2π, i.e., Ω = 4π must correspond to SB/~ = 2πn, which

requires S = n/2, n ∈ Z.

Examining the expression for δΩ[n̂(t)], (97), we note that Ω[n̂(t)] may be expressible in

a more covariant form, i.e., in terms of coherent-state label n̂(t, s) extended along another

“time” variable s, with n̂(t, s = 1) ≡ n̂(t), n̂(t, 0) ≡ ẑ,

Ω[n̂(t)] =

∫
δΩ[n̂(t)] =

∫ 1

0

ds
dΩ[n̂(t, s)]

ds
, (100)

=

∫ 1

0

ds

∫
dt
∂n̂(t, s)

∂s
· δΩ[n̂(t, s)]

δn̂(t, s)
, (101)

=

∫ 1

0

ds

∫
dt n̂(t, s) ·

(
∂n̂

∂s
× ∂n̂

∂t

)
=

1

2

∫ 1

0

∫
d2t ε0jkn̂ · (∂jn̂× ∂kn̂) , (102)

33



a form that for topologically stable configurations that wrap around the sphere gives an

integer multiple of 4π and is referred to as the Pontryagin index. It is a Jacobian of the

S2 → S2, π2-mapping, associated with n̂(s, t) wrapping around the sphere defined by (s, t)

(with points at infinity identified).

1. Ferromagnetic excitations

expand about polarized phase in small fluctuations, compute Berry’s vector potential

and obtain action for small excitations including external magnetic field to show gap and its

disapperance.

2. Antiferromagnetic excitations
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