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Abstract

In these lectures, starting with a review of second- and coherent-state path-integral quantization,

we will formulate a quantum field theory of bosonic matter and will study its thermodynamics

and correlation functions. We will explore the transition to Bose-Einstein condensation (BEC) of

noninteracting bosons. Including interactions, we will study the properties of a superfluid and a

phase transition into it within a mean-field theory, quantum “hydrodynamics”, Bogoluibov theory

and Lee-Huang-Yang expansion of a weakly interacting Bose gas.
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I. INTRODUCTION

• Bose gases thermodynamics and BEC

• Bogoluibov theory of a superfluid

• Lee-Huang-Yang thermodynamics

• Ginzburg-Landau theory and Landau’s quantum hydrodynamics

• XY model, 2d order, vortices and the Kosterlitz-Thouless transition

The goal of these notes is to study a macroscopic number of interacting bosonic particles,

as for example realized in ultra-cold atomic gases, e.g., Rb87 that realized first Bose-Einstein

condensate (BEC) in 1995 in JILA, and in low-temperature He4 liquid, a strongly interacting,

much older “cousin”, whose superfluidity occurs below 2.172 Kelvin as was discovered by

Pyotr Kapitsa and John Allen and Don Misener in 1937.

This is a fascinating systems exhibiting a wealth of phenomena the basis of which will be

able with the ideas developed below. As we will see, the key ingredients are a macroscopic

number of particle obeying quantum Bose statistics, that manifests itself at low temperatures

(determined primarily by density and particle mass), and interactions.

As we will see shortly, because of their weak interactions, the description of a Bose gas

is amenable to a detailed microscopic analysis. In contrast, strong interactions in liquid

Helium preclude its detailed analytical description, though significant progress has been

made through quantum Monte Carlo and other numerical methods. Nevertheless, significant

understanding of Helium phenomenology has been developed at a qualitative level using a

combination of symmetry based phenomenological description of Landau and Ginzburg and

extrapolation of the weakly interacting Bose gas.

II. SECOND QUANTIZATION

A. Motivation and qualitative arguments

A direct attack on this problem is via (the so called) “first quantization”, by simply

generalizing Schrödinger’s equation to N particles,

HΨ{ki}(r1, r2, . . . , rN) = E{ki}Ψ{ki}(r1, r2, . . . , rN), (1)
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with an N -body Hamiltonian

H =
N∑
i=1

p2
i

2m
+

1

2

∑
i6=j

V (|ri − rj|) (2)

of 2N phase-space coordinates satisfying the canonical commutation relation [rαi , p
β
j ] =

i~δαβδij and with the many-body eigenstates characterized by a set of quantum numbers

k1,k2, . . . and a symmetrization constraint

Ψ{ki}(r1, r2, . . . , ri, . . . , rj, . . . rN) = Ψ{ki}(r1, r2, . . . , rj, . . . , ri, . . . rN)

encoding the bosonic quantum statistics.

While this formulation is in principle sufficient[4], for an interacting case it is quite clumsy

to work with. One can appreciate this by recalling a quantization of a harmonic oscillator,

where one can shed the complexity of the series solution and Hermite polynomial alge-

bra of the first-quantized coordinate formulation by transitioning to the so-called “second-

quantized” reformulation in terms of creation and annihilation operators, a = 1√
2
(x + ip),

a† = 1√
2
(x − ip), satisfying bosonic commutation relation [a, a†] = 1. The corresponding

Hamiltonian is given by H = ~ω0a
†a = ~ω0n̂ and eigenstates |n〉 = 1√

n!
(a†)n|0〉 written in

the occupation basis n.

A first-quantization description in terms of individual particles’ coordinates ri is akin to a

Lagrangian description of fluids and crystals, which is particularly challenging here because

of the quantum indistinguishability of Bose particles. As we will see below, an elegant “fix”

is the quantum analog of the Eulerian description, where instead, the many-body state is

characterized by dynamical field variables (such as particle and momentum densities n(r, t),

g(r, t)) at each spatial coordinate r (a passive label rather than a dynamic variable), not

associated with any specific particle.

B. Canonical second-quantization

1. Fock states

Given that in the second-quantization formulation creation and annihilation operators

convert N -particle states to N ± 1-particle states, we generalize the usual, fixed particle
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number Hilbert space HN to Fock space HF = H0⊕H1⊕H2⊕ . . .⊕HN ⊕ . . .. In the first-

quantized formulation the many-body basis set can be conveniently taken as a (symmetried

for bosons) product of single-particle eigenstates |k〉 with coordinate space wavefunctions

ψk(ri) = 〈ri|k〉. Instead, in the second-quantized formulation we take the many-body basis

set to be

|{nki
}〉 = |nk1 , nk1 , . . . , nkN

, . . .〉 =
∏
ki

|nki
〉,

a direct product of eigenstates |nk〉 = 1√
nk!

(a†k)
nk|0〉 labelled by the occupation number of

a single-particle eigenstate k. The immediate advantage of this description is that, by con-

struction, particles in the same single particle state k are identical, with only the occupation

numbers nki
labelling the many-body state and symmetrization automatically encoded in

the bosonic commutation relation

[ak1 , a
†
k2

] = δk1,k2 . (3)

The N -particle wavefunction is then given by the projection of the Fock state onto N -particle

coordinate eigenstate

Ψ{ki}(r1, r2, . . . , rN) = 〈r1, r2, . . . , rN |{nki
}〉,

latter given by

|r1, r2, . . . , rN〉 =
N∏
i

ψ(ri)|0〉,

where

ψ(r) =
1√
V

∑
k

ake
ik·r, ak =

1√
V

∫
ddrψ(r)e−ik·r

destroys a boson at coordinate r, satisfies a canonical commutation relation with its hermi-

tian conjugate creation field,

[ψ(r), ψ(r′)†] = δd(r− r′). (4)

dictated by (3), and gives the number density operator

n(r) = ψ(r)†ψ(r), (5)

=
1

V

∑
q

(∑
k

a†kak+q

)
eiq·r ≡ 1√

V

∑
q

ñ(q)eiq·r. (6)

and its Fourier transform ñ(q).
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2. Hamiltonian

To construct the 2nd-quantized Hamiltonian we first note that by analogy with a single

harmonic oscillator and phonon fields studied in Lectures 2, in momentum basis k the many-

body energy eigenvalue is given by

E{k} =
∑
k

εknk,

where in the case of nonrelativistic bosons εk = ~2k2

2m
is an energy eigenvalue of a single

particle Hamiltonian ĥ = −~2∇2

2m

ĥ|k〉 = εk|k〉

in a momentum eigenstate state |k〉 = a†k|0〉, where |0〉 is particle vacuum, ak|0〉 = 0.

Thus the 2nd-quantized one-body Hamiltonian is given by

Ĥ =
∑
k

εkn̂k =
∑
k

εka
†
kak, (7)

=

∫
ddrψ†(r)ĥψ(r) =

∫
ddrψ†(r)

−~2∇2

2m
ψ(r), (8)

where in the second line we expressed the Hamiltonian in terms of the field operators using

Fourier representation. More generally a 2nd-quantized one-body operator H, corresponding

to a 1st-quantized one-body operator ĥ in a single-particle basis |α〉 is given by

H =
∑
αβ

a†αhαβaβ, (9)

where a†α creates a particle in a single particle state |α〉 and hαβ = 〈α|ĥ|β〉 is the correspond-

ing matrix element.

Armed with the many-body Hamiltonian, using the Heisenberg equation of motion to-

gether with the commutation relation, (4), we obtain the equation for the Heisenberg field

operators ψ(r, t)

i~∂tψ = [ψ,H], (10)

= [ψ,

∫
ddr′ψ†(r′)ĥψ(r′)], (11)

=
−~2∇2

2m
ψ(r), (12)
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that when Fourier transformed (or equivalently by writing the Heisenberg equation for ak(t)

and a†k(t)) can be straightforwardly solved to give

ak(t) = ake
−iεkt/~, a†k(t) = a†ke

iεkt/~.

The equation of motion for ψ(r) can also be obtained from a many-body action S

S[ψ†, ψ] =

∫
dtddr [Π∂tψ −H] , (13)

=

∫
dtddr

[
ψ†
(
i~∂t +

~2

2m
∇2

)
ψ

]
, (14)

=

∫
dtddr

[
ψ†
(
i~∂t − ĥ

)
ψ
]
, (15)

via an Euler-Lagrange equation extremizing the action, δS
δψ†(r)

= 0. The momentum field

Π(r) = i~ψ†(r) conjugate to ψ(r) can be identified from the commutation relation (4),

consistent with its canonical definition as Π(r) = δS
δ∂tψ(r)

. In the last action, above we made

an obvious generalization of the action for an arbitrary single-particle Harmiltonian ĥ, that

in addition to the kinetic energy generically also has a single particle potential as e.g., due

to a trapping potential or an optical lattice potential in the context of trapped atomic gases.

Above Heisenberg field operator equation (12) is formally equivalent to a single-particle

Schrödinger’s equation, but with a very distinct physical interpretation. In contrast to the

latter, here ψ(r) is a quantum field operator and r is simply a spatial label for infinite number

of operators, one for each point r. This equation is a quantized version of a classical field

equation akin to the phonon field equation for sound and Maxwell’s field equation for the

electromagnetic field.

The two-body interaction in (2) can also be straightforwardly written in the 2nd-quantized

form using the second-quantized form for the number density n(r) =
∑

i δ
d(r − ri) from

Eq. (5)

Ĥint =
1

2

∑
i6=j

V (|ri − rj|) =
1

2

∫
r,r′

n(r)V (|r− r′|)n(r), (16)

=
1

2

∫
r,r′

V (|r− r′|)ψ†(r)ψ(r)ψ†(r′)ψ(r′), (17)

=
1

2

∫
r,r′

V (|r− r′|)ψ†(r)ψ†(r′)ψ(r′)ψ(r) +
1

2
V (0)

∫
r

ψ†(r)ψ(r), (18)

where typically we choose to normal order the operators, so as to avoid counting particle

self-interaction. Thus normal-ordering allows to avoid the last term, above.
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More generally the second-quantization prescription for a two-body operator V (2) =

1
2

∑
i6=j V (ri, rj) written in a general basis V (2) = 1

2

∑
α,β,γδ |α〉|β〉〈αβ|V (r1, r2)|γδ〉〈γ|〈δ| is

given by a normal-ordered form

V̂ (2) =
1

2

∑
α,β,γδ

Vαβ,γδa
†
αa

†
βaδaγ, (19)

where Vαβ,γδ = 〈αβ|V |γδ〉 is the two-particle matrix element and in the last equality we

commuted aγ and aδ that is inconsequential for bosons but is a more convenient form for

anticommuting fermions.

C. Path-integral quantization

Inspired by Dirac’s beautiful on role of the action in quantum mechanics, Richard Feyn-

man developed a path-integral quantization method[5] complementary to the Schrödinger

equation and noncommuting operators Heisenberg formalism.

As a warmup we begin with a phase-space path-integral formulation of a single particle

quantum mechanics. We will then generalize it to a many-body system, simplest formulated

in terms of a coherent states path-integral.

1. phase-space path-integral

A central object in formulation of quantum mechanics is the unitary time evolution

operator Û(t) that relates a state |ψ(t)〉 at time t to the |ψ(0)〉 at time 0,

|ψ(t)〉 = Û(t)|ψ(0)〉.

Given that |ψ(t)〉 satisfies the Schrödinger’s equation, the formal solution is given by Û(t) =

e−
i
~Ht. In a 1d coordinate representation, we have

〈xf |ψ(t)〉 =

∫ ∞

−∞
dx0〈xf |Û(t)|x0〉〈x0|ψ(0)〉, (20)

ψ(xN , t) =

∫ ∞

−∞
dx0U(xN , x0; t)ψ(x0, 0), (21)

where we defined xf ≡ xN , xi ≡ x0, t = tN = Nε, t0 = 0. Our goal then is to find an explicit

expression for the evolution operator, equivalent to a solution of the Schrödinger’s.
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To this end we employ the so-called Trotter decomposition of the evolution operator

Û(tN) in terms of the infinitesimal evolution over time t/N = ε:

Û(tN) = e−
i
~ Ĥt =

(
e−

i
~ Ĥ

t
N

)N
= Û(ε)Û(ε) . . . Û(ε)︸ ︷︷ ︸

N

. (22)

(23)

In coordinate representation, we have

U(xN , x0; tN) = 〈xN |Û(ε)Û(ε) . . . Û(ε)|x0〉, (24)

=
N−1∏
n=1

[∫ ∞

−∞
dxn

]
〈xN |Û(ε)|xN−1〉〈xN−1|Û(ε)|xN−2〉 . . . 〈xn+1|Û(ε)|xn〉 . . . 〈x1|Û(ε)|x0〉,

=
N−1∏
n=1

[∫ ∞

−∞
dxn〈xn|Û(ε)|xn−1〉

]
=

N−1∏
n=1

[∫ ∞

−∞
dxn〈xn|e−

i
~ ( p̂2

2m
+V (x̂))ε|xn−1〉

]
, (25)

=
N−1∏
n=1

[∫ ∞

−∞
dxn〈xn|e−

i
~

p̂2

2m |xn−1〉e−
i
~V (xn−1)ε

]
, (26)

=
N−1∏
n=1

[∫ ∞

−∞
dxndpn〈xn|e−

i
~

p̂2

2m |pn〉〈pn|xn−1〉e−
i
~V (xn−1)ε

]
, (27)

=
N−1∏
n=1

[∫ ∞

−∞
dxndpne

i
~

[
pn(xn−xn−1)− p2

n
2m

−V (xn−1)
]
ε

]
, (28)

≡
∫ ∫

Dx(t)Dp(t)e
i
~S[x(t),p(t)], (29)

≡
∫ x(t)=xf

x(0)=xi

Dx(t)e
i
~S[x(t)], (30)

where we took the continuum limit ε → 0, defined a functional integral
∫
Dx(t) . . . ≡∏N−1

n=1

[∫∞
−∞ dxn

]
. . ., and the phase-space and coordinate actions are given by

S[x(t), p(t)] =

∫ t

0

dt
[
pẋ− p2

2m
− V (x)

]
, (31)

S[x(t)] =

∫ t

0

dt
[1
2
mẋ2 − V (x)

]
. (32)

In going from phase-space to coordinate space path-integral, (30), we performed the Gaussian

integrals over the momenta pn = p(tn). The a graphical visualization of the path-integral is

given in Fig.1.

The advantage of the path integral formulation is that it allows us to work with commuting

functions rather than noncommuting operators. It also very powerful for semi-classical
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FIG. 1: A graphical illustration of a coordinate path integral for an evolution operator in one

dimension.

analysis with classical ~ → 0 limit emerges as its saddle point that extremizes the action.

As discussed in great detail in Feynman and Hibbs[5] and references therein, most problems

in quantum mechanics and field theory can be reproduced using this approach, often much

more efficiently. However, some problmes are much more amenable to treatment through

the operator formalism (e.g., spin quantization).

For a vanishing potential, the path integral becomes Gaussian and the evolution operator

is easily computed[5] by a number of methods (for example via a direct Gaussian integration

of (28), a saddle-point solution, exact in this case, or by a solution of the Schrödinger’s

equation), giving

U0(xf , xi; t) =
( m

2πi~t

)1/2

e
i
~

m
2

(xf−xi)
2/t.

This is why Gaussian integrals play such a crucial role in theoretical physics.

We now turn to a seemingly distinct problem of a quantum partition function for this

system given by a trace of the density matrix ρ̂(β) = e−βĤ

Z = Tre−βĤ =

∫ ∞

−∞
dx0〈x0|e−βĤ |x0〉 =

∫
x(0)=x(β~)

Dx(τ)e−
1
~SE [x(τ)], (33)

where

SE[x(τ)] =

∫ β~

0

dτ
[1
2
mẋ2 + V (x)

]
,
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obtained by repeating Trotter decomposition of the previous analysis, but here applying it to

imaginary time 0 ≤ τ = it < β~, with the maximum imaginary time given by τ = β~. The

saddle-point Euler-Lagrange equation for SE corresponds to a particle moving in an inverted

potential −V (x). We note that this Euclidean action can also be obtained directly from the

real action (32) by replacement it = τ with compact imaginary time β~. Immediately, we

can also obtain an analog of the Schrödinger’s equation in imaginary time, satisfied by the

density matrix

∂β ρ̂(β) = −Ĥρ̂(β).

We note that correlation functions computed with a path integral automatically give

time-ordered ones (operators are arranged in later ones appearing to the left),

Tr [T (x(τ1) . . . x(τn)ρ̂(β))] =

∫
Dx(τ)x(τ1) . . . x(τn)e−

1
~SE [x(τ)] (34)

as it is only these time-ordered operators are arranged in the necessary order to apply the

Trotter decomposition to a correlation function.

Finally, generalizing this single variable coordinate path-integral to many variables, its

formulation for quantum field theory is straightforward. For example, a quantum partition

function for a phonon field u(r) in a continuum of an isotropic model is given by

Z =

∫
u(r,0)=u(r,β~)

Du(r, τ)e−
1
~SE [u(r,τ)], (35)

where

SE[u(r, τ)] =

∫ β~

0

dτddr

[
1

2
ρ(∂τu)2 +

1

2
µ(∇u)2

]
.

We observe that in a path-integral formulation a d-dimensional quantum field theory

looks like a path integral of an effective “classical” theory in d+1 dimensions with the extra

imaginary time dimension confined to a slab 0 ≤ τ < β~.

At zero temperature β~ → ∞, leading to a classical like path-integral in all d + 1 di-

mensions. In contrast, at high temperature, β~ → 0, the field u becomes τ independent

(otherwise the time-derivatives cost too much action and are suppressed) and the partition

function reduces to that of a d-dimensional classical one

Z → Zcl =

∫
Du(r)e−β

R
ddr 1

2
µ(∇u)2

over time-independent classical phonon field u(r) with a Boltzmann weight controlled by

the elastic energy. This is indeed as expected, as quantum fluctuations are insignificant at

high temperature.
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2. coherent states path-integral

From the derivation of the coordinate path-integral above, it is quite clear that other

equivalent representations are possible, determined by the basis set of the resolution of

identity in the Trotter decomposition. One particularly convenient representation is that of

coherent states |z〉

|z〉 = e−
1
2
|z|2eza

†|0〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n〉 (36)

labelled by a complex number z. From the canonical commutation relation [a, a†] = 1 it

is clear that eza
†

is an operator (analogously to e
i
~ cp for x) that shifts a’s eigenvalue of the

vacuum state |0〉 by z, leading to coherent state’s key property

a|z〉 = z|z〉.

These states are overcomplete with nontrivial overlap given by

〈z1|z2〉 = e−
1
2
|z1|2e−

1
2
|z2|2ez1z2

and resolution of identity

1̂ =
d2z

2πi
|z〉〈z| (37)

where d2z
2πi

≡ dRezdImz
π

.

Armed with these properties, we derive a very useful coherent-state path-integral. Using

the resolution of identity, (37), we deduce Trotter decomposition of the density matrix,

〈zf |e−βĤ |zi〉 = 〈zN |e−
ε
~ Ĥ |zN−1〉〈zN−1|e−

ε
~ Ĥ |zN−1〉 . . . 〈zj|e−

ε
~ Ĥ |zj−1〉 . . . 〈z1|e−

ε
~ Ĥ |z0〉. (38)

where ε = β~/N . The matrix element can be evaluated for ε� 1, given by

〈zj|e−
ε
~ Ĥ |zj−1〉 = 〈zj|zj−1〉

(
1− ε

~
〈zj|Ĥ|zj−1〉
〈zj|zj−1〉

)
, (39)

= 〈zj|zj−1〉e
− ε

~
〈zj |Ĥ|zj−1〉
〈zj |zj−1〉 = 〈zj|zj−1〉e−

ε
~H(zj ,zj−1), (40)

= e−
1
2
[zj(zj−zj−1)−zj−1(zj−zj−1)]e−

ε
~H(zj ,zj−1). (41)

where in the last line we simplified expression by taking the Hamiltonian H[a†, a] to be

normal-ordered (all a†s are to the left of a’s).
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Putting this matrix element into the (42), we find

〈zf |e−βĤ |zi〉 =

∫ N−1∏
j=1

d2zj
2πi

e−
1
~SE [{zj ,zj}] =

∫ z(0)=zi

z(β~)=zf

Dz(τ)Dz(τ)e−
1
~SE [z(τ),z(τ)], (42)

in the second equality we took the continuum limit N → ∞, and the Euclidean action in

discrete and continuous forms is respectively given by

SE[{zj, zj}] =
N−1∑
j=1

[
1

2
zj(zj − zj−1)−

1

2
zj(zj+1 − zj) +

ε

~
H(zj, zj−1)

]
+

1

2
zf (zf − zN−1)−

1

2
zi(z1 − zi), (43)

SE[z(τ), z(τ)] =

∫ β~

0

dτ

[
1

2
(z∂τz − z∂τz) +

ε

~
H[z(τ), z(τ)]

]
+

1

2
zf (zf − z(β~))− 1

2
zi(z(0)− zi), (44)

where the last terms involving zf , zi are boundary terms that can be important in some

situations but not in the cases that we will consider.

With this single-particle formulation in place, it is straightforward to generalize it to

many variables, and then by extension to a coherent-state path-integral formulation of a

quantum field theory. Applying this to bosonic matter, with identification a†, a→ ψ†, ψ and

z(τ), z(τ) → ψ(τ, r), ψ(τ, r)

Z =

∫
Dψ(τ, r)Dψ(τ, r)e−

1
~SE [ψ(τ,r),ψ(τ,r)], (45)

where the Euclidean bosonic action is given by

SE[ψ(τ, r), ψ(τ, r)] =

∫ β~

0

dτddr

[
1

2
~
(
ψ∂τψ − ψ∂τψ

)
− ψ

~2∇2

2m
ψ

]
, (46)

=

∫ β~

0

dτddrψ(~∂τ −
~2∇2

2m
)ψ, (47)

with periodic boundary conditions on the bosonic field ψ(0, r) = ψ(β~, r) and its conjugate,

allowing us to integrate by parts to obtain the second form above. The action can also be im-

mediately obtained from the real-time action S, (145) by replacing it→ τ . A huge advantage

of this formulation is that it now allows us to calculation bosonic (time-ordered) correla-

tion functions using simple Gaussian integrals over commuting “classical” d+ 1-dimensional

fields, with the only price the extra imaginary time dimension, as compared to the classical

d-dimensional statistical field theory.
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Fourier transforming the coherent bosonic fields,

ψ(τ, r) =
1√
β~
∑
ωn

∫
ddk

(2π)d
ψ(ωn,k)eik·r−iωnτ , ψ(τ, r) =

1√
β~
∑
ωn

∫
ddk

(2π)d
ψ(ωn,k)e−ik·r+iωnτ ,

we obtain

SE[ψ(ωn,k), ψ(ωn,k)] =
∑
ωn

∫
ddk

(2π)d
ψ(−i~ωn + εk)ψ, (48)

where ωn = 2π
β~n is the bosonic Matsubara frequency.

D. Propagators and Wick’s theorem

1. Scalar field theory

For pedagogical clarity it is convenient to illustrate path-integral calculus with a field

theory of a real scalar field φ(x) (x = (τ, r)), with Euclidean imaginary time action

S =
1

2

∫
x

∫
x′
φ(x)Γ(x,x′)φ(x′)−

∫
x

j(x)φ(x),

with an external source field j(x). Utilizing Gaussian integral calculus, the associated gen-

erating (partition) function is then given by

Z[j(x)] =

∫
Dφ(x)e−

1
2

R
x

R
x′ φ(x)Γ(x,x′)φ(x′)+

R
x j(x)φ(x), (49)

= e
1
2

R
x

R
x′ j(x)Γ−1(x,x′)j(x′), (50)

where the Γ−1(x,x′) is an inverse of Γ(x,x′). For a translationally invariant case Γ(x− x′),

the inverse is computed by a Fourier transformation, namely Γ−1(x− x′) =
∫
k

1
Γ̃(k)

eik·(x−x′).

Using Z[j(x)] the correlators are straightforwardly computed by simply differentiating

with respect to j(x),

G(x,x′) = 〈φ(x)φ(x′)〉 =
1

Z

δ2Z[j(x)]

δj(x)δj(x′)

∣∣∣∣
j=0

.

The “connected” correlation functions

Gc(x,x
′) = 〈φ(x)φ(x′)〉c ≡ 〈φ(x)φ(x′)〉 − 〈φ(x)〉〈φ(x′)〉 =

1

2
〈[φ(x)− φ(x′)]

2〉, (51)

=
δ2 lnZ[j(x)]

δj(x)δj(x′)

∣∣∣∣
j=0

≡ δ2W [j(x)]

δj(x)δj(x′)

∣∣∣∣
j=0

, (52)
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where W [j(x)] is a generating function for connected correlation functions, with disconnected

parts cancelled by the differentiation of normalization 1/Z[j(x)].

Using Z[j(x)] above we immediately obtain the powerful Wick’s theorem valid for Gaus-

sian fields only. Namely,

〈φ(x1)φ(x2)φ(x3) . . . φ(x2n)〉 =
1

Z

δ2nZ[j(x)]

δj(x1)δj(x2)δj(x3) . . . δj(x2n)

∣∣∣∣
j=0

,

= G(x1,x2)G(x3,x4) . . . G(x2n−1,x2n)

+all other pairings of xi,xj, (53)

and vanishing for correlators odd number of fields.

Now above Wick’s theorem directly applies to a classical statistical field theory. Thanks

to a path-integral formulation of a quantum field (that maps it onto an effective d + 1-

dimensional classical statistical field theory), with a slight modification, the theorem also

extends to a quantum field theory for time-ordered correlation functions in a ground state

|0〉

〈0|Tτ (φ(x1)φ(x2)φ(x3) . . . φ(x2n)) |0〉 = G(x1,x2)G(x3,x4) . . . G(x2n−1,x2n)

+all other pairings of xi,xj, (54)

A more general form of the quantum Wick’s theorem at the level of operators is given by

Tτ (φ(x1)φ(x2)φ(x3) . . . φ(xn)) = : φ(x1)φ(x2)φ(x3)φ(x4)φ(x5) . . . φ(xn) :

= φ(x1)φ(x2) : φ(x3)φ(x4)φ(x5) . . . φ(xn) :

+all other single pair (xi,xj) contraction

= φ(x1)φ(x2)φ(x3)φ(x4) : φ(x5) . . . φ(xn) :

+all other double pair (xi,xj), (xk,xl) contraction

= φ(x1)φ(x2) . . . φ(xn−1)φ(xn)

+all other n/2 pairs, if n is even

= φ(x1)φ(x2) . . . φ(xn−2)φ(xn−1)φ(xn)

+all other (n− 1)/2 pairs, if n is odd, (55)

where the contraction of a pair of fields is defined to be

φ(x1)φ(x2) ≡ Tτ (φ(x1)φ(x2))− : φ(x1)φ(x2) :,
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: Ô : is the normal ordered arrangments of operators with creation operators to the left

of annihilation operators. Evaluation of the expectation value in the vacuum gives the

path-integral expression, (53).

2. Bosonic field theory

Correlators and thermodynamics of a Gaussian bosonic field theory are controlled by

the Euclidean action, (47),(48) for a path-integral computation and equivalently by the

Hamiltonian (8) in a canonical computation.

The key correlator is the the time-ordered propagator

G(τ, r) = 〈Tτ (ψ(τ, r)ψ†(0, 0))〉 = Z−1Tr[Tτ (ψ(τ, r)ψ†(0, 0))e−βH ],

= 〈ψ(τ, r)ψ(0, 0)〉 (56)

from which via Wick’s theorem all other correlators can be obtained. In the first form

the average is a trace over quantum many-body states with. In the second form it is its

coherent-state path-integral equivalent, that automatically gives time-ordered correlators.

Using Heisenberg equation of motion for ψ(τ,k) with Hamiltonian (8), we have ψ(τ,k) =

ψ(k)e−εkτ/~, from which the propagator is given by

G(τ, r) =
1

V

∑
k

e−εkτ/~+ik·rZ−1

∞∑
nk=0

〈nk|
(
θ(τ)aka

†
k + θ(−τ)a†kak

)
|nk〉e−βεknk ,

=
1

V

∑
k

e−εkτ/~+ik·r
(
θ(τ)

eβεk

eβεk − 1
+ θ(−τ) 1

eβεk − 1

)
(57)

Equivalently, the result can be computed using coherent-state path-integral with the

second form in (56)

G(τ, r) =
1

β~
∑
ωn,ωn′

∫
ddk

(2π)d

∫
ddk′

(2π)d
e−iωnτ+ik·r〈ψ(ωn,k)ψ(ωn′ ,k

′)〉,

=
1

β~
∑
ωn

∫
ddk

(2π)d
e−iωnτ+ik·r

−iωn + εk
, (58)

with the sum over bosonic Matsubara frequencies, ωn = 2π
β~n.

To evaluate the last sum we utilize a complex contour integral over a circle at |z| → ∞
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that vanishes for τ < 0

0 =
1

2πi

∮
C

e−zτ

−z + εk/~
1

eβ~z − 1
, (59)

=
1

β~
∑
ωn

e−iωnτ

−iωn + εk/~
− e−εkτ/~

eβεk − 1
. (60)

Repeating this for τ > 0, we find

0 =
1

2πi

∮
C

e−zτ

−z + εk/~
eβ~z

eβ~z − 1
, (61)

=
1

β~
∑
ωn

e−iωnτ

−iωn + εk/~
− e−εkτ/~+βεk

eβεk − 1
, (62)

where to ensure the convergence of the contour integral for Re(z) → −∞ part, we introduced

an additional factor of eβ~z in the numerator of the first equality.

Together these give

1

β~
∑
ωn

e−iωnτ

−iωn + εk/~
= θ(τ)

e−εkτ/~+βεk

eβεk − 1
+ θ(−τ) e

−εkτ/~

eβεk − 1
,

= e−εkτ/~
[
θ(τ)

( 1

eβεk − 1
+ 1
)

+ θ(−τ) 1

eβεk − 1

]
, (63)

= e−εkτ/~
[
θ(τ)

(
nBE(βεk) + 1

)
+ θ(−τ)nBE(βεk)

]
, (64)

which when used inside (58) reproduces the canonical quantization result, (57).

III. NONINTERACTING BOSE GAS: BOSE-EINSTEIN CONDENSATION

We now want to calculate the thermodynamics of a noninteracting Bose gas as for example

found in dilute degenerate Bose gases laser and evaporatively cooled in JILA and nwo around

the world. To fix the number of bosonic atoms to be N it is convenient to work in the

grand-canonical formulation of quantum statistical mechanics, using effective Hamiltonian

Hµ = H − µN , with the chemical potential µ tuned such that the expectation value of the
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atom number is given by the experimentally prescribed number N ,

N =

∫
ddr〈ψ†(0, r)ψ(0, r))〉 =

∫
ddrG(τ → 0−1, r), (65)

=
∑
k

1

eβ(εk−µ) − 1
, (66)

= V

∫
ddk

(2π)d
1

eβεk − 1
, (67)

= V
Cd
2

(
2m

~2

)d/2 ∫ ∞

0

dε
εd/2−1

eβ(ε−µ) − 1
, (68)

where εk = εk − µ = ~2k2/2m − µ, and in going to the last two lines we made (what will

turn out to be) a crucial thermodynamic limit approximation, replacing sum over k by an

integral; 1/Cd = 2d−1πd/2Γ(d/2).

At high temperature the gas should behave as a classical Boltzmann gas with a negative

chemical potential. Indeed in that regime we can ignore 1 relative to the exponential and

straightforwardly perform the integration. Solving for the chemical potential in terms of the

density n = N/V and temperature we obtaining the classical Boltzmann result:

µ(T, n) = −kBT ln(nλdT ) = −kBT lnT/Tc, valid for T >> Tc (69)

where

λT =

(
2π~2

mkBT

)1/2

is the thermal deBroglie wavelength and we deduced the crossover, degeneracy temperature

scale

Td = 4π
~2n2/d

2m

above which this classical result is valid.

Because in 1d and 2d dimensions the integral diverges for µ = 0 at the lower limit ε = 0

(think about expanding the exponential for small β(ε− µ)), N(µ) and therefore µ(n, T ) are

smooth functions exhibiting no phase transitions. On the hand, as illustrated in Fig.3 for

d > 2, the integral saturates at a finite value even for µ = 0,

N(Tc) = V
Cd
2

(
2mkBTc

~2

)d/2 ∫ ∞

0

dε
εd/2−1

eε − 1
= V ζ(d/2)

(
mkBTc
2π~2

)d/2
(70)

with the corresponding temperature, the BEC temperature:

kBTc = ζ(d/2)−2/d

(
2π~2n2/d

m

)
,
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FIG. 2: Chemical potential in a noninteracting Bose gas as a function of temperature near the

transition to Bose-Einstein condensation at temperature Tc.

FIG. 3: A sketch of the Bose-Einstein momentum distribution function as a function of k as T is

reduced toward Tc from above.

where we used
∫∞

0
dε ε

d/2−1

eε−1
= Γ(d/2)ζ(d/2), valid for d > 2.

This saturations is a consequence of a density of states that vanishes more strongly with

increased dimension and thus in d > 2 the integral does an inadequate job of accounting for

the low k states that at low T < Tc is macroscopically occupied.

To account for the discreteness of states we separate out the occupation N0 = n0V of the

single particle ground state k = 0, the Bose Einstein condensate, obtaining for T < Tc

n0(T ) = n

[
1−

(
T

Tc

)d/2]
, for T < Tc (71)

and vanishing for T > Tc. The number density of finite-temperature excitations is then
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given by the complement nexc(T ) = n
(
T
Tc

)d/2
. We thus discovered the existence of a finite-

temperature phase transition in an noninteracting Bose gas, between thermal and Bose-

condensed states.

FIG. 4: A sketch of the Bose-Einstein momentum distribution function nk as a function of k for

T < Tc, illustrating the thermal finite k and the condensate k = 0 components.

At T = 0 the BEC state is described by a many-body eigenstate

|Ψ0〉 =
(
a†k=0

)N
|0〉 (72)

that corresponds to a wavefunction that is a product of the single-particle ground state

wavefunction ψ0(r) occupied by each atom,

Ψ0(r1, r2, . . . , rN) =
N∏
i=1

ψ0(ri) =
1

V N/2
,

with last equality corresponding to the case of a box trap. In a harmonic isotropic trap,

relevant to AMO experiments, instead ψ0(r) ∼ e−
1
2
r2/r20 , with r0 =

√
~/(mωtrap) the trap’s

quantum oscillator length.

We note that without interactions the condensate n0(T ) grows from zero, approaching

total atomic density n at T = 0. This last property is not generic and will not survive

inclusion of atomic interactions. All other properties of this noninteracting system can be

extensivelyl explored (see e.g.,[6]), but we instead turn our attention to the more interesting

and nontrivial interacting Bose gas.

IV. INTERACTING BOSE GAS

We now turn to the study of a weakly interacting Bose gas, a generalization of the previous

noninteracting BEC study.
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Utilizing second-quantization formulation from Sec.(II), we consider interacting bosons,

described by a grand-canonical Hamiltonian:

Hµ =

∫
r

[
ψ†(

−~2∇2

2m
− µ)ψ +

g

2
ψ†ψ†ψψ

]
,

=
∑
k

εka
†
kak +

g

2V

∑
k1,k2,q

a†k1+q/2a
†
−k1+q/2ak2+q/2a−k2+q/2, (73)

where εk = εk − µ = ~2k2/2m − µ, and ψ(r) = 1√
V

∑
k ake

ik·r. Above, we have taken

the interaction to be short-ranged, V (r) = gδd(r), characterized by a parameter (“pseudo-

potential”) g ≡ 4π~2r0/m (that for many atoms can be tunable using external magnetic

field through the magic of Feshbach resonances), with r0 = 1/Λ the microscopic range of

the interatomic potential (van der Waals for neutral atoms), usually on the order a few tens

of atomic units. This “bare” interaction parameter g controls the renormalized interaction

coupling gR, according to

g−1
R = g−1 +

∫
ddk

(2π)d
1

2εk
= g−1 +mΛ/(2π2~2),

related to the two-atom scattering length as via gR = 4π~2as/m, and in the last equality

the integral was evaluating in three dimensions, d = 3.

A. Mean-field Ginzburg-Landau theory

Having studied the non-interacting case in the previous section, we anticipate a pos-

sibility of Bose-condensation at low temperatures by splitting the bosonic field operator

ψ(r) = Ψ0(r) + φ(r) into a c-number condensate field Ψ0(r) and the bosonic quantum fluc-

tuations (bosonic excitations out of the condensate) field, φ(r). In terms of the Fourier

modes (momentum operators) this correspoinds to ak = a0δk,0 + ak6=0, with Ψ0 = a0/
√
V

a constant. More generally, however, say in a trap, Ψ0(r) is single-particle ground state

wavefunction that is spatially dependent.

In the complementary coherent-state formulation, above decomposition is equivalently

understood as the condensation into a macroscopic coherent state |Ψ0〉 = eΨ0(r)a†0|0〉, that

unlike all other single-particle states α 6= 0 states exhibits a finite expectation value of

a0|Ψ0〉 = Ψ0(r)|Ψ0〉.

Inserting this decomposition into the many-body Hamiltonian, (73), we obtain Hµ =
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Hmft[Ψ0(r)] + δHµ, where

Hmft[Ψ0(r)] =

∫
r

[
Ψ0(

−~2∇2

2m
− µ)Ψ0 +

g

2
|Ψ0|4

]
,

= V
[
−µ|Ψ0|2 +

g

2
|Ψ0|4

]
, (74)

where in the second line we specialized to a box trap for which the condensate is spatially

uniform. In the presence of a trap Ψ0(r) would be the lowest eigenstate of the single-particle

Hamiltonian. δHµ is the fluctuations part that will study in the subsequent subsection.

B. Normal-to-superfluid phase transition

Minimizing Hmft[Ψ0(r)] (that exhibits the famous “Mexican-hat” potential, Fig.5) over

Ψ0 we find

Ψ0 = 0, for µ < 0, (75)

Ψ0 = |Ψ0|eiϕ =
√
µ/geiθ, for µ > 0, (76)

where θ is an arbitrary phase (there is a global U(1) gauge symmetry of the Hamiltonian

associated with atom number conservations) that without loss of generality we take to be θ =

0. Thus this mean-field theory immediately captures the thermal-to-superfluid (BEC) phase

transition as a function of the chemical potential controlable through density n, temperature,

T and interaction, g, equivalent to our analysis for BEC in the previous subsection.

EvaluatingHmft at above Ψ0 we find at this mean-field approximation the grand-canonical

ground state energy is

Emft
µ ≡ Hmft[Ψ0] = −V µ2/g, µ > 0, T < Tc, (77)

= 0, µ < 0, T > Tc, (78)

clearly exhibiting a singularity in its second derivative with µ or equivalently with T at

T = Tc, characteristic of the second order transition. This negative condensation energy

is what drives the phase transition. We note that at finite temperature this is a transition

from a thermal normal gas to a Bose-condensed superfluid. At zero temperature, it is driven

by the chemical potential or bosonic density, n, taking place at zero atom density. It then

represents in a sense trivial vacuum-to-superfluid transition. Thus, we learn that in the
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FIG. 5: A Mexican-hat potential and its cross-section controlling the normal-to-superfluid phase

transition. Massive (gapped) amplitude (Higg’s) and gappless Goldstone mode excitations respec-

tively correspond to radial and azimuthal fluctuations about Ψ0.

continuum, at T = 0 and any nonzero density, bosons always form a superfluid ground

state.

The order parameter for this transition is the condensate field Ψ0, that also exhibits a

square-root singularity characteristic of mean-field approximation, as illustrated in Fig.6.

V. LOW-ENERGY BOGOLUIBOV THEORY OF A SUPERFLUID

We now turn to the nontrivial effects of fluctuations about the above mean-field solution

Ψ0. Since this is an expansion small fluctuations, it is only valid for weak interactions,

characterized by small “gas parameter” na3
s � 1.
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FIG. 6: Behavior of the order parameter Ψ0 as a function of control parameter µ or temperature

T . On the right is the cross-section of the corresponding ground-state energy Eµ(µ) exhibiting

transition from single minimum at Ψ0 = 0 to a minimum at a finite |Ψ0| > 0.

A. Bogoluibov’s creation-annihilation operator description

1. Hamiltonian

With above field decomposition, δHµ is the Hamiltonian that controls fluctuations φ(r)

about the condensate Ψ0. Limiting it to quadratic order in φ(r), i.e., ignoring quasi-particle

interactions we obtain the quadratic Bogoluibov Hamiltonian:

δHµ ≈
∫

r

[
φ†ε̂φ+

gn0

2

(
4φ†φ+ φφ+ φ†φ†

)]
, (79)

=
1

2

∫
r

(
φ† φ

)ε̂− µ+ 2gn0 gn0

gn0 ε̂− µ+ 2gn0

 φ

φ†

− 1

2

∑
k6=0

(εk − µ+ 2gn0), (80)

= −1

2

∑
k6=0

(εk + gn0) +
1

2

∫
r

(
φ† φ

)ε̂+ gn0 gn0

gn0 ε̂+ gn0

 φ

φ†

 , (81)

= −1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

(
a†k a−k

) ε̃k gn

gn ε̃k

 ak

a†−k

 (82)

where ε̃k = ε+ gn0, the constant part comes from the commutation relation, above we used

mean-field expression µ = gn0 = g|ψ0|2, obtained from minimization of Hmft(n0), (76), to

eliminate µ in favor of condensate density n0, and within this Bogoluibov weak coupling

approximation, in the last expression we safely replaced n0 by n.
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For completeness we also note that in a canonical ensemble (fixed N , rather than the

chemical potential, µ) we can obtain the same Bogoluibov Hamiltonian utilizing expansion

ak = a0δk,0 + ak6=0, with a†0a0 = N0, obtaining

HN ≈ g

2V
N2

0 +
1

2

∑
k6=0

[
εka

†
kak + 2gn0a

†
kak + gn0a−kak + h.c.

]
, (83)

≈ g

2V
N2 +

1

2

′∑
k

[
(εk + gn)a†kak + gna−kak + h.c.

]
. (84)

where in going to second line we eliminating N0 in favor of N using the total atom constraint,

N = N0 +
∑

k6=0 a
†
kak,

2. Diagonalization

In contrast to the fermionic unitary Bogoluibov transformation, for bosons Φk = (ak, a
†
−k)

the transformation to Bogoluibov bosonic quasi-particles, Ψk = (αk, α
†
−k) ak

a†−k

 =

uk vk

v∗k u∗k

 αk

α†−k

 (85)

Φk = UkΨk (86)

must be nonunitary to preserve commutation relation, [ak, a
†
k′ ] = δk,k′ , corresponding to

[Φik,Φ
†
jk′ ] = σzijδk,k′ , and giving

UσzU
† = σz = U †σzU, (87)

with |uk|2 − |vk|2 = 1 and σz the third Pauli matrix. This constraint can be resolved by

parametrization uk = coshχk, vk = sinhχk, with “angle” χk.

With above parameterization the diagonalization can be done by a direct substitution in

δHµ and demanding a vanishing of the coefficients of the off-diagonal terms in Ψ†
iΨj. We

leave this approach for homework.

Equivalently, a more formal matrix diagonalization can be carried out using

hijUjs = Esσ
z
ijUjs, (88)

for the Bogoluibov Hamiltonian matrix

h =

 ε̃k gn

gn ε̃k

 (89)
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This is equivalent to

(hij − Esσ
z
ij)Ujs = 0, (90)

which demands a vanishing of the corresponding determinant∣∣∣∣∣∣εk − Es gn

gn εk + Es

∣∣∣∣∣∣ = 0, (91)

giving Es = ±
√
ε2 − g2n2 = ±E for two s = 1, 2 corresponding to ±1.

We note that this E1,2±E eigenvalue structure of the pseudo-eigenvalue problem Eq. (88)

is intrinsic in the bosonic Bogoluibov Hamiltonian form (∆R = Re(gn), ∆I = Im(gn)):

h = ε1+ ∆Rσx + ∆Iσy,

which has a symmetry

σxhσx = h∗.

Using this it is easy to see that eigenvectors come in ±E pairs: e+ = u and e− = σxu
∗,

hU = EσzU,

σxh
∗σx(σxU

∗) = EσxσzσxσxU
∗,

h(σxU
∗) = (−E)σz(σxU

∗),

(92)

Utilizing this in the many-body Hamiltonian we obtain,

Hµ ≈ E0 −
1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

Φ†
ihijΦj, (93)

≈ E0 −
1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

Ψ†
tU

†
tihijUjsΨs,

≈ E0 −
∑
k6=0

ε̃k +
1

2

∑
k6=0

Ψ†
tU

†
tiσ

z
ijUjsEsΨs,

≈ E0 −
1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

Ψ†
tσ

z
tsEsΨs,

≈ E0 −
1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

EΨ†
tσ

z
tnσ

z
nsΨs,

≈ E0 −
1

2

∑
k6=0

ε̃k +
1

2

∑
k6=0

EΨ†
sΨs.

(94)
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which then reduces to

Hµ ≈ ε0N +
g

2V
N2 − 1

2

∑
k

(ε̃k − Ek) +
∑
k

Ekα
†
kαk, (95)

where

Ek =
√
ε̃2
k − g2n2 =

√
ε2k + 2gnεk = cs~k

√
1 + ξ2k2, (96)

≈

 εk + µ = ~2k2

2m
+ µ, for εk � µ = gn, or equivalently kξ � 1,

√
2gnεk = cs~k, for εk � µ = gn, or equivalently kξ � 1,

, (97)

where ε̃k = εk+gn, zeroth-sound velocity cs =
√
gn/m and correlation length ξ = ~/

√
4mgn.

We note that while at high momenta the dispersion remains nonrelativistic, but shifted up

by the chemical potential, at low momenta, a linear zeroth sound emerges (“More Is Differ-

ent”, P. A. Anderson). While there are numerous indirect observations of this, an explicit

Bogoluibov dispersion has been explicitly measured via Bragg spectroscopy in degenerate

bosonic Rb87 atoms by Steinhauer[7], as illustrated in Fig.7 In the presence of strong in-

FIG. 7: Bogoluibov spectrum measured in a degenerate cloud of Rb87 bosonic atoms by

Steinhauer[7].

teractions, one also expects the so-called “roton minimum” in the spectrum rather than a

monotonic crossover found in Bogoluibov’s weakly interacting system. The minimum repre-

sents short-scale strong atom-atom correlations of a liquid as is found for example in liquid

Helium-4 and discussed extensively by Richard Feynman.

The coherence factors in the transformation matrix U that diagonalizes the Bogoluibov
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Hamiltonian are given by

u2
k =

1

2
(
ε̃k
Ek

+ 1), (98)

v2
k =

1

2
(
ε̃k
Ek

− 1). (99)

The many-body ground state is then given by |Ψ0〉 = eΨ0(r)a†0|nα = 0〉, where in contrast

to the pure mean-field result above, here the vacuum |nα = 0〉 is a vacuum of Bogoluibov

quasi-particles, αk|nα = 0〉 = 0 rather than simply a true vacuum of atoms, ak|0〉 = 0.

3. Physical observables

From this we find the ground state energy in Bogoluibov approximation (ε0 = 0) is given

by the constant part of the total Hamiltonian above,

Egs =
1

2
V gn2 − 1

2

∑
k

(ε̃k − Ek), (100)

= V

[
1

2
gn2 −

∫
d3k

(2π)3
Ekv

2
k

]
, (101)

and

µ =
∂Egs
∂N

,

= gn− g

2

∫
d3k

(2π)3

[
1− εk

Ek

]
,

= gn

[
1− 1

8π2

(
2m

n2/3~2

)3/2 ∫
dεε1/2

(
1− ε√

ε2 + 2gnε

)]
,

(102)

These integrals are UV divergent. However, we expect this dependence on the short-scale

cutoff to be eliminated once it is reexpressed in terms of the physical scattering length as.

This then should give Lee-Yang-Huang expression for the chemical potential, that is an
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expansion in na3
s. For µ this is indeed the case:

µ

gR
= n

[
1− 1

8π2

(
2m

n2/3~2

)3/2 ∫
dεε1/2

(
1− ε√

ε2 + 2gnε
− µ

ε

)]
,

= n

[
1− 1

8π2

(
2m

n2/3~2

)3/2 ∫
dεε1/2

(
1− ε√

ε2 + 2gRnε
− gRn

ε

)]
,

= n

[
1 +

√
2

3π2

(
2mgRn

n2/3~2

)3/2
]
,

= n

[
1 +

32

3
√
π

(na3
s)

1/2

]
, (103)

This can alternatively be calculated by computing the grand-canonical ground state en-

ergy Egs(µ) and using n = −∂Egs/∂µ, together with g − as relation and the Ψ0(µ) saddle-

point dependence. Equivalently, from µ(n) = ∂εgs(n)/∂n, we can obtain

εgs =
1

2
gRn

2

[
1 +

128

15
√
π

(na3
s)

1/2

]
. (104)

From above we can also calculation “depletion”Nd of the k = 0 state, namely the number

of atoms promoted by the repulsive interactions into k 6= 0 single particle states,

Nd =
∑
k

〈a†kak〉,

=
∑
k

〈(u∗kα
†
k + v∗kαk)(ukαk + vkα

†
k)〉,

=
∑
k

[
|vk|2 + (|uk|2 + |vk|2)nBE(T )

]
,

= N
8

3
√
π

(na3
s)

1/2, at T = 0, (105)

We note that in contrast to the noninteracting BEC limit, here even at T = 0 because of

repulsive interactions not all atoms reside in the k = 0 single-particle state. We stress, that

despite of this condensate depletion, one can show that at T = 0, all N atoms participate

in the superfluid state, as for example gauged by the superflow momentum density p that

at T = 0 is given by p = nsvs, with ns = n (total atom density), not n0 condensate fraction

that is less than n.

At T = 0 we also find that the atom momentum distribution function is given by

nk = |vk|2,

=
1

2
(
εk
Ek

− 1),

k→∞ ≈ C

k4
, (106)
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where the Tan’s “contact”C = 16π2n2a2
s at this level of approximation, is the amplitude of

the universal high momentum 1/k4 tail.

VI. DENSITY-PHASE (POLAR) OPERATOR REPRESENTATION

It is useful to complement about description by a density-phase representation of fluctu-

ations about the superfluid state, still working in the Hamiltonian approach. Using

ψ(r) =
√
n0 + π(r)eiθ(r), (107)

inside the Hµ, with density and phase fluctuations satisfying the canonical commutation

relation, [θ(r), π(r′)] = −iδ(r− r′), we obtain

Hµ = −1

2
gn2

0V +

∫
r

[
~2

8mn0

|∇π|2 +
~2n0

2m
|∇θ|2 +

g

2
π2

]
, (108)

where we dropped the nonlinearities in π(r) and used the relation µ = n0g, valid at har-

monic order. In Fourier space as usual this can be written as independent oscillators with

“momentum” field πk and “coordinate” field θk

δHµ =
∑
k

[
~2

2Mk

π−kπk +
1

2
MkΩ

2
kθ−kθk

]
, (109)

where k-dependent effective “mass” and “frequency” are given by

Mk =

(
k2

4mn0

+
g

~2

)−1

, (110)

Ωk =

√(
k2

4mn0

+
g

~2

)
~2k2n0

m
, (111)

= ~−1
√
εk(εk + 2gn0) = Ek/~, (112)

the latter indeed gives the Bogoluibov excitation spectrum Ek.

Introducing complex fields, that correspond to the Bogoluibov creation and annihilation

operators

θk =
θ0√
2

(
α†−k + αk

)
, (113)

πk =
1

i
√

2θ0

(
α†−k − αk

)
, (114)

(115)
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inheriting creation-annihilation commutation relation, [αk, α
†
k′ ] = δk,k′ , the Hamiltonian re-

duces to

δHµ =
∑
k

[
−~2

4Mkθ2
0

(
α†k − α−k

)(
α†−k − αk

)
+

1

4
MkΩ

2
kθ

2
0

(
α†k + α−k

)(
α†−k + αk

)]
,

=
∑
k

[(
1

4
MkΩ

2
kθ

2
0 +

~2

4Mkθ2
0

)(
α†kαk + α−kα

†
−k

)
+

(
1

4
MkΩ

2
kθ

2
0 −

~2

4Mkθ2
0

)(
α†−kα

†
k + α−kαk

)]
,

=
∑
k

Ek

(
α†kαk +

1

2

)
, (116)

where we chose angle scale to be

θ0 =

√
~

MkΩk

=

√
1

2n0

Ek
εk

so as to eliminate αk quanta nonconserving cross terms and reduce the Hamiltonian to a

standard form. This form for θ0 is indeed the effective quantum oscillator “length”, char-

acterizing the size of rms fluctuations of θk in the ground state. Namely the ground-state

wavefunction for θk is a Gaussian with width θ0.

It is interesting to note that even in d ≤ 2, where at finite T there is no condensate (as we

will see later, by virtue of the Hohenberg-Mermin-Wagner-Coleman theorem), i.e., n0 = 0,

the quantum low-energy theory is still described by a Hamiltonian of the same form

δH =

∫
r

[
~2ns
2m

|∇θ|2 +
κ−1

2
δρ2

]
, (117)

where ns is the superfluid number density, that for a bulk Galilean-invariant (no lattice or

disorder) superfluid at T = 0 is given by the total density, n. And the coupling controlling

density fluctuations given by the compressibility κ.

VII. COHERENT-STATE PATH-INTEGRAL FORMULATION

All of above can equivalently be rederived from the coherent state path-integral formula-

tion, with the Euclidean action

SE =

∫
ddrdτ

[
ψ~∂τψ +H[ψ, ψ]

]
,

=

∫
ddrdτ

[
ψ

(
~∂τ −

~2∇2

2m
− µ

)
ψ +

1

2
g ψψψψ

]
. (118)
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A. Coherent fields representation

Using condensate-fluctuations decomposition ψ(r, τ) = Ψ0+φ(r, τ), expanding the action

to quadratic order and minimizing over Ψ0 we obtain

δSE ≈
∫

r,τ

[
φ (~∂τ + ε̂)φ+

gn0

2

(
4φφ+ φφ+ φφ

)]
, (119)

=
1

2

∑
ωn

∫
k

(
φ(k, ωn) φ(−k,−ωn)

)−i~ωn + ε̃k gn

gn i~ωn + ε̃k

 φ(k, ωn)

φ(−k,−ωn)

 ,

≡ ~
2

∑
ωn

∫
k

(
φ(k, ωn) φ(−k,−ωn)

)
i
G−1
ij (k, ωn)

 φ(k, ωn)

φ(−k,−ωn)


j

, (120)

from which thermodynamics and correlation functions can be straightforwardly calculated

using the coherent-state path integral.

Since δSE is harmonic (by construction), the Green’s functions are obtained from simply

inverting its matrix kernel, G−1. This gives

Gij(k, ωn) =

 〈φk,ωnφk,ωn
〉 〈φk,ωnφ−k,−ωn〉

〈φk,ωn
φ−k,−ωn

〉 〈φ−k,−ωnφ−k,−ωn
〉

 =
~

~2ω2
n + E2

k

i~ωn + ε̃k −gn

−gn −i~ωn + ε̃k

 ,

(121)

where Ek =
√
ε̃2
k − g2n2 =

√
ε2k + 2gnεk = c~k

√
1 + ξ2k2 is by-now familiar Bogoluibov

spectrum.

Specifically the two key (connected) Green’s functions G ≡ G11 and Ganom ≡ G12

G(r, τ) = 〈ψ(r, τ)ψ(0, 0)〉 − n0, (122)

Ganom(r, τ) = 〈ψ(r, τ)ψ(0, 0)〉 − n0, (123)

(124)

in Fourier space are given by

G(k, ωn) = ~
i~ωn + ε̃k
~2ω2

n + E2
k

, (125)

=
u2
k

−iωn + Ek/~
+

v2
k

iωn + Ek/~
, (126)

Ganom(k, ωn) = ~
−gn

~2ω2
n + E2

k

, (127)

=
−ukvk

−iωn + Ek/~
+

−ukvk
iωn + Ek/~

, (128)

(129)
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with the pole giving the Bogoluibov spectrum in imaginary frequency, and corresponding

residues given by the squares of previously found coherence factors uk, vk. We note that for

g → 0 limit, the correlators reduce to that of noninteracting bosons, with Ganom = 0.

B. Density-phase fields representation

Above analysis is nicely complemented by the density-phase coherent-state representation,

which as we will see has a somewhat more direct connection to the physical fluctuations of

the superfluid state.

Starting with the Euclidean coherent-state action SE[ψ, ψ] and expressing it in terms of

“radial”, π(r, τ) and“azimuthal”, θ(r, τ) fluctuations inside the Mexican-hat potential, Fig.5,

defined by

ψ(r, τ) =
√
n0 + π(r, τ)eiθ(r,τ), (130)

we find

SE[π(r, τ), θ(r, τ)] =

∫
ddrdτ

[
i~n∂τθ +

~2n

2m
|∇θ|2 +

~2

8mn
|∇π|2 − µn+

1

2
gn2

]
,

≈
∫
ddrdτ

[
i~π∂τθ +

~2n0

2m
|∇θ|2 +

~2

8mn0

|∇π|2 +
1

2
gπ2

]
, (131)

≈
∑
ωn

∫
k

[
~ωnπ(−k,−ωn)θ(k, ωn) +

~2k2

2m
n0|θ(k, ωn)|2

+
~2k2

8mn0

|π(k, ωn)|2 +
1

2
g|π(k, ωn)|2

]
, (132)

=
1

2

∑
ωn

∫
k

(
θ(−k,−ωn) π(−k,−ωn)

)n0~2k2

m
−~ωn

~ωn ~2k2

4mn0
+ g

θ(k, ωn)
π(k, ωn)

 ,

≡ ~
2

∑
ωn

∫
k

(
θ(−k,−ωn) π(−k,−ωn)

)
i
D−1
ij (k, ωn)

θ(k, ωn)
π(k, ωn)


j

,

(133)

where we minimized SE over n0 to eliminate µ, expanded to quadratic order in π, θ, ignored

constant contributions, and defined the kernel D−1
ij (k, ωn) that is the inverse of the π, θ

correlator tensor. We note that in the superfluid phase by definition fluctuations of θ are

small and n field be a continuous field. In contrast, in the insulating state, where θ fluctuates

wildly (multiples of 2π) n is quantized through the first “pq̇”, namely n∂τθ term.
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Inverting D−1(k, ωn),

D(k, ωn) =
~

~2ω2
n + E2

k

 ~2k2

4mn0
+ g ~ωn

−~ωn n0~2k2

m

 (134)

we immediately obtain all the relevant θ, π correlators. All of these exhibit a pole at imagi-

nary frequency Ek/~ set by the Bogoluibov spectrum.

A particularly interesting correlator π − π as it gives the dynamic structure and density

response functions,

S(r, τ) = 〈n(r, τ)n(0, 0)〉 − n2 ≈ 〈π(r, τ)π(0, 0)〉, (135)

whose Fourier transform is

S(k, ωn) = D22(k, ωn) = ~
n0~2k2/m

~2ω2
n + E2

k

(136)

To obtain the structure function at real frequency we Fourier transform back to imaginary

time τ (using contour integration[1, 8] 1
β~
∑

ωn

e−iωnτ

~2ω2
n+E2

k
= cosh[(β~/2−τ)Ek/~]

2~Ek sinh[βEk/2]
,)

S(k, τ) =
1

β~
∑
ωn

S(k, ωn)e
−iωnτ , (137)

=
n0~2k2

2mEk

eβEke−Ekτ/~ + eEkτ/~

eβEk − 1
, (138)

=
n0~2k2

2mEk

[
(nBE(Ek) + 1) e−Ekτ/~ + nBE(Ek)e

Ekτ/~
]
, (139)

which immediately gives the static structure function

S(k, τ = 0) =
n0~2k2

2mEk
coth

(
βEk
2

)
, (140)

satisfying Feynman’s prediction at T = 0; this formula was also independently derived by

Abrikosov, Gorkov, Dzyaloshinskii. The static structure function was directly measured

via Bragg spectroscopy in degenerate bosonic Rb87 atoms by Steinhauer[7], finding close

agreement with the predictions of the Bogoluibov’s theory, above.

We note that vanishing of S(k) with vanishing momentum is a consequence of number

conservation. As discussed by R.P. Feynman, in fact one can invert this relation, to extract

the spectrum from the measured structure function. Since in a liquid strong short-scale

atom-atom correlations are expected to give finite-width peaks in S(k), remnants of melted

33



crystal’s Bragg peaks, this immediately implies a minimum in the spectrum of a superfluid,

the so-called “roton minimum”.

Analytically continuing to real time t = −iτ

S(k, t) =
n0~2k2

2mEk

[
(nBE(Ek) + 1) e−iEkt/~ + nBE(Ek)e

iEkt/~
]
, (141)

and Fourier transforming to real frequency ω, we finally find the dynamic structure function,

i.e., the density-density correlator at real-frequency and momentum,

S(k, ω) =

∫ ∞

−∞
dtS(k, t)e−iωnτ , (142)

=
n0~2k2

2mEk

2π

eβEk − 1

[
eβEkδ(ω − Ek/~) + δ(ω + Ek/~)

]
, (143)

= 2π
n0~2k2

2mEk
[(nBE(Ek) + 1) δ(ω − Ek/~) + nBE(Ek)δ(ω + Ek/~)] . (144)

This result is consistent with the quantum fluctuation-dissipation theorem (that we will

prove later), that relates the imaginary part of the retarded response function ~χ(k, ω) ≡

S(k, ωn → −iω + 0+) and finite frequency correlation function S(k, ω),

S(k, ω) =
2~

1− e−β~ω Im[χ(k, ω)].

We next turn to the derivation of Landau’s quantum “hydrodynamics”.

C. Quantum “hydrodynamics”

Using coherent-state path-integral we can gain further intuition about superfluid dynam-

ics, by working with real-time action in density-phase representation and evaluating the

path-integral via a saddle-point analysis. To this end, minimizing the action

S[ψ, ψ] =

∫
ddrdt

[
ψi~∂tψ −H[ψ, ψ]

]
,

=

∫
ddrdt

[
ψ

(
i~∂t +

~2∇2

2m
+ µ

)
ψ − 1

2
g ψψψψ

]
(145)

over ψ, we obtain the saddle-point equation of motion

i~∂tψ =
−~2

2m
∇2ψ − µψ + g ψψψ,

that is referred by a variety of synonimous names, depending on the context, such as the

Gross-Pitaevskii equation (GPE), the nonlinear Schrödinger’s equation, and the Ginzburg-

Landau equation.
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Using a polar representation, ψ(r, t) =
√
n(r, t)eiθ(r,t), GPE becomes

i~
2
∂tn− ~n∂tθ = − ~2

2m

(
− 1

4n
(∇n)2 +

1

2
∇2n+ i∇n ·∇θ + in∇2θ − n(∇θ)2

)
− (µ− gn)n.

(146)

Separating into real and imaginary parts we obtain

∂tn = − ~
m

∇n ·∇θ − ~
m
n∇2θ, (147)

= −∇ · (n ~
m

∇θ) ≡ −∇ · (nv), (148)

~∂tθ +
~2

2m
(∇θ)2 = −δµ(r) (149)

where δµ(r) = ~2

8mn2 (∇n)2 − ~2

4mn
∇2n+ µ− gn is the effective chemical potential fluctuation

about a uniform equilibrium value, and the superfluid velocity is as usual given by

v =
~
m

∇θ,

that in the absence of vortices (i.e., single-valued condensate wavefunction; see below) is

irrotational

∇× v = 0.

These equations can equivalently be obtained by first expressing S in terms of θ and

n and then minimizing over them, respectively. The first equation is then nothing more

than the atom number continuity equation and the second one has a form of a Kardar-

Parisi-Zhang (KPZ) equation for θ and is the Bernoulli’s equation. Taking a gradient of this

second equation and using the fact that v is irrotational, for which v ·∇v = 1
2
∇v2 (from

v ×∇× v = 0) reduce it to the Euler equations for an inviscid irrotational fluid. Together

these equations then take quantum “hydrodynami” form:

∂tn+ ∇ · (nv) = 0, (150)

m(∂tv + v ·∇v) = −∇µ(r). (151)

We note that in the absence of any external inhomogeneous potentail, as required these

equation are Galilean-invariant. Namely, changing coordinates to a moving frame r′ =

r−v0t, gives the same equations but with a velocity of the fluid that’s reduced to v′ = v−v0,
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as expected in the moving r′ frame:

∂tn− v0 ·∇′n+ ∇′ · (nv) = 0,

∂tn+ ∇′ · (n(v − v0)) = 0, (152)

m(∂tv − v0 ·∇′v + v ·∇v) = −∇µ(n),

m(∂tv + (v − v0) ·∇(v − v0)) = −∇µ(n). (153)

VIII. SUPERFLUID STATE AT FINITE TEMPERATURE

A. Classical XY model

As we discussed at various points of our analysis, at finite temperature, the coherent-state

field theory reduces to a finite β~ width slab in imaginary time. Thus at low energies the

statistical quantum field theory characterized by a path-integral with action SE reduces to

τ -independent fields giving

Z =

∫
DθDπe−

1
~

R
ddr

R β~
0 dτ [i~n∂τ θ+cH[π,θ]] ≈

∫
DθDπe−βH[π,θ], (154)

≈
∫
DθDπe−β

R
r

h
~2n
2m

|∇θ|2+ 1
2
gπ2

i
, (155)

≈
∫
Dθe−β

R
r

1
2
K|∇θ|2 , (156)

where neglected τ derivatives and integrated out the gapped “radial” density mode (momen-

tum field, canonically conjugate to θ), inconsequentially absorbing the resulting constant

into the measure of integration. The classical Hamiltonian is given by

H ≈ K

2

∫
r

|∇θ|2 =
ρs
2

∫
r

v2
s , (157)

where in mean-field theory the stiffness K and superfluid mass density ρs are givey by

K =
~2n

m
, ρs = mn,

and vs = ~
m

∇θ.

Using equipartition (or equivalently simply performing Gaussian integrals over θ) we find

θ2
rms = 〈θ(r)θ(r)〉 =

∫
ddk

(2π)d
kBT

Kk2
∼


kBT
K

1
ad−2 , for d > 2,

kBT
K
L2−d, for d < 2,

kBT
K

ln(L/a), for d = 2,

, (158)
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where L � r is the system size IR cutoff and Λ−1 = a � r is the UV lattice cutoff. Thus

we observe (as with did for acoustic lattice vibrations in lectures 2) that while for d > 2

the superfluid state is stable at nonzero T , despite its thermal fluctuations, at d ≤ 2 the

superfluid state is destabilized by thermal fluctuations, with θrms diverging with system size;

that is no matter how low T is, for system large enough phase fluctuations are a large fraction

of 2π and therefore superfluid is unstable. This is a consequence of the Hohenberg-Mermin-

Wagner-Coleman theory that forbids spotaneous breaking of a continuous symmetry (U(1)

here) in d ≤ 2.

B. Superfluid film: 2d classical XY model

We now examine in more detail the marginal 2d case of a finite temperature superfluid

film. While the θrms diverges in films, we examine a more refined correlation function that

measures the difference in phase fluctuations at points separated by distance r:

C(r) =
1

2
〈(θ(r)− θ(0))2〉 = 〈θ(r)θ(r)− θ(r)θ(0)〉, (159)

=

∫
d2k

(2π)2

kBT

Kk2

(
1− eik·r

)
, (160)

=
kBT

2πK
ln(r/a), for r � a, (161)

and growing quadratically with r/a for r � a, where the continuum limit is not really

well-defined anyway.

1. quasi-long-range order

We can now calculate the bosonic propagator for a superfluid film

〈ψ(r)ψ(0)〉 ≈ n〈ei(θ(r)−θ(0))〉 ∼ e−C(r), (162)

∼ 1

(r/a)η
→ |〈ψ(r)〉|2 ∼ |Ψ0|2 → 0, for r � a, (163)

which shows that even in the (supposedly) superfluid state in 2d (in contrast to d > 2), the

order parameter Ψ0 vanishes, there is no long-range order and the system exhibits what we

call a “quasi-long-range” order,[11–13] i.e., correlations fall off as a power-law, with exponent

η =
kBT

2πK
,
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observations that go back all the way to Peierles and Landau in mid 1930s.

As noted by Berezinskii and by Kosterlitz and Thouless[13], amazingly, this does not imply

absence of a normal-superfluid phase transition in finite temperature films. The reason is

that it is quite straightforward to show that in the truly normal phase ψ correlations are

short-ranged, falling off exponentially in a fully disordered high T state. Since we have just

rigorously demonstrated that inside the superfluid film they fall off as a power-law, with

an arbitrary small exponent η(T → 0) → 0, it is clear that there must be a genuine phase

transition, that separations these two qualitatively distinct behaviors.

2. vortices and the Kosterlitz-Thouless (KT) transition

As was further recognized by Berezinskii and by Kosterlitz and Thouless[13], in fact this

transition is of topological nature as it is between two qualitatively distinct disordered states.

The two states are distinguished by the nature of vortices, being bound into dipole pairs

and unbound into a weakly-correlated two-component vortex plasma.

We will not pursue a full detailed analysis of this Kosterlitz-Thouless (KT) transition[9,

13], as it requires a renormalization group treatment, that takes into account screening

of vortex-vortex interaction by vortex dipoles. However, much of the basic idea can be

understood more simply by considering the competition between energy and entropy of a

vortex-antivortex gas.

To this end, we note that a 2d vortex is defined by θ(r) that satisfies the Euler-Lagrange

equation and the topological circulation condition

∇2θ = 0, (164)

∇×∇θ = 2πδ2(r)ẑ, (165)

in contrast to the earlier assumption of the irrotational flow condition. The second equation

can be understood from a more basic conditionof applying Stokes theorem to a 2π vorticity

integral equation ∮
∇θ · dr = 2π →

∫
d2r∇×∇θ = 2π

∫
d2rδ2(r), (166)∫ 2π

0

vv(r)ϕ̂ · ϕ̂rdϕ = 2π, (167)

vv(r)r2π = 2π, (168)
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which leads to the solution ∇θ = ϕ̂
r
.

Altenratively, as for a Coulomb problem of electrostatic charges, these pair of equations

are easily solved by θ(r) = θs(r) + θv(r) with the smooth (single-valued) deformation part,

θs = 0 and

θv(r) = ϕ = arctan(y/x), (169)

∇θv(r) =
ẑ× r

r2
=

1

r
(−y, x) ≡ ϕ̂

r
, (170)

vv(k) ≡ ∇θv(k) = −2πi
ẑ× k

k2
, (171)

with ϕ the polar angle coordinate and the later form obviously satisfying the Euler-Lagrange

Laplace’s equation, ∇2θ = 0, corresponding to k ·∇θv(k) = 0.

The corresponding single vortex energy is then given by

Ev =
1

2
K

∫
d2r(∇θv)

2, (172)

=
1

2
K

∫
d2r

1

r2
, (173)

= πK lnL/a, (174)

where a is the UV cutoff set by the vortex core and L the system size.

Although energetically vortices seem to be forbidden, at finite temperature they carry

significant amount of translational entropy that for sufficiently high temperature can indeed

out-compete the energy, lowering the overall free energy. To see this, we note that a single

vortex entropy contribution is a logarithm of the number of states, in this case positions

∼ L2/a2 available to it, giving total free-energy vortex contribution

Fv = Ev − TSv = πK lnL/a− kB lnL2/a2, (175)

= (πK − 2kBT ) lnL/a. (176)

This thus indicates (ignoring the aformentioned effects of dipole screening) that vortex free-

energy is positive for kBT < π
2
K and negative for kBT > π

2
K. Thus we expect a vortex

unbinding KT phase transition at TKT = π
2
K/kB from a superfluid state with quasi-long-

range order to a normal state with short-range (exponential) order.
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3. duality and Magnus force

IX. SUPERFLUID AND MOTT INSULATOR ON THE LATTICE

So far we have only studied bosons in a continuum. We learned above that while they

do exhibit a finite T transition, at T = 0 and finite density, bosons in a continuum always

form a superfluid ground state. Thus, at T = 0 the transition driven by µ is a trivial

vacuum-to-superfluid transition. Now we ask whether it is possible to prevent bosons from

forming a superfluid ground state at T = 0. Indeed it is, but (setting aside some more exotic

models) only in the presence of a lattice or quenched disorder that break Galilean invariance.

While there are a number of realizations of such lattice bosons in a solid state context (e.g.,

He4 on a substrate and variety of magnetic systems), it was explicitly demonstrated in

bosonic Rb87 atoms confined in an optical lattice by Greiner, et al.[15]. The physics of this

FIG. 8: False-color time-of-flight images illustrating superfluid-to-Mott insulator transition in Rb87

bosonic atoms confined to an optical lattice, as a function of lattice depth controlled by laser

intensity[15].

Superfluid-to-Mott Insulator (SF-MI) quantum (occuring at T = 0) phase transition[19] has

been studied extensively dating back to the early work by Efetov ’79 and by Doniach ’81[16],

and most extensively explored by Fisher, et al.[17]. In the context of cold atoms in an optical

lattice, the system was analyzed in detail by Jaksch, et al[18] who stimulated experiments

by Greiner, et al.

To capture the physics beyond the continuum, incorporating the lattice one can first

diagonalize the noninteracting Hamiltonian of bosons moving in a periodic potential and

use the corresponding Wannier (single site i) φi(r) = 〈r|i〉 basis to construct a lattice model

representing dynamics of bosons on a lattice. In the simplest single-band approximation this
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is the so-called Bose-Hubbard model described by a lattice Hamiltonian

HBH = −
∑
ij

tija
†
iaj + U

∑
i

a†ia
†
iaiai, (177)

where tij is the single-particle hopping matrix element and on site energy that in the simplest

case can be taken to vanish for all but nearest neighbors ij pair. U is the “Hubbard U”

interaction parameter that controls boson on-site interaction. These parameters can be

derived from the continuum Hamiltonian of bosons in a periodic potential[18].

We will not analyze this model in detail, but will only make qualitative remarks. It is quite

clear that for low lattice filling fraction n = Nbosons/Nlatticesites, the model reduces to that in

the continuum, analyzed above and a superfluid ground state emerges at T = 0, minimizing

the kinetic energy by small phase fluctuations and large number fluctuations characteristic of

a superfluid. In contrast, at high commensurate filling fraction n = 0, 1, 2, . . ., and for large

U the on-cite energy U dominates and the ground state is the so-called “Mott insulator” (af-

ter Nevin Mott, who first proposed and studied insulators driven by interactions rather than

by single-particle band gap of fermionic “band insulator” or by disorder in “Anderson insu-

lator”) in which on-site number fluctuations are small, thereby minimizing the on-site boson

interactions U . At lowest order at large U/tgg1 the resulting Mott insulator is well-described

by a Fock state on each site i, with the many-body ground state, |MI〉 ≈
∑

i(a
†
i )
n|0〉.
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