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Abstract

In this set of lectures, we will discuss quantum statistics of many particle systems. Focussing on

bosons and fermions, as the only allowed statistics in three dimensions, we will apply quantum sta-

tistical mechanics to characterize low temperature properties of Bose and Fermi gases. The former

will include applications to black- body radiation, phonons in solids and BEC and superfluidity.

The latter will give us a description of metals, neutron stars, and will provide for a description of

Pauli paramagnetism. In later lectures we will then apply ideas of exchange statistics to argue for

the exchange interaction between spins in a crystal and will study ferromagnetism in solids.
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I. BASICS OF QUANTUM MANY-PARTICLE SYSTEMS IN 3D

• Degeneracy temperature T∗

Quantum statistics of identical particles begins to manifest itself at low temperatures

set by the degeneracy temperature

kBT∗ =
~2n2/3

2m
,

determined by purely by the density n = 1/d3 of noninteracting quantum particles (d

particle spacing), which sets their deBroglie wave-vector k ∼ n1/3, with kBT∗ above

the associated kinetic energy.

FIG. 1: Schematic illustration of nondegenerate regime of a gas of identical particles. It is defined

by temperature above the degeneracy temperature, T & T∗, or, equivalently thermal deBroglie

wavelength smaller than the interparticle spacing
”
λT . 1/

√
T < d = n−1/3, or equivalently

nλ3
T . 1.

• At high temperatures, T & T∗, (or equivalently n−1/3 = d & λT ) quantum statistics of

particles is irrelevant and any gas behaves like a Boltzmann classical gas.

• At low temperatures, T . T∗, (or equivalently n−1/3 = d . λT ) quantum statistics of

particles begins to manifest itself with drastic consequences. Recall we saw a hint of

this from the unphysical result, SBoltzmann(T < T∗) < 0.

• In 3D all particles fall into two quantum-statistically distinct classes, bosons and

fermions, exhibiting vastically different phenomenology at low temperature T � T∗,

or equivalently at high densities. In 2D can have more general quantum statistics of

“anyons”. In 1D statistics is not well defined as particles must interact to exchange.
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– Bosons

∗ Examples: He4, Li7, K41 Rb87. . . atoms (conserved bosonic matter); photons,

Z, W (gauge bosons); phonons, excitons (bosonic excitations), and any par-

ticle composed of even number of fermions

∗ Integer spin, s = 0, 1, 2, . . . (spin-statistics theorem)

∗ Even under particle interchange,

ψ(r1, r2) = ψ(r2, r1) ≡ eiθψ(r2, r1), θ = 0

∗ Unlimited number occupation nα = 0, 1, 2, 3, . . . of a single-particle states α.

∗

q = lnZ = −
∑
α

ln
[
1− e−(εα−µ)/kBT

]
, nBose−Einstein

α =
1

e(εα−µ)/kBT − 1

∗ For T < T∗ ≈ TBEC → Bose condensation (≈ superfluidity, superconduc-

tivity, lasers), a macroscopic occupation of the lowest single particle state

α.

– Fermions

∗ Examples: He3, Li6, K40 Rb84. . . atoms, electrons, protons, neutrons, quarks,

and any particle composed of odd number of fermions

∗ Half-integer spin, s = 1/2, 3/2, 5/2, . . . (spin-statistics theorem)

∗ Odd under particle interchange,

ψ(r1, r2) = −ψ(r2, r1) ≡ eiθψ(r2, r1), θ = π

∗ Pauli Principle limited number occupation nα = 0, 1 of a single-particle state

α.

∗

q = lnZ =
∑
α

ln
[
1 + e−(εα−µ)/kBT

]
, nFermi−Dirac

α =
1

e(εα−µ)/kBT + 1

∗ For T < T∗ ≈ TFermi → Fermi surface emerges, with quantum dynamics
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confined to the vacinity of Fermi energy EF = ~2k2
F/2m = kBTF .

II. EXCHANGE STATISTICS AND MANY-PARTICLE WAVEFUNCTION

• States of a noninteracting particles

Noninteracting particles are described by Hamiltonian H =
∑

iHi that decouples into

a sum of single-particle Hamiltonians, Hi, with many-body eigenstates,

|E{α}〉 =
N∏
i

|εαi〉, E{nα} =
N∑
i

εαi =
∑
α

nαεα,

defined by H|E{α}〉 = E{α}|E{α}〉, a product of single particle eigenstates |εα〉 and

eigen-energies a sum of single particle eigen-energies εαi , and we have also written

many-body eigen-energies in terms of occupations nα of α-th single-particle eigenstate,

without any reference to a particle label i.

In coordinate representation for distinguishable particles these are just product wave-

functions

Ψdist.
{α} ({xi}) = 〈x1, x2, . . . , xN |{α}〉 =

N∏
i

ψαi(xi). (1)

This decoupling is why the noninteracting N -body problem of distinguishable par-

ticles trivially reduces to N one-particle problems and is therefore easily solvable.

Simple combinatorics gives us that there are N !
n1!n2!...

distinct product states of the form

Ψdist.
{α} ({xi}). The naive Gibbs factor 1/N ! attemps to adjust for identity of particles,

giving

WClassicalGibbs =
1

n1!n2! . . .
.

At high temperature, classical limit, when each single particle state α is rarely occu-

pied, with nα � 1 on average, this Gibbs factor fix is sufficient. However, this clearly

misses the low temperature regime, where α is multiply occupied, with nα large.

However, for quantum indistinguishable particles, even in the absence of interactions,

quantum statistics plays a crucial role, making the problem nontrivial, though still

exactly solvable. The key observation is that (1) is not a valid N -body state for N

identical particles. The correct one must give observables, e.g., probability distribution
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|Ψ{α}|2(x1, x2, . . . , xN), that is invariant under all particle interchanges xi ↔ xj, or

equivalently under all elements of the permutation group, P [{xi}] = {xPi}.

FIG. 2: Particle interchange characterized by statistical angle θ, that in 3D can only take on two

values θ = 0, π, respectively corresponding to bosons and fermions.

Thus, the bosonic choice of noninteracting N -particle wavefunction is given as a a

symmetric sum over all permutations of set {i} (or of {αi}) of product states in Eq.1,

which can be written as a permanent of a matrix below,

ΨB
α1,...,αN

(x1, . . . , xN) (2)

=

√
n1!n2! . . .

N !
[ψα1(x1)ψα2(x2) . . . ψαN (xN) + ψα1(xP1)ψα2(xP2) . . . ψαN (xPN) + . . .]︸ ︷︷ ︸

N !
n1!n2!...

distinct permutations

,

=

√
1

N !
∏

α nα!
Permanent [ψαi(xj)] ,

∏
α

nα! copies of
N !∏
α nα!

distinct terms,

=

√
1

N !
∏

α nα!
Perm


ψα1(x1) ψα1(x2) . . . ψα1(xN)

ψα2(x1) ψα2(x2) . . . ψα2(xN)
...

. . .

ψαN (x1) ψαN (x2) . . . ψαN (xN),

 (3)

with factors in front ensuring normalization.

For fermions, the N -particle wavefunction is an antisymmetric sum of permutations,

i.e., with each permutation weighted by the signature of the permutation (−1)P , which

can be written as a determinant (called Slater determinant, after an eminent MIT

physicist John Slater) of a matrix below,
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ΨF
α1,...,αN

(x1, . . . , xN) (4)

=

√
n1!n2! . . .

N !

[
ψα1(x1)ψα2(x2) . . . ψαN (xN) + (−1)Pψα1(xP1)ψα2(xP2) . . . ψαN (xPN) + . . .

]︸ ︷︷ ︸
N !

n1!n2!...
permutations

,

=

√
1

N !
∏

α nα!
Determinant [ψαi(xj)] ,

∏
α

nα! copies of
N !∏
α nα!

distinct terms,

=

√
1

N !
∏

α nα!
Det


ψα1(x1) ψα1(x2) . . . ψα1(xN)

ψα2(x1) ψα2(x2) . . . ψα2(xN)
...

. . .

ψαN (x1) ψαN (x2) . . . ψαN (xN).

 (5)

It is extremely instructive to write out examples of above N -particle wavefunctions for

a few specific cases, e.g., 3 particles with various choices of nα.

For interacting many-body systems, the wavefunction is no longer of above permuted

product form, but will still satisfy the same interchange symmetry form, illustrated in

Fig.2.

• Quantum microstates of indistinguishable particles

There are two equivalent schemes to label N -particle microstates:

– Via a set of single particle quantum numbers:

{αi} ≡ (α1, α2, α3, . . . , αN),

labeling each of the particles i being in a state αi. As seen from above N -particle

wavefunctions, this is an awkward scheme as it requires symmetrization (bosons)

or antisymmetrization (fermions) over particle labels to obtain a probability dis-

tribution that is invariant under all particle interchanges.

The corresponding N -particle energy eigenvalues are given by,

E{αi} =
N∑
i=1

εαi .
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– Via a set of occupations {nα} of single particle states α:

{nα} ≡ (nα1 , nα2 , nα3 , . . .),

which is very convenient and compact as it automatically does not discriminate,

nor even mention which particle is in which state αi, but only keeps track of the

occupations nα. These are the so-called occupation basis Fock states with each

distinct set {nα} labeling a unique many-particle microstate.

|nα1 , nα2 , nα3 , . . .〉 = |nα1〉|nα2〉|nα3〉 . . . .

Thus, correct quantum indistinguishibility weight for quantum many-body states

is simply

WQ = 1,

per each distinct set of occupations, {nα}, with all that matters is the occupations

nα, of each of the single particle α states, and not which particle i is in which

state α.

The corresponding N -particle energy eigenvalues are given by,

E{nα} =
∑
α

nαεα.

In terms of above labeling we can write down the total number of particles N , as

N =
N∑
i=1

1 =
∑
α

nα. (6)

• N-particle density matrix

Now that we have many-body Hamiltonian eigenstates (3),(5), we can

construct the canonical ensemble unnormalized N -particle density matrix

ρu(x1, x2, . . . , xN ;x′1, x
′
2, . . . , x

′
N ; β) using its general form from Lecture Set 5,
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given by

ρu({xi}, {x′i}; β) = 〈{xi}|e−βĤ |{x′i}〉 =
∑
{nα}

Ψ{nα}({xi})Ψ∗{nα}({x
′
i})e−βE{nα} , (7)

expressed purely in terms of the Hamiltonian many-body eigenfunctions and eigen-

values, that is a direct analog of single-particle density matrix. Using above

(anti)symmetrized product form of eigenstates Ψ{nα}({xi}) we can reduce the N -body

density matrix to,

ρuB/F (x1, x2, . . . , xN ;x′1, x
′
2, . . . , x

′
N) =

1

N !

∑
P

(±1)Pρu(xP1, x
′
1)ρu(xP2, x

′
2) . . . ρu(xPN , x

′
N),

(8)

as a sum over a (anti)symmetrized product of single-particle density matrix

ρu(xi, x
′
i; β) = 〈xi|e−βĤi |x′i〉 =

∑
α ψα(xi)ψ

∗
α(x′i)e

−βεα .

• N-particles in a box example

As an example let’s consider a noninteracting many-body density matrix for N iden-

tical particles in a box, i.e., in a zero potential (except for the box walls).

single particle properties:

In the absence of any potential single-particle states are labeled by momentum quan-

tum numbers, α → k = (2π/L)n (n integer-valued vector), corresponding energy

eigenvalues εk = ~2k2/2m, and plane-wave eigenstates, ψk(x) = 1
V 1/2 e

ik·x. The cor-

responding unnormalized 1-particle canonical density matrix we discussed in Lecture

Set 5 and derived on the corresponding homework is given by

ρu(x,x′; β) =
∑
k

ψk(x)ψ∗k(x′)e−βεk =
1

V

∑
k

e−β~
2k2/2m+ik·(x−x′), (9)

=

(
m

2πβ~2

)d/2
e−

1
2
m(x−x′)2/(β~2) =

1

λdT
e−π(x−x′)2/λ2T , (10)

where λT = h/
√

2πmkBT and the prefactor arises from eigenstates’ normalization.

N-particle properties:
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The corresponding N -particle eigenstates are given by Ψ
B/F
k1,...,kN

(x1, . . . ,xN) from

Eqs.(3), (5), and the eigen-energies given by

E{nk} =
N∑
i

εki =
∑
k

nk
~2k2

2m
.

Utilizing above form of the N -particle eigenstates, general unnormalized N -particle

density matrix, (8), and the 1-particle density matrix in the absence of a potential (in

a large box), simple analysis gives,

ρuB/F (x1,x2, . . . ,xN ;x′1,x
′
2, . . . ,x

′
N) =

1

N !λdNT

∑
P

(±1)P e−π(xP1−x′
1)2/λ2T . . . e−π(xPN−x′

N )2/λ2T .

(11)

The diagonal matrix elements (that we use to compute the partition function via

Z =
∏N

i

∫
dxiρ

u(x1, . . . ,xN ;x1, . . . ,xN)) is then given by,

ρuB/F (x1, . . . ,xN ;x1, . . . ,xN) =
1

N !λdNT

[
1±

∑
i<j

e−2π(xi−xj)2/λ2T

︸ ︷︷ ︸
1 interchange

+ . . .︸︷︷︸
2 or more interchanges

]
.

(12)

In fact we can now compute the full partition function by integrating over xi’s. Includ-

ing the lowest order correction (valid on the approach to the degeneracy temperature

T∗ from above, we obtain,

ZB/F =

∫
dx1 . . . dxNρ

u
B/F (x1, . . . ,xN ;x1, . . . ,xN), (13)

≈
∫
dNx

1

N !λdNT

[
1±

∑
i<j

e−2π(xi−xj)2/λ2T

]
. (14)

This is a satisfying result with many notable features:

– The dominant first “1” term is exactly the Boltzmann gas result that we obtained

a few lectures back crudely treating indistinguishability with the 1/N ! Gibbs

factort, but not fully accounting for the quantum statistics (bosons vs fermions)

9



of the particles, as we have carefully done above. Upon integrating over xis this

“1” term then just gives the familiar expression, Z
(0)
Gibbs = V N

N !λdNT
.

– This fully quantum mechanical calculation confirms the dpdx/(2π~) measure for

phase-space integration.

– We observe that the correction terms in (12) are strongly subdominant for 〈r〉 �

λT , since they involve products of Gaussian factors with i 6= j, with the dominant

lowest order correction the sum of the double Gaussian terms over all N(N−1)/2

i− j pairs. The correction to the classical result are small, i.e., ZB/F ≈ Z
(0)
Gibbs is

a good approximation when the typical spacing between particles is much larger

than thermal deBroglie wavelength, i.e., nλdT � 1, which corresponds to T � T∗.

This makes sense as in this regime, particles are far apart, their wavefunctions

don’t overlap, nk � 1, particle interchanges and therefore quantum statistics

is expected to be insignificant, with Gibbs factor 1/N ! fully sufficient. In the

opposite limit of nk � 1, corresponding to T � T∗, the gas is degenerate,

quantum statistics matters, and fermion and bosons N -particle systems exhibit

qualitatively distinct phenomenologies as summarized in the first section above

and we will explore in detail in the coming sections.

– The factor in the square brackets gives the probability density of finding two

particles i and j at the same point for xi = xj. Compared to classical indis-

tinguishable particles, for which it is 1, for bosons it is enhanced to 2 and for

fermions it vanishes, 0, consistent with the Pauli’s exclusion principle.

– Focussing on 2 particles, the factor in square brackets (proportional to the diag-

onal component of the 2-particle density matrix) gives the probability density of

the two particles at x1 and x2,

PB/F (x1,x2) ≈ 1

V 2

[
1± e−2π(x1−x2)2/λ2T

]
, (15)

≡ 1

V 2
e−Uq.stat(|x1−x2|)/kBT , (16)

where we wrote PB/F (x1.xv2) as a Boltzmann-Gibbs weight, so that we can in-

terpret this quantum statistical “interaction” in terms of an effective interaction

potential Uq.stat(|x1−x2|) associated with the effective quantum statistical inter-
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action between particles, given by

Uq.stat(|x|) = −kBT ln
[
1± e−2π|x|2/λ2T

]
≈ ∓kBTe−2π|x|2/λ2T , (17)

which is attractive for bosons and repulsive for fermions. Notice that it is pro-

portional to kBT , which when multipled by β in Gibbs-Boltzmann weight, (16)

gives probability distribution that is temperature independent, underscoring its

purely quantum statistical nature.

– Using the quantum canonical partition function (14), we can compute the free

energy and all other thermodynamics. In particular, a straightforward calculation

of the pressure in 3d gives,

PB/F ≈ kBT
N

V

[
1∓ (N − 1)λ3

T

25/2V

]
≈ kBTn

[
1∓ 2−5/2 nλ3

T

]
. (18)

This result is a first-order correction to the ideal gas P = kBTn equation of state

in powers of nλ3
T � 1 due to quantum statistical interaction, and of course breaks

down as the degeneracy regime is approached at T∗.

III. N-PARTICLE QUANTUM THERMODYNAMICS

Having established above the fundamentals of quantum many-body statistical mechanics,

we can now apply them to calculate the thermodynamics of variety of important systems

such as Bose and Fermi gases in various physical realizations. These will include Bose-

Einstein condensation of atoms, black-body radiation of photons, and phonons in solids, of

electrons in metals, exhibiting Pauli paramagnetism, and of neutrons in neutron stars.

We first recall that the microstates of indistinguishable quantum particles is character-

ized by the occupation numbers {nα} of single-particle states α. For bosons, occupation

numbers are unlimited, taking on integers, nα = 0, 1, 2, 3, . . .. In striking contrast, for

fermions, the Pauli principle limits the occupation numbers to nα = 0, 1 for each single-

particle state α, i.e., it can either be empty or filled by a single fermion.
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We can now straighforwardly compute the grandcanonical partition function, given by

ZB/F =
∑
{nα}

e−
(
E[{nα}]−µN [{nα}]

)
/kBT =

∑
{nα}

e−
∑
α nα(εα−µ)/kBT =

∏
α

[
1∓ e−(εα−µ)/kBT

]∓1
,

(19)

which then immediately gives the correspoinding grandcanonical free energy, F =

−kBT lnZ,

FB/F = ±kBT
∑
α

ln
[
1∓ e−(εα−µ)/kBT

]
, (20)

and the rest of thermodynamics obtained via appropriate derivative with respect to T , µ,

or V . In particular, as advertized in the summary of the introduction, the average number

of particles is given by N = −∂F/∂µ|T,V =
∑

α n
B/F
α , where n

B/F
α is the bosonic/fermionic

occupation of the single-particle state α,

nB/F
α =

1

e(εα−µ)/kBT ∓ 1
. (21)

We note that above general results are all controlled by the single particle spectrum, εα, that

depends on the single particle potential U(r) that the noninteracting bosons are moving in.

Some relevant familiar examples are infinite square-well potential, vanishing potential with

periodic boundary conditions, or e.g., a harmonic trap, U(r) = 1
2
mω2

trapr
2, as utilized in

atomic gas experiments. We next focus on a specific example of a potential-free atoms, or

more precisely atoms in a box with periodic boundary conditions.

A. Noninteracting atomic Bose gas and BEC

We now want to calculate the thermodynamics of a noninteracting Bose gas as for

example found in dilute degenerate atomic Bose gases (laser and evaporatively) cooled in

JILA and around the world. It is crucial to note that here we are dealing with a system

of conserved bosons, as to be contrasted to applications of photons and phonons excitations

treated in the subsequent sections.
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1. High-temperature thermodynamics

To fix the number of bosonic atoms to be N it is convenient to work in the grand-

canonical formulation of quantum statistical mechanics. We tune the chemical potential µ

such that the expectation value of the atom number is given by the experimentally prescribed

atom number N ,

N =
∑
k

nBE(εk) =
∑
k

1

eβ(εk−µ) − 1
, (22)

= Ld
∫

ddk

(2π)d
1

eβ(εk−µ) − 1
= V

Cd
2

(
2m

~2

)d/2 ∫ ∞
0

dε
εd/2−1

eβ(ε−µ) − 1
, (23)

n =
1

λdT
gd/2(z), (24)

where εk = ~2k2/2m is the familiar single-particle energy eigenvalues, and in going to the

next-to-last line we made (what will turn out to be) a crucial thermodynamic limit approx-

imation, replacing sum over k by an integral, and then followed by the integral over the

single-particle energies ε (rather than states k) after doing the angular integration. Above,

Cd = Sd/(2π)d = 1/(2d−1πd/2Γ(d/2)), where Sd = 2πd/2/Γ(d/2) is a surface area of a d-

dimensional unit hypersphere. In the last line we scaled out kBT and thereby expressed the

average density n = N/V in a compact and dimensionally appealing form as the thermal

deBroglie density, fugacity z = eµ/kBT and introduced a dimensionless function of z,

gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

exz−1 − 1
=
∑
n

b(ν)
n zn = z +

z2

2ν
+
z3

3ν
+ . . . . (25)

All together, this gives us an implicit relation between N and the chemical potential, µ (or

fugacity z), nλdT = gd/2(z), which when inverted gives us µ(N, T ), allowing us to express any

thermodynamic quantity in terms of density n and temperature, T . Namely,

Utilizing (19) and (20) then also gives us the grand-canonical partition function and the

corresponding free energy and pressure,

ZB =
∏
k

1

1− e−(εk−µ)/kBT
, (26)

FB = kBT
∑
k

ln
[
1− e−(εk−µ)/kBT

]
, (27)

13



from which all of the thermodynamics can be extracted as a function of µ, T, V , or equiva-

lently (having used (24) to eliminate µ(T, V,N)) as a function of N, T, V . The key quantity

is the equation of state, namely the pressure P (T, V,N), directly obtained from q = lnZ.

At high temperature the gas should behave as a classical Boltzmann gas with a negative

chemical potential. Indeed in that regime we can ignore 1 relative to the exponential and

straightforwardly perform the integration. Solving for the chemical potential in terms of the

density n = N/V and temperature we obtaining the classical Boltzmann result:

µ(T, n) = kBT ln(nλdT ) = −kBT
d

2
ln(cdT/T∗), valid for T � T∗ (28)

where

λT =

(
2π~2

mkBT

)1/2

is the familiar thermal deBroglie wavelength and we deduced the crossover degeneracy tem-

perature scale

kBT∗ =
~2n2/d

2m
,

above which this classical result is valid and the quantum Bose gas “forgets” its statistics

and behaves like a Boltzmann gas.

FIG. 3: Chemical potential in a noninteracting Bose gas as a function of temperature near the

transition to Bose-Einstein condensation at temperature Tc.

Following the number equation analysis, (24) by going to the thermodynamic limit L→

∞, from (27) and E = −∂β lnZB|z,V , we obtain the equation of state, P and internal energy
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density E/V ,

P =
kBT

λdT
gd/2+1(z), (29)

E/V =
d

2

kBT

λdT
gd/2+1(z), (30)

giving pressure-energy density relation,

P =
2

d

E

V
.

Eliminating z in favor of nλdT , from above we also obtain the “virial expansion” for the

equation of state, at high temperature for T � T∗ (when nλdT � 1),

PV

NkBT
=

gd/2+1(z)

gd/2(z)
=
∞∑
`=1

a`(nλ
d
T )`−1, (31)

where a` are virial coefficients, that measure deviation from the ideal gas equation of state.

This, together with (30) is to be contrasted with the ideal gas law and the equipartion, both

of which are violated at low T as the degeneracy temperature T∗ is approached. Although

these are violated as the gas approaches degeneracy, interestingly, the P − E relation is

identical to that of an ideal gas. Returning to our earlier result for pressure, (18), we

see that a1 = 1 (ideal gas law), a2 = −2−5/2, measuring lowest order quantum statistics

deviation from the ideal gas law.

Similarly, the heat capacity can be straightforwardly computed above T∗ in a virial

expansion, giving,

CV =
d

2
NkB

[
1 + c1(nλdT )1 + c2(nλdT )2 + . . .

]
. (32)

2. Low-temperature thermodynamics and BEC

We now consider what the behavior of above thermodynamic quantities as we lower

temperature toward and below T∗. First, let’s focus on the number equation, (24). As we

noted above, (28), for T � T∗, µ < 0 and correspondingly z � 1 in the high temperature

Boltzmann limit. We observe that as T is lowered, chemical potential can be increased (from
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negative value toward zero), as illustrated in Figs.(3) and (4), to continue to satisfy the N

condition, (24). Now, the crucial question is about the behavior of µ(T,N) as T → T∗. In

the discrete sum over k description

N =
1

e(0−µ)/kBT − 1
+

1

e(ε1−µ)/kBT − 1
+ . . . (33)

(22) clearly can always be satisfied, but adjusting, i.e., with reduced T raising µ toward zero,

because the first zero-energy term can be made arbitrarily large no matter how large N is

and how low T is. Thus, down to zero temperature there is a smooth analytic evolution of

µ(T,N), and thus no phase transition in a box of finite size L.

For d ≤ 2, the integral in (23) and therefore gd/2(z → 1) diverges with vanishing µ

(note that e.g., for ν = 1, g1(z) = − ln(1 − z) and g1(z → 1) → ζ(1) = ∞) and thus

this number N constraint can be satisfied down to zero temperature by simply adjust-

ing the negative chemical potential, µ(T,N) closer to zero to accommodate lower T and

larger N , even in the thermodynamic limit. This is manifestation of the famous Hohenberg-

Mermin-Wagner-Coleman theorem, that (under certain pretty generic conditions) forbids

spontaneous breaking of continuous symmetries and the associated condensate in d ≤ 2.[7]

However, in thermodynamic limit L→∞, replacing a sum over discrete kn by an integral

over k or over ε, an apparent “problem” appears in d > 2 (in particular for the physical case

of interest, d = 3) in (23). Namely, the equation cannot be satisfied for sufficiently large N

or sufficiently low T as the integral saturates to a finite value. This happens because the

“area” under nBE(ε) is finite even at µ = 0 for d > 2. Why can’t we simply allow µ to be

positive to continue satisfying the number equation? The saturations is a consequence of a

density of states, the integral does an inadequate job of accounting for the low k states that

at low T < Tc are macroscopically occupied (see below). The high power of k (kd−1) or ε

(εd/2−1) in the numerator make the integral convergent at low momenta and energies that

vanishes more strongly with increased dimension, d > 2. Namely, as illustrated in Fig.4, for

d > 2 the integral in (23) saturates at a finite value even for µ = 0, i.e., z = 1, and the

continuum equation reduces to,

nλdTc = gd/2(1) = ζ(d/2),
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where ζ(x) is the Riemann-zeta function, which for ξ(3/2) ≈ 2.61 (d = 3), but diverges for

x ≤ 1, corresponding to d ≤ 2. Above equation implicitly defines a “critical temperature”

Tc, given by,

kBTc =
4π

ζ(d/2)2/d

~2n2/d

2m
=

4π

ζ(d/2)2/d
kBT∗, valid for d > 2, (34)

as the lowest temperature above which all N particles can be accommodated in the Bose-

Einstein distribution and thereby can satisfy the thermodynamic limit of the number equa-

tion, (23) or (24). We note that Tc increases with reduced atom mass and increased density,

enhancing the role of quantum fluctuations. As we will see below, this is the Bose-Einstein

condensation temperature, below which a macroscopic number of bosonic atoms begin to oc-

cupy the single-particle ground state. In 3d the critical temperature is given by Tc = 6.625T∗,

of order of the degeneracy temperature T∗.

FIG. 4: A sketch of the Bose-Einstein momentum distribution function as a function of k as T is

reduced toward Tc from above.

How do we fix this deficiency of the thermodynamic limit description? The clew appears

in Eq.(33). To account for the discreteness of low energy states, as illustrated in Fig.(5), we

separate out the single particle ground state k = 0 and simply describe its occupation by

N0(T ) = n0V , the Bose-Einstein condensate (BEC),

N =
1

e−µ/kBT − 1
+ Ld

∫
ddk

(2π)d
1

eβ(εk−µ) − 1
,

= N0(T ) + Ld
∫

ddk

(2π)d
1

eβ(εk−µ) − 1
, (35)

= N0(T ) +
V

λdT
gd/2(z), (36)
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FIG. 5: A sketch of the Bose-Einstein momentum distribution function nBE
k as a function of k for

T < Tc, illustrating the thermal finite k and the condensate k = 0 component.

that accommodates all the extra atoms unable to “fit” into the nonzero k states counted by

the integral of the Bose-Einstein distribution in Eq. (23). For T > Tc, N0 = 0, i.e., no BEC,

and for T < Tc, µ = 0 and BEC appears, N0(T < Tc) > 0, with n0(T < Tc) = N0/V growing

according to,

n0(T ) = n

[
1−

(
T

Tc

)d/2]
, for T < Tc, (37)

∼ |Tc − T |2β, (38)

as illustrated in Fig.(6). The last equality applies in the vacinity of Tc, with the mean-field

critical exponent β = 1/2, characterizing the transition for noninteracting bosons.

The number density of finite-temperature excitations is then given by the complement

of n0, i.e., n− n0(T ),

nexc(T ) = n

(
T

Tc

)d/2
.
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FIG. 6: A sketch of the condensate fraction N0(T ) and its complement, Ne(T ), the number of

excitations at finite T .

We thus discovered the existence of a finite-temperature phase transition in an nonin-

teracting Bose gas, between thermal Boltzmann gase and Bose-Einstein condensed phases.

From above we also find that for noninteracting bosons, in the thermodynamic limit, the

chemical potential vanishes below Tc, i.e., µ(T < Tc) = 0, as illustrated in Fig.(3). A careful

analysis of (35) shows that in 3d,

µ(T ) = −kBT
(nλ3

T )2

4π

[(
T

Tc

)3/2

− 1

]2

∼ −(T − Tc)2, for T > Tc.

At low temperature T � Tc, the internal energy E(T ) and heat capacity CV (T ) are

straightforwardly computed by noting that µ = 0 which allows one to simply scale out T

out of the integrals in (30). This then gives,

E(T ) ∼ T d/2+1, T � Tc, (39)

CV (T ) ∼ T d/2, T � Tc. (40)

We note:

• The excitations are gapless, appearing as power-law in T at arbitrary low T , illustrated

in Fig.(7). This is to be contrasted with gapped systems, where CV (T ) ∼ e−∆/kBT is

strongly (exponentially) suppressed at low T < ∆/kB.

• No equipartition for this quantum limit
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• Ground state condensate does not contribute to the energy nor heat capacity, since it

sits at a vanishing energy. Thus, E(T ), CV (T ) are independent of N .

FIG. 7: Heat capacity as a functon of temperature of a 3d Bose condensate and its zoom-in at low

temperatures.

At T = 0 the BEC is as simple as they come, with all N atoms occupying the lowest

single-particle ground state, k = 0, N0 = N , described by a many-body state,

|Ψ0〉 =
(
a†k=0

)N
|0〉, (41)

that corresponds to a wavefunction that is a product of the single-particle ground state

wavefunction ψ0(r) occupied by each atom,

Ψ0(r1, r2, . . . , rN) =
N∏
i=1

ψ0(ri) =
1

V N/2
.

The last equality corresponds to the case of a box trap that we worked out above. In a more

relatistic harmonic isotropic trap, relevant to AMO experiments, instead the single particle

ground state is the familiar Gaussian, ψ0(r) ∼ e−
1
2
r2/r20 , with r2

0 =
√
~/(mωtrap) the trap’s

quantum oscillator length.

We note that without interactions the condensate n0(T ) grows from zero, approaching

total atomic density n at T = 0. This last property is not generic and will not survive inclu-

sion of atomic interactions. These and all other properties of this noninteracting system can

and have been extensively explored theoretically and experimentally in the last 25 years in

degenerate atomic gases (see e.g.,[1, 16]). The phenomenology of interacting bosonic liquids
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is far more challenging to treat theoretically, but experimentally dates back to extensive

exploration of He4, that resembles some but not all features of the BEC described above.

B. Black-body radiation of a photon gas

We now turn to the study of a very different type of bosons, namely bosonic excitations

of electromagnetic field, i.e., photons. The crucial difference from bosonic atomcs is the

nonconservation of these bosonic excitations. Thus, the chemical potential is not necessary

to fix their number N , which amounts to working at µ = 0, without the number equation

(22). This therefore precluding BEC, though some experimental systems can be arranged

to mimic nonequilibrium version of a BEC even in photons, e.g., laser or other steadily

driven/pumped systems.

FIG. 8: Black body radiation of photons in a cavity

We thus consider a gas of photons in a box, again for convenience taking periodic bound-

ary conditions in all directions, though this is not essential. Physically and in practice this

pretty much corresponds photons going off any glowing body at temperature T , like e.g., the

Sun, the Earth, microwave background radiation, a hot stove, etc. However, more precisely

we would like the photons to remain confined to the cavity (box) and in equilibrium at

temperature T , rather than a nonequilibrium situation of an open system, where photons

are escaping.

Other than the nonconserved number of photons, with µ = 0, the description of a gas of

photons parallels that of atoms in the previous section. One other notable difference is that

photon’s single-particle dispersion, being a mass zero, ultra-relativisitic particle, is linear
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(rather than quadratic) in k, given by

εk = ~ωk = ~c|k|,

labelled by the single-particle quantum numbers k, the EM modes of the cavity.

Equivalently, in a formulation due to Planck (1900), that predates Bose and Einstein

(1924), we can instead think of quantized modes of a EM cavity waves, labelled by discete

quantum numbers k, i.e., quantum harmonic oscillators at each mode k. Utilizing our

knowledge of thermodynamics of independent quantum oscillators we immediately obtain in

3d,

Z =
∏

k,α=(1,2)

Zk,α =
∏
k

[∑
nk

e−β~ωknk

]2

=
∏
k

[
1

1− e−β~ωk

]2

, (42)

E

V
= − 1

V

∂ lnZ
∂β

=
1

V

∑
k

2~ωk
eβ~ωk − 1

,

=

∫
d3k

(2π)3

2~ck
eβ~ck − 1

≡
∫
dωu(ω), (43)

=
π2

15(~c)3
(kBT )4 =

4

c
σT 4, (44)

where the factor of 2 came from two independent transverse polarizations of EM modes per

k (that we took to be degenerate), we went to a continuum limit (L → ∞), recovered the

famous T 4 Stefan-Boltzmann law (1879) and introduced a spectral density u(ω) given by,

u(ω) =
~
π2c3

ω3

eβ~ω − 1
(45)
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FIG. 9: Black body thermodynamics, Stefan-Boltzmann law (1879)and the corresponding Planck’s

spectral density, and its classical Rayleigh-Jeans limit.
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Observations:

• Units of u(ω) are (energy/per unit of energy) per unit of volume. Sometimes, one

is interested in “radiance”, L which is the corresponding energy flux per unit of solid

angle (the observable of the radiation flux leaking out of the box), with units of energy

per unit of time/per length squared, obtained by L = (c/4)E/V .

• The E ∼ T 4 result can be qualitatively understood as the total energy of the

modes that obey equipartition, i.e., those for which ~ωk � kBT , corresponding to

the maximum kT = kBT/(~c). Modes at larger frequencies (k � kT ) are gapped

out and therefore exponentially suppressed with e−~ωk/kBT . Thus, the total en-

ergy per unit of volume is given by kBT per mode times the number of modes

N(T ) = 2
∫ kT=

kBT

~c
0

d3k
(2π)3

∼ k3
T ∼ [kBT/(~c)]3, up to a dimensionless prefactor giv-

ing the result [kBT/(~c)]3kBT in (44).

• Computation of the Stefan-Boltmann factor just involves change of variables with the

numerical prefactor γ =
∫∞

0
dxx3

ex−1
= ζ(4)Γ(4) = π4/15, that can be obtained by a

Taylor expansion in e−x. The Stefan-Boltzmann constant σ =
π2k4B

60~3c2 = 5.67 × 10−8

Watt/m2/K4.

• At low frequencies ω (energies ~ω � kBT ), the spectral density reduces to ucl(ω) =

ω2

π2c3
kBT , that, as expected corresponds to that of the classical harmonic oscillator

that obeys equipartition. This Rayleigh-Jeans law leads to the famous “ultraviolet

catastrophy” of a divergent black-body total energy, that was instrumental to the

launched of quantum revolution.

• Computing the photon pressure from PV/kBT = lnZ, gives a very similar relation to

E above, with the photon equation of state,

PV =
1

3
E,

as expected from ultra-relativistic dispersion on general grounds (see earlier lectures

and homework) and to be contrasted with the 3d nonrelativistic Boltzmann gas PV =

2
3
E..
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• The photon entropy and heat capacity is also straightforwardly obtained, given by

S = 4
3
E/T , and CV ∼ T 3 (∼ T d in d dimensions).

C. Phonons in a solid

We now turn to another example of bosonic excitations, namely the so-called quanta of

normal mode vibrational excitations in coupled ions in Debye solid (1912). The ions in a

solid are interacting with Coulomb interactions, potentially screened by electrons. However,

at low energies (temperatures), the solid is stable with inter-ion potential well-approximated

by a harmonic form, depicted as linear springs in Fig.(10). The resulting system is thus that

of linearly coupled linear harmonic oscillators, with Hamiltonian,

H =
∑
xn

p2
xn

2m
+
∑
xn+~δ

1

2
κ(uxn − uxn+~δ)

2 (46)

with ~n spanning the lattice and ~δ nearest neighbors of site ~n.

We decouple these oscillators into normal modes,

u(xn, t) =
∑

k,α=(1,2,3)

uk,αe
i(k·xn−ωk,αt), (47)

where α labels 3 polarizations per normal mode k in 3d. Notice the subtle difference from

photons, that because they are gauge bosons only have 2 transverse polarizations per k in

3d.
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FIG. 10: A crystal of ions, modeled as N coupled harmonic oscillators, the so-called Debye solid

(1912). The corresponding quanta of normal mode excitations are phonons.

In terms of normal modes uk,α, the Hamitonian (46) decouples into independent har-

monic oscillators, 3 for each k. Treating these as quantum oscillators quantizes the modes of

vibration as for any set of independent quantum oscillators. As discussed multiple times, the

microstates are the labelled by the set of occupation numbers {nk,α}, with the corresponding

microstate energy eigenvalues given by

E{nk,α} =
∑
k,α

~ωk,αnk,α,

where we have omitted the zero-point energy constant. Standard analysis (as e.g., given for

photons, above, (44), and really for any independent quantum harmonic oscillators) gives
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the thermodynamics and in particular the total energy density,

E

V
=

1

V

∑
k∈B.Z.,α

~ωk,α
eβ~ωk,α − 1

=
3∑
α

∫
BZ

d3k

(2π)3

~ωk,α
eβ~ωk,α − 1

, (48)

=
1

V

∫
dωg(ω)

~ω
eβ~ω − 1

≡
∫
dωu(ω), (49)

CV =
∂E

∂T
= kB

∑
k∈B.Z.,α

(β~ωk,α)2eβ~ωk,α

(eβ~ωk,α − 1)2
, (50)

= kB

∫
dωg(ω)

(~ω/kBT )2e~ω/kBT

(e~ω/kBT − 1)2
(51)

where g(ω) is the density of states (think of multiplicity that counts number of states at

energy ~ω), formally defined by,

g(ω) =
∑

k∈B.Z.,α

δ(ω − ωk,α) (52)

The expression (51) parallels that for photons (44) with few important differences:

• The spectrum ~ωk,α strongly depends on the type of a lattice and because the crystal

is generically not isotropic depends on the polarization α.

• Because the model is that of a discrete set of atoms with 3N distortions uñ the total

number of normal modes must also be 3N in 3d (the number of normal modes must

equal to the total number of the original degrees of freedom of N atoms with 3d

displacements, since former are just linear combination of the latter), the range of k

is limited to the so-called Brillouin Zone. This is nothing more than what you find in

1d Fourier series (as opposed to Fourier integrals), where the integral is limited to a

finite region corresponding to the period of the system. Physically this arises because

there is no meaning to excitation at k outside of the BZ (roughly kmax = 2π/a, where

a is lattice spacing), since it corresponds to wavelengths that are smaller than inter-

ion separation a, which is just empty space, with such distortion having no physical

meaning. This is strikingly different than infinite number of k modes of an EM wave

excitations (photons) since space these waves live in is continuous, labeled by x rather

than by a discrete coordinate ~n.

• The fully detailed model of these modes depends strongly on the type of crystal con-
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sidered and is beyond the scope of our analysis here.

All the information about the type of phonons is packaged into the density of states,

g(ω), that satisfies ∫ ∞
0

dωg(ω) =
∑

k∈B.Z.,α

1 = 3N, (53)

counting the total number of normal modes. All phonons types fall into two classes of

phonon model, the so-called Einstein model (1907) and the Debye model (1912), that

we study below.

Phonon models

We now consider two simplified models of phonons that qualitatively capture all com-

mon physical situations, corresponding to optical (Einstein’s gapped) and acoustic (Debye’s

gapless) phonons. These are determined by the ωk,α or equivalently by the density of states

g(ω).

1. Optical Einstein phonons

Optical phonons appear in ionic solids and by looking at lattices with more than one

atom per unit cell. Their key property is that they are gapped, as illustrated in Fig.(11).

FIG. 11: (a) A dispersion of an optical phonon, modeled by a nondispersive Einstein phonon with

ωk,α = ω0. (b) The density of states for Einstein phonons, with all 3N degenerate modes appearing

at a single frequency ω0, modelled by a δ-function, corresponding to (a).. A simplest lattice model

of Einstein phonon is that of decoupled ions.
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For a simplified model of such optical phonons we replace the gapped ωk,α with nar-

row bandwidth dispersion by simply ωk,α ≈ ω0 nondispersive Einstein phonon with zero

bandwidth, and corresponding δ-function density of states,

gE(ω) = 3Nδ(ω − ω0),

with the amplitude fixed by the total number of 3N modes, as illustrated in Fig.(??).

Corresponding to this Einstein model we then obtain,

CV = 3NkB
(~ω0/kBT )2e~ω0/kBT

(e~ω0/kBT − 1)2
, (54)

with the heat capacity exponentially suppressed at low temperatures, kBT � ~ω0 and

exhibiting expected superposition at high temperatures, kBT � ~ω0.

2. Acoustic Debye phonons

Acoustic phonons appear in crystals where Coulomb interactions are well screened, and

share a lot in common with the photons in black-body radiation studied in the previous

section, with speed of light c replace by the speed of sound cT and cL for transvers and

longitudinal modes. Their key property is that they are gapless at low momenta, vanishing

linearly at k = 0, as illustrated in Fig.(12).
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FIG. 12: (a) A dispersion of an acoustic phonon, modeled by a linearly dispersing Debye phonon

with ωk,α = cαk, with two transverse modes at speed cT and one longitudinal mode at speed cL.

(b) The corresponding density of states for Debye phonons, with gD(ω) ∼ ω2 up until the Debye

frequency ωD and then cutoff to zero for ω > ωD. A simplest lattice model of Debye phonons is

that illustrated in Fig.(10).

For a simplified model of such acoustic phonons we replace the nontrivial dispersion ωk,α

by a linear ones, ωk,α = cαk, with two transverse modes at speed cT and one longitudinal

mode at speed cL, as illustrated in Fig.(12), with minor expected errors near the BZ boundary

only.

The corresponding density of states of Debye phonon can be straightforwadly evaluated,

for ω < ωD (with ωD yet to be determined) is given by,

gD(ω) =
∑

k∈B.Z.

δ(ω − cLk) + 2
∑

k∈B.Z.

δ(ω − cTk) = V

∫
BZ

d3k

(2π)3
[δ(ω − cLk) + 2δ(ω − cTk)] ,

=
V

2π2

[
1

c3
L

+
2

c3
T

]
ω2, for ω < ωD, (55)

= 0, for ω > ωD, (56)

illustrated in Fig.(12). We fix the one unknown parameter, Debye maximum frequency, ωD

by requiring that gD(ω) satisfies the total number of modes (3N) constraint, (53). This

gives,

ω3
D = 18π2N

V

(
1

c3
L

+
2

c3
T

)−1

,
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and

gD(ω) =
9N

ω3
D

 ω2, for ω < ωD,

0, for ω > ωD.
(57)

With this we then obtain for the Debye heat capacity,

CV (T ) =
9NkB
ω3
D

∫ ωD

0

dωω2 (~ω/kBT )2e~ω/kBT

(e~ω/kBT − 1)2
, (58)

= 9NkB

(
kBT

ωD

)3 ∫ ~ωD
kBT

0

dx
x4ex

(ex − 1)2
. (59)

The heat capacity CV (T ) exhibits two contrasting behaviors as a function of T depending

on the value of ωD. For kBT � ~ωD, one is effectively in the infinite ωD limit, which allows

us to take the upper limit of integration to infinity, and the result reduces to ∼ T 3, that

is qualitatively identical to that of the black-body radiation Stefan-Boltzmann’s law, where

indeed there is no upper limit on ω.

In contrast, for high temperatures, kBT � ωD, the upper limit is small enough that

exponential regime of the integrand is never explored and it can be expanded to lowest

order, giving the expected equipartition form, CV (T � ~ωD/kB) ≈ 3NkB.

IV. NONINTERACTING FERMI GAS: ELECTRONS IN A METAL AND PAULI

PARAMAGNETISM

In Sec.III we derived general thermodynamics of a noninteracting Fermi gas (along with

the Bose gas). We now explore its details, the phenomenology that follows, with the eye to

its most important application of electrons in metals. The latter can be modelled as a Fermi

gas of electrons confined to a “box” (that, for simplicity we take to have periodic boundary

conditions), characterized by single-particle states k. This free electron model of metals was

developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude

model with quantum mechanical Fermi-Dirac statistics.
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A. Ground state

Much of the phenomenology of simple metals can be captured by ideal Fermi gas. Before

turning to thermodynamics, it is of interest to first explore the properties of the many-body

ground state, to which the thermodynamics reduces (see below) in the zero-temperature

limit.

As discussed in the Introduction, the many-body ground state given by the antisym-

metrized product state of single-particle eigenstates - one electron per state according to the

Pauli principle, much like filling elecronic levels of a multi-electron atom, that for spinless

(e.g., polarized by an external Zeeman field) electrons is given by Eq.(5),

Ψk1,...,kN (x1, . . . ,xN) (60)

=
1√
N !

[
ψk1(x1)ψk2(x2) . . . ψkN (xN) + (−1)Pψk1(xP1)ψk2(xP2) . . . ψkN (xPN) + . . .

]
,

with single-electron eigenstates ψk(x) for a periodic “box” confinement (i.e., no external po-

tential) given by plane-waves (with k = 2π
L

(nx, ny, nz)). In the second-quantized occupation

basis form,

|{nk}〉 =
∏
k

(c†k)nk |0〉, (61)

with occupation numbers nk ∈ 0, 1, and anticommutation relations of the fermionic creation

operators c†k, automatically encoding the crucial Pauli principle.

The electron gas ground state (see Fig.13) is then given by occupation of states with the

lowest single-particle energies εk, with 2 electrons σ =↑, ↓ per state in unpolarized case (and

1 electron for the fully polarized case), that we denote as Fermi sea, |FS〉. For a system

with isotropic dispersion, this corresponds to

nk =

 1, for |k| < kF ,

0, for |k| ≥ kF ,
, (62)

where total number of atoms N is related to the highest occupied Fermi momentum state
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FIG. 13: Ground state of a 2d Fermi gas, with all states with k < kF filled by electrons (yellow) and

empty for k > kF , with one per k for spinless electrons and two ↑, ↓ for spinful ones. Generalization

to arbitrary dimension is obvious with Fermi circle replaced by Fermi hypersphere of radius kF .

The surface of the sphere, defined by εk = εF is dubbed the Fermi surface.

kF and Fermi energy εF =
~2k2F
2m

,

N =
∑
k,σ

1 = 2
∑
k

1 = 2Ld
∫ kF

0

ddk

(2π)d
1 ≡ 2Ld

∫
ddk

(2π)d
nk, (63)

≡
∫ εF

0

dεg(ε), (64)

= 2LdCdk
d
F/d. (65)

Above Cd ≡ Sd/(2π)d and Sd = 2πd/2/Γ(d/2) is the surface area of a d− 1 dimensional unit

sphere, S1 = 2, S2 = 2π, S3 = 4π and g(ε) = Cd
(

2m
~2
)d/2

εd/2−1 =3d
1

2π2

(
2m
~2
)3/2

ε1/2 = 3
2
n(ε)/ε

is the density of states. Consistent with dimensional analysis, above expresses the density n

in terms of the Fermi momentum and Fermi energy, n ∼ kdF ∼ ε
d/2
F , with 3d case n3d =

k3F
3π2 .

As we will find below, above is the “number” equation from thermodynamics, evaluated at

T = 0, where it is simply the ground state expression.

The total ground state energy and pressure are then given by

EGS =
∑
k,σ

~2k2

2m
= 2

∑
k

εknk = 2Ld
∫ kF

0

ddk

(2π)d
~2k2

2m
=

d

d+ 2
NεF =d=3

3

5
NεF , (66)

P = −∂E
∂V
|N =

2

d+ 2
nεF =d=3

2

5
nεF . (67)

Thus for metals, even at zero temperature the energy and pressure are nonzero and in fact
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extremely high, all a consequence of uncompromising Pauli exclusion principle. As a result

the electrons in a metal are moving at extremely high velocity with Fermi velocity, vF ∼ 106

m/sec and Fermi temperature TF ∼ 104 Kelvin.

B. Thermodynamics

As discussed and studied in general in Sec.III the thermodynamics is conveniently com-

puted in the grand-canonical ensemble, encoded by the grand-canonical partition function

Z = Tre−β(Ĥ−µN̂) =
∑
{nkσ}

e−β
∑

kσ(εk−µ)nkσ , (68)

=
∏
kσ

(∑
nkσ

e−β(εk−µ)nkσ

)
, (69)

=
∏
kσ

(
1 + e−β(εk−µ)

)
, (70)

which gives the grand-canonical free energy

F = −kBT lnZ = −kBT
∑
kσ

ln
(
1 + e−β(εk−µ)

)
, (71)

= −kBTLd
∫
dεg(ε) ln

(
1 + e−β(ε−µ)

)
, (72)

and also the pressure through PV = −F . With this, we can also calculate the total number

of particles (or equivalently density n) as a function of chemical potential and temperature

N = −∂F
∂µ

=
∑
k,σ

1

eβ(εk−µ) + 1
≡
∑
k,σ

〈nkσ〉, (73)

where the average occupation function of the single-particle states k is the Fermi-Dirac

distribution,

〈nkσ〉 =
1

eβ(εk−µ) + 1
≡ nF (εk) ≡ f(εk) ≈

 e−β(εk−µ), for µ� kBT , nondegenerate,

θ(µ− εk), for µ� kBT , degenerate,

illustrated below. The average occupation 〈nkσ〉 can also be computed more directly via
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FIG. 14: Fermi-Dirac distribution describing finite T momentum states occupation in the nonin-

teracting Fermi gas and the corresponding derivative.

〈n̂kσ〉 =
1

Zgr
Tr
(
n̂kσe

−βĤµ
)
.

We note that the low T limit of nF (εk) given by the step function then in T → 0 limit

exactly reproduces the results of the ground state analysis in the previous subsection, as

expected.

Using nF (εk) and the density of states to perform the sum in the thermodynamic limit,

we obtain

N = V

∫ ∞
0

dεg(ε)nF (ε), (74)

=
V

2π2

(
2m

~2

)3/2 ∫ ∞
0

dεε1/2nF (ε) = 2V

(
mkBT

2π~2

)3/2

f1/2(µ/kBT ), (75)

where

f1/2(x) =
2√
π

∫ ∞
0

ε1/2dε

eε−x + 1

(the analogue of gν(z) we introduced for bosons in earlier sections) is the order 1/2 Fermi

integral that can be evaluated numerically. Using fj(x → −∞) → ex, in the classical limit

of eµ/kBT � 1, we recover the classical Boltzmann gas result n = 2
(
mkBT
2π~2

)3/2
eµ/kBT , giving
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µ ≈ −kBT ln[1/(nλ3
T )] ∼ −T lnT (λT is thermal deBroglie wavelength, that in the classical

limit is much smaller than interparticle spacing).

In the opposite limit µ/kBT � 1 relevant to metals, we utilize large x expansion,

f1/2(x) ≈ 4
3
√
π
x3/2

(
1 + π2

8x2
+ . . .

)
, obtaining

n =
1

3π2

(
2mµ

~2

)3/2
(

1 +
π2

8

(
kBT

µ

)2

+ . . .

)
,

that by definition of the Fermi energy (derived in sections above) is also given by n =

1
3π2

(
2mεF
~2
)3/2

, consistent with µ(T = 0) = εF and giving

µ = εF

[
1− π2

12

(
kBT

εF

)2

. . .

]
.

We can understand this weak reduction of µ with increasing T by noting (see Fig.(14)) that

for fixed µ the area under the curve (including the ε1/2 density of states factor) increases with

T broading: although to lowest order the decrease from rounding below µ is compensated

by a tail above µ, low ε is cutoff at ε = 0, while high ε tail extends to infinity. Thus to keep

the electron number fixed at N , the chemical potential, µ(T ) must decrease with increasing

T to compensate this excited electron-hole imbalance.

The energy and heat capacity are also straightforwardly computed either directly or

through the derivative of the free-energy, giving

E = 2
∑
k

εkf(εk), (76)

Cel =
∂E

∂T
, (77)

for T = 0 reducing to results obtained in previous subsection. We leave a detailed evaluation

of these as a homework exercise, only quoting the 3d T → 0 limit result

cel ≡ Cel/V =
π2

3
g(εF )k2

BT ≡ γT,

where γ is referred to as the Sommerfeld coefficient, and g(εF ) ∼ n/εF ∼ ε
d/2−1
F .

The full result is illustrated in Fig.(15), interpolating betweent the high-temperature

36



FIG. 15: Electronic heat capacity Cel(T ), interpolating betweent the high temperature classical

equipartition result of 1
2dNkB and the low-T result γT one.

classical equipartition result of 1
2
dNkB and the low-T result above. In interacting systems

γ is substantially different form above free electron gas, with the difference attributed to

the effective mass increase due to interactions. This general linear T equipartition-violating

heat-capacity, that is hallmark of simple metals and Fermi gases and liquids in general - a

truimph of the Sommerfeld theory - is a direct consequence of the Pauli principle arising

from the existence of a Fermi surface (where the low-energy excitations contributing to Cv

are residing). It can be understood as effective equipartition but with the number of degrees

of freedom, Ndof(T ) ∼ NkBT/εF = NT/TF , of the low-energy fermionic excitations around

the Fermi surface being temperature dependent. Only a small fraction kBT/εF � 1 of the

Fermi sea close to the Fermi surface can participate in excitations, with others Pauli blocked.

This small fraction of electrons then equipartitions the thermal energy, thereby giving

Eexcitation ≈ N

(
kBT

εF

)
kBT,

whose derivative leads to the linear T dependence (rather than the constant classical NkB

result) of simple metals, quoted above. We note that unlike bosons of the previous sections,

this fermionic linear in T heat capacity is dimension independent.

A systemmatic general analysis of the low-temperature behavior of any electronic quanti-

ties can be obtained using the so-called Sommerfeld expansion, which relies on the sharpness

of the derivative of the Fermi-Dirac distribution function at low T . Namely, integrating by
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parts to bring out the sharp feature of the FD distribution at low T , for a generic average

we obtain

〈H〉 =

∫ ∞
−∞

dεH(ε)f(ε), (78)

=

∫ ∞
−∞

dε

(∫ µ+(ε−µ)

−∞
H(ε′)dε′

)
∂f

∂µ
, (79)

which can then Taylor expanded in ε− µ ≈ O[(kBT/εF )2].

Having established the basics of the noninteracting Fermi gas, we next turn to its re-

sponse to an external magnetic field for the spin-full Fermi gas (still ignoring interactions),

namely the so-called Pauli itinerant paramagnet.

C. Pauli paramagnetism

As we have seen above, the ground state of a noninteracting Fermi gas is nonmagnetic,

with spin up and down states equally populated. It is thus a quantum itinerate (spins are

not fixed on ions but are carried by the electron liquid) paramagnet. On general grounds

we therefore expect that in the presence of an external magnetic field these spin states will

be split by the eigenvalues of the Zeeman energy,

HZ = −µ ·B =
gµB
~

S ·B = µBBσz,

ε↑,↓ = ±µBB. Ignoring orbital effects of the magnetic field (that lead to the Landau diamag-

netism of orbital currents generating magnetic moments), together with the kinetic energy

the single-electron spectrum is then given by

εkσ =
~2k2

2m
+ σµBB, σ = ±1.

As before we determine the chemical potential µ(n, T,B) through the constraint on the
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total electron number density n = N/V

n = n↓ + n↑ = V −1
∑
k

f(εk↓) + V −1
∑
k

f(εk↑), (80)

=

∫ ∞
−µBB

dεg(ε+ µBB)f(ε) +

∫ ∞
µBB

dεg(ε− µBB)f(ε), (81)

(82)

The spin magnetization response (in the absence of orbital effects) is simply the difference

between n↑, n↓ densities

m = µB

∫ ∞
−µBB

dεg(ε+ µBB)f(ε)− µB
∫ ∞
µBB

dεg(ε− µBB)f(ε), (83)

= µB

∫ ∞
0

dεg(ε) [f(ε− µBB)− f(ε+ µBB)] , (84)

≈ 2µ2
BB

∫ ∞
0

dεg(ε)
−∂f(ε)

∂ε
= 2µ2

Bg(εF )B, for µBB � εF , T → 0, (85)

where the last expression is evaluated in the weak B linear response, T = 0 limit, utilizing

δ-function form of the derivative of the Fermi-Dirac distribution.

Above coupled integrals can be computed numerically, giving the full expression for

m(n, T,B) after using µ(n, T,B) from the number equation. At T = 0, the full magnetization

can be straightforwardly calculated analytically using fT=0(x) = θ(εF − x),

m = µB

[∫ εF

−µBB
dεg(ε+ µBB)−

∫ εF

µBB

dεg(ε− µBB)

]
, (86)

= µBcd

∫ εF+µBB

εF−µBB
dε εd/2−1 = µBcd

2

d

[
(εF + µBB)d/2 − (εF − µBB)d/2

]
, (87)

≈ χPauliB, for B → 0 (88)

where density of states g(ε) = cdε
d/2−1 was used with overall constants packaged into cd,

finding Pauli linear susceptibility

χPauli =
d

2

nµ2
B

εF
= 2µ2

Bg(εF ), (89)

to be compared to the Curie susceptibility χCurie ∼
µ2B
kBT

(that we derived for noninteracting

local moments), with the role of kBT replaced by εF . As with the qualitative discussion
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of the low-temperature excitation energy and the heat capacity, above, here too we can

understand the result of the temperature-independent Pauli susceptibility in terms of Curie

susceptibility of the reduced, temperature dependent number of excitations confined by the

Pauli principle to the kBT/εF shell around the Fermi surface. This reproduces the detailed

result via

χPauli ∼
kBT

εF
χCurie =

kBT

εF

µ2
B

kBT
=
µ2
B

εF
.

The Wilson ratio (K.G. Wilson, 1975) for a free electron gas is therefore given by

RW ≡
χPT

cel
=

3

π2

(
µB
kB

)2

.

A substantial deviation (e.g., even a factor of 2) of RW from above ideal value is usually

attributed to strong electron-electron correlations.

FIG. 16: The electronic density of states for the two spin orientations, in the absence a magnetic

field (left) and in its presence, before spin-flip and spin-transfer equilibration processes take place

(middle) and in thermal equilibrium (right).

Above we have focussed on magnetic response to an external field due to spins, ignoring

orbital effects of charged electrons.

D. Landau diamagnetism

In addition to the Zeeman spin effect, HZeeman = gµB
~ S ·B of an external magnetic field

analyzed above, electrons are charged particles and so respond to orbital effects of the mag-

netic field by executing Larmor orbits, due to Lorentz force, resulting in circulating currents

that contribute to magnetization m. According to the Bohr-Van-Leeuwen theorem, within
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purely classical statistical mechanical treatment there is no orbital magnetism. However,

within a quantum treatment, indeed orbital response to a magnetic field is diamagnetic with

the (so-called) Landau susceptibility for free electrons given by

χLandau = −1

3
χPauli, (90)

i.e., exactly 1/3 of the Pauli paramagnetic susceptibility.

E. Degeneracy pressure

Above analysis of metals extends to any collection of noninteracting fermions, with

another important application of electrons comprising a white dwarf and neutrons comprising

a neutron star.

In a white dwarf, the gravitational energy EG ∼ GM2n(r)/r in equilibrium (dP/dr =

nFG(r)) gives PG ∼ GM2/r4 ∼ GM2n4/3, driving to collapse the white dwarf, which for not

too large M is prevented by the electron degeneracy pressure PP = nεF ∼ n5/3, calculated

above. Since 5/3 > 4/3, the Pauli pressure can support the star from its gravitational

collapse. However, for sufficiently large pressure, (which happens for M > 1.5Msolar, the

Chandrasekhar limit) the energetics changes, electrons fuse with protons to make neutrons,

converting the white dwarf into a neutran star.

The resulting neutron star is then supported by the degeneracy pressure of the neutrons

against its gravitational collapse. For sufficiently high pressure, the energetic switches to

relativistic one with dispersion p2/2m→ pc. This changes the neutrons’ degeneracy pressure

to PP = ncpF ∼ n4/3, which can no longer support the gravitational forces of the neutron

star. It then collapses and explodes in a supernova, potentially leading to a black hole.

V. CONCLUSION

With this lecture discussion, amplified by your detailed homeowork analysis we now

understand the detailed role of quantum statistics of bosons and fermions in many-body

quantum statistical mechanics and its drastic manifestations in their corresponding phe-

nomenology in the degenerate regime of low T < T∗. In the next set of lectures we will

move beyond noninteracting many-body systems and focussing first on magnetic systems
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study striking role of spin exchange interactions that lead to phase transitions to e.g., a

ferromagnetic state, as well as other types of phase transitions.
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