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Abstract

In this set of lectures, we will introduce and discuss the grandcanonical ensemble description

of quantum and classical statistical mechanics, deriving it by considering a small grandcanonical

subsystem of a closed microcanonical one, with the complement of the system acting like a particle

and energy reservor. We will apply it to a study of some example grandcanonical systems, including

Boltzmann, lattice, and bosonic gases, with details worked out on the homework, and will compare

our findings with those derived in the microcanonical and canonical ensembles in previous two

lectures.
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I. REMINDER OF FUNDAMENTALS

Let’s begin with a review of basics from lecture 1:

• microstates: labeled by {qi}

• ergodicity:

- time averages replaced by ensemble averages with probability P ({qi})

- every microstate is equally likely to occur in a closed system (for fixed conserved

quantities, E, N , V ,. . . )

• 〈O〉 =
∑
{qi}O({qi})P ({qi}) = Tr[Ôρ̂]

• P ({qi}) = f [H({qi})], dictated by Liouville’s theorem, so that probability distribution

is stationary (time independent)

- Microcanonical ensemble: fixed E, V,N → S(E, V,N)←→ E(S, V,N)

- Canonical ensemble: fixed T, V,N → F (T, V,N) = E − TS

- Grandcanonical ensemble: fixed T, V, µ → Π(T, V, µ) ≡ F = E − TS − µN (I will

use Π and F interchangibly with F reminding us that it is just a free energy in the

T, µ ensemble.)

All we need is P ({qi}) and from it any thermodynamic average can be computed, at

least in principle.

II. GRANDCANONICAL ENSEMBLE

In the last set of lectures we studied isolated systems closed to exchange of energy E,

particle number N and change in volume V . These were appropriately described by the

most basic microcanonical ensemble. We then generalized to a canonical ensemble where a

system is open to exchange of energy with its bath (thermal equilibrium) though not the

particles nor change in volume, thus having T , N and V fixed.

Here we further generalize our treatment to systems that are in contact with the envi-

ronment that acts like thermal and particle reservor, i.e., a large bath at temperature T and

chemical potential µ that set the average energy and particle number of our system - think
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of a tea pot (system) with an permeable top, cooling and exchanged molecues with the air

in the kitchen (bath).

A. Fundamentals of grandcanonical ensemble

As we will derive below, the most important key result is that a grandcanonical system

with a Hamiltonian Hq ≡ H[{qi}], in contact with the environment (bath) at temperature

T and chemical potential µ is described by the Boltzmann-Gibbs probability distribution

Pq ≡ P [{qi}] (equivalently density matrix ρ = Pq, to be discussed in detail later in the

course),

Pq =
1

Z
e−Hq/kBT+µNq/kBT (1)

where T is the common equilibrium temperature between the bath and the system, and

Z(T, µ) =
∑
{qi}

e−β(Hq−µNq) ≡ e−F/kBT (2)

is the grandcanonical partition function (using the same notation as for the canonical en-

semble to keep it simple), that is the normalization of P [{qi}], and is the grandcanonical

ensemble analog of the multiplicity Ω(E) of the microcanonical ensemble from last lecture.

Crucially, with the partition function Z(T, µ) in hand (which can be challenging to com-

pute), at least in principle we can calculate any and all thermodynamic properties of the

system. Z’s key connection to thermodynamics is through,

F(T, µ) = −kBT lnZ, (3)

where F ≡ Π(T, µ, V ) is the grandcanonical free energy F = E − TS − µN = F − µN .

In the rest of these lectures we will derive and elaborate on these relations and utilize

them to compute thermodynamics of some standard pedagogical systems, Boltzmann, lattice

and bosonic gases.
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B. Derivation of Grandcanonical Ensemble

1. From Microcanonical to Grandcanonical Ensemble

FIG. 1: An illustration of a grandcanonical system A, thought of as a small part of a total mi-

crocanonical closed system A+B, with complementary component B the bath/environment to A.

While the total energy E = EA + EB and particle number N = NA + NB are fixed, heat and

particles can freely exhange between the system A and bath B (at fixed volumes VA, VB, and in

equilibrium will respectively settle to average values set by equality of temperatures TA = TB = T

and chemical potential µA = µB = µ.

So how do we obtain the above claimed Boltzmann-Gibbs probability distribution

P ({qi}) for the grandcanonical ensemble?

To answer this key question, as illustrated in Fig.1 we proceed in direct extention of the

previous lecture, where we went from microcanonical to canonical ensemble. Namely, we

consider a microcanonical (i.e., closed and isolated with fixed energy E, and other conserved

quantities like N and V ) system A+B, with its small part as our system of interest A, and

a large complementary part B that will act like a bath/environment to A. While the total

energy E = EA + EB and particle number N = NA +NB are fixed, heat and particles (but

for simplicity keeping volumes VA, VB fixed) can freely exhange between the system A and

bath B, and as we learned in previous lectures, in equilibrium will settle to an average value
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set by equality of temperatures TA = TB = T and chemical potential µA = µB = µ.

To derive the E,N dependences of the Gibb’s grandcanonical probability distribution

(1), we extend the previous treatment to allow for NA, NB variation. Namely we note that

microcanonical probability distribution for total system A+B is given by

P (EA, NA, EB, NB) =
ΩA(EA, NA)ΩB(EB, NB)

Ω(E,N)
,

where Ω(E,N) =
∑N

NA=0

∫ E
0
dEAΩA(EA, NA)ΩB(E −EA, N −NA), which, by definition we

call PA(EA, NA) ≡ P (EA, NA, E−EA, N−NA). We then consider lnPA(EA, NA) and Taylor

expand it to lowest order in small EA and NA,

lnPA(EA, NA) ≈ ln

(
ΩA(EA, NA)

Ω(E,N)

)
+ ln ΩB(E,N)− EA

∂ ln ΩB

∂EB
|EA=0,NA=0,−NA

∂ ln ΩB

∂NB

|EA=0,NA=0,

(4)

which, using ∂ ln ΩB
∂EB

= 1/kBT ≡ β, ∂ ln ΩB
∂NB

= −µ/kBT ≡ α leads to the sought after result,

PA(EA, NA) =
gA(EA, NA)

Z
e−β(EA−µNA) ∼ e−βEA−αNA , (5)

namely a form of the Gibbs distribution in (1), with a prefactor the density of states,

gA(EA, NA), that ensures its normalization when integrated over EA, NA, that can be fixed

after the fact and is by definition the grand partition function Z.

2. Statistics of Grandcanonical Ensemble via Lagrange multipliers

We can analyze the derivation of the above Boltzmann-Gibbs factor for the grandcanon-

ical ensemble in greater detail by considering an ensemble of N � 1 systems labelled by

microstates q, with the ensemble set {nq} characterizing the number nq of them that are in

each of the microstate q with energy Eq and number of particles Nq.

We then impose three constraints,

∑
q

nq = N ,
∑
q

nqEq = EN ,
∑
q

nqNq = NN , (6)
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via Lagrange multipliers γ, β, α, with E and N the average energy and particle number in

the ensemble.

The number of configurations for a given N and set {nq} is given by the usual combi-

natorial factor

W [{nq}] =
N !

n1!n2!n3! . . .
. (7)

Maximizing W [{nq}] with above constraints over set {nq} (with details left as a home-

work exercise), we find the most probable set n∗q.

Since this distribution can be shown to be vanishingly narrow in the thermodynamic

limit N →∞, above n∗q = 〈nq〉. This then gives the sought after grandcanonical probability

distribution Pq ≡ n∗q/N given in (1)

Pq =
1

Z
e−βEq−αNq . (8)

As we will see below, matching the predictions from statistical mechanics with those in

thermodynamics allows us to identify α = −µ/kBT and β = 1/kBT .

C. Properties and connection to thermodynamics

• Quantum vs Classical systems

For classical systems formulation of the previous section, e.g., (1) applies directly

as microstates are labelled by real numbers, with Hq = E[{qi}] ≡ Eq and Nq the

corresponding energies and particle numbers for microstate q.

For quantum system, above statements must be understood as operators, with Ĥ the

Hamiltonian operator and N̂ the total number operator. Equivalently, we can define a

grandcanonical Hamiltonian, Ĥµ = Ĥ − µN̂ , with everything going through the same

way as for canonical ensemble . We work with the density matrix

ρ̂ =
1

Z
e−(Ĥ−µN̂)/kBT .

So, to apply the grandcanonical formulation one must first diagonalize Ĥµ, i.e., solve

the time-independent Schrodinger equation Ĥµ|En〉 = Eµ
n |En〉. The microstates are
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then labelled by quantum numbers n and Hµ
q → En − µNn. In this basis, the density

matrix is then diagonal

ρnm =
1

Z
e−(En−µNn)/kBT δnm, Z =

∑
n

e−E
µ
n/kBT , 〈Ô〉 =

1

Z
∑
n

Onne
−Eµn/kBT . (9)

Equivalently, we can work in basis-independent formulation, namely

ρ̂ =
1

Z
e−Ĥµ/kBT , Z = Tr

[
e−Ĥµ/kBT

]
, 〈Ô〉 = Tr

[
Ôρ̂
]
. (10)

that reduce to (9) in the Hamiltonian basis.

• Grandcanonical, Canonical and Microcanonical ensemble relations

– Correspondence between two ensembles is quite clear:

It is convenient to express the correspondence in terms of α, β Lagrange mul-

tipliers, which of course are related to temperature and chemical potential, as

given above and demanded by thermodynamics correspondence. Utilizing the

definitions, (3), (8), we have,

Ω(E,N) ←→ Z(β, α)

S(E,N) = kB ln Ω ←→ F((β, µ) = −β−1 lnZ

β =
∂ ln Ω

∂E
←→ E = −∂ lnZ

∂β

βµ = −∂ ln Ω

∂N
←→ N = −∂ lnZ

∂α

– Density of states and Laplace transform E → β: As with our discussion

of the canonical ensemble, here too, the β dependence of the grandcanonical

partition function Z(β, α) enters as the Laplace transform of Ω(E,N) (the density

of states) from E to β.

– Discrete Laplace transform from N → α:

We note that grandcanonical partition function is given by (2), where we sum

over all microstates q corresponds to all energies Eq and numbers Nq. In fact
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this is the convenience of the grandcanonical ensemble as performing sums that

are not constrained to a particular E and N is much easier, and is the way we

utilize grandcanonical ensemble. However, conceptually it is useful to think of

this summation to be done in two steps: (i) first we sum over all the microstates

q for a fixed N , which is nothing more than the canonical partition function

Z(N, β) and then (ii) follow this with a sum over all N to obtain Z(α, β).

To make this explicit, we consider the grandcanonical partition function Z(α, β),

rewriting its standard form (2), as

Z(α, β) =
∑
{qi}

e−βEq−αNq =
∞∑
N=0

∑
{qi}

δN,Nqe
−βEq−αNq

 =
∞∑
N=0

e−αN

∑
{qi}

δN,Nqe
−βEq

 ,
=

∞∑
N=0

zNZ(T,N) ≡ LTd[Z(T,N)], (11)

where we defined fugacity z ≡ e−α. We now see that Z(α, β) is a discrete Laplace

transform (sometimes also called the z-transform) of Z(N, β) from N to α (or

equivalently to fugacity z).

Concomitantly with this relation, the corresponding thermodynamic potentials,

entropy S(N,E) and grandcanonical free energy F(α, β) are related by a Legendre

transform from N,E to α, β as is already clear in correspondence above and will

be elaborated on below.

– Equivalence of ensembles:

Our analysis for the canonical ensemble directly generalizes to the grandcanonical

one, where one can show, that despite summation over all N , in the thermody-

namic limit it is equivalent to the canonical and microcanonical ensemble, because

fractional fluctuations in N vanish as 1/
√
N in the thermodynamic limit.

To see this we note that fractional mean-squared fluctuations in N is given by,

n2
rms =

(∆N)2

N
2 =

1

N
2

(
N2 −N2

)
= − 1

N
2

∂N

∂α
|T,V ,

= − 1

N
2

(
∂µ

∂α

)(
∂N

∂µ

)
T,V

= −kBT
V

[
1

v

∂v

∂P
|T
]
,

=
kBT

V
κT → 0, (12)

8



where κT = − 1
v
∂v
∂P
|T is the isothermal compressibility.

Thus, in the N →∞ thermodynamic limit, this analysis demonstrates the equiv-

alence of the grandcanonical and the microcanonical and canonical ensembles

• Relation to thermodynamics

In addition to the key expression for the Helmholtz free energy, F(T, µ, V ) =

−kBT lnZ ≡ −kBTq(α, β, V ) (where we defined function q(α, β, V )), here we estab-

lish other connections to thermodynamics and thereby identify the thermodynamic

meaning of α, β, that we already anticipated in the beginning of these lectures.

We first note very useful relations,

N =
∑
q

NqPq = − ∂

∂α
[lnZ] = − ∂q

∂α
, (13)

E =
∑
q

EqPq = − ∂

∂β
[lnZ] = − ∂q

∂β
, (14)

(15)

Hence we observe that dq = −Ndα− Edβ + βPdV , where pressure is given by,

P =
1

β

∂q

∂V
|α,β = −

∑
q ∂(Eq − µNq)/∂V e

−αNq−βEq

Z
. (16)

This implies that

d(q + αN + βE) = αdN + βdE + βPdV,

which is of the same form as dS = 1/TdE +P/TdV − µ/TdN giving β = 1/kBT, α =

−µ/kBT , as asserted in earlier section. Thus, this also connects q to thermodynamic

potentials, q = S/kB − αN − βE and using −kBTq = F , gives,

F = E − TS −G = F − µN = −PV,

i.e., grandcanonical free energy density gives us the negative of the pressure P . Above

we used Gibbs free energy, that is given by G(T,N, P ) = E − TS + PV = µN . We

also note dF = −SdT − PdV −Ndµ.
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As an aside we recall the following calculation of Gibbs free energy. Namely, be-

cause it is extensive and only extensive variable is N , it must be the case that

G(T, P,N) = Ng(T, P ). We also note that µ = (∂G/∂N)T,P = µ, finding that

g(T, P ) = µ. Thus, indeed G = µN , i.e., chemical potential is Gibbs free energy

per particle. Similar analysis (independent of the derivation in the preceeding para-

graph) gives that F(T, µ, V ) = V f(T, µ), which implies that f = −P , and thus indeed

F = −PV , i.e., grand canonical free energy density is −P . The rest of thermodynam-

ics follows from above expressions.

We reiterate that F is easier to calculate because it is free of E and N constraints and

also is closer to real physical systems and thus experiements that are typically done

(at least in condensed matter systems) at fixed T, µ rather than fixed E,N .

Thus, with grandcanonical partition function Z(T, µ, V ) and the correspond-

ing grand free energy F(T, µ, V ) = −kBT lnZ in hand, we can compute any ther-

modynamic property! (at least in principle, though it may be difficult.)

The problem thus reduces to a computation of the partition function Z(T, µ, V ). Below

we will sketch out such computations for a few canonical examples, relegating the details of

the derivation to homework 3.

III. APPLICATIONS OF GRANDCANONICAL STATISTICAL MECHANICS

Having established the foundation of grandcanonical ensemble statistical mechanics, we

now discuss the associated thermodynamics for a few pedagogical examples with details

relegated to the homework.
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A. Boltzmann gas

FIG. 2: An illustration of a Boltzmann (noninteracting, classical) gas of N particles, confined to a

closed box of volume V and in contact with a surrounding bath at temperature T .

We now revisit statistical mechanics of a Boltzmann gas of N identical noninteracting

(low density) classical particles, confined to a 3-dimensional box of linear size L. To make

it a bit more interesting, we consider the particles to be diatomic molecules (e.g., O2 in the

air), which can translate, rotate and vibrate. The corresponding Hamiltonian is given by

H =
∑N

i=1 [Htr +Hrot +Hvib], with single particle Hamiltonians

Htr = p2/2m, (17)

Hrot =
p2
θ

2Iθ
+

p2
φ

2Iφ
, (18)

Hvib = p2
r/2m+

1

2
mω2

0r
2
r , (19)

with Iθ = mr2, Iφ = mr2 sin2 θ, and it is crucial to note that in the vibrational part of

the energy, only the radial component is involved. To get this from a more microscopic

description of two atoms, one can start out with a single diatomic molecule Hamiltonian,

H = p2
1/2m+p2

2/2m+ V (|r1− r2|), where the potential has a minimum at a nonzero value

of the average bond length `, with V (|r|) ≈ 1
2
mω2

0(r− `)2 = 1
2
mω2

0(
√
x2 + y2 + z2− `)2, and

so only quadratic in radial coordinates. The corresponding integration measure keeps track

of the 3d nature of the integral
∫
r2dr . . ., but because of a nonzero bond length ` at low T ,

such that rrms � ` reduces to an effective 1d integral ≈
∫
`2dr . . ., and (as discussed below)

giving 7 rather than 9 quadratic degrees of freedom of a diatomic molecule[12]. However, at
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high T such that rrms � `, the result crosses over to a 3d integral and one again recovers 9

quadratic degrees of freedom, as for a spring where ` is neglected and analysis can be done

using Cartesian coordinates, where it is just 9 Gaussian integrals. Of course physically, the

molecule will likely dissociate thermally long before this limit is reached.

From our discussion above, the grandcanonical partition functon is given by

Z(z, V, T ) =
∞∑
N=0

zNZ(N, V, T ) =
∞∑
N=0

[zZ(1, V, T )]N

N !
,

= ezZ(1,V,T ), (20)

where we used the fact that for N noninteracting degrees of freedom, the canonical partition

function is Nth power of the single particle partition function, Z(N) = ZN
1 /N !. This gives

us F = −kBT lnZ = −kBTzZ1 ≡ −kBTq, and the rest of thermodynamics follows by dif-

ferentiation with respect to dependent variables. In particular, with N = −(∂q/∂α)β,V and

E = −(∂q/∂β)α,V = 1
2
NdofkBT , we immediately recover the ideal gas law and equipartition.

While the former does not depend on any details, the latter requires a calculation of Z(1, T ).

A detailed Gaussian integrals calculation at low T verifies that Ndof = 7 corresponding to 3

center-of-mass translational kinetic (px, py, pz), 2 rotational (pθ, pφ), and 2 vibrational (pr, rr)

quadratic degrees of freedom per molecule. In contrast, at high T , Gaussian integral gives

Ndof = 9 corresponding to 6 kinetic (p1,p2) and 3 relative coordinate r1 − r2 quadratic

degrees of freedom per molecule.

B. Lattice gas

We now consider (what’s commonly called) a “lattice gas”, where there are N0 non-

interacting absorption sites in the presence of a noninteracting Boltzmann gas, with 2d

schematic illustrated in Fig.(3). This toy model can be a good representation of a chemical

vapor deposition and adhesion, or even oxygen O2 attachment to Fe2+ in hemoglobin of the

blood.

Physically we would like to calculate the coverage, i.e., occupation of N0 possible ab-

sorption sites by the atoms.
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FIG. 3: An illustration of a lattice gas with N atoms occupying N0 absorption sites at temperature

T .

We first focus on the simplest case of only single occupancy, where each site can only

at most accomodate one atom inside its single state of attractive energy −ε0. Thus there

are two states at each site 0 (unoccupied) and −ε0 (occupied by one atom), as illustrated

in Fig. (3). One can think of this as a “fermionic” version of lattice gas. Although this is

a classical problem, because of the descreteness of the states on each absorption site, much

of the analysis and results resembles closely a quantum problem of spins and of harmonic

oscillators.

1. “Fermionic”

The thermodynamics can be computed using the canonical or the grandcanonical en-

semble, latter being significantly simpler. In the former case the partition function is a

13



constrained sum, with the occupations
∑N0

i=1 ni = N constrained to N , namely we have,

Z(N, T ) =
′∑

{ni=0,1}

e−β
∑
i(−ε0)ni =

N0!

N !(N0 −N)!
eβNε0 , (21)

where we recognized that all fixed-N occupations have identical energy −Nε0, with degener-

acy given by the familiar binomial coefficient. To connect to the more physical grandcanon-

ical treatment, we can compute the chemical potential µ = (∂F/∂N)T,V .

Alternatively, but equivalently, we can compute the grandcanonical partition function,

Z(µ, T ) =

N0∑
N=0

zN
′∑

{ni=0,1}

e−β
∑
i(−ε0)ni =

N0∑
N=0

zNZ(N), (22)

=

N0∏
i=1

[ ∑
ni=0,1

eβ(ε0+µ)ni

]
=

[ ∑
ni=0,1

eβ(ε0+µ)ni

]N0

, (23)

where in the second line, we were able to transform to a much simpler unconstrained sum

(discussed above), which reduces to a product of N0 of identical sums over ni = 0, 1 giving the

final result. Simple analysis then gives Z(µ, T ), from which we can obtain the grandcanonical

free energy, which gives us entropy S(µ, T ) = −(∂F/∂T )µ,V , and coverage

N(µ, T ) = −(∂F/∂µ)T,V =
N0

1 + e−(ε0+µ)/kBT
. (24)

We observe that for the chemical potential ranging from large negative µ < 0 to large positive

µ > 0 the coverage N ranges from zero and N0, respectively, as expected. Furthermore,

consistent with intuition increasing the absorption energy ε0 increases coverage. Indeed

N(µ, T ) looks like the Fermi function that we will discuss later in the course on Fermi gas

- this connection here is purely of a mathematical origin. We also note that the expression

for Z above can be equivalently obtained by performing the N summation in the first line

of (23) using (21).

Finally we note that the adsorbed atoms are in thermal and chemical equilibrium with

the Boltzmann vapor above it, with a common temperature T and chemical potential µ.

Thus, to get the more useful physical result, this allows us to express the chemical potential

of the adsorbed lattice gas in terms of the pressure P of the Boltzmann vapor above it,
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giving us pressure and temperature dependent coverage N(P, T ), with the details of this

interesting and technologically relevant problem left for the homework.

2. “Bosonic”

As another example, one can consider a “bosonic” version, where atoms don’t interacting

and thus each site can accomodate arbitrary number of absorbed atoms all at same energy

−ε0. A simple generalizaton of this, which crudely accounts for interactions (sites can

get full) is allowing a site filling of only up to a maximum number of m. As we will see

on the homework, such bosonic model exhibits a “catastrophy” of sorts when its coverage

discontinuously jumps to infinity.

With this lecture discussion, amplified by your detailed homeowork analysis we are now

experts in micro-, canonical and grand statistical mechanics. In the next lecture we will turn

to some important applications.
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