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Abstract

In this set of lectures, we will introduce and discuss the canonical ensemble description of quan-

tum and classical statistical mechanics, deriving it by considering a small subsystem of a closed

microcanonical one, with the complement of the system acting like a bath. We will apply it to

a study of three canonical systems, spin-1/2 paramagnet, Boltzmann gas, quantum and classical

harmonic oscillators, with details worked out on the homework, and will compare our findings with

those derived in the microcanonical ensemble in previous lecture.
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I. REMINDER OF FUNDAMENTALS

Let’s begin with a review of basics from lecture 1:

• microstates: labeled by {qi}

• ergodicity:

- time averages replaced by ensemble averages with probability P ({qi})

- every microstate is equally likely to occur in a closed system (for fixed conserved

quantities, E, N , V ,. . . )

• 〈O〉 =
∑
{qi}O({qi})P ({qi}) = Tr[Ôρ̂]

• P ({qi}) = f [H({qi})], dictated by Liouville’s theorem, so that probability distribution

is stationary (time independent)

- Microcanonical ensemble: fixed E, V,N → S(E, V,N)

- Canonical ensemble: fixed T, V,N → F (T, V,N) = E − TS

- Grandcanonical ensemble: fixed T, V, µ→ Π(T, V, µ) = E − TS − µN

All we need is P ({qi}) and from it any thermodynamic average can be computed, at

least in principle.

II. CANONICAL ENSEMBLE

In the last set of lectures we studied isolated systems closed to exchange of energy E,

particle number N and change in volume V . These were appropriately described by the

most basic microcanonical ensemble. We now want to generalize our treatment to systems

that are in contact with the environment, i.e., a large bath at temperature T - think of a

tea pot (system) cooling in a kitchen (bath).

A. Fundamentals of canonical ensemble

As we will derive below, the most important key result is that a canonical system with

a Hamiltonian Hq ≡ H[{qi}], in contact with the environment (bath) at temperature T
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is described by the Boltzmann-Gibbs probability distribution Pq ≡ P [{qi}] (equivalently

density matrix ρ = Pq, to be discussed in detail later in the course),

Pq =
e−Hq/kBT

Z
, (1)

where T is the common equilibrium temperature between the bath and the system, and

Z(T ) =
∑
{qi}

e−Hq/kBT (2)

is the partition function, that is the normalization of P [{qi}], and is the canonical ensemble

analog of the multiplicity Ω(E) of the microcanonical ensemble from last lecture. Crucially,

with the partition function Z(T ) in hand (which can be challenging to compute), at least

in principle we can calculate any and all thermodynamic properties of the system. Z’s key

connection to thermodynamics is through,

F (T ) = −kBT lnZ, (3)

where F is the Helmholtz free energy F = E − TS.

In the rest of these lectures we will derive and elaborate on these relations and utilize

them to compute thermodynamics of our standard pedagogical systems, Boltzmann gas,

Einstein phonons (harmonic oscillators) and paramagnet (spins in a magnetic field).
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B. From Microcanonical to Canonical Ensemble

FIG. 1: An illustration of a canonical system A, thought of as a small part of a total microcanonical

closed system A + B, with complementary component B the bath/environment to A. While the

total energy E = EA + EB is fixed, heat can freely exhange between the system A and bath B,

and in equilibrium will settle to an average value set by equality of temperatures TA = TB = T .

So how do we obtain the above claimed Boltzmann-Gibbs probability distribution

P ({qi}) for the canonical ensemble?

To answer this key question, as illustrated in Fig.1 we consider a microcanonical (i.e.,

closed and isolated with fixed energy E, and other conserved quantities like N and V ) system

A+B, with its small part as our system of interest A, and a large complementary part B that

will act like a bath/environment to A. While the total energy E = EA + EB is fixed, heat

can freely exhange between the system A and bath B, and as we learned in previous lectures,

in equilibrium will settle to an average value set by equality of temperatures TA = TB = T .

To derive the Gibb’s canonical probability distribution (1), we note that microcanonical

probability distribution for total system A+B is given by

P (EA, EB) =
ΩA(EA)ΩB(EB)

Ω(E)
,

where Ω(E) =
∫ E

0
dEAΩA(EA)ΩB(E−EA), which, by definition we call PA(EA) ≡ P (EA, E−
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EA). We then consider lnPA(EA) and Taylor expand it to lowest order in small EA,

lnPA(EA) ≈ ln

(
ΩA(EA)

Ω(E)

)
+ ln ΩB(E)− EA

∂ ln ΩB

∂EB
|EA=0, (4)

which, using ∂ ln ΩB
∂EB

= 1/kBT leads to the sought after result,

PA(EA) ≈
(

ΩA(EA)ΩB(E)

Ω(E)

)
e−EA/kBT =

gA(EA)

Z
e−EA/kBT , (5)

namely a form of the Gibbs distribution in (1), with a prefactor the density of states, gA(EA)

that ensures its normalization when integrated over EA (for details, see below).

C. Properties and connection to thermodynamics

• Quantum vs Classical systems

For classical systems formulation of the previous section, e.g., (1) applies directly as

microstates are labelled by real numbers, and Hq = E[{qi}] is are the corresponding

energies.

For quantum system, above statements must be understood as operators, with Ĥ

the Hamiltonian operator. In fact in quantum context, Pq is referred to as the density

matrix (I will use the two terms interchangibly),

ρ̂ =
1

Z
e−Ĥ/kBT .

So, to apply the canonical formulation one must first diagonalize Ĥ, i.e., solve the

time-independent Schrodinger equation Ĥ|En〉 = En|En〉. The microstates are then

labelled by quantum numbers n and Hq → En. In this basis, the density matrix is

then diagonal

ρnm =
1

Z
e−En/kBT δnm, Z =

∑
n

e−En/kBT , 〈Ô〉 =
1

Z

∑
n

Onne
−En/kBT . (6)
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Equivalently, we can work in basis-independent formulation, namely

ρ̂ =
1

Z
e−Ĥ/kBT , Z = Tr

[
e−Ĥ/kBT

]
, 〈Ô〉 = Tr

[
Ôρ̂
]
. (7)

that reduce to (6) in the Hamiltonian basis.

• Canonical - Microcanonical relations

FIG. 2: A comparison between microcanonical (controlled by E) and canonical (controlled by

Lagrange multiplier β = 1/kBT ) ensembles probability distributions (density matrix), appearing

to be drastically different.

Although as illustrated in Fig.(2), the two ensembles, described by density matrices

ρ̂mc(E) = Ω−1δ(Ĥ − E) and ρ̂c(β) = Z−1e−βĤ appear to be drastically different, this

is deceiving and in fact, in thermodynamic limit the two ensembles are equivalent, as

we discuss below.

– Correspondence between two ensembles is quite clear:

Ω(E) ←→ Z(β)

S(E) = kB ln Ω ←→ F (β) = −kBT lnZ

kBβ =
∂S

∂E
←→ E =

∂(βF )

∂β

– Density of states: It is crucial to distinguish the summation over microstates

{qi} and over energies E, often a point of confusion in canonical ensemble. The
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connection, of course, is the degeneracy g(E)dE at E counting a number of

microstates {qi} between energy E and E + dE, as we are familiar with in e.g.,

quantum mechanics.

To make this explicit, we consider the partition function Z, rewriting its standard

form (2), as an integration over energies,

Z(β) =
∑
{qi}

e−βHq =

∫
dE
∑
{qi}

δ(E −Hq)e
−βE,

=

∫
dEg(E)e−βE, (8)

where g(E) =
∑
{qi} δ(E −Hq) is the density of states, related to multiplicity of

the microcanonical ensemble, Ω(E) = ∆g(E).

– Laplace transform:

From above we observe that in fact the partition function Z(β) is a Laplace

transform of the multiplicity Ω(E) (up to factor ∆), namely

Z(β) = ∆−1LT[Ω(E)].

Similarly, (up to normalization) canonical density matrix is a Laplace transform

of the microcanonical one, namely,

ρ̂c(β) ∼
∫
dEρ̂mc(E)e−βE ∼

∫
dEδ(Ĥ − E)e−βE

∼ e−βĤ . (9)

Concomitantly with this relation, the corresponding thermodynamic potentials,

entropy S(E) and Helmholts free energy F (β) are related by a Legendre transform

from E to β as is already clear in correspondence above and will be elaborated

on below.

– Equivalence of ensembles:
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FIG. 3: An illustration of the peak form of the canonical ensemble g(E)e−βE , with peak located

at energy E0 = E(β) and a width ∆ vanishingly small in the thermodynamic limit. This thereby

demonstrates the equivalence to the microcanonical ensemble, with Z(β) = Ω(E(β))e−βE(β).

We now look in more detail at the equivalence between the canonical (fixed β)

and microcanical (fixed E) ensembles. To this end, we examine Z(β) in Eq. (8).

We note that g(E) extremely strongly increasing function of E, in fact growing

exponentially with system size (e.g., in a Boltzmann gas Ω(E) ∼ EdN/2−1), expo-

nent of order Avagadro number! On the other hand e−βE is a strongly decreasing

function of E, with the rate of increase set by β. Thus, as illustrated in Fig.3

the integrand g(E)e−βE is an extremely strongly peaked function (becoming a δ-

function of E in thermodynamic limit), with the location of the peak E0 = E0(β)

controlled by Laplace transform variable (Lagrange multiplier) β. So if the peak

is sufficiently narrow, with width ∆E vanishing relative to E0, i.e., ∆E/E0 → 0

in the thermodynamic limit (as you will demonstrate on the homework), inte-

grating over E (canonical) via saddle point approximation is equivalent to just

setting E = 〈E〉 = E0 (microcanonical).

Such analysis thereby demonstrates the equivalence to the microcanonical ensem-

ble, and derives Z = e−βF , claimed above in Eq. (3).

• Relation to thermodynamics

In addition to the key expression for the Helmholtz free energy, F = −kBT lnZ, here

we establish other connections to thermodynamics.
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We recall from thermodynamics that dS = 1/TdE + P/TdV − µ/TdN , which is

equivalent to the 1st law of thermodynamics,

dE = TdS − PdV + µdN. (10)

We then observe that average energy can be directly obtained from the partition

function,

E = Tr[Ĥρ̂] =
1

Z

∑
q

Eq e
−Eq/kBT ,

= −∂ lnZ

∂β
. (11)

By reexpressing above relation in terms of F , we also obtain the thermodynamic

relation E = F + TS, where S = −∂F/∂T |V,N . This allows to view F = E − TS as

the Legendre transform from E(S) to F (T ), with,

dF = −SdT − PdV + µdN. (12)

which gives us the thermodynamic quantities,

S = −∂F
∂T
|V,N , P = −∂F

∂V
|T,N , µ =

∂F

∂N
|T,V ,

but in contrast to thermodynamics, canonical statistical mechanics gives us F in (3).

As we noted in the last lecture, thermodynamics is most commonly probed by adding

heat Q = TdS to the system and measuring how much temperature changes. This is

probed by heat capacities at constant V or P , given by Cv = T
(
∂S
∂T

)
|V,N =

(
∂E
∂T

)
|V,N

and Cp = T
(
∂S
∂T

)
|P,N =

(
∂H
∂T

)
|P,N , where H = E+PV is the Enthalpy thermodynamic

potential. Using the expression for S in terms of F , we can then express these in terms

of Helmholtz free energy,

Cv = −T
(
∂2F

∂T 2

)
|V,N (13)

We note in passing that Shannon’s entropy (1948), quantifying the amount of infor-
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mation carried by a signal characterized by probability distribution Pq,

SShannon = −
∑
q

Pq lnPq = −〈lnPq〉,

= lnZ + β〈Eq〉 = β(E − F ) = S/kB, (14)

is proportional to the thermodynamic entropy we have been discussing.

Thus, with partition function Z(T ) and the corresponding Helmholtz free

energy F (T ) = −kBT lnZ in hand, we can compute any thermodynamic property!

(at least in principle, though it may be difficult.)

The problem thus reduces to a computation of the partition function Z(T ). Below we

will sketch out such computations for a few canonical examples, relegating the details of the

derivation to homework 2.

III. APPLICATIONS OF MICROCANONICAL STATISTICAL MECHANICS

Having established the foundation of microcanonical ensemble statistical mechanics, we

now compute the associated thermodynamics for three common examples.

A. Gaussian integral calculus

one degree of freedom:

Let us start out slowly with standard, scalar, one-dimension Gaussian integrals

Z0(a) =

∫ ∞
−∞

dxe−
1
2
ax2 =

√
2π

a
, (15)

Z1(a) =

∫ ∞
−∞

dxx2e−
1
2
ax2 = −2

∂

∂a
Z0(a) =

1

a

√
2π

a
=

1

a
Z0, (16)

Zn(a) =

∫ ∞
−∞

dxx2ne−
1
2
ax2 =

(2n− 1)!!

an
Z0, (17)

that can be deduced from dimensional analysis, relation to the first basic integral Z0(a)

(that can in turn be computed by a standard trick of squaring it and integrating in polar
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coordinates) or another generating function and Γ-functions

Z(a, h) =

∫ ∞
−∞

dxe−
1
2
ax2+hx =

∫ ∞
−∞

dxe−
1
2
a(x−h/a)2e

1
2
h2/a = e

1
2
h2/aZ0(a), (18)

=
∑
n=0

h2n

(2n)!
Zn(a). (19)

Quite clearly, odd powers of x vanish by symmetry, and even powers give the 2n-point

correlation function,

C2n ≡
Zn(a)

Z0(a)
= 〈x2n〉, (20)

=
1

Z0(a)

∂2n

∂h2n
Z(a, h)|h=0 = (2n− 1)!!(C2)n, (21)

where C2 = G0 is a 2-point correlation function, that is also referred to as the propagator,

G0 of the harmonic theory (subscript 0 denotes the harmonic nature of the propagator).

N degrees of freedom:

This calculus can be straightforwardly generalized to multi-variable coupled Gaussian

integrals characterized by an N ×N symmetric matrix (A)ij, as would appear in a Hamil-

tonian for N coupled harmonic oscillators,

Z0(A) =

∫ ∞
−∞

[dx]e−
1
2
xT ·A·x =

N∏
i=1

√
2π

ai
=

√
(2π)N

detA
, (22)

Zij
1 (A) =

∫ ∞
−∞

[dx]xixje
− 1

2
xT ·A·x = A−1

ij Z0, (23)

Z(A,h) =

∫ ∞
−∞

[dx]e−
1
2
xT ·A·x+hT ·x = e

1
2
hT ·A−1·hZ0, (24)

computed by diagonalizing the symmetric matrix A and thereby decoupling the N -

dimensional integral into a product of N independent scalar Gaussian integrals (17),

each characterized by eigenvalue ai, and then converting back into representation-

independent form. In above we also defined a common multi-integral notation
∫∞
−∞[dx] ≡∫∞

−∞ . . .
∫∞
−∞ dx1 . . . dxN =

∏N
i

[∫∞
−∞ dxi

]
.

As a corollary of these Gaussian integral identities we have two more key results for a
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Gaussian random variable x (obeying Gaussian statistics), with variance A−1
ij ,

Z[h] ≡ 〈ehT ·x〉Z0 = e
1
2
〈(hT ·x)2〉Z0 = e

1
2
hT ·G·hZ0, (25)

〈xixj〉 ≡ G0
ij =

1

Z0

∫ ∞
−∞

[dx]xixje
− 1

2
xT ·A·x = A−1

ij , (26)

=
1

Z0

∂2

∂hi∂hj
Z[h]|h=0 =

∂2

∂hi∂hj
lnZ[h]|h=0 (27)

with the first identity the relative of the Wick’s theorem, which will be extremely important

for computation of Gaussian correlation functions. Z[h] is called the generating function

for correlators of x, because its n-th derivative with respect to hi gives n-point correlation

function of xi.

As we will see in later, application of these identities to physical harmonic oscillator sys-

tems, they immediately reproduce the equipartition theorem (1
2
kBT per classical quadratic

degree of freedom), as in e.g., phonons in a solid.

B. N noninteracting particles: Boltzmann gas

FIG. 4: An illustration of a Boltzmann (noninteracting, classical) gas of N particles, confined to a

closed box of volume V and in contact with a surrounding bath at temperature T .

We now revisit statistical mechanics of a Boltzmann gas of N identical noninteracting

(low density) classical particles, confined to a d-dimensional box of linear size L, described

by a Hamiltonian

H({pi}) =
N∑
i

p2
i /2m, (28)
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which for classical system is the energy E[{ri,pi}] = H({pi}), and,

Microstates: 2dN dimensional phase space with coordinates {ri,pi}.

This time we treat it within the canonical ensemble, considering the gas to be in contact

with a bath at temperature T .

Using the fundamentals introduced and discussed above, we can now readily compute

the partition function, given by

Z(T, V,N) =
1

N !

N∏
i

[∫
ddrid

dpi
(2π~)d

]
e−H({pi})/kBT , (29)

Leaving the detailed analysis to the homework, here we only highlight and outline the

analysis.

Comments:

1. Gibbs “fudge” factor 1/N ! crudely accounts for the identity of these classical particles

and crucially ensures that S(E) is extensive. We will see later why this fix fails at low

temperatures.

2. Phase space measure 1/2π~ is required by dimensionless analysis (Ω is a dimensionless

number), with its precise form enconding one microstate state per phase space area

dxdp = 2π~. Classical physics does not know about this factor and therefore about the

zero of the entropy, classically only defined up to additive constant (3rd law requires

quantum mechanics). We will derive this below.

3. The key simplifying feature of this problem is the noninteracting nature of the particles

with the Hamiltonian being a sum of dN (N particles in d dimensions) quadratic

terms in pα. As a result the total Gibbs weight factors into a product of dN one-

dimensional Gaussian weights, that can be evaluated individually using the Gaussian

integral calculus above. We note that this factoring immediately gives us extensive

scaling of the free energy F (and by extension of all thermodynamics) with N . The

Gibbs factor is still needed to convert V into V/N .

4. The Gibbs probability distribution immediately leads to the famous Maxwell velocity

and speed distributions for the noninteracting Boltzmann gas.
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5. Clearly, Z(T, V,N) = V N

N !
f(N,E), from which we immediately obtain the celebrated

ideal gas law PV = NkBT .

A straightforward computation of Z (relegated to homework) gives in 3d all the key

thermodynamic quantities,

F (T, V,N) = NkBT
[
ln(nλ3

T )− 1
]
, (30)

S(T, V,N) = −NkB
[
ln(nλ3

T )− 5

2

]
, (31)

E =
3

2
NkBT, CV =

3

2
NkB, (32)

where n is the gas density, λT is the thermal deBroglie wavelength set by equality of the

kinetic p2/2m and thermal kBT energies, obtained the expected equipartition for the average

energy E and heat capacity CV , and we have recovered the Sackur-Tetrode form found in

Lecture 1 using microcanonical ensemble. We again note that above expression are explicitly

extensive as required on general physical grounds and Gibbs N ! factor was crucial to have

this happen.

Observations:

• I note that the expression are explicitly extensive as required on general physical

grounds, and are consistent with those we found via the microcanonical ensemble.

• Z has a nice physical interpretation in terms of quantum de Broglie wavepackets

description. Namely, the partition function Z ≈ (V/(Nλ3
T )N counts the number of

configurations of N particles in volume V , each taking up de Broglie volume λ3
T .

• Entropy S(T,N) becomes unphysically negative for nλ3
T > 1, or equivalently λT >

d ≡ n−1/3, reminding us of the breakdown of above classical phase-space treatment of

this fundamentally quantum system.
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C. N harmonic oscillators: Einstein phonons in a solid

FIG. 5: An illustration of the Einstein phonon model in a solid of N independent harmonic

oscillator.

1. Classical

We now revisit N noninteracting d-dimensional classical harmonic oscillators - Einstein

phonon model - described by a familiar Hamiltonian

H =
N∑
i

[
p2
i /2m+

1

2
mω2

0r
2
i

]
, (33)

with ri,pi the classical phase-space coordinates, now treating it using the canonical ensemble.

Much of the analysis mirrors that of the Boltzmann gas of the previous section, above. Since

the system is classical its energy is the Hamiltonian E[{ri,pi}] = H({ri,pi}).

Microstates: 2dN dimensional phase space with coordinates {ri,pi}.

Again, using the fundamentals introduced and discussed above, we can now readily

compute the partition function, given by

Z(T, V,N) =
N∏
i

[∫
ddrid

dpi
(2π~)d

]
e−H({pi},{ri})/kBT , (34)

Leaving the detailed analysis to the homework, here we only highlight and outline the

analysis.

Comments:
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1. There is no Gibbs “fudge” factor 1/N ! since oscillators are fixed in a definite place and

can thereby be distinguished by their location.

2. Phase space measure 1/2π~ is identical to that of the Boltzmann gas and for the same

reason, that can ultimately only be determined by the classical limit of a quantum

formulation below.

3. As we saw above for the Boltzmann gas, here too the key simplifying feature is the

noninteracting nature of the particles with the Hamiltonian being a sum of dN oscilla-

tors. As a result the total Gibbs weight factors into a product of 2dN one-dimensional

Gaussian weights, that can be evaluated individually using the Gaussian integral cal-

culus above. We note that this factoring immediately gives us extensive scaling of the

free energy F (and by extension of all thermodynamics) with N .

We also observe that the kinetic and potential energies decouple in this classical treat-

ment, giving Z = ZKZU , something that does not happen in a quantum case, where

K and U do not decouple due to their noncommutativity going back to [x, p] = i~.

A straightforward computation of Z (relegated to homework) in d dimensions gives

Z(T,N) =

(
kBT

~ω0

)dN
,

which then leads to all the key thermodynamic quantities,

F (T,N) = dNkBT ln(~ω0/kBT ), (35)

S(T,N) = dNkB [ln(kBT/~ω0) + 1] , (36)

E = dNkBT, CV = dNkB, (37)

that I urge you to carefully compare to their microcanonical computation on homework 1

and lectures 2.

Observations:

• I note that the expression is explicitly extensive as required on general physical

grounds, and are consistent with those we found via the microcanonical ensemble.
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• Z has a nice physical interpretation in terms of quantum oscillators. Namely, for

large extensive energy, q ≡ kBT/~ω0 measures the typical number of oscillator states

that are excited per 1d oscillator with thermal energy kBT . Thus our result is simply

Z = qdN as the total number of possible microstates for dN 1d oscillators.

• Entropy S(T,N) becomes unphysically negative for kBT < ~ω0, reminding us of the

breakdown of above classical phase-space treatment of this fundamentally quantum

system.

2. Quantum

We now revisit N decoupled d-dimensional quantum harmonic oscillators as a model of

atomic vibrations in a crystalline solid (Einstein phonons), described by familiar quantum

Hamiltonian

Ĥ =
N∑
i

[
p̂2
i /2m+

1

2
mω2

0 r̂
2
i −

d

2
~ω0

]
, (38)

where for convenience I defined Ĥ with zero point energy subtracted off. We now treat it

using canonical ensemble.

Microstates: For a quantum system, the microstates are the eigenstates of the Hamil-

tonian, and thus we first need to solve Ĥ|ψn〉 = En|ψn〉. Standard analysis gives us Fock

states |{nα}〉 as the eigenstates with harmonic oscillator eigenvalues

E[{nα}] = ~ω0

dN∑
α

nα,= ~ω0(nx1 + ny1 + nz1 + . . .+ nx2 + ny2 + nz2 + . . .), (39)

with α ranging over dN (coordinate and particle label) values.

Thus, by definition, the partition function for N d-dimensional quantum harmonic os-

cillators is given by,

Z(T ) = Tr[e−βĤ ] =
∑
{nα}

e−β~ω
∑dN
α nα (40)
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A straightforward computation of Z (relegated to homework) in d dimensions then leads

to thermodynamics,

F (T,N) = dN

[
kBT ln (2 sinh(~ω0/2kBT ))− 1

2
~ω0

]
, (41)

S(T,N) = dNkB

[
~ω0

2kBT
coth(~ω0/2kBT )− ln (2 sinh(~ω0/2kBT ))

]
, (42)

E =
1

2
dN~ω0 [coth(~ω0/2kBT )− 1] , (43)

that I urge you to carefully compare to their microcanonical computation on homework 1

and lectures 2 and to explore carefully the classical and quantum limits, ensuring consistency

with expectations.

Observations:

1. We note that at high temperature, these expressions recover the expected classical

results and in particular the equipartition found above.

2. Note that in the quantum limit of low temperature the result equipartition is vio-

lated, as excitations below the gap ~ω0 freeze out (i.e., are inactive), and occur with

exponentially suppressed probability.

3. Heat capacity Cv = dE/dT is now straightforwardly obtained, exhibiting high T

equipartition, low T freeze-out, with two regimes separated by a characteristic peak

at crossover temperature scale set by ~ω0.

4. The classical limit can also be obtained by treating oscillator eigenvalues εα as continu-

ous variables and computing the equipartition Z by integrating, rather than summing

over εα to obtain as we did for the microcanonical treatment. I urge to verify this for

yourself.

5. Note how much easier the computations are in the canonical ensemble, hence its

promised utility.
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D. N Spin-1/2: Langevin paramagnet

FIG. 6: An illustration of an Ising spin-1/2 quantum paramagnet in an external magnetic field B,

consisting of N spins, that only have two quantum states each. Generalizaton to spin-s leads to

2s+ 1 states for each spin.

As a last basic example we revisit model of a paramagnet consisting of N noninteracting

spin-s magnetic moments in an external magnetic field B, with Hamiltonian given by Zeeman

energy,

Ĥ = −
N∑
i=1

µ̂i ·B = −
N∑
i=1

gµBBŜ
z
i (44)

where µB is Bohr magneton (carrying units of magnetic moment), g is the gyromagnetic ratio

(between magnetic moment and spin) and Sz is the component of the spin along the external

magnetic field B. We now analyze this problem classically and then quantum mechanically.

E. Classical paramagnet

Let us first discuss the classical case, where S is a classical 3d vector of fixed magnitude

s, characterized by points on a surface of a 3d sphere. Thus Szi = s cos θi and the classical

partition function is given by,

Z =

[∫ 2π

0

∫ π

0

dφdθ sin θeβµB cos θ

]N
, (45)
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where magnetic moment µ = gµBs. Straighforward analysis then leads to thermodynamics,

F (T ) = −NkBT ln

[
4πkBT

µB
sinh(µB/kBT )

]
, (46)

M(T ) = Nµ

[
coth

(
µB

kBT

)
− kBT

µB

]
≡ NµL

(
µB

kBT

)
, (47)

E = −MB, (48)

where L(x) = coth(x)− 1/x is the Langevin function.

As you will explore in detail on the homework, we note that:

• At temperatures T � T2 ≡ gµBsB/kB the spin system exhibits equipartition with 2N

degrees of freedom, characterized by heat capacity C = NkB. Why do we expect this

behavior?

Because these are classical spins, we don’t expect a freeze-out in this treatment (but

see the quantum treatment, below).

• In contrast at very high temperatures T � T2 ≡ gµBsB/kB, above exact result reduces

to the expected equal thermal distribution over all orientations of the spin, also with

a vanishing heat capacity.

• At low field the linear magnetic susceptiblity χC = ∂M/∂B|B→0 ∼ 1/T is of Curie law

form. Why?

F. Quantum paramagnet

We now analyze the quantum version of the problem, where quantum spins cannot

assume arbitrary orientations relative to B – they are quantized with microstates as the

eigenstates, Ŝzi |s,m〉 = ~m|s,m〉, with m = −s,−s+1, . . . , s−1, s take on 2s+1 eigenvalues,

and Ĥ|s,m〉 = Em|s,m〉, with Em = gµBBm ≡ µBm. For general angular momentum J ,

the gyromagnetic ratio is g = 3
2

+ s(s+1)−L(L+1)
2J(J+1)

(g = 2 for pure spin and g = 1 for pure

orbital angular momentum problems).

Since spins are noninteracting the N -spin partition function Z = ZN
1 decouples into
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single spin partition function Z1, given by

Z1 =
s∑

m=−s

exp (βµBm) , (49)

and after standard computation gives,

F (T ) = −NkBT ln

[
sinh(βµB(s+ 1

2
))

sinh(βµB
2

)

]
, (50)

M(T ) = NµsBs[µsB/kBT ], (51)

where Bs(x) =
(
1 + 1

2s

)
coth

[
x(1 + 1

2s
)
]
− 1

2s
coth

[
x
2s

]
is the Brillouin function.

As a simple example, we consider the so-called Ising case of s = 1/2, where there are

only two states per spin and g = 2. The partition function and magnetization density then

reduce to,

Z(B) = =
[
eµBB/kBT + e−µBB/kBT

]N
= [2 cosh(µBB/kBT )]N , (52)

m(B) =
µBN

V Z(B)

[
eµBB/kBT − e−µBB/kBT

]
= −∂F

∂B
, (53)

= nµB tanh(µB/kBT ), (54)

as can also be obtained directly from the general s Brillouin function above.

Observations:

1. We note that for large s � 1 the partition function Z1 resembles that of a harmonic

oscillator.

2. For ultra quantum spin limit of s = 1/2, the result reduces to a much sim-

pler familiar form found within microcanonical ensemble in Lecture Set 2. M =

NµB tanh(µBB/kBT ).

3. In the opposite s � 1 limit the results reduce to that of the classical spin, with a

Langevin function for magnetization, as expected. Why?

4. At very low temperatures T � T1 ≡ gµBB/kB all spin degrees of freedom freeze out,

as they fully align with the field B, giving a vanishing heat capacity.
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5. In contrast at very high temperatures T � T2 ≡ gµBsB/kB, above exact result reduces

to the expected equal thermal distribution over all orientations of the spin, also with

a vanishing heat capacity.

6. Interesting, at intermediate temperatures, T1 � T � T2, the spin system exhibits

equipartition with 2N degrees of freedom, characterized by heat capacity C = NkB.

Why do we expect this behavior?

7. At low field the linear magnetic susceptiblity χC = ∂m/∂B|B→0 = 1
3
nµ2 s(s+1)

kBT
≡ c

T
is

of Curie law form, as can also be seen from lowest order perturbation theory. This 1/T

linear susceptibility behavior is a generic experimental signature of independent local

moments, with the amplitude c a measure of the size of the magnetic moment and the

associated spin. At finite T the susceptibility is finite and paramagnetic (i.e., magne-

tization is along the applied magnetic field and vanishes with a vanishing field), only

diverging at a vanishing temperature. This captures the fact that in a classical regime,

as T → 0 a nonzero magnetization is induced in response to an infinitesimal field, as

disordering thermal fluctuations vanish. For sufficiently low T a quantum regime of

large Zeeman gaps µB � kBT is reached, and magnetization density saturates at

its maximum value of nµs, and susceptibility and heat capacity vanish exponentially.

In the opposite limit of high temperature and low field, sµB � kBT , all states are

equally accessible, entropy dominates and the free energy approaches −kBT ln(2s+1).

These limits are illustrated in Figs.(7) and (8). As I discuss in an advanced course

on statistical mechanics (Phys7240), interactions between local moments lead to a far

richer behavior.

8. Finally we can also straightforwardly compute the heat capacity (specific heat),

Cv(T ) = T ∂S
∂T
|V,N , and extract its low and high temperatures asymptotics, with the

crossover temperature to freeze-out set by the Zeeman gap, displaying a Schottky form,

as always is the case of a gapped quantum systems.

With this lecture discussion, amplified by your detailed homeowork analysis we are now

experts in both micro- and canonical statistical mechanics. In the next lecture we will turn

to the grand-canonical ensemble and rework above exampls in the grand-canonical statistical
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FIG. 7: Reduced magnetization curves for three paramagnetic salts and comparison with Brillouin

theory prediction, from Ref.11.

FIG. 8: Magnetization and corresponding Curie susceptibility in gold (Au) nanoparticles, measured

at several temperatures up to H = 17 Tesla. Reduced magnetization curves for three paramagnetic

salts and comparison with Brillouin theory prediction, from Ref.10.

mechanics, confirming that the ensembles agree in the thermodynamic limit.
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