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Abstract

In this set of lectures we will introduce and discuss the microcanonical ensemble description

of quantum and classical statistical mechanics. We will apply it to a study of three canonical

systems, spin-1/2 paramagnet, Boltzmann gas, quantum and classical harmonic oscillators, with

details worked out by you in the homework.
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I. REVIEW OF FUNDAMENTALS

Let’s begin with reviewing the basics from lecture 1:

• microstates: labeled by {qi}

• ergodicity:

- time averages replaced by ensemble averages with probability P ({qi})

- every microstate is equally likely to occur in a closed system (for fixed conserved

quantities, E, N , V ,. . . )

• 〈O〉 =
∑
{qi}O({qi})P ({qi})

• P ({qi}) = f [H({qi})], dictated by Liouville’s theorem, so that probability distribution

is stationary (time independent)

- Microcanonical ensemble: fixed E, V,N → S(E, V,N)

- Canonical ensemble: fixed T, V,N → F (T, V,N) = E − TS

- Grandcanonical ensemble: fixed T, V, µ→ Π(T, V, µ) = E − TS − µN

All we need is P ({qi}) and from it any thermodynamic average can be computed, at

least in principle.

II. MICROCANONICAL ENSEMBLE FUNDAMENTALS

A. Liouville’s Theorem

FIG. 1: An illustration of conservation of phase space microstates {qi} in arbitrary volume V .
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Above we have mentioned in passing that stationarity of equilibrium demands that

P ({qi}) must be a function of the Hamiltonian, H[{qi}]. It is worth pausing briefly to see

the derivation of this Liouville’s theorem dating back to 1838.

To this end, focussing on a classical particle system, let’s consider a region of phase

space V and discuss the number density ρ(pi, ri) of microstates confined to V at time t.

Since microstates are conserved locally, the change in number inside V can only come from

current flow out of the region, as summarized by,

d

dt

(∫
ρ(pi, ri)d

dNpddNr

)
= −

∫
dA · ρv, (1)

where phase space velocity v = (ṗi, ṙi). Using divergence theorem to transform the right

hand side, we find that phase space density ρ(pi, ri) satisfies the continuity equation, ∂tρ+∇·

ρv = 0, where ∇ ≡ ( ∂
∂pi
, ∂
∂qi

). Applying the divergence to the current and using Hamilton’s

equations, we find,

∂tρ+
∂H

∂pi

∂ρ

∂qi
− ∂H

∂qi

∂ρ

∂pi
= 0. (2)

Demanding that in equilibrium ∂tρ = 0, we find a vanishing of the Poisson bracket or H

with ρ,

{H, ρ} = 0. (3)

The solution for this is ρ(pi, ri) = f [H(pi, ri)], as advertized above.

B. Microcanonical Probability Distribution

So what is the probability distribution P ({qi})?

Since all microstates appear with equal probability then,

P [{qi}] =

 1/Ω(E), for E({qi}) = E,N({qi}) = N, . . .

0, otherwise
(4)

where

Ω(E, V,N, ...) =
∑
{qi}

δE,E[{nα}] =
′∑
{qi}

1 (5)
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FIG. 2: Schematic of a fixed energy E hypersurface of width δE = ∆.

FIG. 3: Illustration of definition of temperature in microcanonical ensemble, showing two systems

A and B in thermal contact (allowed to exchange energy, with total E = EA + EB fixed.

is the total number of states - “multiplicity” - subject to the constraint of fixed conserved

quantities, like E, V,N , as indicated by the prime on the conditional sum in the second line.

By definition, P [{qi}] is normalized to 1.

This is illustrated in Fig.2, where we allowed the constraint to extend over energies

between E and E + ∆ to get a finite number of states in this infinitesimal shell. In the

thermodynamic limit, the results will be independent of the width ∆.

We note in passing that Ω(E) can be best thought of as the density of states, that

allows us to change from energy-unconstrained sums over microstates {qi} to an integral

over energy E with an extra Jacobian factor Ω(E). This will become clear when we study

other e.g., canonical ensemble without the energy constraint.

III. DEFINITION OF TEMPERATURE, PRESSURE, CHEMICAL POTENTIAL

Consider systems A and B in thermal contact, so energy can flow between them but

total system A+B is still completely closed and isolated with E = EA +EB fixed. NA,B and

VA,B are fixed for each of the systems.

For this situation, for a state with a given EA and EB, multiplicity for the combined
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system is

Ω(EA, EB) = ΩA(EA)ΩB(EB),

with probability of this state therefore given by

P (EA, EB) =
ΩA(EA)ΩB(EB)

Ω(E)
,

where Ω(E) =
∫ E
0
dEAΩA(EA)ΩB(E − EA).

The state that dominates in the thermodynamic limit is the one with highest probability

so we determine it by maximizing P (EA, EB) over EA (or equivalently EB, under condition

EA + EB = E).

Computing dP (EA, E − EA)/dEA and setting it to zero, we find

1

ΩA

∂ΩA

∂EA
=

1

ΩB

∂ΩB

∂EB
, (6)

∂ ln ΩA

∂EA
|VA,NA =

∂ ln ΩB

∂EB
|VB ,NB , (7)

∂SA
∂EA
|VA,NA =

∂SB
∂EB

|VB ,NB , (8)

where we defined our key result, namely that entropy S is a logarithm of the multiplicity with

the Boltzmann constant kB = 1.38 × 10−23Joules/Kelvin as the proportionality constant

that converts between energy and temperature,

S(E, V,N) = kB ln Ω(E, V,N). (9)

We note that S(E) is our first thermodynamic potential and its advantage over Ω itself is

that S is extensive (if system size increases by a factor of b, Ω increases exponentially with

b, while S increases by a factor of b.)

Furthermore we observe that

1

T
≡ ∂S(E)

∂E
|V,N definition of temperature T (10)

is the quantity that is equal between two subsystems A and B in thermal equilibrium, and so

it is useful to give it a name. As you will see on the homework, one can also show that heat
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FIG. 4: Graphical illustration of maximization of total multiplicity of system A+B by equality of

logarithmic derivatives of the corresponding Ω for two systems in equilibrium.

will flow from a subsystem with a lower value of this derivative ∂S
∂E
|V,N (higher temperature)

to one with a higher derivative (lower temperature). (Can you explain why this is the case?)

It therefore makes sense to set this derivative to inverse of physical temperature to correlate

with everyday physical notion of temperature. We therefore take Eq.(10) as the definition

of temperature, and is the content of 0th law of thermodyncamis. Graphical illustration of

this is given in Fig.4.

We can repeat above analysis step by step for (i) keeping A and B insulating and

impermeable (EA,B and NA,B fixed), but allowing the boundary between the two to adjust,

such that only the total volume VA+VB = V is fixed, and for (ii) fixed volumes and insulating

A and B (EA,B and VA,B fixed), but separated by a permeable wall allows the number of

particles to adjust such that the total number NA +NB = N remains fixed. Maximizing the

probability (or multiplicity) of the total system A+B in these two cases (i) and (ii) we obtain

that mechanical equilibrium and chemical equilibrium conditions are respectively given by

equality of:

∂S

∂V
|E,N ≡ P/T (mechanical equilibrium),

∂S

∂N
|E,V ≡ −µ/T (chemical equilibrium),

where we respectively defined as pressure and chemical potential. The fact that these are

sensible definitions that agree thermodynamics can be shown (see below) but comparing

with the thermodynamic relations.

Observations and consequences:
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• Note that if there is only 1 state is available, Ω = 1 and S = kB ln 1 = 0 -> 3rd law of

thermodynamics

• S(E) is extensive and thus is additive

• From Eq.(10), we have T = ∂E
∂S
|V,N , which gives dE|V,N = TdS = Q, where Q is the

corresponding heat flow. This is the 1st law of thermodynamics - conservation of

energy showing that increase in internal energy is given by the amount of heat flowing

into the system (if no work is done, V is fixed, dV = 0. More generally dE = W +Q).

• By definition, the total differential of entropy S is given by

dS =
∂S

∂E
|V,NdE +

∂S

∂V
|E,NdV +

∂S

∂N
|E,V dN,

which when compared to thermodynamics dE = TdS − PdV + µdN , gives

P = T
∂(kB ln Ω)

∂V
|E,N , µ = −T ∂(kB ln Ω)

∂N
|E,V .

• Thermodynamics is most commonly probed by adding heat Q = TdS to the system

and measuring how much temperature changes. This is probed by heat capacities at

constant V or P , given by

Cv = T

(
∂S

∂T

)
|V,N =

(
∂E

∂T

)
|V,N Cp = T

(
∂S

∂T

)
|P,N =

(
∂H

∂T

)
|P,N .

Thus, with multiplicity Ω(E, V,N) in hand, we can compute any thermodynamic

property! (at least in principle, though it may be difficult.)

The problem thus reduces to computation of Ω(E). Below we will sketch out such com-

putations for a few canonical examples, relegating the details of the derivation to homework

1.

IV. APPLICATIONS OF MICROCANONICAL STATISTICAL MECHANICS

Having established the foundation of microcanonical ensemble statistical mechanics, we

now compute the associated thermodynamics for three common examples.
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A. N noninteracting particles: Boltzmann gas

FIG. 5: An illustration of a Boltzmann (noninteracting, classical) gas of N particles, confined to a

closed, insulating box.

Consider N identical noninteracting (low density) classical particles - Boltzmann gas -

confined to a d-dimensional box of linear size L, described by a Hamiltonian

H({pi}) =
N∑
i

p2
i /2m, (11)

which for classical system is the energy E[{ri,pi}] = H({pi}), and,

Microstates: 2dN dimensional phase space with coordinates {ri,pi}.

The multiplicity at energy E - a number of states in a shell between E and E + ∆ - is

then given by,

Ω(E, V,N) =
1

N !

∑
{ri,pi}

δE,E[{ri,pi}] =
1

N !

′∑
{ri,pi}

1,

=
∆

N !

N∏
i

[∫
ddrid

dpi
(2π~)d

]
δ(E −H({pi}), (12)

Comments:

1. Gibbs “fudge” factor 1/N ! crudely accounts for the identity of these classical particles

and crucially ensures that S(E) is extensive. We will see later why this fix fails at low

temperatures.
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2. Phase space measure 1/2π~ is required by dimensionless analysis (Ω is a dimensionless

number), with its precise form enconding one microstate state per phase space area

dxdp = 2π~. Classical physics does not know about this factor and therefore about the

zero of the entropy, classically only defined up to additive constant (3rd law requires

quantum mechanics). We will derive this below.

3. The total number of states ΩT (ET ) up to energy ET is given as simply the total phase-

space volume, which is given as the coordinate-volume, set by the box volume V times

a momentum-volume of a dN -dimensional sphere with radius set by
√

2mE,

ΩT (ET ) =
N∏
i

[∫ H({pi}<ET ddrid
dpi

(2π~)d

]
, (13)

=

∫ ET

0

dE
N∏
i

[∫
ddrid

dpi
(2π~)d

]
δ(E −H({pi}),

= V N

∫ √2mET
0

dR

[
RN !

m∆V N
Ω(R2/2m)

]
,

(14)

where in the last line we inserted an identity as an integral over a δ-function, and the

last equality demonstrates that (2E/m)1/2Ω(E)N !/(∆V N) is the “surface area” of the

momentum-hypersphere with radius
√

2mE.

4. This last observation makes the evaluation (left for homework 1) easy to carry out

exact, as a surface area and volume of a d-dimensional unit hypersphere are given by

Sd = 2πd/2/Γ(d/2) (with S2 = 2π, S3 = 4π, . . . and Vd = πd/2/Γ(d/2 + 1), respectively.

5. Quantum mechanical treatment treats particle as matter deBroglie waves with mi-

crostates given by an integer valued dN -dimensional vectors, ni, related to components

of momenta in the usual way (for periodic boundary conditions), e.g., px = 2π~nx/L.

Thus, we have

Ω(E) =
1

N !

′∑
{ni}

1 =
1

N !

N∏
i

[
Ld
∫ ′ ddpi

(2π~)d

]
, (15)

thereby deriving the aformentioned normalization of the classical computation of Ω.
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6. Clearly, Ω(E, V,N) = V N

N !
f(N,E), from which we immediately obtain the celebrated

ideal gas law PV = NkBT .

A straightforward computation (relegated to homework 1) gives in 3d S = kB ln Ω,

S(E, V,N) = kBN

[
5

2
+ ln

(
V

N

(
4πmE

3Nh2

)3/2
)]

(16)

referred to as the Sackur-Tetrode equation.

We note that:

- The entropy expression is explicitly extensive as required on general physical grounds

and Gibbs factor was crucial to have this happen.

- straightforward computation also gives the so-called equipartition, E = 1
2
dNkBT , a

linear relation between the energy and the temperature, valid for systems with only quadratic

degrees of freedom in the Hamiltonian and proportionality constant dN counting the number

of such quadratic degrees of freedom.

- The expression for entropy S(E) becomes negative for sufficiently low E (or T ), and

thus clearly the computation must break down as it violates 3rd law of thermodynamics and

really more fundamentally violates its intrinsically positive definition S = kB ln Ω.

- From S(E, V,N) we can explicitely obtain well known properties of the ideal d-

dimensional Boltzmann gas:

E(T ) =
d

2
NkBT, equipartition, (17)

Ed/2V = const., adiabatic process, dS = 0, (18)

CV (T ) =
d

2
NkB, heat capacity at constant V , (19)

CP (T ) =
d+ 2

2
NkB, heat capacity at constant P . (20)

We next turn to another two systems and treat them within the microcanonical ensemble.
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B. N harmonic oscillators: Einstein phonons in a solid

FIG. 6: An illustration of the Einstein phonon model in a solid of N independent harmonic

oscillator.

1. Classical

ConsiderN noninteracting d-dimensional classical harmonic oscillators - Einstein phonon

model - described by a familiar Hamiltonian

H =
N∑
i

[
p2
i /2m+

1

2
mω2

0r
2
i

]
, (21)

with ri,pi the classical phase-space coordinates. Much of the analysis mirrors that of the

Boltzmann gas of the previous section, above. Since the system is classical its energy is the

Hamiltonian E[{ri,pi}] = H({ri,pi}).

Microstates: 2dN dimensional phase space with coordinates {ri,pi}.

The multiplicity at energy E - a number of states in a shell between E and E + ∆ - is

then given by,

Ω(E, V,N) =
∑
{ri,pi}

δE,E[{ri,pi}] =
′∑

{ri,pi}

1,

= ∆
N∏
i

[∫
ddrid

dpi
(2π~)d

]
δ(E −H({ri,pi}), (22)

Comments:
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1. There is no Gibbs “fudge” factor 1/N ! Why not?

2. Phase space measure 1/2π~ is identical to that of the Boltzmann gas and for the same

reason, that can ultimately only be determined by the classical limit of a quantum

formulation below.

3. By considering the total number of states ΩT (ET ) up to energy ET , we see that it is now

given by the phase-space volume of a 2dN -dimensional sphere with radius set by
√
E

(up to phase-space coordinates rescaling), contrasting with that for the Boltzmann

gas, above. We thus see that (up to rescaling of coordinates) 2E1/2Ω(E)/∆ is the

2dN − 1-dimensional “surface area” of the 2dN -dimensional phase-space hypersphere.

4. This last observation makes the evaluation (left for homework 1) easy to carry out

exact, as a surface area and volume of a d-dimensional unit hypersphere are given by

Sd = 2πd/2/Γ(d/2) (with S2 = 2π, S3 = 4π, . . . and Vd = πd/2/Γ(d/2 + 1), respectively.

A straightforward computation (relegated to homework 1) gives in d dimensions,

Ω(E,N) =

(
E

~ω0

)dN
1

(dN)!

∆

E
≈
(

E

dN~ω0

)dN
∆

E
, (23)

S(E,N) = kBdN ln

(
E

dN~ω0

)
, (24)

where we used S = kB ln Ω and lowest order Stirling approximation for N !, valid in the

thermodynamic limit, N � 1.

Observations:

• I note that the expression is explicitly extensive as required on general physical

grounds.

• Ω has a nice physical interpretation in terms of quantum oscillators. Namely, for large

extensive energy, q ≡ E/(dN~ω0) measures the typical number of oscillator states

that can be excited per 1d oscillator. Thus our result is simply Ω = qdN as the total

number of possible microstates for dN 1d oscillators.
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2. Quantum

We now consider N decoupled d-dimensional quantum harmonic oscillators as a model

of atomic vibrations in a crystalline solid (Einstein phonons), described by familiar quantum

Hamiltonian

Ĥ =
N∑
i

[
p̂2
i /2m+

1

2
mω2

0 r̂
2
i −

d

2
~ω0

]
, (25)

where for convenience I defined Ĥ with zero point energy subtracted off.

Microstates: For a quantum system, the microstates are the eigenstates of the Hamil-

tonian, and thus we first need to solve Ĥ|ψn〉 = En|ψn〉. Standard analysis gives us Fock

states |{nα}〉 as the eigenstates with harmonic oscillator eigenvalues

E[{nα}] = ~ω0

dN∑
α

nα,= ~ω0(nx1 + ny1 + nz1 + . . .+ nx2 + ny2 + nz2 + . . .), (26)

with α ranging over dN (coordinate and particle label) values.

Thus, by definition, the multiplicity for N d-dimensional quantum harmonic oscillators

is given by,

Ω(E) =
∑
{nα}

δE,E[{nα}] (27)

Comments:

1. The result is only nonzero for energy E = ~ω0n, (n ∈ Z) i.e., integer multiple of

excitation quantum ~ω0. So the answer is completely determined by the integer n ≡

E/~ω0, the total number of excitation quanta.

2. A good warm up is a combinatorial computation of a degeneracy a single harmonic

oscillator, g(n) = Ω(E = ~ω0n) in 2d and 3d. The multiplicity for Einstein solid is

clearly just a higher dimensional generalization of these.

3. Thinking about the combinatorics of distributing n total quanta of excitations among

dN 1d oscillators, or equivalently performing dN dimensional constrained sums, and
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using the lowest Stirling formula approximation for N � 1 and n� 1, we obtain

Ω(E) =

(
n+ dN

n

)n(
dN + n

dN

)dN
. (28)

4. Classical limit of this expression recovers our result for multiplicity and the entropy,

(24), above.

Having found Ω(E,N), we then can compute the entropy S(E,N) and from it the

temperature T (E), thereby extracting energy E(T ) as a function of temperature T (notice

that in this microcanonical approach T is a derived quantity). Relegating detailed analysis

to the homework, from these we obtain,

E(T,N) =
~ω0dN

e~ω0/kBT − 1
(29)

Observations:

1. We note that at high temperature, this recovers the expected equipartition of classical

description.

2. In the deep quantum limit of low temperature the result equipartition is violated, as

excitations below the gap ~ω0 freeze out (i.e., are inactive), and occure with exponen-

tially suppressed probability.

3. Heat capacity Cv = dE/dT is now straightforwardly obtained, exhibiting high T

equipartition, low T freeze-out, with two regimes separated by a characteristic peak

at crossover temperature scale set by ~ω0.

4. The classical limit can also be obtained by treating oscillator eigenvalues εα as contin-

uous variables and integrating, rather than summing over them to obtain

Ω(E) = ∆
dN∏
α=1

∫
dεα
~ω0

δ(E − E[{εα}].

The above constrained hypervolume of an M -dimensional space is spanned by positive

values of xi coordinates, limited by a hyperplane x1 +x2 + . . .+xM = R, can be shown
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to be given by

V (R) =

∫
[
∑M
i=1 xi]≤R

dx1dx2 . . . dxM =

∫ R

0

drS(r) = RM/M !, (30)

where S(R) = RM−1/(M − 1)! is the corresponding hyper-area at radius R needed for

computation of the multiplicity Ω(E).

C. N Spin-1/2: Langevin paramagnet

FIG. 7: An illustration of an Ising spin-1/2 quantum paramagnet in an external magnetic field B,

consisting of N spins, that only have two quantum states each.

As a last basic example we study a toy model of a paramagnet consisting of N noninter-

acting spin-1/2 magnetic moments in an external magnetic field B, with Hamiltonian given

by Zeeman energy,

H = −
N∑
i=1

µi ·B = −
N∑
i=1

µBBσi

≡ −
N∑
i=1

hσi (31)

where µB is Bohr magneton (carrying units of magnetic moment) and σi = ±1 labels the

two Zeeman spin eigenstates states of i-th spin, with Ĥ|sz = 1
2
~σ〉 = Eσ|sz = 1

2
~σ〉.

We note that the energy E = −µBBM is uniquely determined by the dimensionless

integer magnetization M = N↑ −N↓, with N↑,↓ is the number of spins up and down. Thus
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Ω(E) =
∑
{σi}

δE,E[{σi}] (32)

is given by combinatorial counting of the number of spin microstates, {σi} for a fixed

value of M and N .

Standard analysis (relegated to the homework) gives Ω(E,N) and from it, we can readily

derive the entropy S(E) = kB ln Ω, from which all other thermodynamic quantities follow.

In particular using 1/T = ∂S/∂E we find energy E(T ) and magnetization m(T,B) =

µB
∑N

i=1 σi,

E(T ) = −m(T )B = −NµBB tanh

(
µBB

kBT

)
, (33)

Observations:

1. We note that at high temperature, µBB/kBT � 1 this expression gives the expected

linear response form m ≈ χCB, with linear susceptibility, χ(T,B) = ∂m/∂BB→0,

χC = a/T, (34)

where a is the constant that measures the size of the magnetic moment.

2. In the opposite quantum limit, µBB/kBT � 1, we obtain a saturated magnetization,

m ≈ µBN , understood as most spins are aligned with the external magnetic field, not

having enough energy to excite across the Zeeman gap.

3. Finally we can also straightforwardly compute the heat capacity (specific heat),

Cv(T ) = T ∂S
∂T
|V,N , and extract its low and high temperatures asymptotics, with the

crossover temperature set by the Zeeman gap, as always is the case for gapped quantum

systems.

With this lecture discussion, amplified by your detailed homeowork analysis we are now

experts on microcanonical statistical mechanics. In the next lecture we will turn to the

canonical (and then grand-canonical) ensemble and rework above exampls in the canonical
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statistical mechanics, confirming that the ensembles agree in the thermodynamic limit.
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