Physics 7230: STATISTICAL MECHANICS

Spring 2025

Monday, Wednesday Friday 10:10-11am, Duane, XXX

Instructor: Prof. Leo Radzihovsky

Office Hours:	Monday 11am - Noon (or by appointment), Gamow Tower, Rm 623, phone: 492-5436, email: radzihov@colorado.edu
Grader:	
Content:	The course will cover the fundamentals of statistical mechanics (see course outline)
Pre/Corequisites:	PHYS 5250, PHYS 5260, basic thermo at PHYS 1110 level Interest and desire to learn
Text:	Pathria: Statistical Mechanics
Additional Suggested Reading:	 Landau and Lifshitz: Statistical Physics, parts I & II Feynman: Statistical Mechanics
Homework:	Problem sets will be assigned every couple of weeks, to be uploaded to Canvas
Exams:	
Approximate Grading:	Homeworks: 30% Midterm: 30% Final: 40%

COURSE OUTLINE

- 1. Review of Basic Thermodynamics
 - (a) Four laws of thermodynamics
 - (b) Thermodynamic potentials: U, S, F, G, H
 - (c) Maxwell Relations
 - (d) Specific Heat, Compressibility, etc...
- 2. Fundamentals of Statistical Mechanics
 - (a) Counting of microstates
 - (b) Thermodynamic equilibrium and 0th law
 - (c) Entropy and connection to thermodynamics
 - (d) Microcanonical ensemble
 - (e) Classical ideal (noninteracting) monatomic gas
- 3. Ensemble Theory
 - (a) Ensemble average
 - (b) Phase space and quantum states
 - (c) Liouville's theorem
 - (d) Canonical ensemble
 - (e) Energy fluctuations and contact with microcanonical ensemble
- 4. Examples on Canonical Ensemble
 - (a) Equipartion theorem
 - (b) Ideal monatomic gas
 - (c) Classical and quantum harmonic oscillators
 - (d) Classical and quantum paramagnets
- 5. Quantum Statistical Mechanics
 - (a) Bosons
 - (b) Fermions
 - (c) Examples (phonons, photons, metals, magnetism)
- 6. Phase Transitions
 - (a) Mean-field theory (van der Waals, Bragg-Williams, Weiss)

- (b) Landau theory
- (c) Ferromagnets
- (d) Liquid crystals
- (e) Superfluids
- (f) Superconductors
- (g) Universality, scaling theory and critical exponents
- (h) Breakdown of mean-field theory (Ginzburg criterion) and how to fix it
- 7. Equilibrium and Non-equilibrium Dynamics
 - (a) Brownian motion (Einstein, Smoluchowski, Langevin theories)
 - (b) Fokker-Planck equation
 - (c) Fluctuation-dissipation theorem