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1 Background

Superconductivity is a phenomenon that in certain kind of material exactly zero
electrical resistance and magnetic field expulsion can happen below a critical tem-
perature. Superconductivity was discovered on April 8, 1911 by Heike Kamerlingh
Onnes[1]. At the temperature of 4.2K, he observed that the resistance abruptly dis-
appeared. In subsequent decades, superconductivity was observed in several other
materials. In 1913, lead was found to superconduct at 7K, and in 1941 niobium ni-
tride was found to superconduct at 16K. Before 1980, the critical temperature found
cannot be higher than 30K. Those superconductor are called conventional supercon-
ductor. Theoretically, they can be fully explained by BCS theory and phenomenolog-
ical Landau-Ginzburg theory. In the lecture notes, we will discuss the exotic behavior
of superconductor and the remarkable theories for deep understanding.

2 Experimental evidences of superconductor

There are universal properties of superconductor listed as follow which can be
measured in experiments. The existence of these universal physical properties implies
superconductivity is a thermodynamic phase of matter. Thus, the description of those
properties does not need microscopic detail of the material.

2.1 Zero resistance

In a normal conductor, an electric current is constantly colliding with the ions
in the lattice, and during each collision some of the energy carried by the current is
absorbed by the lattice and converted into heat. As a result, the energy carried by
the current is constantly being dissipated. The current will finally decay to zero when
there is no external power provided. However, superconductors are able to maintain
a current with no applied voltage. Experiments have demonstrated that currents in
superconducting coils can persist for years without any measurable degradation. The
experimental evidence for zero resistance is shown in Fig. (1)[1]. Without external
magnetic field, the critical temperature for vanishing resistance is about 4.2K. Thus,
the inner structure of superconductor would be completely different from normal
metal.

2.2 Perfect diamagnetism

Zero electrical resistance would lead to perfect diamagnetism. This means if an
additional magnetic field is imposed to a superconductor, current loops would be
generated to exactly cancel the imposed field according to Lenz’s law. But the original
magnetic flux through the material would not change in the applied magnetic field.
If we have external applied magnetic field H⃗ and the magnetization inside is M⃗ , they
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Figure 1: Resistance of mercury drop to zero measured by Onnes. [1]

should satisfy
B⃗ = H⃗ + 4πM⃗ (1)

where B⃗ is the net magnetic field induced by H⃗inside the material. For perfect
diamagnetism, magnetic susceptibility is χ = −1. Thus,

M⃗ = − H⃗

4π
⇒ B⃗ = 0 (2)

2.3 Meissner-Oschenfeld effect

Another prominent property of superconductor is Meissner effect[2], which is
shown in Fig. (2). It reveals that magnetic field is repelled by superconductivity.
Although superconductor is a perfect diamagnetism, Meissner effect has different ori-
gin other than zero electrical resistance. Because no matter there is magnetic field or
not, after cooling down the material, there is always no magnetic flux inside. Thus,
the final state at T < Tc is history independent.

In the Meissner state, since we have B⃗ = 0. In type I superconductor, where the
magnetic field is totally repelled, the relation among B⃗, H⃗ and M⃗ is shown in Fig.
(3). When H > Hc, B⃗ = H⃗, there is no superconductivity and magnetic field can
penetrate material.

2.4 Heat capacity jump at SC-Normal state transition

As we know, as we increase temperature, there would be a phase transition from
superconductivity to normal state. Experimentally, at critical temperature, the heat
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Figure 2: Diagram of Meissner effect. Magnetic field lines, represented as arrows, are
excluded from a superconductor when it is below its critical temperature.
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Figure 3: Relation among B⃗, H⃗ and M⃗ in type I superconductivity below and above
critical magnetic field.

capacity has a discontinuity as shown in Fig. (4).

When T < Tc, the gapped excitations exponentially suppressed heat capacity.
The quasiparticle density is approximately

n ∼ e−∆/T (3)

Where ∆ is the gap above the ground state. Thus, heat capacity is

CT<Tc
v ∼ kBe

−2Tc/T (4)

While in normal metallic state, at small temperature, only a fraction of electron
kBT/EF can be excited thermally. The total thermal energy is

∆F = N(
kBT

EF

)kBT (5)

Thus, the heat capacity is

Cv =
∆F

T
= NkB(

kBT

EF

) ∝ T (6)

which is linear.
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Figure 4: Heat capacity jump at critical temperature and exponential decay for T <
Tc.

2.5 Isotope effect

The critical temperature of a superconductor is found depending on the isotopic
mass of the constituent element[3]. Their relation is given as

Tc ∝M−β (7)

Experimentally, for Zinc, Lead, Mercury and a number of other elements, their β
values agree with theoretical value, which is 0.5. This phenomenon can be repro-
duced by BCS theory. In BCS theory, the Debye frequency of phonons in a lattice is
proportional to the inverse of the square root of the mass of lattice ions. Meanwhile,
the critical temperature is proportional to the Debye frequency:

Tc ∝ ℏωDe
−1/N(0)V0 (8)

where N(0) is density of state at Fermi energy. Then the relation

Tc ∝
1√
M

(9)

can be verified.

2.6 Energy gap

Besides the experiment of heat capacity shows the evidence of an energy gap,
electric tunneling experiment directly measured the existence of energy gap in super-
conducting phase. In 1960, Ivar Giaever measured relation between tunneling current
and bias voltage in superconductor-insulator-superconductor (SIS) tunnel junction as
shown in Fig. (5(a)).

The experimental result for SIS junction is shown in Fig. (5(c)). The current is
zero until bias voltage exceeds its critical value. For SIS junction, the critical value is
2∆ where ∆ is the energy gap. For NIS junction, the critical voltage is only one ∆.
The gap and temperature relation is also obtained experimentally as shown in Fig.
(5(b)).
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(a) SIS junction. The vertical axis
is energy, and the horizontal axis
shows the density of states.

(b) Gap vs. temperature. [4]

(c) I-V relation measured on
Sn/SnO/Sn junction by STM. [5]

(d) I-V relation measured on
Al/Al2O3/Pb junction by STM. [6]

Figure 5: Gap measured by SIS and NIS junction.

2.7 Two types of superconductor

There are two types of conventional superconductor according to their magnetic
property. As the applied magnetic field become too large, superconductivity breaks
down. Superconductors can be divided into two types according to how this break-
down occurs.

2.7.1 Type I superconductor

For type I superconductors, superconductivity is abruptly destroyed via a first
order phase transition when the strength of the applied field rises above a critical
value Hc. This type of superconductivity is normally exhibited by pure metals, e.g.
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aluminium, lead, and mercury. The only alloy known up to now which exihibits type
I superconductivity is TaSi2. The net magnetic field inside and the phase diagram as
a function of external magnetic field are shown in Fig. (6).
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Figure 6: B-H relation and phase diagram of Type I superconductors.

2.7.2 Type II superconductor

The transition from SC to normal state is different for type II superconductors,
which exhibit two critical magnetic fields. The first, lower critical field occurs when
magnetic flux vortices penetrate the material but the material remains supercon-
ducting outside of these microscopic vortices. When the vortex density becomes too
large, the entire material becomes non-superconducting; this corresponds to the sec-
ond, higher critical field. The net magnetic field inside and the phase diagram are
also shown in Fig. (7).
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Figure 7: B-H relation and phase diagram of Type II superconductors.

For this type of superconductor, the net magnetic field penetrates into material is
quantized into vortices because of Higgs mechanism. In the mixed state, each vortex
carry flux

ϕ0 =
hc

2e
= 2× 10−7 Gauss× cm2. (10)

The total flux is nϕ0.
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3 Phenomenological theories

Generally speaking, directly studying microscopic model of corresponding material
is extremely hard. Thus, we will introduce some phenomenological theories.

3.1 Two-Fluids model

Superconductors are perfect conductors of electricity only at zero frequency (DC).
At any non-zero frequency (AC) they dissipate the charge carrier kinetic energy into
heat, although this conversion is often quite small. Consider a superconductor ex-
posed to a time-varying magnetic field parallel to its surface. The response of the
superconductor is complex in the sense that currents are induced that are both in-
phase and out of phase with the alternating magnetic field. The out-of-phase (with
magnetic field B) currents are dissipative and now we believe it arises from the ab-
sorption of photons by quasiparticles excited out of the ground state. The in-phase
response is due to the Meissner Effect in which the superconductor actively excludes
magnetic field from its interior to maintain the condition B = 0. In order to explain
the AC dissipation of superconductor, a simple two-fluid model is introduced. The
strength of the in-phase current is dictated by the fraction of the charge carriers that
condense into the ground state.

Consider a material with total electron density n, consisting superconducting part
ns and normal part nn. At T → 0, ns ≈ n while n ≈ 0. When T > Tc, we have ns = 0
and nn = n. Between those two cases at 0 < T < Tc, both density are non-zero and
smaller than n. Starting from equation of motion of electron

m ˙⃗vs = −eE⃗ ⇒ m
∂(−nsev⃗)

∂t
= nse

2E⃗ (11)

and the definition of electrical current

J⃗s = −ensv⃗s (12)

Consequently, we obtain
dJ⃗s
dt

=
nse

2

m
E⃗ (13)

It is also called the 1st London’s equation.

In addition, use Maxwell equation

∇⃗ × E⃗ = −1

c

∂B⃗

∂t
(14)

then,

∂

∂t
(∇⃗× J⃗s) = (

nse
2

m
)∇⃗× E⃗ = −nse

2

mc

∂

∂t
B⃗ ⇒ ∇⃗× J⃗s = −nse

2

mc
B⃗ = −nse

2

mc
∇⃗× A⃗ (15)

Since gauge transformation

A→ A− ℏc
e
∇⃗θ (16)
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we can have

J⃗s = −nse
2

mc
(A− ℏc∇⃗θ) = nse

m
(ℏ∇⃗θ − e

c
A⃗) (17)

This is the 2nd London’s equation.

The above equation can also be derived from the definition of probability current

J⃗ = eψ∗v⃗ψ =
e

m
ψ∗(iℏ∇⃗ − e

c
A⃗)ψ (18)

Let ψ = ρeiθ(x), then the final result is

J⃗ =
e

m
(ℏ∇⃗θ − e

c
A⃗) (19)

The electrical current is

J⃗s = nsJ⃗ =
nse

m
(ℏ∇⃗θ − e

c
A⃗) (20)

We can see the superconducting current is from the condensed charge carrier.

The Meissner effect can also be derived from above two London’s equations. Since
we already have

∇⃗ × B⃗ =
4π

c
J⃗s ⇒ ∇⃗× ∇⃗ × B⃗ =

4π

c
∇⃗ × J⃗s = −4πnse

2

mc2
B⃗ (21)

Consequently, it results in
∇2B⃗ = λ−2

L B⃗ (22)

where

λL = (
mc2

4πnse2
)1/2 ∼ 1

√
ns

(23)

This magnetic property of superconductor is pictorial shown in Fig. (8).

B

B=H

λL

SCNormal

x

B = B(0)e−x/λL

B=0

Figure 8: Magnetic property at interface between superconductivity and normal state.

3.2 Ginzburg-Landau Theory

Based on Landau’s theory of second-order phase transition, the free energy of su-
perconductor can be expand in terms of complex order parameter fields in the vicinity
of critical point since the order parameter is very small compared with that deep in-
side the superconducting phase. Within each phases, Lagrangian is analytic and can
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be written polynomially in the order parameter Ψ. The main idea is to minimize
the free energy with respect to those complex fields in different parameter regions,
although it is not necessary to give a direct interpretation of these parameters. After
learning the microscopic BCS theory of superconductor, we will know the complex
field Ψ(r⃗) used in this theory is copper pair field.

The Lagrangian should be imposed by both global and local gauge symmetry. For

global symmetry, since superconductor has global U(1) symmetry Ψ → ei
e∗
ℏcχΨ, thus,

Lagrangian should have term proportional to |Ψ|2. Besides, the gauge invariance

leads to a term |(ℏ∇⃗ − i e
∗

c
A⃗)Ψ|2, where e∗ = 2e is the charge of Cooper pair.

Taking the external magnetic field into account, the free energy for superconductor
can be written as

gs =
1

2m∗

∣∣∣(ℏ
i
∇⃗+

e∗

c
A⃗)Ψ

∣∣∣2 + a|Ψ|2 + 1

2
b|Ψ|4 + · · ·+ B⃗2

8π
− B⃗ · H⃗

4π
+ gn (24)

where the first term represents kinetic energy J⃗2
s ∼ ns

1
2
mv2.

3.2.1 Uniform case: B = H = 0

In this case, the Lagrangian becomes

gs = gn + a|Ψ|2 + 1

2
b|Ψ|4 (25)

where a depends on temperature a = a0(T − Tc).

-1.0 -0.5 0.5 1.0

0.4

0.8

1.2

Ψ

0

gs − gn

(a) gs − gn vs. Ψ in normal phase
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a2

2b

gs − gn

(b) gs − gn vs. Ψ in superconducting phase

Figure 9: Free energy as a function of order parameter Ψ. In the normal state, there
is only one minimum. While in superconducting state, there are many non-zero Ψ at
arbitrary phase.

Minimize gs, we have

δgs
δΨ

= aΨ0 + b|Ψ0|2Ψ0 = 0 (26)

When a > 0 and b > 0, there is only one solution: Ψ0 = 0. This is the normal
state for T > Tc. While when a < 0 and b > 0, there is symmetry breaking solution:

|Ψ0| =
√

−a
b

∝
√
Tc − T . This is the superconducting phase for T < Tc. Since
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Ψ0 =
√

−a
b
eiθ has an arbitrary and fixed phase, it breaks continuous U(1) symmetry

spontaneously. The above two solutions are shown in Fig. (9).

The change of gs, Ψ0, and heat capacity Cv as a function of temperature can be
pictorially shown as Fig. (10).

Tc

gs

∆g = −
a2

2b
∝ −(Tc − T )2

gn

T |Ψ0| ∝
√

Tc − T

Tc

T

|Ψ0|

Tc T

Cv

Cv =
1

b

Figure 10: gs, |Ψ0| and Cv as a function of temperature.

3.2.2 H ̸= 0, B = 0 and J⃗s ≈ 0

At fixed temperature,

g(H) = gs − g0n = −gc +
B2

8π
− B ·H

4π
(27)

where gc is the magnitude of free energy of condensation.

In Meissner phase, B = 0, then g
(H)
s = −gc. While in normal phase, B = H, then

g
(H)
n = −H2/8π. Pictorially, the phase transition driven by external magnetic field is
shown in Fig. (11).

SC

−gc

g(H)

g(H)
s

g(H)
n

Hc H

Normal

Tc

Hc

T

H

SC

Normal

1st PT

2nd PT

(a) (b)

Figure 11: (a)g
(H)
n and g

(H)
s as a function of H. (b) Phase diagram of type I super-

conductor.

3.2.3 B ̸= 0: Flux quantization

In this case, magnetic field can penetrate into superconductor. The gauge field
couple to Ψ field can fluctuation and is to be determined according to the external
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field. Thus, in order to optimize the free energy of superconductor, we have two
equations:

δgs
δΨ∗ =

ℏ2

2m∗ (∇⃗+
ie∗

ℏc
A⃗)2Ψ+ aΨ+ b|Ψ|2Ψ = 0

δgs

δA⃗
= − |Ψ|2

m∗c2
|Ψ|2(e∗)2A⃗︸ ︷︷ ︸

diamagnetic current Jd
s /c

+
1

2m∗
ℏe∗

ic
A⃗(Ψ∗∇⃗Ψ−Ψ∇⃗Ψ∗)︸ ︷︷ ︸

paramagnetic current Jp
s /c

− 1

4π
∇× B⃗

(28)

Then, these two equations give self-consistent solution for A⃗ and Ψ.

In the Meissner state, Ψ =
√
nse

iθ(x) where ns = |a|/b. The corresponding current
is

J⃗s = −e
∗ℏ
m∗ ns∇⃗θ(x)−

ns(e
∗)2

m∗c
A⃗ = − e∗

m∗ns(ℏ∇⃗θ(x) +
e∗

c
A⃗) (29)

The flux surrounding by current inside the superconducting state B = 0 is

0 =
c

4π

∮
∇⃗ × B⃗ · d⃗l =

∮
J⃗s · d⃗l = −e

∗ns

m∗ ℏ
∮

∇⃗θ(x) · d⃗l︸ ︷︷ ︸
2πp

−(e∗)2ns

cm∗

∮
A⃗ · d⃗l︸ ︷︷ ︸∫

∇⃗×A⃗·da⃗=Φ

(30)

where p is an integer. Thus, ϕ = −p(hc
e∗
) = −pϕ0. ϕ0 is a flux quantum

ϕ0 =
hc

2e
= 2× 10−7 Gauss× cm2 (31)

3.2.4 Critical Tc, Hc and Jc

The electrical current can be written as

J = e∗|Ψ|2v (32)

where v is the velocity of current. The free energy can be written in term of this
velocity as

gs = |Ψ|2(a+ 1

2
b|Ψ|2 + 1

2
mv2) + g(H)

s (33)

In superconducting phase a < 0, optimizing this free energy with respect to Ψ at
fixed v, we get

a+ b|Ψ|2 + 1

2
mv2 = 0 ⇒ |Ψ|2 = 1

b
(−a− 1

2
mv2) > 0 ⇒ v < vc =

√
2|a|
m

(34)

Use the superconductor order parameter |Ψ0|2 = −a
b
, the equation for v can be written

as
1

2
mv2 = b(|Ψ0|2 − |Ψ|2) = b|Ψ0|2(1− r) ⇒ v =

√
2b

m
|Ψ0|2(1− r2)1/2 (35)

where r = |Ψ0|2/|Ψ|2 can be regarded as the fraction of condensation. The current
can then be written as

J = e∗|Ψ|2v = e∗|Ψ0|2
√

2|a|
m

r2(1− r2)1/2 (36)
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Figure 12: Current as a function of condensation fraction r.
.

The relation between J and the ratio r is shown in Fig. (12).

Since v < vc, i.e. once J > Jc, the condition in Eq. (34) cannot be true. Thus,
we must have Ψ = 0. A phase transition from superconducting to normal state

happens. As current increases when |Ψ| decreases, as long as J reaches Jc at r =
√

2
3
,

r immediately jumps to be zero if applied magnetic field is going on increasing.

3.2.5 Two important length scales

The first length scale is coherence length ξ(T ). As we know, deep inside the
superconductor, |Ψ| ∼ |Ψ0|. While outside it, |Ψ| = 0. Thus, ξ is a length scale of
Ψ(r⃗) varies spatially.

Starting from free energy of superconductor, below we use e and m instead of
e∗ and m∗ to represent the charge and mass of charge carrier in superconductor for
simplicity.

gs =
1

2m
|(ℏ
i
∇⃗+

e

c
A⃗)Ψ|2 + a|Ψ|2 + b

2
|Ψ|4 + (∇⃗ × A⃗)2

8π
(37)

Set A⃗ = 0, and rescale the free energy above, we have

g̃s =
ℏ2

2m|a|
|∇⃗Ψ|2 − |Ψ|2 + 1

2
|Ψ|4 (38)

From the first term, we can get the coherence length from dimensional analysis, which
is

ξ2 =
ℏ2

2m|a|
∝ 1

|T − Tc|
(39)

This length is divergent at critical point as shown in Fig. (13). When T → 0,
ξ(T → 0) → ξ0 = ℏvF

π∆
, where ∆ is the gap of superconductor. The schematic

representation of superconductor at its boundary is shown in Fig. (14(a)).

Suppose our system has one 1 dimension and Ψ∗ = Ψ = |Ψ|, the saddle point
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Figure 14: The interface between superconductor and normal phase.

equation for free energy is

− ξ2
d2|Ψ|
dx2

− |Ψ|+ |Ψ|3 = 0 (40)

After integration of x, it becomes

− ξ2(
d|Ψ|
dx

)2 − |Ψ|2 + |Ψ|4 = C (41)

Since we have boundary condition: at x = 0, |Ψ| = 0 and at x → ∞, |Ψ| = 1, thus
constant C = 1/2. Finally,

|Ψ| = tanh(
x√
2ξ

) (42)

and the plot is in Fig. (14(b)).
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The second length scale is London penetration length λL(T ). This is the length

scale for varying B⃗, i.e. A⃗ and J⃗ . Inside superconducting state, |Ψ|2 = ns. The free
energy has relative parts

g =
e2ns

2mc2
A⃗2 +

1

8π
(∇⃗ × A⃗)2 (43)

Similarly, dimensional analysis gives us

λL =

√
mc2

4πnse2
∼ 1

√
ns

∼ 1

|T − Tc|1/2
(44)

It is also divergent at critical point with the same critical exponent.

The comparison between coherence length and penetration length in type I and
II superconductor is shown in Fig. (15).

Normal SC

ξ

x

|Ψ|
B

λL

Type I: λL < ξ

0

λL

ξ

0

Normal SC
|Ψ|

B

x

Type II: λL > ξ

Figure 15: Coherence length and penetration length in type I and II superconductor.

According this distinction between type I and II superconductor, we can define a
quality, which is called G-L ratio:

κ =
λL
ξ

=
mc

ℏe

√
b

2π
(45)

This quantity is nearly temperature independent. It only depends on the property
of material. For type I superconductor, κ < 1√

2
, while for type II superconductor,

κ > 1√
2
. The consequence of larger λL is the vortex state, which can be revealed by

calculation of interface energy.

∆Einterface = L2

∫ λ

−∞
(−H

2
c

8π
)︸ ︷︷ ︸

magnetic flux energy

dx+

∫ ∞

ξ

(−H
2
c

8π
)︸ ︷︷ ︸

condensation energy

dx−
∫ ∞

−∞
(−H

2
c

8π
)dx


(46)
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where L2 is the area of interface. The first term above is magnetic flux energy

Em =
B2

8π
− B ·H

4π
(47)

for H = Hc. The second term is condensation energy Ec = −a2

2b
which is also equal

to the energy supplemented by critical external field Hc. Thus, Ec = −H2
c

8π
. The third

term is the net energy without interface.

Then the interface energy per area is

σ =
∆Einterface

L2
=
H2

c

8π
(ξ − λ) (48)

For ξ > λ, i.e. type I superconductor, σ > 0, no interface would like to be generated.
The magnetic field is repelled outside the superconductor. On the contrary, ξ < λ,
the interfaces are tended to be generated. The magnetic field can penetrate into
superconductor in the form of vortices. The distinct phase diagrams of type I and
type II superconductor as external magnetic and temperature change are shown in
Fig. (16).

Tc

Hc

T

H

SC

Normal

1st PT

2nd PT

Tc

T

H

Normal

Meissner

0

B = 0

Hc1

Hc2

Mixed

Vortex lattice

2nd PT

2nd PT

Type I Type II

Figure 16: phase diagrams of type I and type II superconductor as functions of
external magnetic and temperature.

3.2.6 Vortices

Forming vortices (Fig. (17)) is the cheapest way to create interfaces.

Recall ∮
∇⃗θ · d⃗l = 2π (49)

we have

∇⃗θ = ϕ̂

r
(50)

and

θ = tan−1 y − y0
x− x0

= ϕ (51)

Even though ∇⃗θ = 1
r
ϕ̂, but

∇⃗θ − 2π

ϕ0

A⃗ ∝ v⃗s ∝ J⃗s ≈ e−r/λ (52)

18



3d

Side view

ξ

λ

|Ψ|

|Ψ0| =

√

−a

b
B

x

ξ

λ

Top view

Figure 17: Pictorial illustration of vortices from different perspectives.

the physical current decays exponentially.

For r ≪ λ, B is almost a constant and B ≈ H, while A⃗ ≈ 1
2
B⃗ × r⃗ ≈ 0. Thus,

∇⃗θ − 2π

ϕ0

A⃗ ≈ ∇⃗θ = ϕ̂

r
∝ J⃗s (53)

When r ≪ λ, A⃗ and
∫

B2

8π
d2r vanish.

Therefore, we can get the energy of single vortex line per length, which is

Ev

L
=

∫ [
ℏ2

2m
ns(∇⃗θ −

2π

ϕ0

A⃗)2 +
B2

8π

]
d2r =

ℏ2

2m
ns

∫ λ

ξ

(
1

r
)2d2r =

πℏ2ns

2m
ln
λ

ξ
= (

ϕ0

4πλ
)2 ln

λ

ξ
(54)

It is a finite value depending on λ and ξ.

3.2.7 Two critical magnetic field Hc1 and Hc2

Starting from the free energy

g =

∫ [
ℏ2

2m
ns(∇⃗θ −

2π

ϕ0

A⃗)2 +
B2

8π
− B ·H

4π

]
d2r (55)

Use energy of single vortex to represent free energy, we get

g = NvL(Ev −
H

4π
ϕ0) (56)

where Nv is the number of vortices.
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For H > Hc1 = 4πEv

ϕ0
, g < 0, vortices enter superconductor. The lower critical

field is

Hc1 =
4πEv

ϕ0

=
ϕ0

4πλ2
ln(

λ

ξ
) ≪ Hc =

ϕ0

4πλξ
(57)

The higher critical field is defined when cores of vortices overlap. Since vortex
core has length scale ξ. Thus, we have relation Hc2ξ

2 = ϕ0

2π
, then

Hc2 =
ϕ0

2πλ2
= κ

√
2Hc > Hc (58)

3.2.8 Movement of vortices

In type II conventional superconductor, vortices form beautiful hexagonal vortex
lattice[7, 8]. In high temperature superconductor, vortices can move due to the large
fluctuation and exotic interaction[9]. There are variety of phases due to the pinning
and melting of vortices. Generally speaking, the phase diagram includes vortex liquid
phase besides Meissner phase and vortex solid phase, which is shown in Fig. (18).

T

Vortex solid

Meissner

H

Vortex liquid

Figure 18: Phase diagram for high temperature superconductor.

Vortices determine limits on dissipationless transport. There are two ways to
consider the movement of vortices. The first one is using Lorentz transformation. In
the rest frame of vortices,

B⃗ = nvϕ0ẑ E⃗ = 0 (59)

Transforming to lab frame where vortices have velocity v⃗v, then there is electric field
generated

E⃗ =
1

c
v⃗v × B⃗ =

nvϕ0

c
v⃗v × ẑ (60)

Obviously, E⃗ ⊥ v⃗v.

The second way is using Josephson relation. Suppose we have system size w×L,
with velocity of vortices along w direction. Then, the voltage cross L is generated by
phase difference arising by moving vortices:

Nv
2π|v⃗v|
w

=
dϕ

dt
=
eV

ℏ
=
e

ℏ
|E⃗|L (61)
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where ϕ is the phase difference. v⃗v is along y direction, i.e. the direction where system
has w size, and E⃗ is along x direction which is perpendicular to the velocity. From
this equation, we can obtain

Ex =
1

c

Nv

wL
(
hc

e
)vyv =

1

c
nvϕ0v

y
v (62)

Super current exerts force on a vortex and cause it to move. The currents can be
stable by the balance between friction and Lorentz force exerting on vortices.

γv⃗v − ϕ0nsẑ × (v⃗v − v⃗s) = 0 (63)

The total current J⃗ = ns(v⃗v − v⃗s) can have relation with magnetic field generated by
moving vortices:

Ex = (
nvϕ

2
0

γc
)Jx (64)

The conductivity thus is a finite value γc
nvϕ2

0
. Therefore, if we want to have true

superconductor, we must pin the vortices by impurities.

4 Microscopics of superconductivity

4.1 Electron-phonon interaction

Assume ion on site l⃗ interacting with electron at r⃗j through interaction V (r⃗j − l⃗).

If ion has displacement u⃗l⃗(t), the interaction becomes V (r⃗j − l⃗ − u⃗l⃗). Thus, the
interaction between electron and vibration of lattice is

Hep =
∑
j,l

[
V (r⃗j − l⃗ − u⃗l⃗)− V (r⃗j − l⃗)

]
= −

∑
j,l

u⃗l⃗ · ∇⃗V (r⃗j − l⃗) (65)

In second quantization notation, we can have wave function of electron is

Ψ(r⃗) =
∑
k

ckψk(r⃗) Ψ†(r⃗) =
∑
k

c†kψ
†
k(r⃗) (66)

where ck and c†k are fermionic annihilation and creation operator. And

ψk(r⃗) = uk(r⃗)e
ik⃗·r⃗ uk(r⃗) = uk(r⃗ + l⃗) (67)

are Bloch functions. Then, the Hamiltonian becomes

Hep = −
∫

Ψ†(r⃗)(
∑
l

u⃗l⃗ · ∇⃗V (r⃗j − l⃗))Ψ(r⃗)dr⃗

= −
∑
l

∑
k,k′

u⃗l⃗ ·
∫
dr⃗u∗k′(r⃗)uk(r⃗)e

i(k⃗−k⃗′)·r⃗∇⃗V (r⃗ − l⃗)c†k′ck

(68)
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Use phonon operator

u⃗l⃗ =
1√
NM

∑
q,s

e⃗qsQqse
iq⃗·⃗l

Qqs =

√
ℏ

2ωqs

(aqs + a†−qs)

e⃗qs = e⃗−qs, |e⃗qs| = 1

(69)

the above Hamiltonian becomes

Hep = −
∑
l

∑
k,k′

∑
qs

(
ℏ

2NMωqs

)1/2(aqs+a
†
−qs)c

†
k′cke

iq⃗·⃗l
∫
dr⃗u∗k′(r⃗)uk(r⃗)e

i(k⃗−k⃗′)·r⃗∇⃗V (r⃗−l⃗)

(70)
where N is the number of cell andM is the mass of ion. s is the index of lattice wave,
suppose there are more than one wave of lattice vibration.

For the expression, the integral part can be simplified as

I =

∫
dr⃗u∗k′(r⃗)uk(r⃗)e

i(k⃗−k⃗′)·r⃗∇⃗V (r⃗ − l⃗)

= i
∑
p

p⃗Vp

∫
dr⃗u∗k′(r⃗)uk(r⃗)e

i(k⃗+p⃗−k⃗′)·r⃗ei(k⃗−k⃗′)·⃗l
(71)

For simplicity but without loss any generality, uk(r⃗) = (NΩ)−1/2. Then

I = i
∑
p

p⃗Vpδp⃗,⃗k′−k⃗e
i(k⃗−k⃗′)·⃗l (72)

Besides,
1

N

∑
l

ei(k⃗+q⃗−k⃗′)·⃗l = δk⃗′ ,⃗k+q⃗+K⃗n
(73)

where K⃗n =
∑3

i=1 ni⃗bi is the reciprocal vectors. For situation at long wavelength and

low temperature, K⃗n = 0. In other words, we only consider scattering within first
Brillouin zone. Finally, the Hamiltonian describing electron and phonon interaction
is

Hep =
∑
k,q

Dq(aq + a†−q)c
†
k+qck (74)

where

Dq = −i( Nℏ
2Mωq

)−1/2Vq (75)

and Vq is Coulomb interaction

Vq = −4πe2

q2
(76)

The effective interaction between electrons and phonons can be derived based on
this Hamiltonian. Consider scattering matrix element by second order perturbation
theory:∑

m

⟨f |Hep|m⟩⟨m|Hep|i⟩
Ei − Em

=
∑
q

|Dq|2
[

1

ϵk − ϵk+q − ℏω−q

− 1

ϵk − ϵk+q + ℏωq

]
⟨f |c†k+q,σc

†
k′−q,σ′ck′,σ′ckσ|i⟩

(77)
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where

|i⟩ = | . . . , nk,σ, . . . , nk′,σ′ , . . . , nk′−q,σ′ , . . . , nk+q,σ, . . . ; 0⟩
|f⟩ = | . . . , (nk,σ − 1), . . . , (nk′,σ′ − 1), . . . , (nk′−q,σ′ + 1), . . . , (nk+q,σ + 1), . . . ; 0⟩

(78)
are both vacuum for phonon. ϵk is the energy for electron with momentum k. The
effective interaction now turns into

Heff =
1

2

∑
k′,k,q
σ,σ′

2|Dq|2ℏωq

(ϵk − ϵk+q)2 − (ℏωq)2
c†k+q,σc

†
k′−q,σ′ck′σ′ckσ

=
1

2

∑
k′,k,q
σ,σ′

Vkqc
†
k+q,σc

†
k′−q,σ′ck′σ′ckσ

(79)

When |ϵk − ϵk+q| < ℏωq, Vkq < 0. Thus, near fermi surface within energy differ-
ence ℏωq, the effective interaction is attractive. When this interaction is larger than
effective Coulomb repulsion, electrons would form Cooper pairs.

4.2 Cooper pair

The interaction

Vkq =
2|Dq|2ℏωq

(ϵk − ϵk+q)2 − (ℏωq)2
(80)

incorporating with Coulomb interaction

Hcoul =
1

2

∑
k′,k,q
σ,σ′

4πe2

q2 + λ2
c†k+q,σc

†
k′−q,σ′ck′σ′ckσ (81)

can be replaced by a constant. Then the Hamiltonian can be written as

H ′ = −V
2

∑
k′,k,q
σ,σ′

c†k,σc
†
q−k,σ′cq−k′σ′ck′σ (82)

The above scattering process largely happens at q = 0. The total Hamiltonian is then

H =
∑
k

Ek(c
†
k↑ck↑ + c†k↓ck↓)− V

∑
k,k′

c†k′↑c
†
−k′↓c−k↓ck↑ (83)

Below, (k ↑) and (−k ↓) are replaced by k and −k for simplicity. It is easy to see
that the eigenstates of H should include all possible scattering pairs:

|ψ⟩ =
∑
k>kF

a(k)c†kc
†
−k|F ⟩ (84)

where |F ⟩ is the ground state of electron gas.
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For this state, the energy is

E = 2
∑
k>kf

ϵk|a(k)|2 − V
∑

k,k′>kF

a∗(k′)a(k) (85)

Together with condition

⟨ψ|ψ⟩ =
∑
k

|a(k)|2 = 1 (86)

We can have eigenvalue equation

(2ϵk − λ)a(k) = V
∑
k′>kF

a(k′) (87)

with eigenvalue λ. After changing summation into integration, the solution is

λ = −2ℏωD

[
exp(

2

g(0)V
)− 1

]
(88)

where g(0) is the density of state at fermi surface. This energy is always negative,
which means as long as the fermi surface exists, the two electron with attractive
interaction and opposite spin would always form a bound state – Cooper pair[10].

4.3 BCS theory[11]

Above we saw Cooper pairs form ground state of superconductor, thus following
operators are non-zero.

⟨c†kc
†
−k⟩ = ⟨0|c†kc

†
−k|0⟩ ̸= 0

⟨c−kck⟩ = ⟨0|c−kck|0⟩ ̸= 0
(89)

where the ground state is

|0⟩ =
∏
k

(uk + vkc
†
kc

†
−k)|vac⟩ (90)

and uk and vk are parameters to be determined below. According to the normalization
condition ⟨0|0⟩ = 1, we have the first constraint on uk and vk:

u2k + v2k = 1 (91)

In this section, we will use mean field method to solve the Hamiltonian for super-
conductor and obtain its ground state. The pair operators can be written in terms of
their average value.

c−kck = ⟨c−kck⟩+ (c−kck − ⟨c−kck⟩)
c†kc

†
−k = ⟨c†kc

†
−k⟩+ (c†kc

†
−k − ⟨c†kc

†
−k⟩)

(92)

Therefore, the Hamiltonian can be approximately

Hmf =
∑
k

ϵk(c
†
k↑ck↑ + c†k↓ck↓)− V

∑
k,k′

[
c†kc

†
−k⟨c−kck⟩+ c−kck⟨c†kc

†
−k⟩ − ⟨c†kc

†
−k⟩⟨c−kck⟩

]
(93)
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Define order parameter

∆ = V
∑
k

⟨c−kck⟩ ∆∗ = V
∑
k

⟨c†kc
†
−k⟩ (94)

Only consider ∆ as a real number, consequently,

Hmf =
∑
k

ϵk(c
†
k↑ck↑ + c†k↓ck↓)−∆

∑
k

(c†kc
†
−k + c−kck) +

∆2

V
(95)

Then, using Bogoliubov transformation, we can diagonalize this quadratic Hamil-
tonian. The final result is

Hmf = E(0) +
∑
k

√
ϵ2k +∆2(α†

kαk + α†
−kα−k) (96)

where new fermions and parameters are

α†
k = ukc

†
k − vkc−k

αk = ukck − vkc
†
−k

u2k =
1

2
(1 +

ϵk√
ϵ2k +∆2

)

v2k =
1

2
(1− ϵk√

ϵ2k +∆2
)

(97)

and

E(0) = 2
∑
k

ϵkv
2
k − 2∆

∑
k

ukvk +
∆2

V
(98)

is the ground state energy.

We can know the meaning of each parameter clearly. While v2k is the probability
to generate two holes within fermi surface and excite two electrons outside the fermi
surface – form a Cooper pair, u2k is the probability that Cooper pair would not form.

The ground state should be the vacuum of quasiparticle.

αk|0⟩ = α−k|0⟩ = 0 (99)

Thus, the ground state is

|ψ⟩ =
∏
k

αkα−k|vac⟩

=
∏
k

(ukck − vkc
†
−k)(ukc−k + vkc

†
k)|vac⟩

=
∏
k

(ukvk + v2kc
†
kc

†
−k)|vac⟩

(100)

The normalization factor is (
∏

k vk)
2. Thus, the normalized ground state wave func-

tion is
|0⟩ =

∏
k

(uk + vkc
†
kc

†
−k)|vac⟩ (101)
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4.4 Tunneling between superconductor and normal metal

Assume we have two material which are described by Hamiltonian H1 and H2

with eigenstates |λ1⟩ and |µ2⟩:

H1|λ1⟩ = ϵλ|λ1⟩ H2|µ2⟩ = ϵµ|µ2⟩ (102)

The Hamiltonian for tunneling is

HT =
∑
k,k′

(Mk,k′c
(2)
k′

†
c
(1)
k ) (103)

When there is bias voltage V . The tunneling probability is

⊒12 =
2π

ℏ
∑
λ,µ

|⟨λ1|⟨µ2|
∑
k,k′

Mk,k′c
(2)
k′

†
c
(1)
k |02⟩|01⟩|2δ(ϵλ − ϵµ + eV ) (104)

where |0i⟩ is the ground state for material i. SinceMk,k′ is independent of momentum,
the above formula for tunneling can be simplified as

⊒12 =
2π

ℏ
|M|2

∫ ∞

−∞
dϵN1(ϵ)N2(ϵ+ eV ) (105)

where
N1(ϵ) =

∑
k,λ

|⟨λ1|c(1)k |01⟩|2δ(ϵ− ϵλ)

N2(ϵ+ eV ) =
∑
k′,µ

|⟨µ2|c(2)k′ |02⟩|
2δ(ϵ+ eV − ϵµ)

(106)

Assume 2 is normal metal, then

N2(ϵ+ eV ) =
∑
k′

θ(ϵk′)δ(ϵ+ eV − ϵk′) = g2(ϵ+ eV )θ(ϵ+ eV ) (107)

where g2 is the density of state.

While 1 is superconductor, then

N1(ϵ) =
∑
k

v2kδ(ϵ−
√
ϵ2k +∆2) = g1(0)Re

[
|ϵ|√

ϵ2 −∆2

]
(108)

where g1(0) is the density of state at fermi energy, since∑
λ

|⟨λ1|c(1)k |01⟩|2 = ⟨01|c(1)k

†
c
(1)
k |01⟩ = v2k (109)

The current is thus

ISN =
2πe

ℏ
|M|2g2(0)

∫ ∞

−∞
dϵg1(ϵ)θ(ϵ+ eV ) (110)
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And the differential conductance is

GSN = (
dISN
dV

)T=0 =
2πe2

ℏ
|M|2g2(0)

∫ ∞

−∞
dϵg1(ϵ)δ(ϵ+ eV )

=
2πe2

ℏ
|M|2g1(0)g2(0)

∫ ∞

−∞
dϵ
g1(ϵ)

g1(0)
δ(ϵ+ eV )

= GNNRe

[
eV√

(eV )2 −∆2

] (111)

The ratio GSN

GNN
is the density of state of quasiparticle in superconductor. And the

above derivation also gives us the tunneling current as a function of bias voltage at
zero temperature.

ISN(V ) = GNNRe
[√

(eV )2 −∆2
]

(112)

We can conclude that when eV < ∆, there is no current at all. Once eV > ∆, there
is current from 1 to 2 material. This agrees with Giaever’s experimental result.

5 Josephson Effect

The Josephson effect is an example of a macroscopic quantum phenomenon. It is
named after the British physicist Brian David Josephson, who predicted in 1962 the
mathematical relationships for the current and voltage across the weak link[13, ?].
There are two type of Josephson effect.

The DC Josephson effect states that if we have a insulator whose thickness satisfies
d < ξ, where ξ is the coherence length, two superconductors on the two sides of this
insulator would have current between them.

I = I0 sin γ (113)

where γ = ϕ2 − ϕ1 is the phase difference of these two superconductor.

AC Josephson effect states that when we applied a voltage between this junction,
then the tunneling current satisfies

I(t) = I0 sin(ω0t+ γ) (114)

Below, we use G-L phenomenological theory to derive above two relations.

5.1 DC Josephson effect

In this case, A = 0. Assume junction is along z direction. The supercurrent is

js = jz = − iℏe
∗

2m∗ (ψ
∗
1

∂ψ1

∂z
− ψ1

∂ψ∗
1

∂z
) (115)
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If d > ξ, js = 0. If d < ξ, then Cooper pairs in both side of superconductor can
penetrate into each other. Phenomenologically, the Cooper pair in superconductor 2
is generated by super current of superconductor 1.

− iℏ
∂ψ1

∂z
= −iℏ

b
ψ2 (116)

Then the tunneling current is

js = (
e∗ℏ
m∗b

)|ψ1||ψ2| sin(ϕ2 − ϕ1) = j0 sin(ϕ2 − ϕ1) (117)

Thus, this is exactly the DC Josephson effect.

5.2 AC Josephson effect

When A ̸= 0, the super current can be expressed as

js = −i(e
∗ℏ
2m

)(ψ∗∇ψ − ψ∇ψ∗)− (e∗)2

m∗c
|ψ|2A =

nse
∗

m∗ (ℏ∇ϕ− e∗

c
A) =

nse
∗

m∗ vs (118)

where

vs = ℏ∇ϕ− e∗

c
A (119)

When we do gauge transformation to A:

A→ A′ +∇χ (120)

the phase would be changed correspondently:

ϕ→ ϕ′ +
e∗

ℏc
χ (121)

In order to make jz gauge invariant, we define a gauge invariant phase difference

γ = ϕ2 − ϕ1 −
e∗

ℏc

∫ 2

1

Azdz (122)

Consider the magnetic field generated by current is along y direction, we can
choose a gauge

Ax = 0 Ay = 0 Az = Az(x) (123)

Then

By(x) = −∂Ax

∂x
= B0 ⇒ Az(x) = −B0x (124)

which is a constant. In this case,

γ = ϕ2 − ϕ1 −
2e

ℏc

∫ d
2
+λ

− d
2
−λ

Az(x)dz = ϕ2 − ϕ1 +
2e

ℏc
B0(d+ 2λ)x (125)

28



where λ is the penetration length.

Therefore, the current is

js(x) = j0 sin

[
ϕ2 − ϕ1 +

2e

ℏc
B0(d+ 2λ)x

]
(126)

Besides,
∂γ

∂t
= −2e

ℏc

∫ 2

1

∂Az

∂t
dz =

2e

ℏ

∫ 2

1

Ezdz =
2eV

ℏ
(127)

Thus, actually, γ is a function of time:

γ = (
2eV

ℏ
)t+ γ0 (128)

where γ0 = ϕ2 − ϕ1.

Consequently, we can get the AC Josephson relation:

jz = j0 sin γ = j0 sin(ω0t+ γ0) (129)

where ω0 =
2eV
ℏ
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