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Abstract

In these lecture notes, starting with a review of ordinary Gaussian integrals, we will develop

the functional integral calculus. We will then utilize it to go beyond Landau mean-field theory

by including fluctuations over coarse-grained fields and thereby obtaining a complete statistical

mechanics analysis. After warming up on non-interacting systems, described by harmonic Hamil-

tonians, we will treat interacting, nonlinear systems using perturbative expansion in nonlinearities.

We will discover a breakdown of this perturbative expansion near critical points of continuous phase

transitions, thereby finding regime of breakdown of Landau mean-field theory, i.e., the Ginzburg

region. These developments will set stages for our later renormalization group and phase stability

studies.
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• Gaussian integrals

• Functional integrals

• Perturbative diagrammatic expansion

• Breakdown of perturbation theory and Ginzburg criterion

I. INTRODUCTION AND MOTIVATION

It is not too strong of an exaggeration to say that our theoretical capabilities are limited

to a harmonic oscillator, H = 1
2
p2/m + 1

2
mω2

0x
2, — and systems related to it by a clever

transformation and/or perturbative expansion. With some ingenuity, this still covers a rich

variety of systems, allowing impressive progress in physics. This is not surprising, as stable

states of a system occur at minima of a Hamiltonian, around which, at low energies the

Hamiltonian (as any function) is harmonic, with only small nonlinear corrections. It is thus

imperative to have a thorough understanding of a harmonic oscillator.

In statistical mechanics, the main object is the partition function,

Z =
∑
states

e−βH[states], (1)

and related correlation functions of local observables. In the simplest case of classical sta-

tistical mechanics, where degrees of freedom commute (but also extendable to quantum

statistical mechanics via the imaginary-time Feynman’s path integral, which we will discuss

shortly), the sum over states can often be reduced to an integral over the continuum degrees

of freedom, such as a set of {pi} and {xi}. Thus, in the context of statistical mechanics,

harmonic (non-interacting) systems reduce to the problem of multiple (as we will see below

sometimes infinite number of) Gaussian integrals over potentially coupled degrees of free-

dom, {qi}. We thus pause to develop (hopefully review) the very important theoretical tool

of Gaussian integrals calculus, that we will utilize over and over again here and throughout

the course.
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II. GAUSSIAN INTEGRALS

Given that the harmonic oscillator is a work-horse of theoretical physics, it is not supris-

ing that Gaussian integrals are the key tool of theoretical physics. This is certainly clear

in the computation of the partition function of a classical harmonic oscillator, as it involves

Gaussian integration over fields P and u. However, as we will see, utilizing Feynman’s

path-integral formulation of quantum mechanics, Gaussian integrals are also central for

computation in quantum statistical mechanics and more generally in quantum field theory.

A. one degree of freedom

Let us start out slowly with standard, scalar, one-dimension Gaussian integrals

Z0(a) =

∫ ∞
−∞

dxe−
1
2
ax2

=

√
2π

a
, (2)

Z1(a) =

∫ ∞
−∞

dxx2e−
1
2
ax2

= −2
∂

∂a
Z0(a) =

1

a

√
2π

a
=

1

a
Z0, (3)

Zn(a) =

∫ ∞
−∞

dxx2ne−
1
2
ax2

=
(2n− 1)!!

an
Z0, (4)

that can be deduced from dimensional analysis, relation to the first basic integral Z0(a)

(that can in turn be computed by a standard trick of squaring it and integrating in polar

coordinates) or another generating function and Γ-functions

Z(a, h) =

∫ ∞
−∞

dxe−
1
2
ax2+hx =

∫ ∞
−∞

dxe−
1
2
a(x−h/a)2

e
1
2
h2/a = e

1
2
h2/aZ0(a), (5)

=
∑
n=0

h2n

(2n)!
Zn(a). (6)

Quite clearly, odd powers of x vanish by symmetry, and even powers give the 2n-point

correlation function,

C2n ≡
Zn(a)

Z0(a)
= 〈x2n〉, (7)

=
1

Z0(a)

∂2n

∂h2n
Z(a, h)|h=0 = (2n− 1)!!(C2)n, (8)

where C2 = G0 is a 2-point correlation function, that is also referred to as the propagator,

G0 of the harmonic theory (subscript 0 denotes the harmonic nature of the propagator).
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A useful generalization of above Gaussian integral calculus is to integrals over complex

numbers. Namely, from above we have

I0(a) =

∫ ∞
−∞

dxdy

π
e−a(x2+y2) =

1

a
=

∫
dzdz

2πi
e−azz, (9)

where in above we treat z, z as independent complex variables and the normalization is deter-

mined by the Jacobian of the transformation from x, y pair. This integral will be envaluable

for path integral quantization and analysis of bosonic systems described by complex fields,

ψ, ψ, e.g., for statistical mechanics of superfluids and, more generally for the xy-model.

B. N degrees of freedom

This calculus can be straightforwardly generalized to multi-variable coupled Gaussian

integrals characterized by an N ×N symmetric matrix (A)ij, as would appear in a Hamil-

tonian for N coupled harmonic oscillators,

Z0(A) =

∫ ∞
−∞

[dx]e−
1
2
xT ·A·x =

N∏
i=1

√
2π

ai
=

√
(2π)N

detA
, (10)

Zij
1 (A) =

∫ ∞
−∞

[dx]xixje
− 1

2
xT ·A·x = A−1

ij Z0, (11)

Z(A,h) =

∫ ∞
−∞

[dx]e−
1
2
xT ·A·x+hT ·x = e

1
2
hT ·A−1·hZ0, (12)

computed by diagonalizing the symmetric matrix A and thereby decoupling the N -

dimensional integral into a product of N independent scalar Gaussian integrals (4),

each characterized by eigenvalue ai, and then converting back into representation-

independent form. In above we also defined a common multi-integral notation
∫∞
−∞[dx] ≡∫∞

−∞ . . .
∫∞
−∞ dx1 . . . dxN =

∏N
i

[∫∞
−∞ dxi

]
.

As a corollary of these Gaussian integral identities we have two more key results for a

Gaussian random variable x (obeying Gaussian statistics), with variance A−1
ij ,

Z[h] ≡ 〈ehT ·x〉Z0 = e
1
2
〈(hT ·x)2〉Z0 = e

1
2
hT ·G·hZ0, (13)

〈xixj〉 ≡ G0
ij =

1

Z0

∫ ∞
−∞

[dx]xixje
− 1

2
xT ·A·x = A−1

ij , (14)

=
1

Z0

∂2

∂hi∂hj
Z[h]|h=0 =

∂2

∂hi∂hj
lnZ[h]|h=0 (15)

with the first identity the relative of the Wick’s theorem, which will be extremely important

for computation of Gaussian correlation functions. Z[h] is called the generating function
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for correlators of x, because its n-th derivative with respect to hi gives n-point correlation

function of xi.

As we will see in later, application of these identities to physical harmonic oscillator sys-

tems, they immediately reproduce the equipartition theorem (1
2
kBT per classical quadratic

degree of freedom), as in e.g., phonons in a solid.

C. Propagators and Wick’s theorem for scalar field theory

Above multi-variable Gaussian calculus can now be straightforwardly generalized to

functional Gaussian calculus, which will allow us to do statistical field theory. To this end

we make the following identifications:

i → x, (16)

Si → φ(x), (17)

Aij → Γ(x,x′), (18)

hi → h(x), (19)

namely, the discrete index i that labels the dynamical degree of freedom becomes a continu-

ous label for a point in space, x, the i-th dynamical variable xi generalizes to a field φ(x) at

a spatial point x, the coupling matrix Aij goes over to the continuous operator Γ(x,x′), and

the external field hi goes over to external field h(x). With this, we can simply transcribe

our earlier discrete Gaussian calculus to functional Gaussian calculus, keeping in mind that

strictly speaking the latter is defined by the former through discretization of spatial field

label x.

For pedagogical clarity it is convenient to illustrate function integral calculus with a field

theory of a real scalar field φ(x) (for a quantum dynamical fields, x = (τ, r), with Euclidean

imaginary time action S[φ(x)] replacing the classical Hamiltonian functional), governed by

H[φ(x)] =
1

2

∫
x

∫
x′
φ(x)Γ(x,x′)φ(x′)−

∫
x

h(x)φ(x), (20)

with an external source field h(x). Utilizing Gaussian integral calculus, the associated gen-

erating (partition) function is then given by

Z[h(x)] =

∫
Dφ(x)e−

1
2

∫
x

∫
x′ φ(x)Γ(x,x′)φ(x′)+

∫
x h(x)φ(x), (21)

= e
1
2

∫
x

∫
x′ h(x)Γ−1(x,x′)h(x′), (22)
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where the Γ−1(x,x′) is an inverse of Γ(x,x′), and
∫
Dφ(x) ≡

∫
[dφ(x)] ≡

∏
x

[∫ +∞
−∞ dφ(x)

]
.

For a translationally invariant case Γ(x− x′), inverse is computed by a Fourier transforma-

tion, namely,

Γ−1(x− x′) =

∫
k

1

Γ̃(k)
eik·(x−x

′). (23)

Using Z[h(x)] the correlators are straightforwardly computed by simply differentiating

with respect to h(x),

G(x,x′) = 〈φ(x)φ(x′)〉 =
1

Z

δ2Z[h(x)]

δh(x)δh(x′)

∣∣∣∣
h=0

= Γ−1(x,x′). (24)

The “connected” correlation functions

Gc(x,x
′) = 〈φ(x)φ(x′)〉c ≡ 〈φ(x)φ(x′)〉 − 〈φ(x)〉〈φ(x′)〉 (25)

= 〈[φ(x)− 〈φ(x)〉] [φ(x′)− 〈φ(x′)〉]〉, (26)

=
δ2 lnZ[h(x)]

δh(x)δh(x′)

∣∣∣∣
h=0

≡ δ2W [h(x)]

δh(x)δh(x′)

∣∣∣∣
h=0

, (27)

where W [h(x)] = lnZ[h(x)] is a generating function for connected correlation functions, with

disconnected parts cancelled by the differentiation of the normalization 1/Z[h(x)].

Using Z[h(x)] above we immediately obtain the powerful Wick’s theorem valid for Gaus-

sian fields only (i.e., those characterized by a harmonic [quadratic, non-interacting] Hamil-

tonian). Namely,

〈φ(x1)φ(x2)φ(x3) . . . φ(x2n)〉 =
1

Z

δ2nZ[h(x)]

δh(x1)δh(x2)δh(x3) . . . δh(x2n)

∣∣∣∣
h=0

,

= G(x1,x2)G(x3,x4) . . . G(x2n−1,x2n)

+all other pairings of xi,xj, (28)

and vanishing for correlators odd number of fields.

Above Wick’s theorem directly applies to a classical statistical field theory of commuting

fields. Thanks to a path-integral formulation of a quantum field theory (that maps it onto

an effective d + 1-dimensional commuting, classical statistical field theory)[10, 18], with a

slight modification, the theorem also extends to a quantum field theory for time-ordered

correlation functions in a ground state |0〉,

〈0|Tτ (φ(x1)φ(x2)φ(x3) . . . φ(x2n)) |0〉 = G(x1,x2)G(x3,x4) . . . G(x2n−1,x2n)

+all other pairings of xi,xj, (29)
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A more general form of the quantum Wick’s theorem at the level of operators is given

by

Tτ (φ(x1)φ(x2)φ(x3) . . . φ(xn)) = : φ(x1)φ(x2)φ(x3)φ(x4)φ(x5) . . . φ(xn) :

+ φ(x1)φ(x2) : φ(x3)φ(x4)φ(x5) . . . φ(xn) :

+all other single pair (xi,xj) contraction

+ φ(x1)φ(x2)φ(x3)φ(x4) : φ(x5) . . . φ(xn) :

+all other double pair (xi,xj), (xk,xl) contraction

+ φ(x1)φ(x2) . . . φ(xn−1)φ(xn)

+all other n/2 pairs, if n is even

+ φ(x1)φ(x2) . . . φ(xn−2)φ(xn−1)φ(xn)

+all other (n− 1)/2 pairs, if n is odd, (30)

where the contraction of a pair of fields is defined to be

φ(x1)φ(x2) ≡ Tτ (φ(x1)φ(x2))− : φ(x1)φ(x2) :, (31)

: Ô : is the normal ordered arrangments of operators with creation operators to the left

of annihilation operators. Evaluation of the expectation value in the vacuum gives the

path-integral expression, (29).

D. Generating functions

As we have seen above in Eq.(28), Z[h(x)] is a generating function for n-point correlation

functions, that appear as functional coefficients in the expansion of Z[h(x)] in powers of h(x).

There are a number of other generating functions that importantly appear in field theory

and I briefly summarize their properties and relationship. For further details, I direct the

reader to the wonderful textbook by Zinn Justin[10] and other field theory books, e.g., one

by Lewis Ryder.

1. Z(h) full generating function of all diagrams

As I discussed above n-th derivative of this Z(h) generating function generates n-point

correlation functions:
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〈φ1φ2 . . . φn〉0 =
∂n

∂hn
∣∣
h=0

Z(h).

It contains contributions from all diagrammatic ways to construct an n-point correlation

function.

2. W (h) = lnZ(h) - generating function for connected diagrams

However, a generating function that generates all contributions to a correlator is not

exactly convenient and in fact carries unnecessary information. Cearly, once connected

components of a diagram are generated, the disconnected components are constructed as

various powers of connected ones. Thus, it is more convenient and economical to focus only

on the connected diagrams and therefore to work with a corresponding generating function of

connected-only correlators. Although it takes a bit of thought to prove in full generality[10]

(I encourage you to demonstrate this explicitly for a few simple cases, as I will do in the

next section), the process of taking the logarithm of Z(h) eliminates all the disconnected

diagrams (those that fall apart into multiple pieces). As the simplest illustrative example,

let’s look at the 2-point correlation function, generated by W (h), where subscript c stands

for “connected”,

〈φ1φ2〉c =
∂2W

∂h2

∣∣
h=0

=
∂2

∂h2

∣∣
h=0

lnZ(h) =
∂

∂h
|h=0

(
1

Z

∂

∂h
Z

)
, (32)

= −
(
∂Z

∂h

)2

h=0

+
1

Z

∂2

∂h2

∣∣
h=0

Z(h), (33)

= 〈φ1φ2〉 − 〈φ1〉〈φ2〉 = 〈(φ1 − 〈φ1〉) (φ2 − 〈φ1〉)〉. (34)

Thus W (h) generates a 2-point function, where disconnected pieces 〈φ1〉〈φ2〉 have been

subtracted out, i.e., do not appear. This is true for arbitrary n-point correlation function

generated by W (h).

3. Γ(ϕ) = ϕh − W (h) - generating function for one-particle irreducible 1PI diagrams

diagrams

It can be shown that even W (h) contains too much information, in that even all the

connected diagrams can be generated from a more “economical” (“powerful”) generating
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function Γ(ϕ), that is the Legendre transform of W (h), with ϕ ≡ ∂W (h)
∂h

, allowing one to

eliminate the external (e.g., magnetic) field, h in favor of the background order parameter

field (magnetization) ϕ. This is in close analogy with the way that a Hamiltonian H(p)

as a function of momentum p is a Legendre transform of the Lagrangian L(q̇), trading q̇

dependence for momentum p = ∂L/∂q̇. The key point about

Γ(ϕ) =
∑
n=0

1

n!
Γ(n)ϕn,

that is again not obvious to demonstrate, is that its Taylor expansion generates 1PI di-

agrams, Γ(n) with n external “legs amputated”. 1PI diagrams give vertex functions, that

cannot be cut into disconnected graphs by cutting a single line. In the simplest case of a

2-point correlation function, it is easy to check that while W (h) generates all corresponding

connected diagrams, Γ(ϕ) generates all 1PI diagrams to the inverse propagator Γ(2), which,

when inverted recovers all the “missing” non-1PI diagrams contributing to the 2-point cor-

relation function (propagator). Specifically, to lowest one-loop order, the connected 2-point

function (the Greens function) W (2), generated by W (h) is diagrammatically given by a

geometric series of infinite number of terms, the so-called Dyson equation,

In contrast, the one-loop order 1PI 2-point correlation function Γ(2), generated by Γ(h)

is simply given by just one correction term,

Γ(2)(k,k′) ' − (35)

with the geometric series generated from this one “self-energy” correction, when the propa-

gator G is constructed from Γ(2) by inversion, i.e., G ≡ W (2) = 1/Γ(2). This is discussed in

more detail in problem 4 of homework set 2.

III. STATES AND THEIR COUNTING

Throughout the lectures we will go back and forth between discrete and continuum de-

scription of the degrees of freedom. In all calculations, even when done in the continuum
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limit, it is quite important to keep in mind the discrete and therefore finite nature of the

degrees of freedom, with the continuum description being simply an efficient pnemonic for

the underlying lattice model. This is always the case in any physical system and any pre-

tense otherwise is misguided. This guarantees that no true short-scale (ultra-violet, UV)

divergences actually ever arise, cutoff by the physical lattice structure always present in any

physica matter system.

A. Discrete vs continuum description

Given that a volume of a unit cell is v and reciprocal space is quantized in units of 2π/L,

the relations between sums and integrals in real and reciprocal spaces are given by∑
x

. . . =
1

v

∫
ddx . . . , (36)

∑
k

. . . = Ld
∫

ddk

(2π)d
. . . . (37)

Also, we note the relation between the Kronecker δ and δ-function identities,

N∑
x

eik·x = Nδk,0, (38)

N∑
x

veik·x = vNδk,0, (39)∫
ddxeik·x = V δk,0 =

(2π)d

(2π/L)d
δk,0 = (2π)dδd(k), (40)

where V = vN .

B. Density of states

There will be many instances where our result is represented as a sum over the normal

eigenmodes k. If the summand is only a function the normal-mode frequency ωk (as will

often be the case) it is convenient to replace the sum over k by an integral over ω, with the

Jacobian of this transformation being the density of states g(ω), defined according to:

F =
∑
k

f(ωk) =

∫
dω

(∑
k

δ(ω − ωk)

)
f(ω), (41)

=

∫
dωg(ω)f(ω), (42)
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where the number of states k per interval dω around ω is given by the density of states

g(ω) =
∑
k

δ(ω − ωk) = Ld
∫

ddk

(2π)d
δ(ω − ωk), (43)

where I ignored the distinct polarization modes (number of components of the field, taking it

to be one). I note that sometimes g(ω) is defined without the volume factor Ld, corresponding

to the density of states per unit of volume. Also, by construction, g(ω) satisfies the sum

rule
∫
dωg(ω) = N .

The limit on large k is given by G set by the first BZ, corresponding to uv cutoff by the

lattice spacing in Rn. There is also infrared cutoff set by the system size, L or equivalently

in momentum space by discreteness of k = 2π
L
p.

There are two canonical models of phonons, the Debye model with ωk = ck and the Ein-

stein model with ωk = ω0. The density of states for these “toy” models are straightforwardly

computed to be

gDebye(ω) = Ld
∫

ddk

(2π)d
δ(ω − ck), (44)

= Ld
Sd

(2π)dcd
ωd−1, for 0 < ω < ωDebye (45)

gEinstein(ω) = Ld
∫

ddk

(2π)d
δ(ω − ωo), (46)

= Nδ(ω − ωo), (47)

where Sd = 2πd/2/Γ(d/2) is a surface area of a d-dimensional sphere and ωD is defined by

N =
∫ ωD

0
ωgDebye(ω).

IV. CLASSICAL STATISTICAL FIELD THEORY

For completeness we go back to the fundamental goal of statistical mechanics, namely

to calculate the partition function, Eq. (1), that, as we have seen in the magnetism lecture

for an Ising lattice ferromagnet,

Z =
∑
{σi}

e
1
2
β
∑

ij Jijσiσj , (48)

= Z−1
J0

∑
{σi}

∫
Dφie−

1
2
β−1

∑
ij J
−1
ij φiφj+

∑
i σiφi , (49)

= Z−1
J0

∫
Dφie−

1
2
β−1

∑
ij J
−1
ij φiφj+

∑
i ln coshφi ≡

∫
Dφie−βHeff({φi}). (50)
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can be transformed into a φ4 field theory, with the first step often referred to as the Hubbard-

Stratonovich (HS) transformation[4, 7, 10], but is nothing more than a Gaussian integral

(run in reverse) of the previous sections. Going to the continuum, φi → φ(x), we obtain a

field theoretic expression for the Ising model partition function, that near PM-FM critical

point can we captured by a φ4 field theory,

Z =

∫
Dφ(x)e−βHeff [φ(x)], (51)

with the effective Hamiltonian given by (dropping an irrelevant additive constant kBT lnZJ0

and unimportant higher order φi terms)

Heff [φ(x)] =

∫
x

[
1

2
K(∇φ)2 +

1

2
tφ2 +

1

4
uφ4

]
, (52)

and the effective coupling constants

K =
(kBT )2a2−d

J0

, (53)

t = kBTa
−d
(
kBT

J0

− 1

)
, (54)

u = kBTa
−d/3. (55)

Because of its generic nature, this model prominently appears in condensed matter and

particle field theory studies, and in the context of critical phenomena is referred to as the

Landau-Ginzburg Hamiltonian for the coarse-grained continuum fields φ(x).

A. Challenges to exact solution

There are two challenging aspects of performing above functional integral over field φ(x)

to compute the partition function. One is the first gradient (elastic) term and the other

the nonlinear nature of the functional Heff [φ(x)], arising from the last quartic term. In the

absence of either of these obsticles the partition function is computable exactly. Let us deal

with each of these challenges below.

1. Gradient terms

In the absence of a gradient term, values of φ(x) at each site x are independent, and

the functional reduces to a product over x of independent ordinary integrals, one over each
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variable φ(x) labelled by discrete positions x. As a warm up to a full treatment, we will

analyze a model like this below.

However, as can be seen by discretization,
∫
x
(∇φ)2 '

∑
x,δ(φx − φx+δ)2, the gradi-

ent term couples degrees of freedom at neighboring sites, precluding a direct independent

integration over them. More generally, such coupling term can be written as

H0[φ(x)] =
1

2

∫
x

∫
x′
φ(x)Γ(x,x′)φ(x′), (56)

and can be decoupled by transforming to normal modes of the coupling “matrix”, Γ(x,x′).

For a translationally invariant case Γ(x − x′), the normal modes are simply the Fourier

transform fields, φ̃(k),

φ̃(k) =

∫
x

φ(x)e−ik·x, (57)

φ(x) =

∫
ddk

(2π)d
φ̃(k)eik·x, (58)

in terms of which any translationally invariant spatial coupling decouples in Fourier space,

H0 =
1

2

∫
x

∫
x′
φ(x)Γ(x− x′)φ(x′), (59)

=
1

2

∫
ddk

(2π)d
φ̃(−k)Γ̃(k)φ̃(k) ≡ 1

2

∫
k

φ−kΓkφk, (60)

=
1

2

∫
k

Γ̃(k)|φ̃(k)|2 =
1

2

∫
k

Γ̃(k)
(
φ̃2
r(k) + φ̃2

i (k)
)
. (61)

Above, I defined
∫
k
≡
∫

ddk
(2π)d

and in a slight abuse of notation, dropped tilde, using the

same symbol for two distinct functions, φ(x) and its Fourier transform φ̃(k) ≡ φk. I trust

that no confusion should arise as I distinguish these by their arguments, and will use k as a

subscript.

I further note, that, in fact a Fourier transformation above does not quite decouple the

modes, retaining coupling φ(k) to its single partner φ−k. However, the remaining coupling

is just a 2 × 2 matrix for each k and is easily decoupled by a sum and differences (π/4

“rotation”). Furthermore, for a real field φ(x), it is easy to verify that its Fourier transform

is constrained by a condition φ−k = φ∗k and so this final decoupling is into real and imaginary

parts of the field φk, as indicated in the last line above.

Specializing to the gradient, as the case of most common interest, and transitioning to

Fourier modes, we find that Γ̃(k) ≡ Γk = k2, i.e.,

H0 =
1

2

∫
x

(∇φ)2 =
1

2

∫
k

k2|φk|2. (62)
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2. Nonlinearities, interactions, mode coupling

The other, much more serious obsticle to a direct functional integral computation of the

partition function is the nonlinear nature of the effective Hamiltonian, namely the quartic

interaction Hint = u
∫
x
φ4. For simplicity of notation I redefined u such that no factor

1
4

appears. Also, because our focus is on the critical point, kBT ≈ kBTc, I will also set

kBT = 1. I note that it in itself, this nonlinearity would not be a big problem in the absence

of spatial coupling discussed above, as the partition function would amount to a product

over x of independent ordinary quartic integrals. For example, for K = 0 it would give a

very simple and exact result,

Z =
∏
x

[∫
dφxe

− 1
2
tφ2

x−uφ4
x

]
=

[∫
dφe−

1
2
tφ2−uφ4

]N
, (63)

=
[
(t/8u)1/2e

t2

32uK 1
4

(
t2/32u)

)]N
, (64)

where K 1
4
[x] is a modified Bessel K function of order 1/4.

In the presence of both the gradient terms and the nonlinearities, in terms of the Fourier

modes φq (necessary to decouple the gradient term), the quartic nonlinearity couples different

q models,

H = H0 +Hint (65)

=
1

2

∫
q

(Kq2 + t)|φq|2 + u

∫
q1,q2,q3,q4

φq1φq2φq3φq4(2π)dδd(q1 + q2 + q3 + q4), (66)

= H0 + , (67)

where the quartic vertex graphically represents u coupling, with translational invariance

enforcing the vanishing of the sum of the four momenta.

B. Noninteracting u = 0 analysis

We first consider a harmonic theory, i.e., in the absence of nonlinearities, taking u = 0.

We note that for stablity of the theory this limit is only possible for t > 0 (above Tc). In

this case, a statistical analysis reduces to Gaussian functional integrals of decoupled modes

q, allowing us to take advantage of the calculus that we developed in the previous section.

14



The harmonic partition function can be easily obtained using (10),

Z0 =

∫
Dφ(r)e−

1
2

∫
r[K(∇φ)2+tφ2], (68)

=

∫
Dφqe

− 1
2

∫
q(Kq2+t)|φq|2 , (69)

=
∏
q

[
2π

Kq2 + t

]
, (70)

where for every q there are two, real and imaginary modes (hence no square-root). Similarly

the two-point correlation function is also straightforwardly obtained using (15), (23) and

(24),

G0(r− r′) = 〈φ(r)φ(r′)〉0 = Γ−1(r− r′), (71)

=

∫
q

1

Kq2 + t
eiq·(r−r

′), (72)

=
1

K

e−|r−r
′|/ξ+

4π|r− r′|
, d = 3, (73)

where the second equality (line) can also most simply be obtained by the equipartition

theorem, and the high temperature correlation length is given by

ξ+ =

√
K

t
∼ t−ν , ν =

1

2
, in harmonic approximation. (74)

The exponential fall-off of the real-space correlation function (propagator) captures short-

range correlations characterizing the high temperature disordered phase, where fields φ(r) at

distant points fluctuate in uncorrelated way, so at large separations the correlator averages

to zero.

I also note that in Fourier space, we have,

G̃0(q,q′) = 〈φ(q)φ(q′)〉0, (75)

=
1

Kq2 + t
(2π)dδd(q + q′), (76)

≡ G̃0(q)(2π)dδd(q + q′), (77)

with the δ-function enforcing momentum conservation in this translationally-invariant

model.

Because of the quadratic nature of H for u = 0, all physical observables can be straight-

forwardly calculated using Gaussian functional integral calculus of previous sections. For
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example, the uniform linear susceptibility χ of the magnetization M =
∫
ddrφ(r) in response

to a uniform external field h (included in the Hamiltonian via Hh = −h
∫
r
φ(r) = −h〈M〉)

is given by

〈M(h→ 0)〉 =
1

Z

∫
Dφ
[∫

ddr1φ(r1)

]
e−βHh=0[φ]+βh

∫
r φ(r), (78)

Thus, linear susceptibility, defined by 〈M〉 =h→0 χunif h, is given by

χunif =
1

kBT
〈MM〉 =

1

kBT

∫
ddr1d

dr2〈φ(r1)φ(r2)〉, (79)

=
1

kBT

∫
ddR

∫
dd(r1 − r2)G(|r1 − r2|) =

V

kBT
G(q = 0), (80)

=
Ld

t
∼ t−γ, γ = 1, in harmonic approximation. (81)

The above relation of the susceptibility to a correlation function χ = 1
kBT
〈MM〉 is an

example of a general and important Fluctuation-Dissipation theorem.

FIG. 1: Uniform magnetic susceptibility χunif in a harmonic approximation near a critical point,

Tc.

Heat capacity (focussing on its singular, critical part only) can be similarly calculated

for t > 0,

Csing = −T ∂
2F

∂T 2
≈ −Tc

∂2F

∂t2
≈ Tc

∂E

∂t
, (82)

= − ∂

∂t

∫
ddr1〈φ2(r1)〉 ≈

∫
ddr1d

dr2〈φ2(r1)φ2(r2)〉, (83)

= V

∫
ddq

(2π)d
1

(Kq2 + t)2
≈ V

K2

∫
ddq

(2π)d
1

(q2 + ξ−2)2
∼ V

K2

 a4−d, for d > 4,

ξ4−d
+ , for d < 4.

(84)

giving Csing ∼ t−α, with α = αMF = 0 for d > 4 and α = (4 − d)/2 for d < 4 within

a harmonic approximation. This reflects an important observation, that for d > 4 MFT

remains valid, but breaks down for d < 4 due to importance of thermal fluctuations.
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C. interacting u > 0 analysis

We now return to the full nonlinear theory, that does not admit an exact analysis. One

way to make progress is to consider a limit of small nonlinear coupling u and to perform a

perturbative expansion in u. The precise criterion for the validity of this approach can be

determined a posteriori, by noting a value of u at which perturbation theory fails to converge.

Perhaps not surprisingly, this will be given by the Ginzburg criterion from Lecture 3.

1. Perturbative expansion for a single-mode “toy” φ4 model

To warm up for a full treatment, we first consider a single-mode “toy” φ4 theory charac-

terized by

H =
1

2
tφ2 + uφ4, (85)

corresponding to K = 0 and/or taking only a single momentum mode q. The additional

advantage is that the analysis of the model reduces to a conventional integral and thus

admits an exact solution as found (64).

We first recall Gaussian integrals that will be necessary for the perturbative expansion

in uφ4, ∫ ∞
−∞

dφ φne−
1
2
tφ2

=
∂n

∂hn
|h=0 Z(h) =

 Z0(n− 1)!!
(

1
t

)n/2
, for n even,

0, for n odd.
(86)

(87)

with

Z(h) ≡
∫ ∞
−∞

dφe−
1
2
tφ2+hφ = Z(0)e

1
2
h2/t, (88)

and Z(0) = Z0 =
√

2π/t. Above is equivalent to a zero-dimensional Wick’s theorem,

〈φ2n〉 = (2n− 1)!!〈φ2〉n = (2n− 1)!!Gn
0 , (89)

where the noninteracting (u = 0) propagator in this “toy” model is given by

G0 = 〈φφ〉0 =

∫∞
−∞ dφ φ

2e−
1
2
tφ2∫∞

−∞ dφ e
− 1

2
tφ2

=
1

t
. (90)

The (2n−1)!! can be straightforwardly demonstrated in a number of ways. One is by Taylor-

expanding the generating function Z(h) in powers of h2/2t and comparing term by term to
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the series expansion in h in (87). Alternatively, it can be obtained diagrammatically, by

thinking of φ2n a 2n-point vertex and counting the total distinct ways to “contract” (connect

up into a loop) all n pairs of vertex legs.

Wick’s theorem thereby allows a computation of any average of arbitrary power of φ in

terms of a corresponding power of the pair-correlator of the Gaussian (u = 0) theory. Such

perturbative expansion leads to a growing number of terms. It is convenient to keep track

of them in terms of pictorial Feynman diagrams named after their inventor[7, 10]. These

diagrams are nothing more than graphical representaton of all pairings of 2n fields in the

perturbative expansion.

The most elementary diagram is the harmonic propagator,

G0 = 〈φ2〉0 =
∂2

∂h2
|h=0e

1
2

h2

t =
∂2

∂h2
|h=0 = =

1

t
. (91)

The propagator G in the full nonlinear theory can now be calculated perturbatively in

quartic interaction u,

G = 〈φ2〉 =

∫
dφφ2e−

1
2
tφ2−uφ4∫

dφe−
1
2
tφ2−uφ4

, (92)

=

∫
dφ φ2[1− uφ4 + . . .]e−

t
2
φ2∫

dφ[1− uφ4 + . . .]e−
t
2
φ2

, (93)

=
〈φ2〉0 − u〈φ6〉0 + . . .

1− u〈φ4〉0 + . . .
= 〈φ2〉0 − u〈φ6〉0 + u〈φ2〉0〈φ4〉0 + . . . , (94)

= G0 − u5!!G3
0 + u3!!G3

0 + . . . , (95)

= − 4 · 3 − 3 + 3 , (96)

' 1

t
− 12

1

t

u

t

1

t
=

1

t

(
1− 12u

t2
)
, (97)

where the 3rd term arises from the correction to the denominator, the harmonic partition

function, Z0 and cancels the “disconnected” part of the second term 〈φ6〉0. Rewriting this

result as the correction to the inverse propagator,

Γ(2) ≡ G−1 ' G−1
0

(
1 + 12u/t2

)
= G−1

0 + 12uG0, (98)

gives the correction to the reduced temperature t and therefore a reduction in the transition

temperature, Tc,

tR = a(T − TRc ) ≈ t+ 12u/t, (99)

⇒ δTc ≈ −12u/t. (100)
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I note that a correction to the inverse propagator, which is a one-particle-irreducible (1PI)

function, Γ(2)[10], simply comes from a single-loop diagram (96), and does not involve dis-

connected nor non-1PI diagrams. This is a general rule for 1PI correlation functions.[10]

2. Perturbative expansion for the full multi-mode φ4 model

Having warmed up on a single mode model, we now repeat the analysis for the full scalar

φ4 (Ising model) in d-dimensions

H = H0 +Hint (101)

=
1

2

∫
q

(Kq2 + t)|φq|2 + u

∫
q1,q2,q3,q4

φq1φq2φq3φq4(2π)dδd(q1 + q2 + q3 + q4), (102)

= H0 + , (103)

where the quartic vertex graphically represents u nonlinearity and couples different momen-

tum modes. The harmonic part is characterized by free propagator,

〈φ(k)φ(k′)〉0 = (2π)dδd(k + k′)
1

Kk2 + t
≡ (2π)dδd(k + k′)G0(k), (104)

We now consider a calculation of the two-point correlation function (propagator) in the

fully interacting φ4 field theory by perturbatively expanding in the coupling u. To this end,

mirroring the single mode analysis of the previous subsection, we find,

〈φ(k)φ(k′)〉 =

∫
[dφ]φkφk′

[
1− + . . .

]
e−H0∫

[dφ]
[
1− + . . .

]
e−H0

(105)

=
〈φkφk′〉0 − 〈φkφk′ 〉0 + . . .

1− 〈 〉
(106)

=
− 3 − 12 + . . .

1− 3 + . . .
(107)

' − 12 (108)

I note that the disconnected graph, 3 from the denominator cancelled the disconnected

parts of the numerator. This is a general behavior, as can be seen from the fact that the
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normalizing denominator Z(h) arises from a derivative of W (h) = lnZ(h), whose derivatives

generate only connected contributions to an n-point correlation function.

Let us now examine in more detail the actual mathematical expressions graphically

representated by the diagrams, 3 +12 , appearing in the numerator, above.

As seen from above perturbative expansion, these diagrams represent a numerator correction

δN(k) to the 2-point correlation function, which by translational invariance is expected to

have a momentum-conserving form,

(2π)dδd(k + k′)δN(k) ≡ u

Z0

∫
[dφ]φkφk′

∫
q1...q3

φq1φq2φq3φ−q1−q2−q3e
− 1

2

∫
q(Kq2+t)|φq|2 ,

= 3uG̃0(k)(2π)dδd(k + k′)

∫
q1q2q3

G̃0(q1)G̃0(q3)(2π)dδd(q1 + q2)(2π)dδd(q3 − q1 − q2 − q3)

+ 12uG̃0(k)G̃0(k′)

∫
q1q2q3

G̃0(q3)(2π)dδ(k + q1)(2π)dδ(k′ + q2)(2π)dδ(q3 − q1 − q2 − q3),

= (2π)dδd(k + k′)

[
3uG̃0(k)(2π)dδd(0)

∫
q1q3

G̃0(q1)G̃0(q3) + 12uG̃0(k)G̃0(−k)

∫
q3

G̃0(q3)

]
.

(109)

Thus, we find the correction to the numerator to be given by,

δN(k) = 3uV G̃0(k)

[∫
q

G̃0(q)

]2

+ 12uG̃0(k)G̃0(−k)

∫
q

G̃0(q), (110)

= 3uV G̃0(k)G0(x = 0)2 + 12uG̃0(k)G̃0(−k)G0(x = 0), (111)

≡ 3 + 12 (112)

where loops represent momentum q integrals of propagators, G0(q). For later reference I

note that it can be easily shown that the factor of 12 generalizes to a factor of 4(n + 2) in

the O(n) model.

Now taking into account the normalizing denominator (the partition function with the

loop correction that it experiences), that cancels the disconnected diagram in the numerator,
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we find the correction to propagator (in graphs χ(k) denotes G(k)):

G̃(k) ≈ G̃0(k)− 12uG̃0(k)G̃(−k)

∫
q

G̃0(q), (113)

=
1

Kk2 + t
− 12u

(Kk2 + t)2

∫
ddq

(2π)d
1

Kq2 + t
, (114)

= − 12 . (115)

Looking at the inverse propagator to the same one-loop order, we find,

Γ(2)(k) ≡ G̃−1(k) ≡ KRk
2 + χ−1, (116)

= G̃−1
0 (k) + 12u

∫
ddq

(2π)d
1

Kq2 + t
, (117)

where the factor of 12 arises from 6 distinct ways to generate one loop contractions from

a 4-point vertex, with additional factor of 2 coming from two external legs. From this

correction to G−1(k) that is often referred to as the “self-energy”, Σ(k), we can identify the

non-renormalized of the stiffness KR

KR = K, to one loop order (118)

(because to this order Σ(k) = is k-independent), and the fluctuation-corrected

inverse linear susceptibility χ(t) ≡ G(k = 0) is given by

χ−1(t) = t+ 12u

∫
ddq

(2π)d
1

Kq2 + t
, (119)

To evaluate the integral loop correction to χ−1(t), I first note that its behavior depends

qualitatively on the range of dimensionality of space, d, and thus different ranges of d must

be analyzed separately.

3. Above the upper-critical dimension, d > 4: mean-field theory

I first note that for d > 4 the integral converges in a small t limit, and can in fact be

Taylor-expanded (at least) to linear order in t, giving,

χ−1(tR) = t+
12u

K

∫
ddq

(2π)d
1

q2
− t 12u

K2

∫
ddq

(2π)d
1

q4
+

12u

K
O[(t/K)d/2−1], (120)

= t+
12uCdΛ

d−2

K(d− 2)
− t 12uCdΛ

d−4

K2(d− 4)
+

12u

K
O[(t/K)d/2−1], (121)

≡ tR

(
1− 12uCdΛ

d−4

K2

)
+

12u

K
O[(tR/K)d/2−1]. (122)
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In above, Λ = 2π/a is the UV momentum cutoff (implicit in all integrals when necessary),

set by the underlying lattice constant and used to cutoff the (for d > 4 UV divergent)

integrals and Cd = Sd/(2π)d = 1
2d−1(π)d/2Γ(d/2)

, with Sd a surface area of a d-dimensional ball

(S1 = 2, S2 = 2π, S3 = 4π, etc.).[11] I note that third correction term is valid for 4 < d < 6,

giving a nonanalytic correction ∼ td/2−1 � t, that at small t is subdominant to the first two

leading terms. For d > 6, it can be checked that the correction instead scales as t2, with the

subdominant nonanalyticity arising at even higher order in t. In the last equality above, I

defined the renormalized reduced temperature

tR ≡ t+
12uCdΛ

d−2

K(d− 2)
, (123)

shifted upwards by the first t-independent constant term. In the final equality I also replaced

t by the renormalized (upward-shifted) reduced temperature tR, valid to lowest order in the

small quartic coupling u. Recalling that t = a0(T − Tc), we find that these fluctuation

corrections suppress downward the critical transition temperature from Tc → TRc ,

TRc = Tc −
12uCdΛ

d−2

Ka0(d− 2)
. (124)

This is consistent with the physical expectations, that fluctuations tend to suppress the

ordered phase, enhancing the range of the disordered phase.

4. Below the upper-critical dimension, 2 < d < 4: breakdown of mean-field theory

Examining the integral correction to χ−1 in (119) of the previous subsection, it is easy to

see that for 2 < d < 4 the first constant correction to t remains infrared (IR) convergent and

therefore still non-divergently upward-shifts t→ tR as for d > 4 of the previous subsection.

However, in qualitative contrast, the second correction, linear in t diverges in IR for d < 4,

signaling the breakdown of the above perturbative expansion in small t. This is true no

matter how small u is and how low the absolute temperature T is.

To assess the behavior of χ−1(tR), I first shift t to tR by adding and subtracting the

constant shift integral δt = 12u
∫

ddq
(2π)d

1
Kq2 = 12uCdΛd−2

K(d−2)
, (IR convergent for d > 2) thereby
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obtaining an integral that diverges in the IR for a vanishing tR,

χ−1 ≈ tR + 12u

∫
ddq

(2π)d

[
1

Kq2 + t
− 1

Kq2

]
, (125)

≈ tR −
12u

K2

∫
ddq

(2π)d
tR

q2(q2 + tR/K)
, (126)

≈ tR

[
1− 12uCd

K2

∫ ∞
0

dqqd−3 1

q2 + tR/K

]
, (127)

≈ tR

[
1− (K/tR)(4−d)/2 6πuCd

K2| sin(πd/2)|

]
, (128)

≈ tR

[
1− const.ut

−(4−d)/2
R + . . .

]
, for d < 4. (129)

I note, that, although superficially the correction term in (126) is proportional to tR, the

corresponding integral is IR divergent, and therefore is required to be performed for a small

but nonzero tR, giving nonanalytic expansion in tR. Complementing a direct calculation in

the last equality, above, a power-counting easily shows that the integral scales as ∼ 1/q4−d

and thus must grow (diverge) in IR as ξ4−d
0 ∼ (tR/K)−(4−d)/2. Since for small tR this and the

second term in (129) diverge, sufficiently close to TRc the perturbation theory in u breaks

down no matter how small the quartic coupling is. This breakdown happens sufficiently

close to TRc , for tR < tGinzburgR , where

tGinzburgR =

[
6πuCd

Kd/2| sin(πd/2)|

]2/(4−d)

∼ (u2/Kd)1/(4−d). (130)

We note that this is precisely the Ginzburg criterion, found in previous set of lecture notes

3 on breakdown of Landau theory. As we will find in the next lecture, this non-analytic

expansion (breakdown of perturbation theory) in tR is a generic signature of the expected

modification of the mean-field exponent γMF = 1 inside the Ginzburg region, where expo-

nents can be calculated using the renormalization group (RG).

5. Below the lower-critical dimension, d < 2: instability of the ordered phase

Finally, examining the integral correction δt for d < 2 in Eq.(122), I find that indeed it

diverges in the IR. From (124), we thus find that the downward suppression of TRc diverges.

This suggests (but must be reexamined more carefully by a more reliable ordered state

analysis) that the lower-critical dimension of dlc = 2, below which the phase transition is

destroyed by thermal fluctuations.
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6. Graphical correction to the quartic vertex

As another example, let us also look at another 4-point correlation functions. We focus

on a “truncated” 1PI correlator in momentum space,

Γ(4) ≡ C
(4)
tr (k1,k2,k3,k4) = 〈φk1φk2φk3φk4〉tr (131)

where “truncation” corresponds to not including external propagator legs, by dividing out

the external propagators,

C
(4)
tr = C(4)

conn ×G−1
0 (k1)G−1

0 (k2)...G−1
0 (k4). (132)

Above, C
(4)
conn is the ”connected”correlation function, i.e., the one that excludes contributions

to the correlator that can be written as product of lower order correlation functions. As will

become more clear in the next set of lectures on renormalization group, the significance

of such a correlator is that it determines the effective “renormalized” quartic coupling uR,

characterizing the theory in the presence of fluctuations.

C(4)
conn(k1,k2,k3,k4) = G0(k1) . . . G0(k4)(2π)dδd(k1 + . . .+ k4)

×
[
4!u− u2

2!
62 · 2 · 22 · 2

(∫
q

1

(Kq2 + t)(K(k1 + k2 − q)2 + t)

+

∫
q

1

(Kq2 + t)(K(k1 + k3 − q)2 + t)
+

∫
q

1

(Kq2 + t)(K(k1 + k4 − q)2 + t)

)]
, (133)

= 4! − 72 · 4 − 72 · 4 − 72 · 4 . (134)

Observe the combinatorial factors: (i) the 4! comes from the total number of ways to connect

external fields φk1 , . . . , φk4 to the quartic vertex u, (ii) factors of 6 come from the number of

ways to select 2 legs (from each quartic vertex) that will connect as internal legs of the loop,

and a factor of 2 for the two ways of connecting them up into a loop, (iii) the other factor

of 22 · 2 are the number of ways to connect the fields φk1 , φk2 on one side and φk3 , φk4 on

other side of the resulting one-loop diagram, (iv) there are total of three channels (referred

to as s, t and u in particle physics) corresponding to three ways of pairing the four external

momenta together fields to the diagram.

Focussing on the zero momentum limit of this 4-point vertex (physically representing

2-particle scattering in quantum field theory), reduces three scattering channels into an

identical form, resulting in overall 4! factor as for the bare vertex (first) term, with which
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we find,

1

4!
Γ(4)({ki = 0}) ≡ uR = u

(
1− 36u

∫ Λ ddq

(2π)d
1

(Kq2 + t)2

)
, (135)

= − 36 , (136)

= u

(
1− 36uCd

K2

∫ Λ

0

dq
qd−1

(q2 + ξ−2
0 )2

)
, (137)

= u

(
1− ξ(4−d)

0

36uCd
K2

∫ Λξ0

0

dq′
q′d−1

(q′2 + 1)2

)
, (138)

= u

1− 36uCd
K2

×

 Λd−4, for d > 4,

adξ
4−d
0 ∼ t−(4−d)/2, for d < 4.

 , (139)

= u

[
1−

(
ξ0

ξG

)4−d
]
, for d < 4, (140)

where ad = π(d−2)
4| sin(πd/2)| is a constant, and to compute the integral I rescaled the momenta of

integration by ξ0. In the last line I wrote the correction in the explicitly dimensionless form,

defining the Ginzburg length,

ξG =

(
K2

36uadCd

)1/(4−d)

, (141)

relative to which the correlation length ξ0 is measured, beyond which the nonlinearity u

begins to matter, and perturbation theory breaks down. For later reference I note that it

can be easily shown that the coefficient 36 above generalizes to a factor of 4(n + 8) in the

O(n) model.

The crucial observation above is that in t → 0 (or equivalently, ξ0 → ∞) limit, the

one-loop integral has qualitatively distinct behaviors for d > 4, where it is IR convergent,

and for d < 4, where it is IR divergent and thus sensitively and nonanalytically depends on

t and ξ0,

δuR
u
∼ u

K2

 Λd−4, for d > 4,

ξ4−d
0 , for d < 4.

(142)

Although calculated exactly above, these asymptotic behaviors are also straightforwardly

obtained by power-counting (dimensional analysis).

Once again, as with the 2-point correlation function we observe that for d > duc = 4

the one-loop fluctuation-correction to uR is finite near the critical point Tc, as t → 0. In

qualitative contrast, for d < duc = 4 this one-loop correction diverges near the critical point
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(t→ 0), leading to a breakdown of the perturbative expansion, no matter how small u and

T are. The criterion for this breakdown, i.e., the correction δuR(tG)
u

= 1, then again leads to

the Ginzburg criterion in (130).

These findings then lead to a key question: What do we do to describe an interatcting

fluctuating system near its critical point, TcR (tR → 0)? We will find the answer in the next

set of lectures on RG, as discovered by Ken G. Wilson, and many among contributers.[4, 7–
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